1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 439 // Bitcast Val back the original type and extract the corresponding 440 // vector we want. 441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 443 ValueVT.getVectorElementType(), Elts); 444 Val = DAG.getBitcast(WiderVecType, Val); 445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 446 DAG.getVectorIdxConstant(0, DL)); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, 614 SDValue Val, const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isFixedLengthVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 unsigned PartNumElts = PartVT.getVectorNumElements(); 620 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 621 if (PartNumElts > ValueNumElts && 622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 623 EVT ElementVT = PartVT.getVectorElementType(); 624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 625 // undef elements. 626 SmallVector<SDValue, 16> Ops; 627 DAG.ExtractVectorElements(Val, Ops); 628 SDValue EltUndef = DAG.getUNDEF(ElementVT); 629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 630 Ops.push_back(EltUndef); 631 632 // FIXME: Use CONCAT for 2x -> 4x. 633 return DAG.getBuildVector(PartVT, DL, Ops); 634 } 635 636 return SDValue(); 637 } 638 639 /// getCopyToPartsVector - Create a series of nodes that contain the specified 640 /// value split into legal parts. 641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 642 SDValue Val, SDValue *Parts, unsigned NumParts, 643 MVT PartVT, const Value *V, 644 Optional<CallingConv::ID> CallConv) { 645 EVT ValueVT = Val.getValueType(); 646 assert(ValueVT.isVector() && "Not a vector"); 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 const bool IsABIRegCopy = CallConv.hasValue(); 649 650 if (NumParts == 1) { 651 EVT PartEVT = PartVT; 652 if (PartEVT == ValueVT) { 653 // Nothing to do. 654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 655 // Bitconvert vector->vector case. 656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 658 Val = Widened; 659 } else if (PartVT.isVector() && 660 PartEVT.getVectorElementType().bitsGE( 661 ValueVT.getVectorElementType()) && 662 PartEVT.getVectorElementCount() == 663 ValueVT.getVectorElementCount()) { 664 665 // Promoted vector extract 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } else { 668 if (ValueVT.getVectorNumElements() == 1) { 669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 670 DAG.getVectorIdxConstant(0, DL)); 671 } else { 672 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 673 "lossy conversion of vector to scalar type"); 674 EVT IntermediateType = 675 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 676 Val = DAG.getBitcast(IntermediateType, Val); 677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 678 } 679 } 680 681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 682 Parts[0] = Val; 683 return; 684 } 685 686 // Handle a multi-element vector. 687 EVT IntermediateVT; 688 MVT RegisterVT; 689 unsigned NumIntermediates; 690 unsigned NumRegs; 691 if (IsABIRegCopy) { 692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 694 NumIntermediates, RegisterVT); 695 } else { 696 NumRegs = 697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 698 NumIntermediates, RegisterVT); 699 } 700 701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 702 NumParts = NumRegs; // Silence a compiler warning. 703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 704 705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 706 "Mixing scalable and fixed vectors when copying in parts"); 707 708 Optional<ElementCount> DestEltCnt; 709 710 if (IntermediateVT.isVector()) 711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 712 else 713 DestEltCnt = ElementCount::getFixed(NumIntermediates); 714 715 EVT BuiltVectorTy = EVT::getVectorVT( 716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 717 if (ValueVT != BuiltVectorTy) { 718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 719 Val = Widened; 720 721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 722 } 723 724 // Split the vector into intermediate operands. 725 SmallVector<SDValue, 8> Ops(NumIntermediates); 726 for (unsigned i = 0; i != NumIntermediates; ++i) { 727 if (IntermediateVT.isVector()) { 728 // This does something sensible for scalable vectors - see the 729 // definition of EXTRACT_SUBVECTOR for further details. 730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 731 Ops[i] = 732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 734 } else { 735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getVectorIdxConstant(i, DL)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!Register::isVirtualRegister(Regs[Part + i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 941 // Put the register class of the virtual registers in the flag word. That 942 // way, later passes can recompute register class constraints for inline 943 // assembly as well as normal instructions. 944 // Don't do this for tied operands that can use the regclass information 945 // from the def. 946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 949 } 950 951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 952 Ops.push_back(Res); 953 954 if (Code == InlineAsm::Kind_Clobber) { 955 // Clobbers should always have a 1:1 mapping with registers, and may 956 // reference registers that have illegal (e.g. vector) types. Hence, we 957 // shouldn't try to apply any sort of splitting logic to them. 958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 959 "No 1:1 mapping from clobbers to regs?"); 960 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 961 (void)SP; 962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 964 assert( 965 (Regs[I] != SP || 966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 967 "If we clobbered the stack pointer, MFI should know about it."); 968 } 969 return; 970 } 971 972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 974 MVT RegisterVT = RegVTs[Value]; 975 for (unsigned i = 0; i != NumRegs; ++i) { 976 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 977 unsigned TheReg = Regs[Reg++]; 978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 979 } 980 } 981 } 982 983 SmallVector<std::pair<unsigned, unsigned>, 4> 984 RegsForValue::getRegsAndSizes() const { 985 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 986 unsigned I = 0; 987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 988 unsigned RegCount = std::get<0>(CountAndVT); 989 MVT RegisterVT = std::get<1>(CountAndVT); 990 unsigned RegisterSize = RegisterVT.getSizeInBits(); 991 for (unsigned E = I + RegCount; I != E; ++I) 992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 993 } 994 return OutVec; 995 } 996 997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 998 const TargetLibraryInfo *li) { 999 AA = aa; 1000 GFI = gfi; 1001 LibInfo = li; 1002 DL = &DAG.getDataLayout(); 1003 Context = DAG.getContext(); 1004 LPadToCallSiteMap.clear(); 1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 PendingConstrainedFP.clear(); 1014 PendingConstrainedFPStrict.clear(); 1015 CurInst = nullptr; 1016 HasTailCall = false; 1017 SDNodeOrder = LowestSDNodeOrder; 1018 StatepointLowering.clear(); 1019 } 1020 1021 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1022 DanglingDebugInfoMap.clear(); 1023 } 1024 1025 // Update DAG root to include dependencies on Pending chains. 1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1027 SDValue Root = DAG.getRoot(); 1028 1029 if (Pending.empty()) 1030 return Root; 1031 1032 // Add current root to PendingChains, unless we already indirectly 1033 // depend on it. 1034 if (Root.getOpcode() != ISD::EntryToken) { 1035 unsigned i = 0, e = Pending.size(); 1036 for (; i != e; ++i) { 1037 assert(Pending[i].getNode()->getNumOperands() > 1); 1038 if (Pending[i].getNode()->getOperand(0) == Root) 1039 break; // Don't add the root if we already indirectly depend on it. 1040 } 1041 1042 if (i == e) 1043 Pending.push_back(Root); 1044 } 1045 1046 if (Pending.size() == 1) 1047 Root = Pending[0]; 1048 else 1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1050 1051 DAG.setRoot(Root); 1052 Pending.clear(); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getMemoryRoot() { 1057 return updateRoot(PendingLoads); 1058 } 1059 1060 SDValue SelectionDAGBuilder::getRoot() { 1061 // Chain up all pending constrained intrinsics together with all 1062 // pending loads, by simply appending them to PendingLoads and 1063 // then calling getMemoryRoot(). 1064 PendingLoads.reserve(PendingLoads.size() + 1065 PendingConstrainedFP.size() + 1066 PendingConstrainedFPStrict.size()); 1067 PendingLoads.append(PendingConstrainedFP.begin(), 1068 PendingConstrainedFP.end()); 1069 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1070 PendingConstrainedFPStrict.end()); 1071 PendingConstrainedFP.clear(); 1072 PendingConstrainedFPStrict.clear(); 1073 return getMemoryRoot(); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getControlRoot() { 1077 // We need to emit pending fpexcept.strict constrained intrinsics, 1078 // so append them to the PendingExports list. 1079 PendingExports.append(PendingConstrainedFPStrict.begin(), 1080 PendingConstrainedFPStrict.end()); 1081 PendingConstrainedFPStrict.clear(); 1082 return updateRoot(PendingExports); 1083 } 1084 1085 void SelectionDAGBuilder::visit(const Instruction &I) { 1086 // Set up outgoing PHI node register values before emitting the terminator. 1087 if (I.isTerminator()) 1088 HandlePHINodesInSuccessorBlocks(I.getParent(), true); 1089 1090 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1091 if (!isa<DbgInfoIntrinsic>(I)) 1092 ++SDNodeOrder; 1093 1094 CurInst = &I; 1095 1096 visit(I.getOpcode(), I); 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.second) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 Register InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 /// getNonRegisterValue - Return an SDValue for the given Value, but 1400 /// don't look in FuncInfo.ValueMap for a virtual register. 1401 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1402 // If we already have an SDValue for this value, use it. 1403 SDValue &N = NodeMap[V]; 1404 if (N.getNode()) { 1405 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1406 // Remove the debug location from the node as the node is about to be used 1407 // in a location which may differ from the original debug location. This 1408 // is relevant to Constant and ConstantFP nodes because they can appear 1409 // as constant expressions inside PHI nodes. 1410 N->setDebugLoc(DebugLoc()); 1411 } 1412 return N; 1413 } 1414 1415 // Otherwise create a new SDValue and remember it. 1416 SDValue Val = getValueImpl(V); 1417 NodeMap[V] = Val; 1418 resolveDanglingDebugInfo(V, Val); 1419 return Val; 1420 } 1421 1422 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1423 /// Create an SDValue for the given value. 1424 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1425 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1426 1427 if (const Constant *C = dyn_cast<Constant>(V)) { 1428 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1429 1430 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1431 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1432 1433 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1434 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1435 1436 if (isa<ConstantPointerNull>(C)) { 1437 unsigned AS = V->getType()->getPointerAddressSpace(); 1438 return DAG.getConstant(0, getCurSDLoc(), 1439 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1440 } 1441 1442 if (match(C, m_VScale(DAG.getDataLayout()))) 1443 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1444 1445 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1446 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1447 1448 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1449 return DAG.getUNDEF(VT); 1450 1451 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1452 visit(CE->getOpcode(), *CE); 1453 SDValue N1 = NodeMap[V]; 1454 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1455 return N1; 1456 } 1457 1458 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1459 SmallVector<SDValue, 4> Constants; 1460 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1461 OI != OE; ++OI) { 1462 SDNode *Val = getValue(*OI).getNode(); 1463 // If the operand is an empty aggregate, there are no values. 1464 if (!Val) continue; 1465 // Add each leaf value from the operand to the Constants list 1466 // to form a flattened list of all the values. 1467 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1468 Constants.push_back(SDValue(Val, i)); 1469 } 1470 1471 return DAG.getMergeValues(Constants, getCurSDLoc()); 1472 } 1473 1474 if (const ConstantDataSequential *CDS = 1475 dyn_cast<ConstantDataSequential>(C)) { 1476 SmallVector<SDValue, 4> Ops; 1477 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1478 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1479 // Add each leaf value from the operand to the Constants list 1480 // to form a flattened list of all the values. 1481 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1482 Ops.push_back(SDValue(Val, i)); 1483 } 1484 1485 if (isa<ArrayType>(CDS->getType())) 1486 return DAG.getMergeValues(Ops, getCurSDLoc()); 1487 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1488 } 1489 1490 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1491 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1492 "Unknown struct or array constant!"); 1493 1494 SmallVector<EVT, 4> ValueVTs; 1495 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1496 unsigned NumElts = ValueVTs.size(); 1497 if (NumElts == 0) 1498 return SDValue(); // empty struct 1499 SmallVector<SDValue, 4> Constants(NumElts); 1500 for (unsigned i = 0; i != NumElts; ++i) { 1501 EVT EltVT = ValueVTs[i]; 1502 if (isa<UndefValue>(C)) 1503 Constants[i] = DAG.getUNDEF(EltVT); 1504 else if (EltVT.isFloatingPoint()) 1505 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1506 else 1507 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1508 } 1509 1510 return DAG.getMergeValues(Constants, getCurSDLoc()); 1511 } 1512 1513 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1514 return DAG.getBlockAddress(BA, VT); 1515 1516 VectorType *VecTy = cast<VectorType>(V->getType()); 1517 1518 // Now that we know the number and type of the elements, get that number of 1519 // elements into the Ops array based on what kind of constant it is. 1520 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1521 SmallVector<SDValue, 16> Ops; 1522 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1523 for (unsigned i = 0; i != NumElements; ++i) 1524 Ops.push_back(getValue(CV->getOperand(i))); 1525 1526 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1527 } else if (isa<ConstantAggregateZero>(C)) { 1528 EVT EltVT = 1529 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1530 1531 SDValue Op; 1532 if (EltVT.isFloatingPoint()) 1533 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1534 else 1535 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1536 1537 if (isa<ScalableVectorType>(VecTy)) 1538 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1539 else { 1540 SmallVector<SDValue, 16> Ops; 1541 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 } 1545 llvm_unreachable("Unknown vector constant"); 1546 } 1547 1548 // If this is a static alloca, generate it as the frameindex instead of 1549 // computation. 1550 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1551 DenseMap<const AllocaInst*, int>::iterator SI = 1552 FuncInfo.StaticAllocaMap.find(AI); 1553 if (SI != FuncInfo.StaticAllocaMap.end()) 1554 return DAG.getFrameIndex(SI->second, 1555 TLI.getFrameIndexTy(DAG.getDataLayout())); 1556 } 1557 1558 // If this is an instruction which fast-isel has deferred, select it now. 1559 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1560 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1561 1562 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1563 Inst->getType(), None); 1564 SDValue Chain = DAG.getEntryNode(); 1565 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1566 } 1567 1568 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1569 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1570 } 1571 llvm_unreachable("Can't get register for value!"); 1572 } 1573 1574 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1575 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1576 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1577 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1578 bool IsSEH = isAsynchronousEHPersonality(Pers); 1579 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1580 if (!IsSEH) 1581 CatchPadMBB->setIsEHScopeEntry(); 1582 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1583 if (IsMSVCCXX || IsCoreCLR) 1584 CatchPadMBB->setIsEHFuncletEntry(); 1585 } 1586 1587 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1588 // Update machine-CFG edge. 1589 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1590 FuncInfo.MBB->addSuccessor(TargetMBB); 1591 1592 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1593 bool IsSEH = isAsynchronousEHPersonality(Pers); 1594 if (IsSEH) { 1595 // If this is not a fall-through branch or optimizations are switched off, 1596 // emit the branch. 1597 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1598 TM.getOptLevel() == CodeGenOpt::None) 1599 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1600 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1601 return; 1602 } 1603 1604 // Figure out the funclet membership for the catchret's successor. 1605 // This will be used by the FuncletLayout pass to determine how to order the 1606 // BB's. 1607 // A 'catchret' returns to the outer scope's color. 1608 Value *ParentPad = I.getCatchSwitchParentPad(); 1609 const BasicBlock *SuccessorColor; 1610 if (isa<ConstantTokenNone>(ParentPad)) 1611 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1612 else 1613 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1614 assert(SuccessorColor && "No parent funclet for catchret!"); 1615 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1616 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1617 1618 // Create the terminator node. 1619 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1620 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1621 DAG.getBasicBlock(SuccessorColorMBB)); 1622 DAG.setRoot(Ret); 1623 } 1624 1625 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1626 // Don't emit any special code for the cleanuppad instruction. It just marks 1627 // the start of an EH scope/funclet. 1628 FuncInfo.MBB->setIsEHScopeEntry(); 1629 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1630 if (Pers != EHPersonality::Wasm_CXX) { 1631 FuncInfo.MBB->setIsEHFuncletEntry(); 1632 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1633 } 1634 } 1635 1636 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1637 // the control flow always stops at the single catch pad, as it does for a 1638 // cleanup pad. In case the exception caught is not of the types the catch pad 1639 // catches, it will be rethrown by a rethrow. 1640 static void findWasmUnwindDestinations( 1641 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1642 BranchProbability Prob, 1643 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1644 &UnwindDests) { 1645 while (EHPadBB) { 1646 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1647 if (isa<CleanupPadInst>(Pad)) { 1648 // Stop on cleanup pads. 1649 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1650 UnwindDests.back().first->setIsEHScopeEntry(); 1651 break; 1652 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1653 // Add the catchpad handlers to the possible destinations. We don't 1654 // continue to the unwind destination of the catchswitch for wasm. 1655 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1656 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1657 UnwindDests.back().first->setIsEHScopeEntry(); 1658 } 1659 break; 1660 } else { 1661 continue; 1662 } 1663 } 1664 } 1665 1666 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1667 /// many places it could ultimately go. In the IR, we have a single unwind 1668 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1669 /// This function skips over imaginary basic blocks that hold catchswitch 1670 /// instructions, and finds all the "real" machine 1671 /// basic block destinations. As those destinations may not be successors of 1672 /// EHPadBB, here we also calculate the edge probability to those destinations. 1673 /// The passed-in Prob is the edge probability to EHPadBB. 1674 static void findUnwindDestinations( 1675 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1676 BranchProbability Prob, 1677 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1678 &UnwindDests) { 1679 EHPersonality Personality = 1680 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1681 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1682 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1683 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1684 bool IsSEH = isAsynchronousEHPersonality(Personality); 1685 1686 if (IsWasmCXX) { 1687 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1688 assert(UnwindDests.size() <= 1 && 1689 "There should be at most one unwind destination for wasm"); 1690 return; 1691 } 1692 1693 while (EHPadBB) { 1694 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1695 BasicBlock *NewEHPadBB = nullptr; 1696 if (isa<LandingPadInst>(Pad)) { 1697 // Stop on landingpads. They are not funclets. 1698 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1699 break; 1700 } else if (isa<CleanupPadInst>(Pad)) { 1701 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1702 // personalities. 1703 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1704 UnwindDests.back().first->setIsEHScopeEntry(); 1705 UnwindDests.back().first->setIsEHFuncletEntry(); 1706 break; 1707 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1708 // Add the catchpad handlers to the possible destinations. 1709 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1710 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1711 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1712 if (IsMSVCCXX || IsCoreCLR) 1713 UnwindDests.back().first->setIsEHFuncletEntry(); 1714 if (!IsSEH) 1715 UnwindDests.back().first->setIsEHScopeEntry(); 1716 } 1717 NewEHPadBB = CatchSwitch->getUnwindDest(); 1718 } else { 1719 continue; 1720 } 1721 1722 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1723 if (BPI && NewEHPadBB) 1724 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1725 EHPadBB = NewEHPadBB; 1726 } 1727 } 1728 1729 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1730 // Update successor info. 1731 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1732 auto UnwindDest = I.getUnwindDest(); 1733 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1734 BranchProbability UnwindDestProb = 1735 (BPI && UnwindDest) 1736 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1737 : BranchProbability::getZero(); 1738 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1739 for (auto &UnwindDest : UnwindDests) { 1740 UnwindDest.first->setIsEHPad(); 1741 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1742 } 1743 FuncInfo.MBB->normalizeSuccProbs(); 1744 1745 // Create the terminator node. 1746 SDValue Ret = 1747 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1748 DAG.setRoot(Ret); 1749 } 1750 1751 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1752 report_fatal_error("visitCatchSwitch not yet implemented!"); 1753 } 1754 1755 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1757 auto &DL = DAG.getDataLayout(); 1758 SDValue Chain = getControlRoot(); 1759 SmallVector<ISD::OutputArg, 8> Outs; 1760 SmallVector<SDValue, 8> OutVals; 1761 1762 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1763 // lower 1764 // 1765 // %val = call <ty> @llvm.experimental.deoptimize() 1766 // ret <ty> %val 1767 // 1768 // differently. 1769 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1770 LowerDeoptimizingReturn(); 1771 return; 1772 } 1773 1774 if (!FuncInfo.CanLowerReturn) { 1775 unsigned DemoteReg = FuncInfo.DemoteRegister; 1776 const Function *F = I.getParent()->getParent(); 1777 1778 // Emit a store of the return value through the virtual register. 1779 // Leave Outs empty so that LowerReturn won't try to load return 1780 // registers the usual way. 1781 SmallVector<EVT, 1> PtrValueVTs; 1782 ComputeValueVTs(TLI, DL, 1783 F->getReturnType()->getPointerTo( 1784 DAG.getDataLayout().getAllocaAddrSpace()), 1785 PtrValueVTs); 1786 1787 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1788 DemoteReg, PtrValueVTs[0]); 1789 SDValue RetOp = getValue(I.getOperand(0)); 1790 1791 SmallVector<EVT, 4> ValueVTs, MemVTs; 1792 SmallVector<uint64_t, 4> Offsets; 1793 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1794 &Offsets); 1795 unsigned NumValues = ValueVTs.size(); 1796 1797 SmallVector<SDValue, 4> Chains(NumValues); 1798 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1799 for (unsigned i = 0; i != NumValues; ++i) { 1800 // An aggregate return value cannot wrap around the address space, so 1801 // offsets to its parts don't wrap either. 1802 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1803 TypeSize::Fixed(Offsets[i])); 1804 1805 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1806 if (MemVTs[i] != ValueVTs[i]) 1807 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1808 Chains[i] = DAG.getStore( 1809 Chain, getCurSDLoc(), Val, 1810 // FIXME: better loc info would be nice. 1811 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1812 commonAlignment(BaseAlign, Offsets[i])); 1813 } 1814 1815 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1816 MVT::Other, Chains); 1817 } else if (I.getNumOperands() != 0) { 1818 SmallVector<EVT, 4> ValueVTs; 1819 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1820 unsigned NumValues = ValueVTs.size(); 1821 if (NumValues) { 1822 SDValue RetOp = getValue(I.getOperand(0)); 1823 1824 const Function *F = I.getParent()->getParent(); 1825 1826 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1827 I.getOperand(0)->getType(), F->getCallingConv(), 1828 /*IsVarArg*/ false); 1829 1830 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1831 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1832 Attribute::SExt)) 1833 ExtendKind = ISD::SIGN_EXTEND; 1834 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1835 Attribute::ZExt)) 1836 ExtendKind = ISD::ZERO_EXTEND; 1837 1838 LLVMContext &Context = F->getContext(); 1839 bool RetInReg = F->getAttributes().hasAttribute( 1840 AttributeList::ReturnIndex, Attribute::InReg); 1841 1842 for (unsigned j = 0; j != NumValues; ++j) { 1843 EVT VT = ValueVTs[j]; 1844 1845 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1846 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1847 1848 CallingConv::ID CC = F->getCallingConv(); 1849 1850 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1851 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1852 SmallVector<SDValue, 4> Parts(NumParts); 1853 getCopyToParts(DAG, getCurSDLoc(), 1854 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1855 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1856 1857 // 'inreg' on function refers to return value 1858 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1859 if (RetInReg) 1860 Flags.setInReg(); 1861 1862 if (I.getOperand(0)->getType()->isPointerTy()) { 1863 Flags.setPointer(); 1864 Flags.setPointerAddrSpace( 1865 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1866 } 1867 1868 if (NeedsRegBlock) { 1869 Flags.setInConsecutiveRegs(); 1870 if (j == NumValues - 1) 1871 Flags.setInConsecutiveRegsLast(); 1872 } 1873 1874 // Propagate extension type if any 1875 if (ExtendKind == ISD::SIGN_EXTEND) 1876 Flags.setSExt(); 1877 else if (ExtendKind == ISD::ZERO_EXTEND) 1878 Flags.setZExt(); 1879 1880 for (unsigned i = 0; i < NumParts; ++i) { 1881 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1882 VT, /*isfixed=*/true, 0, 0)); 1883 OutVals.push_back(Parts[i]); 1884 } 1885 } 1886 } 1887 } 1888 1889 // Push in swifterror virtual register as the last element of Outs. This makes 1890 // sure swifterror virtual register will be returned in the swifterror 1891 // physical register. 1892 const Function *F = I.getParent()->getParent(); 1893 if (TLI.supportSwiftError() && 1894 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1895 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1896 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1897 Flags.setSwiftError(); 1898 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1899 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1900 true /*isfixed*/, 1 /*origidx*/, 1901 0 /*partOffs*/)); 1902 // Create SDNode for the swifterror virtual register. 1903 OutVals.push_back( 1904 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1905 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1906 EVT(TLI.getPointerTy(DL)))); 1907 } 1908 1909 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1910 CallingConv::ID CallConv = 1911 DAG.getMachineFunction().getFunction().getCallingConv(); 1912 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1913 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1914 1915 // Verify that the target's LowerReturn behaved as expected. 1916 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1917 "LowerReturn didn't return a valid chain!"); 1918 1919 // Update the DAG with the new chain value resulting from return lowering. 1920 DAG.setRoot(Chain); 1921 } 1922 1923 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1924 /// created for it, emit nodes to copy the value into the virtual 1925 /// registers. 1926 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1927 // Skip empty types 1928 if (V->getType()->isEmptyTy()) 1929 return; 1930 1931 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1932 if (VMI != FuncInfo.ValueMap.end()) { 1933 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1934 CopyValueToVirtualRegister(V, VMI->second); 1935 } 1936 } 1937 1938 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1939 /// the current basic block, add it to ValueMap now so that we'll get a 1940 /// CopyTo/FromReg. 1941 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1942 // No need to export constants. 1943 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1944 1945 // Already exported? 1946 if (FuncInfo.isExportedInst(V)) return; 1947 1948 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1949 CopyValueToVirtualRegister(V, Reg); 1950 } 1951 1952 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1953 const BasicBlock *FromBB) { 1954 // The operands of the setcc have to be in this block. We don't know 1955 // how to export them from some other block. 1956 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1957 // Can export from current BB. 1958 if (VI->getParent() == FromBB) 1959 return true; 1960 1961 // Is already exported, noop. 1962 return FuncInfo.isExportedInst(V); 1963 } 1964 1965 // If this is an argument, we can export it if the BB is the entry block or 1966 // if it is already exported. 1967 if (isa<Argument>(V)) { 1968 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1969 return true; 1970 1971 // Otherwise, can only export this if it is already exported. 1972 return FuncInfo.isExportedInst(V); 1973 } 1974 1975 // Otherwise, constants can always be exported. 1976 return true; 1977 } 1978 1979 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1980 BranchProbability 1981 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1982 const MachineBasicBlock *Dst) const { 1983 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1984 const BasicBlock *SrcBB = Src->getBasicBlock(); 1985 const BasicBlock *DstBB = Dst->getBasicBlock(); 1986 if (!BPI) { 1987 // If BPI is not available, set the default probability as 1 / N, where N is 1988 // the number of successors. 1989 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1990 return BranchProbability(1, SuccSize); 1991 } 1992 return BPI->getEdgeProbability(SrcBB, DstBB); 1993 } 1994 1995 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1996 MachineBasicBlock *Dst, 1997 BranchProbability Prob) { 1998 if (!FuncInfo.BPI) 1999 Src->addSuccessorWithoutProb(Dst); 2000 else { 2001 if (Prob.isUnknown()) 2002 Prob = getEdgeProbability(Src, Dst); 2003 Src->addSuccessor(Dst, Prob); 2004 } 2005 } 2006 2007 static bool InBlock(const Value *V, const BasicBlock *BB) { 2008 if (const Instruction *I = dyn_cast<Instruction>(V)) 2009 return I->getParent() == BB; 2010 return true; 2011 } 2012 2013 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2014 /// This function emits a branch and is used at the leaves of an OR or an 2015 /// AND operator tree. 2016 void 2017 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2018 MachineBasicBlock *TBB, 2019 MachineBasicBlock *FBB, 2020 MachineBasicBlock *CurBB, 2021 MachineBasicBlock *SwitchBB, 2022 BranchProbability TProb, 2023 BranchProbability FProb, 2024 bool InvertCond) { 2025 const BasicBlock *BB = CurBB->getBasicBlock(); 2026 2027 // If the leaf of the tree is a comparison, merge the condition into 2028 // the caseblock. 2029 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2030 // The operands of the cmp have to be in this block. We don't know 2031 // how to export them from some other block. If this is the first block 2032 // of the sequence, no exporting is needed. 2033 if (CurBB == SwitchBB || 2034 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2035 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2036 ISD::CondCode Condition; 2037 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2038 ICmpInst::Predicate Pred = 2039 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2040 Condition = getICmpCondCode(Pred); 2041 } else { 2042 const FCmpInst *FC = cast<FCmpInst>(Cond); 2043 FCmpInst::Predicate Pred = 2044 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2045 Condition = getFCmpCondCode(Pred); 2046 if (TM.Options.NoNaNsFPMath) 2047 Condition = getFCmpCodeWithoutNaN(Condition); 2048 } 2049 2050 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2051 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2052 SL->SwitchCases.push_back(CB); 2053 return; 2054 } 2055 } 2056 2057 // Create a CaseBlock record representing this branch. 2058 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2059 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2060 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2061 SL->SwitchCases.push_back(CB); 2062 } 2063 2064 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2065 MachineBasicBlock *TBB, 2066 MachineBasicBlock *FBB, 2067 MachineBasicBlock *CurBB, 2068 MachineBasicBlock *SwitchBB, 2069 Instruction::BinaryOps Opc, 2070 BranchProbability TProb, 2071 BranchProbability FProb, 2072 bool InvertCond) { 2073 // Skip over not part of the tree and remember to invert op and operands at 2074 // next level. 2075 Value *NotCond; 2076 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2077 InBlock(NotCond, CurBB->getBasicBlock())) { 2078 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2079 !InvertCond); 2080 return; 2081 } 2082 2083 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2084 // Compute the effective opcode for Cond, taking into account whether it needs 2085 // to be inverted, e.g. 2086 // and (not (or A, B)), C 2087 // gets lowered as 2088 // and (and (not A, not B), C) 2089 unsigned BOpc = 0; 2090 if (BOp) { 2091 BOpc = BOp->getOpcode(); 2092 if (InvertCond) { 2093 if (BOpc == Instruction::And) 2094 BOpc = Instruction::Or; 2095 else if (BOpc == Instruction::Or) 2096 BOpc = Instruction::And; 2097 } 2098 } 2099 2100 // If this node is not part of the or/and tree, emit it as a branch. 2101 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2102 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2103 BOp->getParent() != CurBB->getBasicBlock() || 2104 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2105 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2106 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2107 TProb, FProb, InvertCond); 2108 return; 2109 } 2110 2111 // Create TmpBB after CurBB. 2112 MachineFunction::iterator BBI(CurBB); 2113 MachineFunction &MF = DAG.getMachineFunction(); 2114 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2115 CurBB->getParent()->insert(++BBI, TmpBB); 2116 2117 if (Opc == Instruction::Or) { 2118 // Codegen X | Y as: 2119 // BB1: 2120 // jmp_if_X TBB 2121 // jmp TmpBB 2122 // TmpBB: 2123 // jmp_if_Y TBB 2124 // jmp FBB 2125 // 2126 2127 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2128 // The requirement is that 2129 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2130 // = TrueProb for original BB. 2131 // Assuming the original probabilities are A and B, one choice is to set 2132 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2133 // A/(1+B) and 2B/(1+B). This choice assumes that 2134 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2135 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2136 // TmpBB, but the math is more complicated. 2137 2138 auto NewTrueProb = TProb / 2; 2139 auto NewFalseProb = TProb / 2 + FProb; 2140 // Emit the LHS condition. 2141 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2142 NewTrueProb, NewFalseProb, InvertCond); 2143 2144 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2145 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2146 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2147 // Emit the RHS condition into TmpBB. 2148 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2149 Probs[0], Probs[1], InvertCond); 2150 } else { 2151 assert(Opc == Instruction::And && "Unknown merge op!"); 2152 // Codegen X & Y as: 2153 // BB1: 2154 // jmp_if_X TmpBB 2155 // jmp FBB 2156 // TmpBB: 2157 // jmp_if_Y TBB 2158 // jmp FBB 2159 // 2160 // This requires creation of TmpBB after CurBB. 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2165 // = FalseProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2168 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2169 // TrueProb for BB1 * FalseProb for TmpBB. 2170 2171 auto NewTrueProb = TProb + FProb / 2; 2172 auto NewFalseProb = FProb / 2; 2173 // Emit the LHS condition. 2174 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2175 NewTrueProb, NewFalseProb, InvertCond); 2176 2177 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2178 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2179 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2180 // Emit the RHS condition into TmpBB. 2181 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2182 Probs[0], Probs[1], InvertCond); 2183 } 2184 } 2185 2186 /// If the set of cases should be emitted as a series of branches, return true. 2187 /// If we should emit this as a bunch of and/or'd together conditions, return 2188 /// false. 2189 bool 2190 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2191 if (Cases.size() != 2) return true; 2192 2193 // If this is two comparisons of the same values or'd or and'd together, they 2194 // will get folded into a single comparison, so don't emit two blocks. 2195 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2196 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2197 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2198 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2199 return false; 2200 } 2201 2202 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2203 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2204 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2205 Cases[0].CC == Cases[1].CC && 2206 isa<Constant>(Cases[0].CmpRHS) && 2207 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2208 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2209 return false; 2210 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2211 return false; 2212 } 2213 2214 return true; 2215 } 2216 2217 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2218 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2219 2220 // Update machine-CFG edges. 2221 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2222 2223 if (I.isUnconditional()) { 2224 // Update machine-CFG edges. 2225 BrMBB->addSuccessor(Succ0MBB); 2226 2227 // If this is not a fall-through branch or optimizations are switched off, 2228 // emit the branch. 2229 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2230 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2231 MVT::Other, getControlRoot(), 2232 DAG.getBasicBlock(Succ0MBB))); 2233 2234 return; 2235 } 2236 2237 // If this condition is one of the special cases we handle, do special stuff 2238 // now. 2239 const Value *CondVal = I.getCondition(); 2240 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2241 2242 // If this is a series of conditions that are or'd or and'd together, emit 2243 // this as a sequence of branches instead of setcc's with and/or operations. 2244 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2245 // unpredictable branches, and vector extracts because those jumps are likely 2246 // expensive for any target), this should improve performance. 2247 // For example, instead of something like: 2248 // cmp A, B 2249 // C = seteq 2250 // cmp D, E 2251 // F = setle 2252 // or C, F 2253 // jnz foo 2254 // Emit: 2255 // cmp A, B 2256 // je foo 2257 // cmp D, E 2258 // jle foo 2259 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2260 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2261 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1); 2262 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2263 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2264 (Opcode == Instruction::And || Opcode == Instruction::Or) && 2265 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2266 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2267 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2268 Opcode, 2269 getEdgeProbability(BrMBB, Succ0MBB), 2270 getEdgeProbability(BrMBB, Succ1MBB), 2271 /*InvertCond=*/false); 2272 // If the compares in later blocks need to use values not currently 2273 // exported from this block, export them now. This block should always 2274 // be the first entry. 2275 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2276 2277 // Allow some cases to be rejected. 2278 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2279 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2280 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2282 } 2283 2284 // Emit the branch for this block. 2285 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2286 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2287 return; 2288 } 2289 2290 // Okay, we decided not to do this, remove any inserted MBB's and clear 2291 // SwitchCases. 2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2293 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2294 2295 SL->SwitchCases.clear(); 2296 } 2297 } 2298 2299 // Create a CaseBlock record representing this branch. 2300 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2301 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2302 2303 // Use visitSwitchCase to actually insert the fast branch sequence for this 2304 // cond branch. 2305 visitSwitchCase(CB, BrMBB); 2306 } 2307 2308 /// visitSwitchCase - Emits the necessary code to represent a single node in 2309 /// the binary search tree resulting from lowering a switch instruction. 2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2311 MachineBasicBlock *SwitchBB) { 2312 SDValue Cond; 2313 SDValue CondLHS = getValue(CB.CmpLHS); 2314 SDLoc dl = CB.DL; 2315 2316 if (CB.CC == ISD::SETTRUE) { 2317 // Branch or fall through to TrueBB. 2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2319 SwitchBB->normalizeSuccProbs(); 2320 if (CB.TrueBB != NextBlock(SwitchBB)) { 2321 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2322 DAG.getBasicBlock(CB.TrueBB))); 2323 } 2324 return; 2325 } 2326 2327 auto &TLI = DAG.getTargetLoweringInfo(); 2328 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2329 2330 // Build the setcc now. 2331 if (!CB.CmpMHS) { 2332 // Fold "(X == true)" to X and "(X == false)" to !X to 2333 // handle common cases produced by branch lowering. 2334 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2335 CB.CC == ISD::SETEQ) 2336 Cond = CondLHS; 2337 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2338 CB.CC == ISD::SETEQ) { 2339 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2340 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2341 } else { 2342 SDValue CondRHS = getValue(CB.CmpRHS); 2343 2344 // If a pointer's DAG type is larger than its memory type then the DAG 2345 // values are zero-extended. This breaks signed comparisons so truncate 2346 // back to the underlying type before doing the compare. 2347 if (CondLHS.getValueType() != MemVT) { 2348 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2349 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2350 } 2351 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2352 } 2353 } else { 2354 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2355 2356 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2357 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2358 2359 SDValue CmpOp = getValue(CB.CmpMHS); 2360 EVT VT = CmpOp.getValueType(); 2361 2362 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2363 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2364 ISD::SETLE); 2365 } else { 2366 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2367 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2368 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2369 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2370 } 2371 } 2372 2373 // Update successor info 2374 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2375 // TrueBB and FalseBB are always different unless the incoming IR is 2376 // degenerate. This only happens when running llc on weird IR. 2377 if (CB.TrueBB != CB.FalseBB) 2378 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2379 SwitchBB->normalizeSuccProbs(); 2380 2381 // If the lhs block is the next block, invert the condition so that we can 2382 // fall through to the lhs instead of the rhs block. 2383 if (CB.TrueBB == NextBlock(SwitchBB)) { 2384 std::swap(CB.TrueBB, CB.FalseBB); 2385 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2386 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2387 } 2388 2389 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2390 MVT::Other, getControlRoot(), Cond, 2391 DAG.getBasicBlock(CB.TrueBB)); 2392 2393 // Insert the false branch. Do this even if it's a fall through branch, 2394 // this makes it easier to do DAG optimizations which require inverting 2395 // the branch condition. 2396 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2397 DAG.getBasicBlock(CB.FalseBB)); 2398 2399 DAG.setRoot(BrCond); 2400 } 2401 2402 /// visitJumpTable - Emit JumpTable node in the current MBB 2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2404 // Emit the code for the jump table 2405 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2406 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2407 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2408 JT.Reg, PTy); 2409 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2410 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2411 MVT::Other, Index.getValue(1), 2412 Table, Index); 2413 DAG.setRoot(BrJumpTable); 2414 } 2415 2416 /// visitJumpTableHeader - This function emits necessary code to produce index 2417 /// in the JumpTable from switch case. 2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2419 JumpTableHeader &JTH, 2420 MachineBasicBlock *SwitchBB) { 2421 SDLoc dl = getCurSDLoc(); 2422 2423 // Subtract the lowest switch case value from the value being switched on. 2424 SDValue SwitchOp = getValue(JTH.SValue); 2425 EVT VT = SwitchOp.getValueType(); 2426 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2427 DAG.getConstant(JTH.First, dl, VT)); 2428 2429 // The SDNode we just created, which holds the value being switched on minus 2430 // the smallest case value, needs to be copied to a virtual register so it 2431 // can be used as an index into the jump table in a subsequent basic block. 2432 // This value may be smaller or larger than the target's pointer type, and 2433 // therefore require extension or truncating. 2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2435 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2436 2437 unsigned JumpTableReg = 2438 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2439 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2440 JumpTableReg, SwitchOp); 2441 JT.Reg = JumpTableReg; 2442 2443 if (!JTH.OmitRangeCheck) { 2444 // Emit the range check for the jump table, and branch to the default block 2445 // for the switch statement if the value being switched on exceeds the 2446 // largest case in the switch. 2447 SDValue CMP = DAG.getSetCC( 2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2449 Sub.getValueType()), 2450 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2451 2452 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2453 MVT::Other, CopyTo, CMP, 2454 DAG.getBasicBlock(JT.Default)); 2455 2456 // Avoid emitting unnecessary branches to the next block. 2457 if (JT.MBB != NextBlock(SwitchBB)) 2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2459 DAG.getBasicBlock(JT.MBB)); 2460 2461 DAG.setRoot(BrCond); 2462 } else { 2463 // Avoid emitting unnecessary branches to the next block. 2464 if (JT.MBB != NextBlock(SwitchBB)) 2465 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2466 DAG.getBasicBlock(JT.MBB))); 2467 else 2468 DAG.setRoot(CopyTo); 2469 } 2470 } 2471 2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2473 /// variable if there exists one. 2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2475 SDValue &Chain) { 2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2478 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2479 MachineFunction &MF = DAG.getMachineFunction(); 2480 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2481 MachineSDNode *Node = 2482 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2483 if (Global) { 2484 MachinePointerInfo MPInfo(Global); 2485 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2486 MachineMemOperand::MODereferenceable; 2487 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2488 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2489 DAG.setNodeMemRefs(Node, {MemRef}); 2490 } 2491 if (PtrTy != PtrMemTy) 2492 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2493 return SDValue(Node, 0); 2494 } 2495 2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2497 /// tail spliced into a stack protector check success bb. 2498 /// 2499 /// For a high level explanation of how this fits into the stack protector 2500 /// generation see the comment on the declaration of class 2501 /// StackProtectorDescriptor. 2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2503 MachineBasicBlock *ParentBB) { 2504 2505 // First create the loads to the guard/stack slot for the comparison. 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 2510 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2511 int FI = MFI.getStackProtectorIndex(); 2512 2513 SDValue Guard; 2514 SDLoc dl = getCurSDLoc(); 2515 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2516 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2517 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2518 2519 // Generate code to load the content of the guard slot. 2520 SDValue GuardVal = DAG.getLoad( 2521 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2523 MachineMemOperand::MOVolatile); 2524 2525 if (TLI.useStackGuardXorFP()) 2526 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2527 2528 // Retrieve guard check function, nullptr if instrumentation is inlined. 2529 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2530 // The target provides a guard check function to validate the guard value. 2531 // Generate a call to that function with the content of the guard slot as 2532 // argument. 2533 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2534 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2535 2536 TargetLowering::ArgListTy Args; 2537 TargetLowering::ArgListEntry Entry; 2538 Entry.Node = GuardVal; 2539 Entry.Ty = FnTy->getParamType(0); 2540 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2541 Entry.IsInReg = true; 2542 Args.push_back(Entry); 2543 2544 TargetLowering::CallLoweringInfo CLI(DAG); 2545 CLI.setDebugLoc(getCurSDLoc()) 2546 .setChain(DAG.getEntryNode()) 2547 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2548 getValue(GuardCheckFn), std::move(Args)); 2549 2550 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2551 DAG.setRoot(Result.second); 2552 return; 2553 } 2554 2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2556 // Otherwise, emit a volatile load to retrieve the stack guard value. 2557 SDValue Chain = DAG.getEntryNode(); 2558 if (TLI.useLoadStackGuardNode()) { 2559 Guard = getLoadStackGuard(DAG, dl, Chain); 2560 } else { 2561 const Value *IRGuard = TLI.getSDagStackGuard(M); 2562 SDValue GuardPtr = getValue(IRGuard); 2563 2564 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2565 MachinePointerInfo(IRGuard, 0), Align, 2566 MachineMemOperand::MOVolatile); 2567 } 2568 2569 // Perform the comparison via a getsetcc. 2570 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2571 *DAG.getContext(), 2572 Guard.getValueType()), 2573 Guard, GuardVal, ISD::SETNE); 2574 2575 // If the guard/stackslot do not equal, branch to failure MBB. 2576 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2577 MVT::Other, GuardVal.getOperand(0), 2578 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2579 // Otherwise branch to success MBB. 2580 SDValue Br = DAG.getNode(ISD::BR, dl, 2581 MVT::Other, BrCond, 2582 DAG.getBasicBlock(SPD.getSuccessMBB())); 2583 2584 DAG.setRoot(Br); 2585 } 2586 2587 /// Codegen the failure basic block for a stack protector check. 2588 /// 2589 /// A failure stack protector machine basic block consists simply of a call to 2590 /// __stack_chk_fail(). 2591 /// 2592 /// For a high level explanation of how this fits into the stack protector 2593 /// generation see the comment on the declaration of class 2594 /// StackProtectorDescriptor. 2595 void 2596 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2597 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2598 TargetLowering::MakeLibCallOptions CallOptions; 2599 CallOptions.setDiscardResult(true); 2600 SDValue Chain = 2601 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2602 None, CallOptions, getCurSDLoc()).second; 2603 // On PS4, the "return address" must still be within the calling function, 2604 // even if it's at the very end, so emit an explicit TRAP here. 2605 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2606 if (TM.getTargetTriple().isPS4CPU()) 2607 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2608 // WebAssembly needs an unreachable instruction after a non-returning call, 2609 // because the function return type can be different from __stack_chk_fail's 2610 // return type (void). 2611 if (TM.getTargetTriple().isWasm()) 2612 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2613 2614 DAG.setRoot(Chain); 2615 } 2616 2617 /// visitBitTestHeader - This function emits necessary code to produce value 2618 /// suitable for "bit tests" 2619 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2620 MachineBasicBlock *SwitchBB) { 2621 SDLoc dl = getCurSDLoc(); 2622 2623 // Subtract the minimum value. 2624 SDValue SwitchOp = getValue(B.SValue); 2625 EVT VT = SwitchOp.getValueType(); 2626 SDValue RangeSub = 2627 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2628 2629 // Determine the type of the test operands. 2630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2631 bool UsePtrType = false; 2632 if (!TLI.isTypeLegal(VT)) { 2633 UsePtrType = true; 2634 } else { 2635 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2636 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2637 // Switch table case range are encoded into series of masks. 2638 // Just use pointer type, it's guaranteed to fit. 2639 UsePtrType = true; 2640 break; 2641 } 2642 } 2643 SDValue Sub = RangeSub; 2644 if (UsePtrType) { 2645 VT = TLI.getPointerTy(DAG.getDataLayout()); 2646 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2647 } 2648 2649 B.RegVT = VT.getSimpleVT(); 2650 B.Reg = FuncInfo.CreateReg(B.RegVT); 2651 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2652 2653 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2654 2655 if (!B.OmitRangeCheck) 2656 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2657 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2658 SwitchBB->normalizeSuccProbs(); 2659 2660 SDValue Root = CopyTo; 2661 if (!B.OmitRangeCheck) { 2662 // Conditional branch to the default block. 2663 SDValue RangeCmp = DAG.getSetCC(dl, 2664 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2665 RangeSub.getValueType()), 2666 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2667 ISD::SETUGT); 2668 2669 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2670 DAG.getBasicBlock(B.Default)); 2671 } 2672 2673 // Avoid emitting unnecessary branches to the next block. 2674 if (MBB != NextBlock(SwitchBB)) 2675 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2676 2677 DAG.setRoot(Root); 2678 } 2679 2680 /// visitBitTestCase - this function produces one "bit test" 2681 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2682 MachineBasicBlock* NextMBB, 2683 BranchProbability BranchProbToNext, 2684 unsigned Reg, 2685 BitTestCase &B, 2686 MachineBasicBlock *SwitchBB) { 2687 SDLoc dl = getCurSDLoc(); 2688 MVT VT = BB.RegVT; 2689 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2690 SDValue Cmp; 2691 unsigned PopCount = countPopulation(B.Mask); 2692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2693 if (PopCount == 1) { 2694 // Testing for a single bit; just compare the shift count with what it 2695 // would need to be to shift a 1 bit in that position. 2696 Cmp = DAG.getSetCC( 2697 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2698 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2699 ISD::SETEQ); 2700 } else if (PopCount == BB.Range) { 2701 // There is only one zero bit in the range, test for it directly. 2702 Cmp = DAG.getSetCC( 2703 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2704 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2705 ISD::SETNE); 2706 } else { 2707 // Make desired shift 2708 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2709 DAG.getConstant(1, dl, VT), ShiftOp); 2710 2711 // Emit bit tests and jumps 2712 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2713 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2714 Cmp = DAG.getSetCC( 2715 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2716 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2717 } 2718 2719 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2720 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2721 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2722 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2723 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2724 // one as they are relative probabilities (and thus work more like weights), 2725 // and hence we need to normalize them to let the sum of them become one. 2726 SwitchBB->normalizeSuccProbs(); 2727 2728 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2729 MVT::Other, getControlRoot(), 2730 Cmp, DAG.getBasicBlock(B.TargetBB)); 2731 2732 // Avoid emitting unnecessary branches to the next block. 2733 if (NextMBB != NextBlock(SwitchBB)) 2734 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2735 DAG.getBasicBlock(NextMBB)); 2736 2737 DAG.setRoot(BrAnd); 2738 } 2739 2740 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2741 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2742 2743 // Retrieve successors. Look through artificial IR level blocks like 2744 // catchswitch for successors. 2745 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2746 const BasicBlock *EHPadBB = I.getSuccessor(1); 2747 2748 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2749 // have to do anything here to lower funclet bundles. 2750 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2751 LLVMContext::OB_gc_transition, 2752 LLVMContext::OB_gc_live, 2753 LLVMContext::OB_funclet, 2754 LLVMContext::OB_cfguardtarget}) && 2755 "Cannot lower invokes with arbitrary operand bundles yet!"); 2756 2757 const Value *Callee(I.getCalledOperand()); 2758 const Function *Fn = dyn_cast<Function>(Callee); 2759 if (isa<InlineAsm>(Callee)) 2760 visitInlineAsm(I); 2761 else if (Fn && Fn->isIntrinsic()) { 2762 switch (Fn->getIntrinsicID()) { 2763 default: 2764 llvm_unreachable("Cannot invoke this intrinsic"); 2765 case Intrinsic::donothing: 2766 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2767 break; 2768 case Intrinsic::experimental_patchpoint_void: 2769 case Intrinsic::experimental_patchpoint_i64: 2770 visitPatchpoint(I, EHPadBB); 2771 break; 2772 case Intrinsic::experimental_gc_statepoint: 2773 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2774 break; 2775 case Intrinsic::wasm_rethrow_in_catch: { 2776 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2777 // special because it can be invoked, so we manually lower it to a DAG 2778 // node here. 2779 SmallVector<SDValue, 8> Ops; 2780 Ops.push_back(getRoot()); // inchain 2781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2782 Ops.push_back( 2783 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2784 TLI.getPointerTy(DAG.getDataLayout()))); 2785 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2786 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2787 break; 2788 } 2789 } 2790 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2791 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2792 // Eventually we will support lowering the @llvm.experimental.deoptimize 2793 // intrinsic, and right now there are no plans to support other intrinsics 2794 // with deopt state. 2795 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2796 } else { 2797 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2798 } 2799 2800 // If the value of the invoke is used outside of its defining block, make it 2801 // available as a virtual register. 2802 // We already took care of the exported value for the statepoint instruction 2803 // during call to the LowerStatepoint. 2804 if (!isa<GCStatepointInst>(I)) { 2805 CopyToExportRegsIfNeeded(&I); 2806 } 2807 2808 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2809 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2810 BranchProbability EHPadBBProb = 2811 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2812 : BranchProbability::getZero(); 2813 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2814 2815 // Update successor info. 2816 addSuccessorWithProb(InvokeMBB, Return); 2817 for (auto &UnwindDest : UnwindDests) { 2818 UnwindDest.first->setIsEHPad(); 2819 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2820 } 2821 InvokeMBB->normalizeSuccProbs(); 2822 2823 // Drop into normal successor. 2824 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2825 DAG.getBasicBlock(Return))); 2826 } 2827 2828 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2829 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2830 2831 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2832 // have to do anything here to lower funclet bundles. 2833 assert(!I.hasOperandBundlesOtherThan( 2834 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2835 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2836 2837 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2838 visitInlineAsm(I); 2839 CopyToExportRegsIfNeeded(&I); 2840 2841 // Set up outgoing PHI node register values before emitting the branch. 2842 HandlePHINodesInSuccessorBlocks(I.getParent(), false); 2843 2844 // Retrieve successors. 2845 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2846 2847 // Update successor info. 2848 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2849 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2850 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2851 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2852 Target->setIsInlineAsmBrIndirectTarget(); 2853 } 2854 CallBrMBB->normalizeSuccProbs(); 2855 2856 // Drop into default successor. 2857 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2858 MVT::Other, getControlRoot(), 2859 DAG.getBasicBlock(Return))); 2860 } 2861 2862 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2863 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2864 } 2865 2866 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2867 assert(FuncInfo.MBB->isEHPad() && 2868 "Call to landingpad not in landing pad!"); 2869 2870 // If there aren't registers to copy the values into (e.g., during SjLj 2871 // exceptions), then don't bother to create these DAG nodes. 2872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2873 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2874 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2875 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2876 return; 2877 2878 // If landingpad's return type is token type, we don't create DAG nodes 2879 // for its exception pointer and selector value. The extraction of exception 2880 // pointer or selector value from token type landingpads is not currently 2881 // supported. 2882 if (LP.getType()->isTokenTy()) 2883 return; 2884 2885 SmallVector<EVT, 2> ValueVTs; 2886 SDLoc dl = getCurSDLoc(); 2887 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2888 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2889 2890 // Get the two live-in registers as SDValues. The physregs have already been 2891 // copied into virtual registers. 2892 SDValue Ops[2]; 2893 if (FuncInfo.ExceptionPointerVirtReg) { 2894 Ops[0] = DAG.getZExtOrTrunc( 2895 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2896 FuncInfo.ExceptionPointerVirtReg, 2897 TLI.getPointerTy(DAG.getDataLayout())), 2898 dl, ValueVTs[0]); 2899 } else { 2900 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2901 } 2902 Ops[1] = DAG.getZExtOrTrunc( 2903 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2904 FuncInfo.ExceptionSelectorVirtReg, 2905 TLI.getPointerTy(DAG.getDataLayout())), 2906 dl, ValueVTs[1]); 2907 2908 // Merge into one. 2909 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2910 DAG.getVTList(ValueVTs), Ops); 2911 setValue(&LP, Res); 2912 } 2913 2914 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2915 MachineBasicBlock *Last) { 2916 // Update JTCases. 2917 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2918 if (SL->JTCases[i].first.HeaderBB == First) 2919 SL->JTCases[i].first.HeaderBB = Last; 2920 2921 // Update BitTestCases. 2922 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2923 if (SL->BitTestCases[i].Parent == First) 2924 SL->BitTestCases[i].Parent = Last; 2925 } 2926 2927 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2928 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2929 2930 // Update machine-CFG edges with unique successors. 2931 SmallSet<BasicBlock*, 32> Done; 2932 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2933 BasicBlock *BB = I.getSuccessor(i); 2934 bool Inserted = Done.insert(BB).second; 2935 if (!Inserted) 2936 continue; 2937 2938 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2939 addSuccessorWithProb(IndirectBrMBB, Succ); 2940 } 2941 IndirectBrMBB->normalizeSuccProbs(); 2942 2943 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2944 MVT::Other, getControlRoot(), 2945 getValue(I.getAddress()))); 2946 } 2947 2948 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2949 if (!DAG.getTarget().Options.TrapUnreachable) 2950 return; 2951 2952 // We may be able to ignore unreachable behind a noreturn call. 2953 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2954 const BasicBlock &BB = *I.getParent(); 2955 if (&I != &BB.front()) { 2956 BasicBlock::const_iterator PredI = 2957 std::prev(BasicBlock::const_iterator(&I)); 2958 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2959 if (Call->doesNotReturn()) 2960 return; 2961 } 2962 } 2963 } 2964 2965 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2966 } 2967 2968 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2969 SDNodeFlags Flags; 2970 2971 SDValue Op = getValue(I.getOperand(0)); 2972 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2973 Op, Flags); 2974 setValue(&I, UnNodeValue); 2975 } 2976 2977 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2978 SDNodeFlags Flags; 2979 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2980 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2981 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2982 } 2983 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 2984 Flags.setExact(ExactOp->isExact()); 2985 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 2986 Flags.copyFMF(*FPOp); 2987 2988 SDValue Op1 = getValue(I.getOperand(0)); 2989 SDValue Op2 = getValue(I.getOperand(1)); 2990 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2991 Op1, Op2, Flags); 2992 setValue(&I, BinNodeValue); 2993 } 2994 2995 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2996 SDValue Op1 = getValue(I.getOperand(0)); 2997 SDValue Op2 = getValue(I.getOperand(1)); 2998 2999 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3000 Op1.getValueType(), DAG.getDataLayout()); 3001 3002 // Coerce the shift amount to the right type if we can. 3003 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3004 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3005 unsigned Op2Size = Op2.getValueSizeInBits(); 3006 SDLoc DL = getCurSDLoc(); 3007 3008 // If the operand is smaller than the shift count type, promote it. 3009 if (ShiftSize > Op2Size) 3010 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3011 3012 // If the operand is larger than the shift count type but the shift 3013 // count type has enough bits to represent any shift value, truncate 3014 // it now. This is a common case and it exposes the truncate to 3015 // optimization early. 3016 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3017 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3018 // Otherwise we'll need to temporarily settle for some other convenient 3019 // type. Type legalization will make adjustments once the shiftee is split. 3020 else 3021 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3022 } 3023 3024 bool nuw = false; 3025 bool nsw = false; 3026 bool exact = false; 3027 3028 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3029 3030 if (const OverflowingBinaryOperator *OFBinOp = 3031 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3032 nuw = OFBinOp->hasNoUnsignedWrap(); 3033 nsw = OFBinOp->hasNoSignedWrap(); 3034 } 3035 if (const PossiblyExactOperator *ExactOp = 3036 dyn_cast<const PossiblyExactOperator>(&I)) 3037 exact = ExactOp->isExact(); 3038 } 3039 SDNodeFlags Flags; 3040 Flags.setExact(exact); 3041 Flags.setNoSignedWrap(nsw); 3042 Flags.setNoUnsignedWrap(nuw); 3043 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3044 Flags); 3045 setValue(&I, Res); 3046 } 3047 3048 void SelectionDAGBuilder::visitSDiv(const User &I) { 3049 SDValue Op1 = getValue(I.getOperand(0)); 3050 SDValue Op2 = getValue(I.getOperand(1)); 3051 3052 SDNodeFlags Flags; 3053 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3054 cast<PossiblyExactOperator>(&I)->isExact()); 3055 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3056 Op2, Flags)); 3057 } 3058 3059 void SelectionDAGBuilder::visitICmp(const User &I) { 3060 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3061 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3062 predicate = IC->getPredicate(); 3063 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3064 predicate = ICmpInst::Predicate(IC->getPredicate()); 3065 SDValue Op1 = getValue(I.getOperand(0)); 3066 SDValue Op2 = getValue(I.getOperand(1)); 3067 ISD::CondCode Opcode = getICmpCondCode(predicate); 3068 3069 auto &TLI = DAG.getTargetLoweringInfo(); 3070 EVT MemVT = 3071 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3072 3073 // If a pointer's DAG type is larger than its memory type then the DAG values 3074 // are zero-extended. This breaks signed comparisons so truncate back to the 3075 // underlying type before doing the compare. 3076 if (Op1.getValueType() != MemVT) { 3077 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3078 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3079 } 3080 3081 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3082 I.getType()); 3083 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3084 } 3085 3086 void SelectionDAGBuilder::visitFCmp(const User &I) { 3087 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3088 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3089 predicate = FC->getPredicate(); 3090 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3091 predicate = FCmpInst::Predicate(FC->getPredicate()); 3092 SDValue Op1 = getValue(I.getOperand(0)); 3093 SDValue Op2 = getValue(I.getOperand(1)); 3094 3095 ISD::CondCode Condition = getFCmpCondCode(predicate); 3096 auto *FPMO = cast<FPMathOperator>(&I); 3097 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3098 Condition = getFCmpCodeWithoutNaN(Condition); 3099 3100 SDNodeFlags Flags; 3101 Flags.copyFMF(*FPMO); 3102 3103 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3104 I.getType()); 3105 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition, Flags)); 3106 } 3107 3108 // Check if the condition of the select has one use or two users that are both 3109 // selects with the same condition. 3110 static bool hasOnlySelectUsers(const Value *Cond) { 3111 return llvm::all_of(Cond->users(), [](const Value *V) { 3112 return isa<SelectInst>(V); 3113 }); 3114 } 3115 3116 void SelectionDAGBuilder::visitSelect(const User &I) { 3117 SmallVector<EVT, 4> ValueVTs; 3118 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3119 ValueVTs); 3120 unsigned NumValues = ValueVTs.size(); 3121 if (NumValues == 0) return; 3122 3123 SmallVector<SDValue, 4> Values(NumValues); 3124 SDValue Cond = getValue(I.getOperand(0)); 3125 SDValue LHSVal = getValue(I.getOperand(1)); 3126 SDValue RHSVal = getValue(I.getOperand(2)); 3127 SmallVector<SDValue, 1> BaseOps(1, Cond); 3128 ISD::NodeType OpCode = 3129 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3130 3131 bool IsUnaryAbs = false; 3132 3133 SDNodeFlags Flags; 3134 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3135 Flags.copyFMF(*FPOp); 3136 3137 // Min/max matching is only viable if all output VTs are the same. 3138 if (is_splat(ValueVTs)) { 3139 EVT VT = ValueVTs[0]; 3140 LLVMContext &Ctx = *DAG.getContext(); 3141 auto &TLI = DAG.getTargetLoweringInfo(); 3142 3143 // We care about the legality of the operation after it has been type 3144 // legalized. 3145 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3146 VT = TLI.getTypeToTransformTo(Ctx, VT); 3147 3148 // If the vselect is legal, assume we want to leave this as a vector setcc + 3149 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3150 // min/max is legal on the scalar type. 3151 bool UseScalarMinMax = VT.isVector() && 3152 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3153 3154 Value *LHS, *RHS; 3155 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3156 ISD::NodeType Opc = ISD::DELETED_NODE; 3157 switch (SPR.Flavor) { 3158 case SPF_UMAX: Opc = ISD::UMAX; break; 3159 case SPF_UMIN: Opc = ISD::UMIN; break; 3160 case SPF_SMAX: Opc = ISD::SMAX; break; 3161 case SPF_SMIN: Opc = ISD::SMIN; break; 3162 case SPF_FMINNUM: 3163 switch (SPR.NaNBehavior) { 3164 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3165 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3166 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3167 case SPNB_RETURNS_ANY: { 3168 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3169 Opc = ISD::FMINNUM; 3170 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3171 Opc = ISD::FMINIMUM; 3172 else if (UseScalarMinMax) 3173 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3174 ISD::FMINNUM : ISD::FMINIMUM; 3175 break; 3176 } 3177 } 3178 break; 3179 case SPF_FMAXNUM: 3180 switch (SPR.NaNBehavior) { 3181 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3182 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3183 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3184 case SPNB_RETURNS_ANY: 3185 3186 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3187 Opc = ISD::FMAXNUM; 3188 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3189 Opc = ISD::FMAXIMUM; 3190 else if (UseScalarMinMax) 3191 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3192 ISD::FMAXNUM : ISD::FMAXIMUM; 3193 break; 3194 } 3195 break; 3196 case SPF_ABS: 3197 IsUnaryAbs = true; 3198 Opc = ISD::ABS; 3199 break; 3200 case SPF_NABS: 3201 // TODO: we need to produce sub(0, abs(X)). 3202 default: break; 3203 } 3204 3205 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3206 (TLI.isOperationLegalOrCustom(Opc, VT) || 3207 (UseScalarMinMax && 3208 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3209 // If the underlying comparison instruction is used by any other 3210 // instruction, the consumed instructions won't be destroyed, so it is 3211 // not profitable to convert to a min/max. 3212 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3213 OpCode = Opc; 3214 LHSVal = getValue(LHS); 3215 RHSVal = getValue(RHS); 3216 BaseOps.clear(); 3217 } 3218 3219 if (IsUnaryAbs) { 3220 OpCode = Opc; 3221 LHSVal = getValue(LHS); 3222 BaseOps.clear(); 3223 } 3224 } 3225 3226 if (IsUnaryAbs) { 3227 for (unsigned i = 0; i != NumValues; ++i) { 3228 Values[i] = 3229 DAG.getNode(OpCode, getCurSDLoc(), 3230 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3231 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3232 } 3233 } else { 3234 for (unsigned i = 0; i != NumValues; ++i) { 3235 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3236 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3237 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3238 Values[i] = DAG.getNode( 3239 OpCode, getCurSDLoc(), 3240 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3241 } 3242 } 3243 3244 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3245 DAG.getVTList(ValueVTs), Values)); 3246 } 3247 3248 void SelectionDAGBuilder::visitTrunc(const User &I) { 3249 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3250 SDValue N = getValue(I.getOperand(0)); 3251 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3252 I.getType()); 3253 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3254 } 3255 3256 void SelectionDAGBuilder::visitZExt(const User &I) { 3257 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3258 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3259 SDValue N = getValue(I.getOperand(0)); 3260 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3261 I.getType()); 3262 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3263 } 3264 3265 void SelectionDAGBuilder::visitSExt(const User &I) { 3266 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3267 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3268 SDValue N = getValue(I.getOperand(0)); 3269 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3270 I.getType()); 3271 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3272 } 3273 3274 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3275 // FPTrunc is never a no-op cast, no need to check 3276 SDValue N = getValue(I.getOperand(0)); 3277 SDLoc dl = getCurSDLoc(); 3278 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3279 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3280 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3281 DAG.getTargetConstant( 3282 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3283 } 3284 3285 void SelectionDAGBuilder::visitFPExt(const User &I) { 3286 // FPExt is never a no-op cast, no need to check 3287 SDValue N = getValue(I.getOperand(0)); 3288 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3289 I.getType()); 3290 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3291 } 3292 3293 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3294 // FPToUI is never a no-op cast, no need to check 3295 SDValue N = getValue(I.getOperand(0)); 3296 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3297 I.getType()); 3298 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3299 } 3300 3301 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3302 // FPToSI is never a no-op cast, no need to check 3303 SDValue N = getValue(I.getOperand(0)); 3304 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3305 I.getType()); 3306 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3307 } 3308 3309 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3310 // UIToFP is never a no-op cast, no need to check 3311 SDValue N = getValue(I.getOperand(0)); 3312 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3313 I.getType()); 3314 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3315 } 3316 3317 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3318 // SIToFP is never a no-op cast, no need to check 3319 SDValue N = getValue(I.getOperand(0)); 3320 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3321 I.getType()); 3322 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3323 } 3324 3325 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3326 // What to do depends on the size of the integer and the size of the pointer. 3327 // We can either truncate, zero extend, or no-op, accordingly. 3328 SDValue N = getValue(I.getOperand(0)); 3329 auto &TLI = DAG.getTargetLoweringInfo(); 3330 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3331 I.getType()); 3332 EVT PtrMemVT = 3333 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3334 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3335 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3336 setValue(&I, N); 3337 } 3338 3339 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3340 // What to do depends on the size of the integer and the size of the pointer. 3341 // We can either truncate, zero extend, or no-op, accordingly. 3342 SDValue N = getValue(I.getOperand(0)); 3343 auto &TLI = DAG.getTargetLoweringInfo(); 3344 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3345 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3346 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3347 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3348 setValue(&I, N); 3349 } 3350 3351 void SelectionDAGBuilder::visitBitCast(const User &I) { 3352 SDValue N = getValue(I.getOperand(0)); 3353 SDLoc dl = getCurSDLoc(); 3354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3355 I.getType()); 3356 3357 // BitCast assures us that source and destination are the same size so this is 3358 // either a BITCAST or a no-op. 3359 if (DestVT != N.getValueType()) 3360 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3361 DestVT, N)); // convert types. 3362 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3363 // might fold any kind of constant expression to an integer constant and that 3364 // is not what we are looking for. Only recognize a bitcast of a genuine 3365 // constant integer as an opaque constant. 3366 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3367 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3368 /*isOpaque*/true)); 3369 else 3370 setValue(&I, N); // noop cast. 3371 } 3372 3373 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3375 const Value *SV = I.getOperand(0); 3376 SDValue N = getValue(SV); 3377 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3378 3379 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3380 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3381 3382 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3383 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3384 3385 setValue(&I, N); 3386 } 3387 3388 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3389 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3390 SDValue InVec = getValue(I.getOperand(0)); 3391 SDValue InVal = getValue(I.getOperand(1)); 3392 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3393 TLI.getVectorIdxTy(DAG.getDataLayout())); 3394 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3395 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3396 InVec, InVal, InIdx)); 3397 } 3398 3399 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3401 SDValue InVec = getValue(I.getOperand(0)); 3402 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3403 TLI.getVectorIdxTy(DAG.getDataLayout())); 3404 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3405 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3406 InVec, InIdx)); 3407 } 3408 3409 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3410 SDValue Src1 = getValue(I.getOperand(0)); 3411 SDValue Src2 = getValue(I.getOperand(1)); 3412 ArrayRef<int> Mask; 3413 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3414 Mask = SVI->getShuffleMask(); 3415 else 3416 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3417 SDLoc DL = getCurSDLoc(); 3418 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3419 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3420 EVT SrcVT = Src1.getValueType(); 3421 3422 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3423 VT.isScalableVector()) { 3424 // Canonical splat form of first element of first input vector. 3425 SDValue FirstElt = 3426 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3427 DAG.getVectorIdxConstant(0, DL)); 3428 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3429 return; 3430 } 3431 3432 // For now, we only handle splats for scalable vectors. 3433 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3434 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3435 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3436 3437 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3438 unsigned MaskNumElts = Mask.size(); 3439 3440 if (SrcNumElts == MaskNumElts) { 3441 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3442 return; 3443 } 3444 3445 // Normalize the shuffle vector since mask and vector length don't match. 3446 if (SrcNumElts < MaskNumElts) { 3447 // Mask is longer than the source vectors. We can use concatenate vector to 3448 // make the mask and vectors lengths match. 3449 3450 if (MaskNumElts % SrcNumElts == 0) { 3451 // Mask length is a multiple of the source vector length. 3452 // Check if the shuffle is some kind of concatenation of the input 3453 // vectors. 3454 unsigned NumConcat = MaskNumElts / SrcNumElts; 3455 bool IsConcat = true; 3456 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3457 for (unsigned i = 0; i != MaskNumElts; ++i) { 3458 int Idx = Mask[i]; 3459 if (Idx < 0) 3460 continue; 3461 // Ensure the indices in each SrcVT sized piece are sequential and that 3462 // the same source is used for the whole piece. 3463 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3464 (ConcatSrcs[i / SrcNumElts] >= 0 && 3465 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3466 IsConcat = false; 3467 break; 3468 } 3469 // Remember which source this index came from. 3470 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3471 } 3472 3473 // The shuffle is concatenating multiple vectors together. Just emit 3474 // a CONCAT_VECTORS operation. 3475 if (IsConcat) { 3476 SmallVector<SDValue, 8> ConcatOps; 3477 for (auto Src : ConcatSrcs) { 3478 if (Src < 0) 3479 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3480 else if (Src == 0) 3481 ConcatOps.push_back(Src1); 3482 else 3483 ConcatOps.push_back(Src2); 3484 } 3485 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3486 return; 3487 } 3488 } 3489 3490 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3491 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3492 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3493 PaddedMaskNumElts); 3494 3495 // Pad both vectors with undefs to make them the same length as the mask. 3496 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3497 3498 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3499 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3500 MOps1[0] = Src1; 3501 MOps2[0] = Src2; 3502 3503 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3504 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3505 3506 // Readjust mask for new input vector length. 3507 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3508 for (unsigned i = 0; i != MaskNumElts; ++i) { 3509 int Idx = Mask[i]; 3510 if (Idx >= (int)SrcNumElts) 3511 Idx -= SrcNumElts - PaddedMaskNumElts; 3512 MappedOps[i] = Idx; 3513 } 3514 3515 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3516 3517 // If the concatenated vector was padded, extract a subvector with the 3518 // correct number of elements. 3519 if (MaskNumElts != PaddedMaskNumElts) 3520 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3521 DAG.getVectorIdxConstant(0, DL)); 3522 3523 setValue(&I, Result); 3524 return; 3525 } 3526 3527 if (SrcNumElts > MaskNumElts) { 3528 // Analyze the access pattern of the vector to see if we can extract 3529 // two subvectors and do the shuffle. 3530 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3531 bool CanExtract = true; 3532 for (int Idx : Mask) { 3533 unsigned Input = 0; 3534 if (Idx < 0) 3535 continue; 3536 3537 if (Idx >= (int)SrcNumElts) { 3538 Input = 1; 3539 Idx -= SrcNumElts; 3540 } 3541 3542 // If all the indices come from the same MaskNumElts sized portion of 3543 // the sources we can use extract. Also make sure the extract wouldn't 3544 // extract past the end of the source. 3545 int NewStartIdx = alignDown(Idx, MaskNumElts); 3546 if (NewStartIdx + MaskNumElts > SrcNumElts || 3547 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3548 CanExtract = false; 3549 // Make sure we always update StartIdx as we use it to track if all 3550 // elements are undef. 3551 StartIdx[Input] = NewStartIdx; 3552 } 3553 3554 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3555 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3556 return; 3557 } 3558 if (CanExtract) { 3559 // Extract appropriate subvector and generate a vector shuffle 3560 for (unsigned Input = 0; Input < 2; ++Input) { 3561 SDValue &Src = Input == 0 ? Src1 : Src2; 3562 if (StartIdx[Input] < 0) 3563 Src = DAG.getUNDEF(VT); 3564 else { 3565 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3566 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3567 } 3568 } 3569 3570 // Calculate new mask. 3571 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3572 for (int &Idx : MappedOps) { 3573 if (Idx >= (int)SrcNumElts) 3574 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3575 else if (Idx >= 0) 3576 Idx -= StartIdx[0]; 3577 } 3578 3579 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3580 return; 3581 } 3582 } 3583 3584 // We can't use either concat vectors or extract subvectors so fall back to 3585 // replacing the shuffle with extract and build vector. 3586 // to insert and build vector. 3587 EVT EltVT = VT.getVectorElementType(); 3588 SmallVector<SDValue,8> Ops; 3589 for (int Idx : Mask) { 3590 SDValue Res; 3591 3592 if (Idx < 0) { 3593 Res = DAG.getUNDEF(EltVT); 3594 } else { 3595 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3596 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3597 3598 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3599 DAG.getVectorIdxConstant(Idx, DL)); 3600 } 3601 3602 Ops.push_back(Res); 3603 } 3604 3605 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3606 } 3607 3608 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3609 ArrayRef<unsigned> Indices; 3610 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3611 Indices = IV->getIndices(); 3612 else 3613 Indices = cast<ConstantExpr>(&I)->getIndices(); 3614 3615 const Value *Op0 = I.getOperand(0); 3616 const Value *Op1 = I.getOperand(1); 3617 Type *AggTy = I.getType(); 3618 Type *ValTy = Op1->getType(); 3619 bool IntoUndef = isa<UndefValue>(Op0); 3620 bool FromUndef = isa<UndefValue>(Op1); 3621 3622 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3623 3624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3625 SmallVector<EVT, 4> AggValueVTs; 3626 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3627 SmallVector<EVT, 4> ValValueVTs; 3628 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3629 3630 unsigned NumAggValues = AggValueVTs.size(); 3631 unsigned NumValValues = ValValueVTs.size(); 3632 SmallVector<SDValue, 4> Values(NumAggValues); 3633 3634 // Ignore an insertvalue that produces an empty object 3635 if (!NumAggValues) { 3636 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3637 return; 3638 } 3639 3640 SDValue Agg = getValue(Op0); 3641 unsigned i = 0; 3642 // Copy the beginning value(s) from the original aggregate. 3643 for (; i != LinearIndex; ++i) 3644 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3645 SDValue(Agg.getNode(), Agg.getResNo() + i); 3646 // Copy values from the inserted value(s). 3647 if (NumValValues) { 3648 SDValue Val = getValue(Op1); 3649 for (; i != LinearIndex + NumValValues; ++i) 3650 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3651 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3652 } 3653 // Copy remaining value(s) from the original aggregate. 3654 for (; i != NumAggValues; ++i) 3655 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3656 SDValue(Agg.getNode(), Agg.getResNo() + i); 3657 3658 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3659 DAG.getVTList(AggValueVTs), Values)); 3660 } 3661 3662 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3663 ArrayRef<unsigned> Indices; 3664 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3665 Indices = EV->getIndices(); 3666 else 3667 Indices = cast<ConstantExpr>(&I)->getIndices(); 3668 3669 const Value *Op0 = I.getOperand(0); 3670 Type *AggTy = Op0->getType(); 3671 Type *ValTy = I.getType(); 3672 bool OutOfUndef = isa<UndefValue>(Op0); 3673 3674 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3675 3676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3677 SmallVector<EVT, 4> ValValueVTs; 3678 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3679 3680 unsigned NumValValues = ValValueVTs.size(); 3681 3682 // Ignore a extractvalue that produces an empty object 3683 if (!NumValValues) { 3684 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3685 return; 3686 } 3687 3688 SmallVector<SDValue, 4> Values(NumValValues); 3689 3690 SDValue Agg = getValue(Op0); 3691 // Copy out the selected value(s). 3692 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3693 Values[i - LinearIndex] = 3694 OutOfUndef ? 3695 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3696 SDValue(Agg.getNode(), Agg.getResNo() + i); 3697 3698 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3699 DAG.getVTList(ValValueVTs), Values)); 3700 } 3701 3702 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3703 Value *Op0 = I.getOperand(0); 3704 // Note that the pointer operand may be a vector of pointers. Take the scalar 3705 // element which holds a pointer. 3706 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3707 SDValue N = getValue(Op0); 3708 SDLoc dl = getCurSDLoc(); 3709 auto &TLI = DAG.getTargetLoweringInfo(); 3710 3711 // Normalize Vector GEP - all scalar operands should be converted to the 3712 // splat vector. 3713 bool IsVectorGEP = I.getType()->isVectorTy(); 3714 ElementCount VectorElementCount = 3715 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3716 : ElementCount::getFixed(0); 3717 3718 if (IsVectorGEP && !N.getValueType().isVector()) { 3719 LLVMContext &Context = *DAG.getContext(); 3720 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3721 if (VectorElementCount.isScalable()) 3722 N = DAG.getSplatVector(VT, dl, N); 3723 else 3724 N = DAG.getSplatBuildVector(VT, dl, N); 3725 } 3726 3727 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3728 GTI != E; ++GTI) { 3729 const Value *Idx = GTI.getOperand(); 3730 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3731 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3732 if (Field) { 3733 // N = N + Offset 3734 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3735 3736 // In an inbounds GEP with an offset that is nonnegative even when 3737 // interpreted as signed, assume there is no unsigned overflow. 3738 SDNodeFlags Flags; 3739 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3740 Flags.setNoUnsignedWrap(true); 3741 3742 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3743 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3744 } 3745 } else { 3746 // IdxSize is the width of the arithmetic according to IR semantics. 3747 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3748 // (and fix up the result later). 3749 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3750 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3751 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3752 // We intentionally mask away the high bits here; ElementSize may not 3753 // fit in IdxTy. 3754 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3755 bool ElementScalable = ElementSize.isScalable(); 3756 3757 // If this is a scalar constant or a splat vector of constants, 3758 // handle it quickly. 3759 const auto *C = dyn_cast<Constant>(Idx); 3760 if (C && isa<VectorType>(C->getType())) 3761 C = C->getSplatValue(); 3762 3763 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3764 if (CI && CI->isZero()) 3765 continue; 3766 if (CI && !ElementScalable) { 3767 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3768 LLVMContext &Context = *DAG.getContext(); 3769 SDValue OffsVal; 3770 if (IsVectorGEP) 3771 OffsVal = DAG.getConstant( 3772 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3773 else 3774 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3775 3776 // In an inbounds GEP with an offset that is nonnegative even when 3777 // interpreted as signed, assume there is no unsigned overflow. 3778 SDNodeFlags Flags; 3779 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3780 Flags.setNoUnsignedWrap(true); 3781 3782 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3783 3784 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3785 continue; 3786 } 3787 3788 // N = N + Idx * ElementMul; 3789 SDValue IdxN = getValue(Idx); 3790 3791 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3792 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3793 VectorElementCount); 3794 if (VectorElementCount.isScalable()) 3795 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3796 else 3797 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3798 } 3799 3800 // If the index is smaller or larger than intptr_t, truncate or extend 3801 // it. 3802 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3803 3804 if (ElementScalable) { 3805 EVT VScaleTy = N.getValueType().getScalarType(); 3806 SDValue VScale = DAG.getNode( 3807 ISD::VSCALE, dl, VScaleTy, 3808 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3809 if (IsVectorGEP) 3810 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3811 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3812 } else { 3813 // If this is a multiply by a power of two, turn it into a shl 3814 // immediately. This is a very common case. 3815 if (ElementMul != 1) { 3816 if (ElementMul.isPowerOf2()) { 3817 unsigned Amt = ElementMul.logBase2(); 3818 IdxN = DAG.getNode(ISD::SHL, dl, 3819 N.getValueType(), IdxN, 3820 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3821 } else { 3822 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3823 IdxN.getValueType()); 3824 IdxN = DAG.getNode(ISD::MUL, dl, 3825 N.getValueType(), IdxN, Scale); 3826 } 3827 } 3828 } 3829 3830 N = DAG.getNode(ISD::ADD, dl, 3831 N.getValueType(), N, IdxN); 3832 } 3833 } 3834 3835 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3836 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3837 if (IsVectorGEP) { 3838 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3839 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3840 } 3841 3842 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3843 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3844 3845 setValue(&I, N); 3846 } 3847 3848 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3849 // If this is a fixed sized alloca in the entry block of the function, 3850 // allocate it statically on the stack. 3851 if (FuncInfo.StaticAllocaMap.count(&I)) 3852 return; // getValue will auto-populate this. 3853 3854 SDLoc dl = getCurSDLoc(); 3855 Type *Ty = I.getAllocatedType(); 3856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3857 auto &DL = DAG.getDataLayout(); 3858 uint64_t TySize = DL.getTypeAllocSize(Ty); 3859 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3860 3861 SDValue AllocSize = getValue(I.getArraySize()); 3862 3863 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3864 if (AllocSize.getValueType() != IntPtr) 3865 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3866 3867 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3868 AllocSize, 3869 DAG.getConstant(TySize, dl, IntPtr)); 3870 3871 // Handle alignment. If the requested alignment is less than or equal to 3872 // the stack alignment, ignore it. If the size is greater than or equal to 3873 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3874 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3875 if (*Alignment <= StackAlign) 3876 Alignment = None; 3877 3878 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3879 // Round the size of the allocation up to the stack alignment size 3880 // by add SA-1 to the size. This doesn't overflow because we're computing 3881 // an address inside an alloca. 3882 SDNodeFlags Flags; 3883 Flags.setNoUnsignedWrap(true); 3884 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3885 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3886 3887 // Mask out the low bits for alignment purposes. 3888 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3889 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3890 3891 SDValue Ops[] = { 3892 getRoot(), AllocSize, 3893 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3894 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3895 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3896 setValue(&I, DSA); 3897 DAG.setRoot(DSA.getValue(1)); 3898 3899 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3900 } 3901 3902 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3903 if (I.isAtomic()) 3904 return visitAtomicLoad(I); 3905 3906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3907 const Value *SV = I.getOperand(0); 3908 if (TLI.supportSwiftError()) { 3909 // Swifterror values can come from either a function parameter with 3910 // swifterror attribute or an alloca with swifterror attribute. 3911 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3912 if (Arg->hasSwiftErrorAttr()) 3913 return visitLoadFromSwiftError(I); 3914 } 3915 3916 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3917 if (Alloca->isSwiftError()) 3918 return visitLoadFromSwiftError(I); 3919 } 3920 } 3921 3922 SDValue Ptr = getValue(SV); 3923 3924 Type *Ty = I.getType(); 3925 Align Alignment = I.getAlign(); 3926 3927 AAMDNodes AAInfo; 3928 I.getAAMetadata(AAInfo); 3929 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3930 3931 SmallVector<EVT, 4> ValueVTs, MemVTs; 3932 SmallVector<uint64_t, 4> Offsets; 3933 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3934 unsigned NumValues = ValueVTs.size(); 3935 if (NumValues == 0) 3936 return; 3937 3938 bool isVolatile = I.isVolatile(); 3939 3940 SDValue Root; 3941 bool ConstantMemory = false; 3942 if (isVolatile) 3943 // Serialize volatile loads with other side effects. 3944 Root = getRoot(); 3945 else if (NumValues > MaxParallelChains) 3946 Root = getMemoryRoot(); 3947 else if (AA && 3948 AA->pointsToConstantMemory(MemoryLocation( 3949 SV, 3950 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3951 AAInfo))) { 3952 // Do not serialize (non-volatile) loads of constant memory with anything. 3953 Root = DAG.getEntryNode(); 3954 ConstantMemory = true; 3955 } else { 3956 // Do not serialize non-volatile loads against each other. 3957 Root = DAG.getRoot(); 3958 } 3959 3960 SDLoc dl = getCurSDLoc(); 3961 3962 if (isVolatile) 3963 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3964 3965 // An aggregate load cannot wrap around the address space, so offsets to its 3966 // parts don't wrap either. 3967 SDNodeFlags Flags; 3968 Flags.setNoUnsignedWrap(true); 3969 3970 SmallVector<SDValue, 4> Values(NumValues); 3971 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3972 EVT PtrVT = Ptr.getValueType(); 3973 3974 MachineMemOperand::Flags MMOFlags 3975 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 3976 3977 unsigned ChainI = 0; 3978 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3979 // Serializing loads here may result in excessive register pressure, and 3980 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3981 // could recover a bit by hoisting nodes upward in the chain by recognizing 3982 // they are side-effect free or do not alias. The optimizer should really 3983 // avoid this case by converting large object/array copies to llvm.memcpy 3984 // (MaxParallelChains should always remain as failsafe). 3985 if (ChainI == MaxParallelChains) { 3986 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3987 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3988 makeArrayRef(Chains.data(), ChainI)); 3989 Root = Chain; 3990 ChainI = 0; 3991 } 3992 SDValue A = DAG.getNode(ISD::ADD, dl, 3993 PtrVT, Ptr, 3994 DAG.getConstant(Offsets[i], dl, PtrVT), 3995 Flags); 3996 3997 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 3998 MachinePointerInfo(SV, Offsets[i]), Alignment, 3999 MMOFlags, AAInfo, Ranges); 4000 Chains[ChainI] = L.getValue(1); 4001 4002 if (MemVTs[i] != ValueVTs[i]) 4003 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4004 4005 Values[i] = L; 4006 } 4007 4008 if (!ConstantMemory) { 4009 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4010 makeArrayRef(Chains.data(), ChainI)); 4011 if (isVolatile) 4012 DAG.setRoot(Chain); 4013 else 4014 PendingLoads.push_back(Chain); 4015 } 4016 4017 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4018 DAG.getVTList(ValueVTs), Values)); 4019 } 4020 4021 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4022 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4023 "call visitStoreToSwiftError when backend supports swifterror"); 4024 4025 SmallVector<EVT, 4> ValueVTs; 4026 SmallVector<uint64_t, 4> Offsets; 4027 const Value *SrcV = I.getOperand(0); 4028 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4029 SrcV->getType(), ValueVTs, &Offsets); 4030 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4031 "expect a single EVT for swifterror"); 4032 4033 SDValue Src = getValue(SrcV); 4034 // Create a virtual register, then update the virtual register. 4035 Register VReg = 4036 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4037 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4038 // Chain can be getRoot or getControlRoot. 4039 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4040 SDValue(Src.getNode(), Src.getResNo())); 4041 DAG.setRoot(CopyNode); 4042 } 4043 4044 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4045 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4046 "call visitLoadFromSwiftError when backend supports swifterror"); 4047 4048 assert(!I.isVolatile() && 4049 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4050 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4051 "Support volatile, non temporal, invariant for load_from_swift_error"); 4052 4053 const Value *SV = I.getOperand(0); 4054 Type *Ty = I.getType(); 4055 AAMDNodes AAInfo; 4056 I.getAAMetadata(AAInfo); 4057 assert( 4058 (!AA || 4059 !AA->pointsToConstantMemory(MemoryLocation( 4060 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4061 AAInfo))) && 4062 "load_from_swift_error should not be constant memory"); 4063 4064 SmallVector<EVT, 4> ValueVTs; 4065 SmallVector<uint64_t, 4> Offsets; 4066 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4067 ValueVTs, &Offsets); 4068 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4069 "expect a single EVT for swifterror"); 4070 4071 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4072 SDValue L = DAG.getCopyFromReg( 4073 getRoot(), getCurSDLoc(), 4074 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4075 4076 setValue(&I, L); 4077 } 4078 4079 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4080 if (I.isAtomic()) 4081 return visitAtomicStore(I); 4082 4083 const Value *SrcV = I.getOperand(0); 4084 const Value *PtrV = I.getOperand(1); 4085 4086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4087 if (TLI.supportSwiftError()) { 4088 // Swifterror values can come from either a function parameter with 4089 // swifterror attribute or an alloca with swifterror attribute. 4090 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4091 if (Arg->hasSwiftErrorAttr()) 4092 return visitStoreToSwiftError(I); 4093 } 4094 4095 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4096 if (Alloca->isSwiftError()) 4097 return visitStoreToSwiftError(I); 4098 } 4099 } 4100 4101 SmallVector<EVT, 4> ValueVTs, MemVTs; 4102 SmallVector<uint64_t, 4> Offsets; 4103 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4104 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4105 unsigned NumValues = ValueVTs.size(); 4106 if (NumValues == 0) 4107 return; 4108 4109 // Get the lowered operands. Note that we do this after 4110 // checking if NumResults is zero, because with zero results 4111 // the operands won't have values in the map. 4112 SDValue Src = getValue(SrcV); 4113 SDValue Ptr = getValue(PtrV); 4114 4115 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4116 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4117 SDLoc dl = getCurSDLoc(); 4118 Align Alignment = I.getAlign(); 4119 AAMDNodes AAInfo; 4120 I.getAAMetadata(AAInfo); 4121 4122 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4123 4124 // An aggregate load cannot wrap around the address space, so offsets to its 4125 // parts don't wrap either. 4126 SDNodeFlags Flags; 4127 Flags.setNoUnsignedWrap(true); 4128 4129 unsigned ChainI = 0; 4130 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4131 // See visitLoad comments. 4132 if (ChainI == MaxParallelChains) { 4133 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4134 makeArrayRef(Chains.data(), ChainI)); 4135 Root = Chain; 4136 ChainI = 0; 4137 } 4138 SDValue Add = 4139 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4140 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4141 if (MemVTs[i] != ValueVTs[i]) 4142 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4143 SDValue St = 4144 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4145 Alignment, MMOFlags, AAInfo); 4146 Chains[ChainI] = St; 4147 } 4148 4149 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4150 makeArrayRef(Chains.data(), ChainI)); 4151 DAG.setRoot(StoreNode); 4152 } 4153 4154 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4155 bool IsCompressing) { 4156 SDLoc sdl = getCurSDLoc(); 4157 4158 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4159 MaybeAlign &Alignment) { 4160 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4161 Src0 = I.getArgOperand(0); 4162 Ptr = I.getArgOperand(1); 4163 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4164 Mask = I.getArgOperand(3); 4165 }; 4166 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4167 MaybeAlign &Alignment) { 4168 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4169 Src0 = I.getArgOperand(0); 4170 Ptr = I.getArgOperand(1); 4171 Mask = I.getArgOperand(2); 4172 Alignment = None; 4173 }; 4174 4175 Value *PtrOperand, *MaskOperand, *Src0Operand; 4176 MaybeAlign Alignment; 4177 if (IsCompressing) 4178 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4179 else 4180 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4181 4182 SDValue Ptr = getValue(PtrOperand); 4183 SDValue Src0 = getValue(Src0Operand); 4184 SDValue Mask = getValue(MaskOperand); 4185 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4186 4187 EVT VT = Src0.getValueType(); 4188 if (!Alignment) 4189 Alignment = DAG.getEVTAlign(VT); 4190 4191 AAMDNodes AAInfo; 4192 I.getAAMetadata(AAInfo); 4193 4194 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4195 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4196 // TODO: Make MachineMemOperands aware of scalable 4197 // vectors. 4198 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4199 SDValue StoreNode = 4200 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4201 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4202 DAG.setRoot(StoreNode); 4203 setValue(&I, StoreNode); 4204 } 4205 4206 // Get a uniform base for the Gather/Scatter intrinsic. 4207 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4208 // We try to represent it as a base pointer + vector of indices. 4209 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4210 // The first operand of the GEP may be a single pointer or a vector of pointers 4211 // Example: 4212 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4213 // or 4214 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4215 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4216 // 4217 // When the first GEP operand is a single pointer - it is the uniform base we 4218 // are looking for. If first operand of the GEP is a splat vector - we 4219 // extract the splat value and use it as a uniform base. 4220 // In all other cases the function returns 'false'. 4221 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4222 ISD::MemIndexType &IndexType, SDValue &Scale, 4223 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4224 SelectionDAG& DAG = SDB->DAG; 4225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4226 const DataLayout &DL = DAG.getDataLayout(); 4227 4228 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4229 4230 // Handle splat constant pointer. 4231 if (auto *C = dyn_cast<Constant>(Ptr)) { 4232 C = C->getSplatValue(); 4233 if (!C) 4234 return false; 4235 4236 Base = SDB->getValue(C); 4237 4238 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4239 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4240 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4241 IndexType = ISD::SIGNED_SCALED; 4242 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4243 return true; 4244 } 4245 4246 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4247 if (!GEP || GEP->getParent() != CurBB) 4248 return false; 4249 4250 if (GEP->getNumOperands() != 2) 4251 return false; 4252 4253 const Value *BasePtr = GEP->getPointerOperand(); 4254 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4255 4256 // Make sure the base is scalar and the index is a vector. 4257 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4258 return false; 4259 4260 Base = SDB->getValue(BasePtr); 4261 Index = SDB->getValue(IndexVal); 4262 IndexType = ISD::SIGNED_SCALED; 4263 Scale = DAG.getTargetConstant( 4264 DL.getTypeAllocSize(GEP->getResultElementType()), 4265 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4266 return true; 4267 } 4268 4269 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4270 SDLoc sdl = getCurSDLoc(); 4271 4272 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4273 const Value *Ptr = I.getArgOperand(1); 4274 SDValue Src0 = getValue(I.getArgOperand(0)); 4275 SDValue Mask = getValue(I.getArgOperand(3)); 4276 EVT VT = Src0.getValueType(); 4277 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4278 ->getMaybeAlignValue() 4279 .getValueOr(DAG.getEVTAlign(VT)); 4280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4281 4282 AAMDNodes AAInfo; 4283 I.getAAMetadata(AAInfo); 4284 4285 SDValue Base; 4286 SDValue Index; 4287 ISD::MemIndexType IndexType; 4288 SDValue Scale; 4289 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4290 I.getParent()); 4291 4292 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4293 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4294 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4295 // TODO: Make MachineMemOperands aware of scalable 4296 // vectors. 4297 MemoryLocation::UnknownSize, Alignment, AAInfo); 4298 if (!UniformBase) { 4299 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4300 Index = getValue(Ptr); 4301 IndexType = ISD::SIGNED_SCALED; 4302 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4303 } 4304 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4305 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4306 Ops, MMO, IndexType); 4307 DAG.setRoot(Scatter); 4308 setValue(&I, Scatter); 4309 } 4310 4311 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4312 SDLoc sdl = getCurSDLoc(); 4313 4314 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4315 MaybeAlign &Alignment) { 4316 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4317 Ptr = I.getArgOperand(0); 4318 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4319 Mask = I.getArgOperand(2); 4320 Src0 = I.getArgOperand(3); 4321 }; 4322 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4323 MaybeAlign &Alignment) { 4324 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4325 Ptr = I.getArgOperand(0); 4326 Alignment = None; 4327 Mask = I.getArgOperand(1); 4328 Src0 = I.getArgOperand(2); 4329 }; 4330 4331 Value *PtrOperand, *MaskOperand, *Src0Operand; 4332 MaybeAlign Alignment; 4333 if (IsExpanding) 4334 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4335 else 4336 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4337 4338 SDValue Ptr = getValue(PtrOperand); 4339 SDValue Src0 = getValue(Src0Operand); 4340 SDValue Mask = getValue(MaskOperand); 4341 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4342 4343 EVT VT = Src0.getValueType(); 4344 if (!Alignment) 4345 Alignment = DAG.getEVTAlign(VT); 4346 4347 AAMDNodes AAInfo; 4348 I.getAAMetadata(AAInfo); 4349 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4350 4351 // Do not serialize masked loads of constant memory with anything. 4352 MemoryLocation ML; 4353 if (VT.isScalableVector()) 4354 ML = MemoryLocation(PtrOperand); 4355 else 4356 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4357 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4358 AAInfo); 4359 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4360 4361 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4362 4363 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4364 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4365 // TODO: Make MachineMemOperands aware of scalable 4366 // vectors. 4367 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4368 4369 SDValue Load = 4370 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4371 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4372 if (AddToChain) 4373 PendingLoads.push_back(Load.getValue(1)); 4374 setValue(&I, Load); 4375 } 4376 4377 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4378 SDLoc sdl = getCurSDLoc(); 4379 4380 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4381 const Value *Ptr = I.getArgOperand(0); 4382 SDValue Src0 = getValue(I.getArgOperand(3)); 4383 SDValue Mask = getValue(I.getArgOperand(2)); 4384 4385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4386 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4387 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4388 ->getMaybeAlignValue() 4389 .getValueOr(DAG.getEVTAlign(VT)); 4390 4391 AAMDNodes AAInfo; 4392 I.getAAMetadata(AAInfo); 4393 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4394 4395 SDValue Root = DAG.getRoot(); 4396 SDValue Base; 4397 SDValue Index; 4398 ISD::MemIndexType IndexType; 4399 SDValue Scale; 4400 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4401 I.getParent()); 4402 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4403 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4404 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4405 // TODO: Make MachineMemOperands aware of scalable 4406 // vectors. 4407 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4408 4409 if (!UniformBase) { 4410 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4411 Index = getValue(Ptr); 4412 IndexType = ISD::SIGNED_SCALED; 4413 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4414 } 4415 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4416 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4417 Ops, MMO, IndexType); 4418 4419 PendingLoads.push_back(Gather.getValue(1)); 4420 setValue(&I, Gather); 4421 } 4422 4423 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4424 SDLoc dl = getCurSDLoc(); 4425 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4426 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4427 SyncScope::ID SSID = I.getSyncScopeID(); 4428 4429 SDValue InChain = getRoot(); 4430 4431 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4432 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4433 4434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4435 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4436 4437 MachineFunction &MF = DAG.getMachineFunction(); 4438 MachineMemOperand *MMO = MF.getMachineMemOperand( 4439 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4440 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4441 FailureOrdering); 4442 4443 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4444 dl, MemVT, VTs, InChain, 4445 getValue(I.getPointerOperand()), 4446 getValue(I.getCompareOperand()), 4447 getValue(I.getNewValOperand()), MMO); 4448 4449 SDValue OutChain = L.getValue(2); 4450 4451 setValue(&I, L); 4452 DAG.setRoot(OutChain); 4453 } 4454 4455 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4456 SDLoc dl = getCurSDLoc(); 4457 ISD::NodeType NT; 4458 switch (I.getOperation()) { 4459 default: llvm_unreachable("Unknown atomicrmw operation"); 4460 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4461 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4462 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4463 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4464 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4465 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4466 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4467 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4468 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4469 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4470 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4471 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4472 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4473 } 4474 AtomicOrdering Ordering = I.getOrdering(); 4475 SyncScope::ID SSID = I.getSyncScopeID(); 4476 4477 SDValue InChain = getRoot(); 4478 4479 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4481 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4482 4483 MachineFunction &MF = DAG.getMachineFunction(); 4484 MachineMemOperand *MMO = MF.getMachineMemOperand( 4485 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4486 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4487 4488 SDValue L = 4489 DAG.getAtomic(NT, dl, MemVT, InChain, 4490 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4491 MMO); 4492 4493 SDValue OutChain = L.getValue(1); 4494 4495 setValue(&I, L); 4496 DAG.setRoot(OutChain); 4497 } 4498 4499 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4500 SDLoc dl = getCurSDLoc(); 4501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4502 SDValue Ops[3]; 4503 Ops[0] = getRoot(); 4504 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4505 TLI.getFenceOperandTy(DAG.getDataLayout())); 4506 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4507 TLI.getFenceOperandTy(DAG.getDataLayout())); 4508 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4509 } 4510 4511 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4512 SDLoc dl = getCurSDLoc(); 4513 AtomicOrdering Order = I.getOrdering(); 4514 SyncScope::ID SSID = I.getSyncScopeID(); 4515 4516 SDValue InChain = getRoot(); 4517 4518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4519 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4520 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4521 4522 if (!TLI.supportsUnalignedAtomics() && 4523 I.getAlignment() < MemVT.getSizeInBits() / 8) 4524 report_fatal_error("Cannot generate unaligned atomic load"); 4525 4526 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4527 4528 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4529 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4530 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4531 4532 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4533 4534 SDValue Ptr = getValue(I.getPointerOperand()); 4535 4536 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4537 // TODO: Once this is better exercised by tests, it should be merged with 4538 // the normal path for loads to prevent future divergence. 4539 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4540 if (MemVT != VT) 4541 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4542 4543 setValue(&I, L); 4544 SDValue OutChain = L.getValue(1); 4545 if (!I.isUnordered()) 4546 DAG.setRoot(OutChain); 4547 else 4548 PendingLoads.push_back(OutChain); 4549 return; 4550 } 4551 4552 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4553 Ptr, MMO); 4554 4555 SDValue OutChain = L.getValue(1); 4556 if (MemVT != VT) 4557 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4558 4559 setValue(&I, L); 4560 DAG.setRoot(OutChain); 4561 } 4562 4563 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4564 SDLoc dl = getCurSDLoc(); 4565 4566 AtomicOrdering Ordering = I.getOrdering(); 4567 SyncScope::ID SSID = I.getSyncScopeID(); 4568 4569 SDValue InChain = getRoot(); 4570 4571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4572 EVT MemVT = 4573 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4574 4575 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4576 report_fatal_error("Cannot generate unaligned atomic store"); 4577 4578 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4579 4580 MachineFunction &MF = DAG.getMachineFunction(); 4581 MachineMemOperand *MMO = MF.getMachineMemOperand( 4582 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4583 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4584 4585 SDValue Val = getValue(I.getValueOperand()); 4586 if (Val.getValueType() != MemVT) 4587 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4588 SDValue Ptr = getValue(I.getPointerOperand()); 4589 4590 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4591 // TODO: Once this is better exercised by tests, it should be merged with 4592 // the normal path for stores to prevent future divergence. 4593 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4594 DAG.setRoot(S); 4595 return; 4596 } 4597 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4598 Ptr, Val, MMO); 4599 4600 4601 DAG.setRoot(OutChain); 4602 } 4603 4604 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4605 /// node. 4606 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4607 unsigned Intrinsic) { 4608 // Ignore the callsite's attributes. A specific call site may be marked with 4609 // readnone, but the lowering code will expect the chain based on the 4610 // definition. 4611 const Function *F = I.getCalledFunction(); 4612 bool HasChain = !F->doesNotAccessMemory(); 4613 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4614 4615 // Build the operand list. 4616 SmallVector<SDValue, 8> Ops; 4617 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4618 if (OnlyLoad) { 4619 // We don't need to serialize loads against other loads. 4620 Ops.push_back(DAG.getRoot()); 4621 } else { 4622 Ops.push_back(getRoot()); 4623 } 4624 } 4625 4626 // Info is set by getTgtMemInstrinsic 4627 TargetLowering::IntrinsicInfo Info; 4628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4629 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4630 DAG.getMachineFunction(), 4631 Intrinsic); 4632 4633 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4634 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4635 Info.opc == ISD::INTRINSIC_W_CHAIN) 4636 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4637 TLI.getPointerTy(DAG.getDataLayout()))); 4638 4639 // Add all operands of the call to the operand list. 4640 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4641 const Value *Arg = I.getArgOperand(i); 4642 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4643 Ops.push_back(getValue(Arg)); 4644 continue; 4645 } 4646 4647 // Use TargetConstant instead of a regular constant for immarg. 4648 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4649 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4650 assert(CI->getBitWidth() <= 64 && 4651 "large intrinsic immediates not handled"); 4652 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4653 } else { 4654 Ops.push_back( 4655 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4656 } 4657 } 4658 4659 SmallVector<EVT, 4> ValueVTs; 4660 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4661 4662 if (HasChain) 4663 ValueVTs.push_back(MVT::Other); 4664 4665 SDVTList VTs = DAG.getVTList(ValueVTs); 4666 4667 // Create the node. 4668 SDValue Result; 4669 if (IsTgtIntrinsic) { 4670 // This is target intrinsic that touches memory 4671 AAMDNodes AAInfo; 4672 I.getAAMetadata(AAInfo); 4673 Result = 4674 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4675 MachinePointerInfo(Info.ptrVal, Info.offset), 4676 Info.align, Info.flags, Info.size, AAInfo); 4677 } else if (!HasChain) { 4678 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4679 } else if (!I.getType()->isVoidTy()) { 4680 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4681 } else { 4682 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4683 } 4684 4685 if (HasChain) { 4686 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4687 if (OnlyLoad) 4688 PendingLoads.push_back(Chain); 4689 else 4690 DAG.setRoot(Chain); 4691 } 4692 4693 if (!I.getType()->isVoidTy()) { 4694 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4695 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4696 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4697 } else 4698 Result = lowerRangeToAssertZExt(DAG, I, Result); 4699 4700 MaybeAlign Alignment = I.getRetAlign(); 4701 if (!Alignment) 4702 Alignment = F->getAttributes().getRetAlignment(); 4703 // Insert `assertalign` node if there's an alignment. 4704 if (InsertAssertAlign && Alignment) { 4705 Result = 4706 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4707 } 4708 4709 setValue(&I, Result); 4710 } 4711 } 4712 4713 /// GetSignificand - Get the significand and build it into a floating-point 4714 /// number with exponent of 1: 4715 /// 4716 /// Op = (Op & 0x007fffff) | 0x3f800000; 4717 /// 4718 /// where Op is the hexadecimal representation of floating point value. 4719 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4720 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4721 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4722 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4723 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4724 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4725 } 4726 4727 /// GetExponent - Get the exponent: 4728 /// 4729 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4730 /// 4731 /// where Op is the hexadecimal representation of floating point value. 4732 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4733 const TargetLowering &TLI, const SDLoc &dl) { 4734 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4735 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4736 SDValue t1 = DAG.getNode( 4737 ISD::SRL, dl, MVT::i32, t0, 4738 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4739 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4740 DAG.getConstant(127, dl, MVT::i32)); 4741 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4742 } 4743 4744 /// getF32Constant - Get 32-bit floating point constant. 4745 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4746 const SDLoc &dl) { 4747 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4748 MVT::f32); 4749 } 4750 4751 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4752 SelectionDAG &DAG) { 4753 // TODO: What fast-math-flags should be set on the floating-point nodes? 4754 4755 // IntegerPartOfX = ((int32_t)(t0); 4756 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4757 4758 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4759 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4760 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4761 4762 // IntegerPartOfX <<= 23; 4763 IntegerPartOfX = DAG.getNode( 4764 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4765 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4766 DAG.getDataLayout()))); 4767 4768 SDValue TwoToFractionalPartOfX; 4769 if (LimitFloatPrecision <= 6) { 4770 // For floating-point precision of 6: 4771 // 4772 // TwoToFractionalPartOfX = 4773 // 0.997535578f + 4774 // (0.735607626f + 0.252464424f * x) * x; 4775 // 4776 // error 0.0144103317, which is 6 bits 4777 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4778 getF32Constant(DAG, 0x3e814304, dl)); 4779 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4780 getF32Constant(DAG, 0x3f3c50c8, dl)); 4781 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4782 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4783 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4784 } else if (LimitFloatPrecision <= 12) { 4785 // For floating-point precision of 12: 4786 // 4787 // TwoToFractionalPartOfX = 4788 // 0.999892986f + 4789 // (0.696457318f + 4790 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4791 // 4792 // error 0.000107046256, which is 13 to 14 bits 4793 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4794 getF32Constant(DAG, 0x3da235e3, dl)); 4795 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4796 getF32Constant(DAG, 0x3e65b8f3, dl)); 4797 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4798 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4799 getF32Constant(DAG, 0x3f324b07, dl)); 4800 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4801 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4802 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4803 } else { // LimitFloatPrecision <= 18 4804 // For floating-point precision of 18: 4805 // 4806 // TwoToFractionalPartOfX = 4807 // 0.999999982f + 4808 // (0.693148872f + 4809 // (0.240227044f + 4810 // (0.554906021e-1f + 4811 // (0.961591928e-2f + 4812 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4813 // error 2.47208000*10^(-7), which is better than 18 bits 4814 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4815 getF32Constant(DAG, 0x3924b03e, dl)); 4816 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4817 getF32Constant(DAG, 0x3ab24b87, dl)); 4818 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4819 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4820 getF32Constant(DAG, 0x3c1d8c17, dl)); 4821 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4822 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4823 getF32Constant(DAG, 0x3d634a1d, dl)); 4824 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4825 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4826 getF32Constant(DAG, 0x3e75fe14, dl)); 4827 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4828 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4829 getF32Constant(DAG, 0x3f317234, dl)); 4830 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4831 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4832 getF32Constant(DAG, 0x3f800000, dl)); 4833 } 4834 4835 // Add the exponent into the result in integer domain. 4836 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4837 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4838 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4839 } 4840 4841 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4842 /// limited-precision mode. 4843 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4844 const TargetLowering &TLI, SDNodeFlags Flags) { 4845 if (Op.getValueType() == MVT::f32 && 4846 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4847 4848 // Put the exponent in the right bit position for later addition to the 4849 // final result: 4850 // 4851 // t0 = Op * log2(e) 4852 4853 // TODO: What fast-math-flags should be set here? 4854 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4855 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4856 return getLimitedPrecisionExp2(t0, dl, DAG); 4857 } 4858 4859 // No special expansion. 4860 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4861 } 4862 4863 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4864 /// limited-precision mode. 4865 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4866 const TargetLowering &TLI, SDNodeFlags Flags) { 4867 // TODO: What fast-math-flags should be set on the floating-point nodes? 4868 4869 if (Op.getValueType() == MVT::f32 && 4870 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4871 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4872 4873 // Scale the exponent by log(2). 4874 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4875 SDValue LogOfExponent = 4876 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4877 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4878 4879 // Get the significand and build it into a floating-point number with 4880 // exponent of 1. 4881 SDValue X = GetSignificand(DAG, Op1, dl); 4882 4883 SDValue LogOfMantissa; 4884 if (LimitFloatPrecision <= 6) { 4885 // For floating-point precision of 6: 4886 // 4887 // LogofMantissa = 4888 // -1.1609546f + 4889 // (1.4034025f - 0.23903021f * x) * x; 4890 // 4891 // error 0.0034276066, which is better than 8 bits 4892 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4893 getF32Constant(DAG, 0xbe74c456, dl)); 4894 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4895 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4896 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4897 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4898 getF32Constant(DAG, 0x3f949a29, dl)); 4899 } else if (LimitFloatPrecision <= 12) { 4900 // For floating-point precision of 12: 4901 // 4902 // LogOfMantissa = 4903 // -1.7417939f + 4904 // (2.8212026f + 4905 // (-1.4699568f + 4906 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4907 // 4908 // error 0.000061011436, which is 14 bits 4909 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4910 getF32Constant(DAG, 0xbd67b6d6, dl)); 4911 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4912 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4913 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4914 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4915 getF32Constant(DAG, 0x3fbc278b, dl)); 4916 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4917 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4918 getF32Constant(DAG, 0x40348e95, dl)); 4919 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4920 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4921 getF32Constant(DAG, 0x3fdef31a, dl)); 4922 } else { // LimitFloatPrecision <= 18 4923 // For floating-point precision of 18: 4924 // 4925 // LogOfMantissa = 4926 // -2.1072184f + 4927 // (4.2372794f + 4928 // (-3.7029485f + 4929 // (2.2781945f + 4930 // (-0.87823314f + 4931 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4932 // 4933 // error 0.0000023660568, which is better than 18 bits 4934 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4935 getF32Constant(DAG, 0xbc91e5ac, dl)); 4936 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4937 getF32Constant(DAG, 0x3e4350aa, dl)); 4938 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4939 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4940 getF32Constant(DAG, 0x3f60d3e3, dl)); 4941 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4942 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4943 getF32Constant(DAG, 0x4011cdf0, dl)); 4944 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4945 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4946 getF32Constant(DAG, 0x406cfd1c, dl)); 4947 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4948 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4949 getF32Constant(DAG, 0x408797cb, dl)); 4950 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4951 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4952 getF32Constant(DAG, 0x4006dcab, dl)); 4953 } 4954 4955 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4956 } 4957 4958 // No special expansion. 4959 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 4960 } 4961 4962 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4963 /// limited-precision mode. 4964 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4965 const TargetLowering &TLI, SDNodeFlags Flags) { 4966 // TODO: What fast-math-flags should be set on the floating-point nodes? 4967 4968 if (Op.getValueType() == MVT::f32 && 4969 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4970 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4971 4972 // Get the exponent. 4973 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4974 4975 // Get the significand and build it into a floating-point number with 4976 // exponent of 1. 4977 SDValue X = GetSignificand(DAG, Op1, dl); 4978 4979 // Different possible minimax approximations of significand in 4980 // floating-point for various degrees of accuracy over [1,2]. 4981 SDValue Log2ofMantissa; 4982 if (LimitFloatPrecision <= 6) { 4983 // For floating-point precision of 6: 4984 // 4985 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4986 // 4987 // error 0.0049451742, which is more than 7 bits 4988 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4989 getF32Constant(DAG, 0xbeb08fe0, dl)); 4990 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4991 getF32Constant(DAG, 0x40019463, dl)); 4992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4993 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4994 getF32Constant(DAG, 0x3fd6633d, dl)); 4995 } else if (LimitFloatPrecision <= 12) { 4996 // For floating-point precision of 12: 4997 // 4998 // Log2ofMantissa = 4999 // -2.51285454f + 5000 // (4.07009056f + 5001 // (-2.12067489f + 5002 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5003 // 5004 // error 0.0000876136000, which is better than 13 bits 5005 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5006 getF32Constant(DAG, 0xbda7262e, dl)); 5007 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5008 getF32Constant(DAG, 0x3f25280b, dl)); 5009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5010 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5011 getF32Constant(DAG, 0x4007b923, dl)); 5012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5013 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5014 getF32Constant(DAG, 0x40823e2f, dl)); 5015 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5016 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5017 getF32Constant(DAG, 0x4020d29c, dl)); 5018 } else { // LimitFloatPrecision <= 18 5019 // For floating-point precision of 18: 5020 // 5021 // Log2ofMantissa = 5022 // -3.0400495f + 5023 // (6.1129976f + 5024 // (-5.3420409f + 5025 // (3.2865683f + 5026 // (-1.2669343f + 5027 // (0.27515199f - 5028 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5029 // 5030 // error 0.0000018516, which is better than 18 bits 5031 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5032 getF32Constant(DAG, 0xbcd2769e, dl)); 5033 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5034 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5035 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5036 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5037 getF32Constant(DAG, 0x3fa22ae7, dl)); 5038 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5039 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5040 getF32Constant(DAG, 0x40525723, dl)); 5041 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5042 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5043 getF32Constant(DAG, 0x40aaf200, dl)); 5044 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5045 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5046 getF32Constant(DAG, 0x40c39dad, dl)); 5047 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5048 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5049 getF32Constant(DAG, 0x4042902c, dl)); 5050 } 5051 5052 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5053 } 5054 5055 // No special expansion. 5056 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5057 } 5058 5059 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5060 /// limited-precision mode. 5061 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5062 const TargetLowering &TLI, SDNodeFlags Flags) { 5063 // TODO: What fast-math-flags should be set on the floating-point nodes? 5064 5065 if (Op.getValueType() == MVT::f32 && 5066 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5067 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5068 5069 // Scale the exponent by log10(2) [0.30102999f]. 5070 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5071 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5072 getF32Constant(DAG, 0x3e9a209a, dl)); 5073 5074 // Get the significand and build it into a floating-point number with 5075 // exponent of 1. 5076 SDValue X = GetSignificand(DAG, Op1, dl); 5077 5078 SDValue Log10ofMantissa; 5079 if (LimitFloatPrecision <= 6) { 5080 // For floating-point precision of 6: 5081 // 5082 // Log10ofMantissa = 5083 // -0.50419619f + 5084 // (0.60948995f - 0.10380950f * x) * x; 5085 // 5086 // error 0.0014886165, which is 6 bits 5087 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5088 getF32Constant(DAG, 0xbdd49a13, dl)); 5089 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5090 getF32Constant(DAG, 0x3f1c0789, dl)); 5091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5092 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5093 getF32Constant(DAG, 0x3f011300, dl)); 5094 } else if (LimitFloatPrecision <= 12) { 5095 // For floating-point precision of 12: 5096 // 5097 // Log10ofMantissa = 5098 // -0.64831180f + 5099 // (0.91751397f + 5100 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5101 // 5102 // error 0.00019228036, which is better than 12 bits 5103 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5104 getF32Constant(DAG, 0x3d431f31, dl)); 5105 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5106 getF32Constant(DAG, 0x3ea21fb2, dl)); 5107 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5108 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5109 getF32Constant(DAG, 0x3f6ae232, dl)); 5110 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5111 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5112 getF32Constant(DAG, 0x3f25f7c3, dl)); 5113 } else { // LimitFloatPrecision <= 18 5114 // For floating-point precision of 18: 5115 // 5116 // Log10ofMantissa = 5117 // -0.84299375f + 5118 // (1.5327582f + 5119 // (-1.0688956f + 5120 // (0.49102474f + 5121 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5122 // 5123 // error 0.0000037995730, which is better than 18 bits 5124 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5125 getF32Constant(DAG, 0x3c5d51ce, dl)); 5126 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5127 getF32Constant(DAG, 0x3e00685a, dl)); 5128 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5129 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5130 getF32Constant(DAG, 0x3efb6798, dl)); 5131 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5132 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5133 getF32Constant(DAG, 0x3f88d192, dl)); 5134 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5135 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5136 getF32Constant(DAG, 0x3fc4316c, dl)); 5137 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5138 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5139 getF32Constant(DAG, 0x3f57ce70, dl)); 5140 } 5141 5142 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5143 } 5144 5145 // No special expansion. 5146 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5147 } 5148 5149 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5150 /// limited-precision mode. 5151 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5152 const TargetLowering &TLI, SDNodeFlags Flags) { 5153 if (Op.getValueType() == MVT::f32 && 5154 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5155 return getLimitedPrecisionExp2(Op, dl, DAG); 5156 5157 // No special expansion. 5158 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5159 } 5160 5161 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5162 /// limited-precision mode with x == 10.0f. 5163 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5164 SelectionDAG &DAG, const TargetLowering &TLI, 5165 SDNodeFlags Flags) { 5166 bool IsExp10 = false; 5167 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5168 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5169 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5170 APFloat Ten(10.0f); 5171 IsExp10 = LHSC->isExactlyValue(Ten); 5172 } 5173 } 5174 5175 // TODO: What fast-math-flags should be set on the FMUL node? 5176 if (IsExp10) { 5177 // Put the exponent in the right bit position for later addition to the 5178 // final result: 5179 // 5180 // #define LOG2OF10 3.3219281f 5181 // t0 = Op * LOG2OF10; 5182 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5183 getF32Constant(DAG, 0x40549a78, dl)); 5184 return getLimitedPrecisionExp2(t0, dl, DAG); 5185 } 5186 5187 // No special expansion. 5188 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5189 } 5190 5191 /// ExpandPowI - Expand a llvm.powi intrinsic. 5192 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5193 SelectionDAG &DAG) { 5194 // If RHS is a constant, we can expand this out to a multiplication tree, 5195 // otherwise we end up lowering to a call to __powidf2 (for example). When 5196 // optimizing for size, we only want to do this if the expansion would produce 5197 // a small number of multiplies, otherwise we do the full expansion. 5198 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5199 // Get the exponent as a positive value. 5200 unsigned Val = RHSC->getSExtValue(); 5201 if ((int)Val < 0) Val = -Val; 5202 5203 // powi(x, 0) -> 1.0 5204 if (Val == 0) 5205 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5206 5207 bool OptForSize = DAG.shouldOptForSize(); 5208 if (!OptForSize || 5209 // If optimizing for size, don't insert too many multiplies. 5210 // This inserts up to 5 multiplies. 5211 countPopulation(Val) + Log2_32(Val) < 7) { 5212 // We use the simple binary decomposition method to generate the multiply 5213 // sequence. There are more optimal ways to do this (for example, 5214 // powi(x,15) generates one more multiply than it should), but this has 5215 // the benefit of being both really simple and much better than a libcall. 5216 SDValue Res; // Logically starts equal to 1.0 5217 SDValue CurSquare = LHS; 5218 // TODO: Intrinsics should have fast-math-flags that propagate to these 5219 // nodes. 5220 while (Val) { 5221 if (Val & 1) { 5222 if (Res.getNode()) 5223 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5224 else 5225 Res = CurSquare; // 1.0*CurSquare. 5226 } 5227 5228 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5229 CurSquare, CurSquare); 5230 Val >>= 1; 5231 } 5232 5233 // If the original was negative, invert the result, producing 1/(x*x*x). 5234 if (RHSC->getSExtValue() < 0) 5235 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5236 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5237 return Res; 5238 } 5239 } 5240 5241 // Otherwise, expand to a libcall. 5242 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5243 } 5244 5245 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5246 SDValue LHS, SDValue RHS, SDValue Scale, 5247 SelectionDAG &DAG, const TargetLowering &TLI) { 5248 EVT VT = LHS.getValueType(); 5249 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5250 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5251 LLVMContext &Ctx = *DAG.getContext(); 5252 5253 // If the type is legal but the operation isn't, this node might survive all 5254 // the way to operation legalization. If we end up there and we do not have 5255 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5256 // node. 5257 5258 // Coax the legalizer into expanding the node during type legalization instead 5259 // by bumping the size by one bit. This will force it to Promote, enabling the 5260 // early expansion and avoiding the need to expand later. 5261 5262 // We don't have to do this if Scale is 0; that can always be expanded, unless 5263 // it's a saturating signed operation. Those can experience true integer 5264 // division overflow, a case which we must avoid. 5265 5266 // FIXME: We wouldn't have to do this (or any of the early 5267 // expansion/promotion) if it was possible to expand a libcall of an 5268 // illegal type during operation legalization. But it's not, so things 5269 // get a bit hacky. 5270 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5271 if ((ScaleInt > 0 || (Saturating && Signed)) && 5272 (TLI.isTypeLegal(VT) || 5273 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5274 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5275 Opcode, VT, ScaleInt); 5276 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5277 EVT PromVT; 5278 if (VT.isScalarInteger()) 5279 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5280 else if (VT.isVector()) { 5281 PromVT = VT.getVectorElementType(); 5282 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5283 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5284 } else 5285 llvm_unreachable("Wrong VT for DIVFIX?"); 5286 if (Signed) { 5287 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5288 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5289 } else { 5290 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5291 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5292 } 5293 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5294 // For saturating operations, we need to shift up the LHS to get the 5295 // proper saturation width, and then shift down again afterwards. 5296 if (Saturating) 5297 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5298 DAG.getConstant(1, DL, ShiftTy)); 5299 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5300 if (Saturating) 5301 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5302 DAG.getConstant(1, DL, ShiftTy)); 5303 return DAG.getZExtOrTrunc(Res, DL, VT); 5304 } 5305 } 5306 5307 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5308 } 5309 5310 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5311 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5312 static void 5313 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5314 const SDValue &N) { 5315 switch (N.getOpcode()) { 5316 case ISD::CopyFromReg: { 5317 SDValue Op = N.getOperand(1); 5318 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5319 Op.getValueType().getSizeInBits()); 5320 return; 5321 } 5322 case ISD::BITCAST: 5323 case ISD::AssertZext: 5324 case ISD::AssertSext: 5325 case ISD::TRUNCATE: 5326 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5327 return; 5328 case ISD::BUILD_PAIR: 5329 case ISD::BUILD_VECTOR: 5330 case ISD::CONCAT_VECTORS: 5331 for (SDValue Op : N->op_values()) 5332 getUnderlyingArgRegs(Regs, Op); 5333 return; 5334 default: 5335 return; 5336 } 5337 } 5338 5339 /// If the DbgValueInst is a dbg_value of a function argument, create the 5340 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5341 /// instruction selection, they will be inserted to the entry BB. 5342 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5343 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5344 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5345 const Argument *Arg = dyn_cast<Argument>(V); 5346 if (!Arg) 5347 return false; 5348 5349 if (!IsDbgDeclare) { 5350 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5351 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5352 // the entry block. 5353 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5354 if (!IsInEntryBlock) 5355 return false; 5356 5357 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5358 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5359 // variable that also is a param. 5360 // 5361 // Although, if we are at the top of the entry block already, we can still 5362 // emit using ArgDbgValue. This might catch some situations when the 5363 // dbg.value refers to an argument that isn't used in the entry block, so 5364 // any CopyToReg node would be optimized out and the only way to express 5365 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5366 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5367 // we should only emit as ArgDbgValue if the Variable is an argument to the 5368 // current function, and the dbg.value intrinsic is found in the entry 5369 // block. 5370 bool VariableIsFunctionInputArg = Variable->isParameter() && 5371 !DL->getInlinedAt(); 5372 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5373 if (!IsInPrologue && !VariableIsFunctionInputArg) 5374 return false; 5375 5376 // Here we assume that a function argument on IR level only can be used to 5377 // describe one input parameter on source level. If we for example have 5378 // source code like this 5379 // 5380 // struct A { long x, y; }; 5381 // void foo(struct A a, long b) { 5382 // ... 5383 // b = a.x; 5384 // ... 5385 // } 5386 // 5387 // and IR like this 5388 // 5389 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5390 // entry: 5391 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5392 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5393 // call void @llvm.dbg.value(metadata i32 %b, "b", 5394 // ... 5395 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5396 // ... 5397 // 5398 // then the last dbg.value is describing a parameter "b" using a value that 5399 // is an argument. But since we already has used %a1 to describe a parameter 5400 // we should not handle that last dbg.value here (that would result in an 5401 // incorrect hoisting of the DBG_VALUE to the function entry). 5402 // Notice that we allow one dbg.value per IR level argument, to accommodate 5403 // for the situation with fragments above. 5404 if (VariableIsFunctionInputArg) { 5405 unsigned ArgNo = Arg->getArgNo(); 5406 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5407 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5408 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5409 return false; 5410 FuncInfo.DescribedArgs.set(ArgNo); 5411 } 5412 } 5413 5414 MachineFunction &MF = DAG.getMachineFunction(); 5415 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5416 5417 bool IsIndirect = false; 5418 Optional<MachineOperand> Op; 5419 // Some arguments' frame index is recorded during argument lowering. 5420 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5421 if (FI != std::numeric_limits<int>::max()) 5422 Op = MachineOperand::CreateFI(FI); 5423 5424 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5425 if (!Op && N.getNode()) { 5426 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5427 Register Reg; 5428 if (ArgRegsAndSizes.size() == 1) 5429 Reg = ArgRegsAndSizes.front().first; 5430 5431 if (Reg && Reg.isVirtual()) { 5432 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5433 Register PR = RegInfo.getLiveInPhysReg(Reg); 5434 if (PR) 5435 Reg = PR; 5436 } 5437 if (Reg) { 5438 Op = MachineOperand::CreateReg(Reg, false); 5439 IsIndirect = IsDbgDeclare; 5440 } 5441 } 5442 5443 if (!Op && N.getNode()) { 5444 // Check if frame index is available. 5445 SDValue LCandidate = peekThroughBitcasts(N); 5446 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5447 if (FrameIndexSDNode *FINode = 5448 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5449 Op = MachineOperand::CreateFI(FINode->getIndex()); 5450 } 5451 5452 if (!Op) { 5453 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5454 auto splitMultiRegDbgValue 5455 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5456 unsigned Offset = 0; 5457 for (auto RegAndSize : SplitRegs) { 5458 // If the expression is already a fragment, the current register 5459 // offset+size might extend beyond the fragment. In this case, only 5460 // the register bits that are inside the fragment are relevant. 5461 int RegFragmentSizeInBits = RegAndSize.second; 5462 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5463 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5464 // The register is entirely outside the expression fragment, 5465 // so is irrelevant for debug info. 5466 if (Offset >= ExprFragmentSizeInBits) 5467 break; 5468 // The register is partially outside the expression fragment, only 5469 // the low bits within the fragment are relevant for debug info. 5470 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5471 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5472 } 5473 } 5474 5475 auto FragmentExpr = DIExpression::createFragmentExpression( 5476 Expr, Offset, RegFragmentSizeInBits); 5477 Offset += RegAndSize.second; 5478 // If a valid fragment expression cannot be created, the variable's 5479 // correct value cannot be determined and so it is set as Undef. 5480 if (!FragmentExpr) { 5481 SDDbgValue *SDV = DAG.getConstantDbgValue( 5482 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5483 DAG.AddDbgValue(SDV, nullptr, false); 5484 continue; 5485 } 5486 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5487 FuncInfo.ArgDbgValues.push_back( 5488 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5489 RegAndSize.first, Variable, *FragmentExpr)); 5490 } 5491 }; 5492 5493 // Check if ValueMap has reg number. 5494 DenseMap<const Value *, Register>::const_iterator 5495 VMI = FuncInfo.ValueMap.find(V); 5496 if (VMI != FuncInfo.ValueMap.end()) { 5497 const auto &TLI = DAG.getTargetLoweringInfo(); 5498 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5499 V->getType(), None); 5500 if (RFV.occupiesMultipleRegs()) { 5501 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5502 return true; 5503 } 5504 5505 Op = MachineOperand::CreateReg(VMI->second, false); 5506 IsIndirect = IsDbgDeclare; 5507 } else if (ArgRegsAndSizes.size() > 1) { 5508 // This was split due to the calling convention, and no virtual register 5509 // mapping exists for the value. 5510 splitMultiRegDbgValue(ArgRegsAndSizes); 5511 return true; 5512 } 5513 } 5514 5515 if (!Op) 5516 return false; 5517 5518 assert(Variable->isValidLocationForIntrinsic(DL) && 5519 "Expected inlined-at fields to agree"); 5520 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5521 FuncInfo.ArgDbgValues.push_back( 5522 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5523 *Op, Variable, Expr)); 5524 5525 return true; 5526 } 5527 5528 /// Return the appropriate SDDbgValue based on N. 5529 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5530 DILocalVariable *Variable, 5531 DIExpression *Expr, 5532 const DebugLoc &dl, 5533 unsigned DbgSDNodeOrder) { 5534 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5535 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5536 // stack slot locations. 5537 // 5538 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5539 // debug values here after optimization: 5540 // 5541 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5542 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5543 // 5544 // Both describe the direct values of their associated variables. 5545 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5546 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5547 } 5548 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5549 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5550 } 5551 5552 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5553 switch (Intrinsic) { 5554 case Intrinsic::smul_fix: 5555 return ISD::SMULFIX; 5556 case Intrinsic::umul_fix: 5557 return ISD::UMULFIX; 5558 case Intrinsic::smul_fix_sat: 5559 return ISD::SMULFIXSAT; 5560 case Intrinsic::umul_fix_sat: 5561 return ISD::UMULFIXSAT; 5562 case Intrinsic::sdiv_fix: 5563 return ISD::SDIVFIX; 5564 case Intrinsic::udiv_fix: 5565 return ISD::UDIVFIX; 5566 case Intrinsic::sdiv_fix_sat: 5567 return ISD::SDIVFIXSAT; 5568 case Intrinsic::udiv_fix_sat: 5569 return ISD::UDIVFIXSAT; 5570 default: 5571 llvm_unreachable("Unhandled fixed point intrinsic"); 5572 } 5573 } 5574 5575 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5576 const char *FunctionName) { 5577 assert(FunctionName && "FunctionName must not be nullptr"); 5578 SDValue Callee = DAG.getExternalSymbol( 5579 FunctionName, 5580 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5581 LowerCallTo(I, Callee, I.isTailCall()); 5582 } 5583 5584 /// Given a @llvm.call.preallocated.setup, return the corresponding 5585 /// preallocated call. 5586 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5587 assert(cast<CallBase>(PreallocatedSetup) 5588 ->getCalledFunction() 5589 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5590 "expected call_preallocated_setup Value"); 5591 for (auto *U : PreallocatedSetup->users()) { 5592 auto *UseCall = cast<CallBase>(U); 5593 const Function *Fn = UseCall->getCalledFunction(); 5594 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5595 return UseCall; 5596 } 5597 } 5598 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5599 } 5600 5601 /// Lower the call to the specified intrinsic function. 5602 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5603 unsigned Intrinsic) { 5604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5605 SDLoc sdl = getCurSDLoc(); 5606 DebugLoc dl = getCurDebugLoc(); 5607 SDValue Res; 5608 5609 SDNodeFlags Flags; 5610 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5611 Flags.copyFMF(*FPOp); 5612 5613 switch (Intrinsic) { 5614 default: 5615 // By default, turn this into a target intrinsic node. 5616 visitTargetIntrinsic(I, Intrinsic); 5617 return; 5618 case Intrinsic::vscale: { 5619 match(&I, m_VScale(DAG.getDataLayout())); 5620 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5621 setValue(&I, 5622 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5623 return; 5624 } 5625 case Intrinsic::vastart: visitVAStart(I); return; 5626 case Intrinsic::vaend: visitVAEnd(I); return; 5627 case Intrinsic::vacopy: visitVACopy(I); return; 5628 case Intrinsic::returnaddress: 5629 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5630 TLI.getPointerTy(DAG.getDataLayout()), 5631 getValue(I.getArgOperand(0)))); 5632 return; 5633 case Intrinsic::addressofreturnaddress: 5634 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5635 TLI.getPointerTy(DAG.getDataLayout()))); 5636 return; 5637 case Intrinsic::sponentry: 5638 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5639 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5640 return; 5641 case Intrinsic::frameaddress: 5642 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5643 TLI.getFrameIndexTy(DAG.getDataLayout()), 5644 getValue(I.getArgOperand(0)))); 5645 return; 5646 case Intrinsic::read_volatile_register: 5647 case Intrinsic::read_register: { 5648 Value *Reg = I.getArgOperand(0); 5649 SDValue Chain = getRoot(); 5650 SDValue RegName = 5651 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5652 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5653 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5654 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5655 setValue(&I, Res); 5656 DAG.setRoot(Res.getValue(1)); 5657 return; 5658 } 5659 case Intrinsic::write_register: { 5660 Value *Reg = I.getArgOperand(0); 5661 Value *RegValue = I.getArgOperand(1); 5662 SDValue Chain = getRoot(); 5663 SDValue RegName = 5664 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5665 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5666 RegName, getValue(RegValue))); 5667 return; 5668 } 5669 case Intrinsic::memcpy: { 5670 const auto &MCI = cast<MemCpyInst>(I); 5671 SDValue Op1 = getValue(I.getArgOperand(0)); 5672 SDValue Op2 = getValue(I.getArgOperand(1)); 5673 SDValue Op3 = getValue(I.getArgOperand(2)); 5674 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5675 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5676 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5677 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5678 bool isVol = MCI.isVolatile(); 5679 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5680 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5681 // node. 5682 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5683 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5684 /* AlwaysInline */ false, isTC, 5685 MachinePointerInfo(I.getArgOperand(0)), 5686 MachinePointerInfo(I.getArgOperand(1))); 5687 updateDAGForMaybeTailCall(MC); 5688 return; 5689 } 5690 case Intrinsic::memcpy_inline: { 5691 const auto &MCI = cast<MemCpyInlineInst>(I); 5692 SDValue Dst = getValue(I.getArgOperand(0)); 5693 SDValue Src = getValue(I.getArgOperand(1)); 5694 SDValue Size = getValue(I.getArgOperand(2)); 5695 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5696 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5697 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5698 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5699 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5700 bool isVol = MCI.isVolatile(); 5701 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5702 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5703 // node. 5704 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5705 /* AlwaysInline */ true, isTC, 5706 MachinePointerInfo(I.getArgOperand(0)), 5707 MachinePointerInfo(I.getArgOperand(1))); 5708 updateDAGForMaybeTailCall(MC); 5709 return; 5710 } 5711 case Intrinsic::memset: { 5712 const auto &MSI = cast<MemSetInst>(I); 5713 SDValue Op1 = getValue(I.getArgOperand(0)); 5714 SDValue Op2 = getValue(I.getArgOperand(1)); 5715 SDValue Op3 = getValue(I.getArgOperand(2)); 5716 // @llvm.memset defines 0 and 1 to both mean no alignment. 5717 Align Alignment = MSI.getDestAlign().valueOrOne(); 5718 bool isVol = MSI.isVolatile(); 5719 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5720 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5721 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5722 MachinePointerInfo(I.getArgOperand(0))); 5723 updateDAGForMaybeTailCall(MS); 5724 return; 5725 } 5726 case Intrinsic::memmove: { 5727 const auto &MMI = cast<MemMoveInst>(I); 5728 SDValue Op1 = getValue(I.getArgOperand(0)); 5729 SDValue Op2 = getValue(I.getArgOperand(1)); 5730 SDValue Op3 = getValue(I.getArgOperand(2)); 5731 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5732 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5733 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5734 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5735 bool isVol = MMI.isVolatile(); 5736 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5737 // FIXME: Support passing different dest/src alignments to the memmove DAG 5738 // node. 5739 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5740 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5741 isTC, MachinePointerInfo(I.getArgOperand(0)), 5742 MachinePointerInfo(I.getArgOperand(1))); 5743 updateDAGForMaybeTailCall(MM); 5744 return; 5745 } 5746 case Intrinsic::memcpy_element_unordered_atomic: { 5747 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5748 SDValue Dst = getValue(MI.getRawDest()); 5749 SDValue Src = getValue(MI.getRawSource()); 5750 SDValue Length = getValue(MI.getLength()); 5751 5752 unsigned DstAlign = MI.getDestAlignment(); 5753 unsigned SrcAlign = MI.getSourceAlignment(); 5754 Type *LengthTy = MI.getLength()->getType(); 5755 unsigned ElemSz = MI.getElementSizeInBytes(); 5756 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5757 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5758 SrcAlign, Length, LengthTy, ElemSz, isTC, 5759 MachinePointerInfo(MI.getRawDest()), 5760 MachinePointerInfo(MI.getRawSource())); 5761 updateDAGForMaybeTailCall(MC); 5762 return; 5763 } 5764 case Intrinsic::memmove_element_unordered_atomic: { 5765 auto &MI = cast<AtomicMemMoveInst>(I); 5766 SDValue Dst = getValue(MI.getRawDest()); 5767 SDValue Src = getValue(MI.getRawSource()); 5768 SDValue Length = getValue(MI.getLength()); 5769 5770 unsigned DstAlign = MI.getDestAlignment(); 5771 unsigned SrcAlign = MI.getSourceAlignment(); 5772 Type *LengthTy = MI.getLength()->getType(); 5773 unsigned ElemSz = MI.getElementSizeInBytes(); 5774 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5775 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5776 SrcAlign, Length, LengthTy, ElemSz, isTC, 5777 MachinePointerInfo(MI.getRawDest()), 5778 MachinePointerInfo(MI.getRawSource())); 5779 updateDAGForMaybeTailCall(MC); 5780 return; 5781 } 5782 case Intrinsic::memset_element_unordered_atomic: { 5783 auto &MI = cast<AtomicMemSetInst>(I); 5784 SDValue Dst = getValue(MI.getRawDest()); 5785 SDValue Val = getValue(MI.getValue()); 5786 SDValue Length = getValue(MI.getLength()); 5787 5788 unsigned DstAlign = MI.getDestAlignment(); 5789 Type *LengthTy = MI.getLength()->getType(); 5790 unsigned ElemSz = MI.getElementSizeInBytes(); 5791 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5792 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5793 LengthTy, ElemSz, isTC, 5794 MachinePointerInfo(MI.getRawDest())); 5795 updateDAGForMaybeTailCall(MC); 5796 return; 5797 } 5798 case Intrinsic::call_preallocated_setup: { 5799 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5800 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5801 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5802 getRoot(), SrcValue); 5803 setValue(&I, Res); 5804 DAG.setRoot(Res); 5805 return; 5806 } 5807 case Intrinsic::call_preallocated_arg: { 5808 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5809 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5810 SDValue Ops[3]; 5811 Ops[0] = getRoot(); 5812 Ops[1] = SrcValue; 5813 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5814 MVT::i32); // arg index 5815 SDValue Res = DAG.getNode( 5816 ISD::PREALLOCATED_ARG, sdl, 5817 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5818 setValue(&I, Res); 5819 DAG.setRoot(Res.getValue(1)); 5820 return; 5821 } 5822 case Intrinsic::dbg_addr: 5823 case Intrinsic::dbg_declare: { 5824 const auto &DI = cast<DbgVariableIntrinsic>(I); 5825 DILocalVariable *Variable = DI.getVariable(); 5826 DIExpression *Expression = DI.getExpression(); 5827 dropDanglingDebugInfo(Variable, Expression); 5828 assert(Variable && "Missing variable"); 5829 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5830 << "\n"); 5831 // Check if address has undef value. 5832 const Value *Address = DI.getVariableLocation(); 5833 if (!Address || isa<UndefValue>(Address) || 5834 (Address->use_empty() && !isa<Argument>(Address))) { 5835 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5836 << " (bad/undef/unused-arg address)\n"); 5837 return; 5838 } 5839 5840 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5841 5842 // Check if this variable can be described by a frame index, typically 5843 // either as a static alloca or a byval parameter. 5844 int FI = std::numeric_limits<int>::max(); 5845 if (const auto *AI = 5846 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5847 if (AI->isStaticAlloca()) { 5848 auto I = FuncInfo.StaticAllocaMap.find(AI); 5849 if (I != FuncInfo.StaticAllocaMap.end()) 5850 FI = I->second; 5851 } 5852 } else if (const auto *Arg = dyn_cast<Argument>( 5853 Address->stripInBoundsConstantOffsets())) { 5854 FI = FuncInfo.getArgumentFrameIndex(Arg); 5855 } 5856 5857 // llvm.dbg.addr is control dependent and always generates indirect 5858 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5859 // the MachineFunction variable table. 5860 if (FI != std::numeric_limits<int>::max()) { 5861 if (Intrinsic == Intrinsic::dbg_addr) { 5862 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5863 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5864 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5865 } else { 5866 LLVM_DEBUG(dbgs() << "Skipping " << DI 5867 << " (variable info stashed in MF side table)\n"); 5868 } 5869 return; 5870 } 5871 5872 SDValue &N = NodeMap[Address]; 5873 if (!N.getNode() && isa<Argument>(Address)) 5874 // Check unused arguments map. 5875 N = UnusedArgNodeMap[Address]; 5876 SDDbgValue *SDV; 5877 if (N.getNode()) { 5878 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5879 Address = BCI->getOperand(0); 5880 // Parameters are handled specially. 5881 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5882 if (isParameter && FINode) { 5883 // Byval parameter. We have a frame index at this point. 5884 SDV = 5885 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5886 /*IsIndirect*/ true, dl, SDNodeOrder); 5887 } else if (isa<Argument>(Address)) { 5888 // Address is an argument, so try to emit its dbg value using 5889 // virtual register info from the FuncInfo.ValueMap. 5890 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5891 return; 5892 } else { 5893 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5894 true, dl, SDNodeOrder); 5895 } 5896 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5897 } else { 5898 // If Address is an argument then try to emit its dbg value using 5899 // virtual register info from the FuncInfo.ValueMap. 5900 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5901 N)) { 5902 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5903 << " (could not emit func-arg dbg_value)\n"); 5904 } 5905 } 5906 return; 5907 } 5908 case Intrinsic::dbg_label: { 5909 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5910 DILabel *Label = DI.getLabel(); 5911 assert(Label && "Missing label"); 5912 5913 SDDbgLabel *SDV; 5914 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5915 DAG.AddDbgLabel(SDV); 5916 return; 5917 } 5918 case Intrinsic::dbg_value: { 5919 const DbgValueInst &DI = cast<DbgValueInst>(I); 5920 assert(DI.getVariable() && "Missing variable"); 5921 5922 DILocalVariable *Variable = DI.getVariable(); 5923 DIExpression *Expression = DI.getExpression(); 5924 dropDanglingDebugInfo(Variable, Expression); 5925 const Value *V = DI.getValue(); 5926 if (!V) 5927 return; 5928 5929 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5930 SDNodeOrder)) 5931 return; 5932 5933 // TODO: Dangling debug info will eventually either be resolved or produce 5934 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5935 // between the original dbg.value location and its resolved DBG_VALUE, which 5936 // we should ideally fill with an extra Undef DBG_VALUE. 5937 5938 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5939 return; 5940 } 5941 5942 case Intrinsic::eh_typeid_for: { 5943 // Find the type id for the given typeinfo. 5944 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5945 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5946 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5947 setValue(&I, Res); 5948 return; 5949 } 5950 5951 case Intrinsic::eh_return_i32: 5952 case Intrinsic::eh_return_i64: 5953 DAG.getMachineFunction().setCallsEHReturn(true); 5954 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5955 MVT::Other, 5956 getControlRoot(), 5957 getValue(I.getArgOperand(0)), 5958 getValue(I.getArgOperand(1)))); 5959 return; 5960 case Intrinsic::eh_unwind_init: 5961 DAG.getMachineFunction().setCallsUnwindInit(true); 5962 return; 5963 case Intrinsic::eh_dwarf_cfa: 5964 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5965 TLI.getPointerTy(DAG.getDataLayout()), 5966 getValue(I.getArgOperand(0)))); 5967 return; 5968 case Intrinsic::eh_sjlj_callsite: { 5969 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5970 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5971 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5972 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5973 5974 MMI.setCurrentCallSite(CI->getZExtValue()); 5975 return; 5976 } 5977 case Intrinsic::eh_sjlj_functioncontext: { 5978 // Get and store the index of the function context. 5979 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5980 AllocaInst *FnCtx = 5981 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5982 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5983 MFI.setFunctionContextIndex(FI); 5984 return; 5985 } 5986 case Intrinsic::eh_sjlj_setjmp: { 5987 SDValue Ops[2]; 5988 Ops[0] = getRoot(); 5989 Ops[1] = getValue(I.getArgOperand(0)); 5990 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5991 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5992 setValue(&I, Op.getValue(0)); 5993 DAG.setRoot(Op.getValue(1)); 5994 return; 5995 } 5996 case Intrinsic::eh_sjlj_longjmp: 5997 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5998 getRoot(), getValue(I.getArgOperand(0)))); 5999 return; 6000 case Intrinsic::eh_sjlj_setup_dispatch: 6001 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6002 getRoot())); 6003 return; 6004 case Intrinsic::masked_gather: 6005 visitMaskedGather(I); 6006 return; 6007 case Intrinsic::masked_load: 6008 visitMaskedLoad(I); 6009 return; 6010 case Intrinsic::masked_scatter: 6011 visitMaskedScatter(I); 6012 return; 6013 case Intrinsic::masked_store: 6014 visitMaskedStore(I); 6015 return; 6016 case Intrinsic::masked_expandload: 6017 visitMaskedLoad(I, true /* IsExpanding */); 6018 return; 6019 case Intrinsic::masked_compressstore: 6020 visitMaskedStore(I, true /* IsCompressing */); 6021 return; 6022 case Intrinsic::powi: 6023 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6024 getValue(I.getArgOperand(1)), DAG)); 6025 return; 6026 case Intrinsic::log: 6027 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6028 return; 6029 case Intrinsic::log2: 6030 setValue(&I, 6031 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6032 return; 6033 case Intrinsic::log10: 6034 setValue(&I, 6035 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6036 return; 6037 case Intrinsic::exp: 6038 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6039 return; 6040 case Intrinsic::exp2: 6041 setValue(&I, 6042 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6043 return; 6044 case Intrinsic::pow: 6045 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6046 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6047 return; 6048 case Intrinsic::sqrt: 6049 case Intrinsic::fabs: 6050 case Intrinsic::sin: 6051 case Intrinsic::cos: 6052 case Intrinsic::floor: 6053 case Intrinsic::ceil: 6054 case Intrinsic::trunc: 6055 case Intrinsic::rint: 6056 case Intrinsic::nearbyint: 6057 case Intrinsic::round: 6058 case Intrinsic::roundeven: 6059 case Intrinsic::canonicalize: { 6060 unsigned Opcode; 6061 switch (Intrinsic) { 6062 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6063 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6064 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6065 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6066 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6067 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6068 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6069 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6070 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6071 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6072 case Intrinsic::round: Opcode = ISD::FROUND; break; 6073 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6074 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6075 } 6076 6077 setValue(&I, DAG.getNode(Opcode, sdl, 6078 getValue(I.getArgOperand(0)).getValueType(), 6079 getValue(I.getArgOperand(0)), Flags)); 6080 return; 6081 } 6082 case Intrinsic::lround: 6083 case Intrinsic::llround: 6084 case Intrinsic::lrint: 6085 case Intrinsic::llrint: { 6086 unsigned Opcode; 6087 switch (Intrinsic) { 6088 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6089 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6090 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6091 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6092 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6093 } 6094 6095 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6096 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6097 getValue(I.getArgOperand(0)))); 6098 return; 6099 } 6100 case Intrinsic::minnum: 6101 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6102 getValue(I.getArgOperand(0)).getValueType(), 6103 getValue(I.getArgOperand(0)), 6104 getValue(I.getArgOperand(1)), Flags)); 6105 return; 6106 case Intrinsic::maxnum: 6107 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6108 getValue(I.getArgOperand(0)).getValueType(), 6109 getValue(I.getArgOperand(0)), 6110 getValue(I.getArgOperand(1)), Flags)); 6111 return; 6112 case Intrinsic::minimum: 6113 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6114 getValue(I.getArgOperand(0)).getValueType(), 6115 getValue(I.getArgOperand(0)), 6116 getValue(I.getArgOperand(1)), Flags)); 6117 return; 6118 case Intrinsic::maximum: 6119 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6120 getValue(I.getArgOperand(0)).getValueType(), 6121 getValue(I.getArgOperand(0)), 6122 getValue(I.getArgOperand(1)), Flags)); 6123 return; 6124 case Intrinsic::copysign: 6125 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6126 getValue(I.getArgOperand(0)).getValueType(), 6127 getValue(I.getArgOperand(0)), 6128 getValue(I.getArgOperand(1)), Flags)); 6129 return; 6130 case Intrinsic::fma: 6131 setValue(&I, DAG.getNode( 6132 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6133 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6134 getValue(I.getArgOperand(2)), Flags)); 6135 return; 6136 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6137 case Intrinsic::INTRINSIC: 6138 #include "llvm/IR/ConstrainedOps.def" 6139 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6140 return; 6141 case Intrinsic::fmuladd: { 6142 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6143 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6144 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6145 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6146 getValue(I.getArgOperand(0)).getValueType(), 6147 getValue(I.getArgOperand(0)), 6148 getValue(I.getArgOperand(1)), 6149 getValue(I.getArgOperand(2)), Flags)); 6150 } else { 6151 // TODO: Intrinsic calls should have fast-math-flags. 6152 SDValue Mul = DAG.getNode( 6153 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6154 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6155 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6156 getValue(I.getArgOperand(0)).getValueType(), 6157 Mul, getValue(I.getArgOperand(2)), Flags); 6158 setValue(&I, Add); 6159 } 6160 return; 6161 } 6162 case Intrinsic::convert_to_fp16: 6163 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6164 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6165 getValue(I.getArgOperand(0)), 6166 DAG.getTargetConstant(0, sdl, 6167 MVT::i32)))); 6168 return; 6169 case Intrinsic::convert_from_fp16: 6170 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6171 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6172 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6173 getValue(I.getArgOperand(0))))); 6174 return; 6175 case Intrinsic::pcmarker: { 6176 SDValue Tmp = getValue(I.getArgOperand(0)); 6177 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6178 return; 6179 } 6180 case Intrinsic::readcyclecounter: { 6181 SDValue Op = getRoot(); 6182 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6183 DAG.getVTList(MVT::i64, MVT::Other), Op); 6184 setValue(&I, Res); 6185 DAG.setRoot(Res.getValue(1)); 6186 return; 6187 } 6188 case Intrinsic::bitreverse: 6189 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6190 getValue(I.getArgOperand(0)).getValueType(), 6191 getValue(I.getArgOperand(0)))); 6192 return; 6193 case Intrinsic::bswap: 6194 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6195 getValue(I.getArgOperand(0)).getValueType(), 6196 getValue(I.getArgOperand(0)))); 6197 return; 6198 case Intrinsic::cttz: { 6199 SDValue Arg = getValue(I.getArgOperand(0)); 6200 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6201 EVT Ty = Arg.getValueType(); 6202 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6203 sdl, Ty, Arg)); 6204 return; 6205 } 6206 case Intrinsic::ctlz: { 6207 SDValue Arg = getValue(I.getArgOperand(0)); 6208 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6209 EVT Ty = Arg.getValueType(); 6210 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6211 sdl, Ty, Arg)); 6212 return; 6213 } 6214 case Intrinsic::ctpop: { 6215 SDValue Arg = getValue(I.getArgOperand(0)); 6216 EVT Ty = Arg.getValueType(); 6217 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6218 return; 6219 } 6220 case Intrinsic::fshl: 6221 case Intrinsic::fshr: { 6222 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6223 SDValue X = getValue(I.getArgOperand(0)); 6224 SDValue Y = getValue(I.getArgOperand(1)); 6225 SDValue Z = getValue(I.getArgOperand(2)); 6226 EVT VT = X.getValueType(); 6227 6228 if (X == Y) { 6229 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6230 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6231 } else { 6232 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6233 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6234 } 6235 return; 6236 } 6237 case Intrinsic::sadd_sat: { 6238 SDValue Op1 = getValue(I.getArgOperand(0)); 6239 SDValue Op2 = getValue(I.getArgOperand(1)); 6240 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6241 return; 6242 } 6243 case Intrinsic::uadd_sat: { 6244 SDValue Op1 = getValue(I.getArgOperand(0)); 6245 SDValue Op2 = getValue(I.getArgOperand(1)); 6246 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6247 return; 6248 } 6249 case Intrinsic::ssub_sat: { 6250 SDValue Op1 = getValue(I.getArgOperand(0)); 6251 SDValue Op2 = getValue(I.getArgOperand(1)); 6252 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6253 return; 6254 } 6255 case Intrinsic::usub_sat: { 6256 SDValue Op1 = getValue(I.getArgOperand(0)); 6257 SDValue Op2 = getValue(I.getArgOperand(1)); 6258 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6259 return; 6260 } 6261 case Intrinsic::sshl_sat: { 6262 SDValue Op1 = getValue(I.getArgOperand(0)); 6263 SDValue Op2 = getValue(I.getArgOperand(1)); 6264 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6265 return; 6266 } 6267 case Intrinsic::ushl_sat: { 6268 SDValue Op1 = getValue(I.getArgOperand(0)); 6269 SDValue Op2 = getValue(I.getArgOperand(1)); 6270 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6271 return; 6272 } 6273 case Intrinsic::smul_fix: 6274 case Intrinsic::umul_fix: 6275 case Intrinsic::smul_fix_sat: 6276 case Intrinsic::umul_fix_sat: { 6277 SDValue Op1 = getValue(I.getArgOperand(0)); 6278 SDValue Op2 = getValue(I.getArgOperand(1)); 6279 SDValue Op3 = getValue(I.getArgOperand(2)); 6280 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6281 Op1.getValueType(), Op1, Op2, Op3)); 6282 return; 6283 } 6284 case Intrinsic::sdiv_fix: 6285 case Intrinsic::udiv_fix: 6286 case Intrinsic::sdiv_fix_sat: 6287 case Intrinsic::udiv_fix_sat: { 6288 SDValue Op1 = getValue(I.getArgOperand(0)); 6289 SDValue Op2 = getValue(I.getArgOperand(1)); 6290 SDValue Op3 = getValue(I.getArgOperand(2)); 6291 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6292 Op1, Op2, Op3, DAG, TLI)); 6293 return; 6294 } 6295 case Intrinsic::smax: { 6296 SDValue Op1 = getValue(I.getArgOperand(0)); 6297 SDValue Op2 = getValue(I.getArgOperand(1)); 6298 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6299 return; 6300 } 6301 case Intrinsic::smin: { 6302 SDValue Op1 = getValue(I.getArgOperand(0)); 6303 SDValue Op2 = getValue(I.getArgOperand(1)); 6304 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6305 return; 6306 } 6307 case Intrinsic::umax: { 6308 SDValue Op1 = getValue(I.getArgOperand(0)); 6309 SDValue Op2 = getValue(I.getArgOperand(1)); 6310 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6311 return; 6312 } 6313 case Intrinsic::umin: { 6314 SDValue Op1 = getValue(I.getArgOperand(0)); 6315 SDValue Op2 = getValue(I.getArgOperand(1)); 6316 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6317 return; 6318 } 6319 case Intrinsic::abs: { 6320 // TODO: Preserve "int min is poison" arg in SDAG? 6321 SDValue Op1 = getValue(I.getArgOperand(0)); 6322 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6323 return; 6324 } 6325 case Intrinsic::stacksave: { 6326 SDValue Op = getRoot(); 6327 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6328 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6329 setValue(&I, Res); 6330 DAG.setRoot(Res.getValue(1)); 6331 return; 6332 } 6333 case Intrinsic::stackrestore: 6334 Res = getValue(I.getArgOperand(0)); 6335 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6336 return; 6337 case Intrinsic::get_dynamic_area_offset: { 6338 SDValue Op = getRoot(); 6339 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6340 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6341 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6342 // target. 6343 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6344 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6345 " intrinsic!"); 6346 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6347 Op); 6348 DAG.setRoot(Op); 6349 setValue(&I, Res); 6350 return; 6351 } 6352 case Intrinsic::stackguard: { 6353 MachineFunction &MF = DAG.getMachineFunction(); 6354 const Module &M = *MF.getFunction().getParent(); 6355 SDValue Chain = getRoot(); 6356 if (TLI.useLoadStackGuardNode()) { 6357 Res = getLoadStackGuard(DAG, sdl, Chain); 6358 } else { 6359 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6360 const Value *Global = TLI.getSDagStackGuard(M); 6361 Align Align = DL->getPrefTypeAlign(Global->getType()); 6362 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6363 MachinePointerInfo(Global, 0), Align, 6364 MachineMemOperand::MOVolatile); 6365 } 6366 if (TLI.useStackGuardXorFP()) 6367 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6368 DAG.setRoot(Chain); 6369 setValue(&I, Res); 6370 return; 6371 } 6372 case Intrinsic::stackprotector: { 6373 // Emit code into the DAG to store the stack guard onto the stack. 6374 MachineFunction &MF = DAG.getMachineFunction(); 6375 MachineFrameInfo &MFI = MF.getFrameInfo(); 6376 SDValue Src, Chain = getRoot(); 6377 6378 if (TLI.useLoadStackGuardNode()) 6379 Src = getLoadStackGuard(DAG, sdl, Chain); 6380 else 6381 Src = getValue(I.getArgOperand(0)); // The guard's value. 6382 6383 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6384 6385 int FI = FuncInfo.StaticAllocaMap[Slot]; 6386 MFI.setStackProtectorIndex(FI); 6387 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6388 6389 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6390 6391 // Store the stack protector onto the stack. 6392 Res = DAG.getStore( 6393 Chain, sdl, Src, FIN, 6394 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6395 MaybeAlign(), MachineMemOperand::MOVolatile); 6396 setValue(&I, Res); 6397 DAG.setRoot(Res); 6398 return; 6399 } 6400 case Intrinsic::objectsize: 6401 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6402 6403 case Intrinsic::is_constant: 6404 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6405 6406 case Intrinsic::annotation: 6407 case Intrinsic::ptr_annotation: 6408 case Intrinsic::launder_invariant_group: 6409 case Intrinsic::strip_invariant_group: 6410 // Drop the intrinsic, but forward the value 6411 setValue(&I, getValue(I.getOperand(0))); 6412 return; 6413 case Intrinsic::assume: 6414 case Intrinsic::var_annotation: 6415 case Intrinsic::sideeffect: 6416 // Discard annotate attributes, assumptions, and artificial side-effects. 6417 return; 6418 6419 case Intrinsic::codeview_annotation: { 6420 // Emit a label associated with this metadata. 6421 MachineFunction &MF = DAG.getMachineFunction(); 6422 MCSymbol *Label = 6423 MF.getMMI().getContext().createTempSymbol("annotation", true); 6424 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6425 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6426 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6427 DAG.setRoot(Res); 6428 return; 6429 } 6430 6431 case Intrinsic::init_trampoline: { 6432 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6433 6434 SDValue Ops[6]; 6435 Ops[0] = getRoot(); 6436 Ops[1] = getValue(I.getArgOperand(0)); 6437 Ops[2] = getValue(I.getArgOperand(1)); 6438 Ops[3] = getValue(I.getArgOperand(2)); 6439 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6440 Ops[5] = DAG.getSrcValue(F); 6441 6442 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6443 6444 DAG.setRoot(Res); 6445 return; 6446 } 6447 case Intrinsic::adjust_trampoline: 6448 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6449 TLI.getPointerTy(DAG.getDataLayout()), 6450 getValue(I.getArgOperand(0)))); 6451 return; 6452 case Intrinsic::gcroot: { 6453 assert(DAG.getMachineFunction().getFunction().hasGC() && 6454 "only valid in functions with gc specified, enforced by Verifier"); 6455 assert(GFI && "implied by previous"); 6456 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6457 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6458 6459 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6460 GFI->addStackRoot(FI->getIndex(), TypeMap); 6461 return; 6462 } 6463 case Intrinsic::gcread: 6464 case Intrinsic::gcwrite: 6465 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6466 case Intrinsic::flt_rounds: 6467 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6468 setValue(&I, Res); 6469 DAG.setRoot(Res.getValue(1)); 6470 return; 6471 6472 case Intrinsic::expect: 6473 // Just replace __builtin_expect(exp, c) with EXP. 6474 setValue(&I, getValue(I.getArgOperand(0))); 6475 return; 6476 6477 case Intrinsic::debugtrap: 6478 case Intrinsic::trap: { 6479 StringRef TrapFuncName = 6480 I.getAttributes() 6481 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6482 .getValueAsString(); 6483 if (TrapFuncName.empty()) { 6484 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6485 ISD::TRAP : ISD::DEBUGTRAP; 6486 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6487 return; 6488 } 6489 TargetLowering::ArgListTy Args; 6490 6491 TargetLowering::CallLoweringInfo CLI(DAG); 6492 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6493 CallingConv::C, I.getType(), 6494 DAG.getExternalSymbol(TrapFuncName.data(), 6495 TLI.getPointerTy(DAG.getDataLayout())), 6496 std::move(Args)); 6497 6498 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6499 DAG.setRoot(Result.second); 6500 return; 6501 } 6502 6503 case Intrinsic::uadd_with_overflow: 6504 case Intrinsic::sadd_with_overflow: 6505 case Intrinsic::usub_with_overflow: 6506 case Intrinsic::ssub_with_overflow: 6507 case Intrinsic::umul_with_overflow: 6508 case Intrinsic::smul_with_overflow: { 6509 ISD::NodeType Op; 6510 switch (Intrinsic) { 6511 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6512 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6513 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6514 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6515 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6516 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6517 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6518 } 6519 SDValue Op1 = getValue(I.getArgOperand(0)); 6520 SDValue Op2 = getValue(I.getArgOperand(1)); 6521 6522 EVT ResultVT = Op1.getValueType(); 6523 EVT OverflowVT = MVT::i1; 6524 if (ResultVT.isVector()) 6525 OverflowVT = EVT::getVectorVT( 6526 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6527 6528 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6529 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6530 return; 6531 } 6532 case Intrinsic::prefetch: { 6533 SDValue Ops[5]; 6534 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6535 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6536 Ops[0] = DAG.getRoot(); 6537 Ops[1] = getValue(I.getArgOperand(0)); 6538 Ops[2] = getValue(I.getArgOperand(1)); 6539 Ops[3] = getValue(I.getArgOperand(2)); 6540 Ops[4] = getValue(I.getArgOperand(3)); 6541 SDValue Result = DAG.getMemIntrinsicNode( 6542 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6543 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6544 /* align */ None, Flags); 6545 6546 // Chain the prefetch in parallell with any pending loads, to stay out of 6547 // the way of later optimizations. 6548 PendingLoads.push_back(Result); 6549 Result = getRoot(); 6550 DAG.setRoot(Result); 6551 return; 6552 } 6553 case Intrinsic::lifetime_start: 6554 case Intrinsic::lifetime_end: { 6555 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6556 // Stack coloring is not enabled in O0, discard region information. 6557 if (TM.getOptLevel() == CodeGenOpt::None) 6558 return; 6559 6560 const int64_t ObjectSize = 6561 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6562 Value *const ObjectPtr = I.getArgOperand(1); 6563 SmallVector<const Value *, 4> Allocas; 6564 getUnderlyingObjects(ObjectPtr, Allocas); 6565 6566 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6567 E = Allocas.end(); Object != E; ++Object) { 6568 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6569 6570 // Could not find an Alloca. 6571 if (!LifetimeObject) 6572 continue; 6573 6574 // First check that the Alloca is static, otherwise it won't have a 6575 // valid frame index. 6576 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6577 if (SI == FuncInfo.StaticAllocaMap.end()) 6578 return; 6579 6580 const int FrameIndex = SI->second; 6581 int64_t Offset; 6582 if (GetPointerBaseWithConstantOffset( 6583 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6584 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6585 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6586 Offset); 6587 DAG.setRoot(Res); 6588 } 6589 return; 6590 } 6591 case Intrinsic::invariant_start: 6592 // Discard region information. 6593 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6594 return; 6595 case Intrinsic::invariant_end: 6596 // Discard region information. 6597 return; 6598 case Intrinsic::clear_cache: 6599 /// FunctionName may be null. 6600 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6601 lowerCallToExternalSymbol(I, FunctionName); 6602 return; 6603 case Intrinsic::donothing: 6604 // ignore 6605 return; 6606 case Intrinsic::experimental_stackmap: 6607 visitStackmap(I); 6608 return; 6609 case Intrinsic::experimental_patchpoint_void: 6610 case Intrinsic::experimental_patchpoint_i64: 6611 visitPatchpoint(I); 6612 return; 6613 case Intrinsic::experimental_gc_statepoint: 6614 LowerStatepoint(cast<GCStatepointInst>(I)); 6615 return; 6616 case Intrinsic::experimental_gc_result: 6617 visitGCResult(cast<GCResultInst>(I)); 6618 return; 6619 case Intrinsic::experimental_gc_relocate: 6620 visitGCRelocate(cast<GCRelocateInst>(I)); 6621 return; 6622 case Intrinsic::instrprof_increment: 6623 llvm_unreachable("instrprof failed to lower an increment"); 6624 case Intrinsic::instrprof_value_profile: 6625 llvm_unreachable("instrprof failed to lower a value profiling call"); 6626 case Intrinsic::localescape: { 6627 MachineFunction &MF = DAG.getMachineFunction(); 6628 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6629 6630 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6631 // is the same on all targets. 6632 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6633 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6634 if (isa<ConstantPointerNull>(Arg)) 6635 continue; // Skip null pointers. They represent a hole in index space. 6636 AllocaInst *Slot = cast<AllocaInst>(Arg); 6637 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6638 "can only escape static allocas"); 6639 int FI = FuncInfo.StaticAllocaMap[Slot]; 6640 MCSymbol *FrameAllocSym = 6641 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6642 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6644 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6645 .addSym(FrameAllocSym) 6646 .addFrameIndex(FI); 6647 } 6648 6649 return; 6650 } 6651 6652 case Intrinsic::localrecover: { 6653 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6654 MachineFunction &MF = DAG.getMachineFunction(); 6655 6656 // Get the symbol that defines the frame offset. 6657 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6658 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6659 unsigned IdxVal = 6660 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6661 MCSymbol *FrameAllocSym = 6662 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6663 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6664 6665 Value *FP = I.getArgOperand(1); 6666 SDValue FPVal = getValue(FP); 6667 EVT PtrVT = FPVal.getValueType(); 6668 6669 // Create a MCSymbol for the label to avoid any target lowering 6670 // that would make this PC relative. 6671 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6672 SDValue OffsetVal = 6673 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6674 6675 // Add the offset to the FP. 6676 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6677 setValue(&I, Add); 6678 6679 return; 6680 } 6681 6682 case Intrinsic::eh_exceptionpointer: 6683 case Intrinsic::eh_exceptioncode: { 6684 // Get the exception pointer vreg, copy from it, and resize it to fit. 6685 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6686 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6687 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6688 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6689 SDValue N = 6690 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6691 if (Intrinsic == Intrinsic::eh_exceptioncode) 6692 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6693 setValue(&I, N); 6694 return; 6695 } 6696 case Intrinsic::xray_customevent: { 6697 // Here we want to make sure that the intrinsic behaves as if it has a 6698 // specific calling convention, and only for x86_64. 6699 // FIXME: Support other platforms later. 6700 const auto &Triple = DAG.getTarget().getTargetTriple(); 6701 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6702 return; 6703 6704 SDLoc DL = getCurSDLoc(); 6705 SmallVector<SDValue, 8> Ops; 6706 6707 // We want to say that we always want the arguments in registers. 6708 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6709 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6710 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6711 SDValue Chain = getRoot(); 6712 Ops.push_back(LogEntryVal); 6713 Ops.push_back(StrSizeVal); 6714 Ops.push_back(Chain); 6715 6716 // We need to enforce the calling convention for the callsite, so that 6717 // argument ordering is enforced correctly, and that register allocation can 6718 // see that some registers may be assumed clobbered and have to preserve 6719 // them across calls to the intrinsic. 6720 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6721 DL, NodeTys, Ops); 6722 SDValue patchableNode = SDValue(MN, 0); 6723 DAG.setRoot(patchableNode); 6724 setValue(&I, patchableNode); 6725 return; 6726 } 6727 case Intrinsic::xray_typedevent: { 6728 // Here we want to make sure that the intrinsic behaves as if it has a 6729 // specific calling convention, and only for x86_64. 6730 // FIXME: Support other platforms later. 6731 const auto &Triple = DAG.getTarget().getTargetTriple(); 6732 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6733 return; 6734 6735 SDLoc DL = getCurSDLoc(); 6736 SmallVector<SDValue, 8> Ops; 6737 6738 // We want to say that we always want the arguments in registers. 6739 // It's unclear to me how manipulating the selection DAG here forces callers 6740 // to provide arguments in registers instead of on the stack. 6741 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6742 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6743 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6744 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6745 SDValue Chain = getRoot(); 6746 Ops.push_back(LogTypeId); 6747 Ops.push_back(LogEntryVal); 6748 Ops.push_back(StrSizeVal); 6749 Ops.push_back(Chain); 6750 6751 // We need to enforce the calling convention for the callsite, so that 6752 // argument ordering is enforced correctly, and that register allocation can 6753 // see that some registers may be assumed clobbered and have to preserve 6754 // them across calls to the intrinsic. 6755 MachineSDNode *MN = DAG.getMachineNode( 6756 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6757 SDValue patchableNode = SDValue(MN, 0); 6758 DAG.setRoot(patchableNode); 6759 setValue(&I, patchableNode); 6760 return; 6761 } 6762 case Intrinsic::experimental_deoptimize: 6763 LowerDeoptimizeCall(&I); 6764 return; 6765 6766 case Intrinsic::experimental_vector_reduce_v2_fadd: 6767 case Intrinsic::experimental_vector_reduce_v2_fmul: 6768 case Intrinsic::experimental_vector_reduce_add: 6769 case Intrinsic::experimental_vector_reduce_mul: 6770 case Intrinsic::experimental_vector_reduce_and: 6771 case Intrinsic::experimental_vector_reduce_or: 6772 case Intrinsic::experimental_vector_reduce_xor: 6773 case Intrinsic::experimental_vector_reduce_smax: 6774 case Intrinsic::experimental_vector_reduce_smin: 6775 case Intrinsic::experimental_vector_reduce_umax: 6776 case Intrinsic::experimental_vector_reduce_umin: 6777 case Intrinsic::experimental_vector_reduce_fmax: 6778 case Intrinsic::experimental_vector_reduce_fmin: 6779 visitVectorReduce(I, Intrinsic); 6780 return; 6781 6782 case Intrinsic::icall_branch_funnel: { 6783 SmallVector<SDValue, 16> Ops; 6784 Ops.push_back(getValue(I.getArgOperand(0))); 6785 6786 int64_t Offset; 6787 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6788 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6789 if (!Base) 6790 report_fatal_error( 6791 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6792 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6793 6794 struct BranchFunnelTarget { 6795 int64_t Offset; 6796 SDValue Target; 6797 }; 6798 SmallVector<BranchFunnelTarget, 8> Targets; 6799 6800 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6801 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6802 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6803 if (ElemBase != Base) 6804 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6805 "to the same GlobalValue"); 6806 6807 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6808 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6809 if (!GA) 6810 report_fatal_error( 6811 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6812 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6813 GA->getGlobal(), getCurSDLoc(), 6814 Val.getValueType(), GA->getOffset())}); 6815 } 6816 llvm::sort(Targets, 6817 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6818 return T1.Offset < T2.Offset; 6819 }); 6820 6821 for (auto &T : Targets) { 6822 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6823 Ops.push_back(T.Target); 6824 } 6825 6826 Ops.push_back(DAG.getRoot()); // Chain 6827 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6828 getCurSDLoc(), MVT::Other, Ops), 6829 0); 6830 DAG.setRoot(N); 6831 setValue(&I, N); 6832 HasTailCall = true; 6833 return; 6834 } 6835 6836 case Intrinsic::wasm_landingpad_index: 6837 // Information this intrinsic contained has been transferred to 6838 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6839 // delete it now. 6840 return; 6841 6842 case Intrinsic::aarch64_settag: 6843 case Intrinsic::aarch64_settag_zero: { 6844 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6845 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6846 SDValue Val = TSI.EmitTargetCodeForSetTag( 6847 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6848 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6849 ZeroMemory); 6850 DAG.setRoot(Val); 6851 setValue(&I, Val); 6852 return; 6853 } 6854 case Intrinsic::ptrmask: { 6855 SDValue Ptr = getValue(I.getOperand(0)); 6856 SDValue Const = getValue(I.getOperand(1)); 6857 6858 EVT PtrVT = Ptr.getValueType(); 6859 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6860 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6861 return; 6862 } 6863 case Intrinsic::get_active_lane_mask: { 6864 auto DL = getCurSDLoc(); 6865 SDValue Index = getValue(I.getOperand(0)); 6866 SDValue TripCount = getValue(I.getOperand(1)); 6867 Type *ElementTy = I.getOperand(0)->getType(); 6868 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6869 unsigned VecWidth = VT.getVectorNumElements(); 6870 6871 SmallVector<SDValue, 16> OpsTripCount; 6872 SmallVector<SDValue, 16> OpsIndex; 6873 SmallVector<SDValue, 16> OpsStepConstants; 6874 for (unsigned i = 0; i < VecWidth; i++) { 6875 OpsTripCount.push_back(TripCount); 6876 OpsIndex.push_back(Index); 6877 OpsStepConstants.push_back( 6878 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6879 } 6880 6881 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6882 6883 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6884 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6885 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6886 SDValue VectorInduction = DAG.getNode( 6887 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6888 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 6889 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6890 VectorTripCount, ISD::CondCode::SETULT); 6891 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6892 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6893 SetCC)); 6894 return; 6895 } 6896 } 6897 } 6898 6899 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6900 const ConstrainedFPIntrinsic &FPI) { 6901 SDLoc sdl = getCurSDLoc(); 6902 6903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6904 SmallVector<EVT, 4> ValueVTs; 6905 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6906 ValueVTs.push_back(MVT::Other); // Out chain 6907 6908 // We do not need to serialize constrained FP intrinsics against 6909 // each other or against (nonvolatile) loads, so they can be 6910 // chained like loads. 6911 SDValue Chain = DAG.getRoot(); 6912 SmallVector<SDValue, 4> Opers; 6913 Opers.push_back(Chain); 6914 if (FPI.isUnaryOp()) { 6915 Opers.push_back(getValue(FPI.getArgOperand(0))); 6916 } else if (FPI.isTernaryOp()) { 6917 Opers.push_back(getValue(FPI.getArgOperand(0))); 6918 Opers.push_back(getValue(FPI.getArgOperand(1))); 6919 Opers.push_back(getValue(FPI.getArgOperand(2))); 6920 } else { 6921 Opers.push_back(getValue(FPI.getArgOperand(0))); 6922 Opers.push_back(getValue(FPI.getArgOperand(1))); 6923 } 6924 6925 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6926 assert(Result.getNode()->getNumValues() == 2); 6927 6928 // Push node to the appropriate list so that future instructions can be 6929 // chained up correctly. 6930 SDValue OutChain = Result.getValue(1); 6931 switch (EB) { 6932 case fp::ExceptionBehavior::ebIgnore: 6933 // The only reason why ebIgnore nodes still need to be chained is that 6934 // they might depend on the current rounding mode, and therefore must 6935 // not be moved across instruction that may change that mode. 6936 LLVM_FALLTHROUGH; 6937 case fp::ExceptionBehavior::ebMayTrap: 6938 // These must not be moved across calls or instructions that may change 6939 // floating-point exception masks. 6940 PendingConstrainedFP.push_back(OutChain); 6941 break; 6942 case fp::ExceptionBehavior::ebStrict: 6943 // These must not be moved across calls or instructions that may change 6944 // floating-point exception masks or read floating-point exception flags. 6945 // In addition, they cannot be optimized out even if unused. 6946 PendingConstrainedFPStrict.push_back(OutChain); 6947 break; 6948 } 6949 }; 6950 6951 SDVTList VTs = DAG.getVTList(ValueVTs); 6952 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6953 6954 SDNodeFlags Flags; 6955 if (EB == fp::ExceptionBehavior::ebIgnore) 6956 Flags.setNoFPExcept(true); 6957 6958 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6959 Flags.copyFMF(*FPOp); 6960 6961 unsigned Opcode; 6962 switch (FPI.getIntrinsicID()) { 6963 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6964 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6965 case Intrinsic::INTRINSIC: \ 6966 Opcode = ISD::STRICT_##DAGN; \ 6967 break; 6968 #include "llvm/IR/ConstrainedOps.def" 6969 case Intrinsic::experimental_constrained_fmuladd: { 6970 Opcode = ISD::STRICT_FMA; 6971 // Break fmuladd into fmul and fadd. 6972 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 6973 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 6974 ValueVTs[0])) { 6975 Opers.pop_back(); 6976 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 6977 pushOutChain(Mul, EB); 6978 Opcode = ISD::STRICT_FADD; 6979 Opers.clear(); 6980 Opers.push_back(Mul.getValue(1)); 6981 Opers.push_back(Mul.getValue(0)); 6982 Opers.push_back(getValue(FPI.getArgOperand(2))); 6983 } 6984 break; 6985 } 6986 } 6987 6988 // A few strict DAG nodes carry additional operands that are not 6989 // set up by the default code above. 6990 switch (Opcode) { 6991 default: break; 6992 case ISD::STRICT_FP_ROUND: 6993 Opers.push_back( 6994 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6995 break; 6996 case ISD::STRICT_FSETCC: 6997 case ISD::STRICT_FSETCCS: { 6998 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6999 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7000 break; 7001 } 7002 } 7003 7004 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7005 pushOutChain(Result, EB); 7006 7007 SDValue FPResult = Result.getValue(0); 7008 setValue(&FPI, FPResult); 7009 } 7010 7011 std::pair<SDValue, SDValue> 7012 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7013 const BasicBlock *EHPadBB) { 7014 MachineFunction &MF = DAG.getMachineFunction(); 7015 MachineModuleInfo &MMI = MF.getMMI(); 7016 MCSymbol *BeginLabel = nullptr; 7017 7018 if (EHPadBB) { 7019 // Insert a label before the invoke call to mark the try range. This can be 7020 // used to detect deletion of the invoke via the MachineModuleInfo. 7021 BeginLabel = MMI.getContext().createTempSymbol(); 7022 7023 // For SjLj, keep track of which landing pads go with which invokes 7024 // so as to maintain the ordering of pads in the LSDA. 7025 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7026 if (CallSiteIndex) { 7027 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7028 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7029 7030 // Now that the call site is handled, stop tracking it. 7031 MMI.setCurrentCallSite(0); 7032 } 7033 7034 // Both PendingLoads and PendingExports must be flushed here; 7035 // this call might not return. 7036 (void)getRoot(); 7037 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7038 7039 CLI.setChain(getRoot()); 7040 } 7041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7042 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7043 7044 assert((CLI.IsTailCall || Result.second.getNode()) && 7045 "Non-null chain expected with non-tail call!"); 7046 assert((Result.second.getNode() || !Result.first.getNode()) && 7047 "Null value expected with tail call!"); 7048 7049 if (!Result.second.getNode()) { 7050 // As a special case, a null chain means that a tail call has been emitted 7051 // and the DAG root is already updated. 7052 HasTailCall = true; 7053 7054 // Since there's no actual continuation from this block, nothing can be 7055 // relying on us setting vregs for them. 7056 PendingExports.clear(); 7057 } else { 7058 DAG.setRoot(Result.second); 7059 } 7060 7061 if (EHPadBB) { 7062 // Insert a label at the end of the invoke call to mark the try range. This 7063 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7064 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7065 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7066 7067 // Inform MachineModuleInfo of range. 7068 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7069 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7070 // actually use outlined funclets and their LSDA info style. 7071 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7072 assert(CLI.CB); 7073 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7074 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7075 } else if (!isScopedEHPersonality(Pers)) { 7076 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7077 } 7078 } 7079 7080 return Result; 7081 } 7082 7083 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7084 bool isTailCall, 7085 const BasicBlock *EHPadBB) { 7086 auto &DL = DAG.getDataLayout(); 7087 FunctionType *FTy = CB.getFunctionType(); 7088 Type *RetTy = CB.getType(); 7089 7090 TargetLowering::ArgListTy Args; 7091 Args.reserve(CB.arg_size()); 7092 7093 const Value *SwiftErrorVal = nullptr; 7094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7095 7096 if (isTailCall) { 7097 // Avoid emitting tail calls in functions with the disable-tail-calls 7098 // attribute. 7099 auto *Caller = CB.getParent()->getParent(); 7100 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7101 "true") 7102 isTailCall = false; 7103 7104 // We can't tail call inside a function with a swifterror argument. Lowering 7105 // does not support this yet. It would have to move into the swifterror 7106 // register before the call. 7107 if (TLI.supportSwiftError() && 7108 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7109 isTailCall = false; 7110 } 7111 7112 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7113 TargetLowering::ArgListEntry Entry; 7114 const Value *V = *I; 7115 7116 // Skip empty types 7117 if (V->getType()->isEmptyTy()) 7118 continue; 7119 7120 SDValue ArgNode = getValue(V); 7121 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7122 7123 Entry.setAttributes(&CB, I - CB.arg_begin()); 7124 7125 // Use swifterror virtual register as input to the call. 7126 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7127 SwiftErrorVal = V; 7128 // We find the virtual register for the actual swifterror argument. 7129 // Instead of using the Value, we use the virtual register instead. 7130 Entry.Node = 7131 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7132 EVT(TLI.getPointerTy(DL))); 7133 } 7134 7135 Args.push_back(Entry); 7136 7137 // If we have an explicit sret argument that is an Instruction, (i.e., it 7138 // might point to function-local memory), we can't meaningfully tail-call. 7139 if (Entry.IsSRet && isa<Instruction>(V)) 7140 isTailCall = false; 7141 } 7142 7143 // If call site has a cfguardtarget operand bundle, create and add an 7144 // additional ArgListEntry. 7145 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7146 TargetLowering::ArgListEntry Entry; 7147 Value *V = Bundle->Inputs[0]; 7148 SDValue ArgNode = getValue(V); 7149 Entry.Node = ArgNode; 7150 Entry.Ty = V->getType(); 7151 Entry.IsCFGuardTarget = true; 7152 Args.push_back(Entry); 7153 } 7154 7155 // Check if target-independent constraints permit a tail call here. 7156 // Target-dependent constraints are checked within TLI->LowerCallTo. 7157 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7158 isTailCall = false; 7159 7160 // Disable tail calls if there is an swifterror argument. Targets have not 7161 // been updated to support tail calls. 7162 if (TLI.supportSwiftError() && SwiftErrorVal) 7163 isTailCall = false; 7164 7165 TargetLowering::CallLoweringInfo CLI(DAG); 7166 CLI.setDebugLoc(getCurSDLoc()) 7167 .setChain(getRoot()) 7168 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7169 .setTailCall(isTailCall) 7170 .setConvergent(CB.isConvergent()) 7171 .setIsPreallocated( 7172 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7173 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7174 7175 if (Result.first.getNode()) { 7176 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7177 setValue(&CB, Result.first); 7178 } 7179 7180 // The last element of CLI.InVals has the SDValue for swifterror return. 7181 // Here we copy it to a virtual register and update SwiftErrorMap for 7182 // book-keeping. 7183 if (SwiftErrorVal && TLI.supportSwiftError()) { 7184 // Get the last element of InVals. 7185 SDValue Src = CLI.InVals.back(); 7186 Register VReg = 7187 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7188 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7189 DAG.setRoot(CopyNode); 7190 } 7191 } 7192 7193 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7194 SelectionDAGBuilder &Builder) { 7195 // Check to see if this load can be trivially constant folded, e.g. if the 7196 // input is from a string literal. 7197 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7198 // Cast pointer to the type we really want to load. 7199 Type *LoadTy = 7200 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7201 if (LoadVT.isVector()) 7202 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7203 7204 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7205 PointerType::getUnqual(LoadTy)); 7206 7207 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7208 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7209 return Builder.getValue(LoadCst); 7210 } 7211 7212 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7213 // still constant memory, the input chain can be the entry node. 7214 SDValue Root; 7215 bool ConstantMemory = false; 7216 7217 // Do not serialize (non-volatile) loads of constant memory with anything. 7218 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7219 Root = Builder.DAG.getEntryNode(); 7220 ConstantMemory = true; 7221 } else { 7222 // Do not serialize non-volatile loads against each other. 7223 Root = Builder.DAG.getRoot(); 7224 } 7225 7226 SDValue Ptr = Builder.getValue(PtrVal); 7227 SDValue LoadVal = 7228 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7229 MachinePointerInfo(PtrVal), Align(1)); 7230 7231 if (!ConstantMemory) 7232 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7233 return LoadVal; 7234 } 7235 7236 /// Record the value for an instruction that produces an integer result, 7237 /// converting the type where necessary. 7238 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7239 SDValue Value, 7240 bool IsSigned) { 7241 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7242 I.getType(), true); 7243 if (IsSigned) 7244 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7245 else 7246 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7247 setValue(&I, Value); 7248 } 7249 7250 /// See if we can lower a memcmp call into an optimized form. If so, return 7251 /// true and lower it. Otherwise return false, and it will be lowered like a 7252 /// normal call. 7253 /// The caller already checked that \p I calls the appropriate LibFunc with a 7254 /// correct prototype. 7255 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7256 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7257 const Value *Size = I.getArgOperand(2); 7258 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7259 if (CSize && CSize->getZExtValue() == 0) { 7260 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7261 I.getType(), true); 7262 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7263 return true; 7264 } 7265 7266 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7267 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7268 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7269 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7270 if (Res.first.getNode()) { 7271 processIntegerCallValue(I, Res.first, true); 7272 PendingLoads.push_back(Res.second); 7273 return true; 7274 } 7275 7276 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7277 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7278 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7279 return false; 7280 7281 // If the target has a fast compare for the given size, it will return a 7282 // preferred load type for that size. Require that the load VT is legal and 7283 // that the target supports unaligned loads of that type. Otherwise, return 7284 // INVALID. 7285 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7286 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7287 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7288 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7289 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7290 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7291 // TODO: Check alignment of src and dest ptrs. 7292 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7293 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7294 if (!TLI.isTypeLegal(LVT) || 7295 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7296 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7297 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7298 } 7299 7300 return LVT; 7301 }; 7302 7303 // This turns into unaligned loads. We only do this if the target natively 7304 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7305 // we'll only produce a small number of byte loads. 7306 MVT LoadVT; 7307 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7308 switch (NumBitsToCompare) { 7309 default: 7310 return false; 7311 case 16: 7312 LoadVT = MVT::i16; 7313 break; 7314 case 32: 7315 LoadVT = MVT::i32; 7316 break; 7317 case 64: 7318 case 128: 7319 case 256: 7320 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7321 break; 7322 } 7323 7324 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7325 return false; 7326 7327 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7328 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7329 7330 // Bitcast to a wide integer type if the loads are vectors. 7331 if (LoadVT.isVector()) { 7332 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7333 LoadL = DAG.getBitcast(CmpVT, LoadL); 7334 LoadR = DAG.getBitcast(CmpVT, LoadR); 7335 } 7336 7337 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7338 processIntegerCallValue(I, Cmp, false); 7339 return true; 7340 } 7341 7342 /// See if we can lower a memchr call into an optimized form. If so, return 7343 /// true and lower it. Otherwise return false, and it will be lowered like a 7344 /// normal call. 7345 /// The caller already checked that \p I calls the appropriate LibFunc with a 7346 /// correct prototype. 7347 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7348 const Value *Src = I.getArgOperand(0); 7349 const Value *Char = I.getArgOperand(1); 7350 const Value *Length = I.getArgOperand(2); 7351 7352 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7353 std::pair<SDValue, SDValue> Res = 7354 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7355 getValue(Src), getValue(Char), getValue(Length), 7356 MachinePointerInfo(Src)); 7357 if (Res.first.getNode()) { 7358 setValue(&I, Res.first); 7359 PendingLoads.push_back(Res.second); 7360 return true; 7361 } 7362 7363 return false; 7364 } 7365 7366 /// See if we can lower a mempcpy call into an optimized form. If so, return 7367 /// true and lower it. Otherwise return false, and it will be lowered like a 7368 /// normal call. 7369 /// The caller already checked that \p I calls the appropriate LibFunc with a 7370 /// correct prototype. 7371 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7372 SDValue Dst = getValue(I.getArgOperand(0)); 7373 SDValue Src = getValue(I.getArgOperand(1)); 7374 SDValue Size = getValue(I.getArgOperand(2)); 7375 7376 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7377 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7378 // DAG::getMemcpy needs Alignment to be defined. 7379 Align Alignment = std::min(DstAlign, SrcAlign); 7380 7381 bool isVol = false; 7382 SDLoc sdl = getCurSDLoc(); 7383 7384 // In the mempcpy context we need to pass in a false value for isTailCall 7385 // because the return pointer needs to be adjusted by the size of 7386 // the copied memory. 7387 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7388 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7389 /*isTailCall=*/false, 7390 MachinePointerInfo(I.getArgOperand(0)), 7391 MachinePointerInfo(I.getArgOperand(1))); 7392 assert(MC.getNode() != nullptr && 7393 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7394 DAG.setRoot(MC); 7395 7396 // Check if Size needs to be truncated or extended. 7397 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7398 7399 // Adjust return pointer to point just past the last dst byte. 7400 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7401 Dst, Size); 7402 setValue(&I, DstPlusSize); 7403 return true; 7404 } 7405 7406 /// See if we can lower a strcpy call into an optimized form. If so, return 7407 /// true and lower it, otherwise return false and it will be lowered like a 7408 /// normal call. 7409 /// The caller already checked that \p I calls the appropriate LibFunc with a 7410 /// correct prototype. 7411 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7412 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7413 7414 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7415 std::pair<SDValue, SDValue> Res = 7416 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7417 getValue(Arg0), getValue(Arg1), 7418 MachinePointerInfo(Arg0), 7419 MachinePointerInfo(Arg1), isStpcpy); 7420 if (Res.first.getNode()) { 7421 setValue(&I, Res.first); 7422 DAG.setRoot(Res.second); 7423 return true; 7424 } 7425 7426 return false; 7427 } 7428 7429 /// See if we can lower a strcmp call into an optimized form. If so, return 7430 /// true and lower it, otherwise return false and it will be lowered like a 7431 /// normal call. 7432 /// The caller already checked that \p I calls the appropriate LibFunc with a 7433 /// correct prototype. 7434 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7435 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7436 7437 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7438 std::pair<SDValue, SDValue> Res = 7439 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7440 getValue(Arg0), getValue(Arg1), 7441 MachinePointerInfo(Arg0), 7442 MachinePointerInfo(Arg1)); 7443 if (Res.first.getNode()) { 7444 processIntegerCallValue(I, Res.first, true); 7445 PendingLoads.push_back(Res.second); 7446 return true; 7447 } 7448 7449 return false; 7450 } 7451 7452 /// See if we can lower a strlen call into an optimized form. If so, return 7453 /// true and lower it, otherwise return false and it will be lowered like a 7454 /// normal call. 7455 /// The caller already checked that \p I calls the appropriate LibFunc with a 7456 /// correct prototype. 7457 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7458 const Value *Arg0 = I.getArgOperand(0); 7459 7460 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7461 std::pair<SDValue, SDValue> Res = 7462 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7463 getValue(Arg0), MachinePointerInfo(Arg0)); 7464 if (Res.first.getNode()) { 7465 processIntegerCallValue(I, Res.first, false); 7466 PendingLoads.push_back(Res.second); 7467 return true; 7468 } 7469 7470 return false; 7471 } 7472 7473 /// See if we can lower a strnlen call into an optimized form. If so, return 7474 /// true and lower it, otherwise return false and it will be lowered like a 7475 /// normal call. 7476 /// The caller already checked that \p I calls the appropriate LibFunc with a 7477 /// correct prototype. 7478 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7479 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7480 7481 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7482 std::pair<SDValue, SDValue> Res = 7483 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7484 getValue(Arg0), getValue(Arg1), 7485 MachinePointerInfo(Arg0)); 7486 if (Res.first.getNode()) { 7487 processIntegerCallValue(I, Res.first, false); 7488 PendingLoads.push_back(Res.second); 7489 return true; 7490 } 7491 7492 return false; 7493 } 7494 7495 /// See if we can lower a unary floating-point operation into an SDNode with 7496 /// the specified Opcode. If so, return true and lower it, otherwise return 7497 /// false and it will be lowered like a normal call. 7498 /// The caller already checked that \p I calls the appropriate LibFunc with a 7499 /// correct prototype. 7500 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7501 unsigned Opcode) { 7502 // We already checked this call's prototype; verify it doesn't modify errno. 7503 if (!I.onlyReadsMemory()) 7504 return false; 7505 7506 SDNodeFlags Flags; 7507 Flags.copyFMF(cast<FPMathOperator>(I)); 7508 7509 SDValue Tmp = getValue(I.getArgOperand(0)); 7510 setValue(&I, 7511 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7512 return true; 7513 } 7514 7515 /// See if we can lower a binary floating-point operation into an SDNode with 7516 /// the specified Opcode. If so, return true and lower it. Otherwise return 7517 /// false, and it will be lowered like a normal call. 7518 /// The caller already checked that \p I calls the appropriate LibFunc with a 7519 /// correct prototype. 7520 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7521 unsigned Opcode) { 7522 // We already checked this call's prototype; verify it doesn't modify errno. 7523 if (!I.onlyReadsMemory()) 7524 return false; 7525 7526 SDNodeFlags Flags; 7527 Flags.copyFMF(cast<FPMathOperator>(I)); 7528 7529 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7530 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7531 EVT VT = Tmp0.getValueType(); 7532 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7533 return true; 7534 } 7535 7536 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7537 // Handle inline assembly differently. 7538 if (I.isInlineAsm()) { 7539 visitInlineAsm(I); 7540 return; 7541 } 7542 7543 if (Function *F = I.getCalledFunction()) { 7544 if (F->isDeclaration()) { 7545 // Is this an LLVM intrinsic or a target-specific intrinsic? 7546 unsigned IID = F->getIntrinsicID(); 7547 if (!IID) 7548 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7549 IID = II->getIntrinsicID(F); 7550 7551 if (IID) { 7552 visitIntrinsicCall(I, IID); 7553 return; 7554 } 7555 } 7556 7557 // Check for well-known libc/libm calls. If the function is internal, it 7558 // can't be a library call. Don't do the check if marked as nobuiltin for 7559 // some reason or the call site requires strict floating point semantics. 7560 LibFunc Func; 7561 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7562 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7563 LibInfo->hasOptimizedCodeGen(Func)) { 7564 switch (Func) { 7565 default: break; 7566 case LibFunc_copysign: 7567 case LibFunc_copysignf: 7568 case LibFunc_copysignl: 7569 // We already checked this call's prototype; verify it doesn't modify 7570 // errno. 7571 if (I.onlyReadsMemory()) { 7572 SDValue LHS = getValue(I.getArgOperand(0)); 7573 SDValue RHS = getValue(I.getArgOperand(1)); 7574 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7575 LHS.getValueType(), LHS, RHS)); 7576 return; 7577 } 7578 break; 7579 case LibFunc_fabs: 7580 case LibFunc_fabsf: 7581 case LibFunc_fabsl: 7582 if (visitUnaryFloatCall(I, ISD::FABS)) 7583 return; 7584 break; 7585 case LibFunc_fmin: 7586 case LibFunc_fminf: 7587 case LibFunc_fminl: 7588 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7589 return; 7590 break; 7591 case LibFunc_fmax: 7592 case LibFunc_fmaxf: 7593 case LibFunc_fmaxl: 7594 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7595 return; 7596 break; 7597 case LibFunc_sin: 7598 case LibFunc_sinf: 7599 case LibFunc_sinl: 7600 if (visitUnaryFloatCall(I, ISD::FSIN)) 7601 return; 7602 break; 7603 case LibFunc_cos: 7604 case LibFunc_cosf: 7605 case LibFunc_cosl: 7606 if (visitUnaryFloatCall(I, ISD::FCOS)) 7607 return; 7608 break; 7609 case LibFunc_sqrt: 7610 case LibFunc_sqrtf: 7611 case LibFunc_sqrtl: 7612 case LibFunc_sqrt_finite: 7613 case LibFunc_sqrtf_finite: 7614 case LibFunc_sqrtl_finite: 7615 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7616 return; 7617 break; 7618 case LibFunc_floor: 7619 case LibFunc_floorf: 7620 case LibFunc_floorl: 7621 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7622 return; 7623 break; 7624 case LibFunc_nearbyint: 7625 case LibFunc_nearbyintf: 7626 case LibFunc_nearbyintl: 7627 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7628 return; 7629 break; 7630 case LibFunc_ceil: 7631 case LibFunc_ceilf: 7632 case LibFunc_ceill: 7633 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7634 return; 7635 break; 7636 case LibFunc_rint: 7637 case LibFunc_rintf: 7638 case LibFunc_rintl: 7639 if (visitUnaryFloatCall(I, ISD::FRINT)) 7640 return; 7641 break; 7642 case LibFunc_round: 7643 case LibFunc_roundf: 7644 case LibFunc_roundl: 7645 if (visitUnaryFloatCall(I, ISD::FROUND)) 7646 return; 7647 break; 7648 case LibFunc_trunc: 7649 case LibFunc_truncf: 7650 case LibFunc_truncl: 7651 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7652 return; 7653 break; 7654 case LibFunc_log2: 7655 case LibFunc_log2f: 7656 case LibFunc_log2l: 7657 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7658 return; 7659 break; 7660 case LibFunc_exp2: 7661 case LibFunc_exp2f: 7662 case LibFunc_exp2l: 7663 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7664 return; 7665 break; 7666 case LibFunc_memcmp: 7667 if (visitMemCmpCall(I)) 7668 return; 7669 break; 7670 case LibFunc_mempcpy: 7671 if (visitMemPCpyCall(I)) 7672 return; 7673 break; 7674 case LibFunc_memchr: 7675 if (visitMemChrCall(I)) 7676 return; 7677 break; 7678 case LibFunc_strcpy: 7679 if (visitStrCpyCall(I, false)) 7680 return; 7681 break; 7682 case LibFunc_stpcpy: 7683 if (visitStrCpyCall(I, true)) 7684 return; 7685 break; 7686 case LibFunc_strcmp: 7687 if (visitStrCmpCall(I)) 7688 return; 7689 break; 7690 case LibFunc_strlen: 7691 if (visitStrLenCall(I)) 7692 return; 7693 break; 7694 case LibFunc_strnlen: 7695 if (visitStrNLenCall(I)) 7696 return; 7697 break; 7698 } 7699 } 7700 } 7701 7702 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7703 // have to do anything here to lower funclet bundles. 7704 // CFGuardTarget bundles are lowered in LowerCallTo. 7705 assert(!I.hasOperandBundlesOtherThan( 7706 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7707 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7708 "Cannot lower calls with arbitrary operand bundles!"); 7709 7710 SDValue Callee = getValue(I.getCalledOperand()); 7711 7712 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7713 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7714 else 7715 // Check if we can potentially perform a tail call. More detailed checking 7716 // is be done within LowerCallTo, after more information about the call is 7717 // known. 7718 LowerCallTo(I, Callee, I.isTailCall()); 7719 } 7720 7721 namespace { 7722 7723 /// AsmOperandInfo - This contains information for each constraint that we are 7724 /// lowering. 7725 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7726 public: 7727 /// CallOperand - If this is the result output operand or a clobber 7728 /// this is null, otherwise it is the incoming operand to the CallInst. 7729 /// This gets modified as the asm is processed. 7730 SDValue CallOperand; 7731 7732 /// AssignedRegs - If this is a register or register class operand, this 7733 /// contains the set of register corresponding to the operand. 7734 RegsForValue AssignedRegs; 7735 7736 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7737 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7738 } 7739 7740 /// Whether or not this operand accesses memory 7741 bool hasMemory(const TargetLowering &TLI) const { 7742 // Indirect operand accesses access memory. 7743 if (isIndirect) 7744 return true; 7745 7746 for (const auto &Code : Codes) 7747 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7748 return true; 7749 7750 return false; 7751 } 7752 7753 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7754 /// corresponds to. If there is no Value* for this operand, it returns 7755 /// MVT::Other. 7756 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7757 const DataLayout &DL) const { 7758 if (!CallOperandVal) return MVT::Other; 7759 7760 if (isa<BasicBlock>(CallOperandVal)) 7761 return TLI.getProgramPointerTy(DL); 7762 7763 llvm::Type *OpTy = CallOperandVal->getType(); 7764 7765 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7766 // If this is an indirect operand, the operand is a pointer to the 7767 // accessed type. 7768 if (isIndirect) { 7769 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7770 if (!PtrTy) 7771 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7772 OpTy = PtrTy->getElementType(); 7773 } 7774 7775 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7776 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7777 if (STy->getNumElements() == 1) 7778 OpTy = STy->getElementType(0); 7779 7780 // If OpTy is not a single value, it may be a struct/union that we 7781 // can tile with integers. 7782 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7783 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7784 switch (BitSize) { 7785 default: break; 7786 case 1: 7787 case 8: 7788 case 16: 7789 case 32: 7790 case 64: 7791 case 128: 7792 OpTy = IntegerType::get(Context, BitSize); 7793 break; 7794 } 7795 } 7796 7797 return TLI.getValueType(DL, OpTy, true); 7798 } 7799 }; 7800 7801 7802 } // end anonymous namespace 7803 7804 /// Make sure that the output operand \p OpInfo and its corresponding input 7805 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7806 /// out). 7807 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7808 SDISelAsmOperandInfo &MatchingOpInfo, 7809 SelectionDAG &DAG) { 7810 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7811 return; 7812 7813 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7814 const auto &TLI = DAG.getTargetLoweringInfo(); 7815 7816 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7817 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7818 OpInfo.ConstraintVT); 7819 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7820 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7821 MatchingOpInfo.ConstraintVT); 7822 if ((OpInfo.ConstraintVT.isInteger() != 7823 MatchingOpInfo.ConstraintVT.isInteger()) || 7824 (MatchRC.second != InputRC.second)) { 7825 // FIXME: error out in a more elegant fashion 7826 report_fatal_error("Unsupported asm: input constraint" 7827 " with a matching output constraint of" 7828 " incompatible type!"); 7829 } 7830 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7831 } 7832 7833 /// Get a direct memory input to behave well as an indirect operand. 7834 /// This may introduce stores, hence the need for a \p Chain. 7835 /// \return The (possibly updated) chain. 7836 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7837 SDISelAsmOperandInfo &OpInfo, 7838 SelectionDAG &DAG) { 7839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7840 7841 // If we don't have an indirect input, put it in the constpool if we can, 7842 // otherwise spill it to a stack slot. 7843 // TODO: This isn't quite right. We need to handle these according to 7844 // the addressing mode that the constraint wants. Also, this may take 7845 // an additional register for the computation and we don't want that 7846 // either. 7847 7848 // If the operand is a float, integer, or vector constant, spill to a 7849 // constant pool entry to get its address. 7850 const Value *OpVal = OpInfo.CallOperandVal; 7851 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7852 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7853 OpInfo.CallOperand = DAG.getConstantPool( 7854 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7855 return Chain; 7856 } 7857 7858 // Otherwise, create a stack slot and emit a store to it before the asm. 7859 Type *Ty = OpVal->getType(); 7860 auto &DL = DAG.getDataLayout(); 7861 uint64_t TySize = DL.getTypeAllocSize(Ty); 7862 MachineFunction &MF = DAG.getMachineFunction(); 7863 int SSFI = MF.getFrameInfo().CreateStackObject( 7864 TySize, DL.getPrefTypeAlign(Ty), false); 7865 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7866 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7867 MachinePointerInfo::getFixedStack(MF, SSFI), 7868 TLI.getMemValueType(DL, Ty)); 7869 OpInfo.CallOperand = StackSlot; 7870 7871 return Chain; 7872 } 7873 7874 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7875 /// specified operand. We prefer to assign virtual registers, to allow the 7876 /// register allocator to handle the assignment process. However, if the asm 7877 /// uses features that we can't model on machineinstrs, we have SDISel do the 7878 /// allocation. This produces generally horrible, but correct, code. 7879 /// 7880 /// OpInfo describes the operand 7881 /// RefOpInfo describes the matching operand if any, the operand otherwise 7882 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7883 SDISelAsmOperandInfo &OpInfo, 7884 SDISelAsmOperandInfo &RefOpInfo) { 7885 LLVMContext &Context = *DAG.getContext(); 7886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7887 7888 MachineFunction &MF = DAG.getMachineFunction(); 7889 SmallVector<unsigned, 4> Regs; 7890 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7891 7892 // No work to do for memory operations. 7893 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7894 return; 7895 7896 // If this is a constraint for a single physreg, or a constraint for a 7897 // register class, find it. 7898 unsigned AssignedReg; 7899 const TargetRegisterClass *RC; 7900 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7901 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7902 // RC is unset only on failure. Return immediately. 7903 if (!RC) 7904 return; 7905 7906 // Get the actual register value type. This is important, because the user 7907 // may have asked for (e.g.) the AX register in i32 type. We need to 7908 // remember that AX is actually i16 to get the right extension. 7909 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7910 7911 if (OpInfo.ConstraintVT != MVT::Other) { 7912 // If this is an FP operand in an integer register (or visa versa), or more 7913 // generally if the operand value disagrees with the register class we plan 7914 // to stick it in, fix the operand type. 7915 // 7916 // If this is an input value, the bitcast to the new type is done now. 7917 // Bitcast for output value is done at the end of visitInlineAsm(). 7918 if ((OpInfo.Type == InlineAsm::isOutput || 7919 OpInfo.Type == InlineAsm::isInput) && 7920 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7921 // Try to convert to the first EVT that the reg class contains. If the 7922 // types are identical size, use a bitcast to convert (e.g. two differing 7923 // vector types). Note: output bitcast is done at the end of 7924 // visitInlineAsm(). 7925 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7926 // Exclude indirect inputs while they are unsupported because the code 7927 // to perform the load is missing and thus OpInfo.CallOperand still 7928 // refers to the input address rather than the pointed-to value. 7929 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7930 OpInfo.CallOperand = 7931 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7932 OpInfo.ConstraintVT = RegVT; 7933 // If the operand is an FP value and we want it in integer registers, 7934 // use the corresponding integer type. This turns an f64 value into 7935 // i64, which can be passed with two i32 values on a 32-bit machine. 7936 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7937 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7938 if (OpInfo.Type == InlineAsm::isInput) 7939 OpInfo.CallOperand = 7940 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7941 OpInfo.ConstraintVT = VT; 7942 } 7943 } 7944 } 7945 7946 // No need to allocate a matching input constraint since the constraint it's 7947 // matching to has already been allocated. 7948 if (OpInfo.isMatchingInputConstraint()) 7949 return; 7950 7951 EVT ValueVT = OpInfo.ConstraintVT; 7952 if (OpInfo.ConstraintVT == MVT::Other) 7953 ValueVT = RegVT; 7954 7955 // Initialize NumRegs. 7956 unsigned NumRegs = 1; 7957 if (OpInfo.ConstraintVT != MVT::Other) 7958 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7959 7960 // If this is a constraint for a specific physical register, like {r17}, 7961 // assign it now. 7962 7963 // If this associated to a specific register, initialize iterator to correct 7964 // place. If virtual, make sure we have enough registers 7965 7966 // Initialize iterator if necessary 7967 TargetRegisterClass::iterator I = RC->begin(); 7968 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7969 7970 // Do not check for single registers. 7971 if (AssignedReg) { 7972 for (; *I != AssignedReg; ++I) 7973 assert(I != RC->end() && "AssignedReg should be member of RC"); 7974 } 7975 7976 for (; NumRegs; --NumRegs, ++I) { 7977 assert(I != RC->end() && "Ran out of registers to allocate!"); 7978 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7979 Regs.push_back(R); 7980 } 7981 7982 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7983 } 7984 7985 static unsigned 7986 findMatchingInlineAsmOperand(unsigned OperandNo, 7987 const std::vector<SDValue> &AsmNodeOperands) { 7988 // Scan until we find the definition we already emitted of this operand. 7989 unsigned CurOp = InlineAsm::Op_FirstOperand; 7990 for (; OperandNo; --OperandNo) { 7991 // Advance to the next operand. 7992 unsigned OpFlag = 7993 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7994 assert((InlineAsm::isRegDefKind(OpFlag) || 7995 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7996 InlineAsm::isMemKind(OpFlag)) && 7997 "Skipped past definitions?"); 7998 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7999 } 8000 return CurOp; 8001 } 8002 8003 namespace { 8004 8005 class ExtraFlags { 8006 unsigned Flags = 0; 8007 8008 public: 8009 explicit ExtraFlags(const CallBase &Call) { 8010 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8011 if (IA->hasSideEffects()) 8012 Flags |= InlineAsm::Extra_HasSideEffects; 8013 if (IA->isAlignStack()) 8014 Flags |= InlineAsm::Extra_IsAlignStack; 8015 if (Call.isConvergent()) 8016 Flags |= InlineAsm::Extra_IsConvergent; 8017 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8018 } 8019 8020 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8021 // Ideally, we would only check against memory constraints. However, the 8022 // meaning of an Other constraint can be target-specific and we can't easily 8023 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8024 // for Other constraints as well. 8025 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8026 OpInfo.ConstraintType == TargetLowering::C_Other) { 8027 if (OpInfo.Type == InlineAsm::isInput) 8028 Flags |= InlineAsm::Extra_MayLoad; 8029 else if (OpInfo.Type == InlineAsm::isOutput) 8030 Flags |= InlineAsm::Extra_MayStore; 8031 else if (OpInfo.Type == InlineAsm::isClobber) 8032 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8033 } 8034 } 8035 8036 unsigned get() const { return Flags; } 8037 }; 8038 8039 } // end anonymous namespace 8040 8041 /// visitInlineAsm - Handle a call to an InlineAsm object. 8042 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8043 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8044 8045 /// ConstraintOperands - Information about all of the constraints. 8046 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8047 8048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8049 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8050 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8051 8052 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8053 // AsmDialect, MayLoad, MayStore). 8054 bool HasSideEffect = IA->hasSideEffects(); 8055 ExtraFlags ExtraInfo(Call); 8056 8057 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8058 unsigned ResNo = 0; // ResNo - The result number of the next output. 8059 unsigned NumMatchingOps = 0; 8060 for (auto &T : TargetConstraints) { 8061 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8062 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8063 8064 // Compute the value type for each operand. 8065 if (OpInfo.Type == InlineAsm::isInput || 8066 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8067 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8068 8069 // Process the call argument. BasicBlocks are labels, currently appearing 8070 // only in asm's. 8071 if (isa<CallBrInst>(Call) && 8072 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8073 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8074 NumMatchingOps) && 8075 (NumMatchingOps == 0 || 8076 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8077 NumMatchingOps))) { 8078 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8079 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8080 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8081 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8082 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8083 } else { 8084 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8085 } 8086 8087 OpInfo.ConstraintVT = 8088 OpInfo 8089 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8090 .getSimpleVT(); 8091 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8092 // The return value of the call is this value. As such, there is no 8093 // corresponding argument. 8094 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8095 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8096 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8097 DAG.getDataLayout(), STy->getElementType(ResNo)); 8098 } else { 8099 assert(ResNo == 0 && "Asm only has one result!"); 8100 OpInfo.ConstraintVT = 8101 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8102 } 8103 ++ResNo; 8104 } else { 8105 OpInfo.ConstraintVT = MVT::Other; 8106 } 8107 8108 if (OpInfo.hasMatchingInput()) 8109 ++NumMatchingOps; 8110 8111 if (!HasSideEffect) 8112 HasSideEffect = OpInfo.hasMemory(TLI); 8113 8114 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8115 // FIXME: Could we compute this on OpInfo rather than T? 8116 8117 // Compute the constraint code and ConstraintType to use. 8118 TLI.ComputeConstraintToUse(T, SDValue()); 8119 8120 if (T.ConstraintType == TargetLowering::C_Immediate && 8121 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8122 // We've delayed emitting a diagnostic like the "n" constraint because 8123 // inlining could cause an integer showing up. 8124 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8125 "' expects an integer constant " 8126 "expression"); 8127 8128 ExtraInfo.update(T); 8129 } 8130 8131 8132 // We won't need to flush pending loads if this asm doesn't touch 8133 // memory and is nonvolatile. 8134 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8135 8136 bool IsCallBr = isa<CallBrInst>(Call); 8137 if (IsCallBr) { 8138 // If this is a callbr we need to flush pending exports since inlineasm_br 8139 // is a terminator. We need to do this before nodes are glued to 8140 // the inlineasm_br node. 8141 Chain = getControlRoot(); 8142 } 8143 8144 // Second pass over the constraints: compute which constraint option to use. 8145 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8146 // If this is an output operand with a matching input operand, look up the 8147 // matching input. If their types mismatch, e.g. one is an integer, the 8148 // other is floating point, or their sizes are different, flag it as an 8149 // error. 8150 if (OpInfo.hasMatchingInput()) { 8151 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8152 patchMatchingInput(OpInfo, Input, DAG); 8153 } 8154 8155 // Compute the constraint code and ConstraintType to use. 8156 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8157 8158 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8159 OpInfo.Type == InlineAsm::isClobber) 8160 continue; 8161 8162 // If this is a memory input, and if the operand is not indirect, do what we 8163 // need to provide an address for the memory input. 8164 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8165 !OpInfo.isIndirect) { 8166 assert((OpInfo.isMultipleAlternative || 8167 (OpInfo.Type == InlineAsm::isInput)) && 8168 "Can only indirectify direct input operands!"); 8169 8170 // Memory operands really want the address of the value. 8171 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8172 8173 // There is no longer a Value* corresponding to this operand. 8174 OpInfo.CallOperandVal = nullptr; 8175 8176 // It is now an indirect operand. 8177 OpInfo.isIndirect = true; 8178 } 8179 8180 } 8181 8182 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8183 std::vector<SDValue> AsmNodeOperands; 8184 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8185 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8186 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8187 8188 // If we have a !srcloc metadata node associated with it, we want to attach 8189 // this to the ultimately generated inline asm machineinstr. To do this, we 8190 // pass in the third operand as this (potentially null) inline asm MDNode. 8191 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8192 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8193 8194 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8195 // bits as operand 3. 8196 AsmNodeOperands.push_back(DAG.getTargetConstant( 8197 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8198 8199 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8200 // this, assign virtual and physical registers for inputs and otput. 8201 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8202 // Assign Registers. 8203 SDISelAsmOperandInfo &RefOpInfo = 8204 OpInfo.isMatchingInputConstraint() 8205 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8206 : OpInfo; 8207 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8208 8209 auto DetectWriteToReservedRegister = [&]() { 8210 const MachineFunction &MF = DAG.getMachineFunction(); 8211 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8212 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8213 if (Register::isPhysicalRegister(Reg) && 8214 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8215 const char *RegName = TRI.getName(Reg); 8216 emitInlineAsmError(Call, "write to reserved register '" + 8217 Twine(RegName) + "'"); 8218 return true; 8219 } 8220 } 8221 return false; 8222 }; 8223 8224 switch (OpInfo.Type) { 8225 case InlineAsm::isOutput: 8226 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8227 unsigned ConstraintID = 8228 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8229 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8230 "Failed to convert memory constraint code to constraint id."); 8231 8232 // Add information to the INLINEASM node to know about this output. 8233 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8234 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8235 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8236 MVT::i32)); 8237 AsmNodeOperands.push_back(OpInfo.CallOperand); 8238 } else { 8239 // Otherwise, this outputs to a register (directly for C_Register / 8240 // C_RegisterClass, and a target-defined fashion for 8241 // C_Immediate/C_Other). Find a register that we can use. 8242 if (OpInfo.AssignedRegs.Regs.empty()) { 8243 emitInlineAsmError( 8244 Call, "couldn't allocate output register for constraint '" + 8245 Twine(OpInfo.ConstraintCode) + "'"); 8246 return; 8247 } 8248 8249 if (DetectWriteToReservedRegister()) 8250 return; 8251 8252 // Add information to the INLINEASM node to know that this register is 8253 // set. 8254 OpInfo.AssignedRegs.AddInlineAsmOperands( 8255 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8256 : InlineAsm::Kind_RegDef, 8257 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8258 } 8259 break; 8260 8261 case InlineAsm::isInput: { 8262 SDValue InOperandVal = OpInfo.CallOperand; 8263 8264 if (OpInfo.isMatchingInputConstraint()) { 8265 // If this is required to match an output register we have already set, 8266 // just use its register. 8267 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8268 AsmNodeOperands); 8269 unsigned OpFlag = 8270 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8271 if (InlineAsm::isRegDefKind(OpFlag) || 8272 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8273 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8274 if (OpInfo.isIndirect) { 8275 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8276 emitInlineAsmError(Call, "inline asm not supported yet: " 8277 "don't know how to handle tied " 8278 "indirect register inputs"); 8279 return; 8280 } 8281 8282 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8283 SmallVector<unsigned, 4> Regs; 8284 8285 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8286 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8287 MachineRegisterInfo &RegInfo = 8288 DAG.getMachineFunction().getRegInfo(); 8289 for (unsigned i = 0; i != NumRegs; ++i) 8290 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8291 } else { 8292 emitInlineAsmError(Call, 8293 "inline asm error: This value type register " 8294 "class is not natively supported!"); 8295 return; 8296 } 8297 8298 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8299 8300 SDLoc dl = getCurSDLoc(); 8301 // Use the produced MatchedRegs object to 8302 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8303 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8304 true, OpInfo.getMatchedOperand(), dl, 8305 DAG, AsmNodeOperands); 8306 break; 8307 } 8308 8309 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8310 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8311 "Unexpected number of operands"); 8312 // Add information to the INLINEASM node to know about this input. 8313 // See InlineAsm.h isUseOperandTiedToDef. 8314 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8315 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8316 OpInfo.getMatchedOperand()); 8317 AsmNodeOperands.push_back(DAG.getTargetConstant( 8318 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8319 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8320 break; 8321 } 8322 8323 // Treat indirect 'X' constraint as memory. 8324 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8325 OpInfo.isIndirect) 8326 OpInfo.ConstraintType = TargetLowering::C_Memory; 8327 8328 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8329 OpInfo.ConstraintType == TargetLowering::C_Other) { 8330 std::vector<SDValue> Ops; 8331 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8332 Ops, DAG); 8333 if (Ops.empty()) { 8334 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8335 if (isa<ConstantSDNode>(InOperandVal)) { 8336 emitInlineAsmError(Call, "value out of range for constraint '" + 8337 Twine(OpInfo.ConstraintCode) + "'"); 8338 return; 8339 } 8340 8341 emitInlineAsmError(Call, 8342 "invalid operand for inline asm constraint '" + 8343 Twine(OpInfo.ConstraintCode) + "'"); 8344 return; 8345 } 8346 8347 // Add information to the INLINEASM node to know about this input. 8348 unsigned ResOpType = 8349 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8350 AsmNodeOperands.push_back(DAG.getTargetConstant( 8351 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8352 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8353 break; 8354 } 8355 8356 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8357 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8358 assert(InOperandVal.getValueType() == 8359 TLI.getPointerTy(DAG.getDataLayout()) && 8360 "Memory operands expect pointer values"); 8361 8362 unsigned ConstraintID = 8363 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8364 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8365 "Failed to convert memory constraint code to constraint id."); 8366 8367 // Add information to the INLINEASM node to know about this input. 8368 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8369 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8370 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8371 getCurSDLoc(), 8372 MVT::i32)); 8373 AsmNodeOperands.push_back(InOperandVal); 8374 break; 8375 } 8376 8377 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8378 OpInfo.ConstraintType == TargetLowering::C_Register) && 8379 "Unknown constraint type!"); 8380 8381 // TODO: Support this. 8382 if (OpInfo.isIndirect) { 8383 emitInlineAsmError( 8384 Call, "Don't know how to handle indirect register inputs yet " 8385 "for constraint '" + 8386 Twine(OpInfo.ConstraintCode) + "'"); 8387 return; 8388 } 8389 8390 // Copy the input into the appropriate registers. 8391 if (OpInfo.AssignedRegs.Regs.empty()) { 8392 emitInlineAsmError(Call, 8393 "couldn't allocate input reg for constraint '" + 8394 Twine(OpInfo.ConstraintCode) + "'"); 8395 return; 8396 } 8397 8398 if (DetectWriteToReservedRegister()) 8399 return; 8400 8401 SDLoc dl = getCurSDLoc(); 8402 8403 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8404 &Call); 8405 8406 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8407 dl, DAG, AsmNodeOperands); 8408 break; 8409 } 8410 case InlineAsm::isClobber: 8411 // Add the clobbered value to the operand list, so that the register 8412 // allocator is aware that the physreg got clobbered. 8413 if (!OpInfo.AssignedRegs.Regs.empty()) 8414 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8415 false, 0, getCurSDLoc(), DAG, 8416 AsmNodeOperands); 8417 break; 8418 } 8419 } 8420 8421 // Finish up input operands. Set the input chain and add the flag last. 8422 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8423 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8424 8425 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8426 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8427 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8428 Flag = Chain.getValue(1); 8429 8430 // Do additional work to generate outputs. 8431 8432 SmallVector<EVT, 1> ResultVTs; 8433 SmallVector<SDValue, 1> ResultValues; 8434 SmallVector<SDValue, 8> OutChains; 8435 8436 llvm::Type *CallResultType = Call.getType(); 8437 ArrayRef<Type *> ResultTypes; 8438 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8439 ResultTypes = StructResult->elements(); 8440 else if (!CallResultType->isVoidTy()) 8441 ResultTypes = makeArrayRef(CallResultType); 8442 8443 auto CurResultType = ResultTypes.begin(); 8444 auto handleRegAssign = [&](SDValue V) { 8445 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8446 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8447 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8448 ++CurResultType; 8449 // If the type of the inline asm call site return value is different but has 8450 // same size as the type of the asm output bitcast it. One example of this 8451 // is for vectors with different width / number of elements. This can 8452 // happen for register classes that can contain multiple different value 8453 // types. The preg or vreg allocated may not have the same VT as was 8454 // expected. 8455 // 8456 // This can also happen for a return value that disagrees with the register 8457 // class it is put in, eg. a double in a general-purpose register on a 8458 // 32-bit machine. 8459 if (ResultVT != V.getValueType() && 8460 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8461 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8462 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8463 V.getValueType().isInteger()) { 8464 // If a result value was tied to an input value, the computed result 8465 // may have a wider width than the expected result. Extract the 8466 // relevant portion. 8467 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8468 } 8469 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8470 ResultVTs.push_back(ResultVT); 8471 ResultValues.push_back(V); 8472 }; 8473 8474 // Deal with output operands. 8475 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8476 if (OpInfo.Type == InlineAsm::isOutput) { 8477 SDValue Val; 8478 // Skip trivial output operands. 8479 if (OpInfo.AssignedRegs.Regs.empty()) 8480 continue; 8481 8482 switch (OpInfo.ConstraintType) { 8483 case TargetLowering::C_Register: 8484 case TargetLowering::C_RegisterClass: 8485 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8486 Chain, &Flag, &Call); 8487 break; 8488 case TargetLowering::C_Immediate: 8489 case TargetLowering::C_Other: 8490 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8491 OpInfo, DAG); 8492 break; 8493 case TargetLowering::C_Memory: 8494 break; // Already handled. 8495 case TargetLowering::C_Unknown: 8496 assert(false && "Unexpected unknown constraint"); 8497 } 8498 8499 // Indirect output manifest as stores. Record output chains. 8500 if (OpInfo.isIndirect) { 8501 const Value *Ptr = OpInfo.CallOperandVal; 8502 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8503 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8504 MachinePointerInfo(Ptr)); 8505 OutChains.push_back(Store); 8506 } else { 8507 // generate CopyFromRegs to associated registers. 8508 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8509 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8510 for (const SDValue &V : Val->op_values()) 8511 handleRegAssign(V); 8512 } else 8513 handleRegAssign(Val); 8514 } 8515 } 8516 } 8517 8518 // Set results. 8519 if (!ResultValues.empty()) { 8520 assert(CurResultType == ResultTypes.end() && 8521 "Mismatch in number of ResultTypes"); 8522 assert(ResultValues.size() == ResultTypes.size() && 8523 "Mismatch in number of output operands in asm result"); 8524 8525 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8526 DAG.getVTList(ResultVTs), ResultValues); 8527 setValue(&Call, V); 8528 } 8529 8530 // Collect store chains. 8531 if (!OutChains.empty()) 8532 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8533 8534 // Only Update Root if inline assembly has a memory effect. 8535 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8536 DAG.setRoot(Chain); 8537 } 8538 8539 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8540 const Twine &Message) { 8541 LLVMContext &Ctx = *DAG.getContext(); 8542 Ctx.emitError(&Call, Message); 8543 8544 // Make sure we leave the DAG in a valid state 8545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8546 SmallVector<EVT, 1> ValueVTs; 8547 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8548 8549 if (ValueVTs.empty()) 8550 return; 8551 8552 SmallVector<SDValue, 1> Ops; 8553 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8554 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8555 8556 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8557 } 8558 8559 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8560 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8561 MVT::Other, getRoot(), 8562 getValue(I.getArgOperand(0)), 8563 DAG.getSrcValue(I.getArgOperand(0)))); 8564 } 8565 8566 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8568 const DataLayout &DL = DAG.getDataLayout(); 8569 SDValue V = DAG.getVAArg( 8570 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8571 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8572 DL.getABITypeAlign(I.getType()).value()); 8573 DAG.setRoot(V.getValue(1)); 8574 8575 if (I.getType()->isPointerTy()) 8576 V = DAG.getPtrExtOrTrunc( 8577 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8578 setValue(&I, V); 8579 } 8580 8581 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8582 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8583 MVT::Other, getRoot(), 8584 getValue(I.getArgOperand(0)), 8585 DAG.getSrcValue(I.getArgOperand(0)))); 8586 } 8587 8588 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8589 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8590 MVT::Other, getRoot(), 8591 getValue(I.getArgOperand(0)), 8592 getValue(I.getArgOperand(1)), 8593 DAG.getSrcValue(I.getArgOperand(0)), 8594 DAG.getSrcValue(I.getArgOperand(1)))); 8595 } 8596 8597 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8598 const Instruction &I, 8599 SDValue Op) { 8600 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8601 if (!Range) 8602 return Op; 8603 8604 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8605 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8606 return Op; 8607 8608 APInt Lo = CR.getUnsignedMin(); 8609 if (!Lo.isMinValue()) 8610 return Op; 8611 8612 APInt Hi = CR.getUnsignedMax(); 8613 unsigned Bits = std::max(Hi.getActiveBits(), 8614 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8615 8616 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8617 8618 SDLoc SL = getCurSDLoc(); 8619 8620 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8621 DAG.getValueType(SmallVT)); 8622 unsigned NumVals = Op.getNode()->getNumValues(); 8623 if (NumVals == 1) 8624 return ZExt; 8625 8626 SmallVector<SDValue, 4> Ops; 8627 8628 Ops.push_back(ZExt); 8629 for (unsigned I = 1; I != NumVals; ++I) 8630 Ops.push_back(Op.getValue(I)); 8631 8632 return DAG.getMergeValues(Ops, SL); 8633 } 8634 8635 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8636 /// the call being lowered. 8637 /// 8638 /// This is a helper for lowering intrinsics that follow a target calling 8639 /// convention or require stack pointer adjustment. Only a subset of the 8640 /// intrinsic's operands need to participate in the calling convention. 8641 void SelectionDAGBuilder::populateCallLoweringInfo( 8642 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8643 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8644 bool IsPatchPoint) { 8645 TargetLowering::ArgListTy Args; 8646 Args.reserve(NumArgs); 8647 8648 // Populate the argument list. 8649 // Attributes for args start at offset 1, after the return attribute. 8650 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8651 ArgI != ArgE; ++ArgI) { 8652 const Value *V = Call->getOperand(ArgI); 8653 8654 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8655 8656 TargetLowering::ArgListEntry Entry; 8657 Entry.Node = getValue(V); 8658 Entry.Ty = V->getType(); 8659 Entry.setAttributes(Call, ArgI); 8660 Args.push_back(Entry); 8661 } 8662 8663 CLI.setDebugLoc(getCurSDLoc()) 8664 .setChain(getRoot()) 8665 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8666 .setDiscardResult(Call->use_empty()) 8667 .setIsPatchPoint(IsPatchPoint) 8668 .setIsPreallocated( 8669 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8670 } 8671 8672 /// Add a stack map intrinsic call's live variable operands to a stackmap 8673 /// or patchpoint target node's operand list. 8674 /// 8675 /// Constants are converted to TargetConstants purely as an optimization to 8676 /// avoid constant materialization and register allocation. 8677 /// 8678 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8679 /// generate addess computation nodes, and so FinalizeISel can convert the 8680 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8681 /// address materialization and register allocation, but may also be required 8682 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8683 /// alloca in the entry block, then the runtime may assume that the alloca's 8684 /// StackMap location can be read immediately after compilation and that the 8685 /// location is valid at any point during execution (this is similar to the 8686 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8687 /// only available in a register, then the runtime would need to trap when 8688 /// execution reaches the StackMap in order to read the alloca's location. 8689 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8690 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8691 SelectionDAGBuilder &Builder) { 8692 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8693 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8694 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8695 Ops.push_back( 8696 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8697 Ops.push_back( 8698 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8699 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8700 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8701 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8702 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8703 } else 8704 Ops.push_back(OpVal); 8705 } 8706 } 8707 8708 /// Lower llvm.experimental.stackmap directly to its target opcode. 8709 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8710 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8711 // [live variables...]) 8712 8713 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8714 8715 SDValue Chain, InFlag, Callee, NullPtr; 8716 SmallVector<SDValue, 32> Ops; 8717 8718 SDLoc DL = getCurSDLoc(); 8719 Callee = getValue(CI.getCalledOperand()); 8720 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8721 8722 // The stackmap intrinsic only records the live variables (the arguments 8723 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8724 // intrinsic, this won't be lowered to a function call. This means we don't 8725 // have to worry about calling conventions and target specific lowering code. 8726 // Instead we perform the call lowering right here. 8727 // 8728 // chain, flag = CALLSEQ_START(chain, 0, 0) 8729 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8730 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8731 // 8732 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8733 InFlag = Chain.getValue(1); 8734 8735 // Add the <id> and <numBytes> constants. 8736 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8737 Ops.push_back(DAG.getTargetConstant( 8738 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8739 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8740 Ops.push_back(DAG.getTargetConstant( 8741 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8742 MVT::i32)); 8743 8744 // Push live variables for the stack map. 8745 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8746 8747 // We are not pushing any register mask info here on the operands list, 8748 // because the stackmap doesn't clobber anything. 8749 8750 // Push the chain and the glue flag. 8751 Ops.push_back(Chain); 8752 Ops.push_back(InFlag); 8753 8754 // Create the STACKMAP node. 8755 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8756 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8757 Chain = SDValue(SM, 0); 8758 InFlag = Chain.getValue(1); 8759 8760 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8761 8762 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8763 8764 // Set the root to the target-lowered call chain. 8765 DAG.setRoot(Chain); 8766 8767 // Inform the Frame Information that we have a stackmap in this function. 8768 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8769 } 8770 8771 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8772 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8773 const BasicBlock *EHPadBB) { 8774 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8775 // i32 <numBytes>, 8776 // i8* <target>, 8777 // i32 <numArgs>, 8778 // [Args...], 8779 // [live variables...]) 8780 8781 CallingConv::ID CC = CB.getCallingConv(); 8782 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8783 bool HasDef = !CB.getType()->isVoidTy(); 8784 SDLoc dl = getCurSDLoc(); 8785 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8786 8787 // Handle immediate and symbolic callees. 8788 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8789 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8790 /*isTarget=*/true); 8791 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8792 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8793 SDLoc(SymbolicCallee), 8794 SymbolicCallee->getValueType(0)); 8795 8796 // Get the real number of arguments participating in the call <numArgs> 8797 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8798 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8799 8800 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8801 // Intrinsics include all meta-operands up to but not including CC. 8802 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8803 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8804 "Not enough arguments provided to the patchpoint intrinsic"); 8805 8806 // For AnyRegCC the arguments are lowered later on manually. 8807 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8808 Type *ReturnTy = 8809 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8810 8811 TargetLowering::CallLoweringInfo CLI(DAG); 8812 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8813 ReturnTy, true); 8814 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8815 8816 SDNode *CallEnd = Result.second.getNode(); 8817 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8818 CallEnd = CallEnd->getOperand(0).getNode(); 8819 8820 /// Get a call instruction from the call sequence chain. 8821 /// Tail calls are not allowed. 8822 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8823 "Expected a callseq node."); 8824 SDNode *Call = CallEnd->getOperand(0).getNode(); 8825 bool HasGlue = Call->getGluedNode(); 8826 8827 // Replace the target specific call node with the patchable intrinsic. 8828 SmallVector<SDValue, 8> Ops; 8829 8830 // Add the <id> and <numBytes> constants. 8831 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8832 Ops.push_back(DAG.getTargetConstant( 8833 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8834 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8835 Ops.push_back(DAG.getTargetConstant( 8836 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8837 MVT::i32)); 8838 8839 // Add the callee. 8840 Ops.push_back(Callee); 8841 8842 // Adjust <numArgs> to account for any arguments that have been passed on the 8843 // stack instead. 8844 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8845 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8846 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8847 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8848 8849 // Add the calling convention 8850 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8851 8852 // Add the arguments we omitted previously. The register allocator should 8853 // place these in any free register. 8854 if (IsAnyRegCC) 8855 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8856 Ops.push_back(getValue(CB.getArgOperand(i))); 8857 8858 // Push the arguments from the call instruction up to the register mask. 8859 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8860 Ops.append(Call->op_begin() + 2, e); 8861 8862 // Push live variables for the stack map. 8863 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8864 8865 // Push the register mask info. 8866 if (HasGlue) 8867 Ops.push_back(*(Call->op_end()-2)); 8868 else 8869 Ops.push_back(*(Call->op_end()-1)); 8870 8871 // Push the chain (this is originally the first operand of the call, but 8872 // becomes now the last or second to last operand). 8873 Ops.push_back(*(Call->op_begin())); 8874 8875 // Push the glue flag (last operand). 8876 if (HasGlue) 8877 Ops.push_back(*(Call->op_end()-1)); 8878 8879 SDVTList NodeTys; 8880 if (IsAnyRegCC && HasDef) { 8881 // Create the return types based on the intrinsic definition 8882 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8883 SmallVector<EVT, 3> ValueVTs; 8884 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8885 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8886 8887 // There is always a chain and a glue type at the end 8888 ValueVTs.push_back(MVT::Other); 8889 ValueVTs.push_back(MVT::Glue); 8890 NodeTys = DAG.getVTList(ValueVTs); 8891 } else 8892 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8893 8894 // Replace the target specific call node with a PATCHPOINT node. 8895 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8896 dl, NodeTys, Ops); 8897 8898 // Update the NodeMap. 8899 if (HasDef) { 8900 if (IsAnyRegCC) 8901 setValue(&CB, SDValue(MN, 0)); 8902 else 8903 setValue(&CB, Result.first); 8904 } 8905 8906 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8907 // call sequence. Furthermore the location of the chain and glue can change 8908 // when the AnyReg calling convention is used and the intrinsic returns a 8909 // value. 8910 if (IsAnyRegCC && HasDef) { 8911 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8912 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8913 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8914 } else 8915 DAG.ReplaceAllUsesWith(Call, MN); 8916 DAG.DeleteNode(Call); 8917 8918 // Inform the Frame Information that we have a patchpoint in this function. 8919 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8920 } 8921 8922 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8923 unsigned Intrinsic) { 8924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8925 SDValue Op1 = getValue(I.getArgOperand(0)); 8926 SDValue Op2; 8927 if (I.getNumArgOperands() > 1) 8928 Op2 = getValue(I.getArgOperand(1)); 8929 SDLoc dl = getCurSDLoc(); 8930 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8931 SDValue Res; 8932 SDNodeFlags SDFlags; 8933 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 8934 SDFlags.copyFMF(*FPMO); 8935 8936 switch (Intrinsic) { 8937 case Intrinsic::experimental_vector_reduce_v2_fadd: 8938 if (SDFlags.hasAllowReassociation()) 8939 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8940 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 8941 SDFlags); 8942 else 8943 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2, SDFlags); 8944 break; 8945 case Intrinsic::experimental_vector_reduce_v2_fmul: 8946 if (SDFlags.hasAllowReassociation()) 8947 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8948 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 8949 SDFlags); 8950 else 8951 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2, SDFlags); 8952 break; 8953 case Intrinsic::experimental_vector_reduce_add: 8954 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8955 break; 8956 case Intrinsic::experimental_vector_reduce_mul: 8957 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8958 break; 8959 case Intrinsic::experimental_vector_reduce_and: 8960 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8961 break; 8962 case Intrinsic::experimental_vector_reduce_or: 8963 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8964 break; 8965 case Intrinsic::experimental_vector_reduce_xor: 8966 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8967 break; 8968 case Intrinsic::experimental_vector_reduce_smax: 8969 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8970 break; 8971 case Intrinsic::experimental_vector_reduce_smin: 8972 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8973 break; 8974 case Intrinsic::experimental_vector_reduce_umax: 8975 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8976 break; 8977 case Intrinsic::experimental_vector_reduce_umin: 8978 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8979 break; 8980 case Intrinsic::experimental_vector_reduce_fmax: 8981 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 8982 break; 8983 case Intrinsic::experimental_vector_reduce_fmin: 8984 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 8985 break; 8986 default: 8987 llvm_unreachable("Unhandled vector reduce intrinsic"); 8988 } 8989 setValue(&I, Res); 8990 } 8991 8992 /// Returns an AttributeList representing the attributes applied to the return 8993 /// value of the given call. 8994 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8995 SmallVector<Attribute::AttrKind, 2> Attrs; 8996 if (CLI.RetSExt) 8997 Attrs.push_back(Attribute::SExt); 8998 if (CLI.RetZExt) 8999 Attrs.push_back(Attribute::ZExt); 9000 if (CLI.IsInReg) 9001 Attrs.push_back(Attribute::InReg); 9002 9003 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9004 Attrs); 9005 } 9006 9007 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9008 /// implementation, which just calls LowerCall. 9009 /// FIXME: When all targets are 9010 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9011 std::pair<SDValue, SDValue> 9012 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9013 // Handle the incoming return values from the call. 9014 CLI.Ins.clear(); 9015 Type *OrigRetTy = CLI.RetTy; 9016 SmallVector<EVT, 4> RetTys; 9017 SmallVector<uint64_t, 4> Offsets; 9018 auto &DL = CLI.DAG.getDataLayout(); 9019 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9020 9021 if (CLI.IsPostTypeLegalization) { 9022 // If we are lowering a libcall after legalization, split the return type. 9023 SmallVector<EVT, 4> OldRetTys; 9024 SmallVector<uint64_t, 4> OldOffsets; 9025 RetTys.swap(OldRetTys); 9026 Offsets.swap(OldOffsets); 9027 9028 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9029 EVT RetVT = OldRetTys[i]; 9030 uint64_t Offset = OldOffsets[i]; 9031 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9032 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9033 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9034 RetTys.append(NumRegs, RegisterVT); 9035 for (unsigned j = 0; j != NumRegs; ++j) 9036 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9037 } 9038 } 9039 9040 SmallVector<ISD::OutputArg, 4> Outs; 9041 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9042 9043 bool CanLowerReturn = 9044 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9045 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9046 9047 SDValue DemoteStackSlot; 9048 int DemoteStackIdx = -100; 9049 if (!CanLowerReturn) { 9050 // FIXME: equivalent assert? 9051 // assert(!CS.hasInAllocaArgument() && 9052 // "sret demotion is incompatible with inalloca"); 9053 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9054 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9055 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9056 DemoteStackIdx = 9057 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9058 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9059 DL.getAllocaAddrSpace()); 9060 9061 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9062 ArgListEntry Entry; 9063 Entry.Node = DemoteStackSlot; 9064 Entry.Ty = StackSlotPtrType; 9065 Entry.IsSExt = false; 9066 Entry.IsZExt = false; 9067 Entry.IsInReg = false; 9068 Entry.IsSRet = true; 9069 Entry.IsNest = false; 9070 Entry.IsByVal = false; 9071 Entry.IsByRef = false; 9072 Entry.IsReturned = false; 9073 Entry.IsSwiftSelf = false; 9074 Entry.IsSwiftError = false; 9075 Entry.IsCFGuardTarget = false; 9076 Entry.Alignment = Alignment; 9077 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9078 CLI.NumFixedArgs += 1; 9079 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9080 9081 // sret demotion isn't compatible with tail-calls, since the sret argument 9082 // points into the callers stack frame. 9083 CLI.IsTailCall = false; 9084 } else { 9085 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9086 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9087 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9088 ISD::ArgFlagsTy Flags; 9089 if (NeedsRegBlock) { 9090 Flags.setInConsecutiveRegs(); 9091 if (I == RetTys.size() - 1) 9092 Flags.setInConsecutiveRegsLast(); 9093 } 9094 EVT VT = RetTys[I]; 9095 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9096 CLI.CallConv, VT); 9097 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9098 CLI.CallConv, VT); 9099 for (unsigned i = 0; i != NumRegs; ++i) { 9100 ISD::InputArg MyFlags; 9101 MyFlags.Flags = Flags; 9102 MyFlags.VT = RegisterVT; 9103 MyFlags.ArgVT = VT; 9104 MyFlags.Used = CLI.IsReturnValueUsed; 9105 if (CLI.RetTy->isPointerTy()) { 9106 MyFlags.Flags.setPointer(); 9107 MyFlags.Flags.setPointerAddrSpace( 9108 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9109 } 9110 if (CLI.RetSExt) 9111 MyFlags.Flags.setSExt(); 9112 if (CLI.RetZExt) 9113 MyFlags.Flags.setZExt(); 9114 if (CLI.IsInReg) 9115 MyFlags.Flags.setInReg(); 9116 CLI.Ins.push_back(MyFlags); 9117 } 9118 } 9119 } 9120 9121 // We push in swifterror return as the last element of CLI.Ins. 9122 ArgListTy &Args = CLI.getArgs(); 9123 if (supportSwiftError()) { 9124 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9125 if (Args[i].IsSwiftError) { 9126 ISD::InputArg MyFlags; 9127 MyFlags.VT = getPointerTy(DL); 9128 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9129 MyFlags.Flags.setSwiftError(); 9130 CLI.Ins.push_back(MyFlags); 9131 } 9132 } 9133 } 9134 9135 // Handle all of the outgoing arguments. 9136 CLI.Outs.clear(); 9137 CLI.OutVals.clear(); 9138 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9139 SmallVector<EVT, 4> ValueVTs; 9140 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9141 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9142 Type *FinalType = Args[i].Ty; 9143 if (Args[i].IsByVal) 9144 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9145 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9146 FinalType, CLI.CallConv, CLI.IsVarArg); 9147 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9148 ++Value) { 9149 EVT VT = ValueVTs[Value]; 9150 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9151 SDValue Op = SDValue(Args[i].Node.getNode(), 9152 Args[i].Node.getResNo() + Value); 9153 ISD::ArgFlagsTy Flags; 9154 9155 // Certain targets (such as MIPS), may have a different ABI alignment 9156 // for a type depending on the context. Give the target a chance to 9157 // specify the alignment it wants. 9158 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9159 9160 if (Args[i].Ty->isPointerTy()) { 9161 Flags.setPointer(); 9162 Flags.setPointerAddrSpace( 9163 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9164 } 9165 if (Args[i].IsZExt) 9166 Flags.setZExt(); 9167 if (Args[i].IsSExt) 9168 Flags.setSExt(); 9169 if (Args[i].IsInReg) { 9170 // If we are using vectorcall calling convention, a structure that is 9171 // passed InReg - is surely an HVA 9172 if (CLI.CallConv == CallingConv::X86_VectorCall && 9173 isa<StructType>(FinalType)) { 9174 // The first value of a structure is marked 9175 if (0 == Value) 9176 Flags.setHvaStart(); 9177 Flags.setHva(); 9178 } 9179 // Set InReg Flag 9180 Flags.setInReg(); 9181 } 9182 if (Args[i].IsSRet) 9183 Flags.setSRet(); 9184 if (Args[i].IsSwiftSelf) 9185 Flags.setSwiftSelf(); 9186 if (Args[i].IsSwiftError) 9187 Flags.setSwiftError(); 9188 if (Args[i].IsCFGuardTarget) 9189 Flags.setCFGuardTarget(); 9190 if (Args[i].IsByVal) 9191 Flags.setByVal(); 9192 if (Args[i].IsByRef) 9193 Flags.setByRef(); 9194 if (Args[i].IsPreallocated) { 9195 Flags.setPreallocated(); 9196 // Set the byval flag for CCAssignFn callbacks that don't know about 9197 // preallocated. This way we can know how many bytes we should've 9198 // allocated and how many bytes a callee cleanup function will pop. If 9199 // we port preallocated to more targets, we'll have to add custom 9200 // preallocated handling in the various CC lowering callbacks. 9201 Flags.setByVal(); 9202 } 9203 if (Args[i].IsInAlloca) { 9204 Flags.setInAlloca(); 9205 // Set the byval flag for CCAssignFn callbacks that don't know about 9206 // inalloca. This way we can know how many bytes we should've allocated 9207 // and how many bytes a callee cleanup function will pop. If we port 9208 // inalloca to more targets, we'll have to add custom inalloca handling 9209 // in the various CC lowering callbacks. 9210 Flags.setByVal(); 9211 } 9212 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9213 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9214 Type *ElementTy = Ty->getElementType(); 9215 9216 unsigned FrameSize = DL.getTypeAllocSize( 9217 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9218 Flags.setByValSize(FrameSize); 9219 9220 // info is not there but there are cases it cannot get right. 9221 Align FrameAlign; 9222 if (auto MA = Args[i].Alignment) 9223 FrameAlign = *MA; 9224 else 9225 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9226 Flags.setByValAlign(FrameAlign); 9227 } 9228 if (Args[i].IsNest) 9229 Flags.setNest(); 9230 if (NeedsRegBlock) 9231 Flags.setInConsecutiveRegs(); 9232 Flags.setOrigAlign(OriginalAlignment); 9233 9234 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9235 CLI.CallConv, VT); 9236 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9237 CLI.CallConv, VT); 9238 SmallVector<SDValue, 4> Parts(NumParts); 9239 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9240 9241 if (Args[i].IsSExt) 9242 ExtendKind = ISD::SIGN_EXTEND; 9243 else if (Args[i].IsZExt) 9244 ExtendKind = ISD::ZERO_EXTEND; 9245 9246 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9247 // for now. 9248 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9249 CanLowerReturn) { 9250 assert((CLI.RetTy == Args[i].Ty || 9251 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9252 CLI.RetTy->getPointerAddressSpace() == 9253 Args[i].Ty->getPointerAddressSpace())) && 9254 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9255 // Before passing 'returned' to the target lowering code, ensure that 9256 // either the register MVT and the actual EVT are the same size or that 9257 // the return value and argument are extended in the same way; in these 9258 // cases it's safe to pass the argument register value unchanged as the 9259 // return register value (although it's at the target's option whether 9260 // to do so) 9261 // TODO: allow code generation to take advantage of partially preserved 9262 // registers rather than clobbering the entire register when the 9263 // parameter extension method is not compatible with the return 9264 // extension method 9265 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9266 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9267 CLI.RetZExt == Args[i].IsZExt)) 9268 Flags.setReturned(); 9269 } 9270 9271 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9272 CLI.CallConv, ExtendKind); 9273 9274 for (unsigned j = 0; j != NumParts; ++j) { 9275 // if it isn't first piece, alignment must be 1 9276 // For scalable vectors the scalable part is currently handled 9277 // by individual targets, so we just use the known minimum size here. 9278 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9279 i < CLI.NumFixedArgs, i, 9280 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9281 if (NumParts > 1 && j == 0) 9282 MyFlags.Flags.setSplit(); 9283 else if (j != 0) { 9284 MyFlags.Flags.setOrigAlign(Align(1)); 9285 if (j == NumParts - 1) 9286 MyFlags.Flags.setSplitEnd(); 9287 } 9288 9289 CLI.Outs.push_back(MyFlags); 9290 CLI.OutVals.push_back(Parts[j]); 9291 } 9292 9293 if (NeedsRegBlock && Value == NumValues - 1) 9294 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9295 } 9296 } 9297 9298 SmallVector<SDValue, 4> InVals; 9299 CLI.Chain = LowerCall(CLI, InVals); 9300 9301 // Update CLI.InVals to use outside of this function. 9302 CLI.InVals = InVals; 9303 9304 // Verify that the target's LowerCall behaved as expected. 9305 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9306 "LowerCall didn't return a valid chain!"); 9307 assert((!CLI.IsTailCall || InVals.empty()) && 9308 "LowerCall emitted a return value for a tail call!"); 9309 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9310 "LowerCall didn't emit the correct number of values!"); 9311 9312 // For a tail call, the return value is merely live-out and there aren't 9313 // any nodes in the DAG representing it. Return a special value to 9314 // indicate that a tail call has been emitted and no more Instructions 9315 // should be processed in the current block. 9316 if (CLI.IsTailCall) { 9317 CLI.DAG.setRoot(CLI.Chain); 9318 return std::make_pair(SDValue(), SDValue()); 9319 } 9320 9321 #ifndef NDEBUG 9322 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9323 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9324 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9325 "LowerCall emitted a value with the wrong type!"); 9326 } 9327 #endif 9328 9329 SmallVector<SDValue, 4> ReturnValues; 9330 if (!CanLowerReturn) { 9331 // The instruction result is the result of loading from the 9332 // hidden sret parameter. 9333 SmallVector<EVT, 1> PVTs; 9334 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9335 9336 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9337 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9338 EVT PtrVT = PVTs[0]; 9339 9340 unsigned NumValues = RetTys.size(); 9341 ReturnValues.resize(NumValues); 9342 SmallVector<SDValue, 4> Chains(NumValues); 9343 9344 // An aggregate return value cannot wrap around the address space, so 9345 // offsets to its parts don't wrap either. 9346 SDNodeFlags Flags; 9347 Flags.setNoUnsignedWrap(true); 9348 9349 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9350 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9351 for (unsigned i = 0; i < NumValues; ++i) { 9352 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9353 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9354 PtrVT), Flags); 9355 SDValue L = CLI.DAG.getLoad( 9356 RetTys[i], CLI.DL, CLI.Chain, Add, 9357 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9358 DemoteStackIdx, Offsets[i]), 9359 HiddenSRetAlign); 9360 ReturnValues[i] = L; 9361 Chains[i] = L.getValue(1); 9362 } 9363 9364 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9365 } else { 9366 // Collect the legal value parts into potentially illegal values 9367 // that correspond to the original function's return values. 9368 Optional<ISD::NodeType> AssertOp; 9369 if (CLI.RetSExt) 9370 AssertOp = ISD::AssertSext; 9371 else if (CLI.RetZExt) 9372 AssertOp = ISD::AssertZext; 9373 unsigned CurReg = 0; 9374 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9375 EVT VT = RetTys[I]; 9376 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9377 CLI.CallConv, VT); 9378 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9379 CLI.CallConv, VT); 9380 9381 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9382 NumRegs, RegisterVT, VT, nullptr, 9383 CLI.CallConv, AssertOp)); 9384 CurReg += NumRegs; 9385 } 9386 9387 // For a function returning void, there is no return value. We can't create 9388 // such a node, so we just return a null return value in that case. In 9389 // that case, nothing will actually look at the value. 9390 if (ReturnValues.empty()) 9391 return std::make_pair(SDValue(), CLI.Chain); 9392 } 9393 9394 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9395 CLI.DAG.getVTList(RetTys), ReturnValues); 9396 return std::make_pair(Res, CLI.Chain); 9397 } 9398 9399 void TargetLowering::LowerOperationWrapper(SDNode *N, 9400 SmallVectorImpl<SDValue> &Results, 9401 SelectionDAG &DAG) const { 9402 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9403 Results.push_back(Res); 9404 } 9405 9406 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9407 llvm_unreachable("LowerOperation not implemented for this target!"); 9408 } 9409 9410 void 9411 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9412 SDValue Op = getNonRegisterValue(V); 9413 assert((Op.getOpcode() != ISD::CopyFromReg || 9414 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9415 "Copy from a reg to the same reg!"); 9416 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9417 9418 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9419 // If this is an InlineAsm we have to match the registers required, not the 9420 // notional registers required by the type. 9421 9422 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9423 None); // This is not an ABI copy. 9424 SDValue Chain = DAG.getEntryNode(); 9425 9426 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9427 FuncInfo.PreferredExtendType.end()) 9428 ? ISD::ANY_EXTEND 9429 : FuncInfo.PreferredExtendType[V]; 9430 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9431 PendingExports.push_back(Chain); 9432 } 9433 9434 #include "llvm/CodeGen/SelectionDAGISel.h" 9435 9436 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9437 /// entry block, return true. This includes arguments used by switches, since 9438 /// the switch may expand into multiple basic blocks. 9439 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9440 // With FastISel active, we may be splitting blocks, so force creation 9441 // of virtual registers for all non-dead arguments. 9442 if (FastISel) 9443 return A->use_empty(); 9444 9445 const BasicBlock &Entry = A->getParent()->front(); 9446 for (const User *U : A->users()) 9447 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9448 return false; // Use not in entry block. 9449 9450 return true; 9451 } 9452 9453 using ArgCopyElisionMapTy = 9454 DenseMap<const Argument *, 9455 std::pair<const AllocaInst *, const StoreInst *>>; 9456 9457 /// Scan the entry block of the function in FuncInfo for arguments that look 9458 /// like copies into a local alloca. Record any copied arguments in 9459 /// ArgCopyElisionCandidates. 9460 static void 9461 findArgumentCopyElisionCandidates(const DataLayout &DL, 9462 FunctionLoweringInfo *FuncInfo, 9463 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9464 // Record the state of every static alloca used in the entry block. Argument 9465 // allocas are all used in the entry block, so we need approximately as many 9466 // entries as we have arguments. 9467 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9468 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9469 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9470 StaticAllocas.reserve(NumArgs * 2); 9471 9472 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9473 if (!V) 9474 return nullptr; 9475 V = V->stripPointerCasts(); 9476 const auto *AI = dyn_cast<AllocaInst>(V); 9477 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9478 return nullptr; 9479 auto Iter = StaticAllocas.insert({AI, Unknown}); 9480 return &Iter.first->second; 9481 }; 9482 9483 // Look for stores of arguments to static allocas. Look through bitcasts and 9484 // GEPs to handle type coercions, as long as the alloca is fully initialized 9485 // by the store. Any non-store use of an alloca escapes it and any subsequent 9486 // unanalyzed store might write it. 9487 // FIXME: Handle structs initialized with multiple stores. 9488 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9489 // Look for stores, and handle non-store uses conservatively. 9490 const auto *SI = dyn_cast<StoreInst>(&I); 9491 if (!SI) { 9492 // We will look through cast uses, so ignore them completely. 9493 if (I.isCast()) 9494 continue; 9495 // Ignore debug info intrinsics, they don't escape or store to allocas. 9496 if (isa<DbgInfoIntrinsic>(I)) 9497 continue; 9498 // This is an unknown instruction. Assume it escapes or writes to all 9499 // static alloca operands. 9500 for (const Use &U : I.operands()) { 9501 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9502 *Info = StaticAllocaInfo::Clobbered; 9503 } 9504 continue; 9505 } 9506 9507 // If the stored value is a static alloca, mark it as escaped. 9508 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9509 *Info = StaticAllocaInfo::Clobbered; 9510 9511 // Check if the destination is a static alloca. 9512 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9513 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9514 if (!Info) 9515 continue; 9516 const AllocaInst *AI = cast<AllocaInst>(Dst); 9517 9518 // Skip allocas that have been initialized or clobbered. 9519 if (*Info != StaticAllocaInfo::Unknown) 9520 continue; 9521 9522 // Check if the stored value is an argument, and that this store fully 9523 // initializes the alloca. Don't elide copies from the same argument twice. 9524 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9525 const auto *Arg = dyn_cast<Argument>(Val); 9526 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9527 Arg->getType()->isEmptyTy() || 9528 DL.getTypeStoreSize(Arg->getType()) != 9529 DL.getTypeAllocSize(AI->getAllocatedType()) || 9530 ArgCopyElisionCandidates.count(Arg)) { 9531 *Info = StaticAllocaInfo::Clobbered; 9532 continue; 9533 } 9534 9535 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9536 << '\n'); 9537 9538 // Mark this alloca and store for argument copy elision. 9539 *Info = StaticAllocaInfo::Elidable; 9540 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9541 9542 // Stop scanning if we've seen all arguments. This will happen early in -O0 9543 // builds, which is useful, because -O0 builds have large entry blocks and 9544 // many allocas. 9545 if (ArgCopyElisionCandidates.size() == NumArgs) 9546 break; 9547 } 9548 } 9549 9550 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9551 /// ArgVal is a load from a suitable fixed stack object. 9552 static void tryToElideArgumentCopy( 9553 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9554 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9555 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9556 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9557 SDValue ArgVal, bool &ArgHasUses) { 9558 // Check if this is a load from a fixed stack object. 9559 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9560 if (!LNode) 9561 return; 9562 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9563 if (!FINode) 9564 return; 9565 9566 // Check that the fixed stack object is the right size and alignment. 9567 // Look at the alignment that the user wrote on the alloca instead of looking 9568 // at the stack object. 9569 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9570 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9571 const AllocaInst *AI = ArgCopyIter->second.first; 9572 int FixedIndex = FINode->getIndex(); 9573 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9574 int OldIndex = AllocaIndex; 9575 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9576 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9577 LLVM_DEBUG( 9578 dbgs() << " argument copy elision failed due to bad fixed stack " 9579 "object size\n"); 9580 return; 9581 } 9582 Align RequiredAlignment = AI->getAlign(); 9583 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9584 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9585 "greater than stack argument alignment (" 9586 << DebugStr(RequiredAlignment) << " vs " 9587 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9588 return; 9589 } 9590 9591 // Perform the elision. Delete the old stack object and replace its only use 9592 // in the variable info map. Mark the stack object as mutable. 9593 LLVM_DEBUG({ 9594 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9595 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9596 << '\n'; 9597 }); 9598 MFI.RemoveStackObject(OldIndex); 9599 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9600 AllocaIndex = FixedIndex; 9601 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9602 Chains.push_back(ArgVal.getValue(1)); 9603 9604 // Avoid emitting code for the store implementing the copy. 9605 const StoreInst *SI = ArgCopyIter->second.second; 9606 ElidedArgCopyInstrs.insert(SI); 9607 9608 // Check for uses of the argument again so that we can avoid exporting ArgVal 9609 // if it is't used by anything other than the store. 9610 for (const Value *U : Arg.users()) { 9611 if (U != SI) { 9612 ArgHasUses = true; 9613 break; 9614 } 9615 } 9616 } 9617 9618 void SelectionDAGISel::LowerArguments(const Function &F) { 9619 SelectionDAG &DAG = SDB->DAG; 9620 SDLoc dl = SDB->getCurSDLoc(); 9621 const DataLayout &DL = DAG.getDataLayout(); 9622 SmallVector<ISD::InputArg, 16> Ins; 9623 9624 // In Naked functions we aren't going to save any registers. 9625 if (F.hasFnAttribute(Attribute::Naked)) 9626 return; 9627 9628 if (!FuncInfo->CanLowerReturn) { 9629 // Put in an sret pointer parameter before all the other parameters. 9630 SmallVector<EVT, 1> ValueVTs; 9631 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9632 F.getReturnType()->getPointerTo( 9633 DAG.getDataLayout().getAllocaAddrSpace()), 9634 ValueVTs); 9635 9636 // NOTE: Assuming that a pointer will never break down to more than one VT 9637 // or one register. 9638 ISD::ArgFlagsTy Flags; 9639 Flags.setSRet(); 9640 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9641 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9642 ISD::InputArg::NoArgIndex, 0); 9643 Ins.push_back(RetArg); 9644 } 9645 9646 // Look for stores of arguments to static allocas. Mark such arguments with a 9647 // flag to ask the target to give us the memory location of that argument if 9648 // available. 9649 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9650 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9651 ArgCopyElisionCandidates); 9652 9653 // Set up the incoming argument description vector. 9654 for (const Argument &Arg : F.args()) { 9655 unsigned ArgNo = Arg.getArgNo(); 9656 SmallVector<EVT, 4> ValueVTs; 9657 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9658 bool isArgValueUsed = !Arg.use_empty(); 9659 unsigned PartBase = 0; 9660 Type *FinalType = Arg.getType(); 9661 if (Arg.hasAttribute(Attribute::ByVal)) 9662 FinalType = Arg.getParamByValType(); 9663 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9664 FinalType, F.getCallingConv(), F.isVarArg()); 9665 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9666 Value != NumValues; ++Value) { 9667 EVT VT = ValueVTs[Value]; 9668 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9669 ISD::ArgFlagsTy Flags; 9670 9671 // Certain targets (such as MIPS), may have a different ABI alignment 9672 // for a type depending on the context. Give the target a chance to 9673 // specify the alignment it wants. 9674 const Align OriginalAlignment( 9675 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9676 9677 if (Arg.getType()->isPointerTy()) { 9678 Flags.setPointer(); 9679 Flags.setPointerAddrSpace( 9680 cast<PointerType>(Arg.getType())->getAddressSpace()); 9681 } 9682 if (Arg.hasAttribute(Attribute::ZExt)) 9683 Flags.setZExt(); 9684 if (Arg.hasAttribute(Attribute::SExt)) 9685 Flags.setSExt(); 9686 if (Arg.hasAttribute(Attribute::InReg)) { 9687 // If we are using vectorcall calling convention, a structure that is 9688 // passed InReg - is surely an HVA 9689 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9690 isa<StructType>(Arg.getType())) { 9691 // The first value of a structure is marked 9692 if (0 == Value) 9693 Flags.setHvaStart(); 9694 Flags.setHva(); 9695 } 9696 // Set InReg Flag 9697 Flags.setInReg(); 9698 } 9699 if (Arg.hasAttribute(Attribute::StructRet)) 9700 Flags.setSRet(); 9701 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9702 Flags.setSwiftSelf(); 9703 if (Arg.hasAttribute(Attribute::SwiftError)) 9704 Flags.setSwiftError(); 9705 if (Arg.hasAttribute(Attribute::ByVal)) 9706 Flags.setByVal(); 9707 if (Arg.hasAttribute(Attribute::ByRef)) 9708 Flags.setByRef(); 9709 if (Arg.hasAttribute(Attribute::InAlloca)) { 9710 Flags.setInAlloca(); 9711 // Set the byval flag for CCAssignFn callbacks that don't know about 9712 // inalloca. This way we can know how many bytes we should've allocated 9713 // and how many bytes a callee cleanup function will pop. If we port 9714 // inalloca to more targets, we'll have to add custom inalloca handling 9715 // in the various CC lowering callbacks. 9716 Flags.setByVal(); 9717 } 9718 if (Arg.hasAttribute(Attribute::Preallocated)) { 9719 Flags.setPreallocated(); 9720 // Set the byval flag for CCAssignFn callbacks that don't know about 9721 // preallocated. This way we can know how many bytes we should've 9722 // allocated and how many bytes a callee cleanup function will pop. If 9723 // we port preallocated to more targets, we'll have to add custom 9724 // preallocated handling in the various CC lowering callbacks. 9725 Flags.setByVal(); 9726 } 9727 9728 Type *ArgMemTy = nullptr; 9729 if (F.getCallingConv() == CallingConv::X86_INTR) { 9730 // IA Interrupt passes frame (1st parameter) by value in the stack. 9731 if (ArgNo == 0) { 9732 Flags.setByVal(); 9733 // FIXME: Dependence on pointee element type. See bug 46672. 9734 ArgMemTy = Arg.getType()->getPointerElementType(); 9735 } 9736 } 9737 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9738 Flags.isByRef()) { 9739 if (!ArgMemTy) 9740 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9741 9742 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9743 9744 // For in-memory arguments, size and alignment should be passed from FE. 9745 // BE will guess if this info is not there but there are cases it cannot 9746 // get right. 9747 MaybeAlign MemAlign = Arg.getParamAlign(); 9748 if (!MemAlign) 9749 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9750 9751 if (Flags.isByRef()) { 9752 Flags.setByRefSize(MemSize); 9753 Flags.setByRefAlign(*MemAlign); 9754 } else { 9755 Flags.setByValSize(MemSize); 9756 Flags.setByValAlign(*MemAlign); 9757 } 9758 } 9759 9760 if (Arg.hasAttribute(Attribute::Nest)) 9761 Flags.setNest(); 9762 if (NeedsRegBlock) 9763 Flags.setInConsecutiveRegs(); 9764 Flags.setOrigAlign(OriginalAlignment); 9765 if (ArgCopyElisionCandidates.count(&Arg)) 9766 Flags.setCopyElisionCandidate(); 9767 if (Arg.hasAttribute(Attribute::Returned)) 9768 Flags.setReturned(); 9769 9770 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9771 *CurDAG->getContext(), F.getCallingConv(), VT); 9772 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9773 *CurDAG->getContext(), F.getCallingConv(), VT); 9774 for (unsigned i = 0; i != NumRegs; ++i) { 9775 // For scalable vectors, use the minimum size; individual targets 9776 // are responsible for handling scalable vector arguments and 9777 // return values. 9778 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9779 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9780 if (NumRegs > 1 && i == 0) 9781 MyFlags.Flags.setSplit(); 9782 // if it isn't first piece, alignment must be 1 9783 else if (i > 0) { 9784 MyFlags.Flags.setOrigAlign(Align(1)); 9785 if (i == NumRegs - 1) 9786 MyFlags.Flags.setSplitEnd(); 9787 } 9788 Ins.push_back(MyFlags); 9789 } 9790 if (NeedsRegBlock && Value == NumValues - 1) 9791 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9792 PartBase += VT.getStoreSize().getKnownMinSize(); 9793 } 9794 } 9795 9796 // Call the target to set up the argument values. 9797 SmallVector<SDValue, 8> InVals; 9798 SDValue NewRoot = TLI->LowerFormalArguments( 9799 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9800 9801 // Verify that the target's LowerFormalArguments behaved as expected. 9802 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9803 "LowerFormalArguments didn't return a valid chain!"); 9804 assert(InVals.size() == Ins.size() && 9805 "LowerFormalArguments didn't emit the correct number of values!"); 9806 LLVM_DEBUG({ 9807 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9808 assert(InVals[i].getNode() && 9809 "LowerFormalArguments emitted a null value!"); 9810 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9811 "LowerFormalArguments emitted a value with the wrong type!"); 9812 } 9813 }); 9814 9815 // Update the DAG with the new chain value resulting from argument lowering. 9816 DAG.setRoot(NewRoot); 9817 9818 // Set up the argument values. 9819 unsigned i = 0; 9820 if (!FuncInfo->CanLowerReturn) { 9821 // Create a virtual register for the sret pointer, and put in a copy 9822 // from the sret argument into it. 9823 SmallVector<EVT, 1> ValueVTs; 9824 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9825 F.getReturnType()->getPointerTo( 9826 DAG.getDataLayout().getAllocaAddrSpace()), 9827 ValueVTs); 9828 MVT VT = ValueVTs[0].getSimpleVT(); 9829 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9830 Optional<ISD::NodeType> AssertOp = None; 9831 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9832 nullptr, F.getCallingConv(), AssertOp); 9833 9834 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9835 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9836 Register SRetReg = 9837 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9838 FuncInfo->DemoteRegister = SRetReg; 9839 NewRoot = 9840 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9841 DAG.setRoot(NewRoot); 9842 9843 // i indexes lowered arguments. Bump it past the hidden sret argument. 9844 ++i; 9845 } 9846 9847 SmallVector<SDValue, 4> Chains; 9848 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9849 for (const Argument &Arg : F.args()) { 9850 SmallVector<SDValue, 4> ArgValues; 9851 SmallVector<EVT, 4> ValueVTs; 9852 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9853 unsigned NumValues = ValueVTs.size(); 9854 if (NumValues == 0) 9855 continue; 9856 9857 bool ArgHasUses = !Arg.use_empty(); 9858 9859 // Elide the copying store if the target loaded this argument from a 9860 // suitable fixed stack object. 9861 if (Ins[i].Flags.isCopyElisionCandidate()) { 9862 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9863 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9864 InVals[i], ArgHasUses); 9865 } 9866 9867 // If this argument is unused then remember its value. It is used to generate 9868 // debugging information. 9869 bool isSwiftErrorArg = 9870 TLI->supportSwiftError() && 9871 Arg.hasAttribute(Attribute::SwiftError); 9872 if (!ArgHasUses && !isSwiftErrorArg) { 9873 SDB->setUnusedArgValue(&Arg, InVals[i]); 9874 9875 // Also remember any frame index for use in FastISel. 9876 if (FrameIndexSDNode *FI = 9877 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9878 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9879 } 9880 9881 for (unsigned Val = 0; Val != NumValues; ++Val) { 9882 EVT VT = ValueVTs[Val]; 9883 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9884 F.getCallingConv(), VT); 9885 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9886 *CurDAG->getContext(), F.getCallingConv(), VT); 9887 9888 // Even an apparent 'unused' swifterror argument needs to be returned. So 9889 // we do generate a copy for it that can be used on return from the 9890 // function. 9891 if (ArgHasUses || isSwiftErrorArg) { 9892 Optional<ISD::NodeType> AssertOp; 9893 if (Arg.hasAttribute(Attribute::SExt)) 9894 AssertOp = ISD::AssertSext; 9895 else if (Arg.hasAttribute(Attribute::ZExt)) 9896 AssertOp = ISD::AssertZext; 9897 9898 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9899 PartVT, VT, nullptr, 9900 F.getCallingConv(), AssertOp)); 9901 } 9902 9903 i += NumParts; 9904 } 9905 9906 // We don't need to do anything else for unused arguments. 9907 if (ArgValues.empty()) 9908 continue; 9909 9910 // Note down frame index. 9911 if (FrameIndexSDNode *FI = 9912 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9913 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9914 9915 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9916 SDB->getCurSDLoc()); 9917 9918 SDB->setValue(&Arg, Res); 9919 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9920 // We want to associate the argument with the frame index, among 9921 // involved operands, that correspond to the lowest address. The 9922 // getCopyFromParts function, called earlier, is swapping the order of 9923 // the operands to BUILD_PAIR depending on endianness. The result of 9924 // that swapping is that the least significant bits of the argument will 9925 // be in the first operand of the BUILD_PAIR node, and the most 9926 // significant bits will be in the second operand. 9927 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9928 if (LoadSDNode *LNode = 9929 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9930 if (FrameIndexSDNode *FI = 9931 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9932 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9933 } 9934 9935 // Analyses past this point are naive and don't expect an assertion. 9936 if (Res.getOpcode() == ISD::AssertZext) 9937 Res = Res.getOperand(0); 9938 9939 // Update the SwiftErrorVRegDefMap. 9940 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9941 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9942 if (Register::isVirtualRegister(Reg)) 9943 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9944 Reg); 9945 } 9946 9947 // If this argument is live outside of the entry block, insert a copy from 9948 // wherever we got it to the vreg that other BB's will reference it as. 9949 if (Res.getOpcode() == ISD::CopyFromReg) { 9950 // If we can, though, try to skip creating an unnecessary vreg. 9951 // FIXME: This isn't very clean... it would be nice to make this more 9952 // general. 9953 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9954 if (Register::isVirtualRegister(Reg)) { 9955 FuncInfo->ValueMap[&Arg] = Reg; 9956 continue; 9957 } 9958 } 9959 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9960 FuncInfo->InitializeRegForValue(&Arg); 9961 SDB->CopyToExportRegsIfNeeded(&Arg); 9962 } 9963 } 9964 9965 if (!Chains.empty()) { 9966 Chains.push_back(NewRoot); 9967 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9968 } 9969 9970 DAG.setRoot(NewRoot); 9971 9972 assert(i == InVals.size() && "Argument register count mismatch!"); 9973 9974 // If any argument copy elisions occurred and we have debug info, update the 9975 // stale frame indices used in the dbg.declare variable info table. 9976 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9977 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9978 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9979 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9980 if (I != ArgCopyElisionFrameIndexMap.end()) 9981 VI.Slot = I->second; 9982 } 9983 } 9984 9985 // Finally, if the target has anything special to do, allow it to do so. 9986 emitFunctionEntryCode(); 9987 } 9988 9989 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9990 /// ensure constants are generated when needed. Remember the virtual registers 9991 /// that need to be added to the Machine PHI nodes as input. We cannot just 9992 /// directly add them, because expansion might result in multiple MBB's for one 9993 /// BB. As such, the start of the BB might correspond to a different MBB than 9994 /// the end. 9995 void SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks( 9996 const BasicBlock *LLVMBB, bool Preprocess) { 9997 const Instruction *TI = LLVMBB->getTerminator(); 9998 const CallBrInst *CI = dyn_cast<CallBrInst>(TI); 9999 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10000 10001 // Check PHI nodes in successors that expect a value to be available from this 10002 // block. 10003 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10004 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10005 if (!isa<PHINode>(SuccBB->begin())) continue; 10006 10007 if (CI) { 10008 if (Preprocess) { 10009 // Don't push PHI node values back before an INLINEASM_BR instruction on 10010 // the default branch. 10011 if (SuccBB == CI->getDefaultDest()) 10012 continue; 10013 } else { 10014 // Don't push PHI node values back after an INLINEASM_BR instruction on 10015 // the indirect branch. 10016 if (SuccBB != CI->getDefaultDest()) 10017 continue; 10018 } 10019 } 10020 10021 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10022 10023 // If this terminator has multiple identical successors (common for 10024 // switches), only handle each succ once. 10025 if (!SuccsHandled.insert(SuccMBB).second) 10026 continue; 10027 10028 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10029 10030 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10031 // nodes and Machine PHI nodes, but the incoming operands have not been 10032 // emitted yet. 10033 for (const PHINode &PN : SuccBB->phis()) { 10034 // Ignore dead phi's. 10035 if (PN.use_empty()) 10036 continue; 10037 10038 // Skip empty types 10039 if (PN.getType()->isEmptyTy()) 10040 continue; 10041 10042 unsigned Reg; 10043 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10044 10045 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10046 unsigned &RegOut = ConstantsOut[C]; 10047 if (RegOut == 0) { 10048 RegOut = FuncInfo.CreateRegs(C); 10049 CopyValueToVirtualRegister(C, RegOut); 10050 } 10051 Reg = RegOut; 10052 } else { 10053 DenseMap<const Value *, Register>::iterator I = 10054 FuncInfo.ValueMap.find(PHIOp); 10055 if (I != FuncInfo.ValueMap.end()) 10056 Reg = I->second; 10057 else { 10058 assert(isa<AllocaInst>(PHIOp) && 10059 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10060 "Didn't codegen value into a register!??"); 10061 Reg = FuncInfo.CreateRegs(PHIOp); 10062 CopyValueToVirtualRegister(PHIOp, Reg); 10063 } 10064 } 10065 10066 // Remember that this register needs to added to the machine PHI node as 10067 // the input for this MBB. 10068 SmallVector<EVT, 4> ValueVTs; 10069 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10070 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10071 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10072 EVT VT = ValueVTs[vti]; 10073 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10074 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10075 FuncInfo.PHINodesToUpdate.push_back( 10076 std::make_pair(&*MBBI++, Reg + i)); 10077 Reg += NumRegisters; 10078 } 10079 } 10080 } 10081 10082 ConstantsOut.clear(); 10083 } 10084 10085 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10086 /// is 0. 10087 MachineBasicBlock * 10088 SelectionDAGBuilder::StackProtectorDescriptor:: 10089 AddSuccessorMBB(const BasicBlock *BB, 10090 MachineBasicBlock *ParentMBB, 10091 bool IsLikely, 10092 MachineBasicBlock *SuccMBB) { 10093 // If SuccBB has not been created yet, create it. 10094 if (!SuccMBB) { 10095 MachineFunction *MF = ParentMBB->getParent(); 10096 MachineFunction::iterator BBI(ParentMBB); 10097 SuccMBB = MF->CreateMachineBasicBlock(BB); 10098 MF->insert(++BBI, SuccMBB); 10099 } 10100 // Add it as a successor of ParentMBB. 10101 ParentMBB->addSuccessor( 10102 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10103 return SuccMBB; 10104 } 10105 10106 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10107 MachineFunction::iterator I(MBB); 10108 if (++I == FuncInfo.MF->end()) 10109 return nullptr; 10110 return &*I; 10111 } 10112 10113 /// During lowering new call nodes can be created (such as memset, etc.). 10114 /// Those will become new roots of the current DAG, but complications arise 10115 /// when they are tail calls. In such cases, the call lowering will update 10116 /// the root, but the builder still needs to know that a tail call has been 10117 /// lowered in order to avoid generating an additional return. 10118 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10119 // If the node is null, we do have a tail call. 10120 if (MaybeTC.getNode() != nullptr) 10121 DAG.setRoot(MaybeTC); 10122 else 10123 HasTailCall = true; 10124 } 10125 10126 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10127 MachineBasicBlock *SwitchMBB, 10128 MachineBasicBlock *DefaultMBB) { 10129 MachineFunction *CurMF = FuncInfo.MF; 10130 MachineBasicBlock *NextMBB = nullptr; 10131 MachineFunction::iterator BBI(W.MBB); 10132 if (++BBI != FuncInfo.MF->end()) 10133 NextMBB = &*BBI; 10134 10135 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10136 10137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10138 10139 if (Size == 2 && W.MBB == SwitchMBB) { 10140 // If any two of the cases has the same destination, and if one value 10141 // is the same as the other, but has one bit unset that the other has set, 10142 // use bit manipulation to do two compares at once. For example: 10143 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10144 // TODO: This could be extended to merge any 2 cases in switches with 3 10145 // cases. 10146 // TODO: Handle cases where W.CaseBB != SwitchBB. 10147 CaseCluster &Small = *W.FirstCluster; 10148 CaseCluster &Big = *W.LastCluster; 10149 10150 if (Small.Low == Small.High && Big.Low == Big.High && 10151 Small.MBB == Big.MBB) { 10152 const APInt &SmallValue = Small.Low->getValue(); 10153 const APInt &BigValue = Big.Low->getValue(); 10154 10155 // Check that there is only one bit different. 10156 APInt CommonBit = BigValue ^ SmallValue; 10157 if (CommonBit.isPowerOf2()) { 10158 SDValue CondLHS = getValue(Cond); 10159 EVT VT = CondLHS.getValueType(); 10160 SDLoc DL = getCurSDLoc(); 10161 10162 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10163 DAG.getConstant(CommonBit, DL, VT)); 10164 SDValue Cond = DAG.getSetCC( 10165 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10166 ISD::SETEQ); 10167 10168 // Update successor info. 10169 // Both Small and Big will jump to Small.BB, so we sum up the 10170 // probabilities. 10171 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10172 if (BPI) 10173 addSuccessorWithProb( 10174 SwitchMBB, DefaultMBB, 10175 // The default destination is the first successor in IR. 10176 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10177 else 10178 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10179 10180 // Insert the true branch. 10181 SDValue BrCond = 10182 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10183 DAG.getBasicBlock(Small.MBB)); 10184 // Insert the false branch. 10185 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10186 DAG.getBasicBlock(DefaultMBB)); 10187 10188 DAG.setRoot(BrCond); 10189 return; 10190 } 10191 } 10192 } 10193 10194 if (TM.getOptLevel() != CodeGenOpt::None) { 10195 // Here, we order cases by probability so the most likely case will be 10196 // checked first. However, two clusters can have the same probability in 10197 // which case their relative ordering is non-deterministic. So we use Low 10198 // as a tie-breaker as clusters are guaranteed to never overlap. 10199 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10200 [](const CaseCluster &a, const CaseCluster &b) { 10201 return a.Prob != b.Prob ? 10202 a.Prob > b.Prob : 10203 a.Low->getValue().slt(b.Low->getValue()); 10204 }); 10205 10206 // Rearrange the case blocks so that the last one falls through if possible 10207 // without changing the order of probabilities. 10208 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10209 --I; 10210 if (I->Prob > W.LastCluster->Prob) 10211 break; 10212 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10213 std::swap(*I, *W.LastCluster); 10214 break; 10215 } 10216 } 10217 } 10218 10219 // Compute total probability. 10220 BranchProbability DefaultProb = W.DefaultProb; 10221 BranchProbability UnhandledProbs = DefaultProb; 10222 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10223 UnhandledProbs += I->Prob; 10224 10225 MachineBasicBlock *CurMBB = W.MBB; 10226 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10227 bool FallthroughUnreachable = false; 10228 MachineBasicBlock *Fallthrough; 10229 if (I == W.LastCluster) { 10230 // For the last cluster, fall through to the default destination. 10231 Fallthrough = DefaultMBB; 10232 FallthroughUnreachable = isa<UnreachableInst>( 10233 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10234 } else { 10235 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10236 CurMF->insert(BBI, Fallthrough); 10237 // Put Cond in a virtual register to make it available from the new blocks. 10238 ExportFromCurrentBlock(Cond); 10239 } 10240 UnhandledProbs -= I->Prob; 10241 10242 switch (I->Kind) { 10243 case CC_JumpTable: { 10244 // FIXME: Optimize away range check based on pivot comparisons. 10245 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10246 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10247 10248 // The jump block hasn't been inserted yet; insert it here. 10249 MachineBasicBlock *JumpMBB = JT->MBB; 10250 CurMF->insert(BBI, JumpMBB); 10251 10252 auto JumpProb = I->Prob; 10253 auto FallthroughProb = UnhandledProbs; 10254 10255 // If the default statement is a target of the jump table, we evenly 10256 // distribute the default probability to successors of CurMBB. Also 10257 // update the probability on the edge from JumpMBB to Fallthrough. 10258 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10259 SE = JumpMBB->succ_end(); 10260 SI != SE; ++SI) { 10261 if (*SI == DefaultMBB) { 10262 JumpProb += DefaultProb / 2; 10263 FallthroughProb -= DefaultProb / 2; 10264 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10265 JumpMBB->normalizeSuccProbs(); 10266 break; 10267 } 10268 } 10269 10270 if (FallthroughUnreachable) { 10271 // Skip the range check if the fallthrough block is unreachable. 10272 JTH->OmitRangeCheck = true; 10273 } 10274 10275 if (!JTH->OmitRangeCheck) 10276 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10277 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10278 CurMBB->normalizeSuccProbs(); 10279 10280 // The jump table header will be inserted in our current block, do the 10281 // range check, and fall through to our fallthrough block. 10282 JTH->HeaderBB = CurMBB; 10283 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10284 10285 // If we're in the right place, emit the jump table header right now. 10286 if (CurMBB == SwitchMBB) { 10287 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10288 JTH->Emitted = true; 10289 } 10290 break; 10291 } 10292 case CC_BitTests: { 10293 // FIXME: Optimize away range check based on pivot comparisons. 10294 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10295 10296 // The bit test blocks haven't been inserted yet; insert them here. 10297 for (BitTestCase &BTC : BTB->Cases) 10298 CurMF->insert(BBI, BTC.ThisBB); 10299 10300 // Fill in fields of the BitTestBlock. 10301 BTB->Parent = CurMBB; 10302 BTB->Default = Fallthrough; 10303 10304 BTB->DefaultProb = UnhandledProbs; 10305 // If the cases in bit test don't form a contiguous range, we evenly 10306 // distribute the probability on the edge to Fallthrough to two 10307 // successors of CurMBB. 10308 if (!BTB->ContiguousRange) { 10309 BTB->Prob += DefaultProb / 2; 10310 BTB->DefaultProb -= DefaultProb / 2; 10311 } 10312 10313 if (FallthroughUnreachable) { 10314 // Skip the range check if the fallthrough block is unreachable. 10315 BTB->OmitRangeCheck = true; 10316 } 10317 10318 // If we're in the right place, emit the bit test header right now. 10319 if (CurMBB == SwitchMBB) { 10320 visitBitTestHeader(*BTB, SwitchMBB); 10321 BTB->Emitted = true; 10322 } 10323 break; 10324 } 10325 case CC_Range: { 10326 const Value *RHS, *LHS, *MHS; 10327 ISD::CondCode CC; 10328 if (I->Low == I->High) { 10329 // Check Cond == I->Low. 10330 CC = ISD::SETEQ; 10331 LHS = Cond; 10332 RHS=I->Low; 10333 MHS = nullptr; 10334 } else { 10335 // Check I->Low <= Cond <= I->High. 10336 CC = ISD::SETLE; 10337 LHS = I->Low; 10338 MHS = Cond; 10339 RHS = I->High; 10340 } 10341 10342 // If Fallthrough is unreachable, fold away the comparison. 10343 if (FallthroughUnreachable) 10344 CC = ISD::SETTRUE; 10345 10346 // The false probability is the sum of all unhandled cases. 10347 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10348 getCurSDLoc(), I->Prob, UnhandledProbs); 10349 10350 if (CurMBB == SwitchMBB) 10351 visitSwitchCase(CB, SwitchMBB); 10352 else 10353 SL->SwitchCases.push_back(CB); 10354 10355 break; 10356 } 10357 } 10358 CurMBB = Fallthrough; 10359 } 10360 } 10361 10362 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10363 CaseClusterIt First, 10364 CaseClusterIt Last) { 10365 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10366 if (X.Prob != CC.Prob) 10367 return X.Prob > CC.Prob; 10368 10369 // Ties are broken by comparing the case value. 10370 return X.Low->getValue().slt(CC.Low->getValue()); 10371 }); 10372 } 10373 10374 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10375 const SwitchWorkListItem &W, 10376 Value *Cond, 10377 MachineBasicBlock *SwitchMBB) { 10378 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10379 "Clusters not sorted?"); 10380 10381 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10382 10383 // Balance the tree based on branch probabilities to create a near-optimal (in 10384 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10385 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10386 CaseClusterIt LastLeft = W.FirstCluster; 10387 CaseClusterIt FirstRight = W.LastCluster; 10388 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10389 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10390 10391 // Move LastLeft and FirstRight towards each other from opposite directions to 10392 // find a partitioning of the clusters which balances the probability on both 10393 // sides. If LeftProb and RightProb are equal, alternate which side is 10394 // taken to ensure 0-probability nodes are distributed evenly. 10395 unsigned I = 0; 10396 while (LastLeft + 1 < FirstRight) { 10397 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10398 LeftProb += (++LastLeft)->Prob; 10399 else 10400 RightProb += (--FirstRight)->Prob; 10401 I++; 10402 } 10403 10404 while (true) { 10405 // Our binary search tree differs from a typical BST in that ours can have up 10406 // to three values in each leaf. The pivot selection above doesn't take that 10407 // into account, which means the tree might require more nodes and be less 10408 // efficient. We compensate for this here. 10409 10410 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10411 unsigned NumRight = W.LastCluster - FirstRight + 1; 10412 10413 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10414 // If one side has less than 3 clusters, and the other has more than 3, 10415 // consider taking a cluster from the other side. 10416 10417 if (NumLeft < NumRight) { 10418 // Consider moving the first cluster on the right to the left side. 10419 CaseCluster &CC = *FirstRight; 10420 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10421 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10422 if (LeftSideRank <= RightSideRank) { 10423 // Moving the cluster to the left does not demote it. 10424 ++LastLeft; 10425 ++FirstRight; 10426 continue; 10427 } 10428 } else { 10429 assert(NumRight < NumLeft); 10430 // Consider moving the last element on the left to the right side. 10431 CaseCluster &CC = *LastLeft; 10432 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10433 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10434 if (RightSideRank <= LeftSideRank) { 10435 // Moving the cluster to the right does not demot it. 10436 --LastLeft; 10437 --FirstRight; 10438 continue; 10439 } 10440 } 10441 } 10442 break; 10443 } 10444 10445 assert(LastLeft + 1 == FirstRight); 10446 assert(LastLeft >= W.FirstCluster); 10447 assert(FirstRight <= W.LastCluster); 10448 10449 // Use the first element on the right as pivot since we will make less-than 10450 // comparisons against it. 10451 CaseClusterIt PivotCluster = FirstRight; 10452 assert(PivotCluster > W.FirstCluster); 10453 assert(PivotCluster <= W.LastCluster); 10454 10455 CaseClusterIt FirstLeft = W.FirstCluster; 10456 CaseClusterIt LastRight = W.LastCluster; 10457 10458 const ConstantInt *Pivot = PivotCluster->Low; 10459 10460 // New blocks will be inserted immediately after the current one. 10461 MachineFunction::iterator BBI(W.MBB); 10462 ++BBI; 10463 10464 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10465 // we can branch to its destination directly if it's squeezed exactly in 10466 // between the known lower bound and Pivot - 1. 10467 MachineBasicBlock *LeftMBB; 10468 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10469 FirstLeft->Low == W.GE && 10470 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10471 LeftMBB = FirstLeft->MBB; 10472 } else { 10473 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10474 FuncInfo.MF->insert(BBI, LeftMBB); 10475 WorkList.push_back( 10476 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10477 // Put Cond in a virtual register to make it available from the new blocks. 10478 ExportFromCurrentBlock(Cond); 10479 } 10480 10481 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10482 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10483 // directly if RHS.High equals the current upper bound. 10484 MachineBasicBlock *RightMBB; 10485 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10486 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10487 RightMBB = FirstRight->MBB; 10488 } else { 10489 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10490 FuncInfo.MF->insert(BBI, RightMBB); 10491 WorkList.push_back( 10492 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10493 // Put Cond in a virtual register to make it available from the new blocks. 10494 ExportFromCurrentBlock(Cond); 10495 } 10496 10497 // Create the CaseBlock record that will be used to lower the branch. 10498 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10499 getCurSDLoc(), LeftProb, RightProb); 10500 10501 if (W.MBB == SwitchMBB) 10502 visitSwitchCase(CB, SwitchMBB); 10503 else 10504 SL->SwitchCases.push_back(CB); 10505 } 10506 10507 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10508 // from the swith statement. 10509 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10510 BranchProbability PeeledCaseProb) { 10511 if (PeeledCaseProb == BranchProbability::getOne()) 10512 return BranchProbability::getZero(); 10513 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10514 10515 uint32_t Numerator = CaseProb.getNumerator(); 10516 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10517 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10518 } 10519 10520 // Try to peel the top probability case if it exceeds the threshold. 10521 // Return current MachineBasicBlock for the switch statement if the peeling 10522 // does not occur. 10523 // If the peeling is performed, return the newly created MachineBasicBlock 10524 // for the peeled switch statement. Also update Clusters to remove the peeled 10525 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10526 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10527 const SwitchInst &SI, CaseClusterVector &Clusters, 10528 BranchProbability &PeeledCaseProb) { 10529 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10530 // Don't perform if there is only one cluster or optimizing for size. 10531 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10532 TM.getOptLevel() == CodeGenOpt::None || 10533 SwitchMBB->getParent()->getFunction().hasMinSize()) 10534 return SwitchMBB; 10535 10536 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10537 unsigned PeeledCaseIndex = 0; 10538 bool SwitchPeeled = false; 10539 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10540 CaseCluster &CC = Clusters[Index]; 10541 if (CC.Prob < TopCaseProb) 10542 continue; 10543 TopCaseProb = CC.Prob; 10544 PeeledCaseIndex = Index; 10545 SwitchPeeled = true; 10546 } 10547 if (!SwitchPeeled) 10548 return SwitchMBB; 10549 10550 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10551 << TopCaseProb << "\n"); 10552 10553 // Record the MBB for the peeled switch statement. 10554 MachineFunction::iterator BBI(SwitchMBB); 10555 ++BBI; 10556 MachineBasicBlock *PeeledSwitchMBB = 10557 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10558 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10559 10560 ExportFromCurrentBlock(SI.getCondition()); 10561 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10562 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10563 nullptr, nullptr, TopCaseProb.getCompl()}; 10564 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10565 10566 Clusters.erase(PeeledCaseIt); 10567 for (CaseCluster &CC : Clusters) { 10568 LLVM_DEBUG( 10569 dbgs() << "Scale the probablity for one cluster, before scaling: " 10570 << CC.Prob << "\n"); 10571 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10572 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10573 } 10574 PeeledCaseProb = TopCaseProb; 10575 return PeeledSwitchMBB; 10576 } 10577 10578 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10579 // Extract cases from the switch. 10580 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10581 CaseClusterVector Clusters; 10582 Clusters.reserve(SI.getNumCases()); 10583 for (auto I : SI.cases()) { 10584 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10585 const ConstantInt *CaseVal = I.getCaseValue(); 10586 BranchProbability Prob = 10587 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10588 : BranchProbability(1, SI.getNumCases() + 1); 10589 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10590 } 10591 10592 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10593 10594 // Cluster adjacent cases with the same destination. We do this at all 10595 // optimization levels because it's cheap to do and will make codegen faster 10596 // if there are many clusters. 10597 sortAndRangeify(Clusters); 10598 10599 // The branch probablity of the peeled case. 10600 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10601 MachineBasicBlock *PeeledSwitchMBB = 10602 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10603 10604 // If there is only the default destination, jump there directly. 10605 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10606 if (Clusters.empty()) { 10607 assert(PeeledSwitchMBB == SwitchMBB); 10608 SwitchMBB->addSuccessor(DefaultMBB); 10609 if (DefaultMBB != NextBlock(SwitchMBB)) { 10610 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10611 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10612 } 10613 return; 10614 } 10615 10616 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10617 SL->findBitTestClusters(Clusters, &SI); 10618 10619 LLVM_DEBUG({ 10620 dbgs() << "Case clusters: "; 10621 for (const CaseCluster &C : Clusters) { 10622 if (C.Kind == CC_JumpTable) 10623 dbgs() << "JT:"; 10624 if (C.Kind == CC_BitTests) 10625 dbgs() << "BT:"; 10626 10627 C.Low->getValue().print(dbgs(), true); 10628 if (C.Low != C.High) { 10629 dbgs() << '-'; 10630 C.High->getValue().print(dbgs(), true); 10631 } 10632 dbgs() << ' '; 10633 } 10634 dbgs() << '\n'; 10635 }); 10636 10637 assert(!Clusters.empty()); 10638 SwitchWorkList WorkList; 10639 CaseClusterIt First = Clusters.begin(); 10640 CaseClusterIt Last = Clusters.end() - 1; 10641 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10642 // Scale the branchprobability for DefaultMBB if the peel occurs and 10643 // DefaultMBB is not replaced. 10644 if (PeeledCaseProb != BranchProbability::getZero() && 10645 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10646 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10647 WorkList.push_back( 10648 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10649 10650 while (!WorkList.empty()) { 10651 SwitchWorkListItem W = WorkList.back(); 10652 WorkList.pop_back(); 10653 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10654 10655 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10656 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10657 // For optimized builds, lower large range as a balanced binary tree. 10658 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10659 continue; 10660 } 10661 10662 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10663 } 10664 } 10665 10666 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10667 SmallVector<EVT, 4> ValueVTs; 10668 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10669 ValueVTs); 10670 unsigned NumValues = ValueVTs.size(); 10671 if (NumValues == 0) return; 10672 10673 SmallVector<SDValue, 4> Values(NumValues); 10674 SDValue Op = getValue(I.getOperand(0)); 10675 10676 for (unsigned i = 0; i != NumValues; ++i) 10677 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10678 SDValue(Op.getNode(), Op.getResNo() + i)); 10679 10680 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10681 DAG.getVTList(ValueVTs), Values)); 10682 } 10683