1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 // Limit the width of DAG chains. This is important in general to prevent 83 // prevent DAG-based analysis from blowing up. For example, alias analysis and 84 // load clustering may not complete in reasonable time. It is difficult to 85 // recognize and avoid this situation within each individual analysis, and 86 // future analyses are likely to have the same behavior. Limiting DAG width is 87 // the safe approach, and will be especially important with global DAGs. 88 // 89 // MaxParallelChains default is arbitrarily high to avoid affecting 90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 91 // sequence over this should have been converted to llvm.memcpy by the 92 // frontend. It easy to induce this behavior with .ll code such as: 93 // %buffer = alloca [4096 x i8] 94 // %data = load [4096 x i8]* %argPtr 95 // store [4096 x i8] %data, [4096 x i8]* %buffer 96 static const unsigned MaxParallelChains = 64; 97 98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 99 const SDValue *Parts, unsigned NumParts, 100 MVT PartVT, EVT ValueVT, const Value *V); 101 102 /// getCopyFromParts - Create a value that contains the specified legal parts 103 /// combined into the value they represent. If the parts combine to a type 104 /// larger then ValueVT then AssertOp can be used to specify whether the extra 105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 106 /// (ISD::AssertSext). 107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 108 const SDValue *Parts, 109 unsigned NumParts, MVT PartVT, EVT ValueVT, 110 const Value *V, 111 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 112 if (ValueVT.isVector()) 113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 114 PartVT, ValueVT, V); 115 116 assert(NumParts > 0 && "No parts to assemble!"); 117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 118 SDValue Val = Parts[0]; 119 120 if (NumParts > 1) { 121 // Assemble the value from multiple parts. 122 if (ValueVT.isInteger()) { 123 unsigned PartBits = PartVT.getSizeInBits(); 124 unsigned ValueBits = ValueVT.getSizeInBits(); 125 126 // Assemble the power of 2 part. 127 unsigned RoundParts = NumParts & (NumParts - 1) ? 128 1 << Log2_32(NumParts) : NumParts; 129 unsigned RoundBits = PartBits * RoundParts; 130 EVT RoundVT = RoundBits == ValueBits ? 131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 132 SDValue Lo, Hi; 133 134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 135 136 if (RoundParts > 2) { 137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 138 PartVT, HalfVT, V); 139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 140 RoundParts / 2, PartVT, HalfVT, V); 141 } else { 142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 144 } 145 146 if (TLI.isBigEndian()) 147 std::swap(Lo, Hi); 148 149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 150 151 if (RoundParts < NumParts) { 152 // Assemble the trailing non-power-of-2 part. 153 unsigned OddParts = NumParts - RoundParts; 154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 155 Hi = getCopyFromParts(DAG, DL, 156 Parts + RoundParts, OddParts, PartVT, OddVT, V); 157 158 // Combine the round and odd parts. 159 Lo = Val; 160 if (TLI.isBigEndian()) 161 std::swap(Lo, Hi); 162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 165 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 166 TLI.getPointerTy())); 167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 169 } 170 } else if (PartVT.isFloatingPoint()) { 171 // FP split into multiple FP parts (for ppcf128) 172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 173 "Unexpected split"); 174 SDValue Lo, Hi; 175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 177 if (TLI.hasBigEndianPartOrdering(ValueVT)) 178 std::swap(Lo, Hi); 179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 180 } else { 181 // FP split into integer parts (soft fp) 182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 183 !PartVT.isVector() && "Unexpected split"); 184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 186 } 187 } 188 189 // There is now one part, held in Val. Correct it to match ValueVT. 190 EVT PartEVT = Val.getValueType(); 191 192 if (PartEVT == ValueVT) 193 return Val; 194 195 if (PartEVT.isInteger() && ValueVT.isInteger()) { 196 if (ValueVT.bitsLT(PartEVT)) { 197 // For a truncate, see if we have any information to 198 // indicate whether the truncated bits will always be 199 // zero or sign-extension. 200 if (AssertOp != ISD::DELETED_NODE) 201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 202 DAG.getValueType(ValueVT)); 203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 204 } 205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 206 } 207 208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 209 // FP_ROUND's are always exact here. 210 if (ValueVT.bitsLT(Val.getValueType())) 211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 212 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 213 214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 215 } 216 217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 219 220 llvm_unreachable("Unknown mismatch!"); 221 } 222 223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 224 const Twine &ErrMsg) { 225 const Instruction *I = dyn_cast_or_null<Instruction>(V); 226 if (!V) 227 return Ctx.emitError(ErrMsg); 228 229 const char *AsmError = ", possible invalid constraint for vector type"; 230 if (const CallInst *CI = dyn_cast<CallInst>(I)) 231 if (isa<InlineAsm>(CI->getCalledValue())) 232 return Ctx.emitError(I, ErrMsg + AsmError); 233 234 return Ctx.emitError(I, ErrMsg); 235 } 236 237 /// getCopyFromPartsVector - Create a value that contains the specified legal 238 /// parts combined into the value they represent. If the parts combine to a 239 /// type larger then ValueVT then AssertOp can be used to specify whether the 240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 241 /// ValueVT (ISD::AssertSext). 242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 243 const SDValue *Parts, unsigned NumParts, 244 MVT PartVT, EVT ValueVT, const Value *V) { 245 assert(ValueVT.isVector() && "Not a vector value"); 246 assert(NumParts > 0 && "No parts to assemble!"); 247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 248 SDValue Val = Parts[0]; 249 250 // Handle a multi-element vector. 251 if (NumParts > 1) { 252 EVT IntermediateVT; 253 MVT RegisterVT; 254 unsigned NumIntermediates; 255 unsigned NumRegs = 256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 257 NumIntermediates, RegisterVT); 258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 259 NumParts = NumRegs; // Silence a compiler warning. 260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 261 assert(RegisterVT == Parts[0].getSimpleValueType() && 262 "Part type doesn't match part!"); 263 264 // Assemble the parts into intermediate operands. 265 SmallVector<SDValue, 8> Ops(NumIntermediates); 266 if (NumIntermediates == NumParts) { 267 // If the register was not expanded, truncate or copy the value, 268 // as appropriate. 269 for (unsigned i = 0; i != NumParts; ++i) 270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 271 PartVT, IntermediateVT, V); 272 } else if (NumParts > 0) { 273 // If the intermediate type was expanded, build the intermediate 274 // operands from the parts. 275 assert(NumParts % NumIntermediates == 0 && 276 "Must expand into a divisible number of parts!"); 277 unsigned Factor = NumParts / NumIntermediates; 278 for (unsigned i = 0; i != NumIntermediates; ++i) 279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 280 PartVT, IntermediateVT, V); 281 } 282 283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 284 // intermediate operands. 285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 286 : ISD::BUILD_VECTOR, 287 DL, ValueVT, Ops); 288 } 289 290 // There is now one part, held in Val. Correct it to match ValueVT. 291 EVT PartEVT = Val.getValueType(); 292 293 if (PartEVT == ValueVT) 294 return Val; 295 296 if (PartEVT.isVector()) { 297 // If the element type of the source/dest vectors are the same, but the 298 // parts vector has more elements than the value vector, then we have a 299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 300 // elements we want. 301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 303 "Cannot narrow, it would be a lossy transformation"); 304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 305 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 306 } 307 308 // Vector/Vector bitcast. 309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 311 312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 313 "Cannot handle this kind of promotion"); 314 // Promoted vector extract 315 bool Smaller = ValueVT.bitsLE(PartEVT); 316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 317 DL, ValueVT, Val); 318 319 } 320 321 // Trivial bitcast if the types are the same size and the destination 322 // vector type is legal. 323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 324 TLI.isTypeLegal(ValueVT)) 325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 326 327 // Handle cases such as i8 -> <1 x i1> 328 if (ValueVT.getVectorNumElements() != 1) { 329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 330 "non-trivial scalar-to-vector conversion"); 331 return DAG.getUNDEF(ValueVT); 332 } 333 334 if (ValueVT.getVectorNumElements() == 1 && 335 ValueVT.getVectorElementType() != PartEVT) { 336 bool Smaller = ValueVT.bitsLE(PartEVT); 337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 338 DL, ValueVT.getScalarType(), Val); 339 } 340 341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 342 } 343 344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 345 SDValue Val, SDValue *Parts, unsigned NumParts, 346 MVT PartVT, const Value *V); 347 348 /// getCopyToParts - Create a series of nodes that contain the specified value 349 /// split into legal parts. If the parts contain more bits than Val, then, for 350 /// integers, ExtendKind can be used to specify how to generate the extra bits. 351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V, 354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 355 EVT ValueVT = Val.getValueType(); 356 357 // Handle the vector case separately. 358 if (ValueVT.isVector()) 359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 360 361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 362 unsigned PartBits = PartVT.getSizeInBits(); 363 unsigned OrigNumParts = NumParts; 364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 365 366 if (NumParts == 0) 367 return; 368 369 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 370 EVT PartEVT = PartVT; 371 if (PartEVT == ValueVT) { 372 assert(NumParts == 1 && "No-op copy with multiple parts!"); 373 Parts[0] = Val; 374 return; 375 } 376 377 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 378 // If the parts cover more bits than the value has, promote the value. 379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 380 assert(NumParts == 1 && "Do not know what to promote to!"); 381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 382 } else { 383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 384 ValueVT.isInteger() && 385 "Unknown mismatch!"); 386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 388 if (PartVT == MVT::x86mmx) 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } 391 } else if (PartBits == ValueVT.getSizeInBits()) { 392 // Different types of the same size. 393 assert(NumParts == 1 && PartEVT != ValueVT); 394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 396 // If the parts cover less bits than value has, truncate the value. 397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 398 ValueVT.isInteger() && 399 "Unknown mismatch!"); 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 if (PartVT == MVT::x86mmx) 403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 404 } 405 406 // The value may have changed - recompute ValueVT. 407 ValueVT = Val.getValueType(); 408 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 409 "Failed to tile the value with PartVT!"); 410 411 if (NumParts == 1) { 412 if (PartEVT != ValueVT) 413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 414 "scalar-to-vector conversion failed"); 415 416 Parts[0] = Val; 417 return; 418 } 419 420 // Expand the value into multiple parts. 421 if (NumParts & (NumParts - 1)) { 422 // The number of parts is not a power of 2. Split off and copy the tail. 423 assert(PartVT.isInteger() && ValueVT.isInteger() && 424 "Do not know what to expand to!"); 425 unsigned RoundParts = 1 << Log2_32(NumParts); 426 unsigned RoundBits = RoundParts * PartBits; 427 unsigned OddParts = NumParts - RoundParts; 428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 429 DAG.getIntPtrConstant(RoundBits, DL)); 430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 431 432 if (TLI.isBigEndian()) 433 // The odd parts were reversed by getCopyToParts - unreverse them. 434 std::reverse(Parts + RoundParts, Parts + NumParts); 435 436 NumParts = RoundParts; 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 } 440 441 // The number of parts is a power of 2. Repeatedly bisect the value using 442 // EXTRACT_ELEMENT. 443 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 444 EVT::getIntegerVT(*DAG.getContext(), 445 ValueVT.getSizeInBits()), 446 Val); 447 448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 449 for (unsigned i = 0; i < NumParts; i += StepSize) { 450 unsigned ThisBits = StepSize * PartBits / 2; 451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 452 SDValue &Part0 = Parts[i]; 453 SDValue &Part1 = Parts[i+StepSize/2]; 454 455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 459 460 if (ThisBits == PartBits && ThisVT != PartVT) { 461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 463 } 464 } 465 } 466 467 if (TLI.isBigEndian()) 468 std::reverse(Parts, Parts + OrigNumParts); 469 } 470 471 472 /// getCopyToPartsVector - Create a series of nodes that contain the specified 473 /// value split into legal parts. 474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 475 SDValue Val, SDValue *Parts, unsigned NumParts, 476 MVT PartVT, const Value *V) { 477 EVT ValueVT = Val.getValueType(); 478 assert(ValueVT.isVector() && "Not a vector"); 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 481 if (NumParts == 1) { 482 EVT PartEVT = PartVT; 483 if (PartEVT == ValueVT) { 484 // Nothing to do. 485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 486 // Bitconvert vector->vector case. 487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 488 } else if (PartVT.isVector() && 489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 491 EVT ElementVT = PartVT.getVectorElementType(); 492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 493 // undef elements. 494 SmallVector<SDValue, 16> Ops; 495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 497 ElementVT, Val, DAG.getConstant(i, DL, 498 TLI.getVectorIdxTy()))); 499 500 for (unsigned i = ValueVT.getVectorNumElements(), 501 e = PartVT.getVectorNumElements(); i != e; ++i) 502 Ops.push_back(DAG.getUNDEF(ElementVT)); 503 504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 505 506 // FIXME: Use CONCAT for 2x -> 4x. 507 508 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 510 } else if (PartVT.isVector() && 511 PartEVT.getVectorElementType().bitsGE( 512 ValueVT.getVectorElementType()) && 513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 514 515 // Promoted vector extract 516 bool Smaller = PartEVT.bitsLE(ValueVT); 517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 518 DL, PartVT, Val); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 526 527 bool Smaller = ValueVT.bitsLE(PartVT); 528 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 529 DL, PartVT, Val); 530 } 531 532 Parts[0] = Val; 533 return; 534 } 535 536 // Handle a multi-element vector. 537 EVT IntermediateVT; 538 MVT RegisterVT; 539 unsigned NumIntermediates; 540 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 541 IntermediateVT, 542 NumIntermediates, RegisterVT); 543 unsigned NumElements = ValueVT.getVectorNumElements(); 544 545 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 546 NumParts = NumRegs; // Silence a compiler warning. 547 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 548 549 // Split the vector into intermediate operands. 550 SmallVector<SDValue, 8> Ops(NumIntermediates); 551 for (unsigned i = 0; i != NumIntermediates; ++i) { 552 if (IntermediateVT.isVector()) 553 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 556 TLI.getVectorIdxTy())); 557 else 558 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 559 IntermediateVT, Val, 560 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 561 } 562 563 // Split the intermediate operands into legal parts. 564 if (NumParts == NumIntermediates) { 565 // If the register was not expanded, promote or copy the value, 566 // as appropriate. 567 for (unsigned i = 0; i != NumParts; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 569 } else if (NumParts > 0) { 570 // If the intermediate type was expanded, split each the value into 571 // legal parts. 572 assert(NumIntermediates != 0 && "division by zero"); 573 assert(NumParts % NumIntermediates == 0 && 574 "Must expand into a divisible number of parts!"); 575 unsigned Factor = NumParts / NumIntermediates; 576 for (unsigned i = 0; i != NumIntermediates; ++i) 577 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 578 } 579 } 580 581 namespace { 582 /// RegsForValue - This struct represents the registers (physical or virtual) 583 /// that a particular set of values is assigned, and the type information 584 /// about the value. The most common situation is to represent one value at a 585 /// time, but struct or array values are handled element-wise as multiple 586 /// values. The splitting of aggregates is performed recursively, so that we 587 /// never have aggregate-typed registers. The values at this point do not 588 /// necessarily have legal types, so each value may require one or more 589 /// registers of some legal type. 590 /// 591 struct RegsForValue { 592 /// ValueVTs - The value types of the values, which may not be legal, and 593 /// may need be promoted or synthesized from one or more registers. 594 /// 595 SmallVector<EVT, 4> ValueVTs; 596 597 /// RegVTs - The value types of the registers. This is the same size as 598 /// ValueVTs and it records, for each value, what the type of the assigned 599 /// register or registers are. (Individual values are never synthesized 600 /// from more than one type of register.) 601 /// 602 /// With virtual registers, the contents of RegVTs is redundant with TLI's 603 /// getRegisterType member function, however when with physical registers 604 /// it is necessary to have a separate record of the types. 605 /// 606 SmallVector<MVT, 4> RegVTs; 607 608 /// Regs - This list holds the registers assigned to the values. 609 /// Each legal or promoted value requires one register, and each 610 /// expanded value requires multiple registers. 611 /// 612 SmallVector<unsigned, 4> Regs; 613 614 RegsForValue() {} 615 616 RegsForValue(const SmallVector<unsigned, 4> ®s, 617 MVT regvt, EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 621 unsigned Reg, Type *Ty) { 622 ComputeValueVTs(tli, Ty, ValueVTs); 623 624 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 627 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 628 for (unsigned i = 0; i != NumRegs; ++i) 629 Regs.push_back(Reg + i); 630 RegVTs.push_back(RegisterVT); 631 Reg += NumRegs; 632 } 633 } 634 635 /// append - Add the specified values to this one. 636 void append(const RegsForValue &RHS) { 637 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 638 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 639 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 640 } 641 642 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 643 /// this value and returns the result as a ValueVTs value. This uses 644 /// Chain/Flag as the input and updates them for the output Chain/Flag. 645 /// If the Flag pointer is NULL, no flag is used. 646 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 647 SDLoc dl, 648 SDValue &Chain, SDValue *Flag, 649 const Value *V = nullptr) const; 650 651 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 652 /// specified value into the registers specified by this object. This uses 653 /// Chain/Flag as the input and updates them for the output Chain/Flag. 654 /// If the Flag pointer is NULL, no flag is used. 655 void 656 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 657 SDValue *Flag, const Value *V, 658 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 659 660 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 661 /// operand list. This adds the code marker, matching input operand index 662 /// (if applicable), and includes the number of values added into it. 663 void AddInlineAsmOperands(unsigned Kind, 664 bool HasMatching, unsigned MatchingIdx, SDLoc dl, 665 SelectionDAG &DAG, 666 std::vector<SDValue> &Ops) const; 667 }; 668 } 669 670 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 671 /// this value and returns the result as a ValueVT value. This uses 672 /// Chain/Flag as the input and updates them for the output Chain/Flag. 673 /// If the Flag pointer is NULL, no flag is used. 674 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 675 FunctionLoweringInfo &FuncInfo, 676 SDLoc dl, 677 SDValue &Chain, SDValue *Flag, 678 const Value *V) const { 679 // A Value with type {} or [0 x %t] needs no registers. 680 if (ValueVTs.empty()) 681 return SDValue(); 682 683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 684 685 // Assemble the legal parts into the final values. 686 SmallVector<SDValue, 4> Values(ValueVTs.size()); 687 SmallVector<SDValue, 8> Parts; 688 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 689 // Copy the legal parts from the registers. 690 EVT ValueVT = ValueVTs[Value]; 691 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 692 MVT RegisterVT = RegVTs[Value]; 693 694 Parts.resize(NumRegs); 695 for (unsigned i = 0; i != NumRegs; ++i) { 696 SDValue P; 697 if (!Flag) { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 699 } else { 700 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 701 *Flag = P.getValue(2); 702 } 703 704 Chain = P.getValue(1); 705 Parts[i] = P; 706 707 // If the source register was virtual and if we know something about it, 708 // add an assert node. 709 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 710 !RegisterVT.isInteger() || RegisterVT.isVector()) 711 continue; 712 713 const FunctionLoweringInfo::LiveOutInfo *LOI = 714 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 715 if (!LOI) 716 continue; 717 718 unsigned RegSize = RegisterVT.getSizeInBits(); 719 unsigned NumSignBits = LOI->NumSignBits; 720 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 721 722 if (NumZeroBits == RegSize) { 723 // The current value is a zero. 724 // Explicitly express that as it would be easier for 725 // optimizations to kick in. 726 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 727 continue; 728 } 729 730 // FIXME: We capture more information than the dag can represent. For 731 // now, just use the tightest assertzext/assertsext possible. 732 bool isSExt = true; 733 EVT FromVT(MVT::Other); 734 if (NumSignBits == RegSize) 735 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 736 else if (NumZeroBits >= RegSize-1) 737 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 738 else if (NumSignBits > RegSize-8) 739 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 740 else if (NumZeroBits >= RegSize-8) 741 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 742 else if (NumSignBits > RegSize-16) 743 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 744 else if (NumZeroBits >= RegSize-16) 745 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 746 else if (NumSignBits > RegSize-32) 747 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 748 else if (NumZeroBits >= RegSize-32) 749 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 750 else 751 continue; 752 753 // Add an assertion node. 754 assert(FromVT != MVT::Other); 755 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 756 RegisterVT, P, DAG.getValueType(FromVT)); 757 } 758 759 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 760 NumRegs, RegisterVT, ValueVT, V); 761 Part += NumRegs; 762 Parts.clear(); 763 } 764 765 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 766 } 767 768 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 769 /// specified value into the registers specified by this object. This uses 770 /// Chain/Flag as the input and updates them for the output Chain/Flag. 771 /// If the Flag pointer is NULL, no flag is used. 772 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 773 SDValue &Chain, SDValue *Flag, const Value *V, 774 ISD::NodeType PreferredExtendType) const { 775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 776 ISD::NodeType ExtendKind = PreferredExtendType; 777 778 // Get the list of the values's legal parts. 779 unsigned NumRegs = Regs.size(); 780 SmallVector<SDValue, 8> Parts(NumRegs); 781 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 EVT ValueVT = ValueVTs[Value]; 783 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 784 MVT RegisterVT = RegVTs[Value]; 785 786 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 787 ExtendKind = ISD::ZERO_EXTEND; 788 789 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 790 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 791 Part += NumParts; 792 } 793 794 // Copy the parts into the registers. 795 SmallVector<SDValue, 8> Chains(NumRegs); 796 for (unsigned i = 0; i != NumRegs; ++i) { 797 SDValue Part; 798 if (!Flag) { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 800 } else { 801 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 802 *Flag = Part.getValue(1); 803 } 804 805 Chains[i] = Part.getValue(0); 806 } 807 808 if (NumRegs == 1 || Flag) 809 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 810 // flagged to it. That is the CopyToReg nodes and the user are considered 811 // a single scheduling unit. If we create a TokenFactor and return it as 812 // chain, then the TokenFactor is both a predecessor (operand) of the 813 // user as well as a successor (the TF operands are flagged to the user). 814 // c1, f1 = CopyToReg 815 // c2, f2 = CopyToReg 816 // c3 = TokenFactor c1, c2 817 // ... 818 // = op c3, ..., f2 819 Chain = Chains[NumRegs-1]; 820 else 821 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 822 } 823 824 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 825 /// operand list. This adds the code marker and includes the number of 826 /// values added into it. 827 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 828 unsigned MatchingIdx, SDLoc dl, 829 SelectionDAG &DAG, 830 std::vector<SDValue> &Ops) const { 831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 832 833 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 834 if (HasMatching) 835 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 836 else if (!Regs.empty() && 837 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 838 // Put the register class of the virtual registers in the flag word. That 839 // way, later passes can recompute register class constraints for inline 840 // assembly as well as normal instructions. 841 // Don't do this for tied operands that can use the regclass information 842 // from the def. 843 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 844 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 845 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 846 } 847 848 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 849 Ops.push_back(Res); 850 851 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 852 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 853 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 854 MVT RegisterVT = RegVTs[Value]; 855 for (unsigned i = 0; i != NumRegs; ++i) { 856 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 857 unsigned TheReg = Regs[Reg++]; 858 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 859 860 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 861 // If we clobbered the stack pointer, MFI should know about it. 862 assert(DAG.getMachineFunction().getFrameInfo()-> 863 hasInlineAsmWithSPAdjust()); 864 } 865 } 866 } 867 } 868 869 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 870 const TargetLibraryInfo *li) { 871 AA = &aa; 872 GFI = gfi; 873 LibInfo = li; 874 DL = DAG.getTarget().getDataLayout(); 875 Context = DAG.getContext(); 876 LPadToCallSiteMap.clear(); 877 } 878 879 /// clear - Clear out the current SelectionDAG and the associated 880 /// state and prepare this SelectionDAGBuilder object to be used 881 /// for a new block. This doesn't clear out information about 882 /// additional blocks that are needed to complete switch lowering 883 /// or PHI node updating; that information is cleared out as it is 884 /// consumed. 885 void SelectionDAGBuilder::clear() { 886 NodeMap.clear(); 887 UnusedArgNodeMap.clear(); 888 PendingLoads.clear(); 889 PendingExports.clear(); 890 CurInst = nullptr; 891 HasTailCall = false; 892 SDNodeOrder = LowestSDNodeOrder; 893 StatepointLowering.clear(); 894 } 895 896 /// clearDanglingDebugInfo - Clear the dangling debug information 897 /// map. This function is separated from the clear so that debug 898 /// information that is dangling in a basic block can be properly 899 /// resolved in a different basic block. This allows the 900 /// SelectionDAG to resolve dangling debug information attached 901 /// to PHI nodes. 902 void SelectionDAGBuilder::clearDanglingDebugInfo() { 903 DanglingDebugInfoMap.clear(); 904 } 905 906 /// getRoot - Return the current virtual root of the Selection DAG, 907 /// flushing any PendingLoad items. This must be done before emitting 908 /// a store or any other node that may need to be ordered after any 909 /// prior load instructions. 910 /// 911 SDValue SelectionDAGBuilder::getRoot() { 912 if (PendingLoads.empty()) 913 return DAG.getRoot(); 914 915 if (PendingLoads.size() == 1) { 916 SDValue Root = PendingLoads[0]; 917 DAG.setRoot(Root); 918 PendingLoads.clear(); 919 return Root; 920 } 921 922 // Otherwise, we have to make a token factor node. 923 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 924 PendingLoads); 925 PendingLoads.clear(); 926 DAG.setRoot(Root); 927 return Root; 928 } 929 930 /// getControlRoot - Similar to getRoot, but instead of flushing all the 931 /// PendingLoad items, flush all the PendingExports items. It is necessary 932 /// to do this before emitting a terminator instruction. 933 /// 934 SDValue SelectionDAGBuilder::getControlRoot() { 935 SDValue Root = DAG.getRoot(); 936 937 if (PendingExports.empty()) 938 return Root; 939 940 // Turn all of the CopyToReg chains into one factored node. 941 if (Root.getOpcode() != ISD::EntryToken) { 942 unsigned i = 0, e = PendingExports.size(); 943 for (; i != e; ++i) { 944 assert(PendingExports[i].getNode()->getNumOperands() > 1); 945 if (PendingExports[i].getNode()->getOperand(0) == Root) 946 break; // Don't add the root if we already indirectly depend on it. 947 } 948 949 if (i == e) 950 PendingExports.push_back(Root); 951 } 952 953 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 954 PendingExports); 955 PendingExports.clear(); 956 DAG.setRoot(Root); 957 return Root; 958 } 959 960 void SelectionDAGBuilder::visit(const Instruction &I) { 961 // Set up outgoing PHI node register values before emitting the terminator. 962 if (isa<TerminatorInst>(&I)) 963 HandlePHINodesInSuccessorBlocks(I.getParent()); 964 965 ++SDNodeOrder; 966 967 CurInst = &I; 968 969 visit(I.getOpcode(), I); 970 971 if (!isa<TerminatorInst>(&I) && !HasTailCall) 972 CopyToExportRegsIfNeeded(&I); 973 974 CurInst = nullptr; 975 } 976 977 void SelectionDAGBuilder::visitPHI(const PHINode &) { 978 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 979 } 980 981 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 982 // Note: this doesn't use InstVisitor, because it has to work with 983 // ConstantExpr's in addition to instructions. 984 switch (Opcode) { 985 default: llvm_unreachable("Unknown instruction type encountered!"); 986 // Build the switch statement using the Instruction.def file. 987 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 988 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 989 #include "llvm/IR/Instruction.def" 990 } 991 } 992 993 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 994 // generate the debug data structures now that we've seen its definition. 995 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 996 SDValue Val) { 997 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 998 if (DDI.getDI()) { 999 const DbgValueInst *DI = DDI.getDI(); 1000 DebugLoc dl = DDI.getdl(); 1001 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1002 DILocalVariable *Variable = DI->getVariable(); 1003 DIExpression *Expr = DI->getExpression(); 1004 assert(Variable->isValidLocationForIntrinsic(dl) && 1005 "Expected inlined-at fields to agree"); 1006 uint64_t Offset = DI->getOffset(); 1007 // A dbg.value for an alloca is always indirect. 1008 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1009 SDDbgValue *SDV; 1010 if (Val.getNode()) { 1011 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 1012 Val)) { 1013 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1014 IsIndirect, Offset, dl, DbgSDNodeOrder); 1015 DAG.AddDbgValue(SDV, Val.getNode(), false); 1016 } 1017 } else 1018 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1019 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1020 } 1021 } 1022 1023 /// getCopyFromRegs - If there was virtual register allocated for the value V 1024 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1025 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1026 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1027 SDValue res; 1028 1029 if (It != FuncInfo.ValueMap.end()) { 1030 unsigned InReg = It->second; 1031 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1032 Ty); 1033 SDValue Chain = DAG.getEntryNode(); 1034 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1035 resolveDanglingDebugInfo(V, res); 1036 } 1037 1038 return res; 1039 } 1040 1041 /// getValue - Return an SDValue for the given Value. 1042 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1043 // If we already have an SDValue for this value, use it. It's important 1044 // to do this first, so that we don't create a CopyFromReg if we already 1045 // have a regular SDValue. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // If there's a virtual register allocated and initialized for this 1050 // value, use it. 1051 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1052 if (copyFromReg.getNode()) { 1053 return copyFromReg; 1054 } 1055 1056 // Otherwise create a new SDValue and remember it. 1057 SDValue Val = getValueImpl(V); 1058 NodeMap[V] = Val; 1059 resolveDanglingDebugInfo(V, Val); 1060 return Val; 1061 } 1062 1063 // Return true if SDValue exists for the given Value 1064 bool SelectionDAGBuilder::findValue(const Value *V) const { 1065 return (NodeMap.find(V) != NodeMap.end()) || 1066 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1067 } 1068 1069 /// getNonRegisterValue - Return an SDValue for the given Value, but 1070 /// don't look in FuncInfo.ValueMap for a virtual register. 1071 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1072 // If we already have an SDValue for this value, use it. 1073 SDValue &N = NodeMap[V]; 1074 if (N.getNode()) return N; 1075 1076 // Otherwise create a new SDValue and remember it. 1077 SDValue Val = getValueImpl(V); 1078 NodeMap[V] = Val; 1079 resolveDanglingDebugInfo(V, Val); 1080 return Val; 1081 } 1082 1083 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1084 /// Create an SDValue for the given value. 1085 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1087 1088 if (const Constant *C = dyn_cast<Constant>(V)) { 1089 EVT VT = TLI.getValueType(V->getType(), true); 1090 1091 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1092 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1093 1094 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1095 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1096 1097 if (isa<ConstantPointerNull>(C)) { 1098 unsigned AS = V->getType()->getPointerAddressSpace(); 1099 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1100 } 1101 1102 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1103 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1104 1105 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1106 return DAG.getUNDEF(VT); 1107 1108 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1109 visit(CE->getOpcode(), *CE); 1110 SDValue N1 = NodeMap[V]; 1111 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1112 return N1; 1113 } 1114 1115 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1116 SmallVector<SDValue, 4> Constants; 1117 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1118 OI != OE; ++OI) { 1119 SDNode *Val = getValue(*OI).getNode(); 1120 // If the operand is an empty aggregate, there are no values. 1121 if (!Val) continue; 1122 // Add each leaf value from the operand to the Constants list 1123 // to form a flattened list of all the values. 1124 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1125 Constants.push_back(SDValue(Val, i)); 1126 } 1127 1128 return DAG.getMergeValues(Constants, getCurSDLoc()); 1129 } 1130 1131 if (const ConstantDataSequential *CDS = 1132 dyn_cast<ConstantDataSequential>(C)) { 1133 SmallVector<SDValue, 4> Ops; 1134 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1135 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1136 // Add each leaf value from the operand to the Constants list 1137 // to form a flattened list of all the values. 1138 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1139 Ops.push_back(SDValue(Val, i)); 1140 } 1141 1142 if (isa<ArrayType>(CDS->getType())) 1143 return DAG.getMergeValues(Ops, getCurSDLoc()); 1144 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1145 VT, Ops); 1146 } 1147 1148 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1149 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1150 "Unknown struct or array constant!"); 1151 1152 SmallVector<EVT, 4> ValueVTs; 1153 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1154 unsigned NumElts = ValueVTs.size(); 1155 if (NumElts == 0) 1156 return SDValue(); // empty struct 1157 SmallVector<SDValue, 4> Constants(NumElts); 1158 for (unsigned i = 0; i != NumElts; ++i) { 1159 EVT EltVT = ValueVTs[i]; 1160 if (isa<UndefValue>(C)) 1161 Constants[i] = DAG.getUNDEF(EltVT); 1162 else if (EltVT.isFloatingPoint()) 1163 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1164 else 1165 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1166 } 1167 1168 return DAG.getMergeValues(Constants, getCurSDLoc()); 1169 } 1170 1171 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1172 return DAG.getBlockAddress(BA, VT); 1173 1174 VectorType *VecTy = cast<VectorType>(V->getType()); 1175 unsigned NumElements = VecTy->getNumElements(); 1176 1177 // Now that we know the number and type of the elements, get that number of 1178 // elements into the Ops array based on what kind of constant it is. 1179 SmallVector<SDValue, 16> Ops; 1180 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1181 for (unsigned i = 0; i != NumElements; ++i) 1182 Ops.push_back(getValue(CV->getOperand(i))); 1183 } else { 1184 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1185 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1186 1187 SDValue Op; 1188 if (EltVT.isFloatingPoint()) 1189 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1190 else 1191 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1192 Ops.assign(NumElements, Op); 1193 } 1194 1195 // Create a BUILD_VECTOR node. 1196 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1197 } 1198 1199 // If this is a static alloca, generate it as the frameindex instead of 1200 // computation. 1201 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1202 DenseMap<const AllocaInst*, int>::iterator SI = 1203 FuncInfo.StaticAllocaMap.find(AI); 1204 if (SI != FuncInfo.StaticAllocaMap.end()) 1205 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1206 } 1207 1208 // If this is an instruction which fast-isel has deferred, select it now. 1209 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1210 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1211 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1212 SDValue Chain = DAG.getEntryNode(); 1213 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1214 } 1215 1216 llvm_unreachable("Can't get register for value!"); 1217 } 1218 1219 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1221 SDValue Chain = getControlRoot(); 1222 SmallVector<ISD::OutputArg, 8> Outs; 1223 SmallVector<SDValue, 8> OutVals; 1224 1225 if (!FuncInfo.CanLowerReturn) { 1226 unsigned DemoteReg = FuncInfo.DemoteRegister; 1227 const Function *F = I.getParent()->getParent(); 1228 1229 // Emit a store of the return value through the virtual register. 1230 // Leave Outs empty so that LowerReturn won't try to load return 1231 // registers the usual way. 1232 SmallVector<EVT, 1> PtrValueVTs; 1233 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1234 PtrValueVTs); 1235 1236 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1237 SDValue RetOp = getValue(I.getOperand(0)); 1238 1239 SmallVector<EVT, 4> ValueVTs; 1240 SmallVector<uint64_t, 4> Offsets; 1241 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1242 unsigned NumValues = ValueVTs.size(); 1243 1244 SmallVector<SDValue, 4> Chains(NumValues); 1245 for (unsigned i = 0; i != NumValues; ++i) { 1246 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1247 RetPtr.getValueType(), RetPtr, 1248 DAG.getIntPtrConstant(Offsets[i], 1249 getCurSDLoc())); 1250 Chains[i] = 1251 DAG.getStore(Chain, getCurSDLoc(), 1252 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1253 // FIXME: better loc info would be nice. 1254 Add, MachinePointerInfo(), false, false, 0); 1255 } 1256 1257 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1258 MVT::Other, Chains); 1259 } else if (I.getNumOperands() != 0) { 1260 SmallVector<EVT, 4> ValueVTs; 1261 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1262 unsigned NumValues = ValueVTs.size(); 1263 if (NumValues) { 1264 SDValue RetOp = getValue(I.getOperand(0)); 1265 1266 const Function *F = I.getParent()->getParent(); 1267 1268 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1269 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1270 Attribute::SExt)) 1271 ExtendKind = ISD::SIGN_EXTEND; 1272 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1273 Attribute::ZExt)) 1274 ExtendKind = ISD::ZERO_EXTEND; 1275 1276 LLVMContext &Context = F->getContext(); 1277 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1278 Attribute::InReg); 1279 1280 for (unsigned j = 0; j != NumValues; ++j) { 1281 EVT VT = ValueVTs[j]; 1282 1283 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1284 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1285 1286 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1287 MVT PartVT = TLI.getRegisterType(Context, VT); 1288 SmallVector<SDValue, 4> Parts(NumParts); 1289 getCopyToParts(DAG, getCurSDLoc(), 1290 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1291 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1292 1293 // 'inreg' on function refers to return value 1294 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1295 if (RetInReg) 1296 Flags.setInReg(); 1297 1298 // Propagate extension type if any 1299 if (ExtendKind == ISD::SIGN_EXTEND) 1300 Flags.setSExt(); 1301 else if (ExtendKind == ISD::ZERO_EXTEND) 1302 Flags.setZExt(); 1303 1304 for (unsigned i = 0; i < NumParts; ++i) { 1305 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1306 VT, /*isfixed=*/true, 0, 0)); 1307 OutVals.push_back(Parts[i]); 1308 } 1309 } 1310 } 1311 } 1312 1313 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1314 CallingConv::ID CallConv = 1315 DAG.getMachineFunction().getFunction()->getCallingConv(); 1316 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1317 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1318 1319 // Verify that the target's LowerReturn behaved as expected. 1320 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1321 "LowerReturn didn't return a valid chain!"); 1322 1323 // Update the DAG with the new chain value resulting from return lowering. 1324 DAG.setRoot(Chain); 1325 } 1326 1327 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1328 /// created for it, emit nodes to copy the value into the virtual 1329 /// registers. 1330 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1331 // Skip empty types 1332 if (V->getType()->isEmptyTy()) 1333 return; 1334 1335 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1336 if (VMI != FuncInfo.ValueMap.end()) { 1337 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1338 CopyValueToVirtualRegister(V, VMI->second); 1339 } 1340 } 1341 1342 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1343 /// the current basic block, add it to ValueMap now so that we'll get a 1344 /// CopyTo/FromReg. 1345 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1346 // No need to export constants. 1347 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1348 1349 // Already exported? 1350 if (FuncInfo.isExportedInst(V)) return; 1351 1352 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1353 CopyValueToVirtualRegister(V, Reg); 1354 } 1355 1356 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1357 const BasicBlock *FromBB) { 1358 // The operands of the setcc have to be in this block. We don't know 1359 // how to export them from some other block. 1360 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1361 // Can export from current BB. 1362 if (VI->getParent() == FromBB) 1363 return true; 1364 1365 // Is already exported, noop. 1366 return FuncInfo.isExportedInst(V); 1367 } 1368 1369 // If this is an argument, we can export it if the BB is the entry block or 1370 // if it is already exported. 1371 if (isa<Argument>(V)) { 1372 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1373 return true; 1374 1375 // Otherwise, can only export this if it is already exported. 1376 return FuncInfo.isExportedInst(V); 1377 } 1378 1379 // Otherwise, constants can always be exported. 1380 return true; 1381 } 1382 1383 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1384 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1385 const MachineBasicBlock *Dst) const { 1386 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1387 if (!BPI) 1388 return 0; 1389 const BasicBlock *SrcBB = Src->getBasicBlock(); 1390 const BasicBlock *DstBB = Dst->getBasicBlock(); 1391 return BPI->getEdgeWeight(SrcBB, DstBB); 1392 } 1393 1394 void SelectionDAGBuilder:: 1395 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1396 uint32_t Weight /* = 0 */) { 1397 if (!Weight) 1398 Weight = getEdgeWeight(Src, Dst); 1399 Src->addSuccessor(Dst, Weight); 1400 } 1401 1402 1403 static bool InBlock(const Value *V, const BasicBlock *BB) { 1404 if (const Instruction *I = dyn_cast<Instruction>(V)) 1405 return I->getParent() == BB; 1406 return true; 1407 } 1408 1409 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1410 /// This function emits a branch and is used at the leaves of an OR or an 1411 /// AND operator tree. 1412 /// 1413 void 1414 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1415 MachineBasicBlock *TBB, 1416 MachineBasicBlock *FBB, 1417 MachineBasicBlock *CurBB, 1418 MachineBasicBlock *SwitchBB, 1419 uint32_t TWeight, 1420 uint32_t FWeight) { 1421 const BasicBlock *BB = CurBB->getBasicBlock(); 1422 1423 // If the leaf of the tree is a comparison, merge the condition into 1424 // the caseblock. 1425 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1426 // The operands of the cmp have to be in this block. We don't know 1427 // how to export them from some other block. If this is the first block 1428 // of the sequence, no exporting is needed. 1429 if (CurBB == SwitchBB || 1430 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1431 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1432 ISD::CondCode Condition; 1433 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1434 Condition = getICmpCondCode(IC->getPredicate()); 1435 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1436 Condition = getFCmpCondCode(FC->getPredicate()); 1437 if (TM.Options.NoNaNsFPMath) 1438 Condition = getFCmpCodeWithoutNaN(Condition); 1439 } else { 1440 (void)Condition; // silence warning. 1441 llvm_unreachable("Unknown compare instruction"); 1442 } 1443 1444 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1445 TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 return; 1448 } 1449 } 1450 1451 // Create a CaseBlock record representing this branch. 1452 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1453 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1454 SwitchCases.push_back(CB); 1455 } 1456 1457 /// Scale down both weights to fit into uint32_t. 1458 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1459 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1460 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1461 NewTrue = NewTrue / Scale; 1462 NewFalse = NewFalse / Scale; 1463 } 1464 1465 /// FindMergedConditions - If Cond is an expression like 1466 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1467 MachineBasicBlock *TBB, 1468 MachineBasicBlock *FBB, 1469 MachineBasicBlock *CurBB, 1470 MachineBasicBlock *SwitchBB, 1471 unsigned Opc, uint32_t TWeight, 1472 uint32_t FWeight) { 1473 // If this node is not part of the or/and tree, emit it as a branch. 1474 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1475 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1476 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1477 BOp->getParent() != CurBB->getBasicBlock() || 1478 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1479 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1480 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1481 TWeight, FWeight); 1482 return; 1483 } 1484 1485 // Create TmpBB after CurBB. 1486 MachineFunction::iterator BBI = CurBB; 1487 MachineFunction &MF = DAG.getMachineFunction(); 1488 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1489 CurBB->getParent()->insert(++BBI, TmpBB); 1490 1491 if (Opc == Instruction::Or) { 1492 // Codegen X | Y as: 1493 // BB1: 1494 // jmp_if_X TBB 1495 // jmp TmpBB 1496 // TmpBB: 1497 // jmp_if_Y TBB 1498 // jmp FBB 1499 // 1500 1501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1502 // The requirement is that 1503 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1504 // = TrueProb for orignal BB. 1505 // Assuming the orignal weights are A and B, one choice is to set BB1's 1506 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1507 // assumes that 1508 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1509 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1510 // TmpBB, but the math is more complicated. 1511 1512 uint64_t NewTrueWeight = TWeight; 1513 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = TWeight; 1520 NewFalseWeight = 2 * (uint64_t)FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } else { 1526 assert(Opc == Instruction::And && "Unknown merge op!"); 1527 // Codegen X & Y as: 1528 // BB1: 1529 // jmp_if_X TmpBB 1530 // jmp FBB 1531 // TmpBB: 1532 // jmp_if_Y TBB 1533 // jmp FBB 1534 // 1535 // This requires creation of TmpBB after CurBB. 1536 1537 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1538 // The requirement is that 1539 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1540 // = FalseProb for orignal BB. 1541 // Assuming the orignal weights are A and B, one choice is to set BB1's 1542 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1543 // assumes that 1544 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1545 1546 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1547 uint64_t NewFalseWeight = FWeight; 1548 ScaleWeights(NewTrueWeight, NewFalseWeight); 1549 // Emit the LHS condition. 1550 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1551 NewTrueWeight, NewFalseWeight); 1552 1553 NewTrueWeight = 2 * (uint64_t)TWeight; 1554 NewFalseWeight = FWeight; 1555 ScaleWeights(NewTrueWeight, NewFalseWeight); 1556 // Emit the RHS condition into TmpBB. 1557 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1558 NewTrueWeight, NewFalseWeight); 1559 } 1560 } 1561 1562 /// If the set of cases should be emitted as a series of branches, return true. 1563 /// If we should emit this as a bunch of and/or'd together conditions, return 1564 /// false. 1565 bool 1566 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1567 if (Cases.size() != 2) return true; 1568 1569 // If this is two comparisons of the same values or'd or and'd together, they 1570 // will get folded into a single comparison, so don't emit two blocks. 1571 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1572 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1573 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1574 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1575 return false; 1576 } 1577 1578 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1579 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1580 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1581 Cases[0].CC == Cases[1].CC && 1582 isa<Constant>(Cases[0].CmpRHS) && 1583 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1584 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1585 return false; 1586 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1587 return false; 1588 } 1589 1590 return true; 1591 } 1592 1593 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1594 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1595 1596 // Update machine-CFG edges. 1597 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1598 1599 if (I.isUnconditional()) { 1600 // Update machine-CFG edges. 1601 BrMBB->addSuccessor(Succ0MBB); 1602 1603 // If this is not a fall-through branch or optimizations are switched off, 1604 // emit the branch. 1605 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1607 MVT::Other, getControlRoot(), 1608 DAG.getBasicBlock(Succ0MBB))); 1609 1610 return; 1611 } 1612 1613 // If this condition is one of the special cases we handle, do special stuff 1614 // now. 1615 const Value *CondVal = I.getCondition(); 1616 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1617 1618 // If this is a series of conditions that are or'd or and'd together, emit 1619 // this as a sequence of branches instead of setcc's with and/or operations. 1620 // As long as jumps are not expensive, this should improve performance. 1621 // For example, instead of something like: 1622 // cmp A, B 1623 // C = seteq 1624 // cmp D, E 1625 // F = setle 1626 // or C, F 1627 // jnz foo 1628 // Emit: 1629 // cmp A, B 1630 // je foo 1631 // cmp D, E 1632 // jle foo 1633 // 1634 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1635 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1636 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1637 BOp->getOpcode() == Instruction::Or)) { 1638 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1639 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1640 getEdgeWeight(BrMBB, Succ1MBB)); 1641 // If the compares in later blocks need to use values not currently 1642 // exported from this block, export them now. This block should always 1643 // be the first entry. 1644 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1645 1646 // Allow some cases to be rejected. 1647 if (ShouldEmitAsBranches(SwitchCases)) { 1648 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1649 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1650 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1651 } 1652 1653 // Emit the branch for this block. 1654 visitSwitchCase(SwitchCases[0], BrMBB); 1655 SwitchCases.erase(SwitchCases.begin()); 1656 return; 1657 } 1658 1659 // Okay, we decided not to do this, remove any inserted MBB's and clear 1660 // SwitchCases. 1661 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1662 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1663 1664 SwitchCases.clear(); 1665 } 1666 } 1667 1668 // Create a CaseBlock record representing this branch. 1669 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1670 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1671 1672 // Use visitSwitchCase to actually insert the fast branch sequence for this 1673 // cond branch. 1674 visitSwitchCase(CB, BrMBB); 1675 } 1676 1677 /// visitSwitchCase - Emits the necessary code to represent a single node in 1678 /// the binary search tree resulting from lowering a switch instruction. 1679 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1680 MachineBasicBlock *SwitchBB) { 1681 SDValue Cond; 1682 SDValue CondLHS = getValue(CB.CmpLHS); 1683 SDLoc dl = getCurSDLoc(); 1684 1685 // Build the setcc now. 1686 if (!CB.CmpMHS) { 1687 // Fold "(X == true)" to X and "(X == false)" to !X to 1688 // handle common cases produced by branch lowering. 1689 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1690 CB.CC == ISD::SETEQ) 1691 Cond = CondLHS; 1692 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1693 CB.CC == ISD::SETEQ) { 1694 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1695 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1696 } else 1697 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1698 } else { 1699 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1700 1701 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1702 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1703 1704 SDValue CmpOp = getValue(CB.CmpMHS); 1705 EVT VT = CmpOp.getValueType(); 1706 1707 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1708 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1709 ISD::SETLE); 1710 } else { 1711 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1712 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1713 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1714 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1715 } 1716 } 1717 1718 // Update successor info 1719 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1720 // TrueBB and FalseBB are always different unless the incoming IR is 1721 // degenerate. This only happens when running llc on weird IR. 1722 if (CB.TrueBB != CB.FalseBB) 1723 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1724 1725 // If the lhs block is the next block, invert the condition so that we can 1726 // fall through to the lhs instead of the rhs block. 1727 if (CB.TrueBB == NextBlock(SwitchBB)) { 1728 std::swap(CB.TrueBB, CB.FalseBB); 1729 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1730 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1731 } 1732 1733 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1734 MVT::Other, getControlRoot(), Cond, 1735 DAG.getBasicBlock(CB.TrueBB)); 1736 1737 // Insert the false branch. Do this even if it's a fall through branch, 1738 // this makes it easier to do DAG optimizations which require inverting 1739 // the branch condition. 1740 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1741 DAG.getBasicBlock(CB.FalseBB)); 1742 1743 DAG.setRoot(BrCond); 1744 } 1745 1746 /// visitJumpTable - Emit JumpTable node in the current MBB 1747 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1748 // Emit the code for the jump table 1749 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1750 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1751 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1752 JT.Reg, PTy); 1753 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1754 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1755 MVT::Other, Index.getValue(1), 1756 Table, Index); 1757 DAG.setRoot(BrJumpTable); 1758 } 1759 1760 /// visitJumpTableHeader - This function emits necessary code to produce index 1761 /// in the JumpTable from switch case. 1762 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1763 JumpTableHeader &JTH, 1764 MachineBasicBlock *SwitchBB) { 1765 SDLoc dl = getCurSDLoc(); 1766 1767 // Subtract the lowest switch case value from the value being switched on and 1768 // conditional branch to default mbb if the result is greater than the 1769 // difference between smallest and largest cases. 1770 SDValue SwitchOp = getValue(JTH.SValue); 1771 EVT VT = SwitchOp.getValueType(); 1772 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1773 DAG.getConstant(JTH.First, dl, VT)); 1774 1775 // The SDNode we just created, which holds the value being switched on minus 1776 // the smallest case value, needs to be copied to a virtual register so it 1777 // can be used as an index into the jump table in a subsequent basic block. 1778 // This value may be smaller or larger than the target's pointer type, and 1779 // therefore require extension or truncating. 1780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1781 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1782 1783 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1784 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1785 JumpTableReg, SwitchOp); 1786 JT.Reg = JumpTableReg; 1787 1788 // Emit the range check for the jump table, and branch to the default block 1789 // for the switch statement if the value being switched on exceeds the largest 1790 // case in the switch. 1791 SDValue CMP = 1792 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1793 Sub.getValueType()), 1794 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1795 ISD::SETUGT); 1796 1797 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1798 MVT::Other, CopyTo, CMP, 1799 DAG.getBasicBlock(JT.Default)); 1800 1801 // Avoid emitting unnecessary branches to the next block. 1802 if (JT.MBB != NextBlock(SwitchBB)) 1803 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1804 DAG.getBasicBlock(JT.MBB)); 1805 1806 DAG.setRoot(BrCond); 1807 } 1808 1809 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1810 /// tail spliced into a stack protector check success bb. 1811 /// 1812 /// For a high level explanation of how this fits into the stack protector 1813 /// generation see the comment on the declaration of class 1814 /// StackProtectorDescriptor. 1815 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1816 MachineBasicBlock *ParentBB) { 1817 1818 // First create the loads to the guard/stack slot for the comparison. 1819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1820 EVT PtrTy = TLI.getPointerTy(); 1821 1822 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1823 int FI = MFI->getStackProtectorIndex(); 1824 1825 const Value *IRGuard = SPD.getGuard(); 1826 SDValue GuardPtr = getValue(IRGuard); 1827 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1828 1829 unsigned Align = 1830 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1831 1832 SDValue Guard; 1833 SDLoc dl = getCurSDLoc(); 1834 1835 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1836 // guard value from the virtual register holding the value. Otherwise, emit a 1837 // volatile load to retrieve the stack guard value. 1838 unsigned GuardReg = SPD.getGuardReg(); 1839 1840 if (GuardReg && TLI.useLoadStackGuardNode()) 1841 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1842 PtrTy); 1843 else 1844 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1845 GuardPtr, MachinePointerInfo(IRGuard, 0), 1846 true, false, false, Align); 1847 1848 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1849 StackSlotPtr, 1850 MachinePointerInfo::getFixedStack(FI), 1851 true, false, false, Align); 1852 1853 // Perform the comparison via a subtract/getsetcc. 1854 EVT VT = Guard.getValueType(); 1855 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1856 1857 SDValue Cmp = 1858 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1859 Sub.getValueType()), 1860 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1861 1862 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1863 // branch to failure MBB. 1864 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1865 MVT::Other, StackSlot.getOperand(0), 1866 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1867 // Otherwise branch to success MBB. 1868 SDValue Br = DAG.getNode(ISD::BR, dl, 1869 MVT::Other, BrCond, 1870 DAG.getBasicBlock(SPD.getSuccessMBB())); 1871 1872 DAG.setRoot(Br); 1873 } 1874 1875 /// Codegen the failure basic block for a stack protector check. 1876 /// 1877 /// A failure stack protector machine basic block consists simply of a call to 1878 /// __stack_chk_fail(). 1879 /// 1880 /// For a high level explanation of how this fits into the stack protector 1881 /// generation see the comment on the declaration of class 1882 /// StackProtectorDescriptor. 1883 void 1884 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1886 SDValue Chain = 1887 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1888 nullptr, 0, false, getCurSDLoc(), false, false).second; 1889 DAG.setRoot(Chain); 1890 } 1891 1892 /// visitBitTestHeader - This function emits necessary code to produce value 1893 /// suitable for "bit tests" 1894 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1895 MachineBasicBlock *SwitchBB) { 1896 SDLoc dl = getCurSDLoc(); 1897 1898 // Subtract the minimum value 1899 SDValue SwitchOp = getValue(B.SValue); 1900 EVT VT = SwitchOp.getValueType(); 1901 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1902 DAG.getConstant(B.First, dl, VT)); 1903 1904 // Check range 1905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1906 SDValue RangeCmp = 1907 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1908 Sub.getValueType()), 1909 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1910 1911 // Determine the type of the test operands. 1912 bool UsePtrType = false; 1913 if (!TLI.isTypeLegal(VT)) 1914 UsePtrType = true; 1915 else { 1916 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1917 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1918 // Switch table case range are encoded into series of masks. 1919 // Just use pointer type, it's guaranteed to fit. 1920 UsePtrType = true; 1921 break; 1922 } 1923 } 1924 if (UsePtrType) { 1925 VT = TLI.getPointerTy(); 1926 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1927 } 1928 1929 B.RegVT = VT.getSimpleVT(); 1930 B.Reg = FuncInfo.CreateReg(B.RegVT); 1931 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1932 1933 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1934 1935 addSuccessorWithWeight(SwitchBB, B.Default); 1936 addSuccessorWithWeight(SwitchBB, MBB); 1937 1938 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1939 MVT::Other, CopyTo, RangeCmp, 1940 DAG.getBasicBlock(B.Default)); 1941 1942 // Avoid emitting unnecessary branches to the next block. 1943 if (MBB != NextBlock(SwitchBB)) 1944 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1945 DAG.getBasicBlock(MBB)); 1946 1947 DAG.setRoot(BrRange); 1948 } 1949 1950 /// visitBitTestCase - this function produces one "bit test" 1951 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1952 MachineBasicBlock* NextMBB, 1953 uint32_t BranchWeightToNext, 1954 unsigned Reg, 1955 BitTestCase &B, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 MVT VT = BB.RegVT; 1959 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1960 SDValue Cmp; 1961 unsigned PopCount = countPopulation(B.Mask); 1962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1963 if (PopCount == 1) { 1964 // Testing for a single bit; just compare the shift count with what it 1965 // would need to be to shift a 1 bit in that position. 1966 Cmp = DAG.getSetCC( 1967 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1968 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1969 } else if (PopCount == BB.Range) { 1970 // There is only one zero bit in the range, test for it directly. 1971 Cmp = DAG.getSetCC( 1972 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1973 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1974 } else { 1975 // Make desired shift 1976 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1977 DAG.getConstant(1, dl, VT), ShiftOp); 1978 1979 // Emit bit tests and jumps 1980 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1981 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1982 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1983 DAG.getConstant(0, dl, VT), ISD::SETNE); 1984 } 1985 1986 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1987 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1988 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1989 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1990 1991 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1992 MVT::Other, getControlRoot(), 1993 Cmp, DAG.getBasicBlock(B.TargetBB)); 1994 1995 // Avoid emitting unnecessary branches to the next block. 1996 if (NextMBB != NextBlock(SwitchBB)) 1997 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1998 DAG.getBasicBlock(NextMBB)); 1999 2000 DAG.setRoot(BrAnd); 2001 } 2002 2003 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2004 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2005 2006 // Retrieve successors. 2007 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2008 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2009 2010 const Value *Callee(I.getCalledValue()); 2011 const Function *Fn = dyn_cast<Function>(Callee); 2012 if (isa<InlineAsm>(Callee)) 2013 visitInlineAsm(&I); 2014 else if (Fn && Fn->isIntrinsic()) { 2015 switch (Fn->getIntrinsicID()) { 2016 default: 2017 llvm_unreachable("Cannot invoke this intrinsic"); 2018 case Intrinsic::donothing: 2019 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2020 break; 2021 case Intrinsic::experimental_patchpoint_void: 2022 case Intrinsic::experimental_patchpoint_i64: 2023 visitPatchpoint(&I, LandingPad); 2024 break; 2025 case Intrinsic::experimental_gc_statepoint: 2026 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2027 break; 2028 } 2029 } else 2030 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2031 2032 // If the value of the invoke is used outside of its defining block, make it 2033 // available as a virtual register. 2034 // We already took care of the exported value for the statepoint instruction 2035 // during call to the LowerStatepoint. 2036 if (!isStatepoint(I)) { 2037 CopyToExportRegsIfNeeded(&I); 2038 } 2039 2040 // Update successor info 2041 addSuccessorWithWeight(InvokeMBB, Return); 2042 addSuccessorWithWeight(InvokeMBB, LandingPad); 2043 2044 // Drop into normal successor. 2045 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2046 MVT::Other, getControlRoot(), 2047 DAG.getBasicBlock(Return))); 2048 } 2049 2050 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2051 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2052 } 2053 2054 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2055 assert(FuncInfo.MBB->isLandingPad() && 2056 "Call to landingpad not in landing pad!"); 2057 2058 MachineBasicBlock *MBB = FuncInfo.MBB; 2059 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2060 AddLandingPadInfo(LP, MMI, MBB); 2061 2062 // If there aren't registers to copy the values into (e.g., during SjLj 2063 // exceptions), then don't bother to create these DAG nodes. 2064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2065 if (TLI.getExceptionPointerRegister() == 0 && 2066 TLI.getExceptionSelectorRegister() == 0) 2067 return; 2068 2069 SmallVector<EVT, 2> ValueVTs; 2070 SDLoc dl = getCurSDLoc(); 2071 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2072 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2073 2074 // Get the two live-in registers as SDValues. The physregs have already been 2075 // copied into virtual registers. 2076 SDValue Ops[2]; 2077 if (FuncInfo.ExceptionPointerVirtReg) { 2078 Ops[0] = DAG.getZExtOrTrunc( 2079 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2080 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2081 dl, ValueVTs[0]); 2082 } else { 2083 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2084 } 2085 Ops[1] = DAG.getZExtOrTrunc( 2086 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2087 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2088 dl, ValueVTs[1]); 2089 2090 // Merge into one. 2091 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2092 DAG.getVTList(ValueVTs), Ops); 2093 setValue(&LP, Res); 2094 } 2095 2096 unsigned 2097 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2098 MachineBasicBlock *LPadBB) { 2099 SDValue Chain = getControlRoot(); 2100 SDLoc dl = getCurSDLoc(); 2101 2102 // Get the typeid that we will dispatch on later. 2103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2104 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2105 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2106 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2107 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2108 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2109 2110 // Branch to the main landing pad block. 2111 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2112 ClauseMBB->addSuccessor(LPadBB); 2113 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2114 DAG.getBasicBlock(LPadBB))); 2115 return VReg; 2116 } 2117 2118 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2119 #ifndef NDEBUG 2120 for (const CaseCluster &CC : Clusters) 2121 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2122 #endif 2123 2124 std::sort(Clusters.begin(), Clusters.end(), 2125 [](const CaseCluster &a, const CaseCluster &b) { 2126 return a.Low->getValue().slt(b.Low->getValue()); 2127 }); 2128 2129 // Merge adjacent clusters with the same destination. 2130 const unsigned N = Clusters.size(); 2131 unsigned DstIndex = 0; 2132 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2133 CaseCluster &CC = Clusters[SrcIndex]; 2134 const ConstantInt *CaseVal = CC.Low; 2135 MachineBasicBlock *Succ = CC.MBB; 2136 2137 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2138 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2139 // If this case has the same successor and is a neighbour, merge it into 2140 // the previous cluster. 2141 Clusters[DstIndex - 1].High = CaseVal; 2142 Clusters[DstIndex - 1].Weight += CC.Weight; 2143 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2144 } else { 2145 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2146 sizeof(Clusters[SrcIndex])); 2147 } 2148 } 2149 Clusters.resize(DstIndex); 2150 } 2151 2152 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2153 MachineBasicBlock *Last) { 2154 // Update JTCases. 2155 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2156 if (JTCases[i].first.HeaderBB == First) 2157 JTCases[i].first.HeaderBB = Last; 2158 2159 // Update BitTestCases. 2160 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2161 if (BitTestCases[i].Parent == First) 2162 BitTestCases[i].Parent = Last; 2163 } 2164 2165 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2166 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2167 2168 // Update machine-CFG edges with unique successors. 2169 SmallSet<BasicBlock*, 32> Done; 2170 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2171 BasicBlock *BB = I.getSuccessor(i); 2172 bool Inserted = Done.insert(BB).second; 2173 if (!Inserted) 2174 continue; 2175 2176 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2177 addSuccessorWithWeight(IndirectBrMBB, Succ); 2178 } 2179 2180 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2181 MVT::Other, getControlRoot(), 2182 getValue(I.getAddress()))); 2183 } 2184 2185 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2186 if (DAG.getTarget().Options.TrapUnreachable) 2187 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2188 } 2189 2190 void SelectionDAGBuilder::visitFSub(const User &I) { 2191 // -0.0 - X --> fneg 2192 Type *Ty = I.getType(); 2193 if (isa<Constant>(I.getOperand(0)) && 2194 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2195 SDValue Op2 = getValue(I.getOperand(1)); 2196 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2197 Op2.getValueType(), Op2)); 2198 return; 2199 } 2200 2201 visitBinary(I, ISD::FSUB); 2202 } 2203 2204 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2205 SDValue Op1 = getValue(I.getOperand(0)); 2206 SDValue Op2 = getValue(I.getOperand(1)); 2207 2208 bool nuw = false; 2209 bool nsw = false; 2210 bool exact = false; 2211 FastMathFlags FMF; 2212 2213 if (const OverflowingBinaryOperator *OFBinOp = 2214 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2215 nuw = OFBinOp->hasNoUnsignedWrap(); 2216 nsw = OFBinOp->hasNoSignedWrap(); 2217 } 2218 if (const PossiblyExactOperator *ExactOp = 2219 dyn_cast<const PossiblyExactOperator>(&I)) 2220 exact = ExactOp->isExact(); 2221 2222 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2223 FMF = FPOp->getFastMathFlags(); 2224 2225 SDNodeFlags Flags; 2226 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2227 Flags.setExact(exact); 2228 Flags.setNoInfs(FMF.noInfs()); 2229 Flags.setNoNaNs(FMF.noNaNs()); 2230 Flags.setNoSignedWrap(nsw); 2231 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2232 Flags.setNoUnsignedWrap(nuw); 2233 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2234 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2235 Op1, Op2, &Flags); 2236 setValue(&I, BinNodeValue); 2237 } 2238 2239 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2240 SDValue Op1 = getValue(I.getOperand(0)); 2241 SDValue Op2 = getValue(I.getOperand(1)); 2242 2243 EVT ShiftTy = 2244 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2245 2246 // Coerce the shift amount to the right type if we can. 2247 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2248 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2249 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2250 SDLoc DL = getCurSDLoc(); 2251 2252 // If the operand is smaller than the shift count type, promote it. 2253 if (ShiftSize > Op2Size) 2254 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2255 2256 // If the operand is larger than the shift count type but the shift 2257 // count type has enough bits to represent any shift value, truncate 2258 // it now. This is a common case and it exposes the truncate to 2259 // optimization early. 2260 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2261 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2262 // Otherwise we'll need to temporarily settle for some other convenient 2263 // type. Type legalization will make adjustments once the shiftee is split. 2264 else 2265 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2266 } 2267 2268 bool nuw = false; 2269 bool nsw = false; 2270 bool exact = false; 2271 2272 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2273 2274 if (const OverflowingBinaryOperator *OFBinOp = 2275 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2276 nuw = OFBinOp->hasNoUnsignedWrap(); 2277 nsw = OFBinOp->hasNoSignedWrap(); 2278 } 2279 if (const PossiblyExactOperator *ExactOp = 2280 dyn_cast<const PossiblyExactOperator>(&I)) 2281 exact = ExactOp->isExact(); 2282 } 2283 2284 SDNodeFlags Flags; 2285 Flags.setExact(exact); 2286 Flags.setNoSignedWrap(nsw); 2287 Flags.setNoUnsignedWrap(nuw); 2288 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2289 &Flags); 2290 setValue(&I, Res); 2291 } 2292 2293 void SelectionDAGBuilder::visitSDiv(const User &I) { 2294 SDValue Op1 = getValue(I.getOperand(0)); 2295 SDValue Op2 = getValue(I.getOperand(1)); 2296 2297 // Turn exact SDivs into multiplications. 2298 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2299 // exact bit. 2300 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2301 !isa<ConstantSDNode>(Op1) && 2302 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2303 setValue(&I, DAG.getTargetLoweringInfo() 2304 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2305 else 2306 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2307 Op1, Op2)); 2308 } 2309 2310 void SelectionDAGBuilder::visitICmp(const User &I) { 2311 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2312 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2313 predicate = IC->getPredicate(); 2314 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2315 predicate = ICmpInst::Predicate(IC->getPredicate()); 2316 SDValue Op1 = getValue(I.getOperand(0)); 2317 SDValue Op2 = getValue(I.getOperand(1)); 2318 ISD::CondCode Opcode = getICmpCondCode(predicate); 2319 2320 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2321 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2322 } 2323 2324 void SelectionDAGBuilder::visitFCmp(const User &I) { 2325 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2326 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2327 predicate = FC->getPredicate(); 2328 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2329 predicate = FCmpInst::Predicate(FC->getPredicate()); 2330 SDValue Op1 = getValue(I.getOperand(0)); 2331 SDValue Op2 = getValue(I.getOperand(1)); 2332 ISD::CondCode Condition = getFCmpCondCode(predicate); 2333 if (TM.Options.NoNaNsFPMath) 2334 Condition = getFCmpCodeWithoutNaN(Condition); 2335 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2336 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2337 } 2338 2339 void SelectionDAGBuilder::visitSelect(const User &I) { 2340 SmallVector<EVT, 4> ValueVTs; 2341 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2342 unsigned NumValues = ValueVTs.size(); 2343 if (NumValues == 0) return; 2344 2345 SmallVector<SDValue, 4> Values(NumValues); 2346 SDValue Cond = getValue(I.getOperand(0)); 2347 SDValue TrueVal = getValue(I.getOperand(1)); 2348 SDValue FalseVal = getValue(I.getOperand(2)); 2349 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2350 ISD::VSELECT : ISD::SELECT; 2351 2352 for (unsigned i = 0; i != NumValues; ++i) 2353 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2354 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2355 Cond, 2356 SDValue(TrueVal.getNode(), 2357 TrueVal.getResNo() + i), 2358 SDValue(FalseVal.getNode(), 2359 FalseVal.getResNo() + i)); 2360 2361 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2362 DAG.getVTList(ValueVTs), Values)); 2363 } 2364 2365 void SelectionDAGBuilder::visitTrunc(const User &I) { 2366 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2367 SDValue N = getValue(I.getOperand(0)); 2368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2369 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2370 } 2371 2372 void SelectionDAGBuilder::visitZExt(const User &I) { 2373 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2374 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2375 SDValue N = getValue(I.getOperand(0)); 2376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2377 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2378 } 2379 2380 void SelectionDAGBuilder::visitSExt(const User &I) { 2381 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2382 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2383 SDValue N = getValue(I.getOperand(0)); 2384 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2385 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2386 } 2387 2388 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2389 // FPTrunc is never a no-op cast, no need to check 2390 SDValue N = getValue(I.getOperand(0)); 2391 SDLoc dl = getCurSDLoc(); 2392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2393 EVT DestVT = TLI.getValueType(I.getType()); 2394 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2395 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2396 } 2397 2398 void SelectionDAGBuilder::visitFPExt(const User &I) { 2399 // FPExt is never a no-op cast, no need to check 2400 SDValue N = getValue(I.getOperand(0)); 2401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2402 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2403 } 2404 2405 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2406 // FPToUI is never a no-op cast, no need to check 2407 SDValue N = getValue(I.getOperand(0)); 2408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2409 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2410 } 2411 2412 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2413 // FPToSI is never a no-op cast, no need to check 2414 SDValue N = getValue(I.getOperand(0)); 2415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2416 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2417 } 2418 2419 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2420 // UIToFP is never a no-op cast, no need to check 2421 SDValue N = getValue(I.getOperand(0)); 2422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2423 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2424 } 2425 2426 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2427 // SIToFP is never a no-op cast, no need to check 2428 SDValue N = getValue(I.getOperand(0)); 2429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2430 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2431 } 2432 2433 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2434 // What to do depends on the size of the integer and the size of the pointer. 2435 // We can either truncate, zero extend, or no-op, accordingly. 2436 SDValue N = getValue(I.getOperand(0)); 2437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2438 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2439 } 2440 2441 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2442 // What to do depends on the size of the integer and the size of the pointer. 2443 // We can either truncate, zero extend, or no-op, accordingly. 2444 SDValue N = getValue(I.getOperand(0)); 2445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2446 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2447 } 2448 2449 void SelectionDAGBuilder::visitBitCast(const User &I) { 2450 SDValue N = getValue(I.getOperand(0)); 2451 SDLoc dl = getCurSDLoc(); 2452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2453 2454 // BitCast assures us that source and destination are the same size so this is 2455 // either a BITCAST or a no-op. 2456 if (DestVT != N.getValueType()) 2457 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2458 DestVT, N)); // convert types. 2459 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2460 // might fold any kind of constant expression to an integer constant and that 2461 // is not what we are looking for. Only regcognize a bitcast of a genuine 2462 // constant integer as an opaque constant. 2463 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2464 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2465 /*isOpaque*/true)); 2466 else 2467 setValue(&I, N); // noop cast. 2468 } 2469 2470 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2472 const Value *SV = I.getOperand(0); 2473 SDValue N = getValue(SV); 2474 EVT DestVT = TLI.getValueType(I.getType()); 2475 2476 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2477 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2478 2479 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2480 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2481 2482 setValue(&I, N); 2483 } 2484 2485 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2487 SDValue InVec = getValue(I.getOperand(0)); 2488 SDValue InVal = getValue(I.getOperand(1)); 2489 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2490 getCurSDLoc(), TLI.getVectorIdxTy()); 2491 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2492 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2493 } 2494 2495 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2497 SDValue InVec = getValue(I.getOperand(0)); 2498 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2499 getCurSDLoc(), TLI.getVectorIdxTy()); 2500 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2501 TLI.getValueType(I.getType()), InVec, InIdx)); 2502 } 2503 2504 // Utility for visitShuffleVector - Return true if every element in Mask, 2505 // beginning from position Pos and ending in Pos+Size, falls within the 2506 // specified sequential range [L, L+Pos). or is undef. 2507 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2508 unsigned Pos, unsigned Size, int Low) { 2509 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2510 if (Mask[i] >= 0 && Mask[i] != Low) 2511 return false; 2512 return true; 2513 } 2514 2515 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2516 SDValue Src1 = getValue(I.getOperand(0)); 2517 SDValue Src2 = getValue(I.getOperand(1)); 2518 2519 SmallVector<int, 8> Mask; 2520 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2521 unsigned MaskNumElts = Mask.size(); 2522 2523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2524 EVT VT = TLI.getValueType(I.getType()); 2525 EVT SrcVT = Src1.getValueType(); 2526 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2527 2528 if (SrcNumElts == MaskNumElts) { 2529 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2530 &Mask[0])); 2531 return; 2532 } 2533 2534 // Normalize the shuffle vector since mask and vector length don't match. 2535 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2536 // Mask is longer than the source vectors and is a multiple of the source 2537 // vectors. We can use concatenate vector to make the mask and vectors 2538 // lengths match. 2539 if (SrcNumElts*2 == MaskNumElts) { 2540 // First check for Src1 in low and Src2 in high 2541 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2542 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2543 // The shuffle is concatenating two vectors together. 2544 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2545 VT, Src1, Src2)); 2546 return; 2547 } 2548 // Then check for Src2 in low and Src1 in high 2549 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2550 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2551 // The shuffle is concatenating two vectors together. 2552 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2553 VT, Src2, Src1)); 2554 return; 2555 } 2556 } 2557 2558 // Pad both vectors with undefs to make them the same length as the mask. 2559 unsigned NumConcat = MaskNumElts / SrcNumElts; 2560 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2561 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2562 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2563 2564 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2565 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2566 MOps1[0] = Src1; 2567 MOps2[0] = Src2; 2568 2569 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2570 getCurSDLoc(), VT, MOps1); 2571 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2572 getCurSDLoc(), VT, MOps2); 2573 2574 // Readjust mask for new input vector length. 2575 SmallVector<int, 8> MappedOps; 2576 for (unsigned i = 0; i != MaskNumElts; ++i) { 2577 int Idx = Mask[i]; 2578 if (Idx >= (int)SrcNumElts) 2579 Idx -= SrcNumElts - MaskNumElts; 2580 MappedOps.push_back(Idx); 2581 } 2582 2583 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2584 &MappedOps[0])); 2585 return; 2586 } 2587 2588 if (SrcNumElts > MaskNumElts) { 2589 // Analyze the access pattern of the vector to see if we can extract 2590 // two subvectors and do the shuffle. The analysis is done by calculating 2591 // the range of elements the mask access on both vectors. 2592 int MinRange[2] = { static_cast<int>(SrcNumElts), 2593 static_cast<int>(SrcNumElts)}; 2594 int MaxRange[2] = {-1, -1}; 2595 2596 for (unsigned i = 0; i != MaskNumElts; ++i) { 2597 int Idx = Mask[i]; 2598 unsigned Input = 0; 2599 if (Idx < 0) 2600 continue; 2601 2602 if (Idx >= (int)SrcNumElts) { 2603 Input = 1; 2604 Idx -= SrcNumElts; 2605 } 2606 if (Idx > MaxRange[Input]) 2607 MaxRange[Input] = Idx; 2608 if (Idx < MinRange[Input]) 2609 MinRange[Input] = Idx; 2610 } 2611 2612 // Check if the access is smaller than the vector size and can we find 2613 // a reasonable extract index. 2614 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2615 // Extract. 2616 int StartIdx[2]; // StartIdx to extract from 2617 for (unsigned Input = 0; Input < 2; ++Input) { 2618 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2619 RangeUse[Input] = 0; // Unused 2620 StartIdx[Input] = 0; 2621 continue; 2622 } 2623 2624 // Find a good start index that is a multiple of the mask length. Then 2625 // see if the rest of the elements are in range. 2626 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2627 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2628 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2629 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2630 } 2631 2632 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2633 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2634 return; 2635 } 2636 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2637 // Extract appropriate subvector and generate a vector shuffle 2638 for (unsigned Input = 0; Input < 2; ++Input) { 2639 SDValue &Src = Input == 0 ? Src1 : Src2; 2640 if (RangeUse[Input] == 0) 2641 Src = DAG.getUNDEF(VT); 2642 else { 2643 SDLoc dl = getCurSDLoc(); 2644 Src = DAG.getNode( 2645 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2646 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2647 } 2648 } 2649 2650 // Calculate new mask. 2651 SmallVector<int, 8> MappedOps; 2652 for (unsigned i = 0; i != MaskNumElts; ++i) { 2653 int Idx = Mask[i]; 2654 if (Idx >= 0) { 2655 if (Idx < (int)SrcNumElts) 2656 Idx -= StartIdx[0]; 2657 else 2658 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2659 } 2660 MappedOps.push_back(Idx); 2661 } 2662 2663 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2664 &MappedOps[0])); 2665 return; 2666 } 2667 } 2668 2669 // We can't use either concat vectors or extract subvectors so fall back to 2670 // replacing the shuffle with extract and build vector. 2671 // to insert and build vector. 2672 EVT EltVT = VT.getVectorElementType(); 2673 EVT IdxVT = TLI.getVectorIdxTy(); 2674 SDLoc dl = getCurSDLoc(); 2675 SmallVector<SDValue,8> Ops; 2676 for (unsigned i = 0; i != MaskNumElts; ++i) { 2677 int Idx = Mask[i]; 2678 SDValue Res; 2679 2680 if (Idx < 0) { 2681 Res = DAG.getUNDEF(EltVT); 2682 } else { 2683 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2684 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2685 2686 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2687 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2688 } 2689 2690 Ops.push_back(Res); 2691 } 2692 2693 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2694 } 2695 2696 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2697 const Value *Op0 = I.getOperand(0); 2698 const Value *Op1 = I.getOperand(1); 2699 Type *AggTy = I.getType(); 2700 Type *ValTy = Op1->getType(); 2701 bool IntoUndef = isa<UndefValue>(Op0); 2702 bool FromUndef = isa<UndefValue>(Op1); 2703 2704 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2705 2706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2707 SmallVector<EVT, 4> AggValueVTs; 2708 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2709 SmallVector<EVT, 4> ValValueVTs; 2710 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2711 2712 unsigned NumAggValues = AggValueVTs.size(); 2713 unsigned NumValValues = ValValueVTs.size(); 2714 SmallVector<SDValue, 4> Values(NumAggValues); 2715 2716 // Ignore an insertvalue that produces an empty object 2717 if (!NumAggValues) { 2718 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2719 return; 2720 } 2721 2722 SDValue Agg = getValue(Op0); 2723 unsigned i = 0; 2724 // Copy the beginning value(s) from the original aggregate. 2725 for (; i != LinearIndex; ++i) 2726 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2727 SDValue(Agg.getNode(), Agg.getResNo() + i); 2728 // Copy values from the inserted value(s). 2729 if (NumValValues) { 2730 SDValue Val = getValue(Op1); 2731 for (; i != LinearIndex + NumValValues; ++i) 2732 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2733 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2734 } 2735 // Copy remaining value(s) from the original aggregate. 2736 for (; i != NumAggValues; ++i) 2737 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2738 SDValue(Agg.getNode(), Agg.getResNo() + i); 2739 2740 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2741 DAG.getVTList(AggValueVTs), Values)); 2742 } 2743 2744 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2745 const Value *Op0 = I.getOperand(0); 2746 Type *AggTy = Op0->getType(); 2747 Type *ValTy = I.getType(); 2748 bool OutOfUndef = isa<UndefValue>(Op0); 2749 2750 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2751 2752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2753 SmallVector<EVT, 4> ValValueVTs; 2754 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2755 2756 unsigned NumValValues = ValValueVTs.size(); 2757 2758 // Ignore a extractvalue that produces an empty object 2759 if (!NumValValues) { 2760 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2761 return; 2762 } 2763 2764 SmallVector<SDValue, 4> Values(NumValValues); 2765 2766 SDValue Agg = getValue(Op0); 2767 // Copy out the selected value(s). 2768 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2769 Values[i - LinearIndex] = 2770 OutOfUndef ? 2771 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2772 SDValue(Agg.getNode(), Agg.getResNo() + i); 2773 2774 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2775 DAG.getVTList(ValValueVTs), Values)); 2776 } 2777 2778 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2779 Value *Op0 = I.getOperand(0); 2780 // Note that the pointer operand may be a vector of pointers. Take the scalar 2781 // element which holds a pointer. 2782 Type *Ty = Op0->getType()->getScalarType(); 2783 unsigned AS = Ty->getPointerAddressSpace(); 2784 SDValue N = getValue(Op0); 2785 SDLoc dl = getCurSDLoc(); 2786 2787 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2788 OI != E; ++OI) { 2789 const Value *Idx = *OI; 2790 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2791 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2792 if (Field) { 2793 // N = N + Offset 2794 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2795 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2796 DAG.getConstant(Offset, dl, N.getValueType())); 2797 } 2798 2799 Ty = StTy->getElementType(Field); 2800 } else { 2801 Ty = cast<SequentialType>(Ty)->getElementType(); 2802 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2803 unsigned PtrSize = PtrTy.getSizeInBits(); 2804 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2805 2806 // If this is a constant subscript, handle it quickly. 2807 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2808 if (CI->isZero()) 2809 continue; 2810 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2811 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2812 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2813 continue; 2814 } 2815 2816 // N = N + Idx * ElementSize; 2817 SDValue IdxN = getValue(Idx); 2818 2819 // If the index is smaller or larger than intptr_t, truncate or extend 2820 // it. 2821 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2822 2823 // If this is a multiply by a power of two, turn it into a shl 2824 // immediately. This is a very common case. 2825 if (ElementSize != 1) { 2826 if (ElementSize.isPowerOf2()) { 2827 unsigned Amt = ElementSize.logBase2(); 2828 IdxN = DAG.getNode(ISD::SHL, dl, 2829 N.getValueType(), IdxN, 2830 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2831 } else { 2832 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2833 IdxN = DAG.getNode(ISD::MUL, dl, 2834 N.getValueType(), IdxN, Scale); 2835 } 2836 } 2837 2838 N = DAG.getNode(ISD::ADD, dl, 2839 N.getValueType(), N, IdxN); 2840 } 2841 } 2842 2843 setValue(&I, N); 2844 } 2845 2846 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2847 // If this is a fixed sized alloca in the entry block of the function, 2848 // allocate it statically on the stack. 2849 if (FuncInfo.StaticAllocaMap.count(&I)) 2850 return; // getValue will auto-populate this. 2851 2852 SDLoc dl = getCurSDLoc(); 2853 Type *Ty = I.getAllocatedType(); 2854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2855 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2856 unsigned Align = 2857 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2858 I.getAlignment()); 2859 2860 SDValue AllocSize = getValue(I.getArraySize()); 2861 2862 EVT IntPtr = TLI.getPointerTy(); 2863 if (AllocSize.getValueType() != IntPtr) 2864 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2865 2866 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2867 AllocSize, 2868 DAG.getConstant(TySize, dl, IntPtr)); 2869 2870 // Handle alignment. If the requested alignment is less than or equal to 2871 // the stack alignment, ignore it. If the size is greater than or equal to 2872 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2873 unsigned StackAlign = 2874 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2875 if (Align <= StackAlign) 2876 Align = 0; 2877 2878 // Round the size of the allocation up to the stack alignment size 2879 // by add SA-1 to the size. 2880 AllocSize = DAG.getNode(ISD::ADD, dl, 2881 AllocSize.getValueType(), AllocSize, 2882 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2883 2884 // Mask out the low bits for alignment purposes. 2885 AllocSize = DAG.getNode(ISD::AND, dl, 2886 AllocSize.getValueType(), AllocSize, 2887 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2888 dl)); 2889 2890 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2891 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2892 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2893 setValue(&I, DSA); 2894 DAG.setRoot(DSA.getValue(1)); 2895 2896 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2897 } 2898 2899 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2900 if (I.isAtomic()) 2901 return visitAtomicLoad(I); 2902 2903 const Value *SV = I.getOperand(0); 2904 SDValue Ptr = getValue(SV); 2905 2906 Type *Ty = I.getType(); 2907 2908 bool isVolatile = I.isVolatile(); 2909 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2910 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2911 unsigned Alignment = I.getAlignment(); 2912 2913 AAMDNodes AAInfo; 2914 I.getAAMetadata(AAInfo); 2915 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2916 2917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2918 SmallVector<EVT, 4> ValueVTs; 2919 SmallVector<uint64_t, 4> Offsets; 2920 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2921 unsigned NumValues = ValueVTs.size(); 2922 if (NumValues == 0) 2923 return; 2924 2925 SDValue Root; 2926 bool ConstantMemory = false; 2927 if (isVolatile || NumValues > MaxParallelChains) 2928 // Serialize volatile loads with other side effects. 2929 Root = getRoot(); 2930 else if (AA->pointsToConstantMemory( 2931 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2932 // Do not serialize (non-volatile) loads of constant memory with anything. 2933 Root = DAG.getEntryNode(); 2934 ConstantMemory = true; 2935 } else { 2936 // Do not serialize non-volatile loads against each other. 2937 Root = DAG.getRoot(); 2938 } 2939 2940 SDLoc dl = getCurSDLoc(); 2941 2942 if (isVolatile) 2943 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2944 2945 SmallVector<SDValue, 4> Values(NumValues); 2946 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2947 NumValues)); 2948 EVT PtrVT = Ptr.getValueType(); 2949 unsigned ChainI = 0; 2950 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2951 // Serializing loads here may result in excessive register pressure, and 2952 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2953 // could recover a bit by hoisting nodes upward in the chain by recognizing 2954 // they are side-effect free or do not alias. The optimizer should really 2955 // avoid this case by converting large object/array copies to llvm.memcpy 2956 // (MaxParallelChains should always remain as failsafe). 2957 if (ChainI == MaxParallelChains) { 2958 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2959 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2960 makeArrayRef(Chains.data(), ChainI)); 2961 Root = Chain; 2962 ChainI = 0; 2963 } 2964 SDValue A = DAG.getNode(ISD::ADD, dl, 2965 PtrVT, Ptr, 2966 DAG.getConstant(Offsets[i], dl, PtrVT)); 2967 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2968 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2969 isNonTemporal, isInvariant, Alignment, AAInfo, 2970 Ranges); 2971 2972 Values[i] = L; 2973 Chains[ChainI] = L.getValue(1); 2974 } 2975 2976 if (!ConstantMemory) { 2977 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2978 makeArrayRef(Chains.data(), ChainI)); 2979 if (isVolatile) 2980 DAG.setRoot(Chain); 2981 else 2982 PendingLoads.push_back(Chain); 2983 } 2984 2985 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2986 DAG.getVTList(ValueVTs), Values)); 2987 } 2988 2989 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2990 if (I.isAtomic()) 2991 return visitAtomicStore(I); 2992 2993 const Value *SrcV = I.getOperand(0); 2994 const Value *PtrV = I.getOperand(1); 2995 2996 SmallVector<EVT, 4> ValueVTs; 2997 SmallVector<uint64_t, 4> Offsets; 2998 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2999 ValueVTs, &Offsets); 3000 unsigned NumValues = ValueVTs.size(); 3001 if (NumValues == 0) 3002 return; 3003 3004 // Get the lowered operands. Note that we do this after 3005 // checking if NumResults is zero, because with zero results 3006 // the operands won't have values in the map. 3007 SDValue Src = getValue(SrcV); 3008 SDValue Ptr = getValue(PtrV); 3009 3010 SDValue Root = getRoot(); 3011 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3012 NumValues)); 3013 EVT PtrVT = Ptr.getValueType(); 3014 bool isVolatile = I.isVolatile(); 3015 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3016 unsigned Alignment = I.getAlignment(); 3017 SDLoc dl = getCurSDLoc(); 3018 3019 AAMDNodes AAInfo; 3020 I.getAAMetadata(AAInfo); 3021 3022 unsigned ChainI = 0; 3023 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3024 // See visitLoad comments. 3025 if (ChainI == MaxParallelChains) { 3026 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3027 makeArrayRef(Chains.data(), ChainI)); 3028 Root = Chain; 3029 ChainI = 0; 3030 } 3031 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3032 DAG.getConstant(Offsets[i], dl, PtrVT)); 3033 SDValue St = DAG.getStore(Root, dl, 3034 SDValue(Src.getNode(), Src.getResNo() + i), 3035 Add, MachinePointerInfo(PtrV, Offsets[i]), 3036 isVolatile, isNonTemporal, Alignment, AAInfo); 3037 Chains[ChainI] = St; 3038 } 3039 3040 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3041 makeArrayRef(Chains.data(), ChainI)); 3042 DAG.setRoot(StoreNode); 3043 } 3044 3045 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3046 SDLoc sdl = getCurSDLoc(); 3047 3048 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3049 Value *PtrOperand = I.getArgOperand(1); 3050 SDValue Ptr = getValue(PtrOperand); 3051 SDValue Src0 = getValue(I.getArgOperand(0)); 3052 SDValue Mask = getValue(I.getArgOperand(3)); 3053 EVT VT = Src0.getValueType(); 3054 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3055 if (!Alignment) 3056 Alignment = DAG.getEVTAlignment(VT); 3057 3058 AAMDNodes AAInfo; 3059 I.getAAMetadata(AAInfo); 3060 3061 MachineMemOperand *MMO = 3062 DAG.getMachineFunction(). 3063 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3064 MachineMemOperand::MOStore, VT.getStoreSize(), 3065 Alignment, AAInfo); 3066 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3067 MMO, false); 3068 DAG.setRoot(StoreNode); 3069 setValue(&I, StoreNode); 3070 } 3071 3072 // Gather/scatter receive a vector of pointers. 3073 // This vector of pointers may be represented as a base pointer + vector of 3074 // indices, it depends on GEP and instruction preceeding GEP 3075 // that calculates indices 3076 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3077 SelectionDAGBuilder* SDB) { 3078 3079 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3080 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3081 if (!Gep || Gep->getNumOperands() > 2) 3082 return false; 3083 ShuffleVectorInst *ShuffleInst = 3084 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3085 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3086 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3087 Instruction::InsertElement) 3088 return false; 3089 3090 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3091 3092 SelectionDAG& DAG = SDB->DAG; 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 // Check is the Ptr is inside current basic block 3095 // If not, look for the shuffle instruction 3096 if (SDB->findValue(Ptr)) 3097 Base = SDB->getValue(Ptr); 3098 else if (SDB->findValue(ShuffleInst)) { 3099 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3100 SDLoc sdl = ShuffleNode; 3101 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3102 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3103 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3104 SDB->setValue(Ptr, Base); 3105 } 3106 else 3107 return false; 3108 3109 Value *IndexVal = Gep->getOperand(1); 3110 if (SDB->findValue(IndexVal)) { 3111 Index = SDB->getValue(IndexVal); 3112 3113 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3114 IndexVal = Sext->getOperand(0); 3115 if (SDB->findValue(IndexVal)) 3116 Index = SDB->getValue(IndexVal); 3117 } 3118 return true; 3119 } 3120 return false; 3121 } 3122 3123 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3124 SDLoc sdl = getCurSDLoc(); 3125 3126 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3127 Value *Ptr = I.getArgOperand(1); 3128 SDValue Src0 = getValue(I.getArgOperand(0)); 3129 SDValue Mask = getValue(I.getArgOperand(3)); 3130 EVT VT = Src0.getValueType(); 3131 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3132 if (!Alignment) 3133 Alignment = DAG.getEVTAlignment(VT); 3134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3135 3136 AAMDNodes AAInfo; 3137 I.getAAMetadata(AAInfo); 3138 3139 SDValue Base; 3140 SDValue Index; 3141 Value *BasePtr = Ptr; 3142 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3143 3144 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3145 MachineMemOperand *MMO = DAG.getMachineFunction(). 3146 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3147 MachineMemOperand::MOStore, VT.getStoreSize(), 3148 Alignment, AAInfo); 3149 if (!UniformBase) { 3150 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3151 Index = getValue(Ptr); 3152 } 3153 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3154 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3155 Ops, MMO); 3156 DAG.setRoot(Scatter); 3157 setValue(&I, Scatter); 3158 } 3159 3160 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3161 SDLoc sdl = getCurSDLoc(); 3162 3163 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3164 Value *PtrOperand = I.getArgOperand(0); 3165 SDValue Ptr = getValue(PtrOperand); 3166 SDValue Src0 = getValue(I.getArgOperand(3)); 3167 SDValue Mask = getValue(I.getArgOperand(2)); 3168 3169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3170 EVT VT = TLI.getValueType(I.getType()); 3171 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3172 if (!Alignment) 3173 Alignment = DAG.getEVTAlignment(VT); 3174 3175 AAMDNodes AAInfo; 3176 I.getAAMetadata(AAInfo); 3177 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3178 3179 SDValue InChain = DAG.getRoot(); 3180 if (AA->pointsToConstantMemory( 3181 AliasAnalysis::Location(PtrOperand, 3182 AA->getTypeStoreSize(I.getType()), 3183 AAInfo))) { 3184 // Do not serialize (non-volatile) loads of constant memory with anything. 3185 InChain = DAG.getEntryNode(); 3186 } 3187 3188 MachineMemOperand *MMO = 3189 DAG.getMachineFunction(). 3190 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3191 MachineMemOperand::MOLoad, VT.getStoreSize(), 3192 Alignment, AAInfo, Ranges); 3193 3194 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3195 ISD::NON_EXTLOAD); 3196 SDValue OutChain = Load.getValue(1); 3197 DAG.setRoot(OutChain); 3198 setValue(&I, Load); 3199 } 3200 3201 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3202 SDLoc sdl = getCurSDLoc(); 3203 3204 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3205 Value *Ptr = I.getArgOperand(0); 3206 SDValue Src0 = getValue(I.getArgOperand(3)); 3207 SDValue Mask = getValue(I.getArgOperand(2)); 3208 3209 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3210 EVT VT = TLI.getValueType(I.getType()); 3211 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3212 if (!Alignment) 3213 Alignment = DAG.getEVTAlignment(VT); 3214 3215 AAMDNodes AAInfo; 3216 I.getAAMetadata(AAInfo); 3217 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3218 3219 SDValue Root = DAG.getRoot(); 3220 SDValue Base; 3221 SDValue Index; 3222 Value *BasePtr = Ptr; 3223 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3224 bool ConstantMemory = false; 3225 if (UniformBase && AA->pointsToConstantMemory( 3226 AliasAnalysis::Location(BasePtr, 3227 AA->getTypeStoreSize(I.getType()), 3228 AAInfo))) { 3229 // Do not serialize (non-volatile) loads of constant memory with anything. 3230 Root = DAG.getEntryNode(); 3231 ConstantMemory = true; 3232 } 3233 3234 MachineMemOperand *MMO = 3235 DAG.getMachineFunction(). 3236 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3237 MachineMemOperand::MOLoad, VT.getStoreSize(), 3238 Alignment, AAInfo, Ranges); 3239 3240 if (!UniformBase) { 3241 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3242 Index = getValue(Ptr); 3243 } 3244 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3245 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3246 Ops, MMO); 3247 3248 SDValue OutChain = Gather.getValue(1); 3249 if (!ConstantMemory) 3250 PendingLoads.push_back(OutChain); 3251 setValue(&I, Gather); 3252 } 3253 3254 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3255 SDLoc dl = getCurSDLoc(); 3256 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3257 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3258 SynchronizationScope Scope = I.getSynchScope(); 3259 3260 SDValue InChain = getRoot(); 3261 3262 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3263 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3264 SDValue L = DAG.getAtomicCmpSwap( 3265 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3266 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3267 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3268 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3269 3270 SDValue OutChain = L.getValue(2); 3271 3272 setValue(&I, L); 3273 DAG.setRoot(OutChain); 3274 } 3275 3276 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3277 SDLoc dl = getCurSDLoc(); 3278 ISD::NodeType NT; 3279 switch (I.getOperation()) { 3280 default: llvm_unreachable("Unknown atomicrmw operation"); 3281 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3282 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3283 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3284 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3285 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3286 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3287 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3288 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3289 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3290 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3291 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3292 } 3293 AtomicOrdering Order = I.getOrdering(); 3294 SynchronizationScope Scope = I.getSynchScope(); 3295 3296 SDValue InChain = getRoot(); 3297 3298 SDValue L = 3299 DAG.getAtomic(NT, dl, 3300 getValue(I.getValOperand()).getSimpleValueType(), 3301 InChain, 3302 getValue(I.getPointerOperand()), 3303 getValue(I.getValOperand()), 3304 I.getPointerOperand(), 3305 /* Alignment=*/ 0, Order, Scope); 3306 3307 SDValue OutChain = L.getValue(1); 3308 3309 setValue(&I, L); 3310 DAG.setRoot(OutChain); 3311 } 3312 3313 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3314 SDLoc dl = getCurSDLoc(); 3315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3316 SDValue Ops[3]; 3317 Ops[0] = getRoot(); 3318 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3319 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3320 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3321 } 3322 3323 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3324 SDLoc dl = getCurSDLoc(); 3325 AtomicOrdering Order = I.getOrdering(); 3326 SynchronizationScope Scope = I.getSynchScope(); 3327 3328 SDValue InChain = getRoot(); 3329 3330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3331 EVT VT = TLI.getValueType(I.getType()); 3332 3333 if (I.getAlignment() < VT.getSizeInBits() / 8) 3334 report_fatal_error("Cannot generate unaligned atomic load"); 3335 3336 MachineMemOperand *MMO = 3337 DAG.getMachineFunction(). 3338 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3339 MachineMemOperand::MOVolatile | 3340 MachineMemOperand::MOLoad, 3341 VT.getStoreSize(), 3342 I.getAlignment() ? I.getAlignment() : 3343 DAG.getEVTAlignment(VT)); 3344 3345 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3346 SDValue L = 3347 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3348 getValue(I.getPointerOperand()), MMO, 3349 Order, Scope); 3350 3351 SDValue OutChain = L.getValue(1); 3352 3353 setValue(&I, L); 3354 DAG.setRoot(OutChain); 3355 } 3356 3357 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3358 SDLoc dl = getCurSDLoc(); 3359 3360 AtomicOrdering Order = I.getOrdering(); 3361 SynchronizationScope Scope = I.getSynchScope(); 3362 3363 SDValue InChain = getRoot(); 3364 3365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3366 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3367 3368 if (I.getAlignment() < VT.getSizeInBits() / 8) 3369 report_fatal_error("Cannot generate unaligned atomic store"); 3370 3371 SDValue OutChain = 3372 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3373 InChain, 3374 getValue(I.getPointerOperand()), 3375 getValue(I.getValueOperand()), 3376 I.getPointerOperand(), I.getAlignment(), 3377 Order, Scope); 3378 3379 DAG.setRoot(OutChain); 3380 } 3381 3382 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3383 /// node. 3384 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3385 unsigned Intrinsic) { 3386 bool HasChain = !I.doesNotAccessMemory(); 3387 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3388 3389 // Build the operand list. 3390 SmallVector<SDValue, 8> Ops; 3391 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3392 if (OnlyLoad) { 3393 // We don't need to serialize loads against other loads. 3394 Ops.push_back(DAG.getRoot()); 3395 } else { 3396 Ops.push_back(getRoot()); 3397 } 3398 } 3399 3400 // Info is set by getTgtMemInstrinsic 3401 TargetLowering::IntrinsicInfo Info; 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3404 3405 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3406 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3407 Info.opc == ISD::INTRINSIC_W_CHAIN) 3408 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3409 TLI.getPointerTy())); 3410 3411 // Add all operands of the call to the operand list. 3412 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3413 SDValue Op = getValue(I.getArgOperand(i)); 3414 Ops.push_back(Op); 3415 } 3416 3417 SmallVector<EVT, 4> ValueVTs; 3418 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3419 3420 if (HasChain) 3421 ValueVTs.push_back(MVT::Other); 3422 3423 SDVTList VTs = DAG.getVTList(ValueVTs); 3424 3425 // Create the node. 3426 SDValue Result; 3427 if (IsTgtIntrinsic) { 3428 // This is target intrinsic that touches memory 3429 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3430 VTs, Ops, Info.memVT, 3431 MachinePointerInfo(Info.ptrVal, Info.offset), 3432 Info.align, Info.vol, 3433 Info.readMem, Info.writeMem, Info.size); 3434 } else if (!HasChain) { 3435 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3436 } else if (!I.getType()->isVoidTy()) { 3437 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3438 } else { 3439 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3440 } 3441 3442 if (HasChain) { 3443 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3444 if (OnlyLoad) 3445 PendingLoads.push_back(Chain); 3446 else 3447 DAG.setRoot(Chain); 3448 } 3449 3450 if (!I.getType()->isVoidTy()) { 3451 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3452 EVT VT = TLI.getValueType(PTy); 3453 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3454 } 3455 3456 setValue(&I, Result); 3457 } 3458 } 3459 3460 /// GetSignificand - Get the significand and build it into a floating-point 3461 /// number with exponent of 1: 3462 /// 3463 /// Op = (Op & 0x007fffff) | 0x3f800000; 3464 /// 3465 /// where Op is the hexadecimal representation of floating point value. 3466 static SDValue 3467 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3468 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3469 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3470 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3471 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3472 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3473 } 3474 3475 /// GetExponent - Get the exponent: 3476 /// 3477 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3478 /// 3479 /// where Op is the hexadecimal representation of floating point value. 3480 static SDValue 3481 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3482 SDLoc dl) { 3483 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3484 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3485 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3486 DAG.getConstant(23, dl, TLI.getPointerTy())); 3487 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3488 DAG.getConstant(127, dl, MVT::i32)); 3489 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3490 } 3491 3492 /// getF32Constant - Get 32-bit floating point constant. 3493 static SDValue 3494 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3495 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3496 MVT::f32); 3497 } 3498 3499 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3500 SelectionDAG &DAG) { 3501 // IntegerPartOfX = ((int32_t)(t0); 3502 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3503 3504 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3505 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3506 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3507 3508 // IntegerPartOfX <<= 23; 3509 IntegerPartOfX = DAG.getNode( 3510 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3511 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3512 3513 SDValue TwoToFractionalPartOfX; 3514 if (LimitFloatPrecision <= 6) { 3515 // For floating-point precision of 6: 3516 // 3517 // TwoToFractionalPartOfX = 3518 // 0.997535578f + 3519 // (0.735607626f + 0.252464424f * x) * x; 3520 // 3521 // error 0.0144103317, which is 6 bits 3522 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3523 getF32Constant(DAG, 0x3e814304, dl)); 3524 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3525 getF32Constant(DAG, 0x3f3c50c8, dl)); 3526 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3527 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3528 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3529 } else if (LimitFloatPrecision <= 12) { 3530 // For floating-point precision of 12: 3531 // 3532 // TwoToFractionalPartOfX = 3533 // 0.999892986f + 3534 // (0.696457318f + 3535 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3536 // 3537 // error 0.000107046256, which is 13 to 14 bits 3538 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3539 getF32Constant(DAG, 0x3da235e3, dl)); 3540 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3541 getF32Constant(DAG, 0x3e65b8f3, dl)); 3542 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3543 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3544 getF32Constant(DAG, 0x3f324b07, dl)); 3545 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3546 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3547 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3548 } else { // LimitFloatPrecision <= 18 3549 // For floating-point precision of 18: 3550 // 3551 // TwoToFractionalPartOfX = 3552 // 0.999999982f + 3553 // (0.693148872f + 3554 // (0.240227044f + 3555 // (0.554906021e-1f + 3556 // (0.961591928e-2f + 3557 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3558 // error 2.47208000*10^(-7), which is better than 18 bits 3559 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3560 getF32Constant(DAG, 0x3924b03e, dl)); 3561 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3562 getF32Constant(DAG, 0x3ab24b87, dl)); 3563 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3564 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3565 getF32Constant(DAG, 0x3c1d8c17, dl)); 3566 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3567 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3568 getF32Constant(DAG, 0x3d634a1d, dl)); 3569 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3570 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3571 getF32Constant(DAG, 0x3e75fe14, dl)); 3572 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3573 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3574 getF32Constant(DAG, 0x3f317234, dl)); 3575 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3576 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3577 getF32Constant(DAG, 0x3f800000, dl)); 3578 } 3579 3580 // Add the exponent into the result in integer domain. 3581 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3582 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3583 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3584 } 3585 3586 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3587 /// limited-precision mode. 3588 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3589 const TargetLowering &TLI) { 3590 if (Op.getValueType() == MVT::f32 && 3591 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3592 3593 // Put the exponent in the right bit position for later addition to the 3594 // final result: 3595 // 3596 // #define LOG2OFe 1.4426950f 3597 // t0 = Op * LOG2OFe 3598 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3599 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3600 return getLimitedPrecisionExp2(t0, dl, DAG); 3601 } 3602 3603 // No special expansion. 3604 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3605 } 3606 3607 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3608 /// limited-precision mode. 3609 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3610 const TargetLowering &TLI) { 3611 if (Op.getValueType() == MVT::f32 && 3612 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3613 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3614 3615 // Scale the exponent by log(2) [0.69314718f]. 3616 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3617 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3618 getF32Constant(DAG, 0x3f317218, dl)); 3619 3620 // Get the significand and build it into a floating-point number with 3621 // exponent of 1. 3622 SDValue X = GetSignificand(DAG, Op1, dl); 3623 3624 SDValue LogOfMantissa; 3625 if (LimitFloatPrecision <= 6) { 3626 // For floating-point precision of 6: 3627 // 3628 // LogofMantissa = 3629 // -1.1609546f + 3630 // (1.4034025f - 0.23903021f * x) * x; 3631 // 3632 // error 0.0034276066, which is better than 8 bits 3633 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3634 getF32Constant(DAG, 0xbe74c456, dl)); 3635 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3636 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3637 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3638 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3639 getF32Constant(DAG, 0x3f949a29, dl)); 3640 } else if (LimitFloatPrecision <= 12) { 3641 // For floating-point precision of 12: 3642 // 3643 // LogOfMantissa = 3644 // -1.7417939f + 3645 // (2.8212026f + 3646 // (-1.4699568f + 3647 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3648 // 3649 // error 0.000061011436, which is 14 bits 3650 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3651 getF32Constant(DAG, 0xbd67b6d6, dl)); 3652 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3653 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3654 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3655 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3656 getF32Constant(DAG, 0x3fbc278b, dl)); 3657 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3658 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3659 getF32Constant(DAG, 0x40348e95, dl)); 3660 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3661 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3662 getF32Constant(DAG, 0x3fdef31a, dl)); 3663 } else { // LimitFloatPrecision <= 18 3664 // For floating-point precision of 18: 3665 // 3666 // LogOfMantissa = 3667 // -2.1072184f + 3668 // (4.2372794f + 3669 // (-3.7029485f + 3670 // (2.2781945f + 3671 // (-0.87823314f + 3672 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3673 // 3674 // error 0.0000023660568, which is better than 18 bits 3675 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3676 getF32Constant(DAG, 0xbc91e5ac, dl)); 3677 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3678 getF32Constant(DAG, 0x3e4350aa, dl)); 3679 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3680 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3681 getF32Constant(DAG, 0x3f60d3e3, dl)); 3682 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3683 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3684 getF32Constant(DAG, 0x4011cdf0, dl)); 3685 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3686 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3687 getF32Constant(DAG, 0x406cfd1c, dl)); 3688 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3689 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3690 getF32Constant(DAG, 0x408797cb, dl)); 3691 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3692 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3693 getF32Constant(DAG, 0x4006dcab, dl)); 3694 } 3695 3696 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3697 } 3698 3699 // No special expansion. 3700 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3701 } 3702 3703 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3704 /// limited-precision mode. 3705 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3706 const TargetLowering &TLI) { 3707 if (Op.getValueType() == MVT::f32 && 3708 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3709 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3710 3711 // Get the exponent. 3712 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3713 3714 // Get the significand and build it into a floating-point number with 3715 // exponent of 1. 3716 SDValue X = GetSignificand(DAG, Op1, dl); 3717 3718 // Different possible minimax approximations of significand in 3719 // floating-point for various degrees of accuracy over [1,2]. 3720 SDValue Log2ofMantissa; 3721 if (LimitFloatPrecision <= 6) { 3722 // For floating-point precision of 6: 3723 // 3724 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3725 // 3726 // error 0.0049451742, which is more than 7 bits 3727 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3728 getF32Constant(DAG, 0xbeb08fe0, dl)); 3729 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3730 getF32Constant(DAG, 0x40019463, dl)); 3731 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3732 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3733 getF32Constant(DAG, 0x3fd6633d, dl)); 3734 } else if (LimitFloatPrecision <= 12) { 3735 // For floating-point precision of 12: 3736 // 3737 // Log2ofMantissa = 3738 // -2.51285454f + 3739 // (4.07009056f + 3740 // (-2.12067489f + 3741 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3742 // 3743 // error 0.0000876136000, which is better than 13 bits 3744 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3745 getF32Constant(DAG, 0xbda7262e, dl)); 3746 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3747 getF32Constant(DAG, 0x3f25280b, dl)); 3748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3749 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3750 getF32Constant(DAG, 0x4007b923, dl)); 3751 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3752 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3753 getF32Constant(DAG, 0x40823e2f, dl)); 3754 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3755 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3756 getF32Constant(DAG, 0x4020d29c, dl)); 3757 } else { // LimitFloatPrecision <= 18 3758 // For floating-point precision of 18: 3759 // 3760 // Log2ofMantissa = 3761 // -3.0400495f + 3762 // (6.1129976f + 3763 // (-5.3420409f + 3764 // (3.2865683f + 3765 // (-1.2669343f + 3766 // (0.27515199f - 3767 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3768 // 3769 // error 0.0000018516, which is better than 18 bits 3770 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3771 getF32Constant(DAG, 0xbcd2769e, dl)); 3772 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3773 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3774 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3775 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3776 getF32Constant(DAG, 0x3fa22ae7, dl)); 3777 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3778 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3779 getF32Constant(DAG, 0x40525723, dl)); 3780 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3781 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3782 getF32Constant(DAG, 0x40aaf200, dl)); 3783 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3784 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3785 getF32Constant(DAG, 0x40c39dad, dl)); 3786 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3787 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3788 getF32Constant(DAG, 0x4042902c, dl)); 3789 } 3790 3791 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3792 } 3793 3794 // No special expansion. 3795 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3796 } 3797 3798 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3799 /// limited-precision mode. 3800 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3801 const TargetLowering &TLI) { 3802 if (Op.getValueType() == MVT::f32 && 3803 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3804 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3805 3806 // Scale the exponent by log10(2) [0.30102999f]. 3807 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3808 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3809 getF32Constant(DAG, 0x3e9a209a, dl)); 3810 3811 // Get the significand and build it into a floating-point number with 3812 // exponent of 1. 3813 SDValue X = GetSignificand(DAG, Op1, dl); 3814 3815 SDValue Log10ofMantissa; 3816 if (LimitFloatPrecision <= 6) { 3817 // For floating-point precision of 6: 3818 // 3819 // Log10ofMantissa = 3820 // -0.50419619f + 3821 // (0.60948995f - 0.10380950f * x) * x; 3822 // 3823 // error 0.0014886165, which is 6 bits 3824 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3825 getF32Constant(DAG, 0xbdd49a13, dl)); 3826 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3827 getF32Constant(DAG, 0x3f1c0789, dl)); 3828 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3829 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3830 getF32Constant(DAG, 0x3f011300, dl)); 3831 } else if (LimitFloatPrecision <= 12) { 3832 // For floating-point precision of 12: 3833 // 3834 // Log10ofMantissa = 3835 // -0.64831180f + 3836 // (0.91751397f + 3837 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3838 // 3839 // error 0.00019228036, which is better than 12 bits 3840 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3841 getF32Constant(DAG, 0x3d431f31, dl)); 3842 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3843 getF32Constant(DAG, 0x3ea21fb2, dl)); 3844 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3845 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3846 getF32Constant(DAG, 0x3f6ae232, dl)); 3847 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3848 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3849 getF32Constant(DAG, 0x3f25f7c3, dl)); 3850 } else { // LimitFloatPrecision <= 18 3851 // For floating-point precision of 18: 3852 // 3853 // Log10ofMantissa = 3854 // -0.84299375f + 3855 // (1.5327582f + 3856 // (-1.0688956f + 3857 // (0.49102474f + 3858 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3859 // 3860 // error 0.0000037995730, which is better than 18 bits 3861 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3862 getF32Constant(DAG, 0x3c5d51ce, dl)); 3863 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3864 getF32Constant(DAG, 0x3e00685a, dl)); 3865 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3866 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3867 getF32Constant(DAG, 0x3efb6798, dl)); 3868 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3869 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3870 getF32Constant(DAG, 0x3f88d192, dl)); 3871 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3872 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3873 getF32Constant(DAG, 0x3fc4316c, dl)); 3874 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3875 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3876 getF32Constant(DAG, 0x3f57ce70, dl)); 3877 } 3878 3879 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3880 } 3881 3882 // No special expansion. 3883 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3884 } 3885 3886 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3887 /// limited-precision mode. 3888 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3889 const TargetLowering &TLI) { 3890 if (Op.getValueType() == MVT::f32 && 3891 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3892 return getLimitedPrecisionExp2(Op, dl, DAG); 3893 3894 // No special expansion. 3895 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3896 } 3897 3898 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3899 /// limited-precision mode with x == 10.0f. 3900 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3901 SelectionDAG &DAG, const TargetLowering &TLI) { 3902 bool IsExp10 = false; 3903 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3904 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3905 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3906 APFloat Ten(10.0f); 3907 IsExp10 = LHSC->isExactlyValue(Ten); 3908 } 3909 } 3910 3911 if (IsExp10) { 3912 // Put the exponent in the right bit position for later addition to the 3913 // final result: 3914 // 3915 // #define LOG2OF10 3.3219281f 3916 // t0 = Op * LOG2OF10; 3917 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3918 getF32Constant(DAG, 0x40549a78, dl)); 3919 return getLimitedPrecisionExp2(t0, dl, DAG); 3920 } 3921 3922 // No special expansion. 3923 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3924 } 3925 3926 3927 /// ExpandPowI - Expand a llvm.powi intrinsic. 3928 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3929 SelectionDAG &DAG) { 3930 // If RHS is a constant, we can expand this out to a multiplication tree, 3931 // otherwise we end up lowering to a call to __powidf2 (for example). When 3932 // optimizing for size, we only want to do this if the expansion would produce 3933 // a small number of multiplies, otherwise we do the full expansion. 3934 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3935 // Get the exponent as a positive value. 3936 unsigned Val = RHSC->getSExtValue(); 3937 if ((int)Val < 0) Val = -Val; 3938 3939 // powi(x, 0) -> 1.0 3940 if (Val == 0) 3941 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3942 3943 const Function *F = DAG.getMachineFunction().getFunction(); 3944 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3945 // If optimizing for size, don't insert too many multiplies. This 3946 // inserts up to 5 multiplies. 3947 countPopulation(Val) + Log2_32(Val) < 7) { 3948 // We use the simple binary decomposition method to generate the multiply 3949 // sequence. There are more optimal ways to do this (for example, 3950 // powi(x,15) generates one more multiply than it should), but this has 3951 // the benefit of being both really simple and much better than a libcall. 3952 SDValue Res; // Logically starts equal to 1.0 3953 SDValue CurSquare = LHS; 3954 while (Val) { 3955 if (Val & 1) { 3956 if (Res.getNode()) 3957 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3958 else 3959 Res = CurSquare; // 1.0*CurSquare. 3960 } 3961 3962 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3963 CurSquare, CurSquare); 3964 Val >>= 1; 3965 } 3966 3967 // If the original was negative, invert the result, producing 1/(x*x*x). 3968 if (RHSC->getSExtValue() < 0) 3969 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3970 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3971 return Res; 3972 } 3973 } 3974 3975 // Otherwise, expand to a libcall. 3976 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3977 } 3978 3979 // getTruncatedArgReg - Find underlying register used for an truncated 3980 // argument. 3981 static unsigned getTruncatedArgReg(const SDValue &N) { 3982 if (N.getOpcode() != ISD::TRUNCATE) 3983 return 0; 3984 3985 const SDValue &Ext = N.getOperand(0); 3986 if (Ext.getOpcode() == ISD::AssertZext || 3987 Ext.getOpcode() == ISD::AssertSext) { 3988 const SDValue &CFR = Ext.getOperand(0); 3989 if (CFR.getOpcode() == ISD::CopyFromReg) 3990 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3991 if (CFR.getOpcode() == ISD::TRUNCATE) 3992 return getTruncatedArgReg(CFR); 3993 } 3994 return 0; 3995 } 3996 3997 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3998 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3999 /// At the end of instruction selection, they will be inserted to the entry BB. 4000 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4001 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4002 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4003 const Argument *Arg = dyn_cast<Argument>(V); 4004 if (!Arg) 4005 return false; 4006 4007 MachineFunction &MF = DAG.getMachineFunction(); 4008 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4009 4010 // Ignore inlined function arguments here. 4011 // 4012 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4013 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4014 return false; 4015 4016 Optional<MachineOperand> Op; 4017 // Some arguments' frame index is recorded during argument lowering. 4018 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4019 Op = MachineOperand::CreateFI(FI); 4020 4021 if (!Op && N.getNode()) { 4022 unsigned Reg; 4023 if (N.getOpcode() == ISD::CopyFromReg) 4024 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4025 else 4026 Reg = getTruncatedArgReg(N); 4027 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4028 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4029 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4030 if (PR) 4031 Reg = PR; 4032 } 4033 if (Reg) 4034 Op = MachineOperand::CreateReg(Reg, false); 4035 } 4036 4037 if (!Op) { 4038 // Check if ValueMap has reg number. 4039 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4040 if (VMI != FuncInfo.ValueMap.end()) 4041 Op = MachineOperand::CreateReg(VMI->second, false); 4042 } 4043 4044 if (!Op && N.getNode()) 4045 // Check if frame index is available. 4046 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4047 if (FrameIndexSDNode *FINode = 4048 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4049 Op = MachineOperand::CreateFI(FINode->getIndex()); 4050 4051 if (!Op) 4052 return false; 4053 4054 assert(Variable->isValidLocationForIntrinsic(DL) && 4055 "Expected inlined-at fields to agree"); 4056 if (Op->isReg()) 4057 FuncInfo.ArgDbgValues.push_back( 4058 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4059 Op->getReg(), Offset, Variable, Expr)); 4060 else 4061 FuncInfo.ArgDbgValues.push_back( 4062 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4063 .addOperand(*Op) 4064 .addImm(Offset) 4065 .addMetadata(Variable) 4066 .addMetadata(Expr)); 4067 4068 return true; 4069 } 4070 4071 // VisualStudio defines setjmp as _setjmp 4072 #if defined(_MSC_VER) && defined(setjmp) && \ 4073 !defined(setjmp_undefined_for_msvc) 4074 # pragma push_macro("setjmp") 4075 # undef setjmp 4076 # define setjmp_undefined_for_msvc 4077 #endif 4078 4079 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4080 /// we want to emit this as a call to a named external function, return the name 4081 /// otherwise lower it and return null. 4082 const char * 4083 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4085 SDLoc sdl = getCurSDLoc(); 4086 DebugLoc dl = getCurDebugLoc(); 4087 SDValue Res; 4088 4089 switch (Intrinsic) { 4090 default: 4091 // By default, turn this into a target intrinsic node. 4092 visitTargetIntrinsic(I, Intrinsic); 4093 return nullptr; 4094 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4095 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4096 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4097 case Intrinsic::returnaddress: 4098 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4099 getValue(I.getArgOperand(0)))); 4100 return nullptr; 4101 case Intrinsic::frameaddress: 4102 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4103 getValue(I.getArgOperand(0)))); 4104 return nullptr; 4105 case Intrinsic::read_register: { 4106 Value *Reg = I.getArgOperand(0); 4107 SDValue RegName = 4108 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4109 EVT VT = TLI.getValueType(I.getType()); 4110 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4111 return nullptr; 4112 } 4113 case Intrinsic::write_register: { 4114 Value *Reg = I.getArgOperand(0); 4115 Value *RegValue = I.getArgOperand(1); 4116 SDValue Chain = getValue(RegValue).getOperand(0); 4117 SDValue RegName = 4118 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4119 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4120 RegName, getValue(RegValue))); 4121 return nullptr; 4122 } 4123 case Intrinsic::setjmp: 4124 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4125 case Intrinsic::longjmp: 4126 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4127 case Intrinsic::memcpy: { 4128 // FIXME: this definition of "user defined address space" is x86-specific 4129 // Assert for address < 256 since we support only user defined address 4130 // spaces. 4131 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4132 < 256 && 4133 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4134 < 256 && 4135 "Unknown address space"); 4136 SDValue Op1 = getValue(I.getArgOperand(0)); 4137 SDValue Op2 = getValue(I.getArgOperand(1)); 4138 SDValue Op3 = getValue(I.getArgOperand(2)); 4139 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4140 if (!Align) 4141 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4142 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4143 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4144 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4145 false, isTC, 4146 MachinePointerInfo(I.getArgOperand(0)), 4147 MachinePointerInfo(I.getArgOperand(1))); 4148 updateDAGForMaybeTailCall(MC); 4149 return nullptr; 4150 } 4151 case Intrinsic::memset: { 4152 // FIXME: this definition of "user defined address space" is x86-specific 4153 // Assert for address < 256 since we support only user defined address 4154 // spaces. 4155 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4156 < 256 && 4157 "Unknown address space"); 4158 SDValue Op1 = getValue(I.getArgOperand(0)); 4159 SDValue Op2 = getValue(I.getArgOperand(1)); 4160 SDValue Op3 = getValue(I.getArgOperand(2)); 4161 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4162 if (!Align) 4163 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4164 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4165 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4166 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4167 isTC, MachinePointerInfo(I.getArgOperand(0))); 4168 updateDAGForMaybeTailCall(MS); 4169 return nullptr; 4170 } 4171 case Intrinsic::memmove: { 4172 // FIXME: this definition of "user defined address space" is x86-specific 4173 // Assert for address < 256 since we support only user defined address 4174 // spaces. 4175 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4176 < 256 && 4177 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4178 < 256 && 4179 "Unknown address space"); 4180 SDValue Op1 = getValue(I.getArgOperand(0)); 4181 SDValue Op2 = getValue(I.getArgOperand(1)); 4182 SDValue Op3 = getValue(I.getArgOperand(2)); 4183 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4184 if (!Align) 4185 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4186 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4187 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4188 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4189 isTC, MachinePointerInfo(I.getArgOperand(0)), 4190 MachinePointerInfo(I.getArgOperand(1))); 4191 updateDAGForMaybeTailCall(MM); 4192 return nullptr; 4193 } 4194 case Intrinsic::dbg_declare: { 4195 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4196 DILocalVariable *Variable = DI.getVariable(); 4197 DIExpression *Expression = DI.getExpression(); 4198 const Value *Address = DI.getAddress(); 4199 assert(Variable && "Missing variable"); 4200 if (!Address) { 4201 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4202 return nullptr; 4203 } 4204 4205 // Check if address has undef value. 4206 if (isa<UndefValue>(Address) || 4207 (Address->use_empty() && !isa<Argument>(Address))) { 4208 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4209 return nullptr; 4210 } 4211 4212 SDValue &N = NodeMap[Address]; 4213 if (!N.getNode() && isa<Argument>(Address)) 4214 // Check unused arguments map. 4215 N = UnusedArgNodeMap[Address]; 4216 SDDbgValue *SDV; 4217 if (N.getNode()) { 4218 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4219 Address = BCI->getOperand(0); 4220 // Parameters are handled specially. 4221 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4222 isa<Argument>(Address); 4223 4224 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4225 4226 if (isParameter && !AI) { 4227 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4228 if (FINode) 4229 // Byval parameter. We have a frame index at this point. 4230 SDV = DAG.getFrameIndexDbgValue( 4231 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4232 else { 4233 // Address is an argument, so try to emit its dbg value using 4234 // virtual register info from the FuncInfo.ValueMap. 4235 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4236 N); 4237 return nullptr; 4238 } 4239 } else if (AI) 4240 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4241 true, 0, dl, SDNodeOrder); 4242 else { 4243 // Can't do anything with other non-AI cases yet. 4244 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4245 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4246 DEBUG(Address->dump()); 4247 return nullptr; 4248 } 4249 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4250 } else { 4251 // If Address is an argument then try to emit its dbg value using 4252 // virtual register info from the FuncInfo.ValueMap. 4253 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4254 N)) { 4255 // If variable is pinned by a alloca in dominating bb then 4256 // use StaticAllocaMap. 4257 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4258 if (AI->getParent() != DI.getParent()) { 4259 DenseMap<const AllocaInst*, int>::iterator SI = 4260 FuncInfo.StaticAllocaMap.find(AI); 4261 if (SI != FuncInfo.StaticAllocaMap.end()) { 4262 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4263 0, dl, SDNodeOrder); 4264 DAG.AddDbgValue(SDV, nullptr, false); 4265 return nullptr; 4266 } 4267 } 4268 } 4269 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4270 } 4271 } 4272 return nullptr; 4273 } 4274 case Intrinsic::dbg_value: { 4275 const DbgValueInst &DI = cast<DbgValueInst>(I); 4276 assert(DI.getVariable() && "Missing variable"); 4277 4278 DILocalVariable *Variable = DI.getVariable(); 4279 DIExpression *Expression = DI.getExpression(); 4280 uint64_t Offset = DI.getOffset(); 4281 const Value *V = DI.getValue(); 4282 if (!V) 4283 return nullptr; 4284 4285 SDDbgValue *SDV; 4286 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4287 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4288 SDNodeOrder); 4289 DAG.AddDbgValue(SDV, nullptr, false); 4290 } else { 4291 // Do not use getValue() in here; we don't want to generate code at 4292 // this point if it hasn't been done yet. 4293 SDValue N = NodeMap[V]; 4294 if (!N.getNode() && isa<Argument>(V)) 4295 // Check unused arguments map. 4296 N = UnusedArgNodeMap[V]; 4297 if (N.getNode()) { 4298 // A dbg.value for an alloca is always indirect. 4299 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4300 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4301 IsIndirect, N)) { 4302 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4303 IsIndirect, Offset, dl, SDNodeOrder); 4304 DAG.AddDbgValue(SDV, N.getNode(), false); 4305 } 4306 } else if (!V->use_empty() ) { 4307 // Do not call getValue(V) yet, as we don't want to generate code. 4308 // Remember it for later. 4309 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4310 DanglingDebugInfoMap[V] = DDI; 4311 } else { 4312 // We may expand this to cover more cases. One case where we have no 4313 // data available is an unreferenced parameter. 4314 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4315 } 4316 } 4317 4318 // Build a debug info table entry. 4319 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4320 V = BCI->getOperand(0); 4321 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4322 // Don't handle byval struct arguments or VLAs, for example. 4323 if (!AI) { 4324 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4325 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4326 return nullptr; 4327 } 4328 DenseMap<const AllocaInst*, int>::iterator SI = 4329 FuncInfo.StaticAllocaMap.find(AI); 4330 if (SI == FuncInfo.StaticAllocaMap.end()) 4331 return nullptr; // VLAs. 4332 return nullptr; 4333 } 4334 4335 case Intrinsic::eh_typeid_for: { 4336 // Find the type id for the given typeinfo. 4337 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4338 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4339 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4340 setValue(&I, Res); 4341 return nullptr; 4342 } 4343 4344 case Intrinsic::eh_return_i32: 4345 case Intrinsic::eh_return_i64: 4346 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4347 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4348 MVT::Other, 4349 getControlRoot(), 4350 getValue(I.getArgOperand(0)), 4351 getValue(I.getArgOperand(1)))); 4352 return nullptr; 4353 case Intrinsic::eh_unwind_init: 4354 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4355 return nullptr; 4356 case Intrinsic::eh_dwarf_cfa: { 4357 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4358 TLI.getPointerTy()); 4359 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4360 CfaArg.getValueType(), 4361 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4362 CfaArg.getValueType()), 4363 CfaArg); 4364 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4365 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4366 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4367 FA, Offset)); 4368 return nullptr; 4369 } 4370 case Intrinsic::eh_sjlj_callsite: { 4371 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4372 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4373 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4374 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4375 4376 MMI.setCurrentCallSite(CI->getZExtValue()); 4377 return nullptr; 4378 } 4379 case Intrinsic::eh_sjlj_functioncontext: { 4380 // Get and store the index of the function context. 4381 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4382 AllocaInst *FnCtx = 4383 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4384 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4385 MFI->setFunctionContextIndex(FI); 4386 return nullptr; 4387 } 4388 case Intrinsic::eh_sjlj_setjmp: { 4389 SDValue Ops[2]; 4390 Ops[0] = getRoot(); 4391 Ops[1] = getValue(I.getArgOperand(0)); 4392 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4393 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4394 setValue(&I, Op.getValue(0)); 4395 DAG.setRoot(Op.getValue(1)); 4396 return nullptr; 4397 } 4398 case Intrinsic::eh_sjlj_longjmp: { 4399 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4400 getRoot(), getValue(I.getArgOperand(0)))); 4401 return nullptr; 4402 } 4403 4404 case Intrinsic::masked_gather: 4405 visitMaskedGather(I); 4406 return nullptr; 4407 case Intrinsic::masked_load: 4408 visitMaskedLoad(I); 4409 return nullptr; 4410 case Intrinsic::masked_scatter: 4411 visitMaskedScatter(I); 4412 return nullptr; 4413 case Intrinsic::masked_store: 4414 visitMaskedStore(I); 4415 return nullptr; 4416 case Intrinsic::x86_mmx_pslli_w: 4417 case Intrinsic::x86_mmx_pslli_d: 4418 case Intrinsic::x86_mmx_pslli_q: 4419 case Intrinsic::x86_mmx_psrli_w: 4420 case Intrinsic::x86_mmx_psrli_d: 4421 case Intrinsic::x86_mmx_psrli_q: 4422 case Intrinsic::x86_mmx_psrai_w: 4423 case Intrinsic::x86_mmx_psrai_d: { 4424 SDValue ShAmt = getValue(I.getArgOperand(1)); 4425 if (isa<ConstantSDNode>(ShAmt)) { 4426 visitTargetIntrinsic(I, Intrinsic); 4427 return nullptr; 4428 } 4429 unsigned NewIntrinsic = 0; 4430 EVT ShAmtVT = MVT::v2i32; 4431 switch (Intrinsic) { 4432 case Intrinsic::x86_mmx_pslli_w: 4433 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4434 break; 4435 case Intrinsic::x86_mmx_pslli_d: 4436 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4437 break; 4438 case Intrinsic::x86_mmx_pslli_q: 4439 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4440 break; 4441 case Intrinsic::x86_mmx_psrli_w: 4442 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4443 break; 4444 case Intrinsic::x86_mmx_psrli_d: 4445 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4446 break; 4447 case Intrinsic::x86_mmx_psrli_q: 4448 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4449 break; 4450 case Intrinsic::x86_mmx_psrai_w: 4451 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4452 break; 4453 case Intrinsic::x86_mmx_psrai_d: 4454 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4455 break; 4456 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4457 } 4458 4459 // The vector shift intrinsics with scalars uses 32b shift amounts but 4460 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4461 // to be zero. 4462 // We must do this early because v2i32 is not a legal type. 4463 SDValue ShOps[2]; 4464 ShOps[0] = ShAmt; 4465 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4466 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4467 EVT DestVT = TLI.getValueType(I.getType()); 4468 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4469 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4470 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4471 getValue(I.getArgOperand(0)), ShAmt); 4472 setValue(&I, Res); 4473 return nullptr; 4474 } 4475 case Intrinsic::convertff: 4476 case Intrinsic::convertfsi: 4477 case Intrinsic::convertfui: 4478 case Intrinsic::convertsif: 4479 case Intrinsic::convertuif: 4480 case Intrinsic::convertss: 4481 case Intrinsic::convertsu: 4482 case Intrinsic::convertus: 4483 case Intrinsic::convertuu: { 4484 ISD::CvtCode Code = ISD::CVT_INVALID; 4485 switch (Intrinsic) { 4486 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4487 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4488 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4489 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4490 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4491 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4492 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4493 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4494 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4495 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4496 } 4497 EVT DestVT = TLI.getValueType(I.getType()); 4498 const Value *Op1 = I.getArgOperand(0); 4499 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4500 DAG.getValueType(DestVT), 4501 DAG.getValueType(getValue(Op1).getValueType()), 4502 getValue(I.getArgOperand(1)), 4503 getValue(I.getArgOperand(2)), 4504 Code); 4505 setValue(&I, Res); 4506 return nullptr; 4507 } 4508 case Intrinsic::powi: 4509 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4510 getValue(I.getArgOperand(1)), DAG)); 4511 return nullptr; 4512 case Intrinsic::log: 4513 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4514 return nullptr; 4515 case Intrinsic::log2: 4516 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4517 return nullptr; 4518 case Intrinsic::log10: 4519 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4520 return nullptr; 4521 case Intrinsic::exp: 4522 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4523 return nullptr; 4524 case Intrinsic::exp2: 4525 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4526 return nullptr; 4527 case Intrinsic::pow: 4528 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4529 getValue(I.getArgOperand(1)), DAG, TLI)); 4530 return nullptr; 4531 case Intrinsic::sqrt: 4532 case Intrinsic::fabs: 4533 case Intrinsic::sin: 4534 case Intrinsic::cos: 4535 case Intrinsic::floor: 4536 case Intrinsic::ceil: 4537 case Intrinsic::trunc: 4538 case Intrinsic::rint: 4539 case Intrinsic::nearbyint: 4540 case Intrinsic::round: { 4541 unsigned Opcode; 4542 switch (Intrinsic) { 4543 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4544 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4545 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4546 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4547 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4548 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4549 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4550 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4551 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4552 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4553 case Intrinsic::round: Opcode = ISD::FROUND; break; 4554 } 4555 4556 setValue(&I, DAG.getNode(Opcode, sdl, 4557 getValue(I.getArgOperand(0)).getValueType(), 4558 getValue(I.getArgOperand(0)))); 4559 return nullptr; 4560 } 4561 case Intrinsic::minnum: 4562 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4563 getValue(I.getArgOperand(0)).getValueType(), 4564 getValue(I.getArgOperand(0)), 4565 getValue(I.getArgOperand(1)))); 4566 return nullptr; 4567 case Intrinsic::maxnum: 4568 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4569 getValue(I.getArgOperand(0)).getValueType(), 4570 getValue(I.getArgOperand(0)), 4571 getValue(I.getArgOperand(1)))); 4572 return nullptr; 4573 case Intrinsic::copysign: 4574 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4575 getValue(I.getArgOperand(0)).getValueType(), 4576 getValue(I.getArgOperand(0)), 4577 getValue(I.getArgOperand(1)))); 4578 return nullptr; 4579 case Intrinsic::fma: 4580 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4581 getValue(I.getArgOperand(0)).getValueType(), 4582 getValue(I.getArgOperand(0)), 4583 getValue(I.getArgOperand(1)), 4584 getValue(I.getArgOperand(2)))); 4585 return nullptr; 4586 case Intrinsic::fmuladd: { 4587 EVT VT = TLI.getValueType(I.getType()); 4588 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4589 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4590 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4591 getValue(I.getArgOperand(0)).getValueType(), 4592 getValue(I.getArgOperand(0)), 4593 getValue(I.getArgOperand(1)), 4594 getValue(I.getArgOperand(2)))); 4595 } else { 4596 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4597 getValue(I.getArgOperand(0)).getValueType(), 4598 getValue(I.getArgOperand(0)), 4599 getValue(I.getArgOperand(1))); 4600 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4601 getValue(I.getArgOperand(0)).getValueType(), 4602 Mul, 4603 getValue(I.getArgOperand(2))); 4604 setValue(&I, Add); 4605 } 4606 return nullptr; 4607 } 4608 case Intrinsic::convert_to_fp16: 4609 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4610 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4611 getValue(I.getArgOperand(0)), 4612 DAG.getTargetConstant(0, sdl, 4613 MVT::i32)))); 4614 return nullptr; 4615 case Intrinsic::convert_from_fp16: 4616 setValue(&I, 4617 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4618 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4619 getValue(I.getArgOperand(0))))); 4620 return nullptr; 4621 case Intrinsic::pcmarker: { 4622 SDValue Tmp = getValue(I.getArgOperand(0)); 4623 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4624 return nullptr; 4625 } 4626 case Intrinsic::readcyclecounter: { 4627 SDValue Op = getRoot(); 4628 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4629 DAG.getVTList(MVT::i64, MVT::Other), Op); 4630 setValue(&I, Res); 4631 DAG.setRoot(Res.getValue(1)); 4632 return nullptr; 4633 } 4634 case Intrinsic::bswap: 4635 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4636 getValue(I.getArgOperand(0)).getValueType(), 4637 getValue(I.getArgOperand(0)))); 4638 return nullptr; 4639 case Intrinsic::cttz: { 4640 SDValue Arg = getValue(I.getArgOperand(0)); 4641 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4642 EVT Ty = Arg.getValueType(); 4643 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4644 sdl, Ty, Arg)); 4645 return nullptr; 4646 } 4647 case Intrinsic::ctlz: { 4648 SDValue Arg = getValue(I.getArgOperand(0)); 4649 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4650 EVT Ty = Arg.getValueType(); 4651 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4652 sdl, Ty, Arg)); 4653 return nullptr; 4654 } 4655 case Intrinsic::ctpop: { 4656 SDValue Arg = getValue(I.getArgOperand(0)); 4657 EVT Ty = Arg.getValueType(); 4658 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4659 return nullptr; 4660 } 4661 case Intrinsic::stacksave: { 4662 SDValue Op = getRoot(); 4663 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4664 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4665 setValue(&I, Res); 4666 DAG.setRoot(Res.getValue(1)); 4667 return nullptr; 4668 } 4669 case Intrinsic::stackrestore: { 4670 Res = getValue(I.getArgOperand(0)); 4671 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4672 return nullptr; 4673 } 4674 case Intrinsic::stackprotector: { 4675 // Emit code into the DAG to store the stack guard onto the stack. 4676 MachineFunction &MF = DAG.getMachineFunction(); 4677 MachineFrameInfo *MFI = MF.getFrameInfo(); 4678 EVT PtrTy = TLI.getPointerTy(); 4679 SDValue Src, Chain = getRoot(); 4680 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4681 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4682 4683 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4684 // global variable __stack_chk_guard. 4685 if (!GV) 4686 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4687 if (BC->getOpcode() == Instruction::BitCast) 4688 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4689 4690 if (GV && TLI.useLoadStackGuardNode()) { 4691 // Emit a LOAD_STACK_GUARD node. 4692 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4693 sdl, PtrTy, Chain); 4694 MachinePointerInfo MPInfo(GV); 4695 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4696 unsigned Flags = MachineMemOperand::MOLoad | 4697 MachineMemOperand::MOInvariant; 4698 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4699 PtrTy.getSizeInBits() / 8, 4700 DAG.getEVTAlignment(PtrTy)); 4701 Node->setMemRefs(MemRefs, MemRefs + 1); 4702 4703 // Copy the guard value to a virtual register so that it can be 4704 // retrieved in the epilogue. 4705 Src = SDValue(Node, 0); 4706 const TargetRegisterClass *RC = 4707 TLI.getRegClassFor(Src.getSimpleValueType()); 4708 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4709 4710 SPDescriptor.setGuardReg(Reg); 4711 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4712 } else { 4713 Src = getValue(I.getArgOperand(0)); // The guard's value. 4714 } 4715 4716 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4717 4718 int FI = FuncInfo.StaticAllocaMap[Slot]; 4719 MFI->setStackProtectorIndex(FI); 4720 4721 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4722 4723 // Store the stack protector onto the stack. 4724 Res = DAG.getStore(Chain, sdl, Src, FIN, 4725 MachinePointerInfo::getFixedStack(FI), 4726 true, false, 0); 4727 setValue(&I, Res); 4728 DAG.setRoot(Res); 4729 return nullptr; 4730 } 4731 case Intrinsic::objectsize: { 4732 // If we don't know by now, we're never going to know. 4733 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4734 4735 assert(CI && "Non-constant type in __builtin_object_size?"); 4736 4737 SDValue Arg = getValue(I.getCalledValue()); 4738 EVT Ty = Arg.getValueType(); 4739 4740 if (CI->isZero()) 4741 Res = DAG.getConstant(-1ULL, sdl, Ty); 4742 else 4743 Res = DAG.getConstant(0, sdl, Ty); 4744 4745 setValue(&I, Res); 4746 return nullptr; 4747 } 4748 case Intrinsic::annotation: 4749 case Intrinsic::ptr_annotation: 4750 // Drop the intrinsic, but forward the value 4751 setValue(&I, getValue(I.getOperand(0))); 4752 return nullptr; 4753 case Intrinsic::assume: 4754 case Intrinsic::var_annotation: 4755 // Discard annotate attributes and assumptions 4756 return nullptr; 4757 4758 case Intrinsic::init_trampoline: { 4759 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4760 4761 SDValue Ops[6]; 4762 Ops[0] = getRoot(); 4763 Ops[1] = getValue(I.getArgOperand(0)); 4764 Ops[2] = getValue(I.getArgOperand(1)); 4765 Ops[3] = getValue(I.getArgOperand(2)); 4766 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4767 Ops[5] = DAG.getSrcValue(F); 4768 4769 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4770 4771 DAG.setRoot(Res); 4772 return nullptr; 4773 } 4774 case Intrinsic::adjust_trampoline: { 4775 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4776 TLI.getPointerTy(), 4777 getValue(I.getArgOperand(0)))); 4778 return nullptr; 4779 } 4780 case Intrinsic::gcroot: 4781 if (GFI) { 4782 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4783 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4784 4785 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4786 GFI->addStackRoot(FI->getIndex(), TypeMap); 4787 } 4788 return nullptr; 4789 case Intrinsic::gcread: 4790 case Intrinsic::gcwrite: 4791 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4792 case Intrinsic::flt_rounds: 4793 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4794 return nullptr; 4795 4796 case Intrinsic::expect: { 4797 // Just replace __builtin_expect(exp, c) with EXP. 4798 setValue(&I, getValue(I.getArgOperand(0))); 4799 return nullptr; 4800 } 4801 4802 case Intrinsic::debugtrap: 4803 case Intrinsic::trap: { 4804 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4805 if (TrapFuncName.empty()) { 4806 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4807 ISD::TRAP : ISD::DEBUGTRAP; 4808 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4809 return nullptr; 4810 } 4811 TargetLowering::ArgListTy Args; 4812 4813 TargetLowering::CallLoweringInfo CLI(DAG); 4814 CLI.setDebugLoc(sdl).setChain(getRoot()) 4815 .setCallee(CallingConv::C, I.getType(), 4816 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4817 std::move(Args), 0); 4818 4819 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4820 DAG.setRoot(Result.second); 4821 return nullptr; 4822 } 4823 4824 case Intrinsic::uadd_with_overflow: 4825 case Intrinsic::sadd_with_overflow: 4826 case Intrinsic::usub_with_overflow: 4827 case Intrinsic::ssub_with_overflow: 4828 case Intrinsic::umul_with_overflow: 4829 case Intrinsic::smul_with_overflow: { 4830 ISD::NodeType Op; 4831 switch (Intrinsic) { 4832 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4833 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4834 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4835 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4836 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4837 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4838 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4839 } 4840 SDValue Op1 = getValue(I.getArgOperand(0)); 4841 SDValue Op2 = getValue(I.getArgOperand(1)); 4842 4843 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4844 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4845 return nullptr; 4846 } 4847 case Intrinsic::prefetch: { 4848 SDValue Ops[5]; 4849 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4850 Ops[0] = getRoot(); 4851 Ops[1] = getValue(I.getArgOperand(0)); 4852 Ops[2] = getValue(I.getArgOperand(1)); 4853 Ops[3] = getValue(I.getArgOperand(2)); 4854 Ops[4] = getValue(I.getArgOperand(3)); 4855 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4856 DAG.getVTList(MVT::Other), Ops, 4857 EVT::getIntegerVT(*Context, 8), 4858 MachinePointerInfo(I.getArgOperand(0)), 4859 0, /* align */ 4860 false, /* volatile */ 4861 rw==0, /* read */ 4862 rw==1)); /* write */ 4863 return nullptr; 4864 } 4865 case Intrinsic::lifetime_start: 4866 case Intrinsic::lifetime_end: { 4867 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4868 // Stack coloring is not enabled in O0, discard region information. 4869 if (TM.getOptLevel() == CodeGenOpt::None) 4870 return nullptr; 4871 4872 SmallVector<Value *, 4> Allocas; 4873 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4874 4875 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4876 E = Allocas.end(); Object != E; ++Object) { 4877 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4878 4879 // Could not find an Alloca. 4880 if (!LifetimeObject) 4881 continue; 4882 4883 // First check that the Alloca is static, otherwise it won't have a 4884 // valid frame index. 4885 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4886 if (SI == FuncInfo.StaticAllocaMap.end()) 4887 return nullptr; 4888 4889 int FI = SI->second; 4890 4891 SDValue Ops[2]; 4892 Ops[0] = getRoot(); 4893 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4894 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4895 4896 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4897 DAG.setRoot(Res); 4898 } 4899 return nullptr; 4900 } 4901 case Intrinsic::invariant_start: 4902 // Discard region information. 4903 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4904 return nullptr; 4905 case Intrinsic::invariant_end: 4906 // Discard region information. 4907 return nullptr; 4908 case Intrinsic::stackprotectorcheck: { 4909 // Do not actually emit anything for this basic block. Instead we initialize 4910 // the stack protector descriptor and export the guard variable so we can 4911 // access it in FinishBasicBlock. 4912 const BasicBlock *BB = I.getParent(); 4913 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4914 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4915 4916 // Flush our exports since we are going to process a terminator. 4917 (void)getControlRoot(); 4918 return nullptr; 4919 } 4920 case Intrinsic::clear_cache: 4921 return TLI.getClearCacheBuiltinName(); 4922 case Intrinsic::eh_actions: 4923 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4924 return nullptr; 4925 case Intrinsic::donothing: 4926 // ignore 4927 return nullptr; 4928 case Intrinsic::experimental_stackmap: { 4929 visitStackmap(I); 4930 return nullptr; 4931 } 4932 case Intrinsic::experimental_patchpoint_void: 4933 case Intrinsic::experimental_patchpoint_i64: { 4934 visitPatchpoint(&I); 4935 return nullptr; 4936 } 4937 case Intrinsic::experimental_gc_statepoint: { 4938 visitStatepoint(I); 4939 return nullptr; 4940 } 4941 case Intrinsic::experimental_gc_result_int: 4942 case Intrinsic::experimental_gc_result_float: 4943 case Intrinsic::experimental_gc_result_ptr: 4944 case Intrinsic::experimental_gc_result: { 4945 visitGCResult(I); 4946 return nullptr; 4947 } 4948 case Intrinsic::experimental_gc_relocate: { 4949 visitGCRelocate(I); 4950 return nullptr; 4951 } 4952 case Intrinsic::instrprof_increment: 4953 llvm_unreachable("instrprof failed to lower an increment"); 4954 4955 case Intrinsic::frameescape: { 4956 MachineFunction &MF = DAG.getMachineFunction(); 4957 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4958 4959 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4960 // is the same on all targets. 4961 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4962 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4963 if (isa<ConstantPointerNull>(Arg)) 4964 continue; // Skip null pointers. They represent a hole in index space. 4965 AllocaInst *Slot = cast<AllocaInst>(Arg); 4966 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4967 "can only escape static allocas"); 4968 int FI = FuncInfo.StaticAllocaMap[Slot]; 4969 MCSymbol *FrameAllocSym = 4970 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4971 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4973 TII->get(TargetOpcode::FRAME_ALLOC)) 4974 .addSym(FrameAllocSym) 4975 .addFrameIndex(FI); 4976 } 4977 4978 return nullptr; 4979 } 4980 4981 case Intrinsic::framerecover: { 4982 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4983 MachineFunction &MF = DAG.getMachineFunction(); 4984 MVT PtrVT = TLI.getPointerTy(0); 4985 4986 // Get the symbol that defines the frame offset. 4987 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4988 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4989 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4990 MCSymbol *FrameAllocSym = 4991 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4992 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4993 4994 // Create a TargetExternalSymbol for the label to avoid any target lowering 4995 // that would make this PC relative. 4996 StringRef Name = FrameAllocSym->getName(); 4997 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4998 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4999 SDValue OffsetVal = 5000 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5001 5002 // Add the offset to the FP. 5003 Value *FP = I.getArgOperand(1); 5004 SDValue FPVal = getValue(FP); 5005 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5006 setValue(&I, Add); 5007 5008 return nullptr; 5009 } 5010 case Intrinsic::eh_begincatch: 5011 case Intrinsic::eh_endcatch: 5012 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5013 case Intrinsic::eh_exceptioncode: { 5014 unsigned Reg = TLI.getExceptionPointerRegister(); 5015 assert(Reg && "cannot get exception code on this platform"); 5016 MVT PtrVT = TLI.getPointerTy(); 5017 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5018 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5019 SDValue N = 5020 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5021 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5022 setValue(&I, N); 5023 return nullptr; 5024 } 5025 } 5026 } 5027 5028 std::pair<SDValue, SDValue> 5029 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5030 MachineBasicBlock *LandingPad) { 5031 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5032 MCSymbol *BeginLabel = nullptr; 5033 5034 if (LandingPad) { 5035 // Insert a label before the invoke call to mark the try range. This can be 5036 // used to detect deletion of the invoke via the MachineModuleInfo. 5037 BeginLabel = MMI.getContext().CreateTempSymbol(); 5038 5039 // For SjLj, keep track of which landing pads go with which invokes 5040 // so as to maintain the ordering of pads in the LSDA. 5041 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5042 if (CallSiteIndex) { 5043 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5044 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5045 5046 // Now that the call site is handled, stop tracking it. 5047 MMI.setCurrentCallSite(0); 5048 } 5049 5050 // Both PendingLoads and PendingExports must be flushed here; 5051 // this call might not return. 5052 (void)getRoot(); 5053 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5054 5055 CLI.setChain(getRoot()); 5056 } 5057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5058 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5059 5060 assert((CLI.IsTailCall || Result.second.getNode()) && 5061 "Non-null chain expected with non-tail call!"); 5062 assert((Result.second.getNode() || !Result.first.getNode()) && 5063 "Null value expected with tail call!"); 5064 5065 if (!Result.second.getNode()) { 5066 // As a special case, a null chain means that a tail call has been emitted 5067 // and the DAG root is already updated. 5068 HasTailCall = true; 5069 5070 // Since there's no actual continuation from this block, nothing can be 5071 // relying on us setting vregs for them. 5072 PendingExports.clear(); 5073 } else { 5074 DAG.setRoot(Result.second); 5075 } 5076 5077 if (LandingPad) { 5078 // Insert a label at the end of the invoke call to mark the try range. This 5079 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5080 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5081 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5082 5083 // Inform MachineModuleInfo of range. 5084 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5085 } 5086 5087 return Result; 5088 } 5089 5090 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5091 bool isTailCall, 5092 MachineBasicBlock *LandingPad) { 5093 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5094 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5095 Type *RetTy = FTy->getReturnType(); 5096 5097 TargetLowering::ArgListTy Args; 5098 TargetLowering::ArgListEntry Entry; 5099 Args.reserve(CS.arg_size()); 5100 5101 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5102 i != e; ++i) { 5103 const Value *V = *i; 5104 5105 // Skip empty types 5106 if (V->getType()->isEmptyTy()) 5107 continue; 5108 5109 SDValue ArgNode = getValue(V); 5110 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5111 5112 // Skip the first return-type Attribute to get to params. 5113 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5114 Args.push_back(Entry); 5115 5116 // If we have an explicit sret argument that is an Instruction, (i.e., it 5117 // might point to function-local memory), we can't meaningfully tail-call. 5118 if (Entry.isSRet && isa<Instruction>(V)) 5119 isTailCall = false; 5120 } 5121 5122 // Check if target-independent constraints permit a tail call here. 5123 // Target-dependent constraints are checked within TLI->LowerCallTo. 5124 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5125 isTailCall = false; 5126 5127 TargetLowering::CallLoweringInfo CLI(DAG); 5128 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5129 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5130 .setTailCall(isTailCall); 5131 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5132 5133 if (Result.first.getNode()) 5134 setValue(CS.getInstruction(), Result.first); 5135 } 5136 5137 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5138 /// value is equal or not-equal to zero. 5139 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5140 for (const User *U : V->users()) { 5141 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5142 if (IC->isEquality()) 5143 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5144 if (C->isNullValue()) 5145 continue; 5146 // Unknown instruction. 5147 return false; 5148 } 5149 return true; 5150 } 5151 5152 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5153 Type *LoadTy, 5154 SelectionDAGBuilder &Builder) { 5155 5156 // Check to see if this load can be trivially constant folded, e.g. if the 5157 // input is from a string literal. 5158 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5159 // Cast pointer to the type we really want to load. 5160 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5161 PointerType::getUnqual(LoadTy)); 5162 5163 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5164 const_cast<Constant *>(LoadInput), *Builder.DL)) 5165 return Builder.getValue(LoadCst); 5166 } 5167 5168 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5169 // still constant memory, the input chain can be the entry node. 5170 SDValue Root; 5171 bool ConstantMemory = false; 5172 5173 // Do not serialize (non-volatile) loads of constant memory with anything. 5174 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5175 Root = Builder.DAG.getEntryNode(); 5176 ConstantMemory = true; 5177 } else { 5178 // Do not serialize non-volatile loads against each other. 5179 Root = Builder.DAG.getRoot(); 5180 } 5181 5182 SDValue Ptr = Builder.getValue(PtrVal); 5183 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5184 Ptr, MachinePointerInfo(PtrVal), 5185 false /*volatile*/, 5186 false /*nontemporal*/, 5187 false /*isinvariant*/, 1 /* align=1 */); 5188 5189 if (!ConstantMemory) 5190 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5191 return LoadVal; 5192 } 5193 5194 /// processIntegerCallValue - Record the value for an instruction that 5195 /// produces an integer result, converting the type where necessary. 5196 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5197 SDValue Value, 5198 bool IsSigned) { 5199 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5200 if (IsSigned) 5201 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5202 else 5203 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5204 setValue(&I, Value); 5205 } 5206 5207 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5208 /// If so, return true and lower it, otherwise return false and it will be 5209 /// lowered like a normal call. 5210 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5211 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5212 if (I.getNumArgOperands() != 3) 5213 return false; 5214 5215 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5216 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5217 !I.getArgOperand(2)->getType()->isIntegerTy() || 5218 !I.getType()->isIntegerTy()) 5219 return false; 5220 5221 const Value *Size = I.getArgOperand(2); 5222 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5223 if (CSize && CSize->getZExtValue() == 0) { 5224 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5225 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5226 return true; 5227 } 5228 5229 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5230 std::pair<SDValue, SDValue> Res = 5231 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5232 getValue(LHS), getValue(RHS), getValue(Size), 5233 MachinePointerInfo(LHS), 5234 MachinePointerInfo(RHS)); 5235 if (Res.first.getNode()) { 5236 processIntegerCallValue(I, Res.first, true); 5237 PendingLoads.push_back(Res.second); 5238 return true; 5239 } 5240 5241 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5242 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5243 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5244 bool ActuallyDoIt = true; 5245 MVT LoadVT; 5246 Type *LoadTy; 5247 switch (CSize->getZExtValue()) { 5248 default: 5249 LoadVT = MVT::Other; 5250 LoadTy = nullptr; 5251 ActuallyDoIt = false; 5252 break; 5253 case 2: 5254 LoadVT = MVT::i16; 5255 LoadTy = Type::getInt16Ty(CSize->getContext()); 5256 break; 5257 case 4: 5258 LoadVT = MVT::i32; 5259 LoadTy = Type::getInt32Ty(CSize->getContext()); 5260 break; 5261 case 8: 5262 LoadVT = MVT::i64; 5263 LoadTy = Type::getInt64Ty(CSize->getContext()); 5264 break; 5265 /* 5266 case 16: 5267 LoadVT = MVT::v4i32; 5268 LoadTy = Type::getInt32Ty(CSize->getContext()); 5269 LoadTy = VectorType::get(LoadTy, 4); 5270 break; 5271 */ 5272 } 5273 5274 // This turns into unaligned loads. We only do this if the target natively 5275 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5276 // we'll only produce a small number of byte loads. 5277 5278 // Require that we can find a legal MVT, and only do this if the target 5279 // supports unaligned loads of that type. Expanding into byte loads would 5280 // bloat the code. 5281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5282 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5283 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5284 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5285 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5286 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5287 // TODO: Check alignment of src and dest ptrs. 5288 if (!TLI.isTypeLegal(LoadVT) || 5289 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5290 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5291 ActuallyDoIt = false; 5292 } 5293 5294 if (ActuallyDoIt) { 5295 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5296 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5297 5298 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5299 ISD::SETNE); 5300 processIntegerCallValue(I, Res, false); 5301 return true; 5302 } 5303 } 5304 5305 5306 return false; 5307 } 5308 5309 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5310 /// form. If so, return true and lower it, otherwise return false and it 5311 /// will be lowered like a normal call. 5312 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5313 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5314 if (I.getNumArgOperands() != 3) 5315 return false; 5316 5317 const Value *Src = I.getArgOperand(0); 5318 const Value *Char = I.getArgOperand(1); 5319 const Value *Length = I.getArgOperand(2); 5320 if (!Src->getType()->isPointerTy() || 5321 !Char->getType()->isIntegerTy() || 5322 !Length->getType()->isIntegerTy() || 5323 !I.getType()->isPointerTy()) 5324 return false; 5325 5326 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5327 std::pair<SDValue, SDValue> Res = 5328 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5329 getValue(Src), getValue(Char), getValue(Length), 5330 MachinePointerInfo(Src)); 5331 if (Res.first.getNode()) { 5332 setValue(&I, Res.first); 5333 PendingLoads.push_back(Res.second); 5334 return true; 5335 } 5336 5337 return false; 5338 } 5339 5340 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5341 /// optimized form. If so, return true and lower it, otherwise return false 5342 /// and it will be lowered like a normal call. 5343 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5344 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5345 if (I.getNumArgOperands() != 2) 5346 return false; 5347 5348 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5349 if (!Arg0->getType()->isPointerTy() || 5350 !Arg1->getType()->isPointerTy() || 5351 !I.getType()->isPointerTy()) 5352 return false; 5353 5354 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5355 std::pair<SDValue, SDValue> Res = 5356 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5357 getValue(Arg0), getValue(Arg1), 5358 MachinePointerInfo(Arg0), 5359 MachinePointerInfo(Arg1), isStpcpy); 5360 if (Res.first.getNode()) { 5361 setValue(&I, Res.first); 5362 DAG.setRoot(Res.second); 5363 return true; 5364 } 5365 5366 return false; 5367 } 5368 5369 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5370 /// If so, return true and lower it, otherwise return false and it will be 5371 /// lowered like a normal call. 5372 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5373 // Verify that the prototype makes sense. int strcmp(void*,void*) 5374 if (I.getNumArgOperands() != 2) 5375 return false; 5376 5377 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5378 if (!Arg0->getType()->isPointerTy() || 5379 !Arg1->getType()->isPointerTy() || 5380 !I.getType()->isIntegerTy()) 5381 return false; 5382 5383 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5384 std::pair<SDValue, SDValue> Res = 5385 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5386 getValue(Arg0), getValue(Arg1), 5387 MachinePointerInfo(Arg0), 5388 MachinePointerInfo(Arg1)); 5389 if (Res.first.getNode()) { 5390 processIntegerCallValue(I, Res.first, true); 5391 PendingLoads.push_back(Res.second); 5392 return true; 5393 } 5394 5395 return false; 5396 } 5397 5398 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5399 /// form. If so, return true and lower it, otherwise return false and it 5400 /// will be lowered like a normal call. 5401 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5402 // Verify that the prototype makes sense. size_t strlen(char *) 5403 if (I.getNumArgOperands() != 1) 5404 return false; 5405 5406 const Value *Arg0 = I.getArgOperand(0); 5407 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5408 return false; 5409 5410 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5411 std::pair<SDValue, SDValue> Res = 5412 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5413 getValue(Arg0), MachinePointerInfo(Arg0)); 5414 if (Res.first.getNode()) { 5415 processIntegerCallValue(I, Res.first, false); 5416 PendingLoads.push_back(Res.second); 5417 return true; 5418 } 5419 5420 return false; 5421 } 5422 5423 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5424 /// form. If so, return true and lower it, otherwise return false and it 5425 /// will be lowered like a normal call. 5426 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5427 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5428 if (I.getNumArgOperands() != 2) 5429 return false; 5430 5431 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5432 if (!Arg0->getType()->isPointerTy() || 5433 !Arg1->getType()->isIntegerTy() || 5434 !I.getType()->isIntegerTy()) 5435 return false; 5436 5437 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5438 std::pair<SDValue, SDValue> Res = 5439 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5440 getValue(Arg0), getValue(Arg1), 5441 MachinePointerInfo(Arg0)); 5442 if (Res.first.getNode()) { 5443 processIntegerCallValue(I, Res.first, false); 5444 PendingLoads.push_back(Res.second); 5445 return true; 5446 } 5447 5448 return false; 5449 } 5450 5451 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5452 /// operation (as expected), translate it to an SDNode with the specified opcode 5453 /// and return true. 5454 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5455 unsigned Opcode) { 5456 // Sanity check that it really is a unary floating-point call. 5457 if (I.getNumArgOperands() != 1 || 5458 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5459 I.getType() != I.getArgOperand(0)->getType() || 5460 !I.onlyReadsMemory()) 5461 return false; 5462 5463 SDValue Tmp = getValue(I.getArgOperand(0)); 5464 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5465 return true; 5466 } 5467 5468 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5469 /// operation (as expected), translate it to an SDNode with the specified opcode 5470 /// and return true. 5471 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5472 unsigned Opcode) { 5473 // Sanity check that it really is a binary floating-point call. 5474 if (I.getNumArgOperands() != 2 || 5475 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5476 I.getType() != I.getArgOperand(0)->getType() || 5477 I.getType() != I.getArgOperand(1)->getType() || 5478 !I.onlyReadsMemory()) 5479 return false; 5480 5481 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5482 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5483 EVT VT = Tmp0.getValueType(); 5484 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5485 return true; 5486 } 5487 5488 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5489 // Handle inline assembly differently. 5490 if (isa<InlineAsm>(I.getCalledValue())) { 5491 visitInlineAsm(&I); 5492 return; 5493 } 5494 5495 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5496 ComputeUsesVAFloatArgument(I, &MMI); 5497 5498 const char *RenameFn = nullptr; 5499 if (Function *F = I.getCalledFunction()) { 5500 if (F->isDeclaration()) { 5501 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5502 if (unsigned IID = II->getIntrinsicID(F)) { 5503 RenameFn = visitIntrinsicCall(I, IID); 5504 if (!RenameFn) 5505 return; 5506 } 5507 } 5508 if (unsigned IID = F->getIntrinsicID()) { 5509 RenameFn = visitIntrinsicCall(I, IID); 5510 if (!RenameFn) 5511 return; 5512 } 5513 } 5514 5515 // Check for well-known libc/libm calls. If the function is internal, it 5516 // can't be a library call. 5517 LibFunc::Func Func; 5518 if (!F->hasLocalLinkage() && F->hasName() && 5519 LibInfo->getLibFunc(F->getName(), Func) && 5520 LibInfo->hasOptimizedCodeGen(Func)) { 5521 switch (Func) { 5522 default: break; 5523 case LibFunc::copysign: 5524 case LibFunc::copysignf: 5525 case LibFunc::copysignl: 5526 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5527 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5528 I.getType() == I.getArgOperand(0)->getType() && 5529 I.getType() == I.getArgOperand(1)->getType() && 5530 I.onlyReadsMemory()) { 5531 SDValue LHS = getValue(I.getArgOperand(0)); 5532 SDValue RHS = getValue(I.getArgOperand(1)); 5533 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5534 LHS.getValueType(), LHS, RHS)); 5535 return; 5536 } 5537 break; 5538 case LibFunc::fabs: 5539 case LibFunc::fabsf: 5540 case LibFunc::fabsl: 5541 if (visitUnaryFloatCall(I, ISD::FABS)) 5542 return; 5543 break; 5544 case LibFunc::fmin: 5545 case LibFunc::fminf: 5546 case LibFunc::fminl: 5547 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5548 return; 5549 break; 5550 case LibFunc::fmax: 5551 case LibFunc::fmaxf: 5552 case LibFunc::fmaxl: 5553 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5554 return; 5555 break; 5556 case LibFunc::sin: 5557 case LibFunc::sinf: 5558 case LibFunc::sinl: 5559 if (visitUnaryFloatCall(I, ISD::FSIN)) 5560 return; 5561 break; 5562 case LibFunc::cos: 5563 case LibFunc::cosf: 5564 case LibFunc::cosl: 5565 if (visitUnaryFloatCall(I, ISD::FCOS)) 5566 return; 5567 break; 5568 case LibFunc::sqrt: 5569 case LibFunc::sqrtf: 5570 case LibFunc::sqrtl: 5571 case LibFunc::sqrt_finite: 5572 case LibFunc::sqrtf_finite: 5573 case LibFunc::sqrtl_finite: 5574 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5575 return; 5576 break; 5577 case LibFunc::floor: 5578 case LibFunc::floorf: 5579 case LibFunc::floorl: 5580 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5581 return; 5582 break; 5583 case LibFunc::nearbyint: 5584 case LibFunc::nearbyintf: 5585 case LibFunc::nearbyintl: 5586 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5587 return; 5588 break; 5589 case LibFunc::ceil: 5590 case LibFunc::ceilf: 5591 case LibFunc::ceill: 5592 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5593 return; 5594 break; 5595 case LibFunc::rint: 5596 case LibFunc::rintf: 5597 case LibFunc::rintl: 5598 if (visitUnaryFloatCall(I, ISD::FRINT)) 5599 return; 5600 break; 5601 case LibFunc::round: 5602 case LibFunc::roundf: 5603 case LibFunc::roundl: 5604 if (visitUnaryFloatCall(I, ISD::FROUND)) 5605 return; 5606 break; 5607 case LibFunc::trunc: 5608 case LibFunc::truncf: 5609 case LibFunc::truncl: 5610 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5611 return; 5612 break; 5613 case LibFunc::log2: 5614 case LibFunc::log2f: 5615 case LibFunc::log2l: 5616 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5617 return; 5618 break; 5619 case LibFunc::exp2: 5620 case LibFunc::exp2f: 5621 case LibFunc::exp2l: 5622 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5623 return; 5624 break; 5625 case LibFunc::memcmp: 5626 if (visitMemCmpCall(I)) 5627 return; 5628 break; 5629 case LibFunc::memchr: 5630 if (visitMemChrCall(I)) 5631 return; 5632 break; 5633 case LibFunc::strcpy: 5634 if (visitStrCpyCall(I, false)) 5635 return; 5636 break; 5637 case LibFunc::stpcpy: 5638 if (visitStrCpyCall(I, true)) 5639 return; 5640 break; 5641 case LibFunc::strcmp: 5642 if (visitStrCmpCall(I)) 5643 return; 5644 break; 5645 case LibFunc::strlen: 5646 if (visitStrLenCall(I)) 5647 return; 5648 break; 5649 case LibFunc::strnlen: 5650 if (visitStrNLenCall(I)) 5651 return; 5652 break; 5653 } 5654 } 5655 } 5656 5657 SDValue Callee; 5658 if (!RenameFn) 5659 Callee = getValue(I.getCalledValue()); 5660 else 5661 Callee = DAG.getExternalSymbol(RenameFn, 5662 DAG.getTargetLoweringInfo().getPointerTy()); 5663 5664 // Check if we can potentially perform a tail call. More detailed checking is 5665 // be done within LowerCallTo, after more information about the call is known. 5666 LowerCallTo(&I, Callee, I.isTailCall()); 5667 } 5668 5669 namespace { 5670 5671 /// AsmOperandInfo - This contains information for each constraint that we are 5672 /// lowering. 5673 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5674 public: 5675 /// CallOperand - If this is the result output operand or a clobber 5676 /// this is null, otherwise it is the incoming operand to the CallInst. 5677 /// This gets modified as the asm is processed. 5678 SDValue CallOperand; 5679 5680 /// AssignedRegs - If this is a register or register class operand, this 5681 /// contains the set of register corresponding to the operand. 5682 RegsForValue AssignedRegs; 5683 5684 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5685 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5686 } 5687 5688 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5689 /// corresponds to. If there is no Value* for this operand, it returns 5690 /// MVT::Other. 5691 EVT getCallOperandValEVT(LLVMContext &Context, 5692 const TargetLowering &TLI, 5693 const DataLayout *DL) const { 5694 if (!CallOperandVal) return MVT::Other; 5695 5696 if (isa<BasicBlock>(CallOperandVal)) 5697 return TLI.getPointerTy(); 5698 5699 llvm::Type *OpTy = CallOperandVal->getType(); 5700 5701 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5702 // If this is an indirect operand, the operand is a pointer to the 5703 // accessed type. 5704 if (isIndirect) { 5705 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5706 if (!PtrTy) 5707 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5708 OpTy = PtrTy->getElementType(); 5709 } 5710 5711 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5712 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5713 if (STy->getNumElements() == 1) 5714 OpTy = STy->getElementType(0); 5715 5716 // If OpTy is not a single value, it may be a struct/union that we 5717 // can tile with integers. 5718 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5719 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5720 switch (BitSize) { 5721 default: break; 5722 case 1: 5723 case 8: 5724 case 16: 5725 case 32: 5726 case 64: 5727 case 128: 5728 OpTy = IntegerType::get(Context, BitSize); 5729 break; 5730 } 5731 } 5732 5733 return TLI.getValueType(OpTy, true); 5734 } 5735 }; 5736 5737 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5738 5739 } // end anonymous namespace 5740 5741 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5742 /// specified operand. We prefer to assign virtual registers, to allow the 5743 /// register allocator to handle the assignment process. However, if the asm 5744 /// uses features that we can't model on machineinstrs, we have SDISel do the 5745 /// allocation. This produces generally horrible, but correct, code. 5746 /// 5747 /// OpInfo describes the operand. 5748 /// 5749 static void GetRegistersForValue(SelectionDAG &DAG, 5750 const TargetLowering &TLI, 5751 SDLoc DL, 5752 SDISelAsmOperandInfo &OpInfo) { 5753 LLVMContext &Context = *DAG.getContext(); 5754 5755 MachineFunction &MF = DAG.getMachineFunction(); 5756 SmallVector<unsigned, 4> Regs; 5757 5758 // If this is a constraint for a single physreg, or a constraint for a 5759 // register class, find it. 5760 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5761 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5762 OpInfo.ConstraintCode, 5763 OpInfo.ConstraintVT); 5764 5765 unsigned NumRegs = 1; 5766 if (OpInfo.ConstraintVT != MVT::Other) { 5767 // If this is a FP input in an integer register (or visa versa) insert a bit 5768 // cast of the input value. More generally, handle any case where the input 5769 // value disagrees with the register class we plan to stick this in. 5770 if (OpInfo.Type == InlineAsm::isInput && 5771 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5772 // Try to convert to the first EVT that the reg class contains. If the 5773 // types are identical size, use a bitcast to convert (e.g. two differing 5774 // vector types). 5775 MVT RegVT = *PhysReg.second->vt_begin(); 5776 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5777 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5778 RegVT, OpInfo.CallOperand); 5779 OpInfo.ConstraintVT = RegVT; 5780 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5781 // If the input is a FP value and we want it in FP registers, do a 5782 // bitcast to the corresponding integer type. This turns an f64 value 5783 // into i64, which can be passed with two i32 values on a 32-bit 5784 // machine. 5785 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5786 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5787 RegVT, OpInfo.CallOperand); 5788 OpInfo.ConstraintVT = RegVT; 5789 } 5790 } 5791 5792 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5793 } 5794 5795 MVT RegVT; 5796 EVT ValueVT = OpInfo.ConstraintVT; 5797 5798 // If this is a constraint for a specific physical register, like {r17}, 5799 // assign it now. 5800 if (unsigned AssignedReg = PhysReg.first) { 5801 const TargetRegisterClass *RC = PhysReg.second; 5802 if (OpInfo.ConstraintVT == MVT::Other) 5803 ValueVT = *RC->vt_begin(); 5804 5805 // Get the actual register value type. This is important, because the user 5806 // may have asked for (e.g.) the AX register in i32 type. We need to 5807 // remember that AX is actually i16 to get the right extension. 5808 RegVT = *RC->vt_begin(); 5809 5810 // This is a explicit reference to a physical register. 5811 Regs.push_back(AssignedReg); 5812 5813 // If this is an expanded reference, add the rest of the regs to Regs. 5814 if (NumRegs != 1) { 5815 TargetRegisterClass::iterator I = RC->begin(); 5816 for (; *I != AssignedReg; ++I) 5817 assert(I != RC->end() && "Didn't find reg!"); 5818 5819 // Already added the first reg. 5820 --NumRegs; ++I; 5821 for (; NumRegs; --NumRegs, ++I) { 5822 assert(I != RC->end() && "Ran out of registers to allocate!"); 5823 Regs.push_back(*I); 5824 } 5825 } 5826 5827 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5828 return; 5829 } 5830 5831 // Otherwise, if this was a reference to an LLVM register class, create vregs 5832 // for this reference. 5833 if (const TargetRegisterClass *RC = PhysReg.second) { 5834 RegVT = *RC->vt_begin(); 5835 if (OpInfo.ConstraintVT == MVT::Other) 5836 ValueVT = RegVT; 5837 5838 // Create the appropriate number of virtual registers. 5839 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5840 for (; NumRegs; --NumRegs) 5841 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5842 5843 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5844 return; 5845 } 5846 5847 // Otherwise, we couldn't allocate enough registers for this. 5848 } 5849 5850 /// visitInlineAsm - Handle a call to an InlineAsm object. 5851 /// 5852 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5853 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5854 5855 /// ConstraintOperands - Information about all of the constraints. 5856 SDISelAsmOperandInfoVector ConstraintOperands; 5857 5858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5859 TargetLowering::AsmOperandInfoVector TargetConstraints = 5860 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5861 5862 bool hasMemory = false; 5863 5864 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5865 unsigned ResNo = 0; // ResNo - The result number of the next output. 5866 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5867 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5868 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5869 5870 MVT OpVT = MVT::Other; 5871 5872 // Compute the value type for each operand. 5873 switch (OpInfo.Type) { 5874 case InlineAsm::isOutput: 5875 // Indirect outputs just consume an argument. 5876 if (OpInfo.isIndirect) { 5877 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5878 break; 5879 } 5880 5881 // The return value of the call is this value. As such, there is no 5882 // corresponding argument. 5883 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5884 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5885 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5886 } else { 5887 assert(ResNo == 0 && "Asm only has one result!"); 5888 OpVT = TLI.getSimpleValueType(CS.getType()); 5889 } 5890 ++ResNo; 5891 break; 5892 case InlineAsm::isInput: 5893 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5894 break; 5895 case InlineAsm::isClobber: 5896 // Nothing to do. 5897 break; 5898 } 5899 5900 // If this is an input or an indirect output, process the call argument. 5901 // BasicBlocks are labels, currently appearing only in asm's. 5902 if (OpInfo.CallOperandVal) { 5903 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5904 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5905 } else { 5906 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5907 } 5908 5909 OpVT = 5910 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5911 } 5912 5913 OpInfo.ConstraintVT = OpVT; 5914 5915 // Indirect operand accesses access memory. 5916 if (OpInfo.isIndirect) 5917 hasMemory = true; 5918 else { 5919 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5920 TargetLowering::ConstraintType 5921 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5922 if (CType == TargetLowering::C_Memory) { 5923 hasMemory = true; 5924 break; 5925 } 5926 } 5927 } 5928 } 5929 5930 SDValue Chain, Flag; 5931 5932 // We won't need to flush pending loads if this asm doesn't touch 5933 // memory and is nonvolatile. 5934 if (hasMemory || IA->hasSideEffects()) 5935 Chain = getRoot(); 5936 else 5937 Chain = DAG.getRoot(); 5938 5939 // Second pass over the constraints: compute which constraint option to use 5940 // and assign registers to constraints that want a specific physreg. 5941 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5942 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5943 5944 // If this is an output operand with a matching input operand, look up the 5945 // matching input. If their types mismatch, e.g. one is an integer, the 5946 // other is floating point, or their sizes are different, flag it as an 5947 // error. 5948 if (OpInfo.hasMatchingInput()) { 5949 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5950 5951 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5952 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5953 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5954 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5955 OpInfo.ConstraintVT); 5956 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5957 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5958 Input.ConstraintVT); 5959 if ((OpInfo.ConstraintVT.isInteger() != 5960 Input.ConstraintVT.isInteger()) || 5961 (MatchRC.second != InputRC.second)) { 5962 report_fatal_error("Unsupported asm: input constraint" 5963 " with a matching output constraint of" 5964 " incompatible type!"); 5965 } 5966 Input.ConstraintVT = OpInfo.ConstraintVT; 5967 } 5968 } 5969 5970 // Compute the constraint code and ConstraintType to use. 5971 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5972 5973 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5974 OpInfo.Type == InlineAsm::isClobber) 5975 continue; 5976 5977 // If this is a memory input, and if the operand is not indirect, do what we 5978 // need to to provide an address for the memory input. 5979 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5980 !OpInfo.isIndirect) { 5981 assert((OpInfo.isMultipleAlternative || 5982 (OpInfo.Type == InlineAsm::isInput)) && 5983 "Can only indirectify direct input operands!"); 5984 5985 // Memory operands really want the address of the value. If we don't have 5986 // an indirect input, put it in the constpool if we can, otherwise spill 5987 // it to a stack slot. 5988 // TODO: This isn't quite right. We need to handle these according to 5989 // the addressing mode that the constraint wants. Also, this may take 5990 // an additional register for the computation and we don't want that 5991 // either. 5992 5993 // If the operand is a float, integer, or vector constant, spill to a 5994 // constant pool entry to get its address. 5995 const Value *OpVal = OpInfo.CallOperandVal; 5996 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5997 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5998 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5999 TLI.getPointerTy()); 6000 } else { 6001 // Otherwise, create a stack slot and emit a store to it before the 6002 // asm. 6003 Type *Ty = OpVal->getType(); 6004 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6005 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6006 MachineFunction &MF = DAG.getMachineFunction(); 6007 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6008 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6009 Chain = DAG.getStore(Chain, getCurSDLoc(), 6010 OpInfo.CallOperand, StackSlot, 6011 MachinePointerInfo::getFixedStack(SSFI), 6012 false, false, 0); 6013 OpInfo.CallOperand = StackSlot; 6014 } 6015 6016 // There is no longer a Value* corresponding to this operand. 6017 OpInfo.CallOperandVal = nullptr; 6018 6019 // It is now an indirect operand. 6020 OpInfo.isIndirect = true; 6021 } 6022 6023 // If this constraint is for a specific register, allocate it before 6024 // anything else. 6025 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6026 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6027 } 6028 6029 // Second pass - Loop over all of the operands, assigning virtual or physregs 6030 // to register class operands. 6031 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6032 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6033 6034 // C_Register operands have already been allocated, Other/Memory don't need 6035 // to be. 6036 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6037 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6038 } 6039 6040 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6041 std::vector<SDValue> AsmNodeOperands; 6042 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6043 AsmNodeOperands.push_back( 6044 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6045 TLI.getPointerTy())); 6046 6047 // If we have a !srcloc metadata node associated with it, we want to attach 6048 // this to the ultimately generated inline asm machineinstr. To do this, we 6049 // pass in the third operand as this (potentially null) inline asm MDNode. 6050 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6051 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6052 6053 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6054 // bits as operand 3. 6055 unsigned ExtraInfo = 0; 6056 if (IA->hasSideEffects()) 6057 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6058 if (IA->isAlignStack()) 6059 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6060 // Set the asm dialect. 6061 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6062 6063 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6064 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6065 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6066 6067 // Compute the constraint code and ConstraintType to use. 6068 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6069 6070 // Ideally, we would only check against memory constraints. However, the 6071 // meaning of an other constraint can be target-specific and we can't easily 6072 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6073 // for other constriants as well. 6074 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6075 OpInfo.ConstraintType == TargetLowering::C_Other) { 6076 if (OpInfo.Type == InlineAsm::isInput) 6077 ExtraInfo |= InlineAsm::Extra_MayLoad; 6078 else if (OpInfo.Type == InlineAsm::isOutput) 6079 ExtraInfo |= InlineAsm::Extra_MayStore; 6080 else if (OpInfo.Type == InlineAsm::isClobber) 6081 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6082 } 6083 } 6084 6085 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6086 TLI.getPointerTy())); 6087 6088 // Loop over all of the inputs, copying the operand values into the 6089 // appropriate registers and processing the output regs. 6090 RegsForValue RetValRegs; 6091 6092 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6093 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6094 6095 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6096 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6097 6098 switch (OpInfo.Type) { 6099 case InlineAsm::isOutput: { 6100 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6101 OpInfo.ConstraintType != TargetLowering::C_Register) { 6102 // Memory output, or 'other' output (e.g. 'X' constraint). 6103 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6104 6105 unsigned ConstraintID = 6106 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6107 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6108 "Failed to convert memory constraint code to constraint id."); 6109 6110 // Add information to the INLINEASM node to know about this output. 6111 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6112 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6113 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6114 MVT::i32)); 6115 AsmNodeOperands.push_back(OpInfo.CallOperand); 6116 break; 6117 } 6118 6119 // Otherwise, this is a register or register class output. 6120 6121 // Copy the output from the appropriate register. Find a register that 6122 // we can use. 6123 if (OpInfo.AssignedRegs.Regs.empty()) { 6124 LLVMContext &Ctx = *DAG.getContext(); 6125 Ctx.emitError(CS.getInstruction(), 6126 "couldn't allocate output register for constraint '" + 6127 Twine(OpInfo.ConstraintCode) + "'"); 6128 return; 6129 } 6130 6131 // If this is an indirect operand, store through the pointer after the 6132 // asm. 6133 if (OpInfo.isIndirect) { 6134 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6135 OpInfo.CallOperandVal)); 6136 } else { 6137 // This is the result value of the call. 6138 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6139 // Concatenate this output onto the outputs list. 6140 RetValRegs.append(OpInfo.AssignedRegs); 6141 } 6142 6143 // Add information to the INLINEASM node to know that this register is 6144 // set. 6145 OpInfo.AssignedRegs 6146 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6147 ? InlineAsm::Kind_RegDefEarlyClobber 6148 : InlineAsm::Kind_RegDef, 6149 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6150 break; 6151 } 6152 case InlineAsm::isInput: { 6153 SDValue InOperandVal = OpInfo.CallOperand; 6154 6155 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6156 // If this is required to match an output register we have already set, 6157 // just use its register. 6158 unsigned OperandNo = OpInfo.getMatchedOperand(); 6159 6160 // Scan until we find the definition we already emitted of this operand. 6161 // When we find it, create a RegsForValue operand. 6162 unsigned CurOp = InlineAsm::Op_FirstOperand; 6163 for (; OperandNo; --OperandNo) { 6164 // Advance to the next operand. 6165 unsigned OpFlag = 6166 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6167 assert((InlineAsm::isRegDefKind(OpFlag) || 6168 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6169 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6170 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6171 } 6172 6173 unsigned OpFlag = 6174 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6175 if (InlineAsm::isRegDefKind(OpFlag) || 6176 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6177 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6178 if (OpInfo.isIndirect) { 6179 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6180 LLVMContext &Ctx = *DAG.getContext(); 6181 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6182 " don't know how to handle tied " 6183 "indirect register inputs"); 6184 return; 6185 } 6186 6187 RegsForValue MatchedRegs; 6188 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6189 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6190 MatchedRegs.RegVTs.push_back(RegVT); 6191 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6192 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6193 i != e; ++i) { 6194 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6195 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6196 else { 6197 LLVMContext &Ctx = *DAG.getContext(); 6198 Ctx.emitError(CS.getInstruction(), 6199 "inline asm error: This value" 6200 " type register class is not natively supported!"); 6201 return; 6202 } 6203 } 6204 SDLoc dl = getCurSDLoc(); 6205 // Use the produced MatchedRegs object to 6206 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6207 Chain, &Flag, CS.getInstruction()); 6208 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6209 true, OpInfo.getMatchedOperand(), dl, 6210 DAG, AsmNodeOperands); 6211 break; 6212 } 6213 6214 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6215 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6216 "Unexpected number of operands"); 6217 // Add information to the INLINEASM node to know about this input. 6218 // See InlineAsm.h isUseOperandTiedToDef. 6219 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6220 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6221 OpInfo.getMatchedOperand()); 6222 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6223 TLI.getPointerTy())); 6224 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6225 break; 6226 } 6227 6228 // Treat indirect 'X' constraint as memory. 6229 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6230 OpInfo.isIndirect) 6231 OpInfo.ConstraintType = TargetLowering::C_Memory; 6232 6233 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6234 std::vector<SDValue> Ops; 6235 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6236 Ops, DAG); 6237 if (Ops.empty()) { 6238 LLVMContext &Ctx = *DAG.getContext(); 6239 Ctx.emitError(CS.getInstruction(), 6240 "invalid operand for inline asm constraint '" + 6241 Twine(OpInfo.ConstraintCode) + "'"); 6242 return; 6243 } 6244 6245 // Add information to the INLINEASM node to know about this input. 6246 unsigned ResOpType = 6247 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6248 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6249 getCurSDLoc(), 6250 TLI.getPointerTy())); 6251 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6252 break; 6253 } 6254 6255 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6256 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6257 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6258 "Memory operands expect pointer values"); 6259 6260 unsigned ConstraintID = 6261 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6262 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6263 "Failed to convert memory constraint code to constraint id."); 6264 6265 // Add information to the INLINEASM node to know about this input. 6266 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6267 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6268 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6269 getCurSDLoc(), 6270 MVT::i32)); 6271 AsmNodeOperands.push_back(InOperandVal); 6272 break; 6273 } 6274 6275 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6276 OpInfo.ConstraintType == TargetLowering::C_Register) && 6277 "Unknown constraint type!"); 6278 6279 // TODO: Support this. 6280 if (OpInfo.isIndirect) { 6281 LLVMContext &Ctx = *DAG.getContext(); 6282 Ctx.emitError(CS.getInstruction(), 6283 "Don't know how to handle indirect register inputs yet " 6284 "for constraint '" + 6285 Twine(OpInfo.ConstraintCode) + "'"); 6286 return; 6287 } 6288 6289 // Copy the input into the appropriate registers. 6290 if (OpInfo.AssignedRegs.Regs.empty()) { 6291 LLVMContext &Ctx = *DAG.getContext(); 6292 Ctx.emitError(CS.getInstruction(), 6293 "couldn't allocate input reg for constraint '" + 6294 Twine(OpInfo.ConstraintCode) + "'"); 6295 return; 6296 } 6297 6298 SDLoc dl = getCurSDLoc(); 6299 6300 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6301 Chain, &Flag, CS.getInstruction()); 6302 6303 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6304 dl, DAG, AsmNodeOperands); 6305 break; 6306 } 6307 case InlineAsm::isClobber: { 6308 // Add the clobbered value to the operand list, so that the register 6309 // allocator is aware that the physreg got clobbered. 6310 if (!OpInfo.AssignedRegs.Regs.empty()) 6311 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6312 false, 0, getCurSDLoc(), DAG, 6313 AsmNodeOperands); 6314 break; 6315 } 6316 } 6317 } 6318 6319 // Finish up input operands. Set the input chain and add the flag last. 6320 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6321 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6322 6323 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6324 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6325 Flag = Chain.getValue(1); 6326 6327 // If this asm returns a register value, copy the result from that register 6328 // and set it as the value of the call. 6329 if (!RetValRegs.Regs.empty()) { 6330 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6331 Chain, &Flag, CS.getInstruction()); 6332 6333 // FIXME: Why don't we do this for inline asms with MRVs? 6334 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6335 EVT ResultType = TLI.getValueType(CS.getType()); 6336 6337 // If any of the results of the inline asm is a vector, it may have the 6338 // wrong width/num elts. This can happen for register classes that can 6339 // contain multiple different value types. The preg or vreg allocated may 6340 // not have the same VT as was expected. Convert it to the right type 6341 // with bit_convert. 6342 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6343 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6344 ResultType, Val); 6345 6346 } else if (ResultType != Val.getValueType() && 6347 ResultType.isInteger() && Val.getValueType().isInteger()) { 6348 // If a result value was tied to an input value, the computed result may 6349 // have a wider width than the expected result. Extract the relevant 6350 // portion. 6351 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6352 } 6353 6354 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6355 } 6356 6357 setValue(CS.getInstruction(), Val); 6358 // Don't need to use this as a chain in this case. 6359 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6360 return; 6361 } 6362 6363 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6364 6365 // Process indirect outputs, first output all of the flagged copies out of 6366 // physregs. 6367 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6368 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6369 const Value *Ptr = IndirectStoresToEmit[i].second; 6370 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6371 Chain, &Flag, IA); 6372 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6373 } 6374 6375 // Emit the non-flagged stores from the physregs. 6376 SmallVector<SDValue, 8> OutChains; 6377 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6378 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6379 StoresToEmit[i].first, 6380 getValue(StoresToEmit[i].second), 6381 MachinePointerInfo(StoresToEmit[i].second), 6382 false, false, 0); 6383 OutChains.push_back(Val); 6384 } 6385 6386 if (!OutChains.empty()) 6387 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6388 6389 DAG.setRoot(Chain); 6390 } 6391 6392 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6393 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6394 MVT::Other, getRoot(), 6395 getValue(I.getArgOperand(0)), 6396 DAG.getSrcValue(I.getArgOperand(0)))); 6397 } 6398 6399 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6401 const DataLayout &DL = *TLI.getDataLayout(); 6402 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6403 getRoot(), getValue(I.getOperand(0)), 6404 DAG.getSrcValue(I.getOperand(0)), 6405 DL.getABITypeAlignment(I.getType())); 6406 setValue(&I, V); 6407 DAG.setRoot(V.getValue(1)); 6408 } 6409 6410 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6411 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6412 MVT::Other, getRoot(), 6413 getValue(I.getArgOperand(0)), 6414 DAG.getSrcValue(I.getArgOperand(0)))); 6415 } 6416 6417 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6418 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6419 MVT::Other, getRoot(), 6420 getValue(I.getArgOperand(0)), 6421 getValue(I.getArgOperand(1)), 6422 DAG.getSrcValue(I.getArgOperand(0)), 6423 DAG.getSrcValue(I.getArgOperand(1)))); 6424 } 6425 6426 /// \brief Lower an argument list according to the target calling convention. 6427 /// 6428 /// \return A tuple of <return-value, token-chain> 6429 /// 6430 /// This is a helper for lowering intrinsics that follow a target calling 6431 /// convention or require stack pointer adjustment. Only a subset of the 6432 /// intrinsic's operands need to participate in the calling convention. 6433 std::pair<SDValue, SDValue> 6434 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6435 unsigned NumArgs, SDValue Callee, 6436 bool UseVoidTy, 6437 MachineBasicBlock *LandingPad, 6438 bool IsPatchPoint) { 6439 TargetLowering::ArgListTy Args; 6440 Args.reserve(NumArgs); 6441 6442 // Populate the argument list. 6443 // Attributes for args start at offset 1, after the return attribute. 6444 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6445 ArgI != ArgE; ++ArgI) { 6446 const Value *V = CS->getOperand(ArgI); 6447 6448 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6449 6450 TargetLowering::ArgListEntry Entry; 6451 Entry.Node = getValue(V); 6452 Entry.Ty = V->getType(); 6453 Entry.setAttributes(&CS, AttrI); 6454 Args.push_back(Entry); 6455 } 6456 6457 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6458 TargetLowering::CallLoweringInfo CLI(DAG); 6459 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6460 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6461 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6462 6463 return lowerInvokable(CLI, LandingPad); 6464 } 6465 6466 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6467 /// or patchpoint target node's operand list. 6468 /// 6469 /// Constants are converted to TargetConstants purely as an optimization to 6470 /// avoid constant materialization and register allocation. 6471 /// 6472 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6473 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6474 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6475 /// address materialization and register allocation, but may also be required 6476 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6477 /// alloca in the entry block, then the runtime may assume that the alloca's 6478 /// StackMap location can be read immediately after compilation and that the 6479 /// location is valid at any point during execution (this is similar to the 6480 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6481 /// only available in a register, then the runtime would need to trap when 6482 /// execution reaches the StackMap in order to read the alloca's location. 6483 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6484 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6485 SelectionDAGBuilder &Builder) { 6486 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6487 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6488 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6489 Ops.push_back( 6490 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6491 Ops.push_back( 6492 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6493 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6494 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6495 Ops.push_back( 6496 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6497 } else 6498 Ops.push_back(OpVal); 6499 } 6500 } 6501 6502 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6503 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6504 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6505 // [live variables...]) 6506 6507 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6508 6509 SDValue Chain, InFlag, Callee, NullPtr; 6510 SmallVector<SDValue, 32> Ops; 6511 6512 SDLoc DL = getCurSDLoc(); 6513 Callee = getValue(CI.getCalledValue()); 6514 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6515 6516 // The stackmap intrinsic only records the live variables (the arguemnts 6517 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6518 // intrinsic, this won't be lowered to a function call. This means we don't 6519 // have to worry about calling conventions and target specific lowering code. 6520 // Instead we perform the call lowering right here. 6521 // 6522 // chain, flag = CALLSEQ_START(chain, 0) 6523 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6524 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6525 // 6526 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6527 InFlag = Chain.getValue(1); 6528 6529 // Add the <id> and <numBytes> constants. 6530 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6531 Ops.push_back(DAG.getTargetConstant( 6532 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6533 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6534 Ops.push_back(DAG.getTargetConstant( 6535 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6536 MVT::i32)); 6537 6538 // Push live variables for the stack map. 6539 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6540 6541 // We are not pushing any register mask info here on the operands list, 6542 // because the stackmap doesn't clobber anything. 6543 6544 // Push the chain and the glue flag. 6545 Ops.push_back(Chain); 6546 Ops.push_back(InFlag); 6547 6548 // Create the STACKMAP node. 6549 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6550 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6551 Chain = SDValue(SM, 0); 6552 InFlag = Chain.getValue(1); 6553 6554 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6555 6556 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6557 6558 // Set the root to the target-lowered call chain. 6559 DAG.setRoot(Chain); 6560 6561 // Inform the Frame Information that we have a stackmap in this function. 6562 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6563 } 6564 6565 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6566 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6567 MachineBasicBlock *LandingPad) { 6568 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6569 // i32 <numBytes>, 6570 // i8* <target>, 6571 // i32 <numArgs>, 6572 // [Args...], 6573 // [live variables...]) 6574 6575 CallingConv::ID CC = CS.getCallingConv(); 6576 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6577 bool HasDef = !CS->getType()->isVoidTy(); 6578 SDLoc dl = getCurSDLoc(); 6579 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6580 6581 // Handle immediate and symbolic callees. 6582 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6583 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6584 /*isTarget=*/true); 6585 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6586 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6587 SDLoc(SymbolicCallee), 6588 SymbolicCallee->getValueType(0)); 6589 6590 // Get the real number of arguments participating in the call <numArgs> 6591 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6592 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6593 6594 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6595 // Intrinsics include all meta-operands up to but not including CC. 6596 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6597 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6598 "Not enough arguments provided to the patchpoint intrinsic"); 6599 6600 // For AnyRegCC the arguments are lowered later on manually. 6601 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6602 std::pair<SDValue, SDValue> Result = 6603 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 6604 LandingPad, true); 6605 6606 SDNode *CallEnd = Result.second.getNode(); 6607 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6608 CallEnd = CallEnd->getOperand(0).getNode(); 6609 6610 /// Get a call instruction from the call sequence chain. 6611 /// Tail calls are not allowed. 6612 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6613 "Expected a callseq node."); 6614 SDNode *Call = CallEnd->getOperand(0).getNode(); 6615 bool HasGlue = Call->getGluedNode(); 6616 6617 // Replace the target specific call node with the patchable intrinsic. 6618 SmallVector<SDValue, 8> Ops; 6619 6620 // Add the <id> and <numBytes> constants. 6621 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6622 Ops.push_back(DAG.getTargetConstant( 6623 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6624 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6625 Ops.push_back(DAG.getTargetConstant( 6626 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6627 MVT::i32)); 6628 6629 // Add the callee. 6630 Ops.push_back(Callee); 6631 6632 // Adjust <numArgs> to account for any arguments that have been passed on the 6633 // stack instead. 6634 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6635 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6636 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6637 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6638 6639 // Add the calling convention 6640 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6641 6642 // Add the arguments we omitted previously. The register allocator should 6643 // place these in any free register. 6644 if (IsAnyRegCC) 6645 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6646 Ops.push_back(getValue(CS.getArgument(i))); 6647 6648 // Push the arguments from the call instruction up to the register mask. 6649 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6650 Ops.append(Call->op_begin() + 2, e); 6651 6652 // Push live variables for the stack map. 6653 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6654 6655 // Push the register mask info. 6656 if (HasGlue) 6657 Ops.push_back(*(Call->op_end()-2)); 6658 else 6659 Ops.push_back(*(Call->op_end()-1)); 6660 6661 // Push the chain (this is originally the first operand of the call, but 6662 // becomes now the last or second to last operand). 6663 Ops.push_back(*(Call->op_begin())); 6664 6665 // Push the glue flag (last operand). 6666 if (HasGlue) 6667 Ops.push_back(*(Call->op_end()-1)); 6668 6669 SDVTList NodeTys; 6670 if (IsAnyRegCC && HasDef) { 6671 // Create the return types based on the intrinsic definition 6672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6673 SmallVector<EVT, 3> ValueVTs; 6674 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6675 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6676 6677 // There is always a chain and a glue type at the end 6678 ValueVTs.push_back(MVT::Other); 6679 ValueVTs.push_back(MVT::Glue); 6680 NodeTys = DAG.getVTList(ValueVTs); 6681 } else 6682 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6683 6684 // Replace the target specific call node with a PATCHPOINT node. 6685 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6686 dl, NodeTys, Ops); 6687 6688 // Update the NodeMap. 6689 if (HasDef) { 6690 if (IsAnyRegCC) 6691 setValue(CS.getInstruction(), SDValue(MN, 0)); 6692 else 6693 setValue(CS.getInstruction(), Result.first); 6694 } 6695 6696 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6697 // call sequence. Furthermore the location of the chain and glue can change 6698 // when the AnyReg calling convention is used and the intrinsic returns a 6699 // value. 6700 if (IsAnyRegCC && HasDef) { 6701 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6702 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6703 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6704 } else 6705 DAG.ReplaceAllUsesWith(Call, MN); 6706 DAG.DeleteNode(Call); 6707 6708 // Inform the Frame Information that we have a patchpoint in this function. 6709 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6710 } 6711 6712 /// Returns an AttributeSet representing the attributes applied to the return 6713 /// value of the given call. 6714 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6715 SmallVector<Attribute::AttrKind, 2> Attrs; 6716 if (CLI.RetSExt) 6717 Attrs.push_back(Attribute::SExt); 6718 if (CLI.RetZExt) 6719 Attrs.push_back(Attribute::ZExt); 6720 if (CLI.IsInReg) 6721 Attrs.push_back(Attribute::InReg); 6722 6723 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6724 Attrs); 6725 } 6726 6727 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6728 /// implementation, which just calls LowerCall. 6729 /// FIXME: When all targets are 6730 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6731 std::pair<SDValue, SDValue> 6732 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6733 // Handle the incoming return values from the call. 6734 CLI.Ins.clear(); 6735 Type *OrigRetTy = CLI.RetTy; 6736 SmallVector<EVT, 4> RetTys; 6737 SmallVector<uint64_t, 4> Offsets; 6738 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6739 6740 SmallVector<ISD::OutputArg, 4> Outs; 6741 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6742 6743 bool CanLowerReturn = 6744 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6745 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6746 6747 SDValue DemoteStackSlot; 6748 int DemoteStackIdx = -100; 6749 if (!CanLowerReturn) { 6750 // FIXME: equivalent assert? 6751 // assert(!CS.hasInAllocaArgument() && 6752 // "sret demotion is incompatible with inalloca"); 6753 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6754 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6755 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6756 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6757 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6758 6759 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6760 ArgListEntry Entry; 6761 Entry.Node = DemoteStackSlot; 6762 Entry.Ty = StackSlotPtrType; 6763 Entry.isSExt = false; 6764 Entry.isZExt = false; 6765 Entry.isInReg = false; 6766 Entry.isSRet = true; 6767 Entry.isNest = false; 6768 Entry.isByVal = false; 6769 Entry.isReturned = false; 6770 Entry.Alignment = Align; 6771 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6772 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6773 6774 // sret demotion isn't compatible with tail-calls, since the sret argument 6775 // points into the callers stack frame. 6776 CLI.IsTailCall = false; 6777 } else { 6778 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6779 EVT VT = RetTys[I]; 6780 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6781 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6782 for (unsigned i = 0; i != NumRegs; ++i) { 6783 ISD::InputArg MyFlags; 6784 MyFlags.VT = RegisterVT; 6785 MyFlags.ArgVT = VT; 6786 MyFlags.Used = CLI.IsReturnValueUsed; 6787 if (CLI.RetSExt) 6788 MyFlags.Flags.setSExt(); 6789 if (CLI.RetZExt) 6790 MyFlags.Flags.setZExt(); 6791 if (CLI.IsInReg) 6792 MyFlags.Flags.setInReg(); 6793 CLI.Ins.push_back(MyFlags); 6794 } 6795 } 6796 } 6797 6798 // Handle all of the outgoing arguments. 6799 CLI.Outs.clear(); 6800 CLI.OutVals.clear(); 6801 ArgListTy &Args = CLI.getArgs(); 6802 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6803 SmallVector<EVT, 4> ValueVTs; 6804 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6805 Type *FinalType = Args[i].Ty; 6806 if (Args[i].isByVal) 6807 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6808 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6809 FinalType, CLI.CallConv, CLI.IsVarArg); 6810 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6811 ++Value) { 6812 EVT VT = ValueVTs[Value]; 6813 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6814 SDValue Op = SDValue(Args[i].Node.getNode(), 6815 Args[i].Node.getResNo() + Value); 6816 ISD::ArgFlagsTy Flags; 6817 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6818 6819 if (Args[i].isZExt) 6820 Flags.setZExt(); 6821 if (Args[i].isSExt) 6822 Flags.setSExt(); 6823 if (Args[i].isInReg) 6824 Flags.setInReg(); 6825 if (Args[i].isSRet) 6826 Flags.setSRet(); 6827 if (Args[i].isByVal) 6828 Flags.setByVal(); 6829 if (Args[i].isInAlloca) { 6830 Flags.setInAlloca(); 6831 // Set the byval flag for CCAssignFn callbacks that don't know about 6832 // inalloca. This way we can know how many bytes we should've allocated 6833 // and how many bytes a callee cleanup function will pop. If we port 6834 // inalloca to more targets, we'll have to add custom inalloca handling 6835 // in the various CC lowering callbacks. 6836 Flags.setByVal(); 6837 } 6838 if (Args[i].isByVal || Args[i].isInAlloca) { 6839 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6840 Type *ElementTy = Ty->getElementType(); 6841 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6842 // For ByVal, alignment should come from FE. BE will guess if this 6843 // info is not there but there are cases it cannot get right. 6844 unsigned FrameAlign; 6845 if (Args[i].Alignment) 6846 FrameAlign = Args[i].Alignment; 6847 else 6848 FrameAlign = getByValTypeAlignment(ElementTy); 6849 Flags.setByValAlign(FrameAlign); 6850 } 6851 if (Args[i].isNest) 6852 Flags.setNest(); 6853 if (NeedsRegBlock) 6854 Flags.setInConsecutiveRegs(); 6855 Flags.setOrigAlign(OriginalAlignment); 6856 6857 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6858 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6859 SmallVector<SDValue, 4> Parts(NumParts); 6860 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6861 6862 if (Args[i].isSExt) 6863 ExtendKind = ISD::SIGN_EXTEND; 6864 else if (Args[i].isZExt) 6865 ExtendKind = ISD::ZERO_EXTEND; 6866 6867 // Conservatively only handle 'returned' on non-vectors for now 6868 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6869 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6870 "unexpected use of 'returned'"); 6871 // Before passing 'returned' to the target lowering code, ensure that 6872 // either the register MVT and the actual EVT are the same size or that 6873 // the return value and argument are extended in the same way; in these 6874 // cases it's safe to pass the argument register value unchanged as the 6875 // return register value (although it's at the target's option whether 6876 // to do so) 6877 // TODO: allow code generation to take advantage of partially preserved 6878 // registers rather than clobbering the entire register when the 6879 // parameter extension method is not compatible with the return 6880 // extension method 6881 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6882 (ExtendKind != ISD::ANY_EXTEND && 6883 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6884 Flags.setReturned(); 6885 } 6886 6887 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6888 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6889 6890 for (unsigned j = 0; j != NumParts; ++j) { 6891 // if it isn't first piece, alignment must be 1 6892 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6893 i < CLI.NumFixedArgs, 6894 i, j*Parts[j].getValueType().getStoreSize()); 6895 if (NumParts > 1 && j == 0) 6896 MyFlags.Flags.setSplit(); 6897 else if (j != 0) 6898 MyFlags.Flags.setOrigAlign(1); 6899 6900 CLI.Outs.push_back(MyFlags); 6901 CLI.OutVals.push_back(Parts[j]); 6902 } 6903 6904 if (NeedsRegBlock && Value == NumValues - 1) 6905 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6906 } 6907 } 6908 6909 SmallVector<SDValue, 4> InVals; 6910 CLI.Chain = LowerCall(CLI, InVals); 6911 6912 // Verify that the target's LowerCall behaved as expected. 6913 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6914 "LowerCall didn't return a valid chain!"); 6915 assert((!CLI.IsTailCall || InVals.empty()) && 6916 "LowerCall emitted a return value for a tail call!"); 6917 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6918 "LowerCall didn't emit the correct number of values!"); 6919 6920 // For a tail call, the return value is merely live-out and there aren't 6921 // any nodes in the DAG representing it. Return a special value to 6922 // indicate that a tail call has been emitted and no more Instructions 6923 // should be processed in the current block. 6924 if (CLI.IsTailCall) { 6925 CLI.DAG.setRoot(CLI.Chain); 6926 return std::make_pair(SDValue(), SDValue()); 6927 } 6928 6929 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6930 assert(InVals[i].getNode() && 6931 "LowerCall emitted a null value!"); 6932 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6933 "LowerCall emitted a value with the wrong type!"); 6934 }); 6935 6936 SmallVector<SDValue, 4> ReturnValues; 6937 if (!CanLowerReturn) { 6938 // The instruction result is the result of loading from the 6939 // hidden sret parameter. 6940 SmallVector<EVT, 1> PVTs; 6941 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6942 6943 ComputeValueVTs(*this, PtrRetTy, PVTs); 6944 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6945 EVT PtrVT = PVTs[0]; 6946 6947 unsigned NumValues = RetTys.size(); 6948 ReturnValues.resize(NumValues); 6949 SmallVector<SDValue, 4> Chains(NumValues); 6950 6951 for (unsigned i = 0; i < NumValues; ++i) { 6952 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6953 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6954 PtrVT)); 6955 SDValue L = CLI.DAG.getLoad( 6956 RetTys[i], CLI.DL, CLI.Chain, Add, 6957 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6958 false, false, 1); 6959 ReturnValues[i] = L; 6960 Chains[i] = L.getValue(1); 6961 } 6962 6963 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6964 } else { 6965 // Collect the legal value parts into potentially illegal values 6966 // that correspond to the original function's return values. 6967 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6968 if (CLI.RetSExt) 6969 AssertOp = ISD::AssertSext; 6970 else if (CLI.RetZExt) 6971 AssertOp = ISD::AssertZext; 6972 unsigned CurReg = 0; 6973 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6974 EVT VT = RetTys[I]; 6975 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6976 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6977 6978 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6979 NumRegs, RegisterVT, VT, nullptr, 6980 AssertOp)); 6981 CurReg += NumRegs; 6982 } 6983 6984 // For a function returning void, there is no return value. We can't create 6985 // such a node, so we just return a null return value in that case. In 6986 // that case, nothing will actually look at the value. 6987 if (ReturnValues.empty()) 6988 return std::make_pair(SDValue(), CLI.Chain); 6989 } 6990 6991 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6992 CLI.DAG.getVTList(RetTys), ReturnValues); 6993 return std::make_pair(Res, CLI.Chain); 6994 } 6995 6996 void TargetLowering::LowerOperationWrapper(SDNode *N, 6997 SmallVectorImpl<SDValue> &Results, 6998 SelectionDAG &DAG) const { 6999 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7000 if (Res.getNode()) 7001 Results.push_back(Res); 7002 } 7003 7004 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7005 llvm_unreachable("LowerOperation not implemented for this target!"); 7006 } 7007 7008 void 7009 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7010 SDValue Op = getNonRegisterValue(V); 7011 assert((Op.getOpcode() != ISD::CopyFromReg || 7012 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7013 "Copy from a reg to the same reg!"); 7014 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7015 7016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7017 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7018 SDValue Chain = DAG.getEntryNode(); 7019 7020 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7021 FuncInfo.PreferredExtendType.end()) 7022 ? ISD::ANY_EXTEND 7023 : FuncInfo.PreferredExtendType[V]; 7024 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7025 PendingExports.push_back(Chain); 7026 } 7027 7028 #include "llvm/CodeGen/SelectionDAGISel.h" 7029 7030 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7031 /// entry block, return true. This includes arguments used by switches, since 7032 /// the switch may expand into multiple basic blocks. 7033 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7034 // With FastISel active, we may be splitting blocks, so force creation 7035 // of virtual registers for all non-dead arguments. 7036 if (FastISel) 7037 return A->use_empty(); 7038 7039 const BasicBlock *Entry = A->getParent()->begin(); 7040 for (const User *U : A->users()) 7041 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7042 return false; // Use not in entry block. 7043 7044 return true; 7045 } 7046 7047 void SelectionDAGISel::LowerArguments(const Function &F) { 7048 SelectionDAG &DAG = SDB->DAG; 7049 SDLoc dl = SDB->getCurSDLoc(); 7050 const DataLayout *DL = TLI->getDataLayout(); 7051 SmallVector<ISD::InputArg, 16> Ins; 7052 7053 if (!FuncInfo->CanLowerReturn) { 7054 // Put in an sret pointer parameter before all the other parameters. 7055 SmallVector<EVT, 1> ValueVTs; 7056 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7057 7058 // NOTE: Assuming that a pointer will never break down to more than one VT 7059 // or one register. 7060 ISD::ArgFlagsTy Flags; 7061 Flags.setSRet(); 7062 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7063 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7064 ISD::InputArg::NoArgIndex, 0); 7065 Ins.push_back(RetArg); 7066 } 7067 7068 // Set up the incoming argument description vector. 7069 unsigned Idx = 1; 7070 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7071 I != E; ++I, ++Idx) { 7072 SmallVector<EVT, 4> ValueVTs; 7073 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7074 bool isArgValueUsed = !I->use_empty(); 7075 unsigned PartBase = 0; 7076 Type *FinalType = I->getType(); 7077 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7078 FinalType = cast<PointerType>(FinalType)->getElementType(); 7079 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7080 FinalType, F.getCallingConv(), F.isVarArg()); 7081 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7082 Value != NumValues; ++Value) { 7083 EVT VT = ValueVTs[Value]; 7084 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7085 ISD::ArgFlagsTy Flags; 7086 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7087 7088 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7089 Flags.setZExt(); 7090 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7091 Flags.setSExt(); 7092 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7093 Flags.setInReg(); 7094 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7095 Flags.setSRet(); 7096 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7097 Flags.setByVal(); 7098 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7099 Flags.setInAlloca(); 7100 // Set the byval flag for CCAssignFn callbacks that don't know about 7101 // inalloca. This way we can know how many bytes we should've allocated 7102 // and how many bytes a callee cleanup function will pop. If we port 7103 // inalloca to more targets, we'll have to add custom inalloca handling 7104 // in the various CC lowering callbacks. 7105 Flags.setByVal(); 7106 } 7107 if (Flags.isByVal() || Flags.isInAlloca()) { 7108 PointerType *Ty = cast<PointerType>(I->getType()); 7109 Type *ElementTy = Ty->getElementType(); 7110 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7111 // For ByVal, alignment should be passed from FE. BE will guess if 7112 // this info is not there but there are cases it cannot get right. 7113 unsigned FrameAlign; 7114 if (F.getParamAlignment(Idx)) 7115 FrameAlign = F.getParamAlignment(Idx); 7116 else 7117 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7118 Flags.setByValAlign(FrameAlign); 7119 } 7120 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7121 Flags.setNest(); 7122 if (NeedsRegBlock) 7123 Flags.setInConsecutiveRegs(); 7124 Flags.setOrigAlign(OriginalAlignment); 7125 7126 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7127 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7128 for (unsigned i = 0; i != NumRegs; ++i) { 7129 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7130 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7131 if (NumRegs > 1 && i == 0) 7132 MyFlags.Flags.setSplit(); 7133 // if it isn't first piece, alignment must be 1 7134 else if (i > 0) 7135 MyFlags.Flags.setOrigAlign(1); 7136 Ins.push_back(MyFlags); 7137 } 7138 if (NeedsRegBlock && Value == NumValues - 1) 7139 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7140 PartBase += VT.getStoreSize(); 7141 } 7142 } 7143 7144 // Call the target to set up the argument values. 7145 SmallVector<SDValue, 8> InVals; 7146 SDValue NewRoot = TLI->LowerFormalArguments( 7147 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7148 7149 // Verify that the target's LowerFormalArguments behaved as expected. 7150 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7151 "LowerFormalArguments didn't return a valid chain!"); 7152 assert(InVals.size() == Ins.size() && 7153 "LowerFormalArguments didn't emit the correct number of values!"); 7154 DEBUG({ 7155 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7156 assert(InVals[i].getNode() && 7157 "LowerFormalArguments emitted a null value!"); 7158 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7159 "LowerFormalArguments emitted a value with the wrong type!"); 7160 } 7161 }); 7162 7163 // Update the DAG with the new chain value resulting from argument lowering. 7164 DAG.setRoot(NewRoot); 7165 7166 // Set up the argument values. 7167 unsigned i = 0; 7168 Idx = 1; 7169 if (!FuncInfo->CanLowerReturn) { 7170 // Create a virtual register for the sret pointer, and put in a copy 7171 // from the sret argument into it. 7172 SmallVector<EVT, 1> ValueVTs; 7173 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7174 MVT VT = ValueVTs[0].getSimpleVT(); 7175 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7176 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7177 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7178 RegVT, VT, nullptr, AssertOp); 7179 7180 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7181 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7182 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7183 FuncInfo->DemoteRegister = SRetReg; 7184 NewRoot = 7185 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7186 DAG.setRoot(NewRoot); 7187 7188 // i indexes lowered arguments. Bump it past the hidden sret argument. 7189 // Idx indexes LLVM arguments. Don't touch it. 7190 ++i; 7191 } 7192 7193 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7194 ++I, ++Idx) { 7195 SmallVector<SDValue, 4> ArgValues; 7196 SmallVector<EVT, 4> ValueVTs; 7197 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7198 unsigned NumValues = ValueVTs.size(); 7199 7200 // If this argument is unused then remember its value. It is used to generate 7201 // debugging information. 7202 if (I->use_empty() && NumValues) { 7203 SDB->setUnusedArgValue(I, InVals[i]); 7204 7205 // Also remember any frame index for use in FastISel. 7206 if (FrameIndexSDNode *FI = 7207 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7208 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7209 } 7210 7211 for (unsigned Val = 0; Val != NumValues; ++Val) { 7212 EVT VT = ValueVTs[Val]; 7213 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7214 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7215 7216 if (!I->use_empty()) { 7217 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7218 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7219 AssertOp = ISD::AssertSext; 7220 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7221 AssertOp = ISD::AssertZext; 7222 7223 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7224 NumParts, PartVT, VT, 7225 nullptr, AssertOp)); 7226 } 7227 7228 i += NumParts; 7229 } 7230 7231 // We don't need to do anything else for unused arguments. 7232 if (ArgValues.empty()) 7233 continue; 7234 7235 // Note down frame index. 7236 if (FrameIndexSDNode *FI = 7237 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7238 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7239 7240 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7241 SDB->getCurSDLoc()); 7242 7243 SDB->setValue(I, Res); 7244 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7245 if (LoadSDNode *LNode = 7246 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7247 if (FrameIndexSDNode *FI = 7248 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7249 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7250 } 7251 7252 // If this argument is live outside of the entry block, insert a copy from 7253 // wherever we got it to the vreg that other BB's will reference it as. 7254 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7255 // If we can, though, try to skip creating an unnecessary vreg. 7256 // FIXME: This isn't very clean... it would be nice to make this more 7257 // general. It's also subtly incompatible with the hacks FastISel 7258 // uses with vregs. 7259 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7260 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7261 FuncInfo->ValueMap[I] = Reg; 7262 continue; 7263 } 7264 } 7265 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7266 FuncInfo->InitializeRegForValue(I); 7267 SDB->CopyToExportRegsIfNeeded(I); 7268 } 7269 } 7270 7271 assert(i == InVals.size() && "Argument register count mismatch!"); 7272 7273 // Finally, if the target has anything special to do, allow it to do so. 7274 EmitFunctionEntryCode(); 7275 } 7276 7277 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7278 /// ensure constants are generated when needed. Remember the virtual registers 7279 /// that need to be added to the Machine PHI nodes as input. We cannot just 7280 /// directly add them, because expansion might result in multiple MBB's for one 7281 /// BB. As such, the start of the BB might correspond to a different MBB than 7282 /// the end. 7283 /// 7284 void 7285 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7286 const TerminatorInst *TI = LLVMBB->getTerminator(); 7287 7288 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7289 7290 // Check PHI nodes in successors that expect a value to be available from this 7291 // block. 7292 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7293 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7294 if (!isa<PHINode>(SuccBB->begin())) continue; 7295 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7296 7297 // If this terminator has multiple identical successors (common for 7298 // switches), only handle each succ once. 7299 if (!SuccsHandled.insert(SuccMBB).second) 7300 continue; 7301 7302 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7303 7304 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7305 // nodes and Machine PHI nodes, but the incoming operands have not been 7306 // emitted yet. 7307 for (BasicBlock::const_iterator I = SuccBB->begin(); 7308 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7309 // Ignore dead phi's. 7310 if (PN->use_empty()) continue; 7311 7312 // Skip empty types 7313 if (PN->getType()->isEmptyTy()) 7314 continue; 7315 7316 unsigned Reg; 7317 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7318 7319 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7320 unsigned &RegOut = ConstantsOut[C]; 7321 if (RegOut == 0) { 7322 RegOut = FuncInfo.CreateRegs(C->getType()); 7323 CopyValueToVirtualRegister(C, RegOut); 7324 } 7325 Reg = RegOut; 7326 } else { 7327 DenseMap<const Value *, unsigned>::iterator I = 7328 FuncInfo.ValueMap.find(PHIOp); 7329 if (I != FuncInfo.ValueMap.end()) 7330 Reg = I->second; 7331 else { 7332 assert(isa<AllocaInst>(PHIOp) && 7333 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7334 "Didn't codegen value into a register!??"); 7335 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7336 CopyValueToVirtualRegister(PHIOp, Reg); 7337 } 7338 } 7339 7340 // Remember that this register needs to added to the machine PHI node as 7341 // the input for this MBB. 7342 SmallVector<EVT, 4> ValueVTs; 7343 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7344 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7345 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7346 EVT VT = ValueVTs[vti]; 7347 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7348 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7349 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7350 Reg += NumRegisters; 7351 } 7352 } 7353 } 7354 7355 ConstantsOut.clear(); 7356 } 7357 7358 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7359 /// is 0. 7360 MachineBasicBlock * 7361 SelectionDAGBuilder::StackProtectorDescriptor:: 7362 AddSuccessorMBB(const BasicBlock *BB, 7363 MachineBasicBlock *ParentMBB, 7364 bool IsLikely, 7365 MachineBasicBlock *SuccMBB) { 7366 // If SuccBB has not been created yet, create it. 7367 if (!SuccMBB) { 7368 MachineFunction *MF = ParentMBB->getParent(); 7369 MachineFunction::iterator BBI = ParentMBB; 7370 SuccMBB = MF->CreateMachineBasicBlock(BB); 7371 MF->insert(++BBI, SuccMBB); 7372 } 7373 // Add it as a successor of ParentMBB. 7374 ParentMBB->addSuccessor( 7375 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7376 return SuccMBB; 7377 } 7378 7379 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7380 MachineFunction::iterator I = MBB; 7381 if (++I == FuncInfo.MF->end()) 7382 return nullptr; 7383 return I; 7384 } 7385 7386 /// During lowering new call nodes can be created (such as memset, etc.). 7387 /// Those will become new roots of the current DAG, but complications arise 7388 /// when they are tail calls. In such cases, the call lowering will update 7389 /// the root, but the builder still needs to know that a tail call has been 7390 /// lowered in order to avoid generating an additional return. 7391 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7392 // If the node is null, we do have a tail call. 7393 if (MaybeTC.getNode() != nullptr) 7394 DAG.setRoot(MaybeTC); 7395 else 7396 HasTailCall = true; 7397 } 7398 7399 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7400 unsigned *TotalCases, unsigned First, 7401 unsigned Last) { 7402 assert(Last >= First); 7403 assert(TotalCases[Last] >= TotalCases[First]); 7404 7405 APInt LowCase = Clusters[First].Low->getValue(); 7406 APInt HighCase = Clusters[Last].High->getValue(); 7407 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7408 7409 // FIXME: A range of consecutive cases has 100% density, but only requires one 7410 // comparison to lower. We should discriminate against such consecutive ranges 7411 // in jump tables. 7412 7413 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7414 uint64_t Range = Diff + 1; 7415 7416 uint64_t NumCases = 7417 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7418 7419 assert(NumCases < UINT64_MAX / 100); 7420 assert(Range >= NumCases); 7421 7422 return NumCases * 100 >= Range * MinJumpTableDensity; 7423 } 7424 7425 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7426 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7427 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7428 } 7429 7430 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7431 unsigned First, unsigned Last, 7432 const SwitchInst *SI, 7433 MachineBasicBlock *DefaultMBB, 7434 CaseCluster &JTCluster) { 7435 assert(First <= Last); 7436 7437 uint32_t Weight = 0; 7438 unsigned NumCmps = 0; 7439 std::vector<MachineBasicBlock*> Table; 7440 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7441 for (unsigned I = First; I <= Last; ++I) { 7442 assert(Clusters[I].Kind == CC_Range); 7443 Weight += Clusters[I].Weight; 7444 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7445 APInt Low = Clusters[I].Low->getValue(); 7446 APInt High = Clusters[I].High->getValue(); 7447 NumCmps += (Low == High) ? 1 : 2; 7448 if (I != First) { 7449 // Fill the gap between this and the previous cluster. 7450 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7451 assert(PreviousHigh.slt(Low)); 7452 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7453 for (uint64_t J = 0; J < Gap; J++) 7454 Table.push_back(DefaultMBB); 7455 } 7456 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7457 for (uint64_t J = 0; J < ClusterSize; ++J) 7458 Table.push_back(Clusters[I].MBB); 7459 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7460 } 7461 7462 unsigned NumDests = JTWeights.size(); 7463 if (isSuitableForBitTests(NumDests, NumCmps, 7464 Clusters[First].Low->getValue(), 7465 Clusters[Last].High->getValue())) { 7466 // Clusters[First..Last] should be lowered as bit tests instead. 7467 return false; 7468 } 7469 7470 // Create the MBB that will load from and jump through the table. 7471 // Note: We create it here, but it's not inserted into the function yet. 7472 MachineFunction *CurMF = FuncInfo.MF; 7473 MachineBasicBlock *JumpTableMBB = 7474 CurMF->CreateMachineBasicBlock(SI->getParent()); 7475 7476 // Add successors. Note: use table order for determinism. 7477 SmallPtrSet<MachineBasicBlock *, 8> Done; 7478 for (MachineBasicBlock *Succ : Table) { 7479 if (Done.count(Succ)) 7480 continue; 7481 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7482 Done.insert(Succ); 7483 } 7484 7485 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7486 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7487 ->createJumpTableIndex(Table); 7488 7489 // Set up the jump table info. 7490 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7491 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7492 Clusters[Last].High->getValue(), SI->getCondition(), 7493 nullptr, false); 7494 JTCases.push_back(JumpTableBlock(JTH, JT)); 7495 7496 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7497 JTCases.size() - 1, Weight); 7498 return true; 7499 } 7500 7501 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7502 const SwitchInst *SI, 7503 MachineBasicBlock *DefaultMBB) { 7504 #ifndef NDEBUG 7505 // Clusters must be non-empty, sorted, and only contain Range clusters. 7506 assert(!Clusters.empty()); 7507 for (CaseCluster &C : Clusters) 7508 assert(C.Kind == CC_Range); 7509 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7510 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7511 #endif 7512 7513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7514 if (!areJTsAllowed(TLI)) 7515 return; 7516 7517 const int64_t N = Clusters.size(); 7518 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7519 7520 // Split Clusters into minimum number of dense partitions. The algorithm uses 7521 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7522 // for the Case Statement'" (1994), but builds the MinPartitions array in 7523 // reverse order to make it easier to reconstruct the partitions in ascending 7524 // order. In the choice between two optimal partitionings, it picks the one 7525 // which yields more jump tables. 7526 7527 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7528 SmallVector<unsigned, 8> MinPartitions(N); 7529 // LastElement[i] is the last element of the partition starting at i. 7530 SmallVector<unsigned, 8> LastElement(N); 7531 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7532 SmallVector<unsigned, 8> NumTables(N); 7533 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7534 SmallVector<unsigned, 8> TotalCases(N); 7535 7536 for (unsigned i = 0; i < N; ++i) { 7537 APInt Hi = Clusters[i].High->getValue(); 7538 APInt Lo = Clusters[i].Low->getValue(); 7539 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7540 if (i != 0) 7541 TotalCases[i] += TotalCases[i - 1]; 7542 } 7543 7544 // Base case: There is only one way to partition Clusters[N-1]. 7545 MinPartitions[N - 1] = 1; 7546 LastElement[N - 1] = N - 1; 7547 assert(MinJumpTableSize > 1); 7548 NumTables[N - 1] = 0; 7549 7550 // Note: loop indexes are signed to avoid underflow. 7551 for (int64_t i = N - 2; i >= 0; i--) { 7552 // Find optimal partitioning of Clusters[i..N-1]. 7553 // Baseline: Put Clusters[i] into a partition on its own. 7554 MinPartitions[i] = MinPartitions[i + 1] + 1; 7555 LastElement[i] = i; 7556 NumTables[i] = NumTables[i + 1]; 7557 7558 // Search for a solution that results in fewer partitions. 7559 for (int64_t j = N - 1; j > i; j--) { 7560 // Try building a partition from Clusters[i..j]. 7561 if (isDense(Clusters, &TotalCases[0], i, j)) { 7562 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7563 bool IsTable = j - i + 1 >= MinJumpTableSize; 7564 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7565 7566 // If this j leads to fewer partitions, or same number of partitions 7567 // with more lookup tables, it is a better partitioning. 7568 if (NumPartitions < MinPartitions[i] || 7569 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7570 MinPartitions[i] = NumPartitions; 7571 LastElement[i] = j; 7572 NumTables[i] = Tables; 7573 } 7574 } 7575 } 7576 } 7577 7578 // Iterate over the partitions, replacing some with jump tables in-place. 7579 unsigned DstIndex = 0; 7580 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7581 Last = LastElement[First]; 7582 assert(Last >= First); 7583 assert(DstIndex <= First); 7584 unsigned NumClusters = Last - First + 1; 7585 7586 CaseCluster JTCluster; 7587 if (NumClusters >= MinJumpTableSize && 7588 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7589 Clusters[DstIndex++] = JTCluster; 7590 } else { 7591 for (unsigned I = First; I <= Last; ++I) 7592 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7593 } 7594 } 7595 Clusters.resize(DstIndex); 7596 } 7597 7598 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7599 // FIXME: Using the pointer type doesn't seem ideal. 7600 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7601 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7602 return Range <= BW; 7603 } 7604 7605 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7606 unsigned NumCmps, 7607 const APInt &Low, 7608 const APInt &High) { 7609 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7610 // range of cases both require only one branch to lower. Just looking at the 7611 // number of clusters and destinations should be enough to decide whether to 7612 // build bit tests. 7613 7614 // To lower a range with bit tests, the range must fit the bitwidth of a 7615 // machine word. 7616 if (!rangeFitsInWord(Low, High)) 7617 return false; 7618 7619 // Decide whether it's profitable to lower this range with bit tests. Each 7620 // destination requires a bit test and branch, and there is an overall range 7621 // check branch. For a small number of clusters, separate comparisons might be 7622 // cheaper, and for many destinations, splitting the range might be better. 7623 return (NumDests == 1 && NumCmps >= 3) || 7624 (NumDests == 2 && NumCmps >= 5) || 7625 (NumDests == 3 && NumCmps >= 6); 7626 } 7627 7628 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7629 unsigned First, unsigned Last, 7630 const SwitchInst *SI, 7631 CaseCluster &BTCluster) { 7632 assert(First <= Last); 7633 if (First == Last) 7634 return false; 7635 7636 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7637 unsigned NumCmps = 0; 7638 for (int64_t I = First; I <= Last; ++I) { 7639 assert(Clusters[I].Kind == CC_Range); 7640 Dests.set(Clusters[I].MBB->getNumber()); 7641 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7642 } 7643 unsigned NumDests = Dests.count(); 7644 7645 APInt Low = Clusters[First].Low->getValue(); 7646 APInt High = Clusters[Last].High->getValue(); 7647 assert(Low.slt(High)); 7648 7649 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7650 return false; 7651 7652 APInt LowBound; 7653 APInt CmpRange; 7654 7655 const int BitWidth = 7656 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7657 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7658 7659 if (Low.isNonNegative() && High.slt(BitWidth)) { 7660 // Optimize the case where all the case values fit in a 7661 // word without having to subtract minValue. In this case, 7662 // we can optimize away the subtraction. 7663 LowBound = APInt::getNullValue(Low.getBitWidth()); 7664 CmpRange = High; 7665 } else { 7666 LowBound = Low; 7667 CmpRange = High - Low; 7668 } 7669 7670 CaseBitsVector CBV; 7671 uint32_t TotalWeight = 0; 7672 for (unsigned i = First; i <= Last; ++i) { 7673 // Find the CaseBits for this destination. 7674 unsigned j; 7675 for (j = 0; j < CBV.size(); ++j) 7676 if (CBV[j].BB == Clusters[i].MBB) 7677 break; 7678 if (j == CBV.size()) 7679 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7680 CaseBits *CB = &CBV[j]; 7681 7682 // Update Mask, Bits and ExtraWeight. 7683 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7684 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7685 for (uint64_t j = Lo; j <= Hi; ++j) { 7686 CB->Mask |= 1ULL << j; 7687 CB->Bits++; 7688 } 7689 CB->ExtraWeight += Clusters[i].Weight; 7690 TotalWeight += Clusters[i].Weight; 7691 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7692 } 7693 7694 BitTestInfo BTI; 7695 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7696 // Sort by weight first, number of bits second. 7697 if (a.ExtraWeight != b.ExtraWeight) 7698 return a.ExtraWeight > b.ExtraWeight; 7699 return a.Bits > b.Bits; 7700 }); 7701 7702 for (auto &CB : CBV) { 7703 MachineBasicBlock *BitTestBB = 7704 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7705 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7706 } 7707 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7708 -1U, MVT::Other, false, nullptr, 7709 nullptr, std::move(BTI))); 7710 7711 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7712 BitTestCases.size() - 1, TotalWeight); 7713 return true; 7714 } 7715 7716 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7717 const SwitchInst *SI) { 7718 // Partition Clusters into as few subsets as possible, where each subset has a 7719 // range that fits in a machine word and has <= 3 unique destinations. 7720 7721 #ifndef NDEBUG 7722 // Clusters must be sorted and contain Range or JumpTable clusters. 7723 assert(!Clusters.empty()); 7724 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7725 for (const CaseCluster &C : Clusters) 7726 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7727 for (unsigned i = 1; i < Clusters.size(); ++i) 7728 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7729 #endif 7730 7731 // If target does not have legal shift left, do not emit bit tests at all. 7732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7733 EVT PTy = TLI.getPointerTy(); 7734 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7735 return; 7736 7737 int BitWidth = PTy.getSizeInBits(); 7738 const int64_t N = Clusters.size(); 7739 7740 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7741 SmallVector<unsigned, 8> MinPartitions(N); 7742 // LastElement[i] is the last element of the partition starting at i. 7743 SmallVector<unsigned, 8> LastElement(N); 7744 7745 // FIXME: This might not be the best algorithm for finding bit test clusters. 7746 7747 // Base case: There is only one way to partition Clusters[N-1]. 7748 MinPartitions[N - 1] = 1; 7749 LastElement[N - 1] = N - 1; 7750 7751 // Note: loop indexes are signed to avoid underflow. 7752 for (int64_t i = N - 2; i >= 0; --i) { 7753 // Find optimal partitioning of Clusters[i..N-1]. 7754 // Baseline: Put Clusters[i] into a partition on its own. 7755 MinPartitions[i] = MinPartitions[i + 1] + 1; 7756 LastElement[i] = i; 7757 7758 // Search for a solution that results in fewer partitions. 7759 // Note: the search is limited by BitWidth, reducing time complexity. 7760 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7761 // Try building a partition from Clusters[i..j]. 7762 7763 // Check the range. 7764 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7765 Clusters[j].High->getValue())) 7766 continue; 7767 7768 // Check nbr of destinations and cluster types. 7769 // FIXME: This works, but doesn't seem very efficient. 7770 bool RangesOnly = true; 7771 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7772 for (int64_t k = i; k <= j; k++) { 7773 if (Clusters[k].Kind != CC_Range) { 7774 RangesOnly = false; 7775 break; 7776 } 7777 Dests.set(Clusters[k].MBB->getNumber()); 7778 } 7779 if (!RangesOnly || Dests.count() > 3) 7780 break; 7781 7782 // Check if it's a better partition. 7783 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7784 if (NumPartitions < MinPartitions[i]) { 7785 // Found a better partition. 7786 MinPartitions[i] = NumPartitions; 7787 LastElement[i] = j; 7788 } 7789 } 7790 } 7791 7792 // Iterate over the partitions, replacing with bit-test clusters in-place. 7793 unsigned DstIndex = 0; 7794 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7795 Last = LastElement[First]; 7796 assert(First <= Last); 7797 assert(DstIndex <= First); 7798 7799 CaseCluster BitTestCluster; 7800 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7801 Clusters[DstIndex++] = BitTestCluster; 7802 } else { 7803 for (unsigned I = First; I <= Last; ++I) 7804 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7805 } 7806 } 7807 Clusters.resize(DstIndex); 7808 } 7809 7810 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7811 MachineBasicBlock *SwitchMBB, 7812 MachineBasicBlock *DefaultMBB) { 7813 MachineFunction *CurMF = FuncInfo.MF; 7814 MachineBasicBlock *NextMBB = nullptr; 7815 MachineFunction::iterator BBI = W.MBB; 7816 if (++BBI != FuncInfo.MF->end()) 7817 NextMBB = BBI; 7818 7819 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7820 7821 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7822 7823 if (Size == 2 && W.MBB == SwitchMBB) { 7824 // If any two of the cases has the same destination, and if one value 7825 // is the same as the other, but has one bit unset that the other has set, 7826 // use bit manipulation to do two compares at once. For example: 7827 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7828 // TODO: This could be extended to merge any 2 cases in switches with 3 7829 // cases. 7830 // TODO: Handle cases where W.CaseBB != SwitchBB. 7831 CaseCluster &Small = *W.FirstCluster; 7832 CaseCluster &Big = *W.LastCluster; 7833 7834 if (Small.Low == Small.High && Big.Low == Big.High && 7835 Small.MBB == Big.MBB) { 7836 const APInt &SmallValue = Small.Low->getValue(); 7837 const APInt &BigValue = Big.Low->getValue(); 7838 7839 // Check that there is only one bit different. 7840 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7841 (SmallValue | BigValue) == BigValue) { 7842 // Isolate the common bit. 7843 APInt CommonBit = BigValue & ~SmallValue; 7844 assert((SmallValue | CommonBit) == BigValue && 7845 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7846 7847 SDValue CondLHS = getValue(Cond); 7848 EVT VT = CondLHS.getValueType(); 7849 SDLoc DL = getCurSDLoc(); 7850 7851 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7852 DAG.getConstant(CommonBit, DL, VT)); 7853 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7854 DAG.getConstant(BigValue, DL, VT), 7855 ISD::SETEQ); 7856 7857 // Update successor info. 7858 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7859 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7860 addSuccessorWithWeight( 7861 SwitchMBB, DefaultMBB, 7862 // The default destination is the first successor in IR. 7863 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7864 : 0); 7865 7866 // Insert the true branch. 7867 SDValue BrCond = 7868 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7869 DAG.getBasicBlock(Small.MBB)); 7870 // Insert the false branch. 7871 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7872 DAG.getBasicBlock(DefaultMBB)); 7873 7874 DAG.setRoot(BrCond); 7875 return; 7876 } 7877 } 7878 } 7879 7880 if (TM.getOptLevel() != CodeGenOpt::None) { 7881 // Order cases by weight so the most likely case will be checked first. 7882 std::sort(W.FirstCluster, W.LastCluster + 1, 7883 [](const CaseCluster &a, const CaseCluster &b) { 7884 return a.Weight > b.Weight; 7885 }); 7886 7887 // Rearrange the case blocks so that the last one falls through if possible 7888 // without without changing the order of weights. 7889 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7890 --I; 7891 if (I->Weight > W.LastCluster->Weight) 7892 break; 7893 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7894 std::swap(*I, *W.LastCluster); 7895 break; 7896 } 7897 } 7898 } 7899 7900 // Compute total weight. 7901 uint32_t UnhandledWeights = 0; 7902 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7903 UnhandledWeights += I->Weight; 7904 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7905 } 7906 7907 MachineBasicBlock *CurMBB = W.MBB; 7908 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7909 MachineBasicBlock *Fallthrough; 7910 if (I == W.LastCluster) { 7911 // For the last cluster, fall through to the default destination. 7912 Fallthrough = DefaultMBB; 7913 } else { 7914 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7915 CurMF->insert(BBI, Fallthrough); 7916 // Put Cond in a virtual register to make it available from the new blocks. 7917 ExportFromCurrentBlock(Cond); 7918 } 7919 7920 switch (I->Kind) { 7921 case CC_JumpTable: { 7922 // FIXME: Optimize away range check based on pivot comparisons. 7923 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7924 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7925 7926 // The jump block hasn't been inserted yet; insert it here. 7927 MachineBasicBlock *JumpMBB = JT->MBB; 7928 CurMF->insert(BBI, JumpMBB); 7929 addSuccessorWithWeight(CurMBB, Fallthrough); 7930 addSuccessorWithWeight(CurMBB, JumpMBB); 7931 7932 // The jump table header will be inserted in our current block, do the 7933 // range check, and fall through to our fallthrough block. 7934 JTH->HeaderBB = CurMBB; 7935 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7936 7937 // If we're in the right place, emit the jump table header right now. 7938 if (CurMBB == SwitchMBB) { 7939 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7940 JTH->Emitted = true; 7941 } 7942 break; 7943 } 7944 case CC_BitTests: { 7945 // FIXME: Optimize away range check based on pivot comparisons. 7946 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7947 7948 // The bit test blocks haven't been inserted yet; insert them here. 7949 for (BitTestCase &BTC : BTB->Cases) 7950 CurMF->insert(BBI, BTC.ThisBB); 7951 7952 // Fill in fields of the BitTestBlock. 7953 BTB->Parent = CurMBB; 7954 BTB->Default = Fallthrough; 7955 7956 // If we're in the right place, emit the bit test header header right now. 7957 if (CurMBB ==SwitchMBB) { 7958 visitBitTestHeader(*BTB, SwitchMBB); 7959 BTB->Emitted = true; 7960 } 7961 break; 7962 } 7963 case CC_Range: { 7964 const Value *RHS, *LHS, *MHS; 7965 ISD::CondCode CC; 7966 if (I->Low == I->High) { 7967 // Check Cond == I->Low. 7968 CC = ISD::SETEQ; 7969 LHS = Cond; 7970 RHS=I->Low; 7971 MHS = nullptr; 7972 } else { 7973 // Check I->Low <= Cond <= I->High. 7974 CC = ISD::SETLE; 7975 LHS = I->Low; 7976 MHS = Cond; 7977 RHS = I->High; 7978 } 7979 7980 // The false weight is the sum of all unhandled cases. 7981 UnhandledWeights -= I->Weight; 7982 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7983 UnhandledWeights); 7984 7985 if (CurMBB == SwitchMBB) 7986 visitSwitchCase(CB, SwitchMBB); 7987 else 7988 SwitchCases.push_back(CB); 7989 7990 break; 7991 } 7992 } 7993 CurMBB = Fallthrough; 7994 } 7995 } 7996 7997 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7998 const SwitchWorkListItem &W, 7999 Value *Cond, 8000 MachineBasicBlock *SwitchMBB) { 8001 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8002 "Clusters not sorted?"); 8003 8004 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8005 8006 // Balance the tree based on branch weights to create a near-optimal (in terms 8007 // of search time given key frequency) binary search tree. See e.g. Kurt 8008 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8009 CaseClusterIt LastLeft = W.FirstCluster; 8010 CaseClusterIt FirstRight = W.LastCluster; 8011 uint32_t LeftWeight = LastLeft->Weight; 8012 uint32_t RightWeight = FirstRight->Weight; 8013 8014 // Move LastLeft and FirstRight towards each other from opposite directions to 8015 // find a partitioning of the clusters which balances the weight on both 8016 // sides. 8017 while (LastLeft + 1 < FirstRight) { 8018 // Zero-weight nodes would cause skewed trees since they don't affect 8019 // LeftWeight or RightWeight. 8020 assert(LastLeft->Weight != 0); 8021 assert(FirstRight->Weight != 0); 8022 8023 if (LeftWeight < RightWeight) 8024 LeftWeight += (++LastLeft)->Weight; 8025 else 8026 RightWeight += (--FirstRight)->Weight; 8027 } 8028 assert(LastLeft + 1 == FirstRight); 8029 assert(LastLeft >= W.FirstCluster); 8030 assert(FirstRight <= W.LastCluster); 8031 8032 // Use the first element on the right as pivot since we will make less-than 8033 // comparisons against it. 8034 CaseClusterIt PivotCluster = FirstRight; 8035 assert(PivotCluster > W.FirstCluster); 8036 assert(PivotCluster <= W.LastCluster); 8037 8038 CaseClusterIt FirstLeft = W.FirstCluster; 8039 CaseClusterIt LastRight = W.LastCluster; 8040 8041 const ConstantInt *Pivot = PivotCluster->Low; 8042 8043 // New blocks will be inserted immediately after the current one. 8044 MachineFunction::iterator BBI = W.MBB; 8045 ++BBI; 8046 8047 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8048 // we can branch to its destination directly if it's squeezed exactly in 8049 // between the known lower bound and Pivot - 1. 8050 MachineBasicBlock *LeftMBB; 8051 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8052 FirstLeft->Low == W.GE && 8053 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8054 LeftMBB = FirstLeft->MBB; 8055 } else { 8056 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8057 FuncInfo.MF->insert(BBI, LeftMBB); 8058 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8059 // Put Cond in a virtual register to make it available from the new blocks. 8060 ExportFromCurrentBlock(Cond); 8061 } 8062 8063 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8064 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8065 // directly if RHS.High equals the current upper bound. 8066 MachineBasicBlock *RightMBB; 8067 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8068 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8069 RightMBB = FirstRight->MBB; 8070 } else { 8071 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8072 FuncInfo.MF->insert(BBI, RightMBB); 8073 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8074 // Put Cond in a virtual register to make it available from the new blocks. 8075 ExportFromCurrentBlock(Cond); 8076 } 8077 8078 // Create the CaseBlock record that will be used to lower the branch. 8079 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8080 LeftWeight, RightWeight); 8081 8082 if (W.MBB == SwitchMBB) 8083 visitSwitchCase(CB, SwitchMBB); 8084 else 8085 SwitchCases.push_back(CB); 8086 } 8087 8088 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8089 // Extract cases from the switch. 8090 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8091 CaseClusterVector Clusters; 8092 Clusters.reserve(SI.getNumCases()); 8093 for (auto I : SI.cases()) { 8094 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8095 const ConstantInt *CaseVal = I.getCaseValue(); 8096 uint32_t Weight = 1; 8097 if (BPI) { 8098 Weight = BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()); 8099 assert(Weight <= UINT32_MAX / SI.getNumSuccessors()); 8100 } 8101 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8102 } 8103 8104 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8105 8106 if (TM.getOptLevel() != CodeGenOpt::None) { 8107 // Cluster adjacent cases with the same destination. 8108 sortAndRangeify(Clusters); 8109 8110 // Replace an unreachable default with the most popular destination. 8111 // FIXME: Exploit unreachable default more aggressively. 8112 bool UnreachableDefault = 8113 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8114 if (UnreachableDefault && !Clusters.empty()) { 8115 DenseMap<const BasicBlock *, unsigned> Popularity; 8116 unsigned MaxPop = 0; 8117 const BasicBlock *MaxBB = nullptr; 8118 for (auto I : SI.cases()) { 8119 const BasicBlock *BB = I.getCaseSuccessor(); 8120 if (++Popularity[BB] > MaxPop) { 8121 MaxPop = Popularity[BB]; 8122 MaxBB = BB; 8123 } 8124 } 8125 // Set new default. 8126 assert(MaxPop > 0 && MaxBB); 8127 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8128 8129 // Remove cases that were pointing to the destination that is now the 8130 // default. 8131 CaseClusterVector New; 8132 New.reserve(Clusters.size()); 8133 for (CaseCluster &CC : Clusters) { 8134 if (CC.MBB != DefaultMBB) 8135 New.push_back(CC); 8136 } 8137 Clusters = std::move(New); 8138 } 8139 } 8140 8141 // If there is only the default destination, jump there directly. 8142 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8143 if (Clusters.empty()) { 8144 SwitchMBB->addSuccessor(DefaultMBB); 8145 if (DefaultMBB != NextBlock(SwitchMBB)) { 8146 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8147 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8148 } 8149 return; 8150 } 8151 8152 if (TM.getOptLevel() != CodeGenOpt::None) { 8153 findJumpTables(Clusters, &SI, DefaultMBB); 8154 findBitTestClusters(Clusters, &SI); 8155 } 8156 8157 8158 DEBUG({ 8159 dbgs() << "Case clusters: "; 8160 for (const CaseCluster &C : Clusters) { 8161 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8162 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8163 8164 C.Low->getValue().print(dbgs(), true); 8165 if (C.Low != C.High) { 8166 dbgs() << '-'; 8167 C.High->getValue().print(dbgs(), true); 8168 } 8169 dbgs() << ' '; 8170 } 8171 dbgs() << '\n'; 8172 }); 8173 8174 assert(!Clusters.empty()); 8175 SwitchWorkList WorkList; 8176 CaseClusterIt First = Clusters.begin(); 8177 CaseClusterIt Last = Clusters.end() - 1; 8178 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8179 8180 while (!WorkList.empty()) { 8181 SwitchWorkListItem W = WorkList.back(); 8182 WorkList.pop_back(); 8183 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8184 8185 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8186 // For optimized builds, lower large range as a balanced binary tree. 8187 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8188 continue; 8189 } 8190 8191 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8192 } 8193 } 8194