1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/DebugInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InlineAsm.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetFrameLowering.h" 56 #include "llvm/Target/TargetInstrInfo.h" 57 #include "llvm/Target/TargetIntrinsicInfo.h" 58 #include "llvm/Target/TargetLibraryInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetOptions.h" 61 #include "llvm/Target/TargetSelectionDAGInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 /// LimitFloatPrecision - Generate low-precision inline sequences for 66 /// some float libcalls (6, 8 or 12 bits). 67 static unsigned LimitFloatPrecision; 68 69 static cl::opt<unsigned, true> 70 LimitFPPrecision("limit-float-precision", 71 cl::desc("Generate low-precision inline sequences " 72 "for some float libcalls"), 73 cl::location(LimitFloatPrecision), 74 cl::init(0)); 75 76 // Limit the width of DAG chains. This is important in general to prevent 77 // prevent DAG-based analysis from blowing up. For example, alias analysis and 78 // load clustering may not complete in reasonable time. It is difficult to 79 // recognize and avoid this situation within each individual analysis, and 80 // future analyses are likely to have the same behavior. Limiting DAG width is 81 // the safe approach, and will be especially important with global DAGs. 82 // 83 // MaxParallelChains default is arbitrarily high to avoid affecting 84 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 85 // sequence over this should have been converted to llvm.memcpy by the 86 // frontend. It easy to induce this behavior with .ll code such as: 87 // %buffer = alloca [4096 x i8] 88 // %data = load [4096 x i8]* %argPtr 89 // store [4096 x i8] %data, [4096 x i8]* %buffer 90 static const unsigned MaxParallelChains = 64; 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 MVT PartVT, EVT ValueVT, const Value *V); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, MVT PartVT, EVT ValueVT, 104 const Value *V, 105 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 106 if (ValueVT.isVector()) 107 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 108 PartVT, ValueVT, V); 109 110 assert(NumParts > 0 && "No parts to assemble!"); 111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 112 SDValue Val = Parts[0]; 113 114 if (NumParts > 1) { 115 // Assemble the value from multiple parts. 116 if (ValueVT.isInteger()) { 117 unsigned PartBits = PartVT.getSizeInBits(); 118 unsigned ValueBits = ValueVT.getSizeInBits(); 119 120 // Assemble the power of 2 part. 121 unsigned RoundParts = NumParts & (NumParts - 1) ? 122 1 << Log2_32(NumParts) : NumParts; 123 unsigned RoundBits = PartBits * RoundParts; 124 EVT RoundVT = RoundBits == ValueBits ? 125 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 126 SDValue Lo, Hi; 127 128 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 129 130 if (RoundParts > 2) { 131 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 132 PartVT, HalfVT, V); 133 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 134 RoundParts / 2, PartVT, HalfVT, V); 135 } else { 136 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 137 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 138 } 139 140 if (TLI.isBigEndian()) 141 std::swap(Lo, Hi); 142 143 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 144 145 if (RoundParts < NumParts) { 146 // Assemble the trailing non-power-of-2 part. 147 unsigned OddParts = NumParts - RoundParts; 148 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 149 Hi = getCopyFromParts(DAG, DL, 150 Parts + RoundParts, OddParts, PartVT, OddVT, V); 151 152 // Combine the round and odd parts. 153 Lo = Val; 154 if (TLI.isBigEndian()) 155 std::swap(Lo, Hi); 156 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 157 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 158 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 159 DAG.getConstant(Lo.getValueType().getSizeInBits(), 160 TLI.getPointerTy())); 161 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 162 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 163 } 164 } else if (PartVT.isFloatingPoint()) { 165 // FP split into multiple FP parts (for ppcf128) 166 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 167 "Unexpected split"); 168 SDValue Lo, Hi; 169 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 170 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 171 if (TLI.isBigEndian()) 172 std::swap(Lo, Hi); 173 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 174 } else { 175 // FP split into integer parts (soft fp) 176 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 177 !PartVT.isVector() && "Unexpected split"); 178 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 179 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 180 } 181 } 182 183 // There is now one part, held in Val. Correct it to match ValueVT. 184 EVT PartEVT = Val.getValueType(); 185 186 if (PartEVT == ValueVT) 187 return Val; 188 189 if (PartEVT.isInteger() && ValueVT.isInteger()) { 190 if (ValueVT.bitsLT(PartEVT)) { 191 // For a truncate, see if we have any information to 192 // indicate whether the truncated bits will always be 193 // zero or sign-extension. 194 if (AssertOp != ISD::DELETED_NODE) 195 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 196 DAG.getValueType(ValueVT)); 197 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 198 } 199 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 200 } 201 202 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 203 // FP_ROUND's are always exact here. 204 if (ValueVT.bitsLT(Val.getValueType())) 205 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 206 DAG.getTargetConstant(1, TLI.getPointerTy())); 207 208 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 212 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 213 214 llvm_unreachable("Unknown mismatch!"); 215 } 216 217 /// getCopyFromPartsVector - Create a value that contains the specified legal 218 /// parts combined into the value they represent. If the parts combine to a 219 /// type larger then ValueVT then AssertOp can be used to specify whether the 220 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 221 /// ValueVT (ISD::AssertSext). 222 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 223 const SDValue *Parts, unsigned NumParts, 224 MVT PartVT, EVT ValueVT, const Value *V) { 225 assert(ValueVT.isVector() && "Not a vector value"); 226 assert(NumParts > 0 && "No parts to assemble!"); 227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 228 SDValue Val = Parts[0]; 229 230 // Handle a multi-element vector. 231 if (NumParts > 1) { 232 EVT IntermediateVT; 233 MVT RegisterVT; 234 unsigned NumIntermediates; 235 unsigned NumRegs = 236 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 237 NumIntermediates, RegisterVT); 238 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 239 NumParts = NumRegs; // Silence a compiler warning. 240 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 241 assert(RegisterVT == Parts[0].getSimpleValueType() && 242 "Part type doesn't match part!"); 243 244 // Assemble the parts into intermediate operands. 245 SmallVector<SDValue, 8> Ops(NumIntermediates); 246 if (NumIntermediates == NumParts) { 247 // If the register was not expanded, truncate or copy the value, 248 // as appropriate. 249 for (unsigned i = 0; i != NumParts; ++i) 250 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 251 PartVT, IntermediateVT, V); 252 } else if (NumParts > 0) { 253 // If the intermediate type was expanded, build the intermediate 254 // operands from the parts. 255 assert(NumParts % NumIntermediates == 0 && 256 "Must expand into a divisible number of parts!"); 257 unsigned Factor = NumParts / NumIntermediates; 258 for (unsigned i = 0; i != NumIntermediates; ++i) 259 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 260 PartVT, IntermediateVT, V); 261 } 262 263 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 264 // intermediate operands. 265 Val = DAG.getNode(IntermediateVT.isVector() ? 266 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 267 ValueVT, &Ops[0], NumIntermediates); 268 } 269 270 // There is now one part, held in Val. Correct it to match ValueVT. 271 EVT PartEVT = Val.getValueType(); 272 273 if (PartEVT == ValueVT) 274 return Val; 275 276 if (PartEVT.isVector()) { 277 // If the element type of the source/dest vectors are the same, but the 278 // parts vector has more elements than the value vector, then we have a 279 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 280 // elements we want. 281 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 282 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 283 "Cannot narrow, it would be a lossy transformation"); 284 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 285 DAG.getConstant(0, TLI.getVectorIdxTy())); 286 } 287 288 // Vector/Vector bitcast. 289 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 290 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 291 292 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 293 "Cannot handle this kind of promotion"); 294 // Promoted vector extract 295 bool Smaller = ValueVT.bitsLE(PartEVT); 296 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 297 DL, ValueVT, Val); 298 299 } 300 301 // Trivial bitcast if the types are the same size and the destination 302 // vector type is legal. 303 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 304 TLI.isTypeLegal(ValueVT)) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle cases such as i8 -> <1 x i1> 308 if (ValueVT.getVectorNumElements() != 1) { 309 LLVMContext &Ctx = *DAG.getContext(); 310 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 311 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 312 if (const CallInst *CI = dyn_cast<CallInst>(I)) 313 if (isa<InlineAsm>(CI->getCalledValue())) 314 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 315 Ctx.emitError(I, ErrMsg); 316 } else { 317 Ctx.emitError(ErrMsg); 318 } 319 return DAG.getUNDEF(ValueVT); 320 } 321 322 if (ValueVT.getVectorNumElements() == 1 && 323 ValueVT.getVectorElementType() != PartEVT) { 324 bool Smaller = ValueVT.bitsLE(PartEVT); 325 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 326 DL, ValueVT.getScalarType(), Val); 327 } 328 329 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 330 } 331 332 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 333 SDValue Val, SDValue *Parts, unsigned NumParts, 334 MVT PartVT, const Value *V); 335 336 /// getCopyToParts - Create a series of nodes that contain the specified value 337 /// split into legal parts. If the parts contain more bits than Val, then, for 338 /// integers, ExtendKind can be used to specify how to generate the extra bits. 339 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V, 342 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 343 EVT ValueVT = Val.getValueType(); 344 345 // Handle the vector case separately. 346 if (ValueVT.isVector()) 347 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 unsigned PartBits = PartVT.getSizeInBits(); 351 unsigned OrigNumParts = NumParts; 352 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 353 354 if (NumParts == 0) 355 return; 356 357 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 358 EVT PartEVT = PartVT; 359 if (PartEVT == ValueVT) { 360 assert(NumParts == 1 && "No-op copy with multiple parts!"); 361 Parts[0] = Val; 362 return; 363 } 364 365 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 366 // If the parts cover more bits than the value has, promote the value. 367 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 368 assert(NumParts == 1 && "Do not know what to promote to!"); 369 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 370 } else { 371 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 372 ValueVT.isInteger() && 373 "Unknown mismatch!"); 374 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 375 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 376 if (PartVT == MVT::x86mmx) 377 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 378 } 379 } else if (PartBits == ValueVT.getSizeInBits()) { 380 // Different types of the same size. 381 assert(NumParts == 1 && PartEVT != ValueVT); 382 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 383 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 384 // If the parts cover less bits than value has, truncate the value. 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 394 // The value may have changed - recompute ValueVT. 395 ValueVT = Val.getValueType(); 396 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 397 "Failed to tile the value with PartVT!"); 398 399 if (NumParts == 1) { 400 if (PartEVT != ValueVT) { 401 LLVMContext &Ctx = *DAG.getContext(); 402 Twine ErrMsg("scalar-to-vector conversion failed"); 403 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 404 if (const CallInst *CI = dyn_cast<CallInst>(I)) 405 if (isa<InlineAsm>(CI->getCalledValue())) 406 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 407 Ctx.emitError(I, ErrMsg); 408 } else { 409 Ctx.emitError(ErrMsg); 410 } 411 } 412 413 Parts[0] = Val; 414 return; 415 } 416 417 // Expand the value into multiple parts. 418 if (NumParts & (NumParts - 1)) { 419 // The number of parts is not a power of 2. Split off and copy the tail. 420 assert(PartVT.isInteger() && ValueVT.isInteger() && 421 "Do not know what to expand to!"); 422 unsigned RoundParts = 1 << Log2_32(NumParts); 423 unsigned RoundBits = RoundParts * PartBits; 424 unsigned OddParts = NumParts - RoundParts; 425 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 426 DAG.getIntPtrConstant(RoundBits)); 427 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 428 429 if (TLI.isBigEndian()) 430 // The odd parts were reversed by getCopyToParts - unreverse them. 431 std::reverse(Parts + RoundParts, Parts + NumParts); 432 433 NumParts = RoundParts; 434 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 435 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 436 } 437 438 // The number of parts is a power of 2. Repeatedly bisect the value using 439 // EXTRACT_ELEMENT. 440 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 441 EVT::getIntegerVT(*DAG.getContext(), 442 ValueVT.getSizeInBits()), 443 Val); 444 445 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 446 for (unsigned i = 0; i < NumParts; i += StepSize) { 447 unsigned ThisBits = StepSize * PartBits / 2; 448 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 449 SDValue &Part0 = Parts[i]; 450 SDValue &Part1 = Parts[i+StepSize/2]; 451 452 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(1)); 454 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(0)); 456 457 if (ThisBits == PartBits && ThisVT != PartVT) { 458 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 459 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 460 } 461 } 462 } 463 464 if (TLI.isBigEndian()) 465 std::reverse(Parts, Parts + OrigNumParts); 466 } 467 468 469 /// getCopyToPartsVector - Create a series of nodes that contain the specified 470 /// value split into legal parts. 471 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V) { 474 EVT ValueVT = Val.getValueType(); 475 assert(ValueVT.isVector() && "Not a vector"); 476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 477 478 if (NumParts == 1) { 479 EVT PartEVT = PartVT; 480 if (PartEVT == ValueVT) { 481 // Nothing to do. 482 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 483 // Bitconvert vector->vector case. 484 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 485 } else if (PartVT.isVector() && 486 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 487 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 488 EVT ElementVT = PartVT.getVectorElementType(); 489 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 490 // undef elements. 491 SmallVector<SDValue, 16> Ops; 492 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 493 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 494 ElementVT, Val, DAG.getConstant(i, 495 TLI.getVectorIdxTy()))); 496 497 for (unsigned i = ValueVT.getVectorNumElements(), 498 e = PartVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getUNDEF(ElementVT)); 500 501 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 502 503 // FIXME: Use CONCAT for 2x -> 4x. 504 505 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 506 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 507 } else if (PartVT.isVector() && 508 PartEVT.getVectorElementType().bitsGE( 509 ValueVT.getVectorElementType()) && 510 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 511 512 // Promoted vector extract 513 bool Smaller = PartEVT.bitsLE(ValueVT); 514 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 515 DL, PartVT, Val); 516 } else{ 517 // Vector -> scalar conversion. 518 assert(ValueVT.getVectorNumElements() == 1 && 519 "Only trivial vector-to-scalar conversions should get here!"); 520 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 521 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 522 523 bool Smaller = ValueVT.bitsLE(PartVT); 524 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 525 DL, PartVT, Val); 526 } 527 528 Parts[0] = Val; 529 return; 530 } 531 532 // Handle a multi-element vector. 533 EVT IntermediateVT; 534 MVT RegisterVT; 535 unsigned NumIntermediates; 536 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 537 IntermediateVT, 538 NumIntermediates, RegisterVT); 539 unsigned NumElements = ValueVT.getVectorNumElements(); 540 541 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 542 NumParts = NumRegs; // Silence a compiler warning. 543 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 544 545 // Split the vector into intermediate operands. 546 SmallVector<SDValue, 8> Ops(NumIntermediates); 547 for (unsigned i = 0; i != NumIntermediates; ++i) { 548 if (IntermediateVT.isVector()) 549 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 550 IntermediateVT, Val, 551 DAG.getConstant(i * (NumElements / NumIntermediates), 552 TLI.getVectorIdxTy())); 553 else 554 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 555 IntermediateVT, Val, 556 DAG.getConstant(i, TLI.getVectorIdxTy())); 557 } 558 559 // Split the intermediate operands into legal parts. 560 if (NumParts == NumIntermediates) { 561 // If the register was not expanded, promote or copy the value, 562 // as appropriate. 563 for (unsigned i = 0; i != NumParts; ++i) 564 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 565 } else if (NumParts > 0) { 566 // If the intermediate type was expanded, split each the value into 567 // legal parts. 568 assert(NumParts % NumIntermediates == 0 && 569 "Must expand into a divisible number of parts!"); 570 unsigned Factor = NumParts / NumIntermediates; 571 for (unsigned i = 0; i != NumIntermediates; ++i) 572 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 573 } 574 } 575 576 namespace { 577 /// RegsForValue - This struct represents the registers (physical or virtual) 578 /// that a particular set of values is assigned, and the type information 579 /// about the value. The most common situation is to represent one value at a 580 /// time, but struct or array values are handled element-wise as multiple 581 /// values. The splitting of aggregates is performed recursively, so that we 582 /// never have aggregate-typed registers. The values at this point do not 583 /// necessarily have legal types, so each value may require one or more 584 /// registers of some legal type. 585 /// 586 struct RegsForValue { 587 /// ValueVTs - The value types of the values, which may not be legal, and 588 /// may need be promoted or synthesized from one or more registers. 589 /// 590 SmallVector<EVT, 4> ValueVTs; 591 592 /// RegVTs - The value types of the registers. This is the same size as 593 /// ValueVTs and it records, for each value, what the type of the assigned 594 /// register or registers are. (Individual values are never synthesized 595 /// from more than one type of register.) 596 /// 597 /// With virtual registers, the contents of RegVTs is redundant with TLI's 598 /// getRegisterType member function, however when with physical registers 599 /// it is necessary to have a separate record of the types. 600 /// 601 SmallVector<MVT, 4> RegVTs; 602 603 /// Regs - This list holds the registers assigned to the values. 604 /// Each legal or promoted value requires one register, and each 605 /// expanded value requires multiple registers. 606 /// 607 SmallVector<unsigned, 4> Regs; 608 609 RegsForValue() {} 610 611 RegsForValue(const SmallVector<unsigned, 4> ®s, 612 MVT regvt, EVT valuevt) 613 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 614 615 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 616 unsigned Reg, Type *Ty) { 617 ComputeValueVTs(tli, Ty, ValueVTs); 618 619 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 622 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 623 for (unsigned i = 0; i != NumRegs; ++i) 624 Regs.push_back(Reg + i); 625 RegVTs.push_back(RegisterVT); 626 Reg += NumRegs; 627 } 628 } 629 630 /// areValueTypesLegal - Return true if types of all the values are legal. 631 bool areValueTypesLegal(const TargetLowering &TLI) { 632 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 633 MVT RegisterVT = RegVTs[Value]; 634 if (!TLI.isTypeLegal(RegisterVT)) 635 return false; 636 } 637 return true; 638 } 639 640 /// append - Add the specified values to this one. 641 void append(const RegsForValue &RHS) { 642 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 643 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 644 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 645 } 646 647 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 648 /// this value and returns the result as a ValueVTs value. This uses 649 /// Chain/Flag as the input and updates them for the output Chain/Flag. 650 /// If the Flag pointer is NULL, no flag is used. 651 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 652 SDLoc dl, 653 SDValue &Chain, SDValue *Flag, 654 const Value *V = 0) const; 655 656 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 657 /// specified value into the registers specified by this object. This uses 658 /// Chain/Flag as the input and updates them for the output Chain/Flag. 659 /// If the Flag pointer is NULL, no flag is used. 660 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 661 SDValue &Chain, SDValue *Flag, const Value *V) const; 662 663 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 664 /// operand list. This adds the code marker, matching input operand index 665 /// (if applicable), and includes the number of values added into it. 666 void AddInlineAsmOperands(unsigned Kind, 667 bool HasMatching, unsigned MatchingIdx, 668 SelectionDAG &DAG, 669 std::vector<SDValue> &Ops) const; 670 }; 671 } 672 673 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 674 /// this value and returns the result as a ValueVT value. This uses 675 /// Chain/Flag as the input and updates them for the output Chain/Flag. 676 /// If the Flag pointer is NULL, no flag is used. 677 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 678 FunctionLoweringInfo &FuncInfo, 679 SDLoc dl, 680 SDValue &Chain, SDValue *Flag, 681 const Value *V) const { 682 // A Value with type {} or [0 x %t] needs no registers. 683 if (ValueVTs.empty()) 684 return SDValue(); 685 686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 687 688 // Assemble the legal parts into the final values. 689 SmallVector<SDValue, 4> Values(ValueVTs.size()); 690 SmallVector<SDValue, 8> Parts; 691 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 692 // Copy the legal parts from the registers. 693 EVT ValueVT = ValueVTs[Value]; 694 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 695 MVT RegisterVT = RegVTs[Value]; 696 697 Parts.resize(NumRegs); 698 for (unsigned i = 0; i != NumRegs; ++i) { 699 SDValue P; 700 if (Flag == 0) { 701 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 702 } else { 703 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 704 *Flag = P.getValue(2); 705 } 706 707 Chain = P.getValue(1); 708 Parts[i] = P; 709 710 // If the source register was virtual and if we know something about it, 711 // add an assert node. 712 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 713 !RegisterVT.isInteger() || RegisterVT.isVector()) 714 continue; 715 716 const FunctionLoweringInfo::LiveOutInfo *LOI = 717 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 718 if (!LOI) 719 continue; 720 721 unsigned RegSize = RegisterVT.getSizeInBits(); 722 unsigned NumSignBits = LOI->NumSignBits; 723 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 724 725 if (NumZeroBits == RegSize) { 726 // The current value is a zero. 727 // Explicitly express that as it would be easier for 728 // optimizations to kick in. 729 Parts[i] = DAG.getConstant(0, RegisterVT); 730 continue; 731 } 732 733 // FIXME: We capture more information than the dag can represent. For 734 // now, just use the tightest assertzext/assertsext possible. 735 bool isSExt = true; 736 EVT FromVT(MVT::Other); 737 if (NumSignBits == RegSize) 738 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 739 else if (NumZeroBits >= RegSize-1) 740 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 741 else if (NumSignBits > RegSize-8) 742 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 743 else if (NumZeroBits >= RegSize-8) 744 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 745 else if (NumSignBits > RegSize-16) 746 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 747 else if (NumZeroBits >= RegSize-16) 748 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 749 else if (NumSignBits > RegSize-32) 750 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 751 else if (NumZeroBits >= RegSize-32) 752 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 753 else 754 continue; 755 756 // Add an assertion node. 757 assert(FromVT != MVT::Other); 758 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 759 RegisterVT, P, DAG.getValueType(FromVT)); 760 } 761 762 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 763 NumRegs, RegisterVT, ValueVT, V); 764 Part += NumRegs; 765 Parts.clear(); 766 } 767 768 return DAG.getNode(ISD::MERGE_VALUES, dl, 769 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 770 &Values[0], ValueVTs.size()); 771 } 772 773 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 774 /// specified value into the registers specified by this object. This uses 775 /// Chain/Flag as the input and updates them for the output Chain/Flag. 776 /// If the Flag pointer is NULL, no flag is used. 777 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 778 SDValue &Chain, SDValue *Flag, 779 const Value *V) const { 780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 781 782 // Get the list of the values's legal parts. 783 unsigned NumRegs = Regs.size(); 784 SmallVector<SDValue, 8> Parts(NumRegs); 785 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 786 EVT ValueVT = ValueVTs[Value]; 787 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 788 MVT RegisterVT = RegVTs[Value]; 789 ISD::NodeType ExtendKind = 790 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 791 792 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 793 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 794 Part += NumParts; 795 } 796 797 // Copy the parts into the registers. 798 SmallVector<SDValue, 8> Chains(NumRegs); 799 for (unsigned i = 0; i != NumRegs; ++i) { 800 SDValue Part; 801 if (Flag == 0) { 802 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 803 } else { 804 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 805 *Flag = Part.getValue(1); 806 } 807 808 Chains[i] = Part.getValue(0); 809 } 810 811 if (NumRegs == 1 || Flag) 812 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 813 // flagged to it. That is the CopyToReg nodes and the user are considered 814 // a single scheduling unit. If we create a TokenFactor and return it as 815 // chain, then the TokenFactor is both a predecessor (operand) of the 816 // user as well as a successor (the TF operands are flagged to the user). 817 // c1, f1 = CopyToReg 818 // c2, f2 = CopyToReg 819 // c3 = TokenFactor c1, c2 820 // ... 821 // = op c3, ..., f2 822 Chain = Chains[NumRegs-1]; 823 else 824 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 825 } 826 827 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 828 /// operand list. This adds the code marker and includes the number of 829 /// values added into it. 830 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 831 unsigned MatchingIdx, 832 SelectionDAG &DAG, 833 std::vector<SDValue> &Ops) const { 834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 835 836 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 837 if (HasMatching) 838 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 839 else if (!Regs.empty() && 840 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 841 // Put the register class of the virtual registers in the flag word. That 842 // way, later passes can recompute register class constraints for inline 843 // assembly as well as normal instructions. 844 // Don't do this for tied operands that can use the regclass information 845 // from the def. 846 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 847 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 848 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 849 } 850 851 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 852 Ops.push_back(Res); 853 854 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 855 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 856 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 857 MVT RegisterVT = RegVTs[Value]; 858 for (unsigned i = 0; i != NumRegs; ++i) { 859 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 860 unsigned TheReg = Regs[Reg++]; 861 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 862 863 // Notice if we clobbered the stack pointer. Yes, inline asm can do this. 864 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 865 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 866 MFI->setHasInlineAsmWithSPAdjust(true); 867 } 868 } 869 } 870 } 871 872 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 873 const TargetLibraryInfo *li) { 874 AA = &aa; 875 GFI = gfi; 876 LibInfo = li; 877 TD = DAG.getTarget().getDataLayout(); 878 Context = DAG.getContext(); 879 LPadToCallSiteMap.clear(); 880 } 881 882 /// clear - Clear out the current SelectionDAG and the associated 883 /// state and prepare this SelectionDAGBuilder object to be used 884 /// for a new block. This doesn't clear out information about 885 /// additional blocks that are needed to complete switch lowering 886 /// or PHI node updating; that information is cleared out as it is 887 /// consumed. 888 void SelectionDAGBuilder::clear() { 889 NodeMap.clear(); 890 UnusedArgNodeMap.clear(); 891 PendingLoads.clear(); 892 PendingExports.clear(); 893 CurInst = NULL; 894 HasTailCall = false; 895 } 896 897 /// clearDanglingDebugInfo - Clear the dangling debug information 898 /// map. This function is separated from the clear so that debug 899 /// information that is dangling in a basic block can be properly 900 /// resolved in a different basic block. This allows the 901 /// SelectionDAG to resolve dangling debug information attached 902 /// to PHI nodes. 903 void SelectionDAGBuilder::clearDanglingDebugInfo() { 904 DanglingDebugInfoMap.clear(); 905 } 906 907 /// getRoot - Return the current virtual root of the Selection DAG, 908 /// flushing any PendingLoad items. This must be done before emitting 909 /// a store or any other node that may need to be ordered after any 910 /// prior load instructions. 911 /// 912 SDValue SelectionDAGBuilder::getRoot() { 913 if (PendingLoads.empty()) 914 return DAG.getRoot(); 915 916 if (PendingLoads.size() == 1) { 917 SDValue Root = PendingLoads[0]; 918 DAG.setRoot(Root); 919 PendingLoads.clear(); 920 return Root; 921 } 922 923 // Otherwise, we have to make a token factor node. 924 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 925 &PendingLoads[0], PendingLoads.size()); 926 PendingLoads.clear(); 927 DAG.setRoot(Root); 928 return Root; 929 } 930 931 /// getControlRoot - Similar to getRoot, but instead of flushing all the 932 /// PendingLoad items, flush all the PendingExports items. It is necessary 933 /// to do this before emitting a terminator instruction. 934 /// 935 SDValue SelectionDAGBuilder::getControlRoot() { 936 SDValue Root = DAG.getRoot(); 937 938 if (PendingExports.empty()) 939 return Root; 940 941 // Turn all of the CopyToReg chains into one factored node. 942 if (Root.getOpcode() != ISD::EntryToken) { 943 unsigned i = 0, e = PendingExports.size(); 944 for (; i != e; ++i) { 945 assert(PendingExports[i].getNode()->getNumOperands() > 1); 946 if (PendingExports[i].getNode()->getOperand(0) == Root) 947 break; // Don't add the root if we already indirectly depend on it. 948 } 949 950 if (i == e) 951 PendingExports.push_back(Root); 952 } 953 954 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 955 &PendingExports[0], 956 PendingExports.size()); 957 PendingExports.clear(); 958 DAG.setRoot(Root); 959 return Root; 960 } 961 962 void SelectionDAGBuilder::visit(const Instruction &I) { 963 // Set up outgoing PHI node register values before emitting the terminator. 964 if (isa<TerminatorInst>(&I)) 965 HandlePHINodesInSuccessorBlocks(I.getParent()); 966 967 ++SDNodeOrder; 968 969 CurInst = &I; 970 971 visit(I.getOpcode(), I); 972 973 if (!isa<TerminatorInst>(&I) && !HasTailCall) 974 CopyToExportRegsIfNeeded(&I); 975 976 CurInst = NULL; 977 } 978 979 void SelectionDAGBuilder::visitPHI(const PHINode &) { 980 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 981 } 982 983 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 984 // Note: this doesn't use InstVisitor, because it has to work with 985 // ConstantExpr's in addition to instructions. 986 switch (Opcode) { 987 default: llvm_unreachable("Unknown instruction type encountered!"); 988 // Build the switch statement using the Instruction.def file. 989 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 990 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 991 #include "llvm/IR/Instruction.def" 992 } 993 } 994 995 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 996 // generate the debug data structures now that we've seen its definition. 997 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 998 SDValue Val) { 999 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1000 if (DDI.getDI()) { 1001 const DbgValueInst *DI = DDI.getDI(); 1002 DebugLoc dl = DDI.getdl(); 1003 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1004 MDNode *Variable = DI->getVariable(); 1005 uint64_t Offset = DI->getOffset(); 1006 SDDbgValue *SDV; 1007 if (Val.getNode()) { 1008 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 1009 SDV = DAG.getDbgValue(Variable, Val.getNode(), 1010 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getValue - Return an SDValue for the given Value. 1020 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1021 // If we already have an SDValue for this value, use it. It's important 1022 // to do this first, so that we don't create a CopyFromReg if we already 1023 // have a regular SDValue. 1024 SDValue &N = NodeMap[V]; 1025 if (N.getNode()) return N; 1026 1027 // If there's a virtual register allocated and initialized for this 1028 // value, use it. 1029 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1030 if (It != FuncInfo.ValueMap.end()) { 1031 unsigned InReg = It->second; 1032 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1033 InReg, V->getType()); 1034 SDValue Chain = DAG.getEntryNode(); 1035 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1036 resolveDanglingDebugInfo(V, N); 1037 return N; 1038 } 1039 1040 // Otherwise create a new SDValue and remember it. 1041 SDValue Val = getValueImpl(V); 1042 NodeMap[V] = Val; 1043 resolveDanglingDebugInfo(V, Val); 1044 return Val; 1045 } 1046 1047 /// getNonRegisterValue - Return an SDValue for the given Value, but 1048 /// don't look in FuncInfo.ValueMap for a virtual register. 1049 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1050 // If we already have an SDValue for this value, use it. 1051 SDValue &N = NodeMap[V]; 1052 if (N.getNode()) return N; 1053 1054 // Otherwise create a new SDValue and remember it. 1055 SDValue Val = getValueImpl(V); 1056 NodeMap[V] = Val; 1057 resolveDanglingDebugInfo(V, Val); 1058 return Val; 1059 } 1060 1061 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1062 /// Create an SDValue for the given value. 1063 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1064 const TargetLowering *TLI = TM.getTargetLowering(); 1065 1066 if (const Constant *C = dyn_cast<Constant>(V)) { 1067 EVT VT = TLI->getValueType(V->getType(), true); 1068 1069 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1070 return DAG.getConstant(*CI, VT); 1071 1072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1073 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1074 1075 if (isa<ConstantPointerNull>(C)) { 1076 unsigned AS = V->getType()->getPointerAddressSpace(); 1077 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1078 } 1079 1080 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1081 return DAG.getConstantFP(*CFP, VT); 1082 1083 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1084 return DAG.getUNDEF(VT); 1085 1086 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1087 visit(CE->getOpcode(), *CE); 1088 SDValue N1 = NodeMap[V]; 1089 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1090 return N1; 1091 } 1092 1093 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1094 SmallVector<SDValue, 4> Constants; 1095 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1096 OI != OE; ++OI) { 1097 SDNode *Val = getValue(*OI).getNode(); 1098 // If the operand is an empty aggregate, there are no values. 1099 if (!Val) continue; 1100 // Add each leaf value from the operand to the Constants list 1101 // to form a flattened list of all the values. 1102 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1103 Constants.push_back(SDValue(Val, i)); 1104 } 1105 1106 return DAG.getMergeValues(&Constants[0], Constants.size(), 1107 getCurSDLoc()); 1108 } 1109 1110 if (const ConstantDataSequential *CDS = 1111 dyn_cast<ConstantDataSequential>(C)) { 1112 SmallVector<SDValue, 4> Ops; 1113 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1114 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1115 // Add each leaf value from the operand to the Constants list 1116 // to form a flattened list of all the values. 1117 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1118 Ops.push_back(SDValue(Val, i)); 1119 } 1120 1121 if (isa<ArrayType>(CDS->getType())) 1122 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc()); 1123 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1124 VT, &Ops[0], Ops.size()); 1125 } 1126 1127 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1128 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1129 "Unknown struct or array constant!"); 1130 1131 SmallVector<EVT, 4> ValueVTs; 1132 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1133 unsigned NumElts = ValueVTs.size(); 1134 if (NumElts == 0) 1135 return SDValue(); // empty struct 1136 SmallVector<SDValue, 4> Constants(NumElts); 1137 for (unsigned i = 0; i != NumElts; ++i) { 1138 EVT EltVT = ValueVTs[i]; 1139 if (isa<UndefValue>(C)) 1140 Constants[i] = DAG.getUNDEF(EltVT); 1141 else if (EltVT.isFloatingPoint()) 1142 Constants[i] = DAG.getConstantFP(0, EltVT); 1143 else 1144 Constants[i] = DAG.getConstant(0, EltVT); 1145 } 1146 1147 return DAG.getMergeValues(&Constants[0], NumElts, 1148 getCurSDLoc()); 1149 } 1150 1151 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1152 return DAG.getBlockAddress(BA, VT); 1153 1154 VectorType *VecTy = cast<VectorType>(V->getType()); 1155 unsigned NumElements = VecTy->getNumElements(); 1156 1157 // Now that we know the number and type of the elements, get that number of 1158 // elements into the Ops array based on what kind of constant it is. 1159 SmallVector<SDValue, 16> Ops; 1160 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1161 for (unsigned i = 0; i != NumElements; ++i) 1162 Ops.push_back(getValue(CV->getOperand(i))); 1163 } else { 1164 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1165 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1166 1167 SDValue Op; 1168 if (EltVT.isFloatingPoint()) 1169 Op = DAG.getConstantFP(0, EltVT); 1170 else 1171 Op = DAG.getConstant(0, EltVT); 1172 Ops.assign(NumElements, Op); 1173 } 1174 1175 // Create a BUILD_VECTOR node. 1176 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1177 VT, &Ops[0], Ops.size()); 1178 } 1179 1180 // If this is a static alloca, generate it as the frameindex instead of 1181 // computation. 1182 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1183 DenseMap<const AllocaInst*, int>::iterator SI = 1184 FuncInfo.StaticAllocaMap.find(AI); 1185 if (SI != FuncInfo.StaticAllocaMap.end()) 1186 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1187 } 1188 1189 // If this is an instruction which fast-isel has deferred, select it now. 1190 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1191 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1192 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1193 SDValue Chain = DAG.getEntryNode(); 1194 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V); 1195 } 1196 1197 llvm_unreachable("Can't get register for value!"); 1198 } 1199 1200 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1201 const TargetLowering *TLI = TM.getTargetLowering(); 1202 SDValue Chain = getControlRoot(); 1203 SmallVector<ISD::OutputArg, 8> Outs; 1204 SmallVector<SDValue, 8> OutVals; 1205 1206 if (!FuncInfo.CanLowerReturn) { 1207 unsigned DemoteReg = FuncInfo.DemoteRegister; 1208 const Function *F = I.getParent()->getParent(); 1209 1210 // Emit a store of the return value through the virtual register. 1211 // Leave Outs empty so that LowerReturn won't try to load return 1212 // registers the usual way. 1213 SmallVector<EVT, 1> PtrValueVTs; 1214 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1215 PtrValueVTs); 1216 1217 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1218 SDValue RetOp = getValue(I.getOperand(0)); 1219 1220 SmallVector<EVT, 4> ValueVTs; 1221 SmallVector<uint64_t, 4> Offsets; 1222 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1223 unsigned NumValues = ValueVTs.size(); 1224 1225 SmallVector<SDValue, 4> Chains(NumValues); 1226 for (unsigned i = 0; i != NumValues; ++i) { 1227 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1228 RetPtr.getValueType(), RetPtr, 1229 DAG.getIntPtrConstant(Offsets[i])); 1230 Chains[i] = 1231 DAG.getStore(Chain, getCurSDLoc(), 1232 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1233 // FIXME: better loc info would be nice. 1234 Add, MachinePointerInfo(), false, false, 0); 1235 } 1236 1237 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1238 MVT::Other, &Chains[0], NumValues); 1239 } else if (I.getNumOperands() != 0) { 1240 SmallVector<EVT, 4> ValueVTs; 1241 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1242 unsigned NumValues = ValueVTs.size(); 1243 if (NumValues) { 1244 SDValue RetOp = getValue(I.getOperand(0)); 1245 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1246 EVT VT = ValueVTs[j]; 1247 1248 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1249 1250 const Function *F = I.getParent()->getParent(); 1251 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1252 Attribute::SExt)) 1253 ExtendKind = ISD::SIGN_EXTEND; 1254 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1255 Attribute::ZExt)) 1256 ExtendKind = ISD::ZERO_EXTEND; 1257 1258 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1259 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1260 1261 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1262 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1263 SmallVector<SDValue, 4> Parts(NumParts); 1264 getCopyToParts(DAG, getCurSDLoc(), 1265 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1266 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1267 1268 // 'inreg' on function refers to return value 1269 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1270 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1271 Attribute::InReg)) 1272 Flags.setInReg(); 1273 1274 // Propagate extension type if any 1275 if (ExtendKind == ISD::SIGN_EXTEND) 1276 Flags.setSExt(); 1277 else if (ExtendKind == ISD::ZERO_EXTEND) 1278 Flags.setZExt(); 1279 1280 for (unsigned i = 0; i < NumParts; ++i) { 1281 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1282 VT, /*isfixed=*/true, 0, 0)); 1283 OutVals.push_back(Parts[i]); 1284 } 1285 } 1286 } 1287 } 1288 1289 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1290 CallingConv::ID CallConv = 1291 DAG.getMachineFunction().getFunction()->getCallingConv(); 1292 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1293 Outs, OutVals, getCurSDLoc(), 1294 DAG); 1295 1296 // Verify that the target's LowerReturn behaved as expected. 1297 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1298 "LowerReturn didn't return a valid chain!"); 1299 1300 // Update the DAG with the new chain value resulting from return lowering. 1301 DAG.setRoot(Chain); 1302 } 1303 1304 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1305 /// created for it, emit nodes to copy the value into the virtual 1306 /// registers. 1307 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1308 // Skip empty types 1309 if (V->getType()->isEmptyTy()) 1310 return; 1311 1312 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1313 if (VMI != FuncInfo.ValueMap.end()) { 1314 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1315 CopyValueToVirtualRegister(V, VMI->second); 1316 } 1317 } 1318 1319 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1320 /// the current basic block, add it to ValueMap now so that we'll get a 1321 /// CopyTo/FromReg. 1322 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1323 // No need to export constants. 1324 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1325 1326 // Already exported? 1327 if (FuncInfo.isExportedInst(V)) return; 1328 1329 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1330 CopyValueToVirtualRegister(V, Reg); 1331 } 1332 1333 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1334 const BasicBlock *FromBB) { 1335 // The operands of the setcc have to be in this block. We don't know 1336 // how to export them from some other block. 1337 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1338 // Can export from current BB. 1339 if (VI->getParent() == FromBB) 1340 return true; 1341 1342 // Is already exported, noop. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // If this is an argument, we can export it if the BB is the entry block or 1347 // if it is already exported. 1348 if (isa<Argument>(V)) { 1349 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1350 return true; 1351 1352 // Otherwise, can only export this if it is already exported. 1353 return FuncInfo.isExportedInst(V); 1354 } 1355 1356 // Otherwise, constants can always be exported. 1357 return true; 1358 } 1359 1360 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1361 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1362 const MachineBasicBlock *Dst) const { 1363 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1364 if (!BPI) 1365 return 0; 1366 const BasicBlock *SrcBB = Src->getBasicBlock(); 1367 const BasicBlock *DstBB = Dst->getBasicBlock(); 1368 return BPI->getEdgeWeight(SrcBB, DstBB); 1369 } 1370 1371 void SelectionDAGBuilder:: 1372 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1373 uint32_t Weight /* = 0 */) { 1374 if (!Weight) 1375 Weight = getEdgeWeight(Src, Dst); 1376 Src->addSuccessor(Dst, Weight); 1377 } 1378 1379 1380 static bool InBlock(const Value *V, const BasicBlock *BB) { 1381 if (const Instruction *I = dyn_cast<Instruction>(V)) 1382 return I->getParent() == BB; 1383 return true; 1384 } 1385 1386 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1387 /// This function emits a branch and is used at the leaves of an OR or an 1388 /// AND operator tree. 1389 /// 1390 void 1391 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1392 MachineBasicBlock *TBB, 1393 MachineBasicBlock *FBB, 1394 MachineBasicBlock *CurBB, 1395 MachineBasicBlock *SwitchBB) { 1396 const BasicBlock *BB = CurBB->getBasicBlock(); 1397 1398 // If the leaf of the tree is a comparison, merge the condition into 1399 // the caseblock. 1400 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1401 // The operands of the cmp have to be in this block. We don't know 1402 // how to export them from some other block. If this is the first block 1403 // of the sequence, no exporting is needed. 1404 if (CurBB == SwitchBB || 1405 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1406 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1407 ISD::CondCode Condition; 1408 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1409 Condition = getICmpCondCode(IC->getPredicate()); 1410 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1411 Condition = getFCmpCondCode(FC->getPredicate()); 1412 if (TM.Options.NoNaNsFPMath) 1413 Condition = getFCmpCodeWithoutNaN(Condition); 1414 } else { 1415 Condition = ISD::SETEQ; // silence warning. 1416 llvm_unreachable("Unknown compare instruction"); 1417 } 1418 1419 CaseBlock CB(Condition, BOp->getOperand(0), 1420 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1421 SwitchCases.push_back(CB); 1422 return; 1423 } 1424 } 1425 1426 // Create a CaseBlock record representing this branch. 1427 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1428 NULL, TBB, FBB, CurBB); 1429 SwitchCases.push_back(CB); 1430 } 1431 1432 /// FindMergedConditions - If Cond is an expression like 1433 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1434 MachineBasicBlock *TBB, 1435 MachineBasicBlock *FBB, 1436 MachineBasicBlock *CurBB, 1437 MachineBasicBlock *SwitchBB, 1438 unsigned Opc) { 1439 // If this node is not part of the or/and tree, emit it as a branch. 1440 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1441 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1442 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1443 BOp->getParent() != CurBB->getBasicBlock() || 1444 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1445 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1446 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1447 return; 1448 } 1449 1450 // Create TmpBB after CurBB. 1451 MachineFunction::iterator BBI = CurBB; 1452 MachineFunction &MF = DAG.getMachineFunction(); 1453 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1454 CurBB->getParent()->insert(++BBI, TmpBB); 1455 1456 if (Opc == Instruction::Or) { 1457 // Codegen X | Y as: 1458 // jmp_if_X TBB 1459 // jmp TmpBB 1460 // TmpBB: 1461 // jmp_if_Y TBB 1462 // jmp FBB 1463 // 1464 1465 // Emit the LHS condition. 1466 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1467 1468 // Emit the RHS condition into TmpBB. 1469 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1470 } else { 1471 assert(Opc == Instruction::And && "Unknown merge op!"); 1472 // Codegen X & Y as: 1473 // jmp_if_X TmpBB 1474 // jmp FBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 // This requires creation of TmpBB after CurBB. 1480 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1483 1484 // Emit the RHS condition into TmpBB. 1485 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1486 } 1487 } 1488 1489 /// If the set of cases should be emitted as a series of branches, return true. 1490 /// If we should emit this as a bunch of and/or'd together conditions, return 1491 /// false. 1492 bool 1493 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1494 if (Cases.size() != 2) return true; 1495 1496 // If this is two comparisons of the same values or'd or and'd together, they 1497 // will get folded into a single comparison, so don't emit two blocks. 1498 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1499 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1500 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1501 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1502 return false; 1503 } 1504 1505 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1506 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1507 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1508 Cases[0].CC == Cases[1].CC && 1509 isa<Constant>(Cases[0].CmpRHS) && 1510 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1511 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1512 return false; 1513 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1514 return false; 1515 } 1516 1517 return true; 1518 } 1519 1520 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1521 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1522 1523 // Update machine-CFG edges. 1524 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1525 1526 // Figure out which block is immediately after the current one. 1527 MachineBasicBlock *NextBlock = 0; 1528 MachineFunction::iterator BBI = BrMBB; 1529 if (++BBI != FuncInfo.MF->end()) 1530 NextBlock = BBI; 1531 1532 if (I.isUnconditional()) { 1533 // Update machine-CFG edges. 1534 BrMBB->addSuccessor(Succ0MBB); 1535 1536 // If this is not a fall-through branch, emit the branch. 1537 if (Succ0MBB != NextBlock) 1538 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1539 MVT::Other, getControlRoot(), 1540 DAG.getBasicBlock(Succ0MBB))); 1541 1542 return; 1543 } 1544 1545 // If this condition is one of the special cases we handle, do special stuff 1546 // now. 1547 const Value *CondVal = I.getCondition(); 1548 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1549 1550 // If this is a series of conditions that are or'd or and'd together, emit 1551 // this as a sequence of branches instead of setcc's with and/or operations. 1552 // As long as jumps are not expensive, this should improve performance. 1553 // For example, instead of something like: 1554 // cmp A, B 1555 // C = seteq 1556 // cmp D, E 1557 // F = setle 1558 // or C, F 1559 // jnz foo 1560 // Emit: 1561 // cmp A, B 1562 // je foo 1563 // cmp D, E 1564 // jle foo 1565 // 1566 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1567 if (!TM.getTargetLowering()->isJumpExpensive() && 1568 BOp->hasOneUse() && 1569 (BOp->getOpcode() == Instruction::And || 1570 BOp->getOpcode() == Instruction::Or)) { 1571 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1572 BOp->getOpcode()); 1573 // If the compares in later blocks need to use values not currently 1574 // exported from this block, export them now. This block should always 1575 // be the first entry. 1576 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1577 1578 // Allow some cases to be rejected. 1579 if (ShouldEmitAsBranches(SwitchCases)) { 1580 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1581 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1582 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1583 } 1584 1585 // Emit the branch for this block. 1586 visitSwitchCase(SwitchCases[0], BrMBB); 1587 SwitchCases.erase(SwitchCases.begin()); 1588 return; 1589 } 1590 1591 // Okay, we decided not to do this, remove any inserted MBB's and clear 1592 // SwitchCases. 1593 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1594 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1595 1596 SwitchCases.clear(); 1597 } 1598 } 1599 1600 // Create a CaseBlock record representing this branch. 1601 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1602 NULL, Succ0MBB, Succ1MBB, BrMBB); 1603 1604 // Use visitSwitchCase to actually insert the fast branch sequence for this 1605 // cond branch. 1606 visitSwitchCase(CB, BrMBB); 1607 } 1608 1609 /// visitSwitchCase - Emits the necessary code to represent a single node in 1610 /// the binary search tree resulting from lowering a switch instruction. 1611 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1612 MachineBasicBlock *SwitchBB) { 1613 SDValue Cond; 1614 SDValue CondLHS = getValue(CB.CmpLHS); 1615 SDLoc dl = getCurSDLoc(); 1616 1617 // Build the setcc now. 1618 if (CB.CmpMHS == NULL) { 1619 // Fold "(X == true)" to X and "(X == false)" to !X to 1620 // handle common cases produced by branch lowering. 1621 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1622 CB.CC == ISD::SETEQ) 1623 Cond = CondLHS; 1624 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1625 CB.CC == ISD::SETEQ) { 1626 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1627 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1628 } else 1629 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1630 } else { 1631 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1632 1633 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1634 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1635 1636 SDValue CmpOp = getValue(CB.CmpMHS); 1637 EVT VT = CmpOp.getValueType(); 1638 1639 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1640 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1641 ISD::SETLE); 1642 } else { 1643 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1644 VT, CmpOp, DAG.getConstant(Low, VT)); 1645 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1646 DAG.getConstant(High-Low, VT), ISD::SETULE); 1647 } 1648 } 1649 1650 // Update successor info 1651 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1652 // TrueBB and FalseBB are always different unless the incoming IR is 1653 // degenerate. This only happens when running llc on weird IR. 1654 if (CB.TrueBB != CB.FalseBB) 1655 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1656 1657 // Set NextBlock to be the MBB immediately after the current one, if any. 1658 // This is used to avoid emitting unnecessary branches to the next block. 1659 MachineBasicBlock *NextBlock = 0; 1660 MachineFunction::iterator BBI = SwitchBB; 1661 if (++BBI != FuncInfo.MF->end()) 1662 NextBlock = BBI; 1663 1664 // If the lhs block is the next block, invert the condition so that we can 1665 // fall through to the lhs instead of the rhs block. 1666 if (CB.TrueBB == NextBlock) { 1667 std::swap(CB.TrueBB, CB.FalseBB); 1668 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1670 } 1671 1672 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1673 MVT::Other, getControlRoot(), Cond, 1674 DAG.getBasicBlock(CB.TrueBB)); 1675 1676 // Insert the false branch. Do this even if it's a fall through branch, 1677 // this makes it easier to do DAG optimizations which require inverting 1678 // the branch condition. 1679 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1680 DAG.getBasicBlock(CB.FalseBB)); 1681 1682 DAG.setRoot(BrCond); 1683 } 1684 1685 /// visitJumpTable - Emit JumpTable node in the current MBB 1686 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1687 // Emit the code for the jump table 1688 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1689 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1690 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1691 JT.Reg, PTy); 1692 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1693 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1694 MVT::Other, Index.getValue(1), 1695 Table, Index); 1696 DAG.setRoot(BrJumpTable); 1697 } 1698 1699 /// visitJumpTableHeader - This function emits necessary code to produce index 1700 /// in the JumpTable from switch case. 1701 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1702 JumpTableHeader &JTH, 1703 MachineBasicBlock *SwitchBB) { 1704 // Subtract the lowest switch case value from the value being switched on and 1705 // conditional branch to default mbb if the result is greater than the 1706 // difference between smallest and largest cases. 1707 SDValue SwitchOp = getValue(JTH.SValue); 1708 EVT VT = SwitchOp.getValueType(); 1709 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1710 DAG.getConstant(JTH.First, VT)); 1711 1712 // The SDNode we just created, which holds the value being switched on minus 1713 // the smallest case value, needs to be copied to a virtual register so it 1714 // can be used as an index into the jump table in a subsequent basic block. 1715 // This value may be smaller or larger than the target's pointer type, and 1716 // therefore require extension or truncating. 1717 const TargetLowering *TLI = TM.getTargetLowering(); 1718 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1719 1720 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1721 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1722 JumpTableReg, SwitchOp); 1723 JT.Reg = JumpTableReg; 1724 1725 // Emit the range check for the jump table, and branch to the default block 1726 // for the switch statement if the value being switched on exceeds the largest 1727 // case in the switch. 1728 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1729 TLI->getSetCCResultType(*DAG.getContext(), 1730 Sub.getValueType()), 1731 Sub, 1732 DAG.getConstant(JTH.Last - JTH.First,VT), 1733 ISD::SETUGT); 1734 1735 // Set NextBlock to be the MBB immediately after the current one, if any. 1736 // This is used to avoid emitting unnecessary branches to the next block. 1737 MachineBasicBlock *NextBlock = 0; 1738 MachineFunction::iterator BBI = SwitchBB; 1739 1740 if (++BBI != FuncInfo.MF->end()) 1741 NextBlock = BBI; 1742 1743 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1744 MVT::Other, CopyTo, CMP, 1745 DAG.getBasicBlock(JT.Default)); 1746 1747 if (JT.MBB != NextBlock) 1748 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1749 DAG.getBasicBlock(JT.MBB)); 1750 1751 DAG.setRoot(BrCond); 1752 } 1753 1754 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1755 /// tail spliced into a stack protector check success bb. 1756 /// 1757 /// For a high level explanation of how this fits into the stack protector 1758 /// generation see the comment on the declaration of class 1759 /// StackProtectorDescriptor. 1760 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1761 MachineBasicBlock *ParentBB) { 1762 1763 // First create the loads to the guard/stack slot for the comparison. 1764 const TargetLowering *TLI = TM.getTargetLowering(); 1765 EVT PtrTy = TLI->getPointerTy(); 1766 1767 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1768 int FI = MFI->getStackProtectorIndex(); 1769 1770 const Value *IRGuard = SPD.getGuard(); 1771 SDValue GuardPtr = getValue(IRGuard); 1772 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1773 1774 unsigned Align = 1775 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1776 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1777 GuardPtr, MachinePointerInfo(IRGuard, 0), 1778 true, false, false, Align); 1779 1780 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1781 StackSlotPtr, 1782 MachinePointerInfo::getFixedStack(FI), 1783 true, false, false, Align); 1784 1785 // Perform the comparison via a subtract/getsetcc. 1786 EVT VT = Guard.getValueType(); 1787 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1788 1789 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1790 TLI->getSetCCResultType(*DAG.getContext(), 1791 Sub.getValueType()), 1792 Sub, DAG.getConstant(0, VT), 1793 ISD::SETNE); 1794 1795 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1796 // branch to failure MBB. 1797 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1798 MVT::Other, StackSlot.getOperand(0), 1799 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1800 // Otherwise branch to success MBB. 1801 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1802 MVT::Other, BrCond, 1803 DAG.getBasicBlock(SPD.getSuccessMBB())); 1804 1805 DAG.setRoot(Br); 1806 } 1807 1808 /// Codegen the failure basic block for a stack protector check. 1809 /// 1810 /// A failure stack protector machine basic block consists simply of a call to 1811 /// __stack_chk_fail(). 1812 /// 1813 /// For a high level explanation of how this fits into the stack protector 1814 /// generation see the comment on the declaration of class 1815 /// StackProtectorDescriptor. 1816 void 1817 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1818 const TargetLowering *TLI = TM.getTargetLowering(); 1819 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1820 MVT::isVoid, 0, 0, false, getCurSDLoc(), 1821 false, false).second; 1822 DAG.setRoot(Chain); 1823 } 1824 1825 /// visitBitTestHeader - This function emits necessary code to produce value 1826 /// suitable for "bit tests" 1827 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1828 MachineBasicBlock *SwitchBB) { 1829 // Subtract the minimum value 1830 SDValue SwitchOp = getValue(B.SValue); 1831 EVT VT = SwitchOp.getValueType(); 1832 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1833 DAG.getConstant(B.First, VT)); 1834 1835 // Check range 1836 const TargetLowering *TLI = TM.getTargetLowering(); 1837 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1838 TLI->getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(B.Range, VT), 1841 ISD::SETUGT); 1842 1843 // Determine the type of the test operands. 1844 bool UsePtrType = false; 1845 if (!TLI->isTypeLegal(VT)) 1846 UsePtrType = true; 1847 else { 1848 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1849 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1850 // Switch table case range are encoded into series of masks. 1851 // Just use pointer type, it's guaranteed to fit. 1852 UsePtrType = true; 1853 break; 1854 } 1855 } 1856 if (UsePtrType) { 1857 VT = TLI->getPointerTy(); 1858 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1859 } 1860 1861 B.RegVT = VT.getSimpleVT(); 1862 B.Reg = FuncInfo.CreateReg(B.RegVT); 1863 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1864 B.Reg, Sub); 1865 1866 // Set NextBlock to be the MBB immediately after the current one, if any. 1867 // This is used to avoid emitting unnecessary branches to the next block. 1868 MachineBasicBlock *NextBlock = 0; 1869 MachineFunction::iterator BBI = SwitchBB; 1870 if (++BBI != FuncInfo.MF->end()) 1871 NextBlock = BBI; 1872 1873 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1874 1875 addSuccessorWithWeight(SwitchBB, B.Default); 1876 addSuccessorWithWeight(SwitchBB, MBB); 1877 1878 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1879 MVT::Other, CopyTo, RangeCmp, 1880 DAG.getBasicBlock(B.Default)); 1881 1882 if (MBB != NextBlock) 1883 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1884 DAG.getBasicBlock(MBB)); 1885 1886 DAG.setRoot(BrRange); 1887 } 1888 1889 /// visitBitTestCase - this function produces one "bit test" 1890 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1891 MachineBasicBlock* NextMBB, 1892 uint32_t BranchWeightToNext, 1893 unsigned Reg, 1894 BitTestCase &B, 1895 MachineBasicBlock *SwitchBB) { 1896 MVT VT = BB.RegVT; 1897 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1898 Reg, VT); 1899 SDValue Cmp; 1900 unsigned PopCount = CountPopulation_64(B.Mask); 1901 const TargetLowering *TLI = TM.getTargetLowering(); 1902 if (PopCount == 1) { 1903 // Testing for a single bit; just compare the shift count with what it 1904 // would need to be to shift a 1 bit in that position. 1905 Cmp = DAG.getSetCC(getCurSDLoc(), 1906 TLI->getSetCCResultType(*DAG.getContext(), VT), 1907 ShiftOp, 1908 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1909 ISD::SETEQ); 1910 } else if (PopCount == BB.Range) { 1911 // There is only one zero bit in the range, test for it directly. 1912 Cmp = DAG.getSetCC(getCurSDLoc(), 1913 TLI->getSetCCResultType(*DAG.getContext(), VT), 1914 ShiftOp, 1915 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1916 ISD::SETNE); 1917 } else { 1918 // Make desired shift 1919 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1920 DAG.getConstant(1, VT), ShiftOp); 1921 1922 // Emit bit tests and jumps 1923 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1924 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1925 Cmp = DAG.getSetCC(getCurSDLoc(), 1926 TLI->getSetCCResultType(*DAG.getContext(), VT), 1927 AndOp, DAG.getConstant(0, VT), 1928 ISD::SETNE); 1929 } 1930 1931 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1932 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1933 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1934 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1935 1936 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1937 MVT::Other, getControlRoot(), 1938 Cmp, DAG.getBasicBlock(B.TargetBB)); 1939 1940 // Set NextBlock to be the MBB immediately after the current one, if any. 1941 // This is used to avoid emitting unnecessary branches to the next block. 1942 MachineBasicBlock *NextBlock = 0; 1943 MachineFunction::iterator BBI = SwitchBB; 1944 if (++BBI != FuncInfo.MF->end()) 1945 NextBlock = BBI; 1946 1947 if (NextMBB != NextBlock) 1948 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1949 DAG.getBasicBlock(NextMBB)); 1950 1951 DAG.setRoot(BrAnd); 1952 } 1953 1954 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1955 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1956 1957 // Retrieve successors. 1958 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1959 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1960 1961 const Value *Callee(I.getCalledValue()); 1962 const Function *Fn = dyn_cast<Function>(Callee); 1963 if (isa<InlineAsm>(Callee)) 1964 visitInlineAsm(&I); 1965 else if (Fn && Fn->isIntrinsic()) { 1966 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1967 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1968 } else 1969 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1970 1971 // If the value of the invoke is used outside of its defining block, make it 1972 // available as a virtual register. 1973 CopyToExportRegsIfNeeded(&I); 1974 1975 // Update successor info 1976 addSuccessorWithWeight(InvokeMBB, Return); 1977 addSuccessorWithWeight(InvokeMBB, LandingPad); 1978 1979 // Drop into normal successor. 1980 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1981 MVT::Other, getControlRoot(), 1982 DAG.getBasicBlock(Return))); 1983 } 1984 1985 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1986 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1987 } 1988 1989 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1990 assert(FuncInfo.MBB->isLandingPad() && 1991 "Call to landingpad not in landing pad!"); 1992 1993 MachineBasicBlock *MBB = FuncInfo.MBB; 1994 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1995 AddLandingPadInfo(LP, MMI, MBB); 1996 1997 // If there aren't registers to copy the values into (e.g., during SjLj 1998 // exceptions), then don't bother to create these DAG nodes. 1999 const TargetLowering *TLI = TM.getTargetLowering(); 2000 if (TLI->getExceptionPointerRegister() == 0 && 2001 TLI->getExceptionSelectorRegister() == 0) 2002 return; 2003 2004 SmallVector<EVT, 2> ValueVTs; 2005 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2006 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2007 2008 // Get the two live-in registers as SDValues. The physregs have already been 2009 // copied into virtual registers. 2010 SDValue Ops[2]; 2011 Ops[0] = DAG.getZExtOrTrunc( 2012 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2013 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2014 getCurSDLoc(), ValueVTs[0]); 2015 Ops[1] = DAG.getZExtOrTrunc( 2016 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2017 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2018 getCurSDLoc(), ValueVTs[1]); 2019 2020 // Merge into one. 2021 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2022 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 2023 &Ops[0], 2); 2024 setValue(&LP, Res); 2025 } 2026 2027 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2028 /// small case ranges). 2029 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2030 CaseRecVector& WorkList, 2031 const Value* SV, 2032 MachineBasicBlock *Default, 2033 MachineBasicBlock *SwitchBB) { 2034 // Size is the number of Cases represented by this range. 2035 size_t Size = CR.Range.second - CR.Range.first; 2036 if (Size > 3) 2037 return false; 2038 2039 // Get the MachineFunction which holds the current MBB. This is used when 2040 // inserting any additional MBBs necessary to represent the switch. 2041 MachineFunction *CurMF = FuncInfo.MF; 2042 2043 // Figure out which block is immediately after the current one. 2044 MachineBasicBlock *NextBlock = 0; 2045 MachineFunction::iterator BBI = CR.CaseBB; 2046 2047 if (++BBI != FuncInfo.MF->end()) 2048 NextBlock = BBI; 2049 2050 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2051 // If any two of the cases has the same destination, and if one value 2052 // is the same as the other, but has one bit unset that the other has set, 2053 // use bit manipulation to do two compares at once. For example: 2054 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2055 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2056 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2057 if (Size == 2 && CR.CaseBB == SwitchBB) { 2058 Case &Small = *CR.Range.first; 2059 Case &Big = *(CR.Range.second-1); 2060 2061 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2062 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2063 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2064 2065 // Check that there is only one bit different. 2066 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2067 (SmallValue | BigValue) == BigValue) { 2068 // Isolate the common bit. 2069 APInt CommonBit = BigValue & ~SmallValue; 2070 assert((SmallValue | CommonBit) == BigValue && 2071 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2072 2073 SDValue CondLHS = getValue(SV); 2074 EVT VT = CondLHS.getValueType(); 2075 SDLoc DL = getCurSDLoc(); 2076 2077 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2078 DAG.getConstant(CommonBit, VT)); 2079 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2080 Or, DAG.getConstant(BigValue, VT), 2081 ISD::SETEQ); 2082 2083 // Update successor info. 2084 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2085 addSuccessorWithWeight(SwitchBB, Small.BB, 2086 Small.ExtraWeight + Big.ExtraWeight); 2087 addSuccessorWithWeight(SwitchBB, Default, 2088 // The default destination is the first successor in IR. 2089 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2090 2091 // Insert the true branch. 2092 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2093 getControlRoot(), Cond, 2094 DAG.getBasicBlock(Small.BB)); 2095 2096 // Insert the false branch. 2097 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2098 DAG.getBasicBlock(Default)); 2099 2100 DAG.setRoot(BrCond); 2101 return true; 2102 } 2103 } 2104 } 2105 2106 // Order cases by weight so the most likely case will be checked first. 2107 uint32_t UnhandledWeights = 0; 2108 if (BPI) { 2109 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2110 uint32_t IWeight = I->ExtraWeight; 2111 UnhandledWeights += IWeight; 2112 for (CaseItr J = CR.Range.first; J < I; ++J) { 2113 uint32_t JWeight = J->ExtraWeight; 2114 if (IWeight > JWeight) 2115 std::swap(*I, *J); 2116 } 2117 } 2118 } 2119 // Rearrange the case blocks so that the last one falls through if possible. 2120 Case &BackCase = *(CR.Range.second-1); 2121 if (Size > 1 && 2122 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2123 // The last case block won't fall through into 'NextBlock' if we emit the 2124 // branches in this order. See if rearranging a case value would help. 2125 // We start at the bottom as it's the case with the least weight. 2126 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2127 if (I->BB == NextBlock) { 2128 std::swap(*I, BackCase); 2129 break; 2130 } 2131 } 2132 2133 // Create a CaseBlock record representing a conditional branch to 2134 // the Case's target mbb if the value being switched on SV is equal 2135 // to C. 2136 MachineBasicBlock *CurBlock = CR.CaseBB; 2137 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2138 MachineBasicBlock *FallThrough; 2139 if (I != E-1) { 2140 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2141 CurMF->insert(BBI, FallThrough); 2142 2143 // Put SV in a virtual register to make it available from the new blocks. 2144 ExportFromCurrentBlock(SV); 2145 } else { 2146 // If the last case doesn't match, go to the default block. 2147 FallThrough = Default; 2148 } 2149 2150 const Value *RHS, *LHS, *MHS; 2151 ISD::CondCode CC; 2152 if (I->High == I->Low) { 2153 // This is just small small case range :) containing exactly 1 case 2154 CC = ISD::SETEQ; 2155 LHS = SV; RHS = I->High; MHS = NULL; 2156 } else { 2157 CC = ISD::SETLE; 2158 LHS = I->Low; MHS = SV; RHS = I->High; 2159 } 2160 2161 // The false weight should be sum of all un-handled cases. 2162 UnhandledWeights -= I->ExtraWeight; 2163 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2164 /* me */ CurBlock, 2165 /* trueweight */ I->ExtraWeight, 2166 /* falseweight */ UnhandledWeights); 2167 2168 // If emitting the first comparison, just call visitSwitchCase to emit the 2169 // code into the current block. Otherwise, push the CaseBlock onto the 2170 // vector to be later processed by SDISel, and insert the node's MBB 2171 // before the next MBB. 2172 if (CurBlock == SwitchBB) 2173 visitSwitchCase(CB, SwitchBB); 2174 else 2175 SwitchCases.push_back(CB); 2176 2177 CurBlock = FallThrough; 2178 } 2179 2180 return true; 2181 } 2182 2183 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2184 return TLI.supportJumpTables() && 2185 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2186 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2187 } 2188 2189 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2190 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2191 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2192 return (LastExt - FirstExt + 1ULL); 2193 } 2194 2195 /// handleJTSwitchCase - Emit jumptable for current switch case range 2196 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2197 CaseRecVector &WorkList, 2198 const Value *SV, 2199 MachineBasicBlock *Default, 2200 MachineBasicBlock *SwitchBB) { 2201 Case& FrontCase = *CR.Range.first; 2202 Case& BackCase = *(CR.Range.second-1); 2203 2204 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2205 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2206 2207 APInt TSize(First.getBitWidth(), 0); 2208 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2209 TSize += I->size(); 2210 2211 const TargetLowering *TLI = TM.getTargetLowering(); 2212 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2213 return false; 2214 2215 APInt Range = ComputeRange(First, Last); 2216 // The density is TSize / Range. Require at least 40%. 2217 // It should not be possible for IntTSize to saturate for sane code, but make 2218 // sure we handle Range saturation correctly. 2219 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2220 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2221 if (IntTSize * 10 < IntRange * 4) 2222 return false; 2223 2224 DEBUG(dbgs() << "Lowering jump table\n" 2225 << "First entry: " << First << ". Last entry: " << Last << '\n' 2226 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2227 2228 // Get the MachineFunction which holds the current MBB. This is used when 2229 // inserting any additional MBBs necessary to represent the switch. 2230 MachineFunction *CurMF = FuncInfo.MF; 2231 2232 // Figure out which block is immediately after the current one. 2233 MachineFunction::iterator BBI = CR.CaseBB; 2234 ++BBI; 2235 2236 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2237 2238 // Create a new basic block to hold the code for loading the address 2239 // of the jump table, and jumping to it. Update successor information; 2240 // we will either branch to the default case for the switch, or the jump 2241 // table. 2242 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2243 CurMF->insert(BBI, JumpTableBB); 2244 2245 addSuccessorWithWeight(CR.CaseBB, Default); 2246 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2247 2248 // Build a vector of destination BBs, corresponding to each target 2249 // of the jump table. If the value of the jump table slot corresponds to 2250 // a case statement, push the case's BB onto the vector, otherwise, push 2251 // the default BB. 2252 std::vector<MachineBasicBlock*> DestBBs; 2253 APInt TEI = First; 2254 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2255 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2256 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2257 2258 if (Low.sle(TEI) && TEI.sle(High)) { 2259 DestBBs.push_back(I->BB); 2260 if (TEI==High) 2261 ++I; 2262 } else { 2263 DestBBs.push_back(Default); 2264 } 2265 } 2266 2267 // Calculate weight for each unique destination in CR. 2268 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2269 if (FuncInfo.BPI) 2270 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2271 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2272 DestWeights.find(I->BB); 2273 if (Itr != DestWeights.end()) 2274 Itr->second += I->ExtraWeight; 2275 else 2276 DestWeights[I->BB] = I->ExtraWeight; 2277 } 2278 2279 // Update successor info. Add one edge to each unique successor. 2280 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2281 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2282 E = DestBBs.end(); I != E; ++I) { 2283 if (!SuccsHandled[(*I)->getNumber()]) { 2284 SuccsHandled[(*I)->getNumber()] = true; 2285 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2286 DestWeights.find(*I); 2287 addSuccessorWithWeight(JumpTableBB, *I, 2288 Itr != DestWeights.end() ? Itr->second : 0); 2289 } 2290 } 2291 2292 // Create a jump table index for this jump table. 2293 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2294 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2295 ->createJumpTableIndex(DestBBs); 2296 2297 // Set the jump table information so that we can codegen it as a second 2298 // MachineBasicBlock 2299 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2300 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2301 if (CR.CaseBB == SwitchBB) 2302 visitJumpTableHeader(JT, JTH, SwitchBB); 2303 2304 JTCases.push_back(JumpTableBlock(JTH, JT)); 2305 return true; 2306 } 2307 2308 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2309 /// 2 subtrees. 2310 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2311 CaseRecVector& WorkList, 2312 const Value* SV, 2313 MachineBasicBlock* Default, 2314 MachineBasicBlock* SwitchBB) { 2315 // Get the MachineFunction which holds the current MBB. This is used when 2316 // inserting any additional MBBs necessary to represent the switch. 2317 MachineFunction *CurMF = FuncInfo.MF; 2318 2319 // Figure out which block is immediately after the current one. 2320 MachineFunction::iterator BBI = CR.CaseBB; 2321 ++BBI; 2322 2323 Case& FrontCase = *CR.Range.first; 2324 Case& BackCase = *(CR.Range.second-1); 2325 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2326 2327 // Size is the number of Cases represented by this range. 2328 unsigned Size = CR.Range.second - CR.Range.first; 2329 2330 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2331 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2332 double FMetric = 0; 2333 CaseItr Pivot = CR.Range.first + Size/2; 2334 2335 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2336 // (heuristically) allow us to emit JumpTable's later. 2337 APInt TSize(First.getBitWidth(), 0); 2338 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2339 I!=E; ++I) 2340 TSize += I->size(); 2341 2342 APInt LSize = FrontCase.size(); 2343 APInt RSize = TSize-LSize; 2344 DEBUG(dbgs() << "Selecting best pivot: \n" 2345 << "First: " << First << ", Last: " << Last <<'\n' 2346 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2347 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2348 J!=E; ++I, ++J) { 2349 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2350 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2351 APInt Range = ComputeRange(LEnd, RBegin); 2352 assert((Range - 2ULL).isNonNegative() && 2353 "Invalid case distance"); 2354 // Use volatile double here to avoid excess precision issues on some hosts, 2355 // e.g. that use 80-bit X87 registers. 2356 volatile double LDensity = 2357 (double)LSize.roundToDouble() / 2358 (LEnd - First + 1ULL).roundToDouble(); 2359 volatile double RDensity = 2360 (double)RSize.roundToDouble() / 2361 (Last - RBegin + 1ULL).roundToDouble(); 2362 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2363 // Should always split in some non-trivial place 2364 DEBUG(dbgs() <<"=>Step\n" 2365 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2366 << "LDensity: " << LDensity 2367 << ", RDensity: " << RDensity << '\n' 2368 << "Metric: " << Metric << '\n'); 2369 if (FMetric < Metric) { 2370 Pivot = J; 2371 FMetric = Metric; 2372 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2373 } 2374 2375 LSize += J->size(); 2376 RSize -= J->size(); 2377 } 2378 2379 const TargetLowering *TLI = TM.getTargetLowering(); 2380 if (areJTsAllowed(*TLI)) { 2381 // If our case is dense we *really* should handle it earlier! 2382 assert((FMetric > 0) && "Should handle dense range earlier!"); 2383 } else { 2384 Pivot = CR.Range.first + Size/2; 2385 } 2386 2387 CaseRange LHSR(CR.Range.first, Pivot); 2388 CaseRange RHSR(Pivot, CR.Range.second); 2389 const Constant *C = Pivot->Low; 2390 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2391 2392 // We know that we branch to the LHS if the Value being switched on is 2393 // less than the Pivot value, C. We use this to optimize our binary 2394 // tree a bit, by recognizing that if SV is greater than or equal to the 2395 // LHS's Case Value, and that Case Value is exactly one less than the 2396 // Pivot's Value, then we can branch directly to the LHS's Target, 2397 // rather than creating a leaf node for it. 2398 if ((LHSR.second - LHSR.first) == 1 && 2399 LHSR.first->High == CR.GE && 2400 cast<ConstantInt>(C)->getValue() == 2401 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2402 TrueBB = LHSR.first->BB; 2403 } else { 2404 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2405 CurMF->insert(BBI, TrueBB); 2406 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2407 2408 // Put SV in a virtual register to make it available from the new blocks. 2409 ExportFromCurrentBlock(SV); 2410 } 2411 2412 // Similar to the optimization above, if the Value being switched on is 2413 // known to be less than the Constant CR.LT, and the current Case Value 2414 // is CR.LT - 1, then we can branch directly to the target block for 2415 // the current Case Value, rather than emitting a RHS leaf node for it. 2416 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2417 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2418 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2419 FalseBB = RHSR.first->BB; 2420 } else { 2421 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2422 CurMF->insert(BBI, FalseBB); 2423 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2424 2425 // Put SV in a virtual register to make it available from the new blocks. 2426 ExportFromCurrentBlock(SV); 2427 } 2428 2429 // Create a CaseBlock record representing a conditional branch to 2430 // the LHS node if the value being switched on SV is less than C. 2431 // Otherwise, branch to LHS. 2432 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2433 2434 if (CR.CaseBB == SwitchBB) 2435 visitSwitchCase(CB, SwitchBB); 2436 else 2437 SwitchCases.push_back(CB); 2438 2439 return true; 2440 } 2441 2442 /// handleBitTestsSwitchCase - if current case range has few destination and 2443 /// range span less, than machine word bitwidth, encode case range into series 2444 /// of masks and emit bit tests with these masks. 2445 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2446 CaseRecVector& WorkList, 2447 const Value* SV, 2448 MachineBasicBlock* Default, 2449 MachineBasicBlock* SwitchBB) { 2450 const TargetLowering *TLI = TM.getTargetLowering(); 2451 EVT PTy = TLI->getPointerTy(); 2452 unsigned IntPtrBits = PTy.getSizeInBits(); 2453 2454 Case& FrontCase = *CR.Range.first; 2455 Case& BackCase = *(CR.Range.second-1); 2456 2457 // Get the MachineFunction which holds the current MBB. This is used when 2458 // inserting any additional MBBs necessary to represent the switch. 2459 MachineFunction *CurMF = FuncInfo.MF; 2460 2461 // If target does not have legal shift left, do not emit bit tests at all. 2462 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2463 return false; 2464 2465 size_t numCmps = 0; 2466 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2467 I!=E; ++I) { 2468 // Single case counts one, case range - two. 2469 numCmps += (I->Low == I->High ? 1 : 2); 2470 } 2471 2472 // Count unique destinations 2473 SmallSet<MachineBasicBlock*, 4> Dests; 2474 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2475 Dests.insert(I->BB); 2476 if (Dests.size() > 3) 2477 // Don't bother the code below, if there are too much unique destinations 2478 return false; 2479 } 2480 DEBUG(dbgs() << "Total number of unique destinations: " 2481 << Dests.size() << '\n' 2482 << "Total number of comparisons: " << numCmps << '\n'); 2483 2484 // Compute span of values. 2485 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2486 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2487 APInt cmpRange = maxValue - minValue; 2488 2489 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2490 << "Low bound: " << minValue << '\n' 2491 << "High bound: " << maxValue << '\n'); 2492 2493 if (cmpRange.uge(IntPtrBits) || 2494 (!(Dests.size() == 1 && numCmps >= 3) && 2495 !(Dests.size() == 2 && numCmps >= 5) && 2496 !(Dests.size() >= 3 && numCmps >= 6))) 2497 return false; 2498 2499 DEBUG(dbgs() << "Emitting bit tests\n"); 2500 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2501 2502 // Optimize the case where all the case values fit in a 2503 // word without having to subtract minValue. In this case, 2504 // we can optimize away the subtraction. 2505 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2506 cmpRange = maxValue; 2507 } else { 2508 lowBound = minValue; 2509 } 2510 2511 CaseBitsVector CasesBits; 2512 unsigned i, count = 0; 2513 2514 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2515 MachineBasicBlock* Dest = I->BB; 2516 for (i = 0; i < count; ++i) 2517 if (Dest == CasesBits[i].BB) 2518 break; 2519 2520 if (i == count) { 2521 assert((count < 3) && "Too much destinations to test!"); 2522 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2523 count++; 2524 } 2525 2526 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2527 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2528 2529 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2530 uint64_t hi = (highValue - lowBound).getZExtValue(); 2531 CasesBits[i].ExtraWeight += I->ExtraWeight; 2532 2533 for (uint64_t j = lo; j <= hi; j++) { 2534 CasesBits[i].Mask |= 1ULL << j; 2535 CasesBits[i].Bits++; 2536 } 2537 2538 } 2539 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2540 2541 BitTestInfo BTC; 2542 2543 // Figure out which block is immediately after the current one. 2544 MachineFunction::iterator BBI = CR.CaseBB; 2545 ++BBI; 2546 2547 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2548 2549 DEBUG(dbgs() << "Cases:\n"); 2550 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2551 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2552 << ", Bits: " << CasesBits[i].Bits 2553 << ", BB: " << CasesBits[i].BB << '\n'); 2554 2555 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2556 CurMF->insert(BBI, CaseBB); 2557 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2558 CaseBB, 2559 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2560 2561 // Put SV in a virtual register to make it available from the new blocks. 2562 ExportFromCurrentBlock(SV); 2563 } 2564 2565 BitTestBlock BTB(lowBound, cmpRange, SV, 2566 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2567 CR.CaseBB, Default, BTC); 2568 2569 if (CR.CaseBB == SwitchBB) 2570 visitBitTestHeader(BTB, SwitchBB); 2571 2572 BitTestCases.push_back(BTB); 2573 2574 return true; 2575 } 2576 2577 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2578 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2579 const SwitchInst& SI) { 2580 size_t numCmps = 0; 2581 2582 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2583 // Start with "simple" cases 2584 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2585 i != e; ++i) { 2586 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2587 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2588 2589 uint32_t ExtraWeight = 2590 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2591 2592 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2593 SMBB, ExtraWeight)); 2594 } 2595 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2596 2597 // Merge case into clusters 2598 if (Cases.size() >= 2) 2599 // Must recompute end() each iteration because it may be 2600 // invalidated by erase if we hold on to it 2601 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2602 J != Cases.end(); ) { 2603 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2604 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2605 MachineBasicBlock* nextBB = J->BB; 2606 MachineBasicBlock* currentBB = I->BB; 2607 2608 // If the two neighboring cases go to the same destination, merge them 2609 // into a single case. 2610 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2611 I->High = J->High; 2612 I->ExtraWeight += J->ExtraWeight; 2613 J = Cases.erase(J); 2614 } else { 2615 I = J++; 2616 } 2617 } 2618 2619 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2620 if (I->Low != I->High) 2621 // A range counts double, since it requires two compares. 2622 ++numCmps; 2623 } 2624 2625 return numCmps; 2626 } 2627 2628 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2629 MachineBasicBlock *Last) { 2630 // Update JTCases. 2631 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2632 if (JTCases[i].first.HeaderBB == First) 2633 JTCases[i].first.HeaderBB = Last; 2634 2635 // Update BitTestCases. 2636 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2637 if (BitTestCases[i].Parent == First) 2638 BitTestCases[i].Parent = Last; 2639 } 2640 2641 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2642 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2643 2644 // Figure out which block is immediately after the current one. 2645 MachineBasicBlock *NextBlock = 0; 2646 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2647 2648 // If there is only the default destination, branch to it if it is not the 2649 // next basic block. Otherwise, just fall through. 2650 if (!SI.getNumCases()) { 2651 // Update machine-CFG edges. 2652 2653 // If this is not a fall-through branch, emit the branch. 2654 SwitchMBB->addSuccessor(Default); 2655 if (Default != NextBlock) 2656 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2657 MVT::Other, getControlRoot(), 2658 DAG.getBasicBlock(Default))); 2659 2660 return; 2661 } 2662 2663 // If there are any non-default case statements, create a vector of Cases 2664 // representing each one, and sort the vector so that we can efficiently 2665 // create a binary search tree from them. 2666 CaseVector Cases; 2667 size_t numCmps = Clusterify(Cases, SI); 2668 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2669 << ". Total compares: " << numCmps << '\n'); 2670 (void)numCmps; 2671 2672 // Get the Value to be switched on and default basic blocks, which will be 2673 // inserted into CaseBlock records, representing basic blocks in the binary 2674 // search tree. 2675 const Value *SV = SI.getCondition(); 2676 2677 // Push the initial CaseRec onto the worklist 2678 CaseRecVector WorkList; 2679 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2680 CaseRange(Cases.begin(),Cases.end()))); 2681 2682 while (!WorkList.empty()) { 2683 // Grab a record representing a case range to process off the worklist 2684 CaseRec CR = WorkList.back(); 2685 WorkList.pop_back(); 2686 2687 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2688 continue; 2689 2690 // If the range has few cases (two or less) emit a series of specific 2691 // tests. 2692 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2693 continue; 2694 2695 // If the switch has more than N blocks, and is at least 40% dense, and the 2696 // target supports indirect branches, then emit a jump table rather than 2697 // lowering the switch to a binary tree of conditional branches. 2698 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2699 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2700 continue; 2701 2702 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2703 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2704 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2705 } 2706 } 2707 2708 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2709 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2710 2711 // Update machine-CFG edges with unique successors. 2712 SmallSet<BasicBlock*, 32> Done; 2713 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2714 BasicBlock *BB = I.getSuccessor(i); 2715 bool Inserted = Done.insert(BB); 2716 if (!Inserted) 2717 continue; 2718 2719 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2720 addSuccessorWithWeight(IndirectBrMBB, Succ); 2721 } 2722 2723 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2724 MVT::Other, getControlRoot(), 2725 getValue(I.getAddress()))); 2726 } 2727 2728 void SelectionDAGBuilder::visitFSub(const User &I) { 2729 // -0.0 - X --> fneg 2730 Type *Ty = I.getType(); 2731 if (isa<Constant>(I.getOperand(0)) && 2732 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2733 SDValue Op2 = getValue(I.getOperand(1)); 2734 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2735 Op2.getValueType(), Op2)); 2736 return; 2737 } 2738 2739 visitBinary(I, ISD::FSUB); 2740 } 2741 2742 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2743 SDValue Op1 = getValue(I.getOperand(0)); 2744 SDValue Op2 = getValue(I.getOperand(1)); 2745 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(), 2746 Op1.getValueType(), Op1, Op2)); 2747 } 2748 2749 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2750 SDValue Op1 = getValue(I.getOperand(0)); 2751 SDValue Op2 = getValue(I.getOperand(1)); 2752 2753 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2754 2755 // Coerce the shift amount to the right type if we can. 2756 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2757 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2758 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2759 SDLoc DL = getCurSDLoc(); 2760 2761 // If the operand is smaller than the shift count type, promote it. 2762 if (ShiftSize > Op2Size) 2763 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2764 2765 // If the operand is larger than the shift count type but the shift 2766 // count type has enough bits to represent any shift value, truncate 2767 // it now. This is a common case and it exposes the truncate to 2768 // optimization early. 2769 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2770 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2771 // Otherwise we'll need to temporarily settle for some other convenient 2772 // type. Type legalization will make adjustments once the shiftee is split. 2773 else 2774 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2775 } 2776 2777 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), 2778 Op1.getValueType(), Op1, Op2)); 2779 } 2780 2781 void SelectionDAGBuilder::visitSDiv(const User &I) { 2782 SDValue Op1 = getValue(I.getOperand(0)); 2783 SDValue Op2 = getValue(I.getOperand(1)); 2784 2785 // Turn exact SDivs into multiplications. 2786 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2787 // exact bit. 2788 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2789 !isa<ConstantSDNode>(Op1) && 2790 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2791 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2792 getCurSDLoc(), DAG)); 2793 else 2794 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2795 Op1, Op2)); 2796 } 2797 2798 void SelectionDAGBuilder::visitICmp(const User &I) { 2799 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2800 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2801 predicate = IC->getPredicate(); 2802 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2803 predicate = ICmpInst::Predicate(IC->getPredicate()); 2804 SDValue Op1 = getValue(I.getOperand(0)); 2805 SDValue Op2 = getValue(I.getOperand(1)); 2806 ISD::CondCode Opcode = getICmpCondCode(predicate); 2807 2808 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2809 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2810 } 2811 2812 void SelectionDAGBuilder::visitFCmp(const User &I) { 2813 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2814 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2815 predicate = FC->getPredicate(); 2816 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2817 predicate = FCmpInst::Predicate(FC->getPredicate()); 2818 SDValue Op1 = getValue(I.getOperand(0)); 2819 SDValue Op2 = getValue(I.getOperand(1)); 2820 ISD::CondCode Condition = getFCmpCondCode(predicate); 2821 if (TM.Options.NoNaNsFPMath) 2822 Condition = getFCmpCodeWithoutNaN(Condition); 2823 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2824 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2825 } 2826 2827 void SelectionDAGBuilder::visitSelect(const User &I) { 2828 SmallVector<EVT, 4> ValueVTs; 2829 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2830 unsigned NumValues = ValueVTs.size(); 2831 if (NumValues == 0) return; 2832 2833 SmallVector<SDValue, 4> Values(NumValues); 2834 SDValue Cond = getValue(I.getOperand(0)); 2835 SDValue TrueVal = getValue(I.getOperand(1)); 2836 SDValue FalseVal = getValue(I.getOperand(2)); 2837 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2838 ISD::VSELECT : ISD::SELECT; 2839 2840 for (unsigned i = 0; i != NumValues; ++i) 2841 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2842 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2843 Cond, 2844 SDValue(TrueVal.getNode(), 2845 TrueVal.getResNo() + i), 2846 SDValue(FalseVal.getNode(), 2847 FalseVal.getResNo() + i)); 2848 2849 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2850 DAG.getVTList(&ValueVTs[0], NumValues), 2851 &Values[0], NumValues)); 2852 } 2853 2854 void SelectionDAGBuilder::visitTrunc(const User &I) { 2855 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2856 SDValue N = getValue(I.getOperand(0)); 2857 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2858 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2859 } 2860 2861 void SelectionDAGBuilder::visitZExt(const User &I) { 2862 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2863 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2864 SDValue N = getValue(I.getOperand(0)); 2865 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2866 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2867 } 2868 2869 void SelectionDAGBuilder::visitSExt(const User &I) { 2870 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2871 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2872 SDValue N = getValue(I.getOperand(0)); 2873 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2874 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2875 } 2876 2877 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2878 // FPTrunc is never a no-op cast, no need to check 2879 SDValue N = getValue(I.getOperand(0)); 2880 const TargetLowering *TLI = TM.getTargetLowering(); 2881 EVT DestVT = TLI->getValueType(I.getType()); 2882 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2883 DestVT, N, 2884 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2885 } 2886 2887 void SelectionDAGBuilder::visitFPExt(const User &I) { 2888 // FPExt is never a no-op cast, no need to check 2889 SDValue N = getValue(I.getOperand(0)); 2890 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2891 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2892 } 2893 2894 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2895 // FPToUI is never a no-op cast, no need to check 2896 SDValue N = getValue(I.getOperand(0)); 2897 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2898 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2899 } 2900 2901 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2902 // FPToSI is never a no-op cast, no need to check 2903 SDValue N = getValue(I.getOperand(0)); 2904 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2905 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2906 } 2907 2908 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2909 // UIToFP is never a no-op cast, no need to check 2910 SDValue N = getValue(I.getOperand(0)); 2911 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2912 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2913 } 2914 2915 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2916 // SIToFP is never a no-op cast, no need to check 2917 SDValue N = getValue(I.getOperand(0)); 2918 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2919 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2920 } 2921 2922 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2923 // What to do depends on the size of the integer and the size of the pointer. 2924 // We can either truncate, zero extend, or no-op, accordingly. 2925 SDValue N = getValue(I.getOperand(0)); 2926 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2927 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2928 } 2929 2930 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2931 // What to do depends on the size of the integer and the size of the pointer. 2932 // We can either truncate, zero extend, or no-op, accordingly. 2933 SDValue N = getValue(I.getOperand(0)); 2934 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2935 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2936 } 2937 2938 void SelectionDAGBuilder::visitBitCast(const User &I) { 2939 SDValue N = getValue(I.getOperand(0)); 2940 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2941 2942 // BitCast assures us that source and destination are the same size so this is 2943 // either a BITCAST or a no-op. 2944 if (DestVT != N.getValueType()) 2945 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2946 DestVT, N)); // convert types. 2947 else 2948 setValue(&I, N); // noop cast. 2949 } 2950 2951 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2953 const Value *SV = I.getOperand(0); 2954 SDValue N = getValue(SV); 2955 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2956 2957 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2958 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2959 2960 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2961 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2962 2963 setValue(&I, N); 2964 } 2965 2966 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2968 SDValue InVec = getValue(I.getOperand(0)); 2969 SDValue InVal = getValue(I.getOperand(1)); 2970 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2971 getCurSDLoc(), TLI.getVectorIdxTy()); 2972 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2973 TM.getTargetLowering()->getValueType(I.getType()), 2974 InVec, InVal, InIdx)); 2975 } 2976 2977 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2979 SDValue InVec = getValue(I.getOperand(0)); 2980 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2981 getCurSDLoc(), TLI.getVectorIdxTy()); 2982 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2983 TM.getTargetLowering()->getValueType(I.getType()), 2984 InVec, InIdx)); 2985 } 2986 2987 // Utility for visitShuffleVector - Return true if every element in Mask, 2988 // beginning from position Pos and ending in Pos+Size, falls within the 2989 // specified sequential range [L, L+Pos). or is undef. 2990 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2991 unsigned Pos, unsigned Size, int Low) { 2992 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2993 if (Mask[i] >= 0 && Mask[i] != Low) 2994 return false; 2995 return true; 2996 } 2997 2998 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2999 SDValue Src1 = getValue(I.getOperand(0)); 3000 SDValue Src2 = getValue(I.getOperand(1)); 3001 3002 SmallVector<int, 8> Mask; 3003 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3004 unsigned MaskNumElts = Mask.size(); 3005 3006 const TargetLowering *TLI = TM.getTargetLowering(); 3007 EVT VT = TLI->getValueType(I.getType()); 3008 EVT SrcVT = Src1.getValueType(); 3009 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3010 3011 if (SrcNumElts == MaskNumElts) { 3012 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3013 &Mask[0])); 3014 return; 3015 } 3016 3017 // Normalize the shuffle vector since mask and vector length don't match. 3018 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3019 // Mask is longer than the source vectors and is a multiple of the source 3020 // vectors. We can use concatenate vector to make the mask and vectors 3021 // lengths match. 3022 if (SrcNumElts*2 == MaskNumElts) { 3023 // First check for Src1 in low and Src2 in high 3024 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3025 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3026 // The shuffle is concatenating two vectors together. 3027 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3028 VT, Src1, Src2)); 3029 return; 3030 } 3031 // Then check for Src2 in low and Src1 in high 3032 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3033 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3034 // The shuffle is concatenating two vectors together. 3035 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3036 VT, Src2, Src1)); 3037 return; 3038 } 3039 } 3040 3041 // Pad both vectors with undefs to make them the same length as the mask. 3042 unsigned NumConcat = MaskNumElts / SrcNumElts; 3043 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3044 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3045 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3046 3047 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3048 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3049 MOps1[0] = Src1; 3050 MOps2[0] = Src2; 3051 3052 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3053 getCurSDLoc(), VT, 3054 &MOps1[0], NumConcat); 3055 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3056 getCurSDLoc(), VT, 3057 &MOps2[0], NumConcat); 3058 3059 // Readjust mask for new input vector length. 3060 SmallVector<int, 8> MappedOps; 3061 for (unsigned i = 0; i != MaskNumElts; ++i) { 3062 int Idx = Mask[i]; 3063 if (Idx >= (int)SrcNumElts) 3064 Idx -= SrcNumElts - MaskNumElts; 3065 MappedOps.push_back(Idx); 3066 } 3067 3068 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3069 &MappedOps[0])); 3070 return; 3071 } 3072 3073 if (SrcNumElts > MaskNumElts) { 3074 // Analyze the access pattern of the vector to see if we can extract 3075 // two subvectors and do the shuffle. The analysis is done by calculating 3076 // the range of elements the mask access on both vectors. 3077 int MinRange[2] = { static_cast<int>(SrcNumElts), 3078 static_cast<int>(SrcNumElts)}; 3079 int MaxRange[2] = {-1, -1}; 3080 3081 for (unsigned i = 0; i != MaskNumElts; ++i) { 3082 int Idx = Mask[i]; 3083 unsigned Input = 0; 3084 if (Idx < 0) 3085 continue; 3086 3087 if (Idx >= (int)SrcNumElts) { 3088 Input = 1; 3089 Idx -= SrcNumElts; 3090 } 3091 if (Idx > MaxRange[Input]) 3092 MaxRange[Input] = Idx; 3093 if (Idx < MinRange[Input]) 3094 MinRange[Input] = Idx; 3095 } 3096 3097 // Check if the access is smaller than the vector size and can we find 3098 // a reasonable extract index. 3099 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3100 // Extract. 3101 int StartIdx[2]; // StartIdx to extract from 3102 for (unsigned Input = 0; Input < 2; ++Input) { 3103 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3104 RangeUse[Input] = 0; // Unused 3105 StartIdx[Input] = 0; 3106 continue; 3107 } 3108 3109 // Find a good start index that is a multiple of the mask length. Then 3110 // see if the rest of the elements are in range. 3111 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3112 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3113 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3114 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3115 } 3116 3117 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3118 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3119 return; 3120 } 3121 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3122 // Extract appropriate subvector and generate a vector shuffle 3123 for (unsigned Input = 0; Input < 2; ++Input) { 3124 SDValue &Src = Input == 0 ? Src1 : Src2; 3125 if (RangeUse[Input] == 0) 3126 Src = DAG.getUNDEF(VT); 3127 else 3128 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3129 Src, DAG.getConstant(StartIdx[Input], 3130 TLI->getVectorIdxTy())); 3131 } 3132 3133 // Calculate new mask. 3134 SmallVector<int, 8> MappedOps; 3135 for (unsigned i = 0; i != MaskNumElts; ++i) { 3136 int Idx = Mask[i]; 3137 if (Idx >= 0) { 3138 if (Idx < (int)SrcNumElts) 3139 Idx -= StartIdx[0]; 3140 else 3141 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3142 } 3143 MappedOps.push_back(Idx); 3144 } 3145 3146 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3147 &MappedOps[0])); 3148 return; 3149 } 3150 } 3151 3152 // We can't use either concat vectors or extract subvectors so fall back to 3153 // replacing the shuffle with extract and build vector. 3154 // to insert and build vector. 3155 EVT EltVT = VT.getVectorElementType(); 3156 EVT IdxVT = TLI->getVectorIdxTy(); 3157 SmallVector<SDValue,8> Ops; 3158 for (unsigned i = 0; i != MaskNumElts; ++i) { 3159 int Idx = Mask[i]; 3160 SDValue Res; 3161 3162 if (Idx < 0) { 3163 Res = DAG.getUNDEF(EltVT); 3164 } else { 3165 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3166 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3167 3168 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3169 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3170 } 3171 3172 Ops.push_back(Res); 3173 } 3174 3175 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 3176 VT, &Ops[0], Ops.size())); 3177 } 3178 3179 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3180 const Value *Op0 = I.getOperand(0); 3181 const Value *Op1 = I.getOperand(1); 3182 Type *AggTy = I.getType(); 3183 Type *ValTy = Op1->getType(); 3184 bool IntoUndef = isa<UndefValue>(Op0); 3185 bool FromUndef = isa<UndefValue>(Op1); 3186 3187 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3188 3189 const TargetLowering *TLI = TM.getTargetLowering(); 3190 SmallVector<EVT, 4> AggValueVTs; 3191 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3192 SmallVector<EVT, 4> ValValueVTs; 3193 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3194 3195 unsigned NumAggValues = AggValueVTs.size(); 3196 unsigned NumValValues = ValValueVTs.size(); 3197 SmallVector<SDValue, 4> Values(NumAggValues); 3198 3199 SDValue Agg = getValue(Op0); 3200 unsigned i = 0; 3201 // Copy the beginning value(s) from the original aggregate. 3202 for (; i != LinearIndex; ++i) 3203 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3204 SDValue(Agg.getNode(), Agg.getResNo() + i); 3205 // Copy values from the inserted value(s). 3206 if (NumValValues) { 3207 SDValue Val = getValue(Op1); 3208 for (; i != LinearIndex + NumValValues; ++i) 3209 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3210 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3211 } 3212 // Copy remaining value(s) from the original aggregate. 3213 for (; i != NumAggValues; ++i) 3214 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3215 SDValue(Agg.getNode(), Agg.getResNo() + i); 3216 3217 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3218 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3219 &Values[0], NumAggValues)); 3220 } 3221 3222 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3223 const Value *Op0 = I.getOperand(0); 3224 Type *AggTy = Op0->getType(); 3225 Type *ValTy = I.getType(); 3226 bool OutOfUndef = isa<UndefValue>(Op0); 3227 3228 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3229 3230 const TargetLowering *TLI = TM.getTargetLowering(); 3231 SmallVector<EVT, 4> ValValueVTs; 3232 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3233 3234 unsigned NumValValues = ValValueVTs.size(); 3235 3236 // Ignore a extractvalue that produces an empty object 3237 if (!NumValValues) { 3238 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3239 return; 3240 } 3241 3242 SmallVector<SDValue, 4> Values(NumValValues); 3243 3244 SDValue Agg = getValue(Op0); 3245 // Copy out the selected value(s). 3246 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3247 Values[i - LinearIndex] = 3248 OutOfUndef ? 3249 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3250 SDValue(Agg.getNode(), Agg.getResNo() + i); 3251 3252 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3253 DAG.getVTList(&ValValueVTs[0], NumValValues), 3254 &Values[0], NumValValues)); 3255 } 3256 3257 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3258 Value *Op0 = I.getOperand(0); 3259 // Note that the pointer operand may be a vector of pointers. Take the scalar 3260 // element which holds a pointer. 3261 Type *Ty = Op0->getType()->getScalarType(); 3262 unsigned AS = Ty->getPointerAddressSpace(); 3263 SDValue N = getValue(Op0); 3264 3265 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3266 OI != E; ++OI) { 3267 const Value *Idx = *OI; 3268 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3269 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3270 if (Field) { 3271 // N = N + Offset 3272 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3273 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3274 DAG.getConstant(Offset, N.getValueType())); 3275 } 3276 3277 Ty = StTy->getElementType(Field); 3278 } else { 3279 Ty = cast<SequentialType>(Ty)->getElementType(); 3280 3281 // If this is a constant subscript, handle it quickly. 3282 const TargetLowering *TLI = TM.getTargetLowering(); 3283 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3284 if (CI->isZero()) continue; 3285 uint64_t Offs = 3286 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3287 SDValue OffsVal; 3288 EVT PTy = TLI->getPointerTy(AS); 3289 unsigned PtrBits = PTy.getSizeInBits(); 3290 if (PtrBits < 64) 3291 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3292 DAG.getConstant(Offs, MVT::i64)); 3293 else 3294 OffsVal = DAG.getConstant(Offs, PTy); 3295 3296 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3297 OffsVal); 3298 continue; 3299 } 3300 3301 // N = N + Idx * ElementSize; 3302 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3303 TD->getTypeAllocSize(Ty)); 3304 SDValue IdxN = getValue(Idx); 3305 3306 // If the index is smaller or larger than intptr_t, truncate or extend 3307 // it. 3308 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3309 3310 // If this is a multiply by a power of two, turn it into a shl 3311 // immediately. This is a very common case. 3312 if (ElementSize != 1) { 3313 if (ElementSize.isPowerOf2()) { 3314 unsigned Amt = ElementSize.logBase2(); 3315 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3316 N.getValueType(), IdxN, 3317 DAG.getConstant(Amt, IdxN.getValueType())); 3318 } else { 3319 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3320 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3321 N.getValueType(), IdxN, Scale); 3322 } 3323 } 3324 3325 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3326 N.getValueType(), N, IdxN); 3327 } 3328 } 3329 3330 setValue(&I, N); 3331 } 3332 3333 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3334 // If this is a fixed sized alloca in the entry block of the function, 3335 // allocate it statically on the stack. 3336 if (FuncInfo.StaticAllocaMap.count(&I)) 3337 return; // getValue will auto-populate this. 3338 3339 Type *Ty = I.getAllocatedType(); 3340 const TargetLowering *TLI = TM.getTargetLowering(); 3341 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3342 unsigned Align = 3343 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3344 I.getAlignment()); 3345 3346 SDValue AllocSize = getValue(I.getArraySize()); 3347 3348 EVT IntPtr = TLI->getPointerTy(); 3349 if (AllocSize.getValueType() != IntPtr) 3350 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3351 3352 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3353 AllocSize, 3354 DAG.getConstant(TySize, IntPtr)); 3355 3356 // Handle alignment. If the requested alignment is less than or equal to 3357 // the stack alignment, ignore it. If the size is greater than or equal to 3358 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3359 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3360 if (Align <= StackAlign) 3361 Align = 0; 3362 3363 // Round the size of the allocation up to the stack alignment size 3364 // by add SA-1 to the size. 3365 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3366 AllocSize.getValueType(), AllocSize, 3367 DAG.getIntPtrConstant(StackAlign-1)); 3368 3369 // Mask out the low bits for alignment purposes. 3370 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3371 AllocSize.getValueType(), AllocSize, 3372 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3373 3374 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3375 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3376 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), 3377 VTs, Ops, 3); 3378 setValue(&I, DSA); 3379 DAG.setRoot(DSA.getValue(1)); 3380 3381 // Inform the Frame Information that we have just allocated a variable-sized 3382 // object. 3383 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3384 } 3385 3386 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3387 if (I.isAtomic()) 3388 return visitAtomicLoad(I); 3389 3390 const Value *SV = I.getOperand(0); 3391 SDValue Ptr = getValue(SV); 3392 3393 Type *Ty = I.getType(); 3394 3395 bool isVolatile = I.isVolatile(); 3396 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3397 bool isInvariant = I.getMetadata("invariant.load") != 0; 3398 unsigned Alignment = I.getAlignment(); 3399 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3400 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3401 3402 SmallVector<EVT, 4> ValueVTs; 3403 SmallVector<uint64_t, 4> Offsets; 3404 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3405 unsigned NumValues = ValueVTs.size(); 3406 if (NumValues == 0) 3407 return; 3408 3409 SDValue Root; 3410 bool ConstantMemory = false; 3411 if (I.isVolatile() || NumValues > MaxParallelChains) 3412 // Serialize volatile loads with other side effects. 3413 Root = getRoot(); 3414 else if (AA->pointsToConstantMemory( 3415 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3416 // Do not serialize (non-volatile) loads of constant memory with anything. 3417 Root = DAG.getEntryNode(); 3418 ConstantMemory = true; 3419 } else { 3420 // Do not serialize non-volatile loads against each other. 3421 Root = DAG.getRoot(); 3422 } 3423 3424 SmallVector<SDValue, 4> Values(NumValues); 3425 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3426 NumValues)); 3427 EVT PtrVT = Ptr.getValueType(); 3428 unsigned ChainI = 0; 3429 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3430 // Serializing loads here may result in excessive register pressure, and 3431 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3432 // could recover a bit by hoisting nodes upward in the chain by recognizing 3433 // they are side-effect free or do not alias. The optimizer should really 3434 // avoid this case by converting large object/array copies to llvm.memcpy 3435 // (MaxParallelChains should always remain as failsafe). 3436 if (ChainI == MaxParallelChains) { 3437 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3438 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3439 MVT::Other, &Chains[0], ChainI); 3440 Root = Chain; 3441 ChainI = 0; 3442 } 3443 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3444 PtrVT, Ptr, 3445 DAG.getConstant(Offsets[i], PtrVT)); 3446 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3447 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3448 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3449 Ranges); 3450 3451 Values[i] = L; 3452 Chains[ChainI] = L.getValue(1); 3453 } 3454 3455 if (!ConstantMemory) { 3456 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3457 MVT::Other, &Chains[0], ChainI); 3458 if (isVolatile) 3459 DAG.setRoot(Chain); 3460 else 3461 PendingLoads.push_back(Chain); 3462 } 3463 3464 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3465 DAG.getVTList(&ValueVTs[0], NumValues), 3466 &Values[0], NumValues)); 3467 } 3468 3469 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3470 if (I.isAtomic()) 3471 return visitAtomicStore(I); 3472 3473 const Value *SrcV = I.getOperand(0); 3474 const Value *PtrV = I.getOperand(1); 3475 3476 SmallVector<EVT, 4> ValueVTs; 3477 SmallVector<uint64_t, 4> Offsets; 3478 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3479 unsigned NumValues = ValueVTs.size(); 3480 if (NumValues == 0) 3481 return; 3482 3483 // Get the lowered operands. Note that we do this after 3484 // checking if NumResults is zero, because with zero results 3485 // the operands won't have values in the map. 3486 SDValue Src = getValue(SrcV); 3487 SDValue Ptr = getValue(PtrV); 3488 3489 SDValue Root = getRoot(); 3490 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3491 NumValues)); 3492 EVT PtrVT = Ptr.getValueType(); 3493 bool isVolatile = I.isVolatile(); 3494 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3495 unsigned Alignment = I.getAlignment(); 3496 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3497 3498 unsigned ChainI = 0; 3499 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3500 // See visitLoad comments. 3501 if (ChainI == MaxParallelChains) { 3502 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3503 MVT::Other, &Chains[0], ChainI); 3504 Root = Chain; 3505 ChainI = 0; 3506 } 3507 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3508 DAG.getConstant(Offsets[i], PtrVT)); 3509 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3510 SDValue(Src.getNode(), Src.getResNo() + i), 3511 Add, MachinePointerInfo(PtrV, Offsets[i]), 3512 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3513 Chains[ChainI] = St; 3514 } 3515 3516 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 3517 MVT::Other, &Chains[0], ChainI); 3518 DAG.setRoot(StoreNode); 3519 } 3520 3521 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3522 SynchronizationScope Scope, 3523 bool Before, SDLoc dl, 3524 SelectionDAG &DAG, 3525 const TargetLowering &TLI) { 3526 // Fence, if necessary 3527 if (Before) { 3528 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3529 Order = Release; 3530 else if (Order == Acquire || Order == Monotonic) 3531 return Chain; 3532 } else { 3533 if (Order == AcquireRelease) 3534 Order = Acquire; 3535 else if (Order == Release || Order == Monotonic) 3536 return Chain; 3537 } 3538 SDValue Ops[3]; 3539 Ops[0] = Chain; 3540 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3541 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3542 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3543 } 3544 3545 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3546 SDLoc dl = getCurSDLoc(); 3547 AtomicOrdering Order = I.getOrdering(); 3548 SynchronizationScope Scope = I.getSynchScope(); 3549 3550 SDValue InChain = getRoot(); 3551 3552 const TargetLowering *TLI = TM.getTargetLowering(); 3553 if (TLI->getInsertFencesForAtomic()) 3554 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3555 DAG, *TLI); 3556 3557 SDValue L = 3558 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3559 getValue(I.getCompareOperand()).getSimpleValueType(), 3560 InChain, 3561 getValue(I.getPointerOperand()), 3562 getValue(I.getCompareOperand()), 3563 getValue(I.getNewValOperand()), 3564 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3565 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3566 Scope); 3567 3568 SDValue OutChain = L.getValue(1); 3569 3570 if (TLI->getInsertFencesForAtomic()) 3571 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3572 DAG, *TLI); 3573 3574 setValue(&I, L); 3575 DAG.setRoot(OutChain); 3576 } 3577 3578 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3579 SDLoc dl = getCurSDLoc(); 3580 ISD::NodeType NT; 3581 switch (I.getOperation()) { 3582 default: llvm_unreachable("Unknown atomicrmw operation"); 3583 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3584 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3585 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3586 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3587 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3588 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3589 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3590 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3591 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3592 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3593 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3594 } 3595 AtomicOrdering Order = I.getOrdering(); 3596 SynchronizationScope Scope = I.getSynchScope(); 3597 3598 SDValue InChain = getRoot(); 3599 3600 const TargetLowering *TLI = TM.getTargetLowering(); 3601 if (TLI->getInsertFencesForAtomic()) 3602 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3603 DAG, *TLI); 3604 3605 SDValue L = 3606 DAG.getAtomic(NT, dl, 3607 getValue(I.getValOperand()).getSimpleValueType(), 3608 InChain, 3609 getValue(I.getPointerOperand()), 3610 getValue(I.getValOperand()), 3611 I.getPointerOperand(), 0 /* Alignment */, 3612 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3613 Scope); 3614 3615 SDValue OutChain = L.getValue(1); 3616 3617 if (TLI->getInsertFencesForAtomic()) 3618 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3619 DAG, *TLI); 3620 3621 setValue(&I, L); 3622 DAG.setRoot(OutChain); 3623 } 3624 3625 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3626 SDLoc dl = getCurSDLoc(); 3627 const TargetLowering *TLI = TM.getTargetLowering(); 3628 SDValue Ops[3]; 3629 Ops[0] = getRoot(); 3630 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3631 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3632 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3633 } 3634 3635 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3636 SDLoc dl = getCurSDLoc(); 3637 AtomicOrdering Order = I.getOrdering(); 3638 SynchronizationScope Scope = I.getSynchScope(); 3639 3640 SDValue InChain = getRoot(); 3641 3642 const TargetLowering *TLI = TM.getTargetLowering(); 3643 EVT VT = TLI->getValueType(I.getType()); 3644 3645 if (I.getAlignment() < VT.getSizeInBits() / 8) 3646 report_fatal_error("Cannot generate unaligned atomic load"); 3647 3648 SDValue L = 3649 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3650 getValue(I.getPointerOperand()), 3651 I.getPointerOperand(), I.getAlignment(), 3652 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3653 Scope); 3654 3655 SDValue OutChain = L.getValue(1); 3656 3657 if (TLI->getInsertFencesForAtomic()) 3658 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3659 DAG, *TLI); 3660 3661 setValue(&I, L); 3662 DAG.setRoot(OutChain); 3663 } 3664 3665 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3666 SDLoc dl = getCurSDLoc(); 3667 3668 AtomicOrdering Order = I.getOrdering(); 3669 SynchronizationScope Scope = I.getSynchScope(); 3670 3671 SDValue InChain = getRoot(); 3672 3673 const TargetLowering *TLI = TM.getTargetLowering(); 3674 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3675 3676 if (I.getAlignment() < VT.getSizeInBits() / 8) 3677 report_fatal_error("Cannot generate unaligned atomic store"); 3678 3679 if (TLI->getInsertFencesForAtomic()) 3680 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3681 DAG, *TLI); 3682 3683 SDValue OutChain = 3684 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3685 InChain, 3686 getValue(I.getPointerOperand()), 3687 getValue(I.getValueOperand()), 3688 I.getPointerOperand(), I.getAlignment(), 3689 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3690 Scope); 3691 3692 if (TLI->getInsertFencesForAtomic()) 3693 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3694 DAG, *TLI); 3695 3696 DAG.setRoot(OutChain); 3697 } 3698 3699 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3700 /// node. 3701 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3702 unsigned Intrinsic) { 3703 bool HasChain = !I.doesNotAccessMemory(); 3704 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3705 3706 // Build the operand list. 3707 SmallVector<SDValue, 8> Ops; 3708 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3709 if (OnlyLoad) { 3710 // We don't need to serialize loads against other loads. 3711 Ops.push_back(DAG.getRoot()); 3712 } else { 3713 Ops.push_back(getRoot()); 3714 } 3715 } 3716 3717 // Info is set by getTgtMemInstrinsic 3718 TargetLowering::IntrinsicInfo Info; 3719 const TargetLowering *TLI = TM.getTargetLowering(); 3720 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3721 3722 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3723 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3724 Info.opc == ISD::INTRINSIC_W_CHAIN) 3725 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3726 3727 // Add all operands of the call to the operand list. 3728 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3729 SDValue Op = getValue(I.getArgOperand(i)); 3730 Ops.push_back(Op); 3731 } 3732 3733 SmallVector<EVT, 4> ValueVTs; 3734 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3735 3736 if (HasChain) 3737 ValueVTs.push_back(MVT::Other); 3738 3739 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3740 3741 // Create the node. 3742 SDValue Result; 3743 if (IsTgtIntrinsic) { 3744 // This is target intrinsic that touches memory 3745 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3746 VTs, &Ops[0], Ops.size(), 3747 Info.memVT, 3748 MachinePointerInfo(Info.ptrVal, Info.offset), 3749 Info.align, Info.vol, 3750 Info.readMem, Info.writeMem); 3751 } else if (!HasChain) { 3752 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), 3753 VTs, &Ops[0], Ops.size()); 3754 } else if (!I.getType()->isVoidTy()) { 3755 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), 3756 VTs, &Ops[0], Ops.size()); 3757 } else { 3758 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), 3759 VTs, &Ops[0], Ops.size()); 3760 } 3761 3762 if (HasChain) { 3763 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3764 if (OnlyLoad) 3765 PendingLoads.push_back(Chain); 3766 else 3767 DAG.setRoot(Chain); 3768 } 3769 3770 if (!I.getType()->isVoidTy()) { 3771 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3772 EVT VT = TLI->getValueType(PTy); 3773 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3774 } 3775 3776 setValue(&I, Result); 3777 } 3778 } 3779 3780 /// GetSignificand - Get the significand and build it into a floating-point 3781 /// number with exponent of 1: 3782 /// 3783 /// Op = (Op & 0x007fffff) | 0x3f800000; 3784 /// 3785 /// where Op is the hexadecimal representation of floating point value. 3786 static SDValue 3787 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3788 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3789 DAG.getConstant(0x007fffff, MVT::i32)); 3790 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3791 DAG.getConstant(0x3f800000, MVT::i32)); 3792 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3793 } 3794 3795 /// GetExponent - Get the exponent: 3796 /// 3797 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3798 /// 3799 /// where Op is the hexadecimal representation of floating point value. 3800 static SDValue 3801 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3802 SDLoc dl) { 3803 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3804 DAG.getConstant(0x7f800000, MVT::i32)); 3805 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3806 DAG.getConstant(23, TLI.getPointerTy())); 3807 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3808 DAG.getConstant(127, MVT::i32)); 3809 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3810 } 3811 3812 /// getF32Constant - Get 32-bit floating point constant. 3813 static SDValue 3814 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3815 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3816 MVT::f32); 3817 } 3818 3819 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3820 /// limited-precision mode. 3821 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3822 const TargetLowering &TLI) { 3823 if (Op.getValueType() == MVT::f32 && 3824 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3825 3826 // Put the exponent in the right bit position for later addition to the 3827 // final result: 3828 // 3829 // #define LOG2OFe 1.4426950f 3830 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3831 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3832 getF32Constant(DAG, 0x3fb8aa3b)); 3833 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3834 3835 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3836 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3837 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3838 3839 // IntegerPartOfX <<= 23; 3840 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3841 DAG.getConstant(23, TLI.getPointerTy())); 3842 3843 SDValue TwoToFracPartOfX; 3844 if (LimitFloatPrecision <= 6) { 3845 // For floating-point precision of 6: 3846 // 3847 // TwoToFractionalPartOfX = 3848 // 0.997535578f + 3849 // (0.735607626f + 0.252464424f * x) * x; 3850 // 3851 // error 0.0144103317, which is 6 bits 3852 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3853 getF32Constant(DAG, 0x3e814304)); 3854 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3855 getF32Constant(DAG, 0x3f3c50c8)); 3856 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3857 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3858 getF32Constant(DAG, 0x3f7f5e7e)); 3859 } else if (LimitFloatPrecision <= 12) { 3860 // For floating-point precision of 12: 3861 // 3862 // TwoToFractionalPartOfX = 3863 // 0.999892986f + 3864 // (0.696457318f + 3865 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3866 // 3867 // 0.000107046256 error, which is 13 to 14 bits 3868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3869 getF32Constant(DAG, 0x3da235e3)); 3870 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3871 getF32Constant(DAG, 0x3e65b8f3)); 3872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3873 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3874 getF32Constant(DAG, 0x3f324b07)); 3875 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3876 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3877 getF32Constant(DAG, 0x3f7ff8fd)); 3878 } else { // LimitFloatPrecision <= 18 3879 // For floating-point precision of 18: 3880 // 3881 // TwoToFractionalPartOfX = 3882 // 0.999999982f + 3883 // (0.693148872f + 3884 // (0.240227044f + 3885 // (0.554906021e-1f + 3886 // (0.961591928e-2f + 3887 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3888 // 3889 // error 2.47208000*10^(-7), which is better than 18 bits 3890 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3891 getF32Constant(DAG, 0x3924b03e)); 3892 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3893 getF32Constant(DAG, 0x3ab24b87)); 3894 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3895 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3896 getF32Constant(DAG, 0x3c1d8c17)); 3897 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3898 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3899 getF32Constant(DAG, 0x3d634a1d)); 3900 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3901 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3902 getF32Constant(DAG, 0x3e75fe14)); 3903 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3904 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3905 getF32Constant(DAG, 0x3f317234)); 3906 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3907 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3908 getF32Constant(DAG, 0x3f800000)); 3909 } 3910 3911 // Add the exponent into the result in integer domain. 3912 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3913 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3914 DAG.getNode(ISD::ADD, dl, MVT::i32, 3915 t13, IntegerPartOfX)); 3916 } 3917 3918 // No special expansion. 3919 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3920 } 3921 3922 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3923 /// limited-precision mode. 3924 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3925 const TargetLowering &TLI) { 3926 if (Op.getValueType() == MVT::f32 && 3927 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3928 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3929 3930 // Scale the exponent by log(2) [0.69314718f]. 3931 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3932 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3933 getF32Constant(DAG, 0x3f317218)); 3934 3935 // Get the significand and build it into a floating-point number with 3936 // exponent of 1. 3937 SDValue X = GetSignificand(DAG, Op1, dl); 3938 3939 SDValue LogOfMantissa; 3940 if (LimitFloatPrecision <= 6) { 3941 // For floating-point precision of 6: 3942 // 3943 // LogofMantissa = 3944 // -1.1609546f + 3945 // (1.4034025f - 0.23903021f * x) * x; 3946 // 3947 // error 0.0034276066, which is better than 8 bits 3948 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3949 getF32Constant(DAG, 0xbe74c456)); 3950 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3951 getF32Constant(DAG, 0x3fb3a2b1)); 3952 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3953 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3954 getF32Constant(DAG, 0x3f949a29)); 3955 } else if (LimitFloatPrecision <= 12) { 3956 // For floating-point precision of 12: 3957 // 3958 // LogOfMantissa = 3959 // -1.7417939f + 3960 // (2.8212026f + 3961 // (-1.4699568f + 3962 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3963 // 3964 // error 0.000061011436, which is 14 bits 3965 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3966 getF32Constant(DAG, 0xbd67b6d6)); 3967 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3968 getF32Constant(DAG, 0x3ee4f4b8)); 3969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3970 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3971 getF32Constant(DAG, 0x3fbc278b)); 3972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3973 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3974 getF32Constant(DAG, 0x40348e95)); 3975 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3976 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3977 getF32Constant(DAG, 0x3fdef31a)); 3978 } else { // LimitFloatPrecision <= 18 3979 // For floating-point precision of 18: 3980 // 3981 // LogOfMantissa = 3982 // -2.1072184f + 3983 // (4.2372794f + 3984 // (-3.7029485f + 3985 // (2.2781945f + 3986 // (-0.87823314f + 3987 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3988 // 3989 // error 0.0000023660568, which is better than 18 bits 3990 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3991 getF32Constant(DAG, 0xbc91e5ac)); 3992 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3993 getF32Constant(DAG, 0x3e4350aa)); 3994 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3995 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3996 getF32Constant(DAG, 0x3f60d3e3)); 3997 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3998 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3999 getF32Constant(DAG, 0x4011cdf0)); 4000 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4001 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4002 getF32Constant(DAG, 0x406cfd1c)); 4003 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4004 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4005 getF32Constant(DAG, 0x408797cb)); 4006 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4007 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4008 getF32Constant(DAG, 0x4006dcab)); 4009 } 4010 4011 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4012 } 4013 4014 // No special expansion. 4015 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4016 } 4017 4018 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4019 /// limited-precision mode. 4020 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4021 const TargetLowering &TLI) { 4022 if (Op.getValueType() == MVT::f32 && 4023 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4024 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4025 4026 // Get the exponent. 4027 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4028 4029 // Get the significand and build it into a floating-point number with 4030 // exponent of 1. 4031 SDValue X = GetSignificand(DAG, Op1, dl); 4032 4033 // Different possible minimax approximations of significand in 4034 // floating-point for various degrees of accuracy over [1,2]. 4035 SDValue Log2ofMantissa; 4036 if (LimitFloatPrecision <= 6) { 4037 // For floating-point precision of 6: 4038 // 4039 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4040 // 4041 // error 0.0049451742, which is more than 7 bits 4042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4043 getF32Constant(DAG, 0xbeb08fe0)); 4044 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4045 getF32Constant(DAG, 0x40019463)); 4046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4047 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4048 getF32Constant(DAG, 0x3fd6633d)); 4049 } else if (LimitFloatPrecision <= 12) { 4050 // For floating-point precision of 12: 4051 // 4052 // Log2ofMantissa = 4053 // -2.51285454f + 4054 // (4.07009056f + 4055 // (-2.12067489f + 4056 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4057 // 4058 // error 0.0000876136000, which is better than 13 bits 4059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4060 getF32Constant(DAG, 0xbda7262e)); 4061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4062 getF32Constant(DAG, 0x3f25280b)); 4063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4064 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4065 getF32Constant(DAG, 0x4007b923)); 4066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4068 getF32Constant(DAG, 0x40823e2f)); 4069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4070 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4071 getF32Constant(DAG, 0x4020d29c)); 4072 } else { // LimitFloatPrecision <= 18 4073 // For floating-point precision of 18: 4074 // 4075 // Log2ofMantissa = 4076 // -3.0400495f + 4077 // (6.1129976f + 4078 // (-5.3420409f + 4079 // (3.2865683f + 4080 // (-1.2669343f + 4081 // (0.27515199f - 4082 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4083 // 4084 // error 0.0000018516, which is better than 18 bits 4085 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4086 getF32Constant(DAG, 0xbcd2769e)); 4087 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4088 getF32Constant(DAG, 0x3e8ce0b9)); 4089 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4090 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4091 getF32Constant(DAG, 0x3fa22ae7)); 4092 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4093 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4094 getF32Constant(DAG, 0x40525723)); 4095 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4096 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4097 getF32Constant(DAG, 0x40aaf200)); 4098 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4099 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4100 getF32Constant(DAG, 0x40c39dad)); 4101 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4102 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4103 getF32Constant(DAG, 0x4042902c)); 4104 } 4105 4106 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4107 } 4108 4109 // No special expansion. 4110 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4111 } 4112 4113 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4114 /// limited-precision mode. 4115 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4116 const TargetLowering &TLI) { 4117 if (Op.getValueType() == MVT::f32 && 4118 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4119 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4120 4121 // Scale the exponent by log10(2) [0.30102999f]. 4122 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4123 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4124 getF32Constant(DAG, 0x3e9a209a)); 4125 4126 // Get the significand and build it into a floating-point number with 4127 // exponent of 1. 4128 SDValue X = GetSignificand(DAG, Op1, dl); 4129 4130 SDValue Log10ofMantissa; 4131 if (LimitFloatPrecision <= 6) { 4132 // For floating-point precision of 6: 4133 // 4134 // Log10ofMantissa = 4135 // -0.50419619f + 4136 // (0.60948995f - 0.10380950f * x) * x; 4137 // 4138 // error 0.0014886165, which is 6 bits 4139 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4140 getF32Constant(DAG, 0xbdd49a13)); 4141 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4142 getF32Constant(DAG, 0x3f1c0789)); 4143 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4144 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4145 getF32Constant(DAG, 0x3f011300)); 4146 } else if (LimitFloatPrecision <= 12) { 4147 // For floating-point precision of 12: 4148 // 4149 // Log10ofMantissa = 4150 // -0.64831180f + 4151 // (0.91751397f + 4152 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4153 // 4154 // error 0.00019228036, which is better than 12 bits 4155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4156 getF32Constant(DAG, 0x3d431f31)); 4157 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4158 getF32Constant(DAG, 0x3ea21fb2)); 4159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4160 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4161 getF32Constant(DAG, 0x3f6ae232)); 4162 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4163 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4164 getF32Constant(DAG, 0x3f25f7c3)); 4165 } else { // LimitFloatPrecision <= 18 4166 // For floating-point precision of 18: 4167 // 4168 // Log10ofMantissa = 4169 // -0.84299375f + 4170 // (1.5327582f + 4171 // (-1.0688956f + 4172 // (0.49102474f + 4173 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4174 // 4175 // error 0.0000037995730, which is better than 18 bits 4176 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4177 getF32Constant(DAG, 0x3c5d51ce)); 4178 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4179 getF32Constant(DAG, 0x3e00685a)); 4180 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4181 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4182 getF32Constant(DAG, 0x3efb6798)); 4183 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4184 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4185 getF32Constant(DAG, 0x3f88d192)); 4186 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4187 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4188 getF32Constant(DAG, 0x3fc4316c)); 4189 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4190 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4191 getF32Constant(DAG, 0x3f57ce70)); 4192 } 4193 4194 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4195 } 4196 4197 // No special expansion. 4198 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4199 } 4200 4201 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4202 /// limited-precision mode. 4203 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4204 const TargetLowering &TLI) { 4205 if (Op.getValueType() == MVT::f32 && 4206 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4207 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4208 4209 // FractionalPartOfX = x - (float)IntegerPartOfX; 4210 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4211 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4212 4213 // IntegerPartOfX <<= 23; 4214 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4215 DAG.getConstant(23, TLI.getPointerTy())); 4216 4217 SDValue TwoToFractionalPartOfX; 4218 if (LimitFloatPrecision <= 6) { 4219 // For floating-point precision of 6: 4220 // 4221 // TwoToFractionalPartOfX = 4222 // 0.997535578f + 4223 // (0.735607626f + 0.252464424f * x) * x; 4224 // 4225 // error 0.0144103317, which is 6 bits 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4227 getF32Constant(DAG, 0x3e814304)); 4228 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4229 getF32Constant(DAG, 0x3f3c50c8)); 4230 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4231 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4232 getF32Constant(DAG, 0x3f7f5e7e)); 4233 } else if (LimitFloatPrecision <= 12) { 4234 // For floating-point precision of 12: 4235 // 4236 // TwoToFractionalPartOfX = 4237 // 0.999892986f + 4238 // (0.696457318f + 4239 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4240 // 4241 // error 0.000107046256, which is 13 to 14 bits 4242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4243 getF32Constant(DAG, 0x3da235e3)); 4244 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4245 getF32Constant(DAG, 0x3e65b8f3)); 4246 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4247 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4248 getF32Constant(DAG, 0x3f324b07)); 4249 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4250 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4251 getF32Constant(DAG, 0x3f7ff8fd)); 4252 } else { // LimitFloatPrecision <= 18 4253 // For floating-point precision of 18: 4254 // 4255 // TwoToFractionalPartOfX = 4256 // 0.999999982f + 4257 // (0.693148872f + 4258 // (0.240227044f + 4259 // (0.554906021e-1f + 4260 // (0.961591928e-2f + 4261 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4262 // error 2.47208000*10^(-7), which is better than 18 bits 4263 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4264 getF32Constant(DAG, 0x3924b03e)); 4265 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4266 getF32Constant(DAG, 0x3ab24b87)); 4267 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4268 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4269 getF32Constant(DAG, 0x3c1d8c17)); 4270 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4271 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4272 getF32Constant(DAG, 0x3d634a1d)); 4273 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4274 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4275 getF32Constant(DAG, 0x3e75fe14)); 4276 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4277 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4278 getF32Constant(DAG, 0x3f317234)); 4279 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4280 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4281 getF32Constant(DAG, 0x3f800000)); 4282 } 4283 4284 // Add the exponent into the result in integer domain. 4285 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4286 TwoToFractionalPartOfX); 4287 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4288 DAG.getNode(ISD::ADD, dl, MVT::i32, 4289 t13, IntegerPartOfX)); 4290 } 4291 4292 // No special expansion. 4293 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4294 } 4295 4296 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4297 /// limited-precision mode with x == 10.0f. 4298 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4299 SelectionDAG &DAG, const TargetLowering &TLI) { 4300 bool IsExp10 = false; 4301 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && 4302 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4303 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4304 APFloat Ten(10.0f); 4305 IsExp10 = LHSC->isExactlyValue(Ten); 4306 } 4307 } 4308 4309 if (IsExp10) { 4310 // Put the exponent in the right bit position for later addition to the 4311 // final result: 4312 // 4313 // #define LOG2OF10 3.3219281f 4314 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4315 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4316 getF32Constant(DAG, 0x40549a78)); 4317 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4318 4319 // FractionalPartOfX = x - (float)IntegerPartOfX; 4320 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4321 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4322 4323 // IntegerPartOfX <<= 23; 4324 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4325 DAG.getConstant(23, TLI.getPointerTy())); 4326 4327 SDValue TwoToFractionalPartOfX; 4328 if (LimitFloatPrecision <= 6) { 4329 // For floating-point precision of 6: 4330 // 4331 // twoToFractionalPartOfX = 4332 // 0.997535578f + 4333 // (0.735607626f + 0.252464424f * x) * x; 4334 // 4335 // error 0.0144103317, which is 6 bits 4336 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4337 getF32Constant(DAG, 0x3e814304)); 4338 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4339 getF32Constant(DAG, 0x3f3c50c8)); 4340 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4341 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4342 getF32Constant(DAG, 0x3f7f5e7e)); 4343 } else if (LimitFloatPrecision <= 12) { 4344 // For floating-point precision of 12: 4345 // 4346 // TwoToFractionalPartOfX = 4347 // 0.999892986f + 4348 // (0.696457318f + 4349 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4350 // 4351 // error 0.000107046256, which is 13 to 14 bits 4352 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4353 getF32Constant(DAG, 0x3da235e3)); 4354 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4355 getF32Constant(DAG, 0x3e65b8f3)); 4356 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4357 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4358 getF32Constant(DAG, 0x3f324b07)); 4359 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4360 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4361 getF32Constant(DAG, 0x3f7ff8fd)); 4362 } else { // LimitFloatPrecision <= 18 4363 // For floating-point precision of 18: 4364 // 4365 // TwoToFractionalPartOfX = 4366 // 0.999999982f + 4367 // (0.693148872f + 4368 // (0.240227044f + 4369 // (0.554906021e-1f + 4370 // (0.961591928e-2f + 4371 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4372 // error 2.47208000*10^(-7), which is better than 18 bits 4373 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4374 getF32Constant(DAG, 0x3924b03e)); 4375 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4376 getF32Constant(DAG, 0x3ab24b87)); 4377 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4378 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4379 getF32Constant(DAG, 0x3c1d8c17)); 4380 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4381 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4382 getF32Constant(DAG, 0x3d634a1d)); 4383 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4384 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4385 getF32Constant(DAG, 0x3e75fe14)); 4386 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4387 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4388 getF32Constant(DAG, 0x3f317234)); 4389 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4390 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4391 getF32Constant(DAG, 0x3f800000)); 4392 } 4393 4394 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4395 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4396 DAG.getNode(ISD::ADD, dl, MVT::i32, 4397 t13, IntegerPartOfX)); 4398 } 4399 4400 // No special expansion. 4401 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4402 } 4403 4404 4405 /// ExpandPowI - Expand a llvm.powi intrinsic. 4406 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4407 SelectionDAG &DAG) { 4408 // If RHS is a constant, we can expand this out to a multiplication tree, 4409 // otherwise we end up lowering to a call to __powidf2 (for example). When 4410 // optimizing for size, we only want to do this if the expansion would produce 4411 // a small number of multiplies, otherwise we do the full expansion. 4412 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4413 // Get the exponent as a positive value. 4414 unsigned Val = RHSC->getSExtValue(); 4415 if ((int)Val < 0) Val = -Val; 4416 4417 // powi(x, 0) -> 1.0 4418 if (Val == 0) 4419 return DAG.getConstantFP(1.0, LHS.getValueType()); 4420 4421 const Function *F = DAG.getMachineFunction().getFunction(); 4422 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4423 Attribute::OptimizeForSize) || 4424 // If optimizing for size, don't insert too many multiplies. This 4425 // inserts up to 5 multiplies. 4426 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4427 // We use the simple binary decomposition method to generate the multiply 4428 // sequence. There are more optimal ways to do this (for example, 4429 // powi(x,15) generates one more multiply than it should), but this has 4430 // the benefit of being both really simple and much better than a libcall. 4431 SDValue Res; // Logically starts equal to 1.0 4432 SDValue CurSquare = LHS; 4433 while (Val) { 4434 if (Val & 1) { 4435 if (Res.getNode()) 4436 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4437 else 4438 Res = CurSquare; // 1.0*CurSquare. 4439 } 4440 4441 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4442 CurSquare, CurSquare); 4443 Val >>= 1; 4444 } 4445 4446 // If the original was negative, invert the result, producing 1/(x*x*x). 4447 if (RHSC->getSExtValue() < 0) 4448 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4449 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4450 return Res; 4451 } 4452 } 4453 4454 // Otherwise, expand to a libcall. 4455 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4456 } 4457 4458 // getTruncatedArgReg - Find underlying register used for an truncated 4459 // argument. 4460 static unsigned getTruncatedArgReg(const SDValue &N) { 4461 if (N.getOpcode() != ISD::TRUNCATE) 4462 return 0; 4463 4464 const SDValue &Ext = N.getOperand(0); 4465 if (Ext.getOpcode() == ISD::AssertZext || 4466 Ext.getOpcode() == ISD::AssertSext) { 4467 const SDValue &CFR = Ext.getOperand(0); 4468 if (CFR.getOpcode() == ISD::CopyFromReg) 4469 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4470 if (CFR.getOpcode() == ISD::TRUNCATE) 4471 return getTruncatedArgReg(CFR); 4472 } 4473 return 0; 4474 } 4475 4476 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4477 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4478 /// At the end of instruction selection, they will be inserted to the entry BB. 4479 bool 4480 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4481 int64_t Offset, 4482 const SDValue &N) { 4483 const Argument *Arg = dyn_cast<Argument>(V); 4484 if (!Arg) 4485 return false; 4486 4487 MachineFunction &MF = DAG.getMachineFunction(); 4488 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4489 4490 // Ignore inlined function arguments here. 4491 DIVariable DV(Variable); 4492 if (DV.isInlinedFnArgument(MF.getFunction())) 4493 return false; 4494 4495 Optional<MachineOperand> Op; 4496 // Some arguments' frame index is recorded during argument lowering. 4497 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4498 Op = MachineOperand::CreateFI(FI); 4499 4500 if (!Op && N.getNode()) { 4501 unsigned Reg; 4502 if (N.getOpcode() == ISD::CopyFromReg) 4503 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4504 else 4505 Reg = getTruncatedArgReg(N); 4506 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4507 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4508 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4509 if (PR) 4510 Reg = PR; 4511 } 4512 if (Reg) 4513 Op = MachineOperand::CreateReg(Reg, false); 4514 } 4515 4516 if (!Op) { 4517 // Check if ValueMap has reg number. 4518 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4519 if (VMI != FuncInfo.ValueMap.end()) 4520 Op = MachineOperand::CreateReg(VMI->second, false); 4521 } 4522 4523 if (!Op && N.getNode()) 4524 // Check if frame index is available. 4525 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4526 if (FrameIndexSDNode *FINode = 4527 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4528 Op = MachineOperand::CreateFI(FINode->getIndex()); 4529 4530 if (!Op) 4531 return false; 4532 4533 // FIXME: This does not handle register-indirect values at offset 0. 4534 bool IsIndirect = Offset != 0; 4535 if (Op->isReg()) 4536 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4537 TII->get(TargetOpcode::DBG_VALUE), 4538 IsIndirect, 4539 Op->getReg(), Offset, Variable)); 4540 else 4541 FuncInfo.ArgDbgValues.push_back( 4542 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4543 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4544 4545 return true; 4546 } 4547 4548 // VisualStudio defines setjmp as _setjmp 4549 #if defined(_MSC_VER) && defined(setjmp) && \ 4550 !defined(setjmp_undefined_for_msvc) 4551 # pragma push_macro("setjmp") 4552 # undef setjmp 4553 # define setjmp_undefined_for_msvc 4554 #endif 4555 4556 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4557 /// we want to emit this as a call to a named external function, return the name 4558 /// otherwise lower it and return null. 4559 const char * 4560 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4561 const TargetLowering *TLI = TM.getTargetLowering(); 4562 SDLoc sdl = getCurSDLoc(); 4563 DebugLoc dl = getCurDebugLoc(); 4564 SDValue Res; 4565 4566 switch (Intrinsic) { 4567 default: 4568 // By default, turn this into a target intrinsic node. 4569 visitTargetIntrinsic(I, Intrinsic); 4570 return 0; 4571 case Intrinsic::vastart: visitVAStart(I); return 0; 4572 case Intrinsic::vaend: visitVAEnd(I); return 0; 4573 case Intrinsic::vacopy: visitVACopy(I); return 0; 4574 case Intrinsic::returnaddress: 4575 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4576 getValue(I.getArgOperand(0)))); 4577 return 0; 4578 case Intrinsic::frameaddress: 4579 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4580 getValue(I.getArgOperand(0)))); 4581 return 0; 4582 case Intrinsic::setjmp: 4583 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4584 case Intrinsic::longjmp: 4585 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4586 case Intrinsic::memcpy: { 4587 // Assert for address < 256 since we support only user defined address 4588 // spaces. 4589 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4590 < 256 && 4591 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4592 < 256 && 4593 "Unknown address space"); 4594 SDValue Op1 = getValue(I.getArgOperand(0)); 4595 SDValue Op2 = getValue(I.getArgOperand(1)); 4596 SDValue Op3 = getValue(I.getArgOperand(2)); 4597 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4598 if (!Align) 4599 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4600 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4601 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4602 MachinePointerInfo(I.getArgOperand(0)), 4603 MachinePointerInfo(I.getArgOperand(1)))); 4604 return 0; 4605 } 4606 case Intrinsic::memset: { 4607 // Assert for address < 256 since we support only user defined address 4608 // spaces. 4609 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4610 < 256 && 4611 "Unknown address space"); 4612 SDValue Op1 = getValue(I.getArgOperand(0)); 4613 SDValue Op2 = getValue(I.getArgOperand(1)); 4614 SDValue Op3 = getValue(I.getArgOperand(2)); 4615 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4616 if (!Align) 4617 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4618 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4619 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4620 MachinePointerInfo(I.getArgOperand(0)))); 4621 return 0; 4622 } 4623 case Intrinsic::memmove: { 4624 // Assert for address < 256 since we support only user defined address 4625 // spaces. 4626 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4627 < 256 && 4628 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4629 < 256 && 4630 "Unknown address space"); 4631 SDValue Op1 = getValue(I.getArgOperand(0)); 4632 SDValue Op2 = getValue(I.getArgOperand(1)); 4633 SDValue Op3 = getValue(I.getArgOperand(2)); 4634 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4635 if (!Align) 4636 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4637 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4638 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4639 MachinePointerInfo(I.getArgOperand(0)), 4640 MachinePointerInfo(I.getArgOperand(1)))); 4641 return 0; 4642 } 4643 case Intrinsic::dbg_declare: { 4644 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4645 MDNode *Variable = DI.getVariable(); 4646 const Value *Address = DI.getAddress(); 4647 DIVariable DIVar(Variable); 4648 assert((!DIVar || DIVar.isVariable()) && 4649 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4650 if (!Address || !DIVar) { 4651 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4652 return 0; 4653 } 4654 4655 // Check if address has undef value. 4656 if (isa<UndefValue>(Address) || 4657 (Address->use_empty() && !isa<Argument>(Address))) { 4658 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4659 return 0; 4660 } 4661 4662 SDValue &N = NodeMap[Address]; 4663 if (!N.getNode() && isa<Argument>(Address)) 4664 // Check unused arguments map. 4665 N = UnusedArgNodeMap[Address]; 4666 SDDbgValue *SDV; 4667 if (N.getNode()) { 4668 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4669 Address = BCI->getOperand(0); 4670 // Parameters are handled specially. 4671 bool isParameter = 4672 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4673 isa<Argument>(Address)); 4674 4675 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4676 4677 if (isParameter && !AI) { 4678 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4679 if (FINode) 4680 // Byval parameter. We have a frame index at this point. 4681 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4682 0, dl, SDNodeOrder); 4683 else { 4684 // Address is an argument, so try to emit its dbg value using 4685 // virtual register info from the FuncInfo.ValueMap. 4686 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4687 return 0; 4688 } 4689 } else if (AI) 4690 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4691 0, dl, SDNodeOrder); 4692 else { 4693 // Can't do anything with other non-AI cases yet. 4694 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4695 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4696 DEBUG(Address->dump()); 4697 return 0; 4698 } 4699 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4700 } else { 4701 // If Address is an argument then try to emit its dbg value using 4702 // virtual register info from the FuncInfo.ValueMap. 4703 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4704 // If variable is pinned by a alloca in dominating bb then 4705 // use StaticAllocaMap. 4706 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4707 if (AI->getParent() != DI.getParent()) { 4708 DenseMap<const AllocaInst*, int>::iterator SI = 4709 FuncInfo.StaticAllocaMap.find(AI); 4710 if (SI != FuncInfo.StaticAllocaMap.end()) { 4711 SDV = DAG.getDbgValue(Variable, SI->second, 4712 0, dl, SDNodeOrder); 4713 DAG.AddDbgValue(SDV, 0, false); 4714 return 0; 4715 } 4716 } 4717 } 4718 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4719 } 4720 } 4721 return 0; 4722 } 4723 case Intrinsic::dbg_value: { 4724 const DbgValueInst &DI = cast<DbgValueInst>(I); 4725 DIVariable DIVar(DI.getVariable()); 4726 assert((!DIVar || DIVar.isVariable()) && 4727 "Variable in DbgValueInst should be either null or a DIVariable."); 4728 if (!DIVar) 4729 return 0; 4730 4731 MDNode *Variable = DI.getVariable(); 4732 uint64_t Offset = DI.getOffset(); 4733 const Value *V = DI.getValue(); 4734 if (!V) 4735 return 0; 4736 4737 SDDbgValue *SDV; 4738 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4739 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4740 DAG.AddDbgValue(SDV, 0, false); 4741 } else { 4742 // Do not use getValue() in here; we don't want to generate code at 4743 // this point if it hasn't been done yet. 4744 SDValue N = NodeMap[V]; 4745 if (!N.getNode() && isa<Argument>(V)) 4746 // Check unused arguments map. 4747 N = UnusedArgNodeMap[V]; 4748 if (N.getNode()) { 4749 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4750 SDV = DAG.getDbgValue(Variable, N.getNode(), 4751 N.getResNo(), Offset, dl, SDNodeOrder); 4752 DAG.AddDbgValue(SDV, N.getNode(), false); 4753 } 4754 } else if (!V->use_empty() ) { 4755 // Do not call getValue(V) yet, as we don't want to generate code. 4756 // Remember it for later. 4757 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4758 DanglingDebugInfoMap[V] = DDI; 4759 } else { 4760 // We may expand this to cover more cases. One case where we have no 4761 // data available is an unreferenced parameter. 4762 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4763 } 4764 } 4765 4766 // Build a debug info table entry. 4767 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4768 V = BCI->getOperand(0); 4769 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4770 // Don't handle byval struct arguments or VLAs, for example. 4771 if (!AI) { 4772 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4773 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4774 return 0; 4775 } 4776 DenseMap<const AllocaInst*, int>::iterator SI = 4777 FuncInfo.StaticAllocaMap.find(AI); 4778 if (SI == FuncInfo.StaticAllocaMap.end()) 4779 return 0; // VLAs. 4780 int FI = SI->second; 4781 4782 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4783 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4784 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4785 return 0; 4786 } 4787 4788 case Intrinsic::eh_typeid_for: { 4789 // Find the type id for the given typeinfo. 4790 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4791 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4792 Res = DAG.getConstant(TypeID, MVT::i32); 4793 setValue(&I, Res); 4794 return 0; 4795 } 4796 4797 case Intrinsic::eh_return_i32: 4798 case Intrinsic::eh_return_i64: 4799 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4800 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4801 MVT::Other, 4802 getControlRoot(), 4803 getValue(I.getArgOperand(0)), 4804 getValue(I.getArgOperand(1)))); 4805 return 0; 4806 case Intrinsic::eh_unwind_init: 4807 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4808 return 0; 4809 case Intrinsic::eh_dwarf_cfa: { 4810 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4811 TLI->getPointerTy()); 4812 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4813 CfaArg.getValueType(), 4814 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4815 CfaArg.getValueType()), 4816 CfaArg); 4817 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4818 TLI->getPointerTy(), 4819 DAG.getConstant(0, TLI->getPointerTy())); 4820 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4821 FA, Offset)); 4822 return 0; 4823 } 4824 case Intrinsic::eh_sjlj_callsite: { 4825 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4826 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4827 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4828 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4829 4830 MMI.setCurrentCallSite(CI->getZExtValue()); 4831 return 0; 4832 } 4833 case Intrinsic::eh_sjlj_functioncontext: { 4834 // Get and store the index of the function context. 4835 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4836 AllocaInst *FnCtx = 4837 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4838 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4839 MFI->setFunctionContextIndex(FI); 4840 return 0; 4841 } 4842 case Intrinsic::eh_sjlj_setjmp: { 4843 SDValue Ops[2]; 4844 Ops[0] = getRoot(); 4845 Ops[1] = getValue(I.getArgOperand(0)); 4846 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4847 DAG.getVTList(MVT::i32, MVT::Other), 4848 Ops, 2); 4849 setValue(&I, Op.getValue(0)); 4850 DAG.setRoot(Op.getValue(1)); 4851 return 0; 4852 } 4853 case Intrinsic::eh_sjlj_longjmp: { 4854 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4855 getRoot(), getValue(I.getArgOperand(0)))); 4856 return 0; 4857 } 4858 4859 case Intrinsic::x86_mmx_pslli_w: 4860 case Intrinsic::x86_mmx_pslli_d: 4861 case Intrinsic::x86_mmx_pslli_q: 4862 case Intrinsic::x86_mmx_psrli_w: 4863 case Intrinsic::x86_mmx_psrli_d: 4864 case Intrinsic::x86_mmx_psrli_q: 4865 case Intrinsic::x86_mmx_psrai_w: 4866 case Intrinsic::x86_mmx_psrai_d: { 4867 SDValue ShAmt = getValue(I.getArgOperand(1)); 4868 if (isa<ConstantSDNode>(ShAmt)) { 4869 visitTargetIntrinsic(I, Intrinsic); 4870 return 0; 4871 } 4872 unsigned NewIntrinsic = 0; 4873 EVT ShAmtVT = MVT::v2i32; 4874 switch (Intrinsic) { 4875 case Intrinsic::x86_mmx_pslli_w: 4876 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4877 break; 4878 case Intrinsic::x86_mmx_pslli_d: 4879 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4880 break; 4881 case Intrinsic::x86_mmx_pslli_q: 4882 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4883 break; 4884 case Intrinsic::x86_mmx_psrli_w: 4885 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4886 break; 4887 case Intrinsic::x86_mmx_psrli_d: 4888 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4889 break; 4890 case Intrinsic::x86_mmx_psrli_q: 4891 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4892 break; 4893 case Intrinsic::x86_mmx_psrai_w: 4894 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4895 break; 4896 case Intrinsic::x86_mmx_psrai_d: 4897 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4898 break; 4899 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4900 } 4901 4902 // The vector shift intrinsics with scalars uses 32b shift amounts but 4903 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4904 // to be zero. 4905 // We must do this early because v2i32 is not a legal type. 4906 SDValue ShOps[2]; 4907 ShOps[0] = ShAmt; 4908 ShOps[1] = DAG.getConstant(0, MVT::i32); 4909 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2); 4910 EVT DestVT = TLI->getValueType(I.getType()); 4911 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4912 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4913 DAG.getConstant(NewIntrinsic, MVT::i32), 4914 getValue(I.getArgOperand(0)), ShAmt); 4915 setValue(&I, Res); 4916 return 0; 4917 } 4918 case Intrinsic::x86_avx_vinsertf128_pd_256: 4919 case Intrinsic::x86_avx_vinsertf128_ps_256: 4920 case Intrinsic::x86_avx_vinsertf128_si_256: 4921 case Intrinsic::x86_avx2_vinserti128: { 4922 EVT DestVT = TLI->getValueType(I.getType()); 4923 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 4924 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4925 ElVT.getVectorNumElements(); 4926 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4927 getValue(I.getArgOperand(0)), 4928 getValue(I.getArgOperand(1)), 4929 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4930 setValue(&I, Res); 4931 return 0; 4932 } 4933 case Intrinsic::x86_avx_vextractf128_pd_256: 4934 case Intrinsic::x86_avx_vextractf128_ps_256: 4935 case Intrinsic::x86_avx_vextractf128_si_256: 4936 case Intrinsic::x86_avx2_vextracti128: { 4937 EVT DestVT = TLI->getValueType(I.getType()); 4938 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4939 DestVT.getVectorNumElements(); 4940 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4941 getValue(I.getArgOperand(0)), 4942 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 4943 setValue(&I, Res); 4944 return 0; 4945 } 4946 case Intrinsic::convertff: 4947 case Intrinsic::convertfsi: 4948 case Intrinsic::convertfui: 4949 case Intrinsic::convertsif: 4950 case Intrinsic::convertuif: 4951 case Intrinsic::convertss: 4952 case Intrinsic::convertsu: 4953 case Intrinsic::convertus: 4954 case Intrinsic::convertuu: { 4955 ISD::CvtCode Code = ISD::CVT_INVALID; 4956 switch (Intrinsic) { 4957 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4958 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4959 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4960 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4961 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4962 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4963 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4964 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4965 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4966 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4967 } 4968 EVT DestVT = TLI->getValueType(I.getType()); 4969 const Value *Op1 = I.getArgOperand(0); 4970 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4971 DAG.getValueType(DestVT), 4972 DAG.getValueType(getValue(Op1).getValueType()), 4973 getValue(I.getArgOperand(1)), 4974 getValue(I.getArgOperand(2)), 4975 Code); 4976 setValue(&I, Res); 4977 return 0; 4978 } 4979 case Intrinsic::powi: 4980 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4981 getValue(I.getArgOperand(1)), DAG)); 4982 return 0; 4983 case Intrinsic::log: 4984 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4985 return 0; 4986 case Intrinsic::log2: 4987 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4988 return 0; 4989 case Intrinsic::log10: 4990 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4991 return 0; 4992 case Intrinsic::exp: 4993 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4994 return 0; 4995 case Intrinsic::exp2: 4996 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 4997 return 0; 4998 case Intrinsic::pow: 4999 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5000 getValue(I.getArgOperand(1)), DAG, *TLI)); 5001 return 0; 5002 case Intrinsic::sqrt: 5003 case Intrinsic::fabs: 5004 case Intrinsic::sin: 5005 case Intrinsic::cos: 5006 case Intrinsic::floor: 5007 case Intrinsic::ceil: 5008 case Intrinsic::trunc: 5009 case Intrinsic::rint: 5010 case Intrinsic::nearbyint: 5011 case Intrinsic::round: { 5012 unsigned Opcode; 5013 switch (Intrinsic) { 5014 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5015 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5016 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5017 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5018 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5019 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5020 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5021 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5022 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5023 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5024 case Intrinsic::round: Opcode = ISD::FROUND; break; 5025 } 5026 5027 setValue(&I, DAG.getNode(Opcode, sdl, 5028 getValue(I.getArgOperand(0)).getValueType(), 5029 getValue(I.getArgOperand(0)))); 5030 return 0; 5031 } 5032 case Intrinsic::copysign: 5033 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5034 getValue(I.getArgOperand(0)).getValueType(), 5035 getValue(I.getArgOperand(0)), 5036 getValue(I.getArgOperand(1)))); 5037 return 0; 5038 case Intrinsic::fma: 5039 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5040 getValue(I.getArgOperand(0)).getValueType(), 5041 getValue(I.getArgOperand(0)), 5042 getValue(I.getArgOperand(1)), 5043 getValue(I.getArgOperand(2)))); 5044 return 0; 5045 case Intrinsic::fmuladd: { 5046 EVT VT = TLI->getValueType(I.getType()); 5047 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5048 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5049 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5050 getValue(I.getArgOperand(0)).getValueType(), 5051 getValue(I.getArgOperand(0)), 5052 getValue(I.getArgOperand(1)), 5053 getValue(I.getArgOperand(2)))); 5054 } else { 5055 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5056 getValue(I.getArgOperand(0)).getValueType(), 5057 getValue(I.getArgOperand(0)), 5058 getValue(I.getArgOperand(1))); 5059 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5060 getValue(I.getArgOperand(0)).getValueType(), 5061 Mul, 5062 getValue(I.getArgOperand(2))); 5063 setValue(&I, Add); 5064 } 5065 return 0; 5066 } 5067 case Intrinsic::convert_to_fp16: 5068 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl, 5069 MVT::i16, getValue(I.getArgOperand(0)))); 5070 return 0; 5071 case Intrinsic::convert_from_fp16: 5072 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl, 5073 MVT::f32, getValue(I.getArgOperand(0)))); 5074 return 0; 5075 case Intrinsic::pcmarker: { 5076 SDValue Tmp = getValue(I.getArgOperand(0)); 5077 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5078 return 0; 5079 } 5080 case Intrinsic::readcyclecounter: { 5081 SDValue Op = getRoot(); 5082 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5083 DAG.getVTList(MVT::i64, MVT::Other), 5084 &Op, 1); 5085 setValue(&I, Res); 5086 DAG.setRoot(Res.getValue(1)); 5087 return 0; 5088 } 5089 case Intrinsic::bswap: 5090 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5091 getValue(I.getArgOperand(0)).getValueType(), 5092 getValue(I.getArgOperand(0)))); 5093 return 0; 5094 case Intrinsic::cttz: { 5095 SDValue Arg = getValue(I.getArgOperand(0)); 5096 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5097 EVT Ty = Arg.getValueType(); 5098 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5099 sdl, Ty, Arg)); 5100 return 0; 5101 } 5102 case Intrinsic::ctlz: { 5103 SDValue Arg = getValue(I.getArgOperand(0)); 5104 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5105 EVT Ty = Arg.getValueType(); 5106 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5107 sdl, Ty, Arg)); 5108 return 0; 5109 } 5110 case Intrinsic::ctpop: { 5111 SDValue Arg = getValue(I.getArgOperand(0)); 5112 EVT Ty = Arg.getValueType(); 5113 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5114 return 0; 5115 } 5116 case Intrinsic::stacksave: { 5117 SDValue Op = getRoot(); 5118 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5119 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1); 5120 setValue(&I, Res); 5121 DAG.setRoot(Res.getValue(1)); 5122 return 0; 5123 } 5124 case Intrinsic::stackrestore: { 5125 Res = getValue(I.getArgOperand(0)); 5126 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5127 return 0; 5128 } 5129 case Intrinsic::stackprotector: { 5130 // Emit code into the DAG to store the stack guard onto the stack. 5131 MachineFunction &MF = DAG.getMachineFunction(); 5132 MachineFrameInfo *MFI = MF.getFrameInfo(); 5133 EVT PtrTy = TLI->getPointerTy(); 5134 5135 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5136 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5137 5138 int FI = FuncInfo.StaticAllocaMap[Slot]; 5139 MFI->setStackProtectorIndex(FI); 5140 5141 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5142 5143 // Store the stack protector onto the stack. 5144 Res = DAG.getStore(getRoot(), sdl, Src, FIN, 5145 MachinePointerInfo::getFixedStack(FI), 5146 true, false, 0); 5147 setValue(&I, Res); 5148 DAG.setRoot(Res); 5149 return 0; 5150 } 5151 case Intrinsic::objectsize: { 5152 // If we don't know by now, we're never going to know. 5153 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5154 5155 assert(CI && "Non-constant type in __builtin_object_size?"); 5156 5157 SDValue Arg = getValue(I.getCalledValue()); 5158 EVT Ty = Arg.getValueType(); 5159 5160 if (CI->isZero()) 5161 Res = DAG.getConstant(-1ULL, Ty); 5162 else 5163 Res = DAG.getConstant(0, Ty); 5164 5165 setValue(&I, Res); 5166 return 0; 5167 } 5168 case Intrinsic::annotation: 5169 case Intrinsic::ptr_annotation: 5170 // Drop the intrinsic, but forward the value 5171 setValue(&I, getValue(I.getOperand(0))); 5172 return 0; 5173 case Intrinsic::var_annotation: 5174 // Discard annotate attributes 5175 return 0; 5176 5177 case Intrinsic::init_trampoline: { 5178 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5179 5180 SDValue Ops[6]; 5181 Ops[0] = getRoot(); 5182 Ops[1] = getValue(I.getArgOperand(0)); 5183 Ops[2] = getValue(I.getArgOperand(1)); 5184 Ops[3] = getValue(I.getArgOperand(2)); 5185 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5186 Ops[5] = DAG.getSrcValue(F); 5187 5188 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6); 5189 5190 DAG.setRoot(Res); 5191 return 0; 5192 } 5193 case Intrinsic::adjust_trampoline: { 5194 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5195 TLI->getPointerTy(), 5196 getValue(I.getArgOperand(0)))); 5197 return 0; 5198 } 5199 case Intrinsic::gcroot: 5200 if (GFI) { 5201 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5202 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5203 5204 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5205 GFI->addStackRoot(FI->getIndex(), TypeMap); 5206 } 5207 return 0; 5208 case Intrinsic::gcread: 5209 case Intrinsic::gcwrite: 5210 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5211 case Intrinsic::flt_rounds: 5212 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5213 return 0; 5214 5215 case Intrinsic::expect: { 5216 // Just replace __builtin_expect(exp, c) with EXP. 5217 setValue(&I, getValue(I.getArgOperand(0))); 5218 return 0; 5219 } 5220 5221 case Intrinsic::debugtrap: 5222 case Intrinsic::trap: { 5223 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5224 if (TrapFuncName.empty()) { 5225 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5226 ISD::TRAP : ISD::DEBUGTRAP; 5227 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5228 return 0; 5229 } 5230 TargetLowering::ArgListTy Args; 5231 TargetLowering:: 5232 CallLoweringInfo CLI(getRoot(), I.getType(), 5233 false, false, false, false, 0, CallingConv::C, 5234 /*isTailCall=*/false, 5235 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5236 DAG.getExternalSymbol(TrapFuncName.data(), 5237 TLI->getPointerTy()), 5238 Args, DAG, sdl); 5239 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5240 DAG.setRoot(Result.second); 5241 return 0; 5242 } 5243 5244 case Intrinsic::uadd_with_overflow: 5245 case Intrinsic::sadd_with_overflow: 5246 case Intrinsic::usub_with_overflow: 5247 case Intrinsic::ssub_with_overflow: 5248 case Intrinsic::umul_with_overflow: 5249 case Intrinsic::smul_with_overflow: { 5250 ISD::NodeType Op; 5251 switch (Intrinsic) { 5252 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5253 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5254 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5255 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5256 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5257 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5258 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5259 } 5260 SDValue Op1 = getValue(I.getArgOperand(0)); 5261 SDValue Op2 = getValue(I.getArgOperand(1)); 5262 5263 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5264 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5265 return 0; 5266 } 5267 case Intrinsic::prefetch: { 5268 SDValue Ops[5]; 5269 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5270 Ops[0] = getRoot(); 5271 Ops[1] = getValue(I.getArgOperand(0)); 5272 Ops[2] = getValue(I.getArgOperand(1)); 5273 Ops[3] = getValue(I.getArgOperand(2)); 5274 Ops[4] = getValue(I.getArgOperand(3)); 5275 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5276 DAG.getVTList(MVT::Other), 5277 &Ops[0], 5, 5278 EVT::getIntegerVT(*Context, 8), 5279 MachinePointerInfo(I.getArgOperand(0)), 5280 0, /* align */ 5281 false, /* volatile */ 5282 rw==0, /* read */ 5283 rw==1)); /* write */ 5284 return 0; 5285 } 5286 case Intrinsic::lifetime_start: 5287 case Intrinsic::lifetime_end: { 5288 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5289 // Stack coloring is not enabled in O0, discard region information. 5290 if (TM.getOptLevel() == CodeGenOpt::None) 5291 return 0; 5292 5293 SmallVector<Value *, 4> Allocas; 5294 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5295 5296 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5297 E = Allocas.end(); Object != E; ++Object) { 5298 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5299 5300 // Could not find an Alloca. 5301 if (!LifetimeObject) 5302 continue; 5303 5304 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5305 5306 SDValue Ops[2]; 5307 Ops[0] = getRoot(); 5308 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5309 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5310 5311 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2); 5312 DAG.setRoot(Res); 5313 } 5314 return 0; 5315 } 5316 case Intrinsic::invariant_start: 5317 // Discard region information. 5318 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5319 return 0; 5320 case Intrinsic::invariant_end: 5321 // Discard region information. 5322 return 0; 5323 case Intrinsic::stackprotectorcheck: { 5324 // Do not actually emit anything for this basic block. Instead we initialize 5325 // the stack protector descriptor and export the guard variable so we can 5326 // access it in FinishBasicBlock. 5327 const BasicBlock *BB = I.getParent(); 5328 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5329 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5330 5331 // Flush our exports since we are going to process a terminator. 5332 (void)getControlRoot(); 5333 return 0; 5334 } 5335 case Intrinsic::donothing: 5336 // ignore 5337 return 0; 5338 case Intrinsic::experimental_stackmap: { 5339 visitStackmap(I); 5340 return 0; 5341 } 5342 case Intrinsic::experimental_patchpoint_void: 5343 case Intrinsic::experimental_patchpoint_i64: { 5344 visitPatchpoint(I); 5345 return 0; 5346 } 5347 } 5348 } 5349 5350 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5351 bool isTailCall, 5352 MachineBasicBlock *LandingPad) { 5353 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5354 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5355 Type *RetTy = FTy->getReturnType(); 5356 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5357 MCSymbol *BeginLabel = 0; 5358 5359 TargetLowering::ArgListTy Args; 5360 TargetLowering::ArgListEntry Entry; 5361 Args.reserve(CS.arg_size()); 5362 5363 // Check whether the function can return without sret-demotion. 5364 SmallVector<ISD::OutputArg, 4> Outs; 5365 const TargetLowering *TLI = TM.getTargetLowering(); 5366 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI); 5367 5368 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(), 5369 DAG.getMachineFunction(), 5370 FTy->isVarArg(), Outs, 5371 FTy->getContext()); 5372 5373 SDValue DemoteStackSlot; 5374 int DemoteStackIdx = -100; 5375 5376 if (!CanLowerReturn) { 5377 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize( 5378 FTy->getReturnType()); 5379 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment( 5380 FTy->getReturnType()); 5381 MachineFunction &MF = DAG.getMachineFunction(); 5382 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5383 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5384 5385 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy()); 5386 Entry.Node = DemoteStackSlot; 5387 Entry.Ty = StackSlotPtrType; 5388 Entry.isSExt = false; 5389 Entry.isZExt = false; 5390 Entry.isInReg = false; 5391 Entry.isSRet = true; 5392 Entry.isNest = false; 5393 Entry.isByVal = false; 5394 Entry.isReturned = false; 5395 Entry.Alignment = Align; 5396 Args.push_back(Entry); 5397 RetTy = Type::getVoidTy(FTy->getContext()); 5398 } 5399 5400 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5401 i != e; ++i) { 5402 const Value *V = *i; 5403 5404 // Skip empty types 5405 if (V->getType()->isEmptyTy()) 5406 continue; 5407 5408 SDValue ArgNode = getValue(V); 5409 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5410 5411 // Skip the first return-type Attribute to get to params. 5412 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5413 Args.push_back(Entry); 5414 } 5415 5416 if (LandingPad) { 5417 // Insert a label before the invoke call to mark the try range. This can be 5418 // used to detect deletion of the invoke via the MachineModuleInfo. 5419 BeginLabel = MMI.getContext().CreateTempSymbol(); 5420 5421 // For SjLj, keep track of which landing pads go with which invokes 5422 // so as to maintain the ordering of pads in the LSDA. 5423 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5424 if (CallSiteIndex) { 5425 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5426 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5427 5428 // Now that the call site is handled, stop tracking it. 5429 MMI.setCurrentCallSite(0); 5430 } 5431 5432 // Both PendingLoads and PendingExports must be flushed here; 5433 // this call might not return. 5434 (void)getRoot(); 5435 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5436 } 5437 5438 // Check if target-independent constraints permit a tail call here. 5439 // Target-dependent constraints are checked within TLI->LowerCallTo. 5440 if (isTailCall && !isInTailCallPosition(CS, *TLI)) 5441 isTailCall = false; 5442 5443 TargetLowering:: 5444 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5445 getCurSDLoc(), CS); 5446 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5447 assert((isTailCall || Result.second.getNode()) && 5448 "Non-null chain expected with non-tail call!"); 5449 assert((Result.second.getNode() || !Result.first.getNode()) && 5450 "Null value expected with tail call!"); 5451 if (Result.first.getNode()) { 5452 setValue(CS.getInstruction(), Result.first); 5453 } else if (!CanLowerReturn && Result.second.getNode()) { 5454 // The instruction result is the result of loading from the 5455 // hidden sret parameter. 5456 SmallVector<EVT, 1> PVTs; 5457 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5458 5459 ComputeValueVTs(*TLI, PtrRetTy, PVTs); 5460 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5461 EVT PtrVT = PVTs[0]; 5462 5463 SmallVector<EVT, 4> RetTys; 5464 SmallVector<uint64_t, 4> Offsets; 5465 RetTy = FTy->getReturnType(); 5466 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets); 5467 5468 unsigned NumValues = RetTys.size(); 5469 SmallVector<SDValue, 4> Values(NumValues); 5470 SmallVector<SDValue, 4> Chains(NumValues); 5471 5472 for (unsigned i = 0; i < NumValues; ++i) { 5473 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, 5474 DemoteStackSlot, 5475 DAG.getConstant(Offsets[i], PtrVT)); 5476 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add, 5477 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5478 false, false, false, 1); 5479 Values[i] = L; 5480 Chains[i] = L.getValue(1); 5481 } 5482 5483 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 5484 MVT::Other, &Chains[0], NumValues); 5485 PendingLoads.push_back(Chain); 5486 5487 setValue(CS.getInstruction(), 5488 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 5489 DAG.getVTList(&RetTys[0], RetTys.size()), 5490 &Values[0], Values.size())); 5491 } 5492 5493 if (!Result.second.getNode()) { 5494 // As a special case, a null chain means that a tail call has been emitted 5495 // and the DAG root is already updated. 5496 HasTailCall = true; 5497 5498 // Since there's no actual continuation from this block, nothing can be 5499 // relying on us setting vregs for them. 5500 PendingExports.clear(); 5501 } else { 5502 DAG.setRoot(Result.second); 5503 } 5504 5505 if (LandingPad) { 5506 // Insert a label at the end of the invoke call to mark the try range. This 5507 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5508 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5509 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5510 5511 // Inform MachineModuleInfo of range. 5512 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5513 } 5514 } 5515 5516 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5517 /// value is equal or not-equal to zero. 5518 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5519 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5520 UI != E; ++UI) { 5521 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5522 if (IC->isEquality()) 5523 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5524 if (C->isNullValue()) 5525 continue; 5526 // Unknown instruction. 5527 return false; 5528 } 5529 return true; 5530 } 5531 5532 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5533 Type *LoadTy, 5534 SelectionDAGBuilder &Builder) { 5535 5536 // Check to see if this load can be trivially constant folded, e.g. if the 5537 // input is from a string literal. 5538 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5539 // Cast pointer to the type we really want to load. 5540 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5541 PointerType::getUnqual(LoadTy)); 5542 5543 if (const Constant *LoadCst = 5544 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5545 Builder.TD)) 5546 return Builder.getValue(LoadCst); 5547 } 5548 5549 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5550 // still constant memory, the input chain can be the entry node. 5551 SDValue Root; 5552 bool ConstantMemory = false; 5553 5554 // Do not serialize (non-volatile) loads of constant memory with anything. 5555 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5556 Root = Builder.DAG.getEntryNode(); 5557 ConstantMemory = true; 5558 } else { 5559 // Do not serialize non-volatile loads against each other. 5560 Root = Builder.DAG.getRoot(); 5561 } 5562 5563 SDValue Ptr = Builder.getValue(PtrVal); 5564 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5565 Ptr, MachinePointerInfo(PtrVal), 5566 false /*volatile*/, 5567 false /*nontemporal*/, 5568 false /*isinvariant*/, 1 /* align=1 */); 5569 5570 if (!ConstantMemory) 5571 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5572 return LoadVal; 5573 } 5574 5575 /// processIntegerCallValue - Record the value for an instruction that 5576 /// produces an integer result, converting the type where necessary. 5577 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5578 SDValue Value, 5579 bool IsSigned) { 5580 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5581 if (IsSigned) 5582 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5583 else 5584 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5585 setValue(&I, Value); 5586 } 5587 5588 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5589 /// If so, return true and lower it, otherwise return false and it will be 5590 /// lowered like a normal call. 5591 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5592 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5593 if (I.getNumArgOperands() != 3) 5594 return false; 5595 5596 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5597 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5598 !I.getArgOperand(2)->getType()->isIntegerTy() || 5599 !I.getType()->isIntegerTy()) 5600 return false; 5601 5602 const Value *Size = I.getArgOperand(2); 5603 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5604 if (CSize && CSize->getZExtValue() == 0) { 5605 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5606 setValue(&I, DAG.getConstant(0, CallVT)); 5607 return true; 5608 } 5609 5610 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5611 std::pair<SDValue, SDValue> Res = 5612 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5613 getValue(LHS), getValue(RHS), getValue(Size), 5614 MachinePointerInfo(LHS), 5615 MachinePointerInfo(RHS)); 5616 if (Res.first.getNode()) { 5617 processIntegerCallValue(I, Res.first, true); 5618 PendingLoads.push_back(Res.second); 5619 return true; 5620 } 5621 5622 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5623 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5624 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5625 bool ActuallyDoIt = true; 5626 MVT LoadVT; 5627 Type *LoadTy; 5628 switch (CSize->getZExtValue()) { 5629 default: 5630 LoadVT = MVT::Other; 5631 LoadTy = 0; 5632 ActuallyDoIt = false; 5633 break; 5634 case 2: 5635 LoadVT = MVT::i16; 5636 LoadTy = Type::getInt16Ty(CSize->getContext()); 5637 break; 5638 case 4: 5639 LoadVT = MVT::i32; 5640 LoadTy = Type::getInt32Ty(CSize->getContext()); 5641 break; 5642 case 8: 5643 LoadVT = MVT::i64; 5644 LoadTy = Type::getInt64Ty(CSize->getContext()); 5645 break; 5646 /* 5647 case 16: 5648 LoadVT = MVT::v4i32; 5649 LoadTy = Type::getInt32Ty(CSize->getContext()); 5650 LoadTy = VectorType::get(LoadTy, 4); 5651 break; 5652 */ 5653 } 5654 5655 // This turns into unaligned loads. We only do this if the target natively 5656 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5657 // we'll only produce a small number of byte loads. 5658 5659 // Require that we can find a legal MVT, and only do this if the target 5660 // supports unaligned loads of that type. Expanding into byte loads would 5661 // bloat the code. 5662 const TargetLowering *TLI = TM.getTargetLowering(); 5663 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5664 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5665 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5666 if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT)) 5667 ActuallyDoIt = false; 5668 } 5669 5670 if (ActuallyDoIt) { 5671 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5672 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5673 5674 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5675 ISD::SETNE); 5676 processIntegerCallValue(I, Res, false); 5677 return true; 5678 } 5679 } 5680 5681 5682 return false; 5683 } 5684 5685 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5686 /// form. If so, return true and lower it, otherwise return false and it 5687 /// will be lowered like a normal call. 5688 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5689 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5690 if (I.getNumArgOperands() != 3) 5691 return false; 5692 5693 const Value *Src = I.getArgOperand(0); 5694 const Value *Char = I.getArgOperand(1); 5695 const Value *Length = I.getArgOperand(2); 5696 if (!Src->getType()->isPointerTy() || 5697 !Char->getType()->isIntegerTy() || 5698 !Length->getType()->isIntegerTy() || 5699 !I.getType()->isPointerTy()) 5700 return false; 5701 5702 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5703 std::pair<SDValue, SDValue> Res = 5704 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5705 getValue(Src), getValue(Char), getValue(Length), 5706 MachinePointerInfo(Src)); 5707 if (Res.first.getNode()) { 5708 setValue(&I, Res.first); 5709 PendingLoads.push_back(Res.second); 5710 return true; 5711 } 5712 5713 return false; 5714 } 5715 5716 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5717 /// optimized form. If so, return true and lower it, otherwise return false 5718 /// and it will be lowered like a normal call. 5719 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5720 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5721 if (I.getNumArgOperands() != 2) 5722 return false; 5723 5724 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5725 if (!Arg0->getType()->isPointerTy() || 5726 !Arg1->getType()->isPointerTy() || 5727 !I.getType()->isPointerTy()) 5728 return false; 5729 5730 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5731 std::pair<SDValue, SDValue> Res = 5732 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5733 getValue(Arg0), getValue(Arg1), 5734 MachinePointerInfo(Arg0), 5735 MachinePointerInfo(Arg1), isStpcpy); 5736 if (Res.first.getNode()) { 5737 setValue(&I, Res.first); 5738 DAG.setRoot(Res.second); 5739 return true; 5740 } 5741 5742 return false; 5743 } 5744 5745 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5746 /// If so, return true and lower it, otherwise return false and it will be 5747 /// lowered like a normal call. 5748 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5749 // Verify that the prototype makes sense. int strcmp(void*,void*) 5750 if (I.getNumArgOperands() != 2) 5751 return false; 5752 5753 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5754 if (!Arg0->getType()->isPointerTy() || 5755 !Arg1->getType()->isPointerTy() || 5756 !I.getType()->isIntegerTy()) 5757 return false; 5758 5759 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5760 std::pair<SDValue, SDValue> Res = 5761 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5762 getValue(Arg0), getValue(Arg1), 5763 MachinePointerInfo(Arg0), 5764 MachinePointerInfo(Arg1)); 5765 if (Res.first.getNode()) { 5766 processIntegerCallValue(I, Res.first, true); 5767 PendingLoads.push_back(Res.second); 5768 return true; 5769 } 5770 5771 return false; 5772 } 5773 5774 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5775 /// form. If so, return true and lower it, otherwise return false and it 5776 /// will be lowered like a normal call. 5777 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5778 // Verify that the prototype makes sense. size_t strlen(char *) 5779 if (I.getNumArgOperands() != 1) 5780 return false; 5781 5782 const Value *Arg0 = I.getArgOperand(0); 5783 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5784 return false; 5785 5786 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5787 std::pair<SDValue, SDValue> Res = 5788 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5789 getValue(Arg0), MachinePointerInfo(Arg0)); 5790 if (Res.first.getNode()) { 5791 processIntegerCallValue(I, Res.first, false); 5792 PendingLoads.push_back(Res.second); 5793 return true; 5794 } 5795 5796 return false; 5797 } 5798 5799 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5800 /// form. If so, return true and lower it, otherwise return false and it 5801 /// will be lowered like a normal call. 5802 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5803 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5804 if (I.getNumArgOperands() != 2) 5805 return false; 5806 5807 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5808 if (!Arg0->getType()->isPointerTy() || 5809 !Arg1->getType()->isIntegerTy() || 5810 !I.getType()->isIntegerTy()) 5811 return false; 5812 5813 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5814 std::pair<SDValue, SDValue> Res = 5815 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5816 getValue(Arg0), getValue(Arg1), 5817 MachinePointerInfo(Arg0)); 5818 if (Res.first.getNode()) { 5819 processIntegerCallValue(I, Res.first, false); 5820 PendingLoads.push_back(Res.second); 5821 return true; 5822 } 5823 5824 return false; 5825 } 5826 5827 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5828 /// operation (as expected), translate it to an SDNode with the specified opcode 5829 /// and return true. 5830 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5831 unsigned Opcode) { 5832 // Sanity check that it really is a unary floating-point call. 5833 if (I.getNumArgOperands() != 1 || 5834 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5835 I.getType() != I.getArgOperand(0)->getType() || 5836 !I.onlyReadsMemory()) 5837 return false; 5838 5839 SDValue Tmp = getValue(I.getArgOperand(0)); 5840 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5841 return true; 5842 } 5843 5844 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5845 // Handle inline assembly differently. 5846 if (isa<InlineAsm>(I.getCalledValue())) { 5847 visitInlineAsm(&I); 5848 return; 5849 } 5850 5851 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5852 ComputeUsesVAFloatArgument(I, &MMI); 5853 5854 const char *RenameFn = 0; 5855 if (Function *F = I.getCalledFunction()) { 5856 if (F->isDeclaration()) { 5857 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5858 if (unsigned IID = II->getIntrinsicID(F)) { 5859 RenameFn = visitIntrinsicCall(I, IID); 5860 if (!RenameFn) 5861 return; 5862 } 5863 } 5864 if (unsigned IID = F->getIntrinsicID()) { 5865 RenameFn = visitIntrinsicCall(I, IID); 5866 if (!RenameFn) 5867 return; 5868 } 5869 } 5870 5871 // Check for well-known libc/libm calls. If the function is internal, it 5872 // can't be a library call. 5873 LibFunc::Func Func; 5874 if (!F->hasLocalLinkage() && F->hasName() && 5875 LibInfo->getLibFunc(F->getName(), Func) && 5876 LibInfo->hasOptimizedCodeGen(Func)) { 5877 switch (Func) { 5878 default: break; 5879 case LibFunc::copysign: 5880 case LibFunc::copysignf: 5881 case LibFunc::copysignl: 5882 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5883 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5884 I.getType() == I.getArgOperand(0)->getType() && 5885 I.getType() == I.getArgOperand(1)->getType() && 5886 I.onlyReadsMemory()) { 5887 SDValue LHS = getValue(I.getArgOperand(0)); 5888 SDValue RHS = getValue(I.getArgOperand(1)); 5889 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5890 LHS.getValueType(), LHS, RHS)); 5891 return; 5892 } 5893 break; 5894 case LibFunc::fabs: 5895 case LibFunc::fabsf: 5896 case LibFunc::fabsl: 5897 if (visitUnaryFloatCall(I, ISD::FABS)) 5898 return; 5899 break; 5900 case LibFunc::sin: 5901 case LibFunc::sinf: 5902 case LibFunc::sinl: 5903 if (visitUnaryFloatCall(I, ISD::FSIN)) 5904 return; 5905 break; 5906 case LibFunc::cos: 5907 case LibFunc::cosf: 5908 case LibFunc::cosl: 5909 if (visitUnaryFloatCall(I, ISD::FCOS)) 5910 return; 5911 break; 5912 case LibFunc::sqrt: 5913 case LibFunc::sqrtf: 5914 case LibFunc::sqrtl: 5915 case LibFunc::sqrt_finite: 5916 case LibFunc::sqrtf_finite: 5917 case LibFunc::sqrtl_finite: 5918 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5919 return; 5920 break; 5921 case LibFunc::floor: 5922 case LibFunc::floorf: 5923 case LibFunc::floorl: 5924 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5925 return; 5926 break; 5927 case LibFunc::nearbyint: 5928 case LibFunc::nearbyintf: 5929 case LibFunc::nearbyintl: 5930 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5931 return; 5932 break; 5933 case LibFunc::ceil: 5934 case LibFunc::ceilf: 5935 case LibFunc::ceill: 5936 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5937 return; 5938 break; 5939 case LibFunc::rint: 5940 case LibFunc::rintf: 5941 case LibFunc::rintl: 5942 if (visitUnaryFloatCall(I, ISD::FRINT)) 5943 return; 5944 break; 5945 case LibFunc::round: 5946 case LibFunc::roundf: 5947 case LibFunc::roundl: 5948 if (visitUnaryFloatCall(I, ISD::FROUND)) 5949 return; 5950 break; 5951 case LibFunc::trunc: 5952 case LibFunc::truncf: 5953 case LibFunc::truncl: 5954 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5955 return; 5956 break; 5957 case LibFunc::log2: 5958 case LibFunc::log2f: 5959 case LibFunc::log2l: 5960 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5961 return; 5962 break; 5963 case LibFunc::exp2: 5964 case LibFunc::exp2f: 5965 case LibFunc::exp2l: 5966 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5967 return; 5968 break; 5969 case LibFunc::memcmp: 5970 if (visitMemCmpCall(I)) 5971 return; 5972 break; 5973 case LibFunc::memchr: 5974 if (visitMemChrCall(I)) 5975 return; 5976 break; 5977 case LibFunc::strcpy: 5978 if (visitStrCpyCall(I, false)) 5979 return; 5980 break; 5981 case LibFunc::stpcpy: 5982 if (visitStrCpyCall(I, true)) 5983 return; 5984 break; 5985 case LibFunc::strcmp: 5986 if (visitStrCmpCall(I)) 5987 return; 5988 break; 5989 case LibFunc::strlen: 5990 if (visitStrLenCall(I)) 5991 return; 5992 break; 5993 case LibFunc::strnlen: 5994 if (visitStrNLenCall(I)) 5995 return; 5996 break; 5997 } 5998 } 5999 } 6000 6001 SDValue Callee; 6002 if (!RenameFn) 6003 Callee = getValue(I.getCalledValue()); 6004 else 6005 Callee = DAG.getExternalSymbol(RenameFn, 6006 TM.getTargetLowering()->getPointerTy()); 6007 6008 // Check if we can potentially perform a tail call. More detailed checking is 6009 // be done within LowerCallTo, after more information about the call is known. 6010 LowerCallTo(&I, Callee, I.isTailCall()); 6011 } 6012 6013 namespace { 6014 6015 /// AsmOperandInfo - This contains information for each constraint that we are 6016 /// lowering. 6017 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6018 public: 6019 /// CallOperand - If this is the result output operand or a clobber 6020 /// this is null, otherwise it is the incoming operand to the CallInst. 6021 /// This gets modified as the asm is processed. 6022 SDValue CallOperand; 6023 6024 /// AssignedRegs - If this is a register or register class operand, this 6025 /// contains the set of register corresponding to the operand. 6026 RegsForValue AssignedRegs; 6027 6028 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6029 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 6030 } 6031 6032 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6033 /// corresponds to. If there is no Value* for this operand, it returns 6034 /// MVT::Other. 6035 EVT getCallOperandValEVT(LLVMContext &Context, 6036 const TargetLowering &TLI, 6037 const DataLayout *TD) const { 6038 if (CallOperandVal == 0) return MVT::Other; 6039 6040 if (isa<BasicBlock>(CallOperandVal)) 6041 return TLI.getPointerTy(); 6042 6043 llvm::Type *OpTy = CallOperandVal->getType(); 6044 6045 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6046 // If this is an indirect operand, the operand is a pointer to the 6047 // accessed type. 6048 if (isIndirect) { 6049 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6050 if (!PtrTy) 6051 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6052 OpTy = PtrTy->getElementType(); 6053 } 6054 6055 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6056 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6057 if (STy->getNumElements() == 1) 6058 OpTy = STy->getElementType(0); 6059 6060 // If OpTy is not a single value, it may be a struct/union that we 6061 // can tile with integers. 6062 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6063 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 6064 switch (BitSize) { 6065 default: break; 6066 case 1: 6067 case 8: 6068 case 16: 6069 case 32: 6070 case 64: 6071 case 128: 6072 OpTy = IntegerType::get(Context, BitSize); 6073 break; 6074 } 6075 } 6076 6077 return TLI.getValueType(OpTy, true); 6078 } 6079 }; 6080 6081 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6082 6083 } // end anonymous namespace 6084 6085 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6086 /// specified operand. We prefer to assign virtual registers, to allow the 6087 /// register allocator to handle the assignment process. However, if the asm 6088 /// uses features that we can't model on machineinstrs, we have SDISel do the 6089 /// allocation. This produces generally horrible, but correct, code. 6090 /// 6091 /// OpInfo describes the operand. 6092 /// 6093 static void GetRegistersForValue(SelectionDAG &DAG, 6094 const TargetLowering &TLI, 6095 SDLoc DL, 6096 SDISelAsmOperandInfo &OpInfo) { 6097 LLVMContext &Context = *DAG.getContext(); 6098 6099 MachineFunction &MF = DAG.getMachineFunction(); 6100 SmallVector<unsigned, 4> Regs; 6101 6102 // If this is a constraint for a single physreg, or a constraint for a 6103 // register class, find it. 6104 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6105 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6106 OpInfo.ConstraintVT); 6107 6108 unsigned NumRegs = 1; 6109 if (OpInfo.ConstraintVT != MVT::Other) { 6110 // If this is a FP input in an integer register (or visa versa) insert a bit 6111 // cast of the input value. More generally, handle any case where the input 6112 // value disagrees with the register class we plan to stick this in. 6113 if (OpInfo.Type == InlineAsm::isInput && 6114 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6115 // Try to convert to the first EVT that the reg class contains. If the 6116 // types are identical size, use a bitcast to convert (e.g. two differing 6117 // vector types). 6118 MVT RegVT = *PhysReg.second->vt_begin(); 6119 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 6120 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6121 RegVT, OpInfo.CallOperand); 6122 OpInfo.ConstraintVT = RegVT; 6123 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6124 // If the input is a FP value and we want it in FP registers, do a 6125 // bitcast to the corresponding integer type. This turns an f64 value 6126 // into i64, which can be passed with two i32 values on a 32-bit 6127 // machine. 6128 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6129 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6130 RegVT, OpInfo.CallOperand); 6131 OpInfo.ConstraintVT = RegVT; 6132 } 6133 } 6134 6135 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6136 } 6137 6138 MVT RegVT; 6139 EVT ValueVT = OpInfo.ConstraintVT; 6140 6141 // If this is a constraint for a specific physical register, like {r17}, 6142 // assign it now. 6143 if (unsigned AssignedReg = PhysReg.first) { 6144 const TargetRegisterClass *RC = PhysReg.second; 6145 if (OpInfo.ConstraintVT == MVT::Other) 6146 ValueVT = *RC->vt_begin(); 6147 6148 // Get the actual register value type. This is important, because the user 6149 // may have asked for (e.g.) the AX register in i32 type. We need to 6150 // remember that AX is actually i16 to get the right extension. 6151 RegVT = *RC->vt_begin(); 6152 6153 // This is a explicit reference to a physical register. 6154 Regs.push_back(AssignedReg); 6155 6156 // If this is an expanded reference, add the rest of the regs to Regs. 6157 if (NumRegs != 1) { 6158 TargetRegisterClass::iterator I = RC->begin(); 6159 for (; *I != AssignedReg; ++I) 6160 assert(I != RC->end() && "Didn't find reg!"); 6161 6162 // Already added the first reg. 6163 --NumRegs; ++I; 6164 for (; NumRegs; --NumRegs, ++I) { 6165 assert(I != RC->end() && "Ran out of registers to allocate!"); 6166 Regs.push_back(*I); 6167 } 6168 } 6169 6170 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6171 return; 6172 } 6173 6174 // Otherwise, if this was a reference to an LLVM register class, create vregs 6175 // for this reference. 6176 if (const TargetRegisterClass *RC = PhysReg.second) { 6177 RegVT = *RC->vt_begin(); 6178 if (OpInfo.ConstraintVT == MVT::Other) 6179 ValueVT = RegVT; 6180 6181 // Create the appropriate number of virtual registers. 6182 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6183 for (; NumRegs; --NumRegs) 6184 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6185 6186 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6187 return; 6188 } 6189 6190 // Otherwise, we couldn't allocate enough registers for this. 6191 } 6192 6193 /// visitInlineAsm - Handle a call to an InlineAsm object. 6194 /// 6195 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6196 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6197 6198 /// ConstraintOperands - Information about all of the constraints. 6199 SDISelAsmOperandInfoVector ConstraintOperands; 6200 6201 const TargetLowering *TLI = TM.getTargetLowering(); 6202 TargetLowering::AsmOperandInfoVector 6203 TargetConstraints = TLI->ParseConstraints(CS); 6204 6205 bool hasMemory = false; 6206 6207 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6208 unsigned ResNo = 0; // ResNo - The result number of the next output. 6209 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6210 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6211 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6212 6213 MVT OpVT = MVT::Other; 6214 6215 // Compute the value type for each operand. 6216 switch (OpInfo.Type) { 6217 case InlineAsm::isOutput: 6218 // Indirect outputs just consume an argument. 6219 if (OpInfo.isIndirect) { 6220 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6221 break; 6222 } 6223 6224 // The return value of the call is this value. As such, there is no 6225 // corresponding argument. 6226 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6227 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6228 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6229 } else { 6230 assert(ResNo == 0 && "Asm only has one result!"); 6231 OpVT = TLI->getSimpleValueType(CS.getType()); 6232 } 6233 ++ResNo; 6234 break; 6235 case InlineAsm::isInput: 6236 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6237 break; 6238 case InlineAsm::isClobber: 6239 // Nothing to do. 6240 break; 6241 } 6242 6243 // If this is an input or an indirect output, process the call argument. 6244 // BasicBlocks are labels, currently appearing only in asm's. 6245 if (OpInfo.CallOperandVal) { 6246 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6247 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6248 } else { 6249 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6250 } 6251 6252 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD). 6253 getSimpleVT(); 6254 } 6255 6256 OpInfo.ConstraintVT = OpVT; 6257 6258 // Indirect operand accesses access memory. 6259 if (OpInfo.isIndirect) 6260 hasMemory = true; 6261 else { 6262 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6263 TargetLowering::ConstraintType 6264 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6265 if (CType == TargetLowering::C_Memory) { 6266 hasMemory = true; 6267 break; 6268 } 6269 } 6270 } 6271 } 6272 6273 SDValue Chain, Flag; 6274 6275 // We won't need to flush pending loads if this asm doesn't touch 6276 // memory and is nonvolatile. 6277 if (hasMemory || IA->hasSideEffects()) 6278 Chain = getRoot(); 6279 else 6280 Chain = DAG.getRoot(); 6281 6282 // Second pass over the constraints: compute which constraint option to use 6283 // and assign registers to constraints that want a specific physreg. 6284 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6285 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6286 6287 // If this is an output operand with a matching input operand, look up the 6288 // matching input. If their types mismatch, e.g. one is an integer, the 6289 // other is floating point, or their sizes are different, flag it as an 6290 // error. 6291 if (OpInfo.hasMatchingInput()) { 6292 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6293 6294 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6295 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6296 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6297 OpInfo.ConstraintVT); 6298 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6299 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6300 Input.ConstraintVT); 6301 if ((OpInfo.ConstraintVT.isInteger() != 6302 Input.ConstraintVT.isInteger()) || 6303 (MatchRC.second != InputRC.second)) { 6304 report_fatal_error("Unsupported asm: input constraint" 6305 " with a matching output constraint of" 6306 " incompatible type!"); 6307 } 6308 Input.ConstraintVT = OpInfo.ConstraintVT; 6309 } 6310 } 6311 6312 // Compute the constraint code and ConstraintType to use. 6313 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6314 6315 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6316 OpInfo.Type == InlineAsm::isClobber) 6317 continue; 6318 6319 // If this is a memory input, and if the operand is not indirect, do what we 6320 // need to to provide an address for the memory input. 6321 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6322 !OpInfo.isIndirect) { 6323 assert((OpInfo.isMultipleAlternative || 6324 (OpInfo.Type == InlineAsm::isInput)) && 6325 "Can only indirectify direct input operands!"); 6326 6327 // Memory operands really want the address of the value. If we don't have 6328 // an indirect input, put it in the constpool if we can, otherwise spill 6329 // it to a stack slot. 6330 // TODO: This isn't quite right. We need to handle these according to 6331 // the addressing mode that the constraint wants. Also, this may take 6332 // an additional register for the computation and we don't want that 6333 // either. 6334 6335 // If the operand is a float, integer, or vector constant, spill to a 6336 // constant pool entry to get its address. 6337 const Value *OpVal = OpInfo.CallOperandVal; 6338 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6339 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6340 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6341 TLI->getPointerTy()); 6342 } else { 6343 // Otherwise, create a stack slot and emit a store to it before the 6344 // asm. 6345 Type *Ty = OpVal->getType(); 6346 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6347 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6348 MachineFunction &MF = DAG.getMachineFunction(); 6349 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6350 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6351 Chain = DAG.getStore(Chain, getCurSDLoc(), 6352 OpInfo.CallOperand, StackSlot, 6353 MachinePointerInfo::getFixedStack(SSFI), 6354 false, false, 0); 6355 OpInfo.CallOperand = StackSlot; 6356 } 6357 6358 // There is no longer a Value* corresponding to this operand. 6359 OpInfo.CallOperandVal = 0; 6360 6361 // It is now an indirect operand. 6362 OpInfo.isIndirect = true; 6363 } 6364 6365 // If this constraint is for a specific register, allocate it before 6366 // anything else. 6367 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6368 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6369 } 6370 6371 // Second pass - Loop over all of the operands, assigning virtual or physregs 6372 // to register class operands. 6373 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6374 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6375 6376 // C_Register operands have already been allocated, Other/Memory don't need 6377 // to be. 6378 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6379 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6380 } 6381 6382 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6383 std::vector<SDValue> AsmNodeOperands; 6384 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6385 AsmNodeOperands.push_back( 6386 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6387 TLI->getPointerTy())); 6388 6389 // If we have a !srcloc metadata node associated with it, we want to attach 6390 // this to the ultimately generated inline asm machineinstr. To do this, we 6391 // pass in the third operand as this (potentially null) inline asm MDNode. 6392 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6393 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6394 6395 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6396 // bits as operand 3. 6397 unsigned ExtraInfo = 0; 6398 if (IA->hasSideEffects()) 6399 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6400 if (IA->isAlignStack()) 6401 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6402 // Set the asm dialect. 6403 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6404 6405 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6406 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6407 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6408 6409 // Compute the constraint code and ConstraintType to use. 6410 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6411 6412 // Ideally, we would only check against memory constraints. However, the 6413 // meaning of an other constraint can be target-specific and we can't easily 6414 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6415 // for other constriants as well. 6416 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6417 OpInfo.ConstraintType == TargetLowering::C_Other) { 6418 if (OpInfo.Type == InlineAsm::isInput) 6419 ExtraInfo |= InlineAsm::Extra_MayLoad; 6420 else if (OpInfo.Type == InlineAsm::isOutput) 6421 ExtraInfo |= InlineAsm::Extra_MayStore; 6422 else if (OpInfo.Type == InlineAsm::isClobber) 6423 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6424 } 6425 } 6426 6427 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6428 TLI->getPointerTy())); 6429 6430 // Loop over all of the inputs, copying the operand values into the 6431 // appropriate registers and processing the output regs. 6432 RegsForValue RetValRegs; 6433 6434 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6435 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6436 6437 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6438 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6439 6440 switch (OpInfo.Type) { 6441 case InlineAsm::isOutput: { 6442 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6443 OpInfo.ConstraintType != TargetLowering::C_Register) { 6444 // Memory output, or 'other' output (e.g. 'X' constraint). 6445 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6446 6447 // Add information to the INLINEASM node to know about this output. 6448 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6449 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6450 TLI->getPointerTy())); 6451 AsmNodeOperands.push_back(OpInfo.CallOperand); 6452 break; 6453 } 6454 6455 // Otherwise, this is a register or register class output. 6456 6457 // Copy the output from the appropriate register. Find a register that 6458 // we can use. 6459 if (OpInfo.AssignedRegs.Regs.empty()) { 6460 LLVMContext &Ctx = *DAG.getContext(); 6461 Ctx.emitError(CS.getInstruction(), 6462 "couldn't allocate output register for constraint '" + 6463 Twine(OpInfo.ConstraintCode) + "'"); 6464 return; 6465 } 6466 6467 // If this is an indirect operand, store through the pointer after the 6468 // asm. 6469 if (OpInfo.isIndirect) { 6470 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6471 OpInfo.CallOperandVal)); 6472 } else { 6473 // This is the result value of the call. 6474 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6475 // Concatenate this output onto the outputs list. 6476 RetValRegs.append(OpInfo.AssignedRegs); 6477 } 6478 6479 // Add information to the INLINEASM node to know that this register is 6480 // set. 6481 OpInfo.AssignedRegs 6482 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6483 ? InlineAsm::Kind_RegDefEarlyClobber 6484 : InlineAsm::Kind_RegDef, 6485 false, 0, DAG, AsmNodeOperands); 6486 break; 6487 } 6488 case InlineAsm::isInput: { 6489 SDValue InOperandVal = OpInfo.CallOperand; 6490 6491 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6492 // If this is required to match an output register we have already set, 6493 // just use its register. 6494 unsigned OperandNo = OpInfo.getMatchedOperand(); 6495 6496 // Scan until we find the definition we already emitted of this operand. 6497 // When we find it, create a RegsForValue operand. 6498 unsigned CurOp = InlineAsm::Op_FirstOperand; 6499 for (; OperandNo; --OperandNo) { 6500 // Advance to the next operand. 6501 unsigned OpFlag = 6502 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6503 assert((InlineAsm::isRegDefKind(OpFlag) || 6504 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6505 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6506 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6507 } 6508 6509 unsigned OpFlag = 6510 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6511 if (InlineAsm::isRegDefKind(OpFlag) || 6512 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6513 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6514 if (OpInfo.isIndirect) { 6515 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6516 LLVMContext &Ctx = *DAG.getContext(); 6517 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6518 " don't know how to handle tied " 6519 "indirect register inputs"); 6520 return; 6521 } 6522 6523 RegsForValue MatchedRegs; 6524 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6525 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6526 MatchedRegs.RegVTs.push_back(RegVT); 6527 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6528 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6529 i != e; ++i) { 6530 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6531 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6532 else { 6533 LLVMContext &Ctx = *DAG.getContext(); 6534 Ctx.emitError(CS.getInstruction(), 6535 "inline asm error: This value" 6536 " type register class is not natively supported!"); 6537 return; 6538 } 6539 } 6540 // Use the produced MatchedRegs object to 6541 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6542 Chain, &Flag, CS.getInstruction()); 6543 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6544 true, OpInfo.getMatchedOperand(), 6545 DAG, AsmNodeOperands); 6546 break; 6547 } 6548 6549 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6550 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6551 "Unexpected number of operands"); 6552 // Add information to the INLINEASM node to know about this input. 6553 // See InlineAsm.h isUseOperandTiedToDef. 6554 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6555 OpInfo.getMatchedOperand()); 6556 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6557 TLI->getPointerTy())); 6558 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6559 break; 6560 } 6561 6562 // Treat indirect 'X' constraint as memory. 6563 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6564 OpInfo.isIndirect) 6565 OpInfo.ConstraintType = TargetLowering::C_Memory; 6566 6567 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6568 std::vector<SDValue> Ops; 6569 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6570 Ops, DAG); 6571 if (Ops.empty()) { 6572 LLVMContext &Ctx = *DAG.getContext(); 6573 Ctx.emitError(CS.getInstruction(), 6574 "invalid operand for inline asm constraint '" + 6575 Twine(OpInfo.ConstraintCode) + "'"); 6576 return; 6577 } 6578 6579 // Add information to the INLINEASM node to know about this input. 6580 unsigned ResOpType = 6581 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6582 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6583 TLI->getPointerTy())); 6584 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6585 break; 6586 } 6587 6588 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6589 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6590 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6591 "Memory operands expect pointer values"); 6592 6593 // Add information to the INLINEASM node to know about this input. 6594 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6595 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6596 TLI->getPointerTy())); 6597 AsmNodeOperands.push_back(InOperandVal); 6598 break; 6599 } 6600 6601 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6602 OpInfo.ConstraintType == TargetLowering::C_Register) && 6603 "Unknown constraint type!"); 6604 6605 // TODO: Support this. 6606 if (OpInfo.isIndirect) { 6607 LLVMContext &Ctx = *DAG.getContext(); 6608 Ctx.emitError(CS.getInstruction(), 6609 "Don't know how to handle indirect register inputs yet " 6610 "for constraint '" + 6611 Twine(OpInfo.ConstraintCode) + "'"); 6612 return; 6613 } 6614 6615 // Copy the input into the appropriate registers. 6616 if (OpInfo.AssignedRegs.Regs.empty()) { 6617 LLVMContext &Ctx = *DAG.getContext(); 6618 Ctx.emitError(CS.getInstruction(), 6619 "couldn't allocate input reg for constraint '" + 6620 Twine(OpInfo.ConstraintCode) + "'"); 6621 return; 6622 } 6623 6624 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6625 Chain, &Flag, CS.getInstruction()); 6626 6627 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6628 DAG, AsmNodeOperands); 6629 break; 6630 } 6631 case InlineAsm::isClobber: { 6632 // Add the clobbered value to the operand list, so that the register 6633 // allocator is aware that the physreg got clobbered. 6634 if (!OpInfo.AssignedRegs.Regs.empty()) 6635 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6636 false, 0, DAG, 6637 AsmNodeOperands); 6638 break; 6639 } 6640 } 6641 } 6642 6643 // Finish up input operands. Set the input chain and add the flag last. 6644 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6645 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6646 6647 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6648 DAG.getVTList(MVT::Other, MVT::Glue), 6649 &AsmNodeOperands[0], AsmNodeOperands.size()); 6650 Flag = Chain.getValue(1); 6651 6652 // If this asm returns a register value, copy the result from that register 6653 // and set it as the value of the call. 6654 if (!RetValRegs.Regs.empty()) { 6655 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6656 Chain, &Flag, CS.getInstruction()); 6657 6658 // FIXME: Why don't we do this for inline asms with MRVs? 6659 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6660 EVT ResultType = TLI->getValueType(CS.getType()); 6661 6662 // If any of the results of the inline asm is a vector, it may have the 6663 // wrong width/num elts. This can happen for register classes that can 6664 // contain multiple different value types. The preg or vreg allocated may 6665 // not have the same VT as was expected. Convert it to the right type 6666 // with bit_convert. 6667 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6668 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6669 ResultType, Val); 6670 6671 } else if (ResultType != Val.getValueType() && 6672 ResultType.isInteger() && Val.getValueType().isInteger()) { 6673 // If a result value was tied to an input value, the computed result may 6674 // have a wider width than the expected result. Extract the relevant 6675 // portion. 6676 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6677 } 6678 6679 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6680 } 6681 6682 setValue(CS.getInstruction(), Val); 6683 // Don't need to use this as a chain in this case. 6684 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6685 return; 6686 } 6687 6688 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6689 6690 // Process indirect outputs, first output all of the flagged copies out of 6691 // physregs. 6692 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6693 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6694 const Value *Ptr = IndirectStoresToEmit[i].second; 6695 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6696 Chain, &Flag, IA); 6697 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6698 } 6699 6700 // Emit the non-flagged stores from the physregs. 6701 SmallVector<SDValue, 8> OutChains; 6702 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6703 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6704 StoresToEmit[i].first, 6705 getValue(StoresToEmit[i].second), 6706 MachinePointerInfo(StoresToEmit[i].second), 6707 false, false, 0); 6708 OutChains.push_back(Val); 6709 } 6710 6711 if (!OutChains.empty()) 6712 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 6713 &OutChains[0], OutChains.size()); 6714 6715 DAG.setRoot(Chain); 6716 } 6717 6718 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6719 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6720 MVT::Other, getRoot(), 6721 getValue(I.getArgOperand(0)), 6722 DAG.getSrcValue(I.getArgOperand(0)))); 6723 } 6724 6725 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6726 const TargetLowering *TLI = TM.getTargetLowering(); 6727 const DataLayout &TD = *TLI->getDataLayout(); 6728 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6729 getRoot(), getValue(I.getOperand(0)), 6730 DAG.getSrcValue(I.getOperand(0)), 6731 TD.getABITypeAlignment(I.getType())); 6732 setValue(&I, V); 6733 DAG.setRoot(V.getValue(1)); 6734 } 6735 6736 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6737 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6738 MVT::Other, getRoot(), 6739 getValue(I.getArgOperand(0)), 6740 DAG.getSrcValue(I.getArgOperand(0)))); 6741 } 6742 6743 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6744 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6745 MVT::Other, getRoot(), 6746 getValue(I.getArgOperand(0)), 6747 getValue(I.getArgOperand(1)), 6748 DAG.getSrcValue(I.getArgOperand(0)), 6749 DAG.getSrcValue(I.getArgOperand(1)))); 6750 } 6751 6752 /// \brief Lower an argument list according to the target calling convention. 6753 /// 6754 /// \return A tuple of <return-value, token-chain> 6755 /// 6756 /// This is a helper for lowering intrinsics that follow a target calling 6757 /// convention or require stack pointer adjustment. Only a subset of the 6758 /// intrinsic's operands need to participate in the calling convention. 6759 std::pair<SDValue, SDValue> 6760 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6761 unsigned NumArgs, SDValue Callee, 6762 bool useVoidTy) { 6763 TargetLowering::ArgListTy Args; 6764 Args.reserve(NumArgs); 6765 6766 // Populate the argument list. 6767 // Attributes for args start at offset 1, after the return attribute. 6768 ImmutableCallSite CS(&CI); 6769 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6770 ArgI != ArgE; ++ArgI) { 6771 const Value *V = CI.getOperand(ArgI); 6772 6773 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6774 6775 TargetLowering::ArgListEntry Entry; 6776 Entry.Node = getValue(V); 6777 Entry.Ty = V->getType(); 6778 Entry.setAttributes(&CS, AttrI); 6779 Args.push_back(Entry); 6780 } 6781 6782 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6783 TargetLowering::CallLoweringInfo CLI(getRoot(), retTy, /*retSExt*/ false, 6784 /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false, NumArgs, 6785 CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false, 6786 /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc()); 6787 6788 const TargetLowering *TLI = TM.getTargetLowering(); 6789 return TLI->LowerCallTo(CLI); 6790 } 6791 6792 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6793 /// or patchpoint target node's operand list. 6794 /// 6795 /// Constants are converted to TargetConstants purely as an optimization to 6796 /// avoid constant materialization and register allocation. 6797 /// 6798 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6799 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6800 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6801 /// address materialization and register allocation, but may also be required 6802 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6803 /// alloca in the entry block, then the runtime may assume that the alloca's 6804 /// StackMap location can be read immediately after compilation and that the 6805 /// location is valid at any point during execution (this is similar to the 6806 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6807 /// only available in a register, then the runtime would need to trap when 6808 /// execution reaches the StackMap in order to read the alloca's location. 6809 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6810 SmallVectorImpl<SDValue> &Ops, 6811 SelectionDAGBuilder &Builder) { 6812 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6813 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6814 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6815 Ops.push_back( 6816 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6817 Ops.push_back( 6818 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6819 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6820 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6821 Ops.push_back( 6822 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6823 } else 6824 Ops.push_back(OpVal); 6825 } 6826 } 6827 6828 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6829 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6830 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6831 // [live variables...]) 6832 6833 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6834 6835 SDValue Callee = getValue(CI.getCalledValue()); 6836 6837 // Lower into a call sequence with no args and no return value. 6838 std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee); 6839 // Set the root to the target-lowered call chain. 6840 SDValue Chain = Result.second; 6841 DAG.setRoot(Chain); 6842 6843 /// Get a call instruction from the call sequence chain. 6844 /// Tail calls are not allowed. 6845 SDNode *CallEnd = Chain.getNode(); 6846 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6847 "Expected a callseq node."); 6848 SDNode *Call = CallEnd->getOperand(0).getNode(); 6849 bool hasGlue = Call->getGluedNode(); 6850 6851 // Replace the target specific call node with the stackmap intrinsic. 6852 SmallVector<SDValue, 8> Ops; 6853 6854 // Add the <id> and <numShadowBytes> constants. 6855 for (unsigned i = 0; i < 2; ++i) { 6856 SDValue tmp = getValue(CI.getOperand(i)); 6857 Ops.push_back(DAG.getTargetConstant( 6858 cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32)); 6859 } 6860 // Push live variables for the stack map. 6861 addStackMapLiveVars(CI, 2, Ops, *this); 6862 6863 // Push the chain (this is originally the first operand of the call, but 6864 // becomes now the last or second to last operand). 6865 Ops.push_back(*(Call->op_begin())); 6866 6867 // Push the glue flag (last operand). 6868 if (hasGlue) 6869 Ops.push_back(*(Call->op_end()-1)); 6870 6871 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6872 6873 // Replace the target specific call node with a STACKMAP node. 6874 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::STACKMAP, getCurSDLoc(), 6875 NodeTys, Ops); 6876 6877 // StackMap generates no value, so nothing goes in the NodeMap. 6878 6879 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6880 // call sequence. 6881 DAG.ReplaceAllUsesWith(Call, MN); 6882 6883 DAG.DeleteNode(Call); 6884 } 6885 6886 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6887 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6888 // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>, 6889 // i32 <numBytes>, 6890 // i8* <target>, 6891 // i32 <numArgs>, 6892 // [Args...], 6893 // [live variables...]) 6894 6895 CallingConv::ID CC = CI.getCallingConv(); 6896 bool isAnyRegCC = CC == CallingConv::AnyReg; 6897 bool hasDef = !CI.getType()->isVoidTy(); 6898 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6899 6900 // Get the real number of arguments participating in the call <numArgs> 6901 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6902 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6903 6904 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6905 // Intrinsics include all meta-operands up to but not including CC. 6906 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6907 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6908 "Not enough arguments provided to the patchpoint intrinsic"); 6909 6910 // For AnyRegCC the arguments are lowered later on manually. 6911 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6912 std::pair<SDValue, SDValue> Result = 6913 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6914 6915 // Set the root to the target-lowered call chain. 6916 SDValue Chain = Result.second; 6917 DAG.setRoot(Chain); 6918 6919 SDNode *CallEnd = Chain.getNode(); 6920 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6921 CallEnd = CallEnd->getOperand(0).getNode(); 6922 6923 /// Get a call instruction from the call sequence chain. 6924 /// Tail calls are not allowed. 6925 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6926 "Expected a callseq node."); 6927 SDNode *Call = CallEnd->getOperand(0).getNode(); 6928 bool hasGlue = Call->getGluedNode(); 6929 6930 // Replace the target specific call node with the patchable intrinsic. 6931 SmallVector<SDValue, 8> Ops; 6932 6933 // Add the <id> and <numBytes> constants. 6934 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6935 Ops.push_back(DAG.getTargetConstant( 6936 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i32)); 6937 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6938 Ops.push_back(DAG.getTargetConstant( 6939 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6940 6941 // Assume that the Callee is a constant address. 6942 // FIXME: handle function symbols in the future. 6943 Ops.push_back( 6944 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6945 /*isTarget=*/true)); 6946 6947 // Adjust <numArgs> to account for any arguments that have been passed on the 6948 // stack instead. 6949 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6950 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 6951 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 6952 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6953 6954 // Add the calling convention 6955 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6956 6957 // Add the arguments we omitted previously. The register allocator should 6958 // place these in any free register. 6959 if (isAnyRegCC) 6960 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6961 Ops.push_back(getValue(CI.getArgOperand(i))); 6962 6963 // Push the arguments from the call instruction up to the register mask. 6964 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 6965 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 6966 Ops.push_back(*i); 6967 6968 // Push live variables for the stack map. 6969 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 6970 6971 // Push the register mask info. 6972 if (hasGlue) 6973 Ops.push_back(*(Call->op_end()-2)); 6974 else 6975 Ops.push_back(*(Call->op_end()-1)); 6976 6977 // Push the chain (this is originally the first operand of the call, but 6978 // becomes now the last or second to last operand). 6979 Ops.push_back(*(Call->op_begin())); 6980 6981 // Push the glue flag (last operand). 6982 if (hasGlue) 6983 Ops.push_back(*(Call->op_end()-1)); 6984 6985 SDVTList NodeTys; 6986 if (isAnyRegCC && hasDef) { 6987 // Create the return types based on the intrinsic definition 6988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6989 SmallVector<EVT, 3> ValueVTs; 6990 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 6991 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6992 6993 // There is always a chain and a glue type at the end 6994 ValueVTs.push_back(MVT::Other); 6995 ValueVTs.push_back(MVT::Glue); 6996 NodeTys = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 6997 } else 6998 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6999 7000 // Replace the target specific call node with a PATCHPOINT node. 7001 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7002 getCurSDLoc(), NodeTys, Ops); 7003 7004 // Update the NodeMap. 7005 if (hasDef) { 7006 if (isAnyRegCC) 7007 setValue(&CI, SDValue(MN, 0)); 7008 else 7009 setValue(&CI, Result.first); 7010 } 7011 7012 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7013 // call sequence. Furthermore the location of the chain and glue can change 7014 // when the AnyReg calling convention is used and the intrinsic returns a 7015 // value. 7016 if (isAnyRegCC && hasDef) { 7017 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7018 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7019 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7020 } else 7021 DAG.ReplaceAllUsesWith(Call, MN); 7022 DAG.DeleteNode(Call); 7023 } 7024 7025 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7026 /// implementation, which just calls LowerCall. 7027 /// FIXME: When all targets are 7028 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7029 std::pair<SDValue, SDValue> 7030 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7031 // Handle the incoming return values from the call. 7032 CLI.Ins.clear(); 7033 SmallVector<EVT, 4> RetTys; 7034 ComputeValueVTs(*this, CLI.RetTy, RetTys); 7035 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7036 EVT VT = RetTys[I]; 7037 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7038 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7039 for (unsigned i = 0; i != NumRegs; ++i) { 7040 ISD::InputArg MyFlags; 7041 MyFlags.VT = RegisterVT; 7042 MyFlags.ArgVT = VT; 7043 MyFlags.Used = CLI.IsReturnValueUsed; 7044 if (CLI.RetSExt) 7045 MyFlags.Flags.setSExt(); 7046 if (CLI.RetZExt) 7047 MyFlags.Flags.setZExt(); 7048 if (CLI.IsInReg) 7049 MyFlags.Flags.setInReg(); 7050 CLI.Ins.push_back(MyFlags); 7051 } 7052 } 7053 7054 // Handle all of the outgoing arguments. 7055 CLI.Outs.clear(); 7056 CLI.OutVals.clear(); 7057 ArgListTy &Args = CLI.Args; 7058 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7059 SmallVector<EVT, 4> ValueVTs; 7060 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7061 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7062 Value != NumValues; ++Value) { 7063 EVT VT = ValueVTs[Value]; 7064 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7065 SDValue Op = SDValue(Args[i].Node.getNode(), 7066 Args[i].Node.getResNo() + Value); 7067 ISD::ArgFlagsTy Flags; 7068 unsigned OriginalAlignment = 7069 getDataLayout()->getABITypeAlignment(ArgTy); 7070 7071 if (Args[i].isZExt) 7072 Flags.setZExt(); 7073 if (Args[i].isSExt) 7074 Flags.setSExt(); 7075 if (Args[i].isInReg) 7076 Flags.setInReg(); 7077 if (Args[i].isSRet) 7078 Flags.setSRet(); 7079 if (Args[i].isByVal) { 7080 Flags.setByVal(); 7081 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7082 Type *ElementTy = Ty->getElementType(); 7083 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7084 // For ByVal, alignment should come from FE. BE will guess if this 7085 // info is not there but there are cases it cannot get right. 7086 unsigned FrameAlign; 7087 if (Args[i].Alignment) 7088 FrameAlign = Args[i].Alignment; 7089 else 7090 FrameAlign = getByValTypeAlignment(ElementTy); 7091 Flags.setByValAlign(FrameAlign); 7092 } 7093 if (Args[i].isNest) 7094 Flags.setNest(); 7095 Flags.setOrigAlign(OriginalAlignment); 7096 7097 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7098 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7099 SmallVector<SDValue, 4> Parts(NumParts); 7100 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7101 7102 if (Args[i].isSExt) 7103 ExtendKind = ISD::SIGN_EXTEND; 7104 else if (Args[i].isZExt) 7105 ExtendKind = ISD::ZERO_EXTEND; 7106 7107 // Conservatively only handle 'returned' on non-vectors for now 7108 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7109 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7110 "unexpected use of 'returned'"); 7111 // Before passing 'returned' to the target lowering code, ensure that 7112 // either the register MVT and the actual EVT are the same size or that 7113 // the return value and argument are extended in the same way; in these 7114 // cases it's safe to pass the argument register value unchanged as the 7115 // return register value (although it's at the target's option whether 7116 // to do so) 7117 // TODO: allow code generation to take advantage of partially preserved 7118 // registers rather than clobbering the entire register when the 7119 // parameter extension method is not compatible with the return 7120 // extension method 7121 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7122 (ExtendKind != ISD::ANY_EXTEND && 7123 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7124 Flags.setReturned(); 7125 } 7126 7127 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 7128 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 7129 7130 for (unsigned j = 0; j != NumParts; ++j) { 7131 // if it isn't first piece, alignment must be 1 7132 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7133 i < CLI.NumFixedArgs, 7134 i, j*Parts[j].getValueType().getStoreSize()); 7135 if (NumParts > 1 && j == 0) 7136 MyFlags.Flags.setSplit(); 7137 else if (j != 0) 7138 MyFlags.Flags.setOrigAlign(1); 7139 7140 CLI.Outs.push_back(MyFlags); 7141 CLI.OutVals.push_back(Parts[j]); 7142 } 7143 } 7144 } 7145 7146 SmallVector<SDValue, 4> InVals; 7147 CLI.Chain = LowerCall(CLI, InVals); 7148 7149 // Verify that the target's LowerCall behaved as expected. 7150 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7151 "LowerCall didn't return a valid chain!"); 7152 assert((!CLI.IsTailCall || InVals.empty()) && 7153 "LowerCall emitted a return value for a tail call!"); 7154 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7155 "LowerCall didn't emit the correct number of values!"); 7156 7157 // For a tail call, the return value is merely live-out and there aren't 7158 // any nodes in the DAG representing it. Return a special value to 7159 // indicate that a tail call has been emitted and no more Instructions 7160 // should be processed in the current block. 7161 if (CLI.IsTailCall) { 7162 CLI.DAG.setRoot(CLI.Chain); 7163 return std::make_pair(SDValue(), SDValue()); 7164 } 7165 7166 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7167 assert(InVals[i].getNode() && 7168 "LowerCall emitted a null value!"); 7169 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7170 "LowerCall emitted a value with the wrong type!"); 7171 }); 7172 7173 // Collect the legal value parts into potentially illegal values 7174 // that correspond to the original function's return values. 7175 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7176 if (CLI.RetSExt) 7177 AssertOp = ISD::AssertSext; 7178 else if (CLI.RetZExt) 7179 AssertOp = ISD::AssertZext; 7180 SmallVector<SDValue, 4> ReturnValues; 7181 unsigned CurReg = 0; 7182 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7183 EVT VT = RetTys[I]; 7184 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7185 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7186 7187 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7188 NumRegs, RegisterVT, VT, NULL, 7189 AssertOp)); 7190 CurReg += NumRegs; 7191 } 7192 7193 // For a function returning void, there is no return value. We can't create 7194 // such a node, so we just return a null return value in that case. In 7195 // that case, nothing will actually look at the value. 7196 if (ReturnValues.empty()) 7197 return std::make_pair(SDValue(), CLI.Chain); 7198 7199 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7200 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 7201 &ReturnValues[0], ReturnValues.size()); 7202 return std::make_pair(Res, CLI.Chain); 7203 } 7204 7205 void TargetLowering::LowerOperationWrapper(SDNode *N, 7206 SmallVectorImpl<SDValue> &Results, 7207 SelectionDAG &DAG) const { 7208 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7209 if (Res.getNode()) 7210 Results.push_back(Res); 7211 } 7212 7213 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7214 llvm_unreachable("LowerOperation not implemented for this target!"); 7215 } 7216 7217 void 7218 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7219 SDValue Op = getNonRegisterValue(V); 7220 assert((Op.getOpcode() != ISD::CopyFromReg || 7221 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7222 "Copy from a reg to the same reg!"); 7223 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7224 7225 const TargetLowering *TLI = TM.getTargetLowering(); 7226 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7227 SDValue Chain = DAG.getEntryNode(); 7228 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V); 7229 PendingExports.push_back(Chain); 7230 } 7231 7232 #include "llvm/CodeGen/SelectionDAGISel.h" 7233 7234 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7235 /// entry block, return true. This includes arguments used by switches, since 7236 /// the switch may expand into multiple basic blocks. 7237 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7238 // With FastISel active, we may be splitting blocks, so force creation 7239 // of virtual registers for all non-dead arguments. 7240 if (FastISel) 7241 return A->use_empty(); 7242 7243 const BasicBlock *Entry = A->getParent()->begin(); 7244 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 7245 UI != E; ++UI) { 7246 const User *U = *UI; 7247 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7248 return false; // Use not in entry block. 7249 } 7250 return true; 7251 } 7252 7253 void SelectionDAGISel::LowerArguments(const Function &F) { 7254 SelectionDAG &DAG = SDB->DAG; 7255 SDLoc dl = SDB->getCurSDLoc(); 7256 const TargetLowering *TLI = getTargetLowering(); 7257 const DataLayout *TD = TLI->getDataLayout(); 7258 SmallVector<ISD::InputArg, 16> Ins; 7259 7260 if (!FuncInfo->CanLowerReturn) { 7261 // Put in an sret pointer parameter before all the other parameters. 7262 SmallVector<EVT, 1> ValueVTs; 7263 ComputeValueVTs(*getTargetLowering(), 7264 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7265 7266 // NOTE: Assuming that a pointer will never break down to more than one VT 7267 // or one register. 7268 ISD::ArgFlagsTy Flags; 7269 Flags.setSRet(); 7270 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7271 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7272 Ins.push_back(RetArg); 7273 } 7274 7275 // Set up the incoming argument description vector. 7276 unsigned Idx = 1; 7277 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7278 I != E; ++I, ++Idx) { 7279 SmallVector<EVT, 4> ValueVTs; 7280 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7281 bool isArgValueUsed = !I->use_empty(); 7282 unsigned PartBase = 0; 7283 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7284 Value != NumValues; ++Value) { 7285 EVT VT = ValueVTs[Value]; 7286 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7287 ISD::ArgFlagsTy Flags; 7288 unsigned OriginalAlignment = 7289 TD->getABITypeAlignment(ArgTy); 7290 7291 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7292 Flags.setZExt(); 7293 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7294 Flags.setSExt(); 7295 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7296 Flags.setInReg(); 7297 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7298 Flags.setSRet(); 7299 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) { 7300 Flags.setByVal(); 7301 PointerType *Ty = cast<PointerType>(I->getType()); 7302 Type *ElementTy = Ty->getElementType(); 7303 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 7304 // For ByVal, alignment should be passed from FE. BE will guess if 7305 // this info is not there but there are cases it cannot get right. 7306 unsigned FrameAlign; 7307 if (F.getParamAlignment(Idx)) 7308 FrameAlign = F.getParamAlignment(Idx); 7309 else 7310 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7311 Flags.setByValAlign(FrameAlign); 7312 } 7313 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7314 Flags.setNest(); 7315 Flags.setOrigAlign(OriginalAlignment); 7316 7317 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7318 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7319 for (unsigned i = 0; i != NumRegs; ++i) { 7320 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7321 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7322 if (NumRegs > 1 && i == 0) 7323 MyFlags.Flags.setSplit(); 7324 // if it isn't first piece, alignment must be 1 7325 else if (i > 0) 7326 MyFlags.Flags.setOrigAlign(1); 7327 Ins.push_back(MyFlags); 7328 } 7329 PartBase += VT.getStoreSize(); 7330 } 7331 } 7332 7333 // Call the target to set up the argument values. 7334 SmallVector<SDValue, 8> InVals; 7335 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7336 F.isVarArg(), Ins, 7337 dl, DAG, InVals); 7338 7339 // Verify that the target's LowerFormalArguments behaved as expected. 7340 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7341 "LowerFormalArguments didn't return a valid chain!"); 7342 assert(InVals.size() == Ins.size() && 7343 "LowerFormalArguments didn't emit the correct number of values!"); 7344 DEBUG({ 7345 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7346 assert(InVals[i].getNode() && 7347 "LowerFormalArguments emitted a null value!"); 7348 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7349 "LowerFormalArguments emitted a value with the wrong type!"); 7350 } 7351 }); 7352 7353 // Update the DAG with the new chain value resulting from argument lowering. 7354 DAG.setRoot(NewRoot); 7355 7356 // Set up the argument values. 7357 unsigned i = 0; 7358 Idx = 1; 7359 if (!FuncInfo->CanLowerReturn) { 7360 // Create a virtual register for the sret pointer, and put in a copy 7361 // from the sret argument into it. 7362 SmallVector<EVT, 1> ValueVTs; 7363 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7364 MVT VT = ValueVTs[0].getSimpleVT(); 7365 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7366 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7367 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7368 RegVT, VT, NULL, AssertOp); 7369 7370 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7371 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7372 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7373 FuncInfo->DemoteRegister = SRetReg; 7374 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7375 SRetReg, ArgValue); 7376 DAG.setRoot(NewRoot); 7377 7378 // i indexes lowered arguments. Bump it past the hidden sret argument. 7379 // Idx indexes LLVM arguments. Don't touch it. 7380 ++i; 7381 } 7382 7383 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7384 ++I, ++Idx) { 7385 SmallVector<SDValue, 4> ArgValues; 7386 SmallVector<EVT, 4> ValueVTs; 7387 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7388 unsigned NumValues = ValueVTs.size(); 7389 7390 // If this argument is unused then remember its value. It is used to generate 7391 // debugging information. 7392 if (I->use_empty() && NumValues) { 7393 SDB->setUnusedArgValue(I, InVals[i]); 7394 7395 // Also remember any frame index for use in FastISel. 7396 if (FrameIndexSDNode *FI = 7397 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7398 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7399 } 7400 7401 for (unsigned Val = 0; Val != NumValues; ++Val) { 7402 EVT VT = ValueVTs[Val]; 7403 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7404 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7405 7406 if (!I->use_empty()) { 7407 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7408 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7409 AssertOp = ISD::AssertSext; 7410 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7411 AssertOp = ISD::AssertZext; 7412 7413 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7414 NumParts, PartVT, VT, 7415 NULL, AssertOp)); 7416 } 7417 7418 i += NumParts; 7419 } 7420 7421 // We don't need to do anything else for unused arguments. 7422 if (ArgValues.empty()) 7423 continue; 7424 7425 // Note down frame index. 7426 if (FrameIndexSDNode *FI = 7427 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7428 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7429 7430 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 7431 SDB->getCurSDLoc()); 7432 7433 SDB->setValue(I, Res); 7434 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7435 if (LoadSDNode *LNode = 7436 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7437 if (FrameIndexSDNode *FI = 7438 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7439 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7440 } 7441 7442 // If this argument is live outside of the entry block, insert a copy from 7443 // wherever we got it to the vreg that other BB's will reference it as. 7444 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7445 // If we can, though, try to skip creating an unnecessary vreg. 7446 // FIXME: This isn't very clean... it would be nice to make this more 7447 // general. It's also subtly incompatible with the hacks FastISel 7448 // uses with vregs. 7449 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7450 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7451 FuncInfo->ValueMap[I] = Reg; 7452 continue; 7453 } 7454 } 7455 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7456 FuncInfo->InitializeRegForValue(I); 7457 SDB->CopyToExportRegsIfNeeded(I); 7458 } 7459 } 7460 7461 assert(i == InVals.size() && "Argument register count mismatch!"); 7462 7463 // Finally, if the target has anything special to do, allow it to do so. 7464 // FIXME: this should insert code into the DAG! 7465 EmitFunctionEntryCode(); 7466 } 7467 7468 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7469 /// ensure constants are generated when needed. Remember the virtual registers 7470 /// that need to be added to the Machine PHI nodes as input. We cannot just 7471 /// directly add them, because expansion might result in multiple MBB's for one 7472 /// BB. As such, the start of the BB might correspond to a different MBB than 7473 /// the end. 7474 /// 7475 void 7476 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7477 const TerminatorInst *TI = LLVMBB->getTerminator(); 7478 7479 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7480 7481 // Check successor nodes' PHI nodes that expect a constant to be available 7482 // from this block. 7483 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7484 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7485 if (!isa<PHINode>(SuccBB->begin())) continue; 7486 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7487 7488 // If this terminator has multiple identical successors (common for 7489 // switches), only handle each succ once. 7490 if (!SuccsHandled.insert(SuccMBB)) continue; 7491 7492 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7493 7494 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7495 // nodes and Machine PHI nodes, but the incoming operands have not been 7496 // emitted yet. 7497 for (BasicBlock::const_iterator I = SuccBB->begin(); 7498 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7499 // Ignore dead phi's. 7500 if (PN->use_empty()) continue; 7501 7502 // Skip empty types 7503 if (PN->getType()->isEmptyTy()) 7504 continue; 7505 7506 unsigned Reg; 7507 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7508 7509 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7510 unsigned &RegOut = ConstantsOut[C]; 7511 if (RegOut == 0) { 7512 RegOut = FuncInfo.CreateRegs(C->getType()); 7513 CopyValueToVirtualRegister(C, RegOut); 7514 } 7515 Reg = RegOut; 7516 } else { 7517 DenseMap<const Value *, unsigned>::iterator I = 7518 FuncInfo.ValueMap.find(PHIOp); 7519 if (I != FuncInfo.ValueMap.end()) 7520 Reg = I->second; 7521 else { 7522 assert(isa<AllocaInst>(PHIOp) && 7523 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7524 "Didn't codegen value into a register!??"); 7525 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7526 CopyValueToVirtualRegister(PHIOp, Reg); 7527 } 7528 } 7529 7530 // Remember that this register needs to added to the machine PHI node as 7531 // the input for this MBB. 7532 SmallVector<EVT, 4> ValueVTs; 7533 const TargetLowering *TLI = TM.getTargetLowering(); 7534 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7535 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7536 EVT VT = ValueVTs[vti]; 7537 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7538 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7539 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7540 Reg += NumRegisters; 7541 } 7542 } 7543 } 7544 7545 ConstantsOut.clear(); 7546 } 7547 7548 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7549 /// is 0. 7550 MachineBasicBlock * 7551 SelectionDAGBuilder::StackProtectorDescriptor:: 7552 AddSuccessorMBB(const BasicBlock *BB, 7553 MachineBasicBlock *ParentMBB, 7554 MachineBasicBlock *SuccMBB) { 7555 // If SuccBB has not been created yet, create it. 7556 if (!SuccMBB) { 7557 MachineFunction *MF = ParentMBB->getParent(); 7558 MachineFunction::iterator BBI = ParentMBB; 7559 SuccMBB = MF->CreateMachineBasicBlock(BB); 7560 MF->insert(++BBI, SuccMBB); 7561 } 7562 // Add it as a successor of ParentMBB. 7563 ParentMBB->addSuccessor(SuccMBB); 7564 return SuccMBB; 7565 } 7566