xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7e75f6fc1d55d96c2abbde10f4aed619bb322956)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
113 
114 #define DEBUG_TYPE "isel"
115 
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
119 
120 static cl::opt<bool>
121     InsertAssertAlign("insert-assert-align", cl::init(true),
122                       cl::desc("Insert the experimental `assertalign` node."),
123                       cl::ReallyHidden);
124 
125 static cl::opt<unsigned, true>
126     LimitFPPrecision("limit-float-precision",
127                      cl::desc("Generate low-precision inline sequences "
128                               "for some float libcalls"),
129                      cl::location(LimitFloatPrecision), cl::Hidden,
130                      cl::init(0));
131 
132 static cl::opt<unsigned> SwitchPeelThreshold(
133     "switch-peel-threshold", cl::Hidden, cl::init(66),
134     cl::desc("Set the case probability threshold for peeling the case from a "
135              "switch statement. A value greater than 100 will void this "
136              "optimization"));
137 
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
144 //
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
153 
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155                                       const SDValue *Parts, unsigned NumParts,
156                                       MVT PartVT, EVT ValueVT, const Value *V,
157                                       Optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165                                 const SDValue *Parts, unsigned NumParts,
166                                 MVT PartVT, EVT ValueVT, const Value *V,
167                                 Optional<CallingConv::ID> CC = None,
168                                 Optional<ISD::NodeType> AssertOp = None) {
169   // Let the target assemble the parts if it wants to
170   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172                                                    PartVT, ValueVT, CC))
173     return Val;
174 
175   if (ValueVT.isVector())
176     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177                                   CC);
178 
179   assert(NumParts > 0 && "No parts to assemble!");
180   SDValue Val = Parts[0];
181 
182   if (NumParts > 1) {
183     // Assemble the value from multiple parts.
184     if (ValueVT.isInteger()) {
185       unsigned PartBits = PartVT.getSizeInBits();
186       unsigned ValueBits = ValueVT.getSizeInBits();
187 
188       // Assemble the power of 2 part.
189       unsigned RoundParts =
190           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200                               PartVT, HalfVT, V);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202                               RoundParts / 2, PartVT, HalfVT, V);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi =
227             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
229                                         TLI.getPointerTy(DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
249     }
250   }
251 
252   // There is now one part, held in Val.  Correct it to match ValueVT.
253   // PartEVT is the type of the register class that holds the value.
254   // ValueVT is the type of the inline asm operation.
255   EVT PartEVT = Val.getValueType();
256 
257   if (PartEVT == ValueVT)
258     return Val;
259 
260   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261       ValueVT.bitsLT(PartEVT)) {
262     // For an FP value in an integer part, we need to truncate to the right
263     // width first.
264     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
265     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266   }
267 
268   // Handle types that have the same size.
269   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271 
272   // Handle types with different sizes.
273   if (PartEVT.isInteger() && ValueVT.isInteger()) {
274     if (ValueVT.bitsLT(PartEVT)) {
275       // For a truncate, see if we have any information to
276       // indicate whether the truncated bits will always be
277       // zero or sign-extension.
278       if (AssertOp.hasValue())
279         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280                           DAG.getValueType(ValueVT));
281       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282     }
283     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284   }
285 
286   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287     // FP_ROUND's are always exact here.
288     if (ValueVT.bitsLT(Val.getValueType()))
289       return DAG.getNode(
290           ISD::FP_ROUND, DL, ValueVT, Val,
291           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
292 
293     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
294   }
295 
296   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297   // then truncating.
298   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299       ValueVT.bitsLT(PartEVT)) {
300     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
302   }
303 
304   report_fatal_error("Unknown mismatch in getCopyFromParts!");
305 }
306 
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308                                               const Twine &ErrMsg) {
309   const Instruction *I = dyn_cast_or_null<Instruction>(V);
310   if (!V)
311     return Ctx.emitError(ErrMsg);
312 
313   const char *AsmError = ", possible invalid constraint for vector type";
314   if (const CallInst *CI = dyn_cast<CallInst>(I))
315     if (CI->isInlineAsm())
316       return Ctx.emitError(I, ErrMsg + AsmError);
317 
318   return Ctx.emitError(I, ErrMsg);
319 }
320 
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent.  If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327                                       const SDValue *Parts, unsigned NumParts,
328                                       MVT PartVT, EVT ValueVT, const Value *V,
329                                       Optional<CallingConv::ID> CallConv) {
330   assert(ValueVT.isVector() && "Not a vector value");
331   assert(NumParts > 0 && "No parts to assemble!");
332   const bool IsABIRegCopy = CallConv.hasValue();
333 
334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335   SDValue Val = Parts[0];
336 
337   // Handle a multi-element vector.
338   if (NumParts > 1) {
339     EVT IntermediateVT;
340     MVT RegisterVT;
341     unsigned NumIntermediates;
342     unsigned NumRegs;
343 
344     if (IsABIRegCopy) {
345       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347           NumIntermediates, RegisterVT);
348     } else {
349       NumRegs =
350           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351                                      NumIntermediates, RegisterVT);
352     }
353 
354     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355     NumParts = NumRegs; // Silence a compiler warning.
356     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357     assert(RegisterVT.getSizeInBits() ==
358            Parts[0].getSimpleValueType().getSizeInBits() &&
359            "Part type sizes don't match!");
360 
361     // Assemble the parts into intermediate operands.
362     SmallVector<SDValue, 8> Ops(NumIntermediates);
363     if (NumIntermediates == NumParts) {
364       // If the register was not expanded, truncate or copy the value,
365       // as appropriate.
366       for (unsigned i = 0; i != NumParts; ++i)
367         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368                                   PartVT, IntermediateVT, V, CallConv);
369     } else if (NumParts > 0) {
370       // If the intermediate type was expanded, build the intermediate
371       // operands from the parts.
372       assert(NumParts % NumIntermediates == 0 &&
373              "Must expand into a divisible number of parts!");
374       unsigned Factor = NumParts / NumIntermediates;
375       for (unsigned i = 0; i != NumIntermediates; ++i)
376         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377                                   PartVT, IntermediateVT, V, CallConv);
378     }
379 
380     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381     // intermediate operands.
382     EVT BuiltVectorTy =
383         IntermediateVT.isVector()
384             ? EVT::getVectorVT(
385                   *DAG.getContext(), IntermediateVT.getScalarType(),
386                   IntermediateVT.getVectorElementCount() * NumParts)
387             : EVT::getVectorVT(*DAG.getContext(),
388                                IntermediateVT.getScalarType(),
389                                NumIntermediates);
390     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391                                                 : ISD::BUILD_VECTOR,
392                       DL, BuiltVectorTy, Ops);
393   }
394 
395   // There is now one part, held in Val.  Correct it to match ValueVT.
396   EVT PartEVT = Val.getValueType();
397 
398   if (PartEVT == ValueVT)
399     return Val;
400 
401   if (PartEVT.isVector()) {
402     // If the element type of the source/dest vectors are the same, but the
403     // parts vector has more elements than the value vector, then we have a
404     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
405     // elements we want.
406     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413                          DAG.getVectorIdxConstant(0, DL));
414     }
415 
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421       "Cannot handle this kind of promotion");
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424 
425   }
426 
427   // Trivial bitcast if the types are the same size and the destination
428   // vector type is legal.
429   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430       TLI.isTypeLegal(ValueVT))
431     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
432 
433   if (ValueVT.getVectorNumElements() != 1) {
434      // Certain ABIs require that vectors are passed as integers. For vectors
435      // are the same size, this is an obvious bitcast.
436      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438      } else if (ValueVT.bitsLT(PartEVT)) {
439        // Bitcast Val back the original type and extract the corresponding
440        // vector we want.
441        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443                                            ValueVT.getVectorElementType(), Elts);
444        Val = DAG.getBitcast(WiderVecType, Val);
445        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446                           DAG.getVectorIdxConstant(0, DL));
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isFixedLengthVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   unsigned PartNumElts = PartVT.getVectorNumElements();
620   unsigned ValueNumElts = ValueVT.getVectorNumElements();
621   if (PartNumElts > ValueNumElts &&
622       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623     EVT ElementVT = PartVT.getVectorElementType();
624     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
625     // undef elements.
626     SmallVector<SDValue, 16> Ops;
627     DAG.ExtractVectorElements(Val, Ops);
628     SDValue EltUndef = DAG.getUNDEF(ElementVT);
629     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630       Ops.push_back(EltUndef);
631 
632     // FIXME: Use CONCAT for 2x -> 4x.
633     return DAG.getBuildVector(PartVT, DL, Ops);
634   }
635 
636   return SDValue();
637 }
638 
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642                                  SDValue Val, SDValue *Parts, unsigned NumParts,
643                                  MVT PartVT, const Value *V,
644                                  Optional<CallingConv::ID> CallConv) {
645   EVT ValueVT = Val.getValueType();
646   assert(ValueVT.isVector() && "Not a vector");
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648   const bool IsABIRegCopy = CallConv.hasValue();
649 
650   if (NumParts == 1) {
651     EVT PartEVT = PartVT;
652     if (PartEVT == ValueVT) {
653       // Nothing to do.
654     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655       // Bitconvert vector->vector case.
656       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658       Val = Widened;
659     } else if (PartVT.isVector() &&
660                PartEVT.getVectorElementType().bitsGE(
661                    ValueVT.getVectorElementType()) &&
662                PartEVT.getVectorElementCount() ==
663                    ValueVT.getVectorElementCount()) {
664 
665       // Promoted vector extract
666       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667     } else {
668       if (ValueVT.getVectorElementCount().isScalar()) {
669         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670                           DAG.getVectorIdxConstant(0, DL));
671       } else {
672         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
673         assert(PartVT.getFixedSizeInBits() > ValueSize &&
674                "lossy conversion of vector to scalar type");
675         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
676         Val = DAG.getBitcast(IntermediateType, Val);
677         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
678       }
679     }
680 
681     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682     Parts[0] = Val;
683     return;
684   }
685 
686   // Handle a multi-element vector.
687   EVT IntermediateVT;
688   MVT RegisterVT;
689   unsigned NumIntermediates;
690   unsigned NumRegs;
691   if (IsABIRegCopy) {
692     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694         NumIntermediates, RegisterVT);
695   } else {
696     NumRegs =
697         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698                                    NumIntermediates, RegisterVT);
699   }
700 
701   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702   NumParts = NumRegs; // Silence a compiler warning.
703   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
704 
705   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706          "Mixing scalable and fixed vectors when copying in parts");
707 
708   Optional<ElementCount> DestEltCnt;
709 
710   if (IntermediateVT.isVector())
711     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712   else
713     DestEltCnt = ElementCount::getFixed(NumIntermediates);
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717   if (ValueVT != BuiltVectorTy) {
718     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719       Val = Widened;
720 
721     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
722   }
723 
724   // Split the vector into intermediate operands.
725   SmallVector<SDValue, 8> Ops(NumIntermediates);
726   for (unsigned i = 0; i != NumIntermediates; ++i) {
727     if (IntermediateVT.isVector()) {
728       // This does something sensible for scalable vectors - see the
729       // definition of EXTRACT_SUBVECTOR for further details.
730       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731       Ops[i] =
732           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734     } else {
735       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736                            DAG.getVectorIdxConstant(i, DL));
737     }
738   }
739 
740   // Split the intermediate operands into legal parts.
741   if (NumParts == NumIntermediates) {
742     // If the register was not expanded, promote or copy the value,
743     // as appropriate.
744     for (unsigned i = 0; i != NumParts; ++i)
745       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746   } else if (NumParts > 0) {
747     // If the intermediate type was expanded, split each the value into
748     // legal parts.
749     assert(NumIntermediates != 0 && "division by zero");
750     assert(NumParts % NumIntermediates == 0 &&
751            "Must expand into a divisible number of parts!");
752     unsigned Factor = NumParts / NumIntermediates;
753     for (unsigned i = 0; i != NumIntermediates; ++i)
754       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755                      CallConv);
756   }
757 }
758 
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760                            EVT valuevt, Optional<CallingConv::ID> CC)
761     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762       RegCount(1, regs.size()), CallConv(CC) {}
763 
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765                            const DataLayout &DL, unsigned Reg, Type *Ty,
766                            Optional<CallingConv::ID> CC) {
767   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768 
769   CallConv = CC;
770 
771   for (EVT ValueVT : ValueVTs) {
772     unsigned NumRegs =
773         isABIMangled()
774             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775             : TLI.getNumRegisters(Context, ValueVT);
776     MVT RegisterVT =
777         isABIMangled()
778             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779             : TLI.getRegisterType(Context, ValueVT);
780     for (unsigned i = 0; i != NumRegs; ++i)
781       Regs.push_back(Reg + i);
782     RegVTs.push_back(RegisterVT);
783     RegCount.push_back(NumRegs);
784     Reg += NumRegs;
785   }
786 }
787 
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789                                       FunctionLoweringInfo &FuncInfo,
790                                       const SDLoc &dl, SDValue &Chain,
791                                       SDValue *Flag, const Value *V) const {
792   // A Value with type {} or [0 x %t] needs no registers.
793   if (ValueVTs.empty())
794     return SDValue();
795 
796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797 
798   // Assemble the legal parts into the final values.
799   SmallVector<SDValue, 4> Values(ValueVTs.size());
800   SmallVector<SDValue, 8> Parts;
801   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802     // Copy the legal parts from the registers.
803     EVT ValueVT = ValueVTs[Value];
804     unsigned NumRegs = RegCount[Value];
805     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806                                           *DAG.getContext(),
807                                           CallConv.getValue(), RegVTs[Value])
808                                     : RegVTs[Value];
809 
810     Parts.resize(NumRegs);
811     for (unsigned i = 0; i != NumRegs; ++i) {
812       SDValue P;
813       if (!Flag) {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815       } else {
816         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817         *Flag = P.getValue(2);
818       }
819 
820       Chain = P.getValue(1);
821       Parts[i] = P;
822 
823       // If the source register was virtual and if we know something about it,
824       // add an assert node.
825       if (!Register::isVirtualRegister(Regs[Part + i]) ||
826           !RegisterVT.isInteger())
827         continue;
828 
829       const FunctionLoweringInfo::LiveOutInfo *LOI =
830         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831       if (!LOI)
832         continue;
833 
834       unsigned RegSize = RegisterVT.getScalarSizeInBits();
835       unsigned NumSignBits = LOI->NumSignBits;
836       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837 
838       if (NumZeroBits == RegSize) {
839         // The current value is a zero.
840         // Explicitly express that as it would be easier for
841         // optimizations to kick in.
842         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843         continue;
844       }
845 
846       // FIXME: We capture more information than the dag can represent.  For
847       // now, just use the tightest assertzext/assertsext possible.
848       bool isSExt;
849       EVT FromVT(MVT::Other);
850       if (NumZeroBits) {
851         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852         isSExt = false;
853       } else if (NumSignBits > 1) {
854         FromVT =
855             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856         isSExt = true;
857       } else {
858         continue;
859       }
860       // Add an assertion node.
861       assert(FromVT != MVT::Other);
862       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863                              RegisterVT, P, DAG.getValueType(FromVT));
864     }
865 
866     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867                                      RegisterVT, ValueVT, V, CallConv);
868     Part += NumRegs;
869     Parts.clear();
870   }
871 
872   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 }
874 
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877                                  const Value *V,
878                                  ISD::NodeType PreferredExtendType) const {
879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880   ISD::NodeType ExtendKind = PreferredExtendType;
881 
882   // Get the list of the values's legal parts.
883   unsigned NumRegs = Regs.size();
884   SmallVector<SDValue, 8> Parts(NumRegs);
885   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886     unsigned NumParts = RegCount[Value];
887 
888     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889                                           *DAG.getContext(),
890                                           CallConv.getValue(), RegVTs[Value])
891                                     : RegVTs[Value];
892 
893     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894       ExtendKind = ISD::ZERO_EXTEND;
895 
896     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897                    NumParts, RegisterVT, V, CallConv, ExtendKind);
898     Part += NumParts;
899   }
900 
901   // Copy the parts into the registers.
902   SmallVector<SDValue, 8> Chains(NumRegs);
903   for (unsigned i = 0; i != NumRegs; ++i) {
904     SDValue Part;
905     if (!Flag) {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907     } else {
908       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909       *Flag = Part.getValue(1);
910     }
911 
912     Chains[i] = Part.getValue(0);
913   }
914 
915   if (NumRegs == 1 || Flag)
916     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917     // flagged to it. That is the CopyToReg nodes and the user are considered
918     // a single scheduling unit. If we create a TokenFactor and return it as
919     // chain, then the TokenFactor is both a predecessor (operand) of the
920     // user as well as a successor (the TF operands are flagged to the user).
921     // c1, f1 = CopyToReg
922     // c2, f2 = CopyToReg
923     // c3     = TokenFactor c1, c2
924     // ...
925     //        = op c3, ..., f2
926     Chain = Chains[NumRegs-1];
927   else
928     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 }
930 
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932                                         unsigned MatchingIdx, const SDLoc &dl,
933                                         SelectionDAG &DAG,
934                                         std::vector<SDValue> &Ops) const {
935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936 
937   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938   if (HasMatching)
939     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     Register SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, TypeSize>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     TypeSize RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1006 }
1007 
1008 void SelectionDAGBuilder::clear() {
1009   NodeMap.clear();
1010   UnusedArgNodeMap.clear();
1011   PendingLoads.clear();
1012   PendingExports.clear();
1013   PendingConstrainedFP.clear();
1014   PendingConstrainedFPStrict.clear();
1015   CurInst = nullptr;
1016   HasTailCall = false;
1017   SDNodeOrder = LowestSDNodeOrder;
1018   StatepointLowering.clear();
1019 }
1020 
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022   DanglingDebugInfoMap.clear();
1023 }
1024 
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027   SDValue Root = DAG.getRoot();
1028 
1029   if (Pending.empty())
1030     return Root;
1031 
1032   // Add current root to PendingChains, unless we already indirectly
1033   // depend on it.
1034   if (Root.getOpcode() != ISD::EntryToken) {
1035     unsigned i = 0, e = Pending.size();
1036     for (; i != e; ++i) {
1037       assert(Pending[i].getNode()->getNumOperands() > 1);
1038       if (Pending[i].getNode()->getOperand(0) == Root)
1039         break;  // Don't add the root if we already indirectly depend on it.
1040     }
1041 
1042     if (i == e)
1043       Pending.push_back(Root);
1044   }
1045 
1046   if (Pending.size() == 1)
1047     Root = Pending[0];
1048   else
1049     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1050 
1051   DAG.setRoot(Root);
1052   Pending.clear();
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057   return updateRoot(PendingLoads);
1058 }
1059 
1060 SDValue SelectionDAGBuilder::getRoot() {
1061   // Chain up all pending constrained intrinsics together with all
1062   // pending loads, by simply appending them to PendingLoads and
1063   // then calling getMemoryRoot().
1064   PendingLoads.reserve(PendingLoads.size() +
1065                        PendingConstrainedFP.size() +
1066                        PendingConstrainedFPStrict.size());
1067   PendingLoads.append(PendingConstrainedFP.begin(),
1068                       PendingConstrainedFP.end());
1069   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070                       PendingConstrainedFPStrict.end());
1071   PendingConstrainedFP.clear();
1072   PendingConstrainedFPStrict.clear();
1073   return getMemoryRoot();
1074 }
1075 
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077   // We need to emit pending fpexcept.strict constrained intrinsics,
1078   // so append them to the PendingExports list.
1079   PendingExports.append(PendingConstrainedFPStrict.begin(),
1080                         PendingConstrainedFPStrict.end());
1081   PendingConstrainedFPStrict.clear();
1082   return updateRoot(PendingExports);
1083 }
1084 
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086   // Set up outgoing PHI node register values before emitting the terminator.
1087   if (I.isTerminator()) {
1088     HandlePHINodesInSuccessorBlocks(I.getParent());
1089   }
1090 
1091   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092   if (!isa<DbgInfoIntrinsic>(I))
1093     ++SDNodeOrder;
1094 
1095   CurInst = &I;
1096 
1097   visit(I.getOpcode(), I);
1098 
1099   if (!I.isTerminator() && !HasTailCall &&
1100       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101     CopyToExportRegsIfNeeded(&I);
1102 
1103   CurInst = nullptr;
1104 }
1105 
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 }
1109 
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111   // Note: this doesn't use InstVisitor, because it has to work with
1112   // ConstantExpr's in addition to instructions.
1113   switch (Opcode) {
1114   default: llvm_unreachable("Unknown instruction type encountered!");
1115     // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1119   }
1120 }
1121 
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1123                                                 const DIExpression *Expr) {
1124   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1125     const DbgValueInst *DI = DDI.getDI();
1126     DIVariable *DanglingVariable = DI->getVariable();
1127     DIExpression *DanglingExpr = DI->getExpression();
1128     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1129       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1130       return true;
1131     }
1132     return false;
1133   };
1134 
1135   for (auto &DDIMI : DanglingDebugInfoMap) {
1136     DanglingDebugInfoVector &DDIV = DDIMI.second;
1137 
1138     // If debug info is to be dropped, run it through final checks to see
1139     // whether it can be salvaged.
1140     for (auto &DDI : DDIV)
1141       if (isMatchingDbgValue(DDI))
1142         salvageUnresolvedDbgValue(DDI);
1143 
1144     erase_if(DDIV, isMatchingDbgValue);
1145   }
1146 }
1147 
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1151                                                    SDValue Val) {
1152   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1153   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1154     return;
1155 
1156   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1157   for (auto &DDI : DDIV) {
1158     const DbgValueInst *DI = DDI.getDI();
1159     assert(DI && "Ill-formed DanglingDebugInfo");
1160     DebugLoc dl = DDI.getdl();
1161     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1162     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1163     DILocalVariable *Variable = DI->getVariable();
1164     DIExpression *Expr = DI->getExpression();
1165     assert(Variable->isValidLocationForIntrinsic(dl) &&
1166            "Expected inlined-at fields to agree");
1167     SDDbgValue *SDV;
1168     if (Val.getNode()) {
1169       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1170       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1171       // we couldn't resolve it directly when examining the DbgValue intrinsic
1172       // in the first place we should not be more successful here). Unless we
1173       // have some test case that prove this to be correct we should avoid
1174       // calling EmitFuncArgumentDbgValue here.
1175       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1176         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1177                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1178         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1179         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1180         // inserted after the definition of Val when emitting the instructions
1181         // after ISel. An alternative could be to teach
1182         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1183         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1184                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1185                    << ValSDNodeOrder << "\n");
1186         SDV = getDbgValue(Val, Variable, Expr, dl,
1187                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1188         DAG.AddDbgValue(SDV, Val.getNode(), false);
1189       } else
1190         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1191                           << "in EmitFuncArgumentDbgValue\n");
1192     } else {
1193       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1194       auto Undef =
1195           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1196       auto SDV =
1197           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1198       DAG.AddDbgValue(SDV, nullptr, false);
1199     }
1200   }
1201   DDIV.clear();
1202 }
1203 
1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1205   Value *V = DDI.getDI()->getValue();
1206   DILocalVariable *Var = DDI.getDI()->getVariable();
1207   DIExpression *Expr = DDI.getDI()->getExpression();
1208   DebugLoc DL = DDI.getdl();
1209   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1210   unsigned SDOrder = DDI.getSDNodeOrder();
1211 
1212   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1213   // that DW_OP_stack_value is desired.
1214   assert(isa<DbgValueInst>(DDI.getDI()));
1215   bool StackValue = true;
1216 
1217   // Can this Value can be encoded without any further work?
1218   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1219     return;
1220 
1221   // Attempt to salvage back through as many instructions as possible. Bail if
1222   // a non-instruction is seen, such as a constant expression or global
1223   // variable. FIXME: Further work could recover those too.
1224   while (isa<Instruction>(V)) {
1225     Instruction &VAsInst = *cast<Instruction>(V);
1226     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1227 
1228     // If we cannot salvage any further, and haven't yet found a suitable debug
1229     // expression, bail out.
1230     if (!NewExpr)
1231       break;
1232 
1233     // New value and expr now represent this debuginfo.
1234     V = VAsInst.getOperand(0);
1235     Expr = NewExpr;
1236 
1237     // Some kind of simplification occurred: check whether the operand of the
1238     // salvaged debug expression can be encoded in this DAG.
1239     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1240       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1241                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1242       return;
1243     }
1244   }
1245 
1246   // This was the final opportunity to salvage this debug information, and it
1247   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1248   // any earlier variable location.
1249   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1250   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1251   DAG.AddDbgValue(SDV, nullptr, false);
1252 
1253   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1254                     << "\n");
1255   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1256                     << "\n");
1257 }
1258 
1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1260                                            DIExpression *Expr, DebugLoc dl,
1261                                            DebugLoc InstDL, unsigned Order) {
1262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1263   SDDbgValue *SDV;
1264   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1265       isa<ConstantPointerNull>(V)) {
1266     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1267     DAG.AddDbgValue(SDV, nullptr, false);
1268     return true;
1269   }
1270 
1271   // If the Value is a frame index, we can create a FrameIndex debug value
1272   // without relying on the DAG at all.
1273   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1274     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1275     if (SI != FuncInfo.StaticAllocaMap.end()) {
1276       auto SDV =
1277           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1278                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1279       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1280       // is still available even if the SDNode gets optimized out.
1281       DAG.AddDbgValue(SDV, nullptr, false);
1282       return true;
1283     }
1284   }
1285 
1286   // Do not use getValue() in here; we don't want to generate code at
1287   // this point if it hasn't been done yet.
1288   SDValue N = NodeMap[V];
1289   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1290     N = UnusedArgNodeMap[V];
1291   if (N.getNode()) {
1292     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1293       return true;
1294     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1295     DAG.AddDbgValue(SDV, N.getNode(), false);
1296     return true;
1297   }
1298 
1299   // Special rules apply for the first dbg.values of parameter variables in a
1300   // function. Identify them by the fact they reference Argument Values, that
1301   // they're parameters, and they are parameters of the current function. We
1302   // need to let them dangle until they get an SDNode.
1303   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1304                        !InstDL.getInlinedAt();
1305   if (!IsParamOfFunc) {
1306     // The value is not used in this block yet (or it would have an SDNode).
1307     // We still want the value to appear for the user if possible -- if it has
1308     // an associated VReg, we can refer to that instead.
1309     auto VMI = FuncInfo.ValueMap.find(V);
1310     if (VMI != FuncInfo.ValueMap.end()) {
1311       unsigned Reg = VMI->second;
1312       // If this is a PHI node, it may be split up into several MI PHI nodes
1313       // (in FunctionLoweringInfo::set).
1314       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1315                        V->getType(), None);
1316       if (RFV.occupiesMultipleRegs()) {
1317         unsigned Offset = 0;
1318         unsigned BitsToDescribe = 0;
1319         if (auto VarSize = Var->getSizeInBits())
1320           BitsToDescribe = *VarSize;
1321         if (auto Fragment = Expr->getFragmentInfo())
1322           BitsToDescribe = Fragment->SizeInBits;
1323         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1324           unsigned RegisterSize = RegAndSize.second;
1325           // Bail out if all bits are described already.
1326           if (Offset >= BitsToDescribe)
1327             break;
1328           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1329               ? BitsToDescribe - Offset
1330               : RegisterSize;
1331           auto FragmentExpr = DIExpression::createFragmentExpression(
1332               Expr, Offset, FragmentSize);
1333           if (!FragmentExpr)
1334               continue;
1335           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1336                                     false, dl, SDNodeOrder);
1337           DAG.AddDbgValue(SDV, nullptr, false);
1338           Offset += RegisterSize;
1339         }
1340       } else {
1341         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1342         DAG.AddDbgValue(SDV, nullptr, false);
1343       }
1344       return true;
1345     }
1346   }
1347 
1348   return false;
1349 }
1350 
1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1352   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1353   for (auto &Pair : DanglingDebugInfoMap)
1354     for (auto &DDI : Pair.second)
1355       salvageUnresolvedDbgValue(DDI);
1356   clearDanglingDebugInfo();
1357 }
1358 
1359 /// getCopyFromRegs - If there was virtual register allocated for the value V
1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1362   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1363   SDValue Result;
1364 
1365   if (It != FuncInfo.ValueMap.end()) {
1366     Register InReg = It->second;
1367 
1368     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1369                      DAG.getDataLayout(), InReg, Ty,
1370                      None); // This is not an ABI copy.
1371     SDValue Chain = DAG.getEntryNode();
1372     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1373                                  V);
1374     resolveDanglingDebugInfo(V, Result);
1375   }
1376 
1377   return Result;
1378 }
1379 
1380 /// getValue - Return an SDValue for the given Value.
1381 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1382   // If we already have an SDValue for this value, use it. It's important
1383   // to do this first, so that we don't create a CopyFromReg if we already
1384   // have a regular SDValue.
1385   SDValue &N = NodeMap[V];
1386   if (N.getNode()) return N;
1387 
1388   // If there's a virtual register allocated and initialized for this
1389   // value, use it.
1390   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1391     return copyFromReg;
1392 
1393   // Otherwise create a new SDValue and remember it.
1394   SDValue Val = getValueImpl(V);
1395   NodeMap[V] = Val;
1396   resolveDanglingDebugInfo(V, Val);
1397   return Val;
1398 }
1399 
1400 /// getNonRegisterValue - Return an SDValue for the given Value, but
1401 /// don't look in FuncInfo.ValueMap for a virtual register.
1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1403   // If we already have an SDValue for this value, use it.
1404   SDValue &N = NodeMap[V];
1405   if (N.getNode()) {
1406     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1407       // Remove the debug location from the node as the node is about to be used
1408       // in a location which may differ from the original debug location.  This
1409       // is relevant to Constant and ConstantFP nodes because they can appear
1410       // as constant expressions inside PHI nodes.
1411       N->setDebugLoc(DebugLoc());
1412     }
1413     return N;
1414   }
1415 
1416   // Otherwise create a new SDValue and remember it.
1417   SDValue Val = getValueImpl(V);
1418   NodeMap[V] = Val;
1419   resolveDanglingDebugInfo(V, Val);
1420   return Val;
1421 }
1422 
1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1424 /// Create an SDValue for the given value.
1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1426   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1427 
1428   if (const Constant *C = dyn_cast<Constant>(V)) {
1429     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1430 
1431     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1432       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1433 
1434     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1435       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1436 
1437     if (isa<ConstantPointerNull>(C)) {
1438       unsigned AS = V->getType()->getPointerAddressSpace();
1439       return DAG.getConstant(0, getCurSDLoc(),
1440                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1441     }
1442 
1443     if (match(C, m_VScale(DAG.getDataLayout())))
1444       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1445 
1446     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1447       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1448 
1449     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1450       return DAG.getUNDEF(VT);
1451 
1452     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1453       visit(CE->getOpcode(), *CE);
1454       SDValue N1 = NodeMap[V];
1455       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1456       return N1;
1457     }
1458 
1459     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1460       SmallVector<SDValue, 4> Constants;
1461       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1462            OI != OE; ++OI) {
1463         SDNode *Val = getValue(*OI).getNode();
1464         // If the operand is an empty aggregate, there are no values.
1465         if (!Val) continue;
1466         // Add each leaf value from the operand to the Constants list
1467         // to form a flattened list of all the values.
1468         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1469           Constants.push_back(SDValue(Val, i));
1470       }
1471 
1472       return DAG.getMergeValues(Constants, getCurSDLoc());
1473     }
1474 
1475     if (const ConstantDataSequential *CDS =
1476           dyn_cast<ConstantDataSequential>(C)) {
1477       SmallVector<SDValue, 4> Ops;
1478       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1479         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1480         // Add each leaf value from the operand to the Constants list
1481         // to form a flattened list of all the values.
1482         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1483           Ops.push_back(SDValue(Val, i));
1484       }
1485 
1486       if (isa<ArrayType>(CDS->getType()))
1487         return DAG.getMergeValues(Ops, getCurSDLoc());
1488       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1489     }
1490 
1491     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1492       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1493              "Unknown struct or array constant!");
1494 
1495       SmallVector<EVT, 4> ValueVTs;
1496       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1497       unsigned NumElts = ValueVTs.size();
1498       if (NumElts == 0)
1499         return SDValue(); // empty struct
1500       SmallVector<SDValue, 4> Constants(NumElts);
1501       for (unsigned i = 0; i != NumElts; ++i) {
1502         EVT EltVT = ValueVTs[i];
1503         if (isa<UndefValue>(C))
1504           Constants[i] = DAG.getUNDEF(EltVT);
1505         else if (EltVT.isFloatingPoint())
1506           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1507         else
1508           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1509       }
1510 
1511       return DAG.getMergeValues(Constants, getCurSDLoc());
1512     }
1513 
1514     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1515       return DAG.getBlockAddress(BA, VT);
1516 
1517     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1518       return getValue(Equiv->getGlobalValue());
1519 
1520     VectorType *VecTy = cast<VectorType>(V->getType());
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1525       SmallVector<SDValue, 16> Ops;
1526       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1527       for (unsigned i = 0; i != NumElements; ++i)
1528         Ops.push_back(getValue(CV->getOperand(i)));
1529 
1530       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1531     } else if (isa<ConstantAggregateZero>(C)) {
1532       EVT EltVT =
1533           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1534 
1535       SDValue Op;
1536       if (EltVT.isFloatingPoint())
1537         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1538       else
1539         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1540 
1541       if (isa<ScalableVectorType>(VecTy))
1542         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1543       else {
1544         SmallVector<SDValue, 16> Ops;
1545         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1546         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1547       }
1548     }
1549     llvm_unreachable("Unknown vector constant");
1550   }
1551 
1552   // If this is a static alloca, generate it as the frameindex instead of
1553   // computation.
1554   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1555     DenseMap<const AllocaInst*, int>::iterator SI =
1556       FuncInfo.StaticAllocaMap.find(AI);
1557     if (SI != FuncInfo.StaticAllocaMap.end())
1558       return DAG.getFrameIndex(SI->second,
1559                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1560   }
1561 
1562   // If this is an instruction which fast-isel has deferred, select it now.
1563   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1564     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1565 
1566     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1567                      Inst->getType(), None);
1568     SDValue Chain = DAG.getEntryNode();
1569     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1570   }
1571 
1572   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1573     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1574   }
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1584   if (!IsSEH)
1585     CatchPadMBB->setIsEHScopeEntry();
1586   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1587   if (IsMSVCCXX || IsCoreCLR)
1588     CatchPadMBB->setIsEHFuncletEntry();
1589 }
1590 
1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1592   // Update machine-CFG edge.
1593   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1594   FuncInfo.MBB->addSuccessor(TargetMBB);
1595 
1596   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1597   bool IsSEH = isAsynchronousEHPersonality(Pers);
1598   if (IsSEH) {
1599     // If this is not a fall-through branch or optimizations are switched off,
1600     // emit the branch.
1601     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1602         TM.getOptLevel() == CodeGenOpt::None)
1603       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1604                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1605     return;
1606   }
1607 
1608   // Figure out the funclet membership for the catchret's successor.
1609   // This will be used by the FuncletLayout pass to determine how to order the
1610   // BB's.
1611   // A 'catchret' returns to the outer scope's color.
1612   Value *ParentPad = I.getCatchSwitchParentPad();
1613   const BasicBlock *SuccessorColor;
1614   if (isa<ConstantTokenNone>(ParentPad))
1615     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1616   else
1617     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1618   assert(SuccessorColor && "No parent funclet for catchret!");
1619   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1620   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1621 
1622   // Create the terminator node.
1623   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1624                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1625                             DAG.getBasicBlock(SuccessorColorMBB));
1626   DAG.setRoot(Ret);
1627 }
1628 
1629 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1630   // Don't emit any special code for the cleanuppad instruction. It just marks
1631   // the start of an EH scope/funclet.
1632   FuncInfo.MBB->setIsEHScopeEntry();
1633   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1634   if (Pers != EHPersonality::Wasm_CXX) {
1635     FuncInfo.MBB->setIsEHFuncletEntry();
1636     FuncInfo.MBB->setIsCleanupFuncletEntry();
1637   }
1638 }
1639 
1640 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1641 // not match, it is OK to add only the first unwind destination catchpad to the
1642 // successors, because there will be at least one invoke instruction within the
1643 // catch scope that points to the next unwind destination, if one exists, so
1644 // CFGSort cannot mess up with BB sorting order.
1645 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1646 // call within them, and catchpads only consisting of 'catch (...)' have a
1647 // '__cxa_end_catch' call within them, both of which generate invokes in case
1648 // the next unwind destination exists, i.e., the next unwind destination is not
1649 // the caller.)
1650 //
1651 // Having at most one EH pad successor is also simpler and helps later
1652 // transformations.
1653 //
1654 // For example,
1655 // current:
1656 //   invoke void @foo to ... unwind label %catch.dispatch
1657 // catch.dispatch:
1658 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1659 // catch.start:
1660 //   ...
1661 //   ... in this BB or some other child BB dominated by this BB there will be an
1662 //   invoke that points to 'next' BB as an unwind destination
1663 //
1664 // next: ; We don't need to add this to 'current' BB's successor
1665 //   ...
1666 static void findWasmUnwindDestinations(
1667     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1668     BranchProbability Prob,
1669     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1670         &UnwindDests) {
1671   while (EHPadBB) {
1672     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1673     if (isa<CleanupPadInst>(Pad)) {
1674       // Stop on cleanup pads.
1675       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1676       UnwindDests.back().first->setIsEHScopeEntry();
1677       break;
1678     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1679       // Add the catchpad handlers to the possible destinations. We don't
1680       // continue to the unwind destination of the catchswitch for wasm.
1681       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1682         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1683         UnwindDests.back().first->setIsEHScopeEntry();
1684       }
1685       break;
1686     } else {
1687       continue;
1688     }
1689   }
1690 }
1691 
1692 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1693 /// many places it could ultimately go. In the IR, we have a single unwind
1694 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1695 /// This function skips over imaginary basic blocks that hold catchswitch
1696 /// instructions, and finds all the "real" machine
1697 /// basic block destinations. As those destinations may not be successors of
1698 /// EHPadBB, here we also calculate the edge probability to those destinations.
1699 /// The passed-in Prob is the edge probability to EHPadBB.
1700 static void findUnwindDestinations(
1701     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1702     BranchProbability Prob,
1703     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1704         &UnwindDests) {
1705   EHPersonality Personality =
1706     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1707   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1708   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1709   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1710   bool IsSEH = isAsynchronousEHPersonality(Personality);
1711 
1712   if (IsWasmCXX) {
1713     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1714     assert(UnwindDests.size() <= 1 &&
1715            "There should be at most one unwind destination for wasm");
1716     return;
1717   }
1718 
1719   while (EHPadBB) {
1720     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1721     BasicBlock *NewEHPadBB = nullptr;
1722     if (isa<LandingPadInst>(Pad)) {
1723       // Stop on landingpads. They are not funclets.
1724       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1725       break;
1726     } else if (isa<CleanupPadInst>(Pad)) {
1727       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1728       // personalities.
1729       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1730       UnwindDests.back().first->setIsEHScopeEntry();
1731       UnwindDests.back().first->setIsEHFuncletEntry();
1732       break;
1733     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1734       // Add the catchpad handlers to the possible destinations.
1735       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1736         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1737         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1738         if (IsMSVCCXX || IsCoreCLR)
1739           UnwindDests.back().first->setIsEHFuncletEntry();
1740         if (!IsSEH)
1741           UnwindDests.back().first->setIsEHScopeEntry();
1742       }
1743       NewEHPadBB = CatchSwitch->getUnwindDest();
1744     } else {
1745       continue;
1746     }
1747 
1748     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1749     if (BPI && NewEHPadBB)
1750       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1751     EHPadBB = NewEHPadBB;
1752   }
1753 }
1754 
1755 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1756   // Update successor info.
1757   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1758   auto UnwindDest = I.getUnwindDest();
1759   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1760   BranchProbability UnwindDestProb =
1761       (BPI && UnwindDest)
1762           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1763           : BranchProbability::getZero();
1764   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1765   for (auto &UnwindDest : UnwindDests) {
1766     UnwindDest.first->setIsEHPad();
1767     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1768   }
1769   FuncInfo.MBB->normalizeSuccProbs();
1770 
1771   // Create the terminator node.
1772   SDValue Ret =
1773       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1774   DAG.setRoot(Ret);
1775 }
1776 
1777 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1778   report_fatal_error("visitCatchSwitch not yet implemented!");
1779 }
1780 
1781 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1783   auto &DL = DAG.getDataLayout();
1784   SDValue Chain = getControlRoot();
1785   SmallVector<ISD::OutputArg, 8> Outs;
1786   SmallVector<SDValue, 8> OutVals;
1787 
1788   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1789   // lower
1790   //
1791   //   %val = call <ty> @llvm.experimental.deoptimize()
1792   //   ret <ty> %val
1793   //
1794   // differently.
1795   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1796     LowerDeoptimizingReturn();
1797     return;
1798   }
1799 
1800   if (!FuncInfo.CanLowerReturn) {
1801     unsigned DemoteReg = FuncInfo.DemoteRegister;
1802     const Function *F = I.getParent()->getParent();
1803 
1804     // Emit a store of the return value through the virtual register.
1805     // Leave Outs empty so that LowerReturn won't try to load return
1806     // registers the usual way.
1807     SmallVector<EVT, 1> PtrValueVTs;
1808     ComputeValueVTs(TLI, DL,
1809                     F->getReturnType()->getPointerTo(
1810                         DAG.getDataLayout().getAllocaAddrSpace()),
1811                     PtrValueVTs);
1812 
1813     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1814                                         DemoteReg, PtrValueVTs[0]);
1815     SDValue RetOp = getValue(I.getOperand(0));
1816 
1817     SmallVector<EVT, 4> ValueVTs, MemVTs;
1818     SmallVector<uint64_t, 4> Offsets;
1819     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1820                     &Offsets);
1821     unsigned NumValues = ValueVTs.size();
1822 
1823     SmallVector<SDValue, 4> Chains(NumValues);
1824     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1825     for (unsigned i = 0; i != NumValues; ++i) {
1826       // An aggregate return value cannot wrap around the address space, so
1827       // offsets to its parts don't wrap either.
1828       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1829                                            TypeSize::Fixed(Offsets[i]));
1830 
1831       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1832       if (MemVTs[i] != ValueVTs[i])
1833         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1834       Chains[i] = DAG.getStore(
1835           Chain, getCurSDLoc(), Val,
1836           // FIXME: better loc info would be nice.
1837           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1838           commonAlignment(BaseAlign, Offsets[i]));
1839     }
1840 
1841     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1842                         MVT::Other, Chains);
1843   } else if (I.getNumOperands() != 0) {
1844     SmallVector<EVT, 4> ValueVTs;
1845     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1846     unsigned NumValues = ValueVTs.size();
1847     if (NumValues) {
1848       SDValue RetOp = getValue(I.getOperand(0));
1849 
1850       const Function *F = I.getParent()->getParent();
1851 
1852       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1853           I.getOperand(0)->getType(), F->getCallingConv(),
1854           /*IsVarArg*/ false);
1855 
1856       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1857       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1858                                           Attribute::SExt))
1859         ExtendKind = ISD::SIGN_EXTEND;
1860       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1861                                                Attribute::ZExt))
1862         ExtendKind = ISD::ZERO_EXTEND;
1863 
1864       LLVMContext &Context = F->getContext();
1865       bool RetInReg = F->getAttributes().hasAttribute(
1866           AttributeList::ReturnIndex, Attribute::InReg);
1867 
1868       for (unsigned j = 0; j != NumValues; ++j) {
1869         EVT VT = ValueVTs[j];
1870 
1871         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1872           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1873 
1874         CallingConv::ID CC = F->getCallingConv();
1875 
1876         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1877         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1878         SmallVector<SDValue, 4> Parts(NumParts);
1879         getCopyToParts(DAG, getCurSDLoc(),
1880                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1881                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1882 
1883         // 'inreg' on function refers to return value
1884         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1885         if (RetInReg)
1886           Flags.setInReg();
1887 
1888         if (I.getOperand(0)->getType()->isPointerTy()) {
1889           Flags.setPointer();
1890           Flags.setPointerAddrSpace(
1891               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1892         }
1893 
1894         if (NeedsRegBlock) {
1895           Flags.setInConsecutiveRegs();
1896           if (j == NumValues - 1)
1897             Flags.setInConsecutiveRegsLast();
1898         }
1899 
1900         // Propagate extension type if any
1901         if (ExtendKind == ISD::SIGN_EXTEND)
1902           Flags.setSExt();
1903         else if (ExtendKind == ISD::ZERO_EXTEND)
1904           Flags.setZExt();
1905 
1906         for (unsigned i = 0; i < NumParts; ++i) {
1907           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1908                                         VT, /*isfixed=*/true, 0, 0));
1909           OutVals.push_back(Parts[i]);
1910         }
1911       }
1912     }
1913   }
1914 
1915   // Push in swifterror virtual register as the last element of Outs. This makes
1916   // sure swifterror virtual register will be returned in the swifterror
1917   // physical register.
1918   const Function *F = I.getParent()->getParent();
1919   if (TLI.supportSwiftError() &&
1920       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1921     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1922     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1923     Flags.setSwiftError();
1924     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1925                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1926                                   true /*isfixed*/, 1 /*origidx*/,
1927                                   0 /*partOffs*/));
1928     // Create SDNode for the swifterror virtual register.
1929     OutVals.push_back(
1930         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1931                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1932                         EVT(TLI.getPointerTy(DL))));
1933   }
1934 
1935   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1936   CallingConv::ID CallConv =
1937     DAG.getMachineFunction().getFunction().getCallingConv();
1938   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1939       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1940 
1941   // Verify that the target's LowerReturn behaved as expected.
1942   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1943          "LowerReturn didn't return a valid chain!");
1944 
1945   // Update the DAG with the new chain value resulting from return lowering.
1946   DAG.setRoot(Chain);
1947 }
1948 
1949 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1950 /// created for it, emit nodes to copy the value into the virtual
1951 /// registers.
1952 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1953   // Skip empty types
1954   if (V->getType()->isEmptyTy())
1955     return;
1956 
1957   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1958   if (VMI != FuncInfo.ValueMap.end()) {
1959     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1960     CopyValueToVirtualRegister(V, VMI->second);
1961   }
1962 }
1963 
1964 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1965 /// the current basic block, add it to ValueMap now so that we'll get a
1966 /// CopyTo/FromReg.
1967 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1968   // No need to export constants.
1969   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1970 
1971   // Already exported?
1972   if (FuncInfo.isExportedInst(V)) return;
1973 
1974   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1975   CopyValueToVirtualRegister(V, Reg);
1976 }
1977 
1978 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1979                                                      const BasicBlock *FromBB) {
1980   // The operands of the setcc have to be in this block.  We don't know
1981   // how to export them from some other block.
1982   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1983     // Can export from current BB.
1984     if (VI->getParent() == FromBB)
1985       return true;
1986 
1987     // Is already exported, noop.
1988     return FuncInfo.isExportedInst(V);
1989   }
1990 
1991   // If this is an argument, we can export it if the BB is the entry block or
1992   // if it is already exported.
1993   if (isa<Argument>(V)) {
1994     if (FromBB == &FromBB->getParent()->getEntryBlock())
1995       return true;
1996 
1997     // Otherwise, can only export this if it is already exported.
1998     return FuncInfo.isExportedInst(V);
1999   }
2000 
2001   // Otherwise, constants can always be exported.
2002   return true;
2003 }
2004 
2005 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2006 BranchProbability
2007 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2008                                         const MachineBasicBlock *Dst) const {
2009   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2010   const BasicBlock *SrcBB = Src->getBasicBlock();
2011   const BasicBlock *DstBB = Dst->getBasicBlock();
2012   if (!BPI) {
2013     // If BPI is not available, set the default probability as 1 / N, where N is
2014     // the number of successors.
2015     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2016     return BranchProbability(1, SuccSize);
2017   }
2018   return BPI->getEdgeProbability(SrcBB, DstBB);
2019 }
2020 
2021 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2022                                                MachineBasicBlock *Dst,
2023                                                BranchProbability Prob) {
2024   if (!FuncInfo.BPI)
2025     Src->addSuccessorWithoutProb(Dst);
2026   else {
2027     if (Prob.isUnknown())
2028       Prob = getEdgeProbability(Src, Dst);
2029     Src->addSuccessor(Dst, Prob);
2030   }
2031 }
2032 
2033 static bool InBlock(const Value *V, const BasicBlock *BB) {
2034   if (const Instruction *I = dyn_cast<Instruction>(V))
2035     return I->getParent() == BB;
2036   return true;
2037 }
2038 
2039 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2040 /// This function emits a branch and is used at the leaves of an OR or an
2041 /// AND operator tree.
2042 void
2043 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2044                                                   MachineBasicBlock *TBB,
2045                                                   MachineBasicBlock *FBB,
2046                                                   MachineBasicBlock *CurBB,
2047                                                   MachineBasicBlock *SwitchBB,
2048                                                   BranchProbability TProb,
2049                                                   BranchProbability FProb,
2050                                                   bool InvertCond) {
2051   const BasicBlock *BB = CurBB->getBasicBlock();
2052 
2053   // If the leaf of the tree is a comparison, merge the condition into
2054   // the caseblock.
2055   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2056     // The operands of the cmp have to be in this block.  We don't know
2057     // how to export them from some other block.  If this is the first block
2058     // of the sequence, no exporting is needed.
2059     if (CurBB == SwitchBB ||
2060         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2061          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2062       ISD::CondCode Condition;
2063       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2064         ICmpInst::Predicate Pred =
2065             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2066         Condition = getICmpCondCode(Pred);
2067       } else {
2068         const FCmpInst *FC = cast<FCmpInst>(Cond);
2069         FCmpInst::Predicate Pred =
2070             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2071         Condition = getFCmpCondCode(Pred);
2072         if (TM.Options.NoNaNsFPMath)
2073           Condition = getFCmpCodeWithoutNaN(Condition);
2074       }
2075 
2076       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2077                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2078       SL->SwitchCases.push_back(CB);
2079       return;
2080     }
2081   }
2082 
2083   // Create a CaseBlock record representing this branch.
2084   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2085   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2086                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2087   SL->SwitchCases.push_back(CB);
2088 }
2089 
2090 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2091                                                MachineBasicBlock *TBB,
2092                                                MachineBasicBlock *FBB,
2093                                                MachineBasicBlock *CurBB,
2094                                                MachineBasicBlock *SwitchBB,
2095                                                Instruction::BinaryOps Opc,
2096                                                BranchProbability TProb,
2097                                                BranchProbability FProb,
2098                                                bool InvertCond) {
2099   // Skip over not part of the tree and remember to invert op and operands at
2100   // next level.
2101   Value *NotCond;
2102   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2103       InBlock(NotCond, CurBB->getBasicBlock())) {
2104     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2105                          !InvertCond);
2106     return;
2107   }
2108 
2109   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2110   const Value *BOpOp0, *BOpOp1;
2111   // Compute the effective opcode for Cond, taking into account whether it needs
2112   // to be inverted, e.g.
2113   //   and (not (or A, B)), C
2114   // gets lowered as
2115   //   and (and (not A, not B), C)
2116   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2117   if (BOp) {
2118     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2119                ? Instruction::And
2120                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2121                       ? Instruction::Or
2122                       : (Instruction::BinaryOps)0);
2123     if (InvertCond) {
2124       if (BOpc == Instruction::And)
2125         BOpc = Instruction::Or;
2126       else if (BOpc == Instruction::Or)
2127         BOpc = Instruction::And;
2128     }
2129   }
2130 
2131   // If this node is not part of the or/and tree, emit it as a branch.
2132   // Note that all nodes in the tree should have same opcode.
2133   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2134   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2135       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2136       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2137     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2138                                  TProb, FProb, InvertCond);
2139     return;
2140   }
2141 
2142   //  Create TmpBB after CurBB.
2143   MachineFunction::iterator BBI(CurBB);
2144   MachineFunction &MF = DAG.getMachineFunction();
2145   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2146   CurBB->getParent()->insert(++BBI, TmpBB);
2147 
2148   if (Opc == Instruction::Or) {
2149     // Codegen X | Y as:
2150     // BB1:
2151     //   jmp_if_X TBB
2152     //   jmp TmpBB
2153     // TmpBB:
2154     //   jmp_if_Y TBB
2155     //   jmp FBB
2156     //
2157 
2158     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2159     // The requirement is that
2160     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2161     //     = TrueProb for original BB.
2162     // Assuming the original probabilities are A and B, one choice is to set
2163     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2164     // A/(1+B) and 2B/(1+B). This choice assumes that
2165     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2166     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2167     // TmpBB, but the math is more complicated.
2168 
2169     auto NewTrueProb = TProb / 2;
2170     auto NewFalseProb = TProb / 2 + FProb;
2171     // Emit the LHS condition.
2172     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2173                          NewFalseProb, InvertCond);
2174 
2175     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2176     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2177     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2178     // Emit the RHS condition into TmpBB.
2179     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2180                          Probs[1], InvertCond);
2181   } else {
2182     assert(Opc == Instruction::And && "Unknown merge op!");
2183     // Codegen X & Y as:
2184     // BB1:
2185     //   jmp_if_X TmpBB
2186     //   jmp FBB
2187     // TmpBB:
2188     //   jmp_if_Y TBB
2189     //   jmp FBB
2190     //
2191     //  This requires creation of TmpBB after CurBB.
2192 
2193     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2194     // The requirement is that
2195     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2196     //     = FalseProb for original BB.
2197     // Assuming the original probabilities are A and B, one choice is to set
2198     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2199     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2200     // TrueProb for BB1 * FalseProb for TmpBB.
2201 
2202     auto NewTrueProb = TProb + FProb / 2;
2203     auto NewFalseProb = FProb / 2;
2204     // Emit the LHS condition.
2205     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2206                          NewFalseProb, InvertCond);
2207 
2208     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2209     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2210     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2211     // Emit the RHS condition into TmpBB.
2212     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2213                          Probs[1], InvertCond);
2214   }
2215 }
2216 
2217 /// If the set of cases should be emitted as a series of branches, return true.
2218 /// If we should emit this as a bunch of and/or'd together conditions, return
2219 /// false.
2220 bool
2221 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2222   if (Cases.size() != 2) return true;
2223 
2224   // If this is two comparisons of the same values or'd or and'd together, they
2225   // will get folded into a single comparison, so don't emit two blocks.
2226   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2227        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2228       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2229        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2230     return false;
2231   }
2232 
2233   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2234   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2235   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2236       Cases[0].CC == Cases[1].CC &&
2237       isa<Constant>(Cases[0].CmpRHS) &&
2238       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2239     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2240       return false;
2241     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2242       return false;
2243   }
2244 
2245   return true;
2246 }
2247 
2248 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2249   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2250 
2251   // Update machine-CFG edges.
2252   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2253 
2254   if (I.isUnconditional()) {
2255     // Update machine-CFG edges.
2256     BrMBB->addSuccessor(Succ0MBB);
2257 
2258     // If this is not a fall-through branch or optimizations are switched off,
2259     // emit the branch.
2260     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2261       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2262                               MVT::Other, getControlRoot(),
2263                               DAG.getBasicBlock(Succ0MBB)));
2264 
2265     return;
2266   }
2267 
2268   // If this condition is one of the special cases we handle, do special stuff
2269   // now.
2270   const Value *CondVal = I.getCondition();
2271   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2272 
2273   // If this is a series of conditions that are or'd or and'd together, emit
2274   // this as a sequence of branches instead of setcc's with and/or operations.
2275   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2276   // unpredictable branches, and vector extracts because those jumps are likely
2277   // expensive for any target), this should improve performance.
2278   // For example, instead of something like:
2279   //     cmp A, B
2280   //     C = seteq
2281   //     cmp D, E
2282   //     F = setle
2283   //     or C, F
2284   //     jnz foo
2285   // Emit:
2286   //     cmp A, B
2287   //     je foo
2288   //     cmp D, E
2289   //     jle foo
2290   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2291   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2292       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2293     Value *Vec;
2294     const Value *BOp0, *BOp1;
2295     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2296     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2297       Opcode = Instruction::And;
2298     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2299       Opcode = Instruction::Or;
2300 
2301     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2302                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2303       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2304                            getEdgeProbability(BrMBB, Succ0MBB),
2305                            getEdgeProbability(BrMBB, Succ1MBB),
2306                            /*InvertCond=*/false);
2307       // If the compares in later blocks need to use values not currently
2308       // exported from this block, export them now.  This block should always
2309       // be the first entry.
2310       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2311 
2312       // Allow some cases to be rejected.
2313       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2314         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2315           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2316           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2317         }
2318 
2319         // Emit the branch for this block.
2320         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2321         SL->SwitchCases.erase(SL->SwitchCases.begin());
2322         return;
2323       }
2324 
2325       // Okay, we decided not to do this, remove any inserted MBB's and clear
2326       // SwitchCases.
2327       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2328         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2329 
2330       SL->SwitchCases.clear();
2331     }
2332   }
2333 
2334   // Create a CaseBlock record representing this branch.
2335   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2336                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2337 
2338   // Use visitSwitchCase to actually insert the fast branch sequence for this
2339   // cond branch.
2340   visitSwitchCase(CB, BrMBB);
2341 }
2342 
2343 /// visitSwitchCase - Emits the necessary code to represent a single node in
2344 /// the binary search tree resulting from lowering a switch instruction.
2345 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2346                                           MachineBasicBlock *SwitchBB) {
2347   SDValue Cond;
2348   SDValue CondLHS = getValue(CB.CmpLHS);
2349   SDLoc dl = CB.DL;
2350 
2351   if (CB.CC == ISD::SETTRUE) {
2352     // Branch or fall through to TrueBB.
2353     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2354     SwitchBB->normalizeSuccProbs();
2355     if (CB.TrueBB != NextBlock(SwitchBB)) {
2356       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2357                               DAG.getBasicBlock(CB.TrueBB)));
2358     }
2359     return;
2360   }
2361 
2362   auto &TLI = DAG.getTargetLoweringInfo();
2363   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2364 
2365   // Build the setcc now.
2366   if (!CB.CmpMHS) {
2367     // Fold "(X == true)" to X and "(X == false)" to !X to
2368     // handle common cases produced by branch lowering.
2369     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2370         CB.CC == ISD::SETEQ)
2371       Cond = CondLHS;
2372     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2373              CB.CC == ISD::SETEQ) {
2374       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2375       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2376     } else {
2377       SDValue CondRHS = getValue(CB.CmpRHS);
2378 
2379       // If a pointer's DAG type is larger than its memory type then the DAG
2380       // values are zero-extended. This breaks signed comparisons so truncate
2381       // back to the underlying type before doing the compare.
2382       if (CondLHS.getValueType() != MemVT) {
2383         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2384         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2385       }
2386       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2387     }
2388   } else {
2389     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2390 
2391     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2392     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2393 
2394     SDValue CmpOp = getValue(CB.CmpMHS);
2395     EVT VT = CmpOp.getValueType();
2396 
2397     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2398       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2399                           ISD::SETLE);
2400     } else {
2401       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2402                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2403       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2404                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2405     }
2406   }
2407 
2408   // Update successor info
2409   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2410   // TrueBB and FalseBB are always different unless the incoming IR is
2411   // degenerate. This only happens when running llc on weird IR.
2412   if (CB.TrueBB != CB.FalseBB)
2413     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2414   SwitchBB->normalizeSuccProbs();
2415 
2416   // If the lhs block is the next block, invert the condition so that we can
2417   // fall through to the lhs instead of the rhs block.
2418   if (CB.TrueBB == NextBlock(SwitchBB)) {
2419     std::swap(CB.TrueBB, CB.FalseBB);
2420     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2421     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2422   }
2423 
2424   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2425                                MVT::Other, getControlRoot(), Cond,
2426                                DAG.getBasicBlock(CB.TrueBB));
2427 
2428   // Insert the false branch. Do this even if it's a fall through branch,
2429   // this makes it easier to do DAG optimizations which require inverting
2430   // the branch condition.
2431   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2432                        DAG.getBasicBlock(CB.FalseBB));
2433 
2434   DAG.setRoot(BrCond);
2435 }
2436 
2437 /// visitJumpTable - Emit JumpTable node in the current MBB
2438 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2439   // Emit the code for the jump table
2440   assert(JT.Reg != -1U && "Should lower JT Header first!");
2441   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2442   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2443                                      JT.Reg, PTy);
2444   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2445   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2446                                     MVT::Other, Index.getValue(1),
2447                                     Table, Index);
2448   DAG.setRoot(BrJumpTable);
2449 }
2450 
2451 /// visitJumpTableHeader - This function emits necessary code to produce index
2452 /// in the JumpTable from switch case.
2453 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2454                                                JumpTableHeader &JTH,
2455                                                MachineBasicBlock *SwitchBB) {
2456   SDLoc dl = getCurSDLoc();
2457 
2458   // Subtract the lowest switch case value from the value being switched on.
2459   SDValue SwitchOp = getValue(JTH.SValue);
2460   EVT VT = SwitchOp.getValueType();
2461   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2462                             DAG.getConstant(JTH.First, dl, VT));
2463 
2464   // The SDNode we just created, which holds the value being switched on minus
2465   // the smallest case value, needs to be copied to a virtual register so it
2466   // can be used as an index into the jump table in a subsequent basic block.
2467   // This value may be smaller or larger than the target's pointer type, and
2468   // therefore require extension or truncating.
2469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2470   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2471 
2472   unsigned JumpTableReg =
2473       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2474   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2475                                     JumpTableReg, SwitchOp);
2476   JT.Reg = JumpTableReg;
2477 
2478   if (!JTH.OmitRangeCheck) {
2479     // Emit the range check for the jump table, and branch to the default block
2480     // for the switch statement if the value being switched on exceeds the
2481     // largest case in the switch.
2482     SDValue CMP = DAG.getSetCC(
2483         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2484                                    Sub.getValueType()),
2485         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2486 
2487     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2488                                  MVT::Other, CopyTo, CMP,
2489                                  DAG.getBasicBlock(JT.Default));
2490 
2491     // Avoid emitting unnecessary branches to the next block.
2492     if (JT.MBB != NextBlock(SwitchBB))
2493       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2494                            DAG.getBasicBlock(JT.MBB));
2495 
2496     DAG.setRoot(BrCond);
2497   } else {
2498     // Avoid emitting unnecessary branches to the next block.
2499     if (JT.MBB != NextBlock(SwitchBB))
2500       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2501                               DAG.getBasicBlock(JT.MBB)));
2502     else
2503       DAG.setRoot(CopyTo);
2504   }
2505 }
2506 
2507 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2508 /// variable if there exists one.
2509 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2510                                  SDValue &Chain) {
2511   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2512   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2513   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2514   MachineFunction &MF = DAG.getMachineFunction();
2515   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2516   MachineSDNode *Node =
2517       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2518   if (Global) {
2519     MachinePointerInfo MPInfo(Global);
2520     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2521                  MachineMemOperand::MODereferenceable;
2522     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2523         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2524     DAG.setNodeMemRefs(Node, {MemRef});
2525   }
2526   if (PtrTy != PtrMemTy)
2527     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2528   return SDValue(Node, 0);
2529 }
2530 
2531 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2532 /// tail spliced into a stack protector check success bb.
2533 ///
2534 /// For a high level explanation of how this fits into the stack protector
2535 /// generation see the comment on the declaration of class
2536 /// StackProtectorDescriptor.
2537 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2538                                                   MachineBasicBlock *ParentBB) {
2539 
2540   // First create the loads to the guard/stack slot for the comparison.
2541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2542   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2543   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2544 
2545   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2546   int FI = MFI.getStackProtectorIndex();
2547 
2548   SDValue Guard;
2549   SDLoc dl = getCurSDLoc();
2550   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2551   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2552   Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2553 
2554   // Generate code to load the content of the guard slot.
2555   SDValue GuardVal = DAG.getLoad(
2556       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2557       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2558       MachineMemOperand::MOVolatile);
2559 
2560   if (TLI.useStackGuardXorFP())
2561     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2562 
2563   // Retrieve guard check function, nullptr if instrumentation is inlined.
2564   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2565     // The target provides a guard check function to validate the guard value.
2566     // Generate a call to that function with the content of the guard slot as
2567     // argument.
2568     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2569     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2570 
2571     TargetLowering::ArgListTy Args;
2572     TargetLowering::ArgListEntry Entry;
2573     Entry.Node = GuardVal;
2574     Entry.Ty = FnTy->getParamType(0);
2575     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2576       Entry.IsInReg = true;
2577     Args.push_back(Entry);
2578 
2579     TargetLowering::CallLoweringInfo CLI(DAG);
2580     CLI.setDebugLoc(getCurSDLoc())
2581         .setChain(DAG.getEntryNode())
2582         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2583                    getValue(GuardCheckFn), std::move(Args));
2584 
2585     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2586     DAG.setRoot(Result.second);
2587     return;
2588   }
2589 
2590   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2591   // Otherwise, emit a volatile load to retrieve the stack guard value.
2592   SDValue Chain = DAG.getEntryNode();
2593   if (TLI.useLoadStackGuardNode()) {
2594     Guard = getLoadStackGuard(DAG, dl, Chain);
2595   } else {
2596     const Value *IRGuard = TLI.getSDagStackGuard(M);
2597     SDValue GuardPtr = getValue(IRGuard);
2598 
2599     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2600                         MachinePointerInfo(IRGuard, 0), Align,
2601                         MachineMemOperand::MOVolatile);
2602   }
2603 
2604   // Perform the comparison via a getsetcc.
2605   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2606                                                         *DAG.getContext(),
2607                                                         Guard.getValueType()),
2608                              Guard, GuardVal, ISD::SETNE);
2609 
2610   // If the guard/stackslot do not equal, branch to failure MBB.
2611   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2612                                MVT::Other, GuardVal.getOperand(0),
2613                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2614   // Otherwise branch to success MBB.
2615   SDValue Br = DAG.getNode(ISD::BR, dl,
2616                            MVT::Other, BrCond,
2617                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2618 
2619   DAG.setRoot(Br);
2620 }
2621 
2622 /// Codegen the failure basic block for a stack protector check.
2623 ///
2624 /// A failure stack protector machine basic block consists simply of a call to
2625 /// __stack_chk_fail().
2626 ///
2627 /// For a high level explanation of how this fits into the stack protector
2628 /// generation see the comment on the declaration of class
2629 /// StackProtectorDescriptor.
2630 void
2631 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2633   TargetLowering::MakeLibCallOptions CallOptions;
2634   CallOptions.setDiscardResult(true);
2635   SDValue Chain =
2636       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2637                       None, CallOptions, getCurSDLoc()).second;
2638   // On PS4, the "return address" must still be within the calling function,
2639   // even if it's at the very end, so emit an explicit TRAP here.
2640   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2641   if (TM.getTargetTriple().isPS4CPU())
2642     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2643   // WebAssembly needs an unreachable instruction after a non-returning call,
2644   // because the function return type can be different from __stack_chk_fail's
2645   // return type (void).
2646   if (TM.getTargetTriple().isWasm())
2647     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2648 
2649   DAG.setRoot(Chain);
2650 }
2651 
2652 /// visitBitTestHeader - This function emits necessary code to produce value
2653 /// suitable for "bit tests"
2654 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2655                                              MachineBasicBlock *SwitchBB) {
2656   SDLoc dl = getCurSDLoc();
2657 
2658   // Subtract the minimum value.
2659   SDValue SwitchOp = getValue(B.SValue);
2660   EVT VT = SwitchOp.getValueType();
2661   SDValue RangeSub =
2662       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2663 
2664   // Determine the type of the test operands.
2665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2666   bool UsePtrType = false;
2667   if (!TLI.isTypeLegal(VT)) {
2668     UsePtrType = true;
2669   } else {
2670     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2671       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2672         // Switch table case range are encoded into series of masks.
2673         // Just use pointer type, it's guaranteed to fit.
2674         UsePtrType = true;
2675         break;
2676       }
2677   }
2678   SDValue Sub = RangeSub;
2679   if (UsePtrType) {
2680     VT = TLI.getPointerTy(DAG.getDataLayout());
2681     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2682   }
2683 
2684   B.RegVT = VT.getSimpleVT();
2685   B.Reg = FuncInfo.CreateReg(B.RegVT);
2686   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2687 
2688   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2689 
2690   if (!B.OmitRangeCheck)
2691     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2692   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2693   SwitchBB->normalizeSuccProbs();
2694 
2695   SDValue Root = CopyTo;
2696   if (!B.OmitRangeCheck) {
2697     // Conditional branch to the default block.
2698     SDValue RangeCmp = DAG.getSetCC(dl,
2699         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2700                                RangeSub.getValueType()),
2701         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2702         ISD::SETUGT);
2703 
2704     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2705                        DAG.getBasicBlock(B.Default));
2706   }
2707 
2708   // Avoid emitting unnecessary branches to the next block.
2709   if (MBB != NextBlock(SwitchBB))
2710     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2711 
2712   DAG.setRoot(Root);
2713 }
2714 
2715 /// visitBitTestCase - this function produces one "bit test"
2716 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2717                                            MachineBasicBlock* NextMBB,
2718                                            BranchProbability BranchProbToNext,
2719                                            unsigned Reg,
2720                                            BitTestCase &B,
2721                                            MachineBasicBlock *SwitchBB) {
2722   SDLoc dl = getCurSDLoc();
2723   MVT VT = BB.RegVT;
2724   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2725   SDValue Cmp;
2726   unsigned PopCount = countPopulation(B.Mask);
2727   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2728   if (PopCount == 1) {
2729     // Testing for a single bit; just compare the shift count with what it
2730     // would need to be to shift a 1 bit in that position.
2731     Cmp = DAG.getSetCC(
2732         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2733         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2734         ISD::SETEQ);
2735   } else if (PopCount == BB.Range) {
2736     // There is only one zero bit in the range, test for it directly.
2737     Cmp = DAG.getSetCC(
2738         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2739         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2740         ISD::SETNE);
2741   } else {
2742     // Make desired shift
2743     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2744                                     DAG.getConstant(1, dl, VT), ShiftOp);
2745 
2746     // Emit bit tests and jumps
2747     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2748                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2749     Cmp = DAG.getSetCC(
2750         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2751         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2752   }
2753 
2754   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2755   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2756   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2757   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2758   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2759   // one as they are relative probabilities (and thus work more like weights),
2760   // and hence we need to normalize them to let the sum of them become one.
2761   SwitchBB->normalizeSuccProbs();
2762 
2763   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2764                               MVT::Other, getControlRoot(),
2765                               Cmp, DAG.getBasicBlock(B.TargetBB));
2766 
2767   // Avoid emitting unnecessary branches to the next block.
2768   if (NextMBB != NextBlock(SwitchBB))
2769     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2770                         DAG.getBasicBlock(NextMBB));
2771 
2772   DAG.setRoot(BrAnd);
2773 }
2774 
2775 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2776   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2777 
2778   // Retrieve successors. Look through artificial IR level blocks like
2779   // catchswitch for successors.
2780   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2781   const BasicBlock *EHPadBB = I.getSuccessor(1);
2782 
2783   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2784   // have to do anything here to lower funclet bundles.
2785   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2786                                         LLVMContext::OB_gc_transition,
2787                                         LLVMContext::OB_gc_live,
2788                                         LLVMContext::OB_funclet,
2789                                         LLVMContext::OB_cfguardtarget}) &&
2790          "Cannot lower invokes with arbitrary operand bundles yet!");
2791 
2792   const Value *Callee(I.getCalledOperand());
2793   const Function *Fn = dyn_cast<Function>(Callee);
2794   if (isa<InlineAsm>(Callee))
2795     visitInlineAsm(I);
2796   else if (Fn && Fn->isIntrinsic()) {
2797     switch (Fn->getIntrinsicID()) {
2798     default:
2799       llvm_unreachable("Cannot invoke this intrinsic");
2800     case Intrinsic::donothing:
2801       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2802       break;
2803     case Intrinsic::experimental_patchpoint_void:
2804     case Intrinsic::experimental_patchpoint_i64:
2805       visitPatchpoint(I, EHPadBB);
2806       break;
2807     case Intrinsic::experimental_gc_statepoint:
2808       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2809       break;
2810     case Intrinsic::wasm_rethrow: {
2811       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2812       // special because it can be invoked, so we manually lower it to a DAG
2813       // node here.
2814       SmallVector<SDValue, 8> Ops;
2815       Ops.push_back(getRoot()); // inchain
2816       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2817       Ops.push_back(
2818           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2819                                 TLI.getPointerTy(DAG.getDataLayout())));
2820       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2821       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2822       break;
2823     }
2824     }
2825   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2826     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2827     // Eventually we will support lowering the @llvm.experimental.deoptimize
2828     // intrinsic, and right now there are no plans to support other intrinsics
2829     // with deopt state.
2830     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2831   } else {
2832     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2833   }
2834 
2835   // If the value of the invoke is used outside of its defining block, make it
2836   // available as a virtual register.
2837   // We already took care of the exported value for the statepoint instruction
2838   // during call to the LowerStatepoint.
2839   if (!isa<GCStatepointInst>(I)) {
2840     CopyToExportRegsIfNeeded(&I);
2841   }
2842 
2843   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2844   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2845   BranchProbability EHPadBBProb =
2846       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2847           : BranchProbability::getZero();
2848   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2849 
2850   // Update successor info.
2851   addSuccessorWithProb(InvokeMBB, Return);
2852   for (auto &UnwindDest : UnwindDests) {
2853     UnwindDest.first->setIsEHPad();
2854     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2855   }
2856   InvokeMBB->normalizeSuccProbs();
2857 
2858   // Drop into normal successor.
2859   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2860                           DAG.getBasicBlock(Return)));
2861 }
2862 
2863 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2864   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2865 
2866   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2867   // have to do anything here to lower funclet bundles.
2868   assert(!I.hasOperandBundlesOtherThan(
2869              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2870          "Cannot lower callbrs with arbitrary operand bundles yet!");
2871 
2872   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2873   visitInlineAsm(I);
2874   CopyToExportRegsIfNeeded(&I);
2875 
2876   // Retrieve successors.
2877   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2878 
2879   // Update successor info.
2880   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2881   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2882     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2883     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2884     Target->setIsInlineAsmBrIndirectTarget();
2885   }
2886   CallBrMBB->normalizeSuccProbs();
2887 
2888   // Drop into default successor.
2889   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2890                           MVT::Other, getControlRoot(),
2891                           DAG.getBasicBlock(Return)));
2892 }
2893 
2894 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2895   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2896 }
2897 
2898 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2899   assert(FuncInfo.MBB->isEHPad() &&
2900          "Call to landingpad not in landing pad!");
2901 
2902   // If there aren't registers to copy the values into (e.g., during SjLj
2903   // exceptions), then don't bother to create these DAG nodes.
2904   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2905   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2906   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2907       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2908     return;
2909 
2910   // If landingpad's return type is token type, we don't create DAG nodes
2911   // for its exception pointer and selector value. The extraction of exception
2912   // pointer or selector value from token type landingpads is not currently
2913   // supported.
2914   if (LP.getType()->isTokenTy())
2915     return;
2916 
2917   SmallVector<EVT, 2> ValueVTs;
2918   SDLoc dl = getCurSDLoc();
2919   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2920   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2921 
2922   // Get the two live-in registers as SDValues. The physregs have already been
2923   // copied into virtual registers.
2924   SDValue Ops[2];
2925   if (FuncInfo.ExceptionPointerVirtReg) {
2926     Ops[0] = DAG.getZExtOrTrunc(
2927         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2928                            FuncInfo.ExceptionPointerVirtReg,
2929                            TLI.getPointerTy(DAG.getDataLayout())),
2930         dl, ValueVTs[0]);
2931   } else {
2932     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2933   }
2934   Ops[1] = DAG.getZExtOrTrunc(
2935       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2936                          FuncInfo.ExceptionSelectorVirtReg,
2937                          TLI.getPointerTy(DAG.getDataLayout())),
2938       dl, ValueVTs[1]);
2939 
2940   // Merge into one.
2941   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2942                             DAG.getVTList(ValueVTs), Ops);
2943   setValue(&LP, Res);
2944 }
2945 
2946 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2947                                            MachineBasicBlock *Last) {
2948   // Update JTCases.
2949   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2950     if (SL->JTCases[i].first.HeaderBB == First)
2951       SL->JTCases[i].first.HeaderBB = Last;
2952 
2953   // Update BitTestCases.
2954   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2955     if (SL->BitTestCases[i].Parent == First)
2956       SL->BitTestCases[i].Parent = Last;
2957 }
2958 
2959 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2960   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2961 
2962   // Update machine-CFG edges with unique successors.
2963   SmallSet<BasicBlock*, 32> Done;
2964   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2965     BasicBlock *BB = I.getSuccessor(i);
2966     bool Inserted = Done.insert(BB).second;
2967     if (!Inserted)
2968         continue;
2969 
2970     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2971     addSuccessorWithProb(IndirectBrMBB, Succ);
2972   }
2973   IndirectBrMBB->normalizeSuccProbs();
2974 
2975   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2976                           MVT::Other, getControlRoot(),
2977                           getValue(I.getAddress())));
2978 }
2979 
2980 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2981   if (!DAG.getTarget().Options.TrapUnreachable)
2982     return;
2983 
2984   // We may be able to ignore unreachable behind a noreturn call.
2985   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2986     const BasicBlock &BB = *I.getParent();
2987     if (&I != &BB.front()) {
2988       BasicBlock::const_iterator PredI =
2989         std::prev(BasicBlock::const_iterator(&I));
2990       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2991         if (Call->doesNotReturn())
2992           return;
2993       }
2994     }
2995   }
2996 
2997   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2998 }
2999 
3000 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3001   SDNodeFlags Flags;
3002 
3003   SDValue Op = getValue(I.getOperand(0));
3004   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3005                                     Op, Flags);
3006   setValue(&I, UnNodeValue);
3007 }
3008 
3009 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3010   SDNodeFlags Flags;
3011   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3012     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3013     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3014   }
3015   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3016     Flags.setExact(ExactOp->isExact());
3017   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3018     Flags.copyFMF(*FPOp);
3019 
3020   SDValue Op1 = getValue(I.getOperand(0));
3021   SDValue Op2 = getValue(I.getOperand(1));
3022   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3023                                      Op1, Op2, Flags);
3024   setValue(&I, BinNodeValue);
3025 }
3026 
3027 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3028   SDValue Op1 = getValue(I.getOperand(0));
3029   SDValue Op2 = getValue(I.getOperand(1));
3030 
3031   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3032       Op1.getValueType(), DAG.getDataLayout());
3033 
3034   // Coerce the shift amount to the right type if we can.
3035   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3036     unsigned ShiftSize = ShiftTy.getSizeInBits();
3037     unsigned Op2Size = Op2.getValueSizeInBits();
3038     SDLoc DL = getCurSDLoc();
3039 
3040     // If the operand is smaller than the shift count type, promote it.
3041     if (ShiftSize > Op2Size)
3042       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3043 
3044     // If the operand is larger than the shift count type but the shift
3045     // count type has enough bits to represent any shift value, truncate
3046     // it now. This is a common case and it exposes the truncate to
3047     // optimization early.
3048     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3049       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3050     // Otherwise we'll need to temporarily settle for some other convenient
3051     // type.  Type legalization will make adjustments once the shiftee is split.
3052     else
3053       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3054   }
3055 
3056   bool nuw = false;
3057   bool nsw = false;
3058   bool exact = false;
3059 
3060   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3061 
3062     if (const OverflowingBinaryOperator *OFBinOp =
3063             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3064       nuw = OFBinOp->hasNoUnsignedWrap();
3065       nsw = OFBinOp->hasNoSignedWrap();
3066     }
3067     if (const PossiblyExactOperator *ExactOp =
3068             dyn_cast<const PossiblyExactOperator>(&I))
3069       exact = ExactOp->isExact();
3070   }
3071   SDNodeFlags Flags;
3072   Flags.setExact(exact);
3073   Flags.setNoSignedWrap(nsw);
3074   Flags.setNoUnsignedWrap(nuw);
3075   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3076                             Flags);
3077   setValue(&I, Res);
3078 }
3079 
3080 void SelectionDAGBuilder::visitSDiv(const User &I) {
3081   SDValue Op1 = getValue(I.getOperand(0));
3082   SDValue Op2 = getValue(I.getOperand(1));
3083 
3084   SDNodeFlags Flags;
3085   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3086                  cast<PossiblyExactOperator>(&I)->isExact());
3087   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3088                            Op2, Flags));
3089 }
3090 
3091 void SelectionDAGBuilder::visitICmp(const User &I) {
3092   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3093   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3094     predicate = IC->getPredicate();
3095   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3096     predicate = ICmpInst::Predicate(IC->getPredicate());
3097   SDValue Op1 = getValue(I.getOperand(0));
3098   SDValue Op2 = getValue(I.getOperand(1));
3099   ISD::CondCode Opcode = getICmpCondCode(predicate);
3100 
3101   auto &TLI = DAG.getTargetLoweringInfo();
3102   EVT MemVT =
3103       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3104 
3105   // If a pointer's DAG type is larger than its memory type then the DAG values
3106   // are zero-extended. This breaks signed comparisons so truncate back to the
3107   // underlying type before doing the compare.
3108   if (Op1.getValueType() != MemVT) {
3109     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3110     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3111   }
3112 
3113   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3114                                                         I.getType());
3115   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3116 }
3117 
3118 void SelectionDAGBuilder::visitFCmp(const User &I) {
3119   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3120   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3121     predicate = FC->getPredicate();
3122   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3123     predicate = FCmpInst::Predicate(FC->getPredicate());
3124   SDValue Op1 = getValue(I.getOperand(0));
3125   SDValue Op2 = getValue(I.getOperand(1));
3126 
3127   ISD::CondCode Condition = getFCmpCondCode(predicate);
3128   auto *FPMO = cast<FPMathOperator>(&I);
3129   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3130     Condition = getFCmpCodeWithoutNaN(Condition);
3131 
3132   SDNodeFlags Flags;
3133   Flags.copyFMF(*FPMO);
3134   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3135 
3136   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3137                                                         I.getType());
3138   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3139 }
3140 
3141 // Check if the condition of the select has one use or two users that are both
3142 // selects with the same condition.
3143 static bool hasOnlySelectUsers(const Value *Cond) {
3144   return llvm::all_of(Cond->users(), [](const Value *V) {
3145     return isa<SelectInst>(V);
3146   });
3147 }
3148 
3149 void SelectionDAGBuilder::visitSelect(const User &I) {
3150   SmallVector<EVT, 4> ValueVTs;
3151   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3152                   ValueVTs);
3153   unsigned NumValues = ValueVTs.size();
3154   if (NumValues == 0) return;
3155 
3156   SmallVector<SDValue, 4> Values(NumValues);
3157   SDValue Cond     = getValue(I.getOperand(0));
3158   SDValue LHSVal   = getValue(I.getOperand(1));
3159   SDValue RHSVal   = getValue(I.getOperand(2));
3160   SmallVector<SDValue, 1> BaseOps(1, Cond);
3161   ISD::NodeType OpCode =
3162       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3163 
3164   bool IsUnaryAbs = false;
3165   bool Negate = false;
3166 
3167   SDNodeFlags Flags;
3168   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3169     Flags.copyFMF(*FPOp);
3170 
3171   // Min/max matching is only viable if all output VTs are the same.
3172   if (is_splat(ValueVTs)) {
3173     EVT VT = ValueVTs[0];
3174     LLVMContext &Ctx = *DAG.getContext();
3175     auto &TLI = DAG.getTargetLoweringInfo();
3176 
3177     // We care about the legality of the operation after it has been type
3178     // legalized.
3179     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3180       VT = TLI.getTypeToTransformTo(Ctx, VT);
3181 
3182     // If the vselect is legal, assume we want to leave this as a vector setcc +
3183     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3184     // min/max is legal on the scalar type.
3185     bool UseScalarMinMax = VT.isVector() &&
3186       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3187 
3188     Value *LHS, *RHS;
3189     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3190     ISD::NodeType Opc = ISD::DELETED_NODE;
3191     switch (SPR.Flavor) {
3192     case SPF_UMAX:    Opc = ISD::UMAX; break;
3193     case SPF_UMIN:    Opc = ISD::UMIN; break;
3194     case SPF_SMAX:    Opc = ISD::SMAX; break;
3195     case SPF_SMIN:    Opc = ISD::SMIN; break;
3196     case SPF_FMINNUM:
3197       switch (SPR.NaNBehavior) {
3198       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3199       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3200       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3201       case SPNB_RETURNS_ANY: {
3202         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3203           Opc = ISD::FMINNUM;
3204         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3205           Opc = ISD::FMINIMUM;
3206         else if (UseScalarMinMax)
3207           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3208             ISD::FMINNUM : ISD::FMINIMUM;
3209         break;
3210       }
3211       }
3212       break;
3213     case SPF_FMAXNUM:
3214       switch (SPR.NaNBehavior) {
3215       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3216       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3217       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3218       case SPNB_RETURNS_ANY:
3219 
3220         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3221           Opc = ISD::FMAXNUM;
3222         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3223           Opc = ISD::FMAXIMUM;
3224         else if (UseScalarMinMax)
3225           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3226             ISD::FMAXNUM : ISD::FMAXIMUM;
3227         break;
3228       }
3229       break;
3230     case SPF_NABS:
3231       Negate = true;
3232       LLVM_FALLTHROUGH;
3233     case SPF_ABS:
3234       IsUnaryAbs = true;
3235       Opc = ISD::ABS;
3236       break;
3237     default: break;
3238     }
3239 
3240     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3241         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3242          (UseScalarMinMax &&
3243           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3244         // If the underlying comparison instruction is used by any other
3245         // instruction, the consumed instructions won't be destroyed, so it is
3246         // not profitable to convert to a min/max.
3247         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3248       OpCode = Opc;
3249       LHSVal = getValue(LHS);
3250       RHSVal = getValue(RHS);
3251       BaseOps.clear();
3252     }
3253 
3254     if (IsUnaryAbs) {
3255       OpCode = Opc;
3256       LHSVal = getValue(LHS);
3257       BaseOps.clear();
3258     }
3259   }
3260 
3261   if (IsUnaryAbs) {
3262     for (unsigned i = 0; i != NumValues; ++i) {
3263       SDLoc dl = getCurSDLoc();
3264       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3265       Values[i] =
3266           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3267       if (Negate)
3268         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3269                                 Values[i]);
3270     }
3271   } else {
3272     for (unsigned i = 0; i != NumValues; ++i) {
3273       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3274       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3275       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3276       Values[i] = DAG.getNode(
3277           OpCode, getCurSDLoc(),
3278           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3279     }
3280   }
3281 
3282   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3283                            DAG.getVTList(ValueVTs), Values));
3284 }
3285 
3286 void SelectionDAGBuilder::visitTrunc(const User &I) {
3287   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3288   SDValue N = getValue(I.getOperand(0));
3289   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3290                                                         I.getType());
3291   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3292 }
3293 
3294 void SelectionDAGBuilder::visitZExt(const User &I) {
3295   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3296   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3297   SDValue N = getValue(I.getOperand(0));
3298   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3299                                                         I.getType());
3300   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3301 }
3302 
3303 void SelectionDAGBuilder::visitSExt(const User &I) {
3304   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3305   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3306   SDValue N = getValue(I.getOperand(0));
3307   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3308                                                         I.getType());
3309   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3310 }
3311 
3312 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3313   // FPTrunc is never a no-op cast, no need to check
3314   SDValue N = getValue(I.getOperand(0));
3315   SDLoc dl = getCurSDLoc();
3316   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3317   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3318   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3319                            DAG.getTargetConstant(
3320                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3321 }
3322 
3323 void SelectionDAGBuilder::visitFPExt(const User &I) {
3324   // FPExt is never a no-op cast, no need to check
3325   SDValue N = getValue(I.getOperand(0));
3326   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3327                                                         I.getType());
3328   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3329 }
3330 
3331 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3332   // FPToUI is never a no-op cast, no need to check
3333   SDValue N = getValue(I.getOperand(0));
3334   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3335                                                         I.getType());
3336   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3337 }
3338 
3339 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3340   // FPToSI is never a no-op cast, no need to check
3341   SDValue N = getValue(I.getOperand(0));
3342   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3343                                                         I.getType());
3344   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3345 }
3346 
3347 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3348   // UIToFP is never a no-op cast, no need to check
3349   SDValue N = getValue(I.getOperand(0));
3350   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3351                                                         I.getType());
3352   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3353 }
3354 
3355 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3356   // SIToFP is never a no-op cast, no need to check
3357   SDValue N = getValue(I.getOperand(0));
3358   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3359                                                         I.getType());
3360   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3361 }
3362 
3363 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3364   // What to do depends on the size of the integer and the size of the pointer.
3365   // We can either truncate, zero extend, or no-op, accordingly.
3366   SDValue N = getValue(I.getOperand(0));
3367   auto &TLI = DAG.getTargetLoweringInfo();
3368   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3369                                                         I.getType());
3370   EVT PtrMemVT =
3371       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3372   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3373   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3374   setValue(&I, N);
3375 }
3376 
3377 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3378   // What to do depends on the size of the integer and the size of the pointer.
3379   // We can either truncate, zero extend, or no-op, accordingly.
3380   SDValue N = getValue(I.getOperand(0));
3381   auto &TLI = DAG.getTargetLoweringInfo();
3382   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3383   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3384   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3385   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3386   setValue(&I, N);
3387 }
3388 
3389 void SelectionDAGBuilder::visitBitCast(const User &I) {
3390   SDValue N = getValue(I.getOperand(0));
3391   SDLoc dl = getCurSDLoc();
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394 
3395   // BitCast assures us that source and destination are the same size so this is
3396   // either a BITCAST or a no-op.
3397   if (DestVT != N.getValueType())
3398     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3399                              DestVT, N)); // convert types.
3400   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3401   // might fold any kind of constant expression to an integer constant and that
3402   // is not what we are looking for. Only recognize a bitcast of a genuine
3403   // constant integer as an opaque constant.
3404   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3405     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3406                                  /*isOpaque*/true));
3407   else
3408     setValue(&I, N);            // noop cast.
3409 }
3410 
3411 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3413   const Value *SV = I.getOperand(0);
3414   SDValue N = getValue(SV);
3415   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3416 
3417   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3418   unsigned DestAS = I.getType()->getPointerAddressSpace();
3419 
3420   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3421     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3422 
3423   setValue(&I, N);
3424 }
3425 
3426 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3428   SDValue InVec = getValue(I.getOperand(0));
3429   SDValue InVal = getValue(I.getOperand(1));
3430   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3431                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3432   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3433                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3434                            InVec, InVal, InIdx));
3435 }
3436 
3437 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3439   SDValue InVec = getValue(I.getOperand(0));
3440   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3441                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3442   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3443                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3444                            InVec, InIdx));
3445 }
3446 
3447 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3448   SDValue Src1 = getValue(I.getOperand(0));
3449   SDValue Src2 = getValue(I.getOperand(1));
3450   ArrayRef<int> Mask;
3451   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3452     Mask = SVI->getShuffleMask();
3453   else
3454     Mask = cast<ConstantExpr>(I).getShuffleMask();
3455   SDLoc DL = getCurSDLoc();
3456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3457   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3458   EVT SrcVT = Src1.getValueType();
3459 
3460   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3461       VT.isScalableVector()) {
3462     // Canonical splat form of first element of first input vector.
3463     SDValue FirstElt =
3464         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3465                     DAG.getVectorIdxConstant(0, DL));
3466     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3467     return;
3468   }
3469 
3470   // For now, we only handle splats for scalable vectors.
3471   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3472   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3473   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3474 
3475   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3476   unsigned MaskNumElts = Mask.size();
3477 
3478   if (SrcNumElts == MaskNumElts) {
3479     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3480     return;
3481   }
3482 
3483   // Normalize the shuffle vector since mask and vector length don't match.
3484   if (SrcNumElts < MaskNumElts) {
3485     // Mask is longer than the source vectors. We can use concatenate vector to
3486     // make the mask and vectors lengths match.
3487 
3488     if (MaskNumElts % SrcNumElts == 0) {
3489       // Mask length is a multiple of the source vector length.
3490       // Check if the shuffle is some kind of concatenation of the input
3491       // vectors.
3492       unsigned NumConcat = MaskNumElts / SrcNumElts;
3493       bool IsConcat = true;
3494       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3495       for (unsigned i = 0; i != MaskNumElts; ++i) {
3496         int Idx = Mask[i];
3497         if (Idx < 0)
3498           continue;
3499         // Ensure the indices in each SrcVT sized piece are sequential and that
3500         // the same source is used for the whole piece.
3501         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3502             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3503              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3504           IsConcat = false;
3505           break;
3506         }
3507         // Remember which source this index came from.
3508         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3509       }
3510 
3511       // The shuffle is concatenating multiple vectors together. Just emit
3512       // a CONCAT_VECTORS operation.
3513       if (IsConcat) {
3514         SmallVector<SDValue, 8> ConcatOps;
3515         for (auto Src : ConcatSrcs) {
3516           if (Src < 0)
3517             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3518           else if (Src == 0)
3519             ConcatOps.push_back(Src1);
3520           else
3521             ConcatOps.push_back(Src2);
3522         }
3523         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3524         return;
3525       }
3526     }
3527 
3528     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3529     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3530     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3531                                     PaddedMaskNumElts);
3532 
3533     // Pad both vectors with undefs to make them the same length as the mask.
3534     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3535 
3536     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3537     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3538     MOps1[0] = Src1;
3539     MOps2[0] = Src2;
3540 
3541     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3542     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3543 
3544     // Readjust mask for new input vector length.
3545     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3546     for (unsigned i = 0; i != MaskNumElts; ++i) {
3547       int Idx = Mask[i];
3548       if (Idx >= (int)SrcNumElts)
3549         Idx -= SrcNumElts - PaddedMaskNumElts;
3550       MappedOps[i] = Idx;
3551     }
3552 
3553     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3554 
3555     // If the concatenated vector was padded, extract a subvector with the
3556     // correct number of elements.
3557     if (MaskNumElts != PaddedMaskNumElts)
3558       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3559                            DAG.getVectorIdxConstant(0, DL));
3560 
3561     setValue(&I, Result);
3562     return;
3563   }
3564 
3565   if (SrcNumElts > MaskNumElts) {
3566     // Analyze the access pattern of the vector to see if we can extract
3567     // two subvectors and do the shuffle.
3568     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3569     bool CanExtract = true;
3570     for (int Idx : Mask) {
3571       unsigned Input = 0;
3572       if (Idx < 0)
3573         continue;
3574 
3575       if (Idx >= (int)SrcNumElts) {
3576         Input = 1;
3577         Idx -= SrcNumElts;
3578       }
3579 
3580       // If all the indices come from the same MaskNumElts sized portion of
3581       // the sources we can use extract. Also make sure the extract wouldn't
3582       // extract past the end of the source.
3583       int NewStartIdx = alignDown(Idx, MaskNumElts);
3584       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3585           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3586         CanExtract = false;
3587       // Make sure we always update StartIdx as we use it to track if all
3588       // elements are undef.
3589       StartIdx[Input] = NewStartIdx;
3590     }
3591 
3592     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3593       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3594       return;
3595     }
3596     if (CanExtract) {
3597       // Extract appropriate subvector and generate a vector shuffle
3598       for (unsigned Input = 0; Input < 2; ++Input) {
3599         SDValue &Src = Input == 0 ? Src1 : Src2;
3600         if (StartIdx[Input] < 0)
3601           Src = DAG.getUNDEF(VT);
3602         else {
3603           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3604                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3605         }
3606       }
3607 
3608       // Calculate new mask.
3609       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3610       for (int &Idx : MappedOps) {
3611         if (Idx >= (int)SrcNumElts)
3612           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3613         else if (Idx >= 0)
3614           Idx -= StartIdx[0];
3615       }
3616 
3617       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3618       return;
3619     }
3620   }
3621 
3622   // We can't use either concat vectors or extract subvectors so fall back to
3623   // replacing the shuffle with extract and build vector.
3624   // to insert and build vector.
3625   EVT EltVT = VT.getVectorElementType();
3626   SmallVector<SDValue,8> Ops;
3627   for (int Idx : Mask) {
3628     SDValue Res;
3629 
3630     if (Idx < 0) {
3631       Res = DAG.getUNDEF(EltVT);
3632     } else {
3633       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3634       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3635 
3636       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3637                         DAG.getVectorIdxConstant(Idx, DL));
3638     }
3639 
3640     Ops.push_back(Res);
3641   }
3642 
3643   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3644 }
3645 
3646 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3647   ArrayRef<unsigned> Indices;
3648   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3649     Indices = IV->getIndices();
3650   else
3651     Indices = cast<ConstantExpr>(&I)->getIndices();
3652 
3653   const Value *Op0 = I.getOperand(0);
3654   const Value *Op1 = I.getOperand(1);
3655   Type *AggTy = I.getType();
3656   Type *ValTy = Op1->getType();
3657   bool IntoUndef = isa<UndefValue>(Op0);
3658   bool FromUndef = isa<UndefValue>(Op1);
3659 
3660   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3661 
3662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3663   SmallVector<EVT, 4> AggValueVTs;
3664   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3665   SmallVector<EVT, 4> ValValueVTs;
3666   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3667 
3668   unsigned NumAggValues = AggValueVTs.size();
3669   unsigned NumValValues = ValValueVTs.size();
3670   SmallVector<SDValue, 4> Values(NumAggValues);
3671 
3672   // Ignore an insertvalue that produces an empty object
3673   if (!NumAggValues) {
3674     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3675     return;
3676   }
3677 
3678   SDValue Agg = getValue(Op0);
3679   unsigned i = 0;
3680   // Copy the beginning value(s) from the original aggregate.
3681   for (; i != LinearIndex; ++i)
3682     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3683                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3684   // Copy values from the inserted value(s).
3685   if (NumValValues) {
3686     SDValue Val = getValue(Op1);
3687     for (; i != LinearIndex + NumValValues; ++i)
3688       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3689                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3690   }
3691   // Copy remaining value(s) from the original aggregate.
3692   for (; i != NumAggValues; ++i)
3693     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3694                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3695 
3696   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3697                            DAG.getVTList(AggValueVTs), Values));
3698 }
3699 
3700 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3701   ArrayRef<unsigned> Indices;
3702   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3703     Indices = EV->getIndices();
3704   else
3705     Indices = cast<ConstantExpr>(&I)->getIndices();
3706 
3707   const Value *Op0 = I.getOperand(0);
3708   Type *AggTy = Op0->getType();
3709   Type *ValTy = I.getType();
3710   bool OutOfUndef = isa<UndefValue>(Op0);
3711 
3712   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3713 
3714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3715   SmallVector<EVT, 4> ValValueVTs;
3716   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3717 
3718   unsigned NumValValues = ValValueVTs.size();
3719 
3720   // Ignore a extractvalue that produces an empty object
3721   if (!NumValValues) {
3722     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3723     return;
3724   }
3725 
3726   SmallVector<SDValue, 4> Values(NumValValues);
3727 
3728   SDValue Agg = getValue(Op0);
3729   // Copy out the selected value(s).
3730   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3731     Values[i - LinearIndex] =
3732       OutOfUndef ?
3733         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3734         SDValue(Agg.getNode(), Agg.getResNo() + i);
3735 
3736   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3737                            DAG.getVTList(ValValueVTs), Values));
3738 }
3739 
3740 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3741   Value *Op0 = I.getOperand(0);
3742   // Note that the pointer operand may be a vector of pointers. Take the scalar
3743   // element which holds a pointer.
3744   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3745   SDValue N = getValue(Op0);
3746   SDLoc dl = getCurSDLoc();
3747   auto &TLI = DAG.getTargetLoweringInfo();
3748 
3749   // Normalize Vector GEP - all scalar operands should be converted to the
3750   // splat vector.
3751   bool IsVectorGEP = I.getType()->isVectorTy();
3752   ElementCount VectorElementCount =
3753       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3754                   : ElementCount::getFixed(0);
3755 
3756   if (IsVectorGEP && !N.getValueType().isVector()) {
3757     LLVMContext &Context = *DAG.getContext();
3758     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3759     if (VectorElementCount.isScalable())
3760       N = DAG.getSplatVector(VT, dl, N);
3761     else
3762       N = DAG.getSplatBuildVector(VT, dl, N);
3763   }
3764 
3765   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3766        GTI != E; ++GTI) {
3767     const Value *Idx = GTI.getOperand();
3768     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3769       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3770       if (Field) {
3771         // N = N + Offset
3772         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3773 
3774         // In an inbounds GEP with an offset that is nonnegative even when
3775         // interpreted as signed, assume there is no unsigned overflow.
3776         SDNodeFlags Flags;
3777         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3778           Flags.setNoUnsignedWrap(true);
3779 
3780         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3781                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3782       }
3783     } else {
3784       // IdxSize is the width of the arithmetic according to IR semantics.
3785       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3786       // (and fix up the result later).
3787       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3788       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3789       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3790       // We intentionally mask away the high bits here; ElementSize may not
3791       // fit in IdxTy.
3792       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3793       bool ElementScalable = ElementSize.isScalable();
3794 
3795       // If this is a scalar constant or a splat vector of constants,
3796       // handle it quickly.
3797       const auto *C = dyn_cast<Constant>(Idx);
3798       if (C && isa<VectorType>(C->getType()))
3799         C = C->getSplatValue();
3800 
3801       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3802       if (CI && CI->isZero())
3803         continue;
3804       if (CI && !ElementScalable) {
3805         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3806         LLVMContext &Context = *DAG.getContext();
3807         SDValue OffsVal;
3808         if (IsVectorGEP)
3809           OffsVal = DAG.getConstant(
3810               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3811         else
3812           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3813 
3814         // In an inbounds GEP with an offset that is nonnegative even when
3815         // interpreted as signed, assume there is no unsigned overflow.
3816         SDNodeFlags Flags;
3817         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3818           Flags.setNoUnsignedWrap(true);
3819 
3820         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3821 
3822         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3823         continue;
3824       }
3825 
3826       // N = N + Idx * ElementMul;
3827       SDValue IdxN = getValue(Idx);
3828 
3829       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3830         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3831                                   VectorElementCount);
3832         if (VectorElementCount.isScalable())
3833           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3834         else
3835           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3836       }
3837 
3838       // If the index is smaller or larger than intptr_t, truncate or extend
3839       // it.
3840       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3841 
3842       if (ElementScalable) {
3843         EVT VScaleTy = N.getValueType().getScalarType();
3844         SDValue VScale = DAG.getNode(
3845             ISD::VSCALE, dl, VScaleTy,
3846             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3847         if (IsVectorGEP)
3848           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3849         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3850       } else {
3851         // If this is a multiply by a power of two, turn it into a shl
3852         // immediately.  This is a very common case.
3853         if (ElementMul != 1) {
3854           if (ElementMul.isPowerOf2()) {
3855             unsigned Amt = ElementMul.logBase2();
3856             IdxN = DAG.getNode(ISD::SHL, dl,
3857                                N.getValueType(), IdxN,
3858                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3859           } else {
3860             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3861                                             IdxN.getValueType());
3862             IdxN = DAG.getNode(ISD::MUL, dl,
3863                                N.getValueType(), IdxN, Scale);
3864           }
3865         }
3866       }
3867 
3868       N = DAG.getNode(ISD::ADD, dl,
3869                       N.getValueType(), N, IdxN);
3870     }
3871   }
3872 
3873   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3874   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3875   if (IsVectorGEP) {
3876     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3877     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3878   }
3879 
3880   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3881     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3882 
3883   setValue(&I, N);
3884 }
3885 
3886 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3887   // If this is a fixed sized alloca in the entry block of the function,
3888   // allocate it statically on the stack.
3889   if (FuncInfo.StaticAllocaMap.count(&I))
3890     return;   // getValue will auto-populate this.
3891 
3892   SDLoc dl = getCurSDLoc();
3893   Type *Ty = I.getAllocatedType();
3894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3895   auto &DL = DAG.getDataLayout();
3896   uint64_t TySize = DL.getTypeAllocSize(Ty);
3897   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3898 
3899   SDValue AllocSize = getValue(I.getArraySize());
3900 
3901   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3902   if (AllocSize.getValueType() != IntPtr)
3903     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3904 
3905   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3906                           AllocSize,
3907                           DAG.getConstant(TySize, dl, IntPtr));
3908 
3909   // Handle alignment.  If the requested alignment is less than or equal to
3910   // the stack alignment, ignore it.  If the size is greater than or equal to
3911   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3912   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3913   if (*Alignment <= StackAlign)
3914     Alignment = None;
3915 
3916   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3917   // Round the size of the allocation up to the stack alignment size
3918   // by add SA-1 to the size. This doesn't overflow because we're computing
3919   // an address inside an alloca.
3920   SDNodeFlags Flags;
3921   Flags.setNoUnsignedWrap(true);
3922   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3923                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3924 
3925   // Mask out the low bits for alignment purposes.
3926   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3927                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3928 
3929   SDValue Ops[] = {
3930       getRoot(), AllocSize,
3931       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3932   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3933   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3934   setValue(&I, DSA);
3935   DAG.setRoot(DSA.getValue(1));
3936 
3937   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3938 }
3939 
3940 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3941   if (I.isAtomic())
3942     return visitAtomicLoad(I);
3943 
3944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3945   const Value *SV = I.getOperand(0);
3946   if (TLI.supportSwiftError()) {
3947     // Swifterror values can come from either a function parameter with
3948     // swifterror attribute or an alloca with swifterror attribute.
3949     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3950       if (Arg->hasSwiftErrorAttr())
3951         return visitLoadFromSwiftError(I);
3952     }
3953 
3954     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3955       if (Alloca->isSwiftError())
3956         return visitLoadFromSwiftError(I);
3957     }
3958   }
3959 
3960   SDValue Ptr = getValue(SV);
3961 
3962   Type *Ty = I.getType();
3963   Align Alignment = I.getAlign();
3964 
3965   AAMDNodes AAInfo;
3966   I.getAAMetadata(AAInfo);
3967   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3968 
3969   SmallVector<EVT, 4> ValueVTs, MemVTs;
3970   SmallVector<uint64_t, 4> Offsets;
3971   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3972   unsigned NumValues = ValueVTs.size();
3973   if (NumValues == 0)
3974     return;
3975 
3976   bool isVolatile = I.isVolatile();
3977 
3978   SDValue Root;
3979   bool ConstantMemory = false;
3980   if (isVolatile)
3981     // Serialize volatile loads with other side effects.
3982     Root = getRoot();
3983   else if (NumValues > MaxParallelChains)
3984     Root = getMemoryRoot();
3985   else if (AA &&
3986            AA->pointsToConstantMemory(MemoryLocation(
3987                SV,
3988                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3989                AAInfo))) {
3990     // Do not serialize (non-volatile) loads of constant memory with anything.
3991     Root = DAG.getEntryNode();
3992     ConstantMemory = true;
3993   } else {
3994     // Do not serialize non-volatile loads against each other.
3995     Root = DAG.getRoot();
3996   }
3997 
3998   SDLoc dl = getCurSDLoc();
3999 
4000   if (isVolatile)
4001     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4002 
4003   // An aggregate load cannot wrap around the address space, so offsets to its
4004   // parts don't wrap either.
4005   SDNodeFlags Flags;
4006   Flags.setNoUnsignedWrap(true);
4007 
4008   SmallVector<SDValue, 4> Values(NumValues);
4009   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4010   EVT PtrVT = Ptr.getValueType();
4011 
4012   MachineMemOperand::Flags MMOFlags
4013     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4014 
4015   unsigned ChainI = 0;
4016   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4017     // Serializing loads here may result in excessive register pressure, and
4018     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4019     // could recover a bit by hoisting nodes upward in the chain by recognizing
4020     // they are side-effect free or do not alias. The optimizer should really
4021     // avoid this case by converting large object/array copies to llvm.memcpy
4022     // (MaxParallelChains should always remain as failsafe).
4023     if (ChainI == MaxParallelChains) {
4024       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4025       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4026                                   makeArrayRef(Chains.data(), ChainI));
4027       Root = Chain;
4028       ChainI = 0;
4029     }
4030     SDValue A = DAG.getNode(ISD::ADD, dl,
4031                             PtrVT, Ptr,
4032                             DAG.getConstant(Offsets[i], dl, PtrVT),
4033                             Flags);
4034 
4035     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4036                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4037                             MMOFlags, AAInfo, Ranges);
4038     Chains[ChainI] = L.getValue(1);
4039 
4040     if (MemVTs[i] != ValueVTs[i])
4041       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4042 
4043     Values[i] = L;
4044   }
4045 
4046   if (!ConstantMemory) {
4047     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4048                                 makeArrayRef(Chains.data(), ChainI));
4049     if (isVolatile)
4050       DAG.setRoot(Chain);
4051     else
4052       PendingLoads.push_back(Chain);
4053   }
4054 
4055   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4056                            DAG.getVTList(ValueVTs), Values));
4057 }
4058 
4059 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4060   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4061          "call visitStoreToSwiftError when backend supports swifterror");
4062 
4063   SmallVector<EVT, 4> ValueVTs;
4064   SmallVector<uint64_t, 4> Offsets;
4065   const Value *SrcV = I.getOperand(0);
4066   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4067                   SrcV->getType(), ValueVTs, &Offsets);
4068   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4069          "expect a single EVT for swifterror");
4070 
4071   SDValue Src = getValue(SrcV);
4072   // Create a virtual register, then update the virtual register.
4073   Register VReg =
4074       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4075   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4076   // Chain can be getRoot or getControlRoot.
4077   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4078                                       SDValue(Src.getNode(), Src.getResNo()));
4079   DAG.setRoot(CopyNode);
4080 }
4081 
4082 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4083   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4084          "call visitLoadFromSwiftError when backend supports swifterror");
4085 
4086   assert(!I.isVolatile() &&
4087          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4088          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4089          "Support volatile, non temporal, invariant for load_from_swift_error");
4090 
4091   const Value *SV = I.getOperand(0);
4092   Type *Ty = I.getType();
4093   AAMDNodes AAInfo;
4094   I.getAAMetadata(AAInfo);
4095   assert(
4096       (!AA ||
4097        !AA->pointsToConstantMemory(MemoryLocation(
4098            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4099            AAInfo))) &&
4100       "load_from_swift_error should not be constant memory");
4101 
4102   SmallVector<EVT, 4> ValueVTs;
4103   SmallVector<uint64_t, 4> Offsets;
4104   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4105                   ValueVTs, &Offsets);
4106   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4107          "expect a single EVT for swifterror");
4108 
4109   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4110   SDValue L = DAG.getCopyFromReg(
4111       getRoot(), getCurSDLoc(),
4112       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4113 
4114   setValue(&I, L);
4115 }
4116 
4117 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4118   if (I.isAtomic())
4119     return visitAtomicStore(I);
4120 
4121   const Value *SrcV = I.getOperand(0);
4122   const Value *PtrV = I.getOperand(1);
4123 
4124   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4125   if (TLI.supportSwiftError()) {
4126     // Swifterror values can come from either a function parameter with
4127     // swifterror attribute or an alloca with swifterror attribute.
4128     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4129       if (Arg->hasSwiftErrorAttr())
4130         return visitStoreToSwiftError(I);
4131     }
4132 
4133     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4134       if (Alloca->isSwiftError())
4135         return visitStoreToSwiftError(I);
4136     }
4137   }
4138 
4139   SmallVector<EVT, 4> ValueVTs, MemVTs;
4140   SmallVector<uint64_t, 4> Offsets;
4141   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4142                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4143   unsigned NumValues = ValueVTs.size();
4144   if (NumValues == 0)
4145     return;
4146 
4147   // Get the lowered operands. Note that we do this after
4148   // checking if NumResults is zero, because with zero results
4149   // the operands won't have values in the map.
4150   SDValue Src = getValue(SrcV);
4151   SDValue Ptr = getValue(PtrV);
4152 
4153   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4154   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4155   SDLoc dl = getCurSDLoc();
4156   Align Alignment = I.getAlign();
4157   AAMDNodes AAInfo;
4158   I.getAAMetadata(AAInfo);
4159 
4160   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4161 
4162   // An aggregate load cannot wrap around the address space, so offsets to its
4163   // parts don't wrap either.
4164   SDNodeFlags Flags;
4165   Flags.setNoUnsignedWrap(true);
4166 
4167   unsigned ChainI = 0;
4168   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4169     // See visitLoad comments.
4170     if (ChainI == MaxParallelChains) {
4171       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4172                                   makeArrayRef(Chains.data(), ChainI));
4173       Root = Chain;
4174       ChainI = 0;
4175     }
4176     SDValue Add =
4177         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4178     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4179     if (MemVTs[i] != ValueVTs[i])
4180       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4181     SDValue St =
4182         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4183                      Alignment, MMOFlags, AAInfo);
4184     Chains[ChainI] = St;
4185   }
4186 
4187   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4188                                   makeArrayRef(Chains.data(), ChainI));
4189   DAG.setRoot(StoreNode);
4190 }
4191 
4192 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4193                                            bool IsCompressing) {
4194   SDLoc sdl = getCurSDLoc();
4195 
4196   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4197                                MaybeAlign &Alignment) {
4198     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4199     Src0 = I.getArgOperand(0);
4200     Ptr = I.getArgOperand(1);
4201     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4202     Mask = I.getArgOperand(3);
4203   };
4204   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4205                                     MaybeAlign &Alignment) {
4206     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4207     Src0 = I.getArgOperand(0);
4208     Ptr = I.getArgOperand(1);
4209     Mask = I.getArgOperand(2);
4210     Alignment = None;
4211   };
4212 
4213   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4214   MaybeAlign Alignment;
4215   if (IsCompressing)
4216     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4217   else
4218     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4219 
4220   SDValue Ptr = getValue(PtrOperand);
4221   SDValue Src0 = getValue(Src0Operand);
4222   SDValue Mask = getValue(MaskOperand);
4223   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4224 
4225   EVT VT = Src0.getValueType();
4226   if (!Alignment)
4227     Alignment = DAG.getEVTAlign(VT);
4228 
4229   AAMDNodes AAInfo;
4230   I.getAAMetadata(AAInfo);
4231 
4232   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4233       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4234       // TODO: Make MachineMemOperands aware of scalable
4235       // vectors.
4236       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4237   SDValue StoreNode =
4238       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4239                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4240   DAG.setRoot(StoreNode);
4241   setValue(&I, StoreNode);
4242 }
4243 
4244 // Get a uniform base for the Gather/Scatter intrinsic.
4245 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4246 // We try to represent it as a base pointer + vector of indices.
4247 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4248 // The first operand of the GEP may be a single pointer or a vector of pointers
4249 // Example:
4250 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4251 //  or
4252 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4253 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4254 //
4255 // When the first GEP operand is a single pointer - it is the uniform base we
4256 // are looking for. If first operand of the GEP is a splat vector - we
4257 // extract the splat value and use it as a uniform base.
4258 // In all other cases the function returns 'false'.
4259 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4260                            ISD::MemIndexType &IndexType, SDValue &Scale,
4261                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4262   SelectionDAG& DAG = SDB->DAG;
4263   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4264   const DataLayout &DL = DAG.getDataLayout();
4265 
4266   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4267 
4268   // Handle splat constant pointer.
4269   if (auto *C = dyn_cast<Constant>(Ptr)) {
4270     C = C->getSplatValue();
4271     if (!C)
4272       return false;
4273 
4274     Base = SDB->getValue(C);
4275 
4276     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4277     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4278     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4279     IndexType = ISD::SIGNED_SCALED;
4280     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4281     return true;
4282   }
4283 
4284   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4285   if (!GEP || GEP->getParent() != CurBB)
4286     return false;
4287 
4288   if (GEP->getNumOperands() != 2)
4289     return false;
4290 
4291   const Value *BasePtr = GEP->getPointerOperand();
4292   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4293 
4294   // Make sure the base is scalar and the index is a vector.
4295   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4296     return false;
4297 
4298   Base = SDB->getValue(BasePtr);
4299   Index = SDB->getValue(IndexVal);
4300   IndexType = ISD::SIGNED_SCALED;
4301   Scale = DAG.getTargetConstant(
4302               DL.getTypeAllocSize(GEP->getResultElementType()),
4303               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4304   return true;
4305 }
4306 
4307 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4308   SDLoc sdl = getCurSDLoc();
4309 
4310   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4311   const Value *Ptr = I.getArgOperand(1);
4312   SDValue Src0 = getValue(I.getArgOperand(0));
4313   SDValue Mask = getValue(I.getArgOperand(3));
4314   EVT VT = Src0.getValueType();
4315   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4316                         ->getMaybeAlignValue()
4317                         .getValueOr(DAG.getEVTAlign(VT));
4318   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4319 
4320   AAMDNodes AAInfo;
4321   I.getAAMetadata(AAInfo);
4322 
4323   SDValue Base;
4324   SDValue Index;
4325   ISD::MemIndexType IndexType;
4326   SDValue Scale;
4327   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4328                                     I.getParent());
4329 
4330   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4331   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4332       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4333       // TODO: Make MachineMemOperands aware of scalable
4334       // vectors.
4335       MemoryLocation::UnknownSize, Alignment, AAInfo);
4336   if (!UniformBase) {
4337     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4338     Index = getValue(Ptr);
4339     IndexType = ISD::SIGNED_UNSCALED;
4340     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4341   }
4342 
4343   EVT IdxVT = Index.getValueType();
4344   EVT EltTy = IdxVT.getVectorElementType();
4345   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4346     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4347     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4348   }
4349 
4350   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4351   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4352                                          Ops, MMO, IndexType, false);
4353   DAG.setRoot(Scatter);
4354   setValue(&I, Scatter);
4355 }
4356 
4357 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4358   SDLoc sdl = getCurSDLoc();
4359 
4360   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4361                               MaybeAlign &Alignment) {
4362     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4363     Ptr = I.getArgOperand(0);
4364     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4365     Mask = I.getArgOperand(2);
4366     Src0 = I.getArgOperand(3);
4367   };
4368   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4369                                  MaybeAlign &Alignment) {
4370     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4371     Ptr = I.getArgOperand(0);
4372     Alignment = None;
4373     Mask = I.getArgOperand(1);
4374     Src0 = I.getArgOperand(2);
4375   };
4376 
4377   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4378   MaybeAlign Alignment;
4379   if (IsExpanding)
4380     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4381   else
4382     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4383 
4384   SDValue Ptr = getValue(PtrOperand);
4385   SDValue Src0 = getValue(Src0Operand);
4386   SDValue Mask = getValue(MaskOperand);
4387   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4388 
4389   EVT VT = Src0.getValueType();
4390   if (!Alignment)
4391     Alignment = DAG.getEVTAlign(VT);
4392 
4393   AAMDNodes AAInfo;
4394   I.getAAMetadata(AAInfo);
4395   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4396 
4397   // Do not serialize masked loads of constant memory with anything.
4398   MemoryLocation ML;
4399   if (VT.isScalableVector())
4400     ML = MemoryLocation::getAfter(PtrOperand);
4401   else
4402     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4403                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4404                            AAInfo);
4405   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4406 
4407   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4408 
4409   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4410       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4411       // TODO: Make MachineMemOperands aware of scalable
4412       // vectors.
4413       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4414 
4415   SDValue Load =
4416       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4417                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4418   if (AddToChain)
4419     PendingLoads.push_back(Load.getValue(1));
4420   setValue(&I, Load);
4421 }
4422 
4423 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4424   SDLoc sdl = getCurSDLoc();
4425 
4426   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4427   const Value *Ptr = I.getArgOperand(0);
4428   SDValue Src0 = getValue(I.getArgOperand(3));
4429   SDValue Mask = getValue(I.getArgOperand(2));
4430 
4431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4432   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4433   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4434                         ->getMaybeAlignValue()
4435                         .getValueOr(DAG.getEVTAlign(VT));
4436 
4437   AAMDNodes AAInfo;
4438   I.getAAMetadata(AAInfo);
4439   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4440 
4441   SDValue Root = DAG.getRoot();
4442   SDValue Base;
4443   SDValue Index;
4444   ISD::MemIndexType IndexType;
4445   SDValue Scale;
4446   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4447                                     I.getParent());
4448   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4449   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4450       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4451       // TODO: Make MachineMemOperands aware of scalable
4452       // vectors.
4453       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4454 
4455   if (!UniformBase) {
4456     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4457     Index = getValue(Ptr);
4458     IndexType = ISD::SIGNED_UNSCALED;
4459     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4460   }
4461 
4462   EVT IdxVT = Index.getValueType();
4463   EVT EltTy = IdxVT.getVectorElementType();
4464   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4465     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4466     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4467   }
4468 
4469   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4470   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4471                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4472 
4473   PendingLoads.push_back(Gather.getValue(1));
4474   setValue(&I, Gather);
4475 }
4476 
4477 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4478   SDLoc dl = getCurSDLoc();
4479   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4480   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4481   SyncScope::ID SSID = I.getSyncScopeID();
4482 
4483   SDValue InChain = getRoot();
4484 
4485   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4486   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4487 
4488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4489   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4490 
4491   MachineFunction &MF = DAG.getMachineFunction();
4492   MachineMemOperand *MMO = MF.getMachineMemOperand(
4493       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4494       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4495       FailureOrdering);
4496 
4497   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4498                                    dl, MemVT, VTs, InChain,
4499                                    getValue(I.getPointerOperand()),
4500                                    getValue(I.getCompareOperand()),
4501                                    getValue(I.getNewValOperand()), MMO);
4502 
4503   SDValue OutChain = L.getValue(2);
4504 
4505   setValue(&I, L);
4506   DAG.setRoot(OutChain);
4507 }
4508 
4509 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4510   SDLoc dl = getCurSDLoc();
4511   ISD::NodeType NT;
4512   switch (I.getOperation()) {
4513   default: llvm_unreachable("Unknown atomicrmw operation");
4514   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4515   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4516   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4517   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4518   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4519   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4520   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4521   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4522   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4523   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4524   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4525   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4526   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4527   }
4528   AtomicOrdering Ordering = I.getOrdering();
4529   SyncScope::ID SSID = I.getSyncScopeID();
4530 
4531   SDValue InChain = getRoot();
4532 
4533   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4535   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4536 
4537   MachineFunction &MF = DAG.getMachineFunction();
4538   MachineMemOperand *MMO = MF.getMachineMemOperand(
4539       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4540       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4541 
4542   SDValue L =
4543     DAG.getAtomic(NT, dl, MemVT, InChain,
4544                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4545                   MMO);
4546 
4547   SDValue OutChain = L.getValue(1);
4548 
4549   setValue(&I, L);
4550   DAG.setRoot(OutChain);
4551 }
4552 
4553 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4554   SDLoc dl = getCurSDLoc();
4555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4556   SDValue Ops[3];
4557   Ops[0] = getRoot();
4558   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4559                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4560   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4561                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4562   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4563 }
4564 
4565 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4566   SDLoc dl = getCurSDLoc();
4567   AtomicOrdering Order = I.getOrdering();
4568   SyncScope::ID SSID = I.getSyncScopeID();
4569 
4570   SDValue InChain = getRoot();
4571 
4572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4573   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4574   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4575 
4576   if (!TLI.supportsUnalignedAtomics() &&
4577       I.getAlignment() < MemVT.getSizeInBits() / 8)
4578     report_fatal_error("Cannot generate unaligned atomic load");
4579 
4580   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4581 
4582   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4583       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4584       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4585 
4586   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4587 
4588   SDValue Ptr = getValue(I.getPointerOperand());
4589 
4590   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4591     // TODO: Once this is better exercised by tests, it should be merged with
4592     // the normal path for loads to prevent future divergence.
4593     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4594     if (MemVT != VT)
4595       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4596 
4597     setValue(&I, L);
4598     SDValue OutChain = L.getValue(1);
4599     if (!I.isUnordered())
4600       DAG.setRoot(OutChain);
4601     else
4602       PendingLoads.push_back(OutChain);
4603     return;
4604   }
4605 
4606   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4607                             Ptr, MMO);
4608 
4609   SDValue OutChain = L.getValue(1);
4610   if (MemVT != VT)
4611     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4612 
4613   setValue(&I, L);
4614   DAG.setRoot(OutChain);
4615 }
4616 
4617 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4618   SDLoc dl = getCurSDLoc();
4619 
4620   AtomicOrdering Ordering = I.getOrdering();
4621   SyncScope::ID SSID = I.getSyncScopeID();
4622 
4623   SDValue InChain = getRoot();
4624 
4625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4626   EVT MemVT =
4627       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4628 
4629   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4630     report_fatal_error("Cannot generate unaligned atomic store");
4631 
4632   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4633 
4634   MachineFunction &MF = DAG.getMachineFunction();
4635   MachineMemOperand *MMO = MF.getMachineMemOperand(
4636       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4637       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4638 
4639   SDValue Val = getValue(I.getValueOperand());
4640   if (Val.getValueType() != MemVT)
4641     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4642   SDValue Ptr = getValue(I.getPointerOperand());
4643 
4644   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4645     // TODO: Once this is better exercised by tests, it should be merged with
4646     // the normal path for stores to prevent future divergence.
4647     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4648     DAG.setRoot(S);
4649     return;
4650   }
4651   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4652                                    Ptr, Val, MMO);
4653 
4654 
4655   DAG.setRoot(OutChain);
4656 }
4657 
4658 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4659 /// node.
4660 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4661                                                unsigned Intrinsic) {
4662   // Ignore the callsite's attributes. A specific call site may be marked with
4663   // readnone, but the lowering code will expect the chain based on the
4664   // definition.
4665   const Function *F = I.getCalledFunction();
4666   bool HasChain = !F->doesNotAccessMemory();
4667   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4668 
4669   // Build the operand list.
4670   SmallVector<SDValue, 8> Ops;
4671   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4672     if (OnlyLoad) {
4673       // We don't need to serialize loads against other loads.
4674       Ops.push_back(DAG.getRoot());
4675     } else {
4676       Ops.push_back(getRoot());
4677     }
4678   }
4679 
4680   // Info is set by getTgtMemInstrinsic
4681   TargetLowering::IntrinsicInfo Info;
4682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4683   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4684                                                DAG.getMachineFunction(),
4685                                                Intrinsic);
4686 
4687   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4688   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4689       Info.opc == ISD::INTRINSIC_W_CHAIN)
4690     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4691                                         TLI.getPointerTy(DAG.getDataLayout())));
4692 
4693   // Add all operands of the call to the operand list.
4694   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4695     const Value *Arg = I.getArgOperand(i);
4696     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4697       Ops.push_back(getValue(Arg));
4698       continue;
4699     }
4700 
4701     // Use TargetConstant instead of a regular constant for immarg.
4702     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4703     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4704       assert(CI->getBitWidth() <= 64 &&
4705              "large intrinsic immediates not handled");
4706       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4707     } else {
4708       Ops.push_back(
4709           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4710     }
4711   }
4712 
4713   SmallVector<EVT, 4> ValueVTs;
4714   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4715 
4716   if (HasChain)
4717     ValueVTs.push_back(MVT::Other);
4718 
4719   SDVTList VTs = DAG.getVTList(ValueVTs);
4720 
4721   // Create the node.
4722   SDValue Result;
4723   if (IsTgtIntrinsic) {
4724     // This is target intrinsic that touches memory
4725     AAMDNodes AAInfo;
4726     I.getAAMetadata(AAInfo);
4727     Result =
4728         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4729                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4730                                 Info.align, Info.flags, Info.size, AAInfo);
4731   } else if (!HasChain) {
4732     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4733   } else if (!I.getType()->isVoidTy()) {
4734     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4735   } else {
4736     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4737   }
4738 
4739   if (HasChain) {
4740     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4741     if (OnlyLoad)
4742       PendingLoads.push_back(Chain);
4743     else
4744       DAG.setRoot(Chain);
4745   }
4746 
4747   if (!I.getType()->isVoidTy()) {
4748     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4749       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4750       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4751     } else
4752       Result = lowerRangeToAssertZExt(DAG, I, Result);
4753 
4754     MaybeAlign Alignment = I.getRetAlign();
4755     if (!Alignment)
4756       Alignment = F->getAttributes().getRetAlignment();
4757     // Insert `assertalign` node if there's an alignment.
4758     if (InsertAssertAlign && Alignment) {
4759       Result =
4760           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4761     }
4762 
4763     setValue(&I, Result);
4764   }
4765 }
4766 
4767 /// GetSignificand - Get the significand and build it into a floating-point
4768 /// number with exponent of 1:
4769 ///
4770 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4771 ///
4772 /// where Op is the hexadecimal representation of floating point value.
4773 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4774   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4775                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4776   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4777                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4778   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4779 }
4780 
4781 /// GetExponent - Get the exponent:
4782 ///
4783 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4784 ///
4785 /// where Op is the hexadecimal representation of floating point value.
4786 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4787                            const TargetLowering &TLI, const SDLoc &dl) {
4788   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4789                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4790   SDValue t1 = DAG.getNode(
4791       ISD::SRL, dl, MVT::i32, t0,
4792       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4793   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4794                            DAG.getConstant(127, dl, MVT::i32));
4795   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4796 }
4797 
4798 /// getF32Constant - Get 32-bit floating point constant.
4799 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4800                               const SDLoc &dl) {
4801   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4802                            MVT::f32);
4803 }
4804 
4805 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4806                                        SelectionDAG &DAG) {
4807   // TODO: What fast-math-flags should be set on the floating-point nodes?
4808 
4809   //   IntegerPartOfX = ((int32_t)(t0);
4810   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4811 
4812   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4813   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4814   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4815 
4816   //   IntegerPartOfX <<= 23;
4817   IntegerPartOfX = DAG.getNode(
4818       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4819       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4820                                   DAG.getDataLayout())));
4821 
4822   SDValue TwoToFractionalPartOfX;
4823   if (LimitFloatPrecision <= 6) {
4824     // For floating-point precision of 6:
4825     //
4826     //   TwoToFractionalPartOfX =
4827     //     0.997535578f +
4828     //       (0.735607626f + 0.252464424f * x) * x;
4829     //
4830     // error 0.0144103317, which is 6 bits
4831     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4832                              getF32Constant(DAG, 0x3e814304, dl));
4833     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4834                              getF32Constant(DAG, 0x3f3c50c8, dl));
4835     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4836     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4837                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4838   } else if (LimitFloatPrecision <= 12) {
4839     // For floating-point precision of 12:
4840     //
4841     //   TwoToFractionalPartOfX =
4842     //     0.999892986f +
4843     //       (0.696457318f +
4844     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4845     //
4846     // error 0.000107046256, which is 13 to 14 bits
4847     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4848                              getF32Constant(DAG, 0x3da235e3, dl));
4849     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4850                              getF32Constant(DAG, 0x3e65b8f3, dl));
4851     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4852     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4853                              getF32Constant(DAG, 0x3f324b07, dl));
4854     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4855     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4856                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4857   } else { // LimitFloatPrecision <= 18
4858     // For floating-point precision of 18:
4859     //
4860     //   TwoToFractionalPartOfX =
4861     //     0.999999982f +
4862     //       (0.693148872f +
4863     //         (0.240227044f +
4864     //           (0.554906021e-1f +
4865     //             (0.961591928e-2f +
4866     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4867     // error 2.47208000*10^(-7), which is better than 18 bits
4868     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4869                              getF32Constant(DAG, 0x3924b03e, dl));
4870     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4871                              getF32Constant(DAG, 0x3ab24b87, dl));
4872     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4873     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4874                              getF32Constant(DAG, 0x3c1d8c17, dl));
4875     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4876     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4877                              getF32Constant(DAG, 0x3d634a1d, dl));
4878     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4879     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4880                              getF32Constant(DAG, 0x3e75fe14, dl));
4881     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4882     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4883                               getF32Constant(DAG, 0x3f317234, dl));
4884     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4885     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4886                                          getF32Constant(DAG, 0x3f800000, dl));
4887   }
4888 
4889   // Add the exponent into the result in integer domain.
4890   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4891   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4892                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4893 }
4894 
4895 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4896 /// limited-precision mode.
4897 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4898                          const TargetLowering &TLI, SDNodeFlags Flags) {
4899   if (Op.getValueType() == MVT::f32 &&
4900       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4901 
4902     // Put the exponent in the right bit position for later addition to the
4903     // final result:
4904     //
4905     // t0 = Op * log2(e)
4906 
4907     // TODO: What fast-math-flags should be set here?
4908     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4909                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4910     return getLimitedPrecisionExp2(t0, dl, DAG);
4911   }
4912 
4913   // No special expansion.
4914   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4915 }
4916 
4917 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4918 /// limited-precision mode.
4919 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4920                          const TargetLowering &TLI, SDNodeFlags Flags) {
4921   // TODO: What fast-math-flags should be set on the floating-point nodes?
4922 
4923   if (Op.getValueType() == MVT::f32 &&
4924       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4925     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4926 
4927     // Scale the exponent by log(2).
4928     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4929     SDValue LogOfExponent =
4930         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4931                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4932 
4933     // Get the significand and build it into a floating-point number with
4934     // exponent of 1.
4935     SDValue X = GetSignificand(DAG, Op1, dl);
4936 
4937     SDValue LogOfMantissa;
4938     if (LimitFloatPrecision <= 6) {
4939       // For floating-point precision of 6:
4940       //
4941       //   LogofMantissa =
4942       //     -1.1609546f +
4943       //       (1.4034025f - 0.23903021f * x) * x;
4944       //
4945       // error 0.0034276066, which is better than 8 bits
4946       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4947                                getF32Constant(DAG, 0xbe74c456, dl));
4948       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4949                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4950       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4951       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4952                                   getF32Constant(DAG, 0x3f949a29, dl));
4953     } else if (LimitFloatPrecision <= 12) {
4954       // For floating-point precision of 12:
4955       //
4956       //   LogOfMantissa =
4957       //     -1.7417939f +
4958       //       (2.8212026f +
4959       //         (-1.4699568f +
4960       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4961       //
4962       // error 0.000061011436, which is 14 bits
4963       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4964                                getF32Constant(DAG, 0xbd67b6d6, dl));
4965       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4966                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4967       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4968       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4969                                getF32Constant(DAG, 0x3fbc278b, dl));
4970       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4971       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4972                                getF32Constant(DAG, 0x40348e95, dl));
4973       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4974       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4975                                   getF32Constant(DAG, 0x3fdef31a, dl));
4976     } else { // LimitFloatPrecision <= 18
4977       // For floating-point precision of 18:
4978       //
4979       //   LogOfMantissa =
4980       //     -2.1072184f +
4981       //       (4.2372794f +
4982       //         (-3.7029485f +
4983       //           (2.2781945f +
4984       //             (-0.87823314f +
4985       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4986       //
4987       // error 0.0000023660568, which is better than 18 bits
4988       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4989                                getF32Constant(DAG, 0xbc91e5ac, dl));
4990       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4991                                getF32Constant(DAG, 0x3e4350aa, dl));
4992       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4993       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4994                                getF32Constant(DAG, 0x3f60d3e3, dl));
4995       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4996       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4997                                getF32Constant(DAG, 0x4011cdf0, dl));
4998       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4999       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5000                                getF32Constant(DAG, 0x406cfd1c, dl));
5001       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5002       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5003                                getF32Constant(DAG, 0x408797cb, dl));
5004       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5005       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5006                                   getF32Constant(DAG, 0x4006dcab, dl));
5007     }
5008 
5009     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5010   }
5011 
5012   // No special expansion.
5013   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5014 }
5015 
5016 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5017 /// limited-precision mode.
5018 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5019                           const TargetLowering &TLI, SDNodeFlags Flags) {
5020   // TODO: What fast-math-flags should be set on the floating-point nodes?
5021 
5022   if (Op.getValueType() == MVT::f32 &&
5023       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5024     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5025 
5026     // Get the exponent.
5027     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5028 
5029     // Get the significand and build it into a floating-point number with
5030     // exponent of 1.
5031     SDValue X = GetSignificand(DAG, Op1, dl);
5032 
5033     // Different possible minimax approximations of significand in
5034     // floating-point for various degrees of accuracy over [1,2].
5035     SDValue Log2ofMantissa;
5036     if (LimitFloatPrecision <= 6) {
5037       // For floating-point precision of 6:
5038       //
5039       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5040       //
5041       // error 0.0049451742, which is more than 7 bits
5042       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5043                                getF32Constant(DAG, 0xbeb08fe0, dl));
5044       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5045                                getF32Constant(DAG, 0x40019463, dl));
5046       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5047       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5048                                    getF32Constant(DAG, 0x3fd6633d, dl));
5049     } else if (LimitFloatPrecision <= 12) {
5050       // For floating-point precision of 12:
5051       //
5052       //   Log2ofMantissa =
5053       //     -2.51285454f +
5054       //       (4.07009056f +
5055       //         (-2.12067489f +
5056       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5057       //
5058       // error 0.0000876136000, which is better than 13 bits
5059       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5060                                getF32Constant(DAG, 0xbda7262e, dl));
5061       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5062                                getF32Constant(DAG, 0x3f25280b, dl));
5063       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5064       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5065                                getF32Constant(DAG, 0x4007b923, dl));
5066       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5067       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5068                                getF32Constant(DAG, 0x40823e2f, dl));
5069       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5070       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5071                                    getF32Constant(DAG, 0x4020d29c, dl));
5072     } else { // LimitFloatPrecision <= 18
5073       // For floating-point precision of 18:
5074       //
5075       //   Log2ofMantissa =
5076       //     -3.0400495f +
5077       //       (6.1129976f +
5078       //         (-5.3420409f +
5079       //           (3.2865683f +
5080       //             (-1.2669343f +
5081       //               (0.27515199f -
5082       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5083       //
5084       // error 0.0000018516, which is better than 18 bits
5085       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5086                                getF32Constant(DAG, 0xbcd2769e, dl));
5087       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5088                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5089       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5090       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5091                                getF32Constant(DAG, 0x3fa22ae7, dl));
5092       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5093       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5094                                getF32Constant(DAG, 0x40525723, dl));
5095       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5096       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5097                                getF32Constant(DAG, 0x40aaf200, dl));
5098       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5099       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5100                                getF32Constant(DAG, 0x40c39dad, dl));
5101       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5102       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5103                                    getF32Constant(DAG, 0x4042902c, dl));
5104     }
5105 
5106     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5107   }
5108 
5109   // No special expansion.
5110   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5111 }
5112 
5113 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5114 /// limited-precision mode.
5115 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5116                            const TargetLowering &TLI, SDNodeFlags Flags) {
5117   // TODO: What fast-math-flags should be set on the floating-point nodes?
5118 
5119   if (Op.getValueType() == MVT::f32 &&
5120       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5121     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5122 
5123     // Scale the exponent by log10(2) [0.30102999f].
5124     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5125     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5126                                         getF32Constant(DAG, 0x3e9a209a, dl));
5127 
5128     // Get the significand and build it into a floating-point number with
5129     // exponent of 1.
5130     SDValue X = GetSignificand(DAG, Op1, dl);
5131 
5132     SDValue Log10ofMantissa;
5133     if (LimitFloatPrecision <= 6) {
5134       // For floating-point precision of 6:
5135       //
5136       //   Log10ofMantissa =
5137       //     -0.50419619f +
5138       //       (0.60948995f - 0.10380950f * x) * x;
5139       //
5140       // error 0.0014886165, which is 6 bits
5141       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5142                                getF32Constant(DAG, 0xbdd49a13, dl));
5143       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5144                                getF32Constant(DAG, 0x3f1c0789, dl));
5145       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5146       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5147                                     getF32Constant(DAG, 0x3f011300, dl));
5148     } else if (LimitFloatPrecision <= 12) {
5149       // For floating-point precision of 12:
5150       //
5151       //   Log10ofMantissa =
5152       //     -0.64831180f +
5153       //       (0.91751397f +
5154       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5155       //
5156       // error 0.00019228036, which is better than 12 bits
5157       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5158                                getF32Constant(DAG, 0x3d431f31, dl));
5159       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5160                                getF32Constant(DAG, 0x3ea21fb2, dl));
5161       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5162       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5163                                getF32Constant(DAG, 0x3f6ae232, dl));
5164       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5165       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5166                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5167     } else { // LimitFloatPrecision <= 18
5168       // For floating-point precision of 18:
5169       //
5170       //   Log10ofMantissa =
5171       //     -0.84299375f +
5172       //       (1.5327582f +
5173       //         (-1.0688956f +
5174       //           (0.49102474f +
5175       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5176       //
5177       // error 0.0000037995730, which is better than 18 bits
5178       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5179                                getF32Constant(DAG, 0x3c5d51ce, dl));
5180       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5181                                getF32Constant(DAG, 0x3e00685a, dl));
5182       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5183       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5184                                getF32Constant(DAG, 0x3efb6798, dl));
5185       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5186       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5187                                getF32Constant(DAG, 0x3f88d192, dl));
5188       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5189       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5190                                getF32Constant(DAG, 0x3fc4316c, dl));
5191       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5192       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5193                                     getF32Constant(DAG, 0x3f57ce70, dl));
5194     }
5195 
5196     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5197   }
5198 
5199   // No special expansion.
5200   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5201 }
5202 
5203 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5204 /// limited-precision mode.
5205 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5206                           const TargetLowering &TLI, SDNodeFlags Flags) {
5207   if (Op.getValueType() == MVT::f32 &&
5208       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5209     return getLimitedPrecisionExp2(Op, dl, DAG);
5210 
5211   // No special expansion.
5212   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5213 }
5214 
5215 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5216 /// limited-precision mode with x == 10.0f.
5217 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5218                          SelectionDAG &DAG, const TargetLowering &TLI,
5219                          SDNodeFlags Flags) {
5220   bool IsExp10 = false;
5221   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5222       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5223     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5224       APFloat Ten(10.0f);
5225       IsExp10 = LHSC->isExactlyValue(Ten);
5226     }
5227   }
5228 
5229   // TODO: What fast-math-flags should be set on the FMUL node?
5230   if (IsExp10) {
5231     // Put the exponent in the right bit position for later addition to the
5232     // final result:
5233     //
5234     //   #define LOG2OF10 3.3219281f
5235     //   t0 = Op * LOG2OF10;
5236     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5237                              getF32Constant(DAG, 0x40549a78, dl));
5238     return getLimitedPrecisionExp2(t0, dl, DAG);
5239   }
5240 
5241   // No special expansion.
5242   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5243 }
5244 
5245 /// ExpandPowI - Expand a llvm.powi intrinsic.
5246 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5247                           SelectionDAG &DAG) {
5248   // If RHS is a constant, we can expand this out to a multiplication tree,
5249   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5250   // optimizing for size, we only want to do this if the expansion would produce
5251   // a small number of multiplies, otherwise we do the full expansion.
5252   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5253     // Get the exponent as a positive value.
5254     unsigned Val = RHSC->getSExtValue();
5255     if ((int)Val < 0) Val = -Val;
5256 
5257     // powi(x, 0) -> 1.0
5258     if (Val == 0)
5259       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5260 
5261     bool OptForSize = DAG.shouldOptForSize();
5262     if (!OptForSize ||
5263         // If optimizing for size, don't insert too many multiplies.
5264         // This inserts up to 5 multiplies.
5265         countPopulation(Val) + Log2_32(Val) < 7) {
5266       // We use the simple binary decomposition method to generate the multiply
5267       // sequence.  There are more optimal ways to do this (for example,
5268       // powi(x,15) generates one more multiply than it should), but this has
5269       // the benefit of being both really simple and much better than a libcall.
5270       SDValue Res;  // Logically starts equal to 1.0
5271       SDValue CurSquare = LHS;
5272       // TODO: Intrinsics should have fast-math-flags that propagate to these
5273       // nodes.
5274       while (Val) {
5275         if (Val & 1) {
5276           if (Res.getNode())
5277             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5278           else
5279             Res = CurSquare;  // 1.0*CurSquare.
5280         }
5281 
5282         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5283                                 CurSquare, CurSquare);
5284         Val >>= 1;
5285       }
5286 
5287       // If the original was negative, invert the result, producing 1/(x*x*x).
5288       if (RHSC->getSExtValue() < 0)
5289         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5290                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5291       return Res;
5292     }
5293   }
5294 
5295   // Otherwise, expand to a libcall.
5296   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5297 }
5298 
5299 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5300                             SDValue LHS, SDValue RHS, SDValue Scale,
5301                             SelectionDAG &DAG, const TargetLowering &TLI) {
5302   EVT VT = LHS.getValueType();
5303   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5304   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5305   LLVMContext &Ctx = *DAG.getContext();
5306 
5307   // If the type is legal but the operation isn't, this node might survive all
5308   // the way to operation legalization. If we end up there and we do not have
5309   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5310   // node.
5311 
5312   // Coax the legalizer into expanding the node during type legalization instead
5313   // by bumping the size by one bit. This will force it to Promote, enabling the
5314   // early expansion and avoiding the need to expand later.
5315 
5316   // We don't have to do this if Scale is 0; that can always be expanded, unless
5317   // it's a saturating signed operation. Those can experience true integer
5318   // division overflow, a case which we must avoid.
5319 
5320   // FIXME: We wouldn't have to do this (or any of the early
5321   // expansion/promotion) if it was possible to expand a libcall of an
5322   // illegal type during operation legalization. But it's not, so things
5323   // get a bit hacky.
5324   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5325   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5326       (TLI.isTypeLegal(VT) ||
5327        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5328     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5329         Opcode, VT, ScaleInt);
5330     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5331       EVT PromVT;
5332       if (VT.isScalarInteger())
5333         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5334       else if (VT.isVector()) {
5335         PromVT = VT.getVectorElementType();
5336         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5337         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5338       } else
5339         llvm_unreachable("Wrong VT for DIVFIX?");
5340       if (Signed) {
5341         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5342         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5343       } else {
5344         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5345         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5346       }
5347       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5348       // For saturating operations, we need to shift up the LHS to get the
5349       // proper saturation width, and then shift down again afterwards.
5350       if (Saturating)
5351         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5352                           DAG.getConstant(1, DL, ShiftTy));
5353       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5354       if (Saturating)
5355         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5356                           DAG.getConstant(1, DL, ShiftTy));
5357       return DAG.getZExtOrTrunc(Res, DL, VT);
5358     }
5359   }
5360 
5361   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5362 }
5363 
5364 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5365 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5366 static void
5367 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5368                      const SDValue &N) {
5369   switch (N.getOpcode()) {
5370   case ISD::CopyFromReg: {
5371     SDValue Op = N.getOperand(1);
5372     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5373                       Op.getValueType().getSizeInBits());
5374     return;
5375   }
5376   case ISD::BITCAST:
5377   case ISD::AssertZext:
5378   case ISD::AssertSext:
5379   case ISD::TRUNCATE:
5380     getUnderlyingArgRegs(Regs, N.getOperand(0));
5381     return;
5382   case ISD::BUILD_PAIR:
5383   case ISD::BUILD_VECTOR:
5384   case ISD::CONCAT_VECTORS:
5385     for (SDValue Op : N->op_values())
5386       getUnderlyingArgRegs(Regs, Op);
5387     return;
5388   default:
5389     return;
5390   }
5391 }
5392 
5393 /// If the DbgValueInst is a dbg_value of a function argument, create the
5394 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5395 /// instruction selection, they will be inserted to the entry BB.
5396 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5397     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5398     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5399   const Argument *Arg = dyn_cast<Argument>(V);
5400   if (!Arg)
5401     return false;
5402 
5403   if (!IsDbgDeclare) {
5404     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5405     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5406     // the entry block.
5407     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5408     if (!IsInEntryBlock)
5409       return false;
5410 
5411     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5412     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5413     // variable that also is a param.
5414     //
5415     // Although, if we are at the top of the entry block already, we can still
5416     // emit using ArgDbgValue. This might catch some situations when the
5417     // dbg.value refers to an argument that isn't used in the entry block, so
5418     // any CopyToReg node would be optimized out and the only way to express
5419     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5420     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5421     // we should only emit as ArgDbgValue if the Variable is an argument to the
5422     // current function, and the dbg.value intrinsic is found in the entry
5423     // block.
5424     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5425         !DL->getInlinedAt();
5426     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5427     if (!IsInPrologue && !VariableIsFunctionInputArg)
5428       return false;
5429 
5430     // Here we assume that a function argument on IR level only can be used to
5431     // describe one input parameter on source level. If we for example have
5432     // source code like this
5433     //
5434     //    struct A { long x, y; };
5435     //    void foo(struct A a, long b) {
5436     //      ...
5437     //      b = a.x;
5438     //      ...
5439     //    }
5440     //
5441     // and IR like this
5442     //
5443     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5444     //  entry:
5445     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5446     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5447     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5448     //    ...
5449     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5450     //    ...
5451     //
5452     // then the last dbg.value is describing a parameter "b" using a value that
5453     // is an argument. But since we already has used %a1 to describe a parameter
5454     // we should not handle that last dbg.value here (that would result in an
5455     // incorrect hoisting of the DBG_VALUE to the function entry).
5456     // Notice that we allow one dbg.value per IR level argument, to accommodate
5457     // for the situation with fragments above.
5458     if (VariableIsFunctionInputArg) {
5459       unsigned ArgNo = Arg->getArgNo();
5460       if (ArgNo >= FuncInfo.DescribedArgs.size())
5461         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5462       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5463         return false;
5464       FuncInfo.DescribedArgs.set(ArgNo);
5465     }
5466   }
5467 
5468   MachineFunction &MF = DAG.getMachineFunction();
5469   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5470 
5471   bool IsIndirect = false;
5472   Optional<MachineOperand> Op;
5473   // Some arguments' frame index is recorded during argument lowering.
5474   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5475   if (FI != std::numeric_limits<int>::max())
5476     Op = MachineOperand::CreateFI(FI);
5477 
5478   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5479   if (!Op && N.getNode()) {
5480     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5481     Register Reg;
5482     if (ArgRegsAndSizes.size() == 1)
5483       Reg = ArgRegsAndSizes.front().first;
5484 
5485     if (Reg && Reg.isVirtual()) {
5486       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5487       Register PR = RegInfo.getLiveInPhysReg(Reg);
5488       if (PR)
5489         Reg = PR;
5490     }
5491     if (Reg) {
5492       Op = MachineOperand::CreateReg(Reg, false);
5493       IsIndirect = IsDbgDeclare;
5494     }
5495   }
5496 
5497   if (!Op && N.getNode()) {
5498     // Check if frame index is available.
5499     SDValue LCandidate = peekThroughBitcasts(N);
5500     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5501       if (FrameIndexSDNode *FINode =
5502           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5503         Op = MachineOperand::CreateFI(FINode->getIndex());
5504   }
5505 
5506   if (!Op) {
5507     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5508     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5509                                          SplitRegs) {
5510       unsigned Offset = 0;
5511       for (auto RegAndSize : SplitRegs) {
5512         // If the expression is already a fragment, the current register
5513         // offset+size might extend beyond the fragment. In this case, only
5514         // the register bits that are inside the fragment are relevant.
5515         int RegFragmentSizeInBits = RegAndSize.second;
5516         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5517           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5518           // The register is entirely outside the expression fragment,
5519           // so is irrelevant for debug info.
5520           if (Offset >= ExprFragmentSizeInBits)
5521             break;
5522           // The register is partially outside the expression fragment, only
5523           // the low bits within the fragment are relevant for debug info.
5524           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5525             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5526           }
5527         }
5528 
5529         auto FragmentExpr = DIExpression::createFragmentExpression(
5530             Expr, Offset, RegFragmentSizeInBits);
5531         Offset += RegAndSize.second;
5532         // If a valid fragment expression cannot be created, the variable's
5533         // correct value cannot be determined and so it is set as Undef.
5534         if (!FragmentExpr) {
5535           SDDbgValue *SDV = DAG.getConstantDbgValue(
5536               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5537           DAG.AddDbgValue(SDV, nullptr, false);
5538           continue;
5539         }
5540         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5541         FuncInfo.ArgDbgValues.push_back(
5542           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5543                   RegAndSize.first, Variable, *FragmentExpr));
5544       }
5545     };
5546 
5547     // Check if ValueMap has reg number.
5548     DenseMap<const Value *, Register>::const_iterator
5549       VMI = FuncInfo.ValueMap.find(V);
5550     if (VMI != FuncInfo.ValueMap.end()) {
5551       const auto &TLI = DAG.getTargetLoweringInfo();
5552       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5553                        V->getType(), None);
5554       if (RFV.occupiesMultipleRegs()) {
5555         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5556         return true;
5557       }
5558 
5559       Op = MachineOperand::CreateReg(VMI->second, false);
5560       IsIndirect = IsDbgDeclare;
5561     } else if (ArgRegsAndSizes.size() > 1) {
5562       // This was split due to the calling convention, and no virtual register
5563       // mapping exists for the value.
5564       splitMultiRegDbgValue(ArgRegsAndSizes);
5565       return true;
5566     }
5567   }
5568 
5569   if (!Op)
5570     return false;
5571 
5572   assert(Variable->isValidLocationForIntrinsic(DL) &&
5573          "Expected inlined-at fields to agree");
5574   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5575   FuncInfo.ArgDbgValues.push_back(
5576       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5577               *Op, Variable, Expr));
5578 
5579   return true;
5580 }
5581 
5582 /// Return the appropriate SDDbgValue based on N.
5583 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5584                                              DILocalVariable *Variable,
5585                                              DIExpression *Expr,
5586                                              const DebugLoc &dl,
5587                                              unsigned DbgSDNodeOrder) {
5588   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5589     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5590     // stack slot locations.
5591     //
5592     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5593     // debug values here after optimization:
5594     //
5595     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5596     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5597     //
5598     // Both describe the direct values of their associated variables.
5599     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5600                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5601   }
5602   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5603                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5604 }
5605 
5606 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5607   switch (Intrinsic) {
5608   case Intrinsic::smul_fix:
5609     return ISD::SMULFIX;
5610   case Intrinsic::umul_fix:
5611     return ISD::UMULFIX;
5612   case Intrinsic::smul_fix_sat:
5613     return ISD::SMULFIXSAT;
5614   case Intrinsic::umul_fix_sat:
5615     return ISD::UMULFIXSAT;
5616   case Intrinsic::sdiv_fix:
5617     return ISD::SDIVFIX;
5618   case Intrinsic::udiv_fix:
5619     return ISD::UDIVFIX;
5620   case Intrinsic::sdiv_fix_sat:
5621     return ISD::SDIVFIXSAT;
5622   case Intrinsic::udiv_fix_sat:
5623     return ISD::UDIVFIXSAT;
5624   default:
5625     llvm_unreachable("Unhandled fixed point intrinsic");
5626   }
5627 }
5628 
5629 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5630                                            const char *FunctionName) {
5631   assert(FunctionName && "FunctionName must not be nullptr");
5632   SDValue Callee = DAG.getExternalSymbol(
5633       FunctionName,
5634       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5635   LowerCallTo(I, Callee, I.isTailCall());
5636 }
5637 
5638 /// Given a @llvm.call.preallocated.setup, return the corresponding
5639 /// preallocated call.
5640 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5641   assert(cast<CallBase>(PreallocatedSetup)
5642                  ->getCalledFunction()
5643                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5644          "expected call_preallocated_setup Value");
5645   for (auto *U : PreallocatedSetup->users()) {
5646     auto *UseCall = cast<CallBase>(U);
5647     const Function *Fn = UseCall->getCalledFunction();
5648     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5649       return UseCall;
5650     }
5651   }
5652   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5653 }
5654 
5655 /// Lower the call to the specified intrinsic function.
5656 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5657                                              unsigned Intrinsic) {
5658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5659   SDLoc sdl = getCurSDLoc();
5660   DebugLoc dl = getCurDebugLoc();
5661   SDValue Res;
5662 
5663   SDNodeFlags Flags;
5664   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5665     Flags.copyFMF(*FPOp);
5666 
5667   switch (Intrinsic) {
5668   default:
5669     // By default, turn this into a target intrinsic node.
5670     visitTargetIntrinsic(I, Intrinsic);
5671     return;
5672   case Intrinsic::vscale: {
5673     match(&I, m_VScale(DAG.getDataLayout()));
5674     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5675     setValue(&I,
5676              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5677     return;
5678   }
5679   case Intrinsic::vastart:  visitVAStart(I); return;
5680   case Intrinsic::vaend:    visitVAEnd(I); return;
5681   case Intrinsic::vacopy:   visitVACopy(I); return;
5682   case Intrinsic::returnaddress:
5683     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5684                              TLI.getPointerTy(DAG.getDataLayout()),
5685                              getValue(I.getArgOperand(0))));
5686     return;
5687   case Intrinsic::addressofreturnaddress:
5688     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5689                              TLI.getPointerTy(DAG.getDataLayout())));
5690     return;
5691   case Intrinsic::sponentry:
5692     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5693                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5694     return;
5695   case Intrinsic::frameaddress:
5696     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5697                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5698                              getValue(I.getArgOperand(0))));
5699     return;
5700   case Intrinsic::read_volatile_register:
5701   case Intrinsic::read_register: {
5702     Value *Reg = I.getArgOperand(0);
5703     SDValue Chain = getRoot();
5704     SDValue RegName =
5705         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5706     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5707     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5708       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5709     setValue(&I, Res);
5710     DAG.setRoot(Res.getValue(1));
5711     return;
5712   }
5713   case Intrinsic::write_register: {
5714     Value *Reg = I.getArgOperand(0);
5715     Value *RegValue = I.getArgOperand(1);
5716     SDValue Chain = getRoot();
5717     SDValue RegName =
5718         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5719     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5720                             RegName, getValue(RegValue)));
5721     return;
5722   }
5723   case Intrinsic::memcpy: {
5724     const auto &MCI = cast<MemCpyInst>(I);
5725     SDValue Op1 = getValue(I.getArgOperand(0));
5726     SDValue Op2 = getValue(I.getArgOperand(1));
5727     SDValue Op3 = getValue(I.getArgOperand(2));
5728     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5729     Align DstAlign = MCI.getDestAlign().valueOrOne();
5730     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5731     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5732     bool isVol = MCI.isVolatile();
5733     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5734     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5735     // node.
5736     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5737     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5738                                /* AlwaysInline */ false, isTC,
5739                                MachinePointerInfo(I.getArgOperand(0)),
5740                                MachinePointerInfo(I.getArgOperand(1)));
5741     updateDAGForMaybeTailCall(MC);
5742     return;
5743   }
5744   case Intrinsic::memcpy_inline: {
5745     const auto &MCI = cast<MemCpyInlineInst>(I);
5746     SDValue Dst = getValue(I.getArgOperand(0));
5747     SDValue Src = getValue(I.getArgOperand(1));
5748     SDValue Size = getValue(I.getArgOperand(2));
5749     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5750     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5751     Align DstAlign = MCI.getDestAlign().valueOrOne();
5752     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5753     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5754     bool isVol = MCI.isVolatile();
5755     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5756     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5757     // node.
5758     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5759                                /* AlwaysInline */ true, isTC,
5760                                MachinePointerInfo(I.getArgOperand(0)),
5761                                MachinePointerInfo(I.getArgOperand(1)));
5762     updateDAGForMaybeTailCall(MC);
5763     return;
5764   }
5765   case Intrinsic::memset: {
5766     const auto &MSI = cast<MemSetInst>(I);
5767     SDValue Op1 = getValue(I.getArgOperand(0));
5768     SDValue Op2 = getValue(I.getArgOperand(1));
5769     SDValue Op3 = getValue(I.getArgOperand(2));
5770     // @llvm.memset defines 0 and 1 to both mean no alignment.
5771     Align Alignment = MSI.getDestAlign().valueOrOne();
5772     bool isVol = MSI.isVolatile();
5773     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5774     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5775     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5776                                MachinePointerInfo(I.getArgOperand(0)));
5777     updateDAGForMaybeTailCall(MS);
5778     return;
5779   }
5780   case Intrinsic::memmove: {
5781     const auto &MMI = cast<MemMoveInst>(I);
5782     SDValue Op1 = getValue(I.getArgOperand(0));
5783     SDValue Op2 = getValue(I.getArgOperand(1));
5784     SDValue Op3 = getValue(I.getArgOperand(2));
5785     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5786     Align DstAlign = MMI.getDestAlign().valueOrOne();
5787     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5788     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5789     bool isVol = MMI.isVolatile();
5790     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5791     // FIXME: Support passing different dest/src alignments to the memmove DAG
5792     // node.
5793     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5794     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5795                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5796                                 MachinePointerInfo(I.getArgOperand(1)));
5797     updateDAGForMaybeTailCall(MM);
5798     return;
5799   }
5800   case Intrinsic::memcpy_element_unordered_atomic: {
5801     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5802     SDValue Dst = getValue(MI.getRawDest());
5803     SDValue Src = getValue(MI.getRawSource());
5804     SDValue Length = getValue(MI.getLength());
5805 
5806     unsigned DstAlign = MI.getDestAlignment();
5807     unsigned SrcAlign = MI.getSourceAlignment();
5808     Type *LengthTy = MI.getLength()->getType();
5809     unsigned ElemSz = MI.getElementSizeInBytes();
5810     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5811     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5812                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5813                                      MachinePointerInfo(MI.getRawDest()),
5814                                      MachinePointerInfo(MI.getRawSource()));
5815     updateDAGForMaybeTailCall(MC);
5816     return;
5817   }
5818   case Intrinsic::memmove_element_unordered_atomic: {
5819     auto &MI = cast<AtomicMemMoveInst>(I);
5820     SDValue Dst = getValue(MI.getRawDest());
5821     SDValue Src = getValue(MI.getRawSource());
5822     SDValue Length = getValue(MI.getLength());
5823 
5824     unsigned DstAlign = MI.getDestAlignment();
5825     unsigned SrcAlign = MI.getSourceAlignment();
5826     Type *LengthTy = MI.getLength()->getType();
5827     unsigned ElemSz = MI.getElementSizeInBytes();
5828     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5829     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5830                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5831                                       MachinePointerInfo(MI.getRawDest()),
5832                                       MachinePointerInfo(MI.getRawSource()));
5833     updateDAGForMaybeTailCall(MC);
5834     return;
5835   }
5836   case Intrinsic::memset_element_unordered_atomic: {
5837     auto &MI = cast<AtomicMemSetInst>(I);
5838     SDValue Dst = getValue(MI.getRawDest());
5839     SDValue Val = getValue(MI.getValue());
5840     SDValue Length = getValue(MI.getLength());
5841 
5842     unsigned DstAlign = MI.getDestAlignment();
5843     Type *LengthTy = MI.getLength()->getType();
5844     unsigned ElemSz = MI.getElementSizeInBytes();
5845     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5846     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5847                                      LengthTy, ElemSz, isTC,
5848                                      MachinePointerInfo(MI.getRawDest()));
5849     updateDAGForMaybeTailCall(MC);
5850     return;
5851   }
5852   case Intrinsic::call_preallocated_setup: {
5853     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5854     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5855     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5856                               getRoot(), SrcValue);
5857     setValue(&I, Res);
5858     DAG.setRoot(Res);
5859     return;
5860   }
5861   case Intrinsic::call_preallocated_arg: {
5862     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5863     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5864     SDValue Ops[3];
5865     Ops[0] = getRoot();
5866     Ops[1] = SrcValue;
5867     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5868                                    MVT::i32); // arg index
5869     SDValue Res = DAG.getNode(
5870         ISD::PREALLOCATED_ARG, sdl,
5871         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5872     setValue(&I, Res);
5873     DAG.setRoot(Res.getValue(1));
5874     return;
5875   }
5876   case Intrinsic::dbg_addr:
5877   case Intrinsic::dbg_declare: {
5878     const auto &DI = cast<DbgVariableIntrinsic>(I);
5879     DILocalVariable *Variable = DI.getVariable();
5880     DIExpression *Expression = DI.getExpression();
5881     dropDanglingDebugInfo(Variable, Expression);
5882     assert(Variable && "Missing variable");
5883     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5884                       << "\n");
5885     // Check if address has undef value.
5886     const Value *Address = DI.getVariableLocation();
5887     if (!Address || isa<UndefValue>(Address) ||
5888         (Address->use_empty() && !isa<Argument>(Address))) {
5889       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5890                         << " (bad/undef/unused-arg address)\n");
5891       return;
5892     }
5893 
5894     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5895 
5896     // Check if this variable can be described by a frame index, typically
5897     // either as a static alloca or a byval parameter.
5898     int FI = std::numeric_limits<int>::max();
5899     if (const auto *AI =
5900             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5901       if (AI->isStaticAlloca()) {
5902         auto I = FuncInfo.StaticAllocaMap.find(AI);
5903         if (I != FuncInfo.StaticAllocaMap.end())
5904           FI = I->second;
5905       }
5906     } else if (const auto *Arg = dyn_cast<Argument>(
5907                    Address->stripInBoundsConstantOffsets())) {
5908       FI = FuncInfo.getArgumentFrameIndex(Arg);
5909     }
5910 
5911     // llvm.dbg.addr is control dependent and always generates indirect
5912     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5913     // the MachineFunction variable table.
5914     if (FI != std::numeric_limits<int>::max()) {
5915       if (Intrinsic == Intrinsic::dbg_addr) {
5916         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5917             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5918         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5919       } else {
5920         LLVM_DEBUG(dbgs() << "Skipping " << DI
5921                           << " (variable info stashed in MF side table)\n");
5922       }
5923       return;
5924     }
5925 
5926     SDValue &N = NodeMap[Address];
5927     if (!N.getNode() && isa<Argument>(Address))
5928       // Check unused arguments map.
5929       N = UnusedArgNodeMap[Address];
5930     SDDbgValue *SDV;
5931     if (N.getNode()) {
5932       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5933         Address = BCI->getOperand(0);
5934       // Parameters are handled specially.
5935       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5936       if (isParameter && FINode) {
5937         // Byval parameter. We have a frame index at this point.
5938         SDV =
5939             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5940                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5941       } else if (isa<Argument>(Address)) {
5942         // Address is an argument, so try to emit its dbg value using
5943         // virtual register info from the FuncInfo.ValueMap.
5944         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5945         return;
5946       } else {
5947         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5948                               true, dl, SDNodeOrder);
5949       }
5950       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5951     } else {
5952       // If Address is an argument then try to emit its dbg value using
5953       // virtual register info from the FuncInfo.ValueMap.
5954       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5955                                     N)) {
5956         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5957                           << " (could not emit func-arg dbg_value)\n");
5958       }
5959     }
5960     return;
5961   }
5962   case Intrinsic::dbg_label: {
5963     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5964     DILabel *Label = DI.getLabel();
5965     assert(Label && "Missing label");
5966 
5967     SDDbgLabel *SDV;
5968     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5969     DAG.AddDbgLabel(SDV);
5970     return;
5971   }
5972   case Intrinsic::dbg_value: {
5973     const DbgValueInst &DI = cast<DbgValueInst>(I);
5974     assert(DI.getVariable() && "Missing variable");
5975 
5976     DILocalVariable *Variable = DI.getVariable();
5977     DIExpression *Expression = DI.getExpression();
5978     dropDanglingDebugInfo(Variable, Expression);
5979     const Value *V = DI.getValue();
5980     if (!V)
5981       return;
5982 
5983     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5984         SDNodeOrder))
5985       return;
5986 
5987     // TODO: Dangling debug info will eventually either be resolved or produce
5988     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5989     // between the original dbg.value location and its resolved DBG_VALUE, which
5990     // we should ideally fill with an extra Undef DBG_VALUE.
5991 
5992     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5993     return;
5994   }
5995 
5996   case Intrinsic::eh_typeid_for: {
5997     // Find the type id for the given typeinfo.
5998     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5999     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6000     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6001     setValue(&I, Res);
6002     return;
6003   }
6004 
6005   case Intrinsic::eh_return_i32:
6006   case Intrinsic::eh_return_i64:
6007     DAG.getMachineFunction().setCallsEHReturn(true);
6008     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6009                             MVT::Other,
6010                             getControlRoot(),
6011                             getValue(I.getArgOperand(0)),
6012                             getValue(I.getArgOperand(1))));
6013     return;
6014   case Intrinsic::eh_unwind_init:
6015     DAG.getMachineFunction().setCallsUnwindInit(true);
6016     return;
6017   case Intrinsic::eh_dwarf_cfa:
6018     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6019                              TLI.getPointerTy(DAG.getDataLayout()),
6020                              getValue(I.getArgOperand(0))));
6021     return;
6022   case Intrinsic::eh_sjlj_callsite: {
6023     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6024     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6025     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6026     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6027 
6028     MMI.setCurrentCallSite(CI->getZExtValue());
6029     return;
6030   }
6031   case Intrinsic::eh_sjlj_functioncontext: {
6032     // Get and store the index of the function context.
6033     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6034     AllocaInst *FnCtx =
6035       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6036     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6037     MFI.setFunctionContextIndex(FI);
6038     return;
6039   }
6040   case Intrinsic::eh_sjlj_setjmp: {
6041     SDValue Ops[2];
6042     Ops[0] = getRoot();
6043     Ops[1] = getValue(I.getArgOperand(0));
6044     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6045                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6046     setValue(&I, Op.getValue(0));
6047     DAG.setRoot(Op.getValue(1));
6048     return;
6049   }
6050   case Intrinsic::eh_sjlj_longjmp:
6051     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6052                             getRoot(), getValue(I.getArgOperand(0))));
6053     return;
6054   case Intrinsic::eh_sjlj_setup_dispatch:
6055     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6056                             getRoot()));
6057     return;
6058   case Intrinsic::masked_gather:
6059     visitMaskedGather(I);
6060     return;
6061   case Intrinsic::masked_load:
6062     visitMaskedLoad(I);
6063     return;
6064   case Intrinsic::masked_scatter:
6065     visitMaskedScatter(I);
6066     return;
6067   case Intrinsic::masked_store:
6068     visitMaskedStore(I);
6069     return;
6070   case Intrinsic::masked_expandload:
6071     visitMaskedLoad(I, true /* IsExpanding */);
6072     return;
6073   case Intrinsic::masked_compressstore:
6074     visitMaskedStore(I, true /* IsCompressing */);
6075     return;
6076   case Intrinsic::powi:
6077     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6078                             getValue(I.getArgOperand(1)), DAG));
6079     return;
6080   case Intrinsic::log:
6081     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6082     return;
6083   case Intrinsic::log2:
6084     setValue(&I,
6085              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6086     return;
6087   case Intrinsic::log10:
6088     setValue(&I,
6089              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6090     return;
6091   case Intrinsic::exp:
6092     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6093     return;
6094   case Intrinsic::exp2:
6095     setValue(&I,
6096              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6097     return;
6098   case Intrinsic::pow:
6099     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6100                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6101     return;
6102   case Intrinsic::sqrt:
6103   case Intrinsic::fabs:
6104   case Intrinsic::sin:
6105   case Intrinsic::cos:
6106   case Intrinsic::floor:
6107   case Intrinsic::ceil:
6108   case Intrinsic::trunc:
6109   case Intrinsic::rint:
6110   case Intrinsic::nearbyint:
6111   case Intrinsic::round:
6112   case Intrinsic::roundeven:
6113   case Intrinsic::canonicalize: {
6114     unsigned Opcode;
6115     switch (Intrinsic) {
6116     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6117     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6118     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6119     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6120     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6121     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6122     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6123     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6124     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6125     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6126     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6127     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6128     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6129     }
6130 
6131     setValue(&I, DAG.getNode(Opcode, sdl,
6132                              getValue(I.getArgOperand(0)).getValueType(),
6133                              getValue(I.getArgOperand(0)), Flags));
6134     return;
6135   }
6136   case Intrinsic::lround:
6137   case Intrinsic::llround:
6138   case Intrinsic::lrint:
6139   case Intrinsic::llrint: {
6140     unsigned Opcode;
6141     switch (Intrinsic) {
6142     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6143     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6144     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6145     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6146     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6147     }
6148 
6149     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6150     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6151                              getValue(I.getArgOperand(0))));
6152     return;
6153   }
6154   case Intrinsic::minnum:
6155     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6156                              getValue(I.getArgOperand(0)).getValueType(),
6157                              getValue(I.getArgOperand(0)),
6158                              getValue(I.getArgOperand(1)), Flags));
6159     return;
6160   case Intrinsic::maxnum:
6161     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6162                              getValue(I.getArgOperand(0)).getValueType(),
6163                              getValue(I.getArgOperand(0)),
6164                              getValue(I.getArgOperand(1)), Flags));
6165     return;
6166   case Intrinsic::minimum:
6167     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6168                              getValue(I.getArgOperand(0)).getValueType(),
6169                              getValue(I.getArgOperand(0)),
6170                              getValue(I.getArgOperand(1)), Flags));
6171     return;
6172   case Intrinsic::maximum:
6173     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6174                              getValue(I.getArgOperand(0)).getValueType(),
6175                              getValue(I.getArgOperand(0)),
6176                              getValue(I.getArgOperand(1)), Flags));
6177     return;
6178   case Intrinsic::copysign:
6179     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6180                              getValue(I.getArgOperand(0)).getValueType(),
6181                              getValue(I.getArgOperand(0)),
6182                              getValue(I.getArgOperand(1)), Flags));
6183     return;
6184   case Intrinsic::fma:
6185     setValue(&I, DAG.getNode(
6186                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6187                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6188                      getValue(I.getArgOperand(2)), Flags));
6189     return;
6190 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6191   case Intrinsic::INTRINSIC:
6192 #include "llvm/IR/ConstrainedOps.def"
6193     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6194     return;
6195 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6196 #include "llvm/IR/VPIntrinsics.def"
6197     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6198     return;
6199   case Intrinsic::fmuladd: {
6200     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6201     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6202         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6203       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6204                                getValue(I.getArgOperand(0)).getValueType(),
6205                                getValue(I.getArgOperand(0)),
6206                                getValue(I.getArgOperand(1)),
6207                                getValue(I.getArgOperand(2)), Flags));
6208     } else {
6209       // TODO: Intrinsic calls should have fast-math-flags.
6210       SDValue Mul = DAG.getNode(
6211           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6212           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6213       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6214                                 getValue(I.getArgOperand(0)).getValueType(),
6215                                 Mul, getValue(I.getArgOperand(2)), Flags);
6216       setValue(&I, Add);
6217     }
6218     return;
6219   }
6220   case Intrinsic::convert_to_fp16:
6221     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6222                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6223                                          getValue(I.getArgOperand(0)),
6224                                          DAG.getTargetConstant(0, sdl,
6225                                                                MVT::i32))));
6226     return;
6227   case Intrinsic::convert_from_fp16:
6228     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6229                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6230                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6231                                          getValue(I.getArgOperand(0)))));
6232     return;
6233   case Intrinsic::fptosi_sat: {
6234     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6235     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6236     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, Type,
6237                              getValue(I.getArgOperand(0)), SatW));
6238     return;
6239   }
6240   case Intrinsic::fptoui_sat: {
6241     EVT Type = TLI.getValueType(DAG.getDataLayout(), I.getType());
6242     SDValue SatW = DAG.getConstant(Type.getScalarSizeInBits(), sdl, MVT::i32);
6243     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, Type,
6244                              getValue(I.getArgOperand(0)), SatW));
6245     return;
6246   }
6247   case Intrinsic::set_rounding:
6248     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6249                       {getRoot(), getValue(I.getArgOperand(0))});
6250     setValue(&I, Res);
6251     DAG.setRoot(Res.getValue(0));
6252     return;
6253   case Intrinsic::pcmarker: {
6254     SDValue Tmp = getValue(I.getArgOperand(0));
6255     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6256     return;
6257   }
6258   case Intrinsic::readcyclecounter: {
6259     SDValue Op = getRoot();
6260     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6261                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6262     setValue(&I, Res);
6263     DAG.setRoot(Res.getValue(1));
6264     return;
6265   }
6266   case Intrinsic::bitreverse:
6267     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6268                              getValue(I.getArgOperand(0)).getValueType(),
6269                              getValue(I.getArgOperand(0))));
6270     return;
6271   case Intrinsic::bswap:
6272     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6273                              getValue(I.getArgOperand(0)).getValueType(),
6274                              getValue(I.getArgOperand(0))));
6275     return;
6276   case Intrinsic::cttz: {
6277     SDValue Arg = getValue(I.getArgOperand(0));
6278     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6279     EVT Ty = Arg.getValueType();
6280     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6281                              sdl, Ty, Arg));
6282     return;
6283   }
6284   case Intrinsic::ctlz: {
6285     SDValue Arg = getValue(I.getArgOperand(0));
6286     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6287     EVT Ty = Arg.getValueType();
6288     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6289                              sdl, Ty, Arg));
6290     return;
6291   }
6292   case Intrinsic::ctpop: {
6293     SDValue Arg = getValue(I.getArgOperand(0));
6294     EVT Ty = Arg.getValueType();
6295     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6296     return;
6297   }
6298   case Intrinsic::fshl:
6299   case Intrinsic::fshr: {
6300     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6301     SDValue X = getValue(I.getArgOperand(0));
6302     SDValue Y = getValue(I.getArgOperand(1));
6303     SDValue Z = getValue(I.getArgOperand(2));
6304     EVT VT = X.getValueType();
6305 
6306     if (X == Y) {
6307       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6308       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6309     } else {
6310       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6311       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6312     }
6313     return;
6314   }
6315   case Intrinsic::sadd_sat: {
6316     SDValue Op1 = getValue(I.getArgOperand(0));
6317     SDValue Op2 = getValue(I.getArgOperand(1));
6318     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6319     return;
6320   }
6321   case Intrinsic::uadd_sat: {
6322     SDValue Op1 = getValue(I.getArgOperand(0));
6323     SDValue Op2 = getValue(I.getArgOperand(1));
6324     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6325     return;
6326   }
6327   case Intrinsic::ssub_sat: {
6328     SDValue Op1 = getValue(I.getArgOperand(0));
6329     SDValue Op2 = getValue(I.getArgOperand(1));
6330     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6331     return;
6332   }
6333   case Intrinsic::usub_sat: {
6334     SDValue Op1 = getValue(I.getArgOperand(0));
6335     SDValue Op2 = getValue(I.getArgOperand(1));
6336     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6337     return;
6338   }
6339   case Intrinsic::sshl_sat: {
6340     SDValue Op1 = getValue(I.getArgOperand(0));
6341     SDValue Op2 = getValue(I.getArgOperand(1));
6342     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6343     return;
6344   }
6345   case Intrinsic::ushl_sat: {
6346     SDValue Op1 = getValue(I.getArgOperand(0));
6347     SDValue Op2 = getValue(I.getArgOperand(1));
6348     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6349     return;
6350   }
6351   case Intrinsic::smul_fix:
6352   case Intrinsic::umul_fix:
6353   case Intrinsic::smul_fix_sat:
6354   case Intrinsic::umul_fix_sat: {
6355     SDValue Op1 = getValue(I.getArgOperand(0));
6356     SDValue Op2 = getValue(I.getArgOperand(1));
6357     SDValue Op3 = getValue(I.getArgOperand(2));
6358     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6359                              Op1.getValueType(), Op1, Op2, Op3));
6360     return;
6361   }
6362   case Intrinsic::sdiv_fix:
6363   case Intrinsic::udiv_fix:
6364   case Intrinsic::sdiv_fix_sat:
6365   case Intrinsic::udiv_fix_sat: {
6366     SDValue Op1 = getValue(I.getArgOperand(0));
6367     SDValue Op2 = getValue(I.getArgOperand(1));
6368     SDValue Op3 = getValue(I.getArgOperand(2));
6369     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6370                               Op1, Op2, Op3, DAG, TLI));
6371     return;
6372   }
6373   case Intrinsic::smax: {
6374     SDValue Op1 = getValue(I.getArgOperand(0));
6375     SDValue Op2 = getValue(I.getArgOperand(1));
6376     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6377     return;
6378   }
6379   case Intrinsic::smin: {
6380     SDValue Op1 = getValue(I.getArgOperand(0));
6381     SDValue Op2 = getValue(I.getArgOperand(1));
6382     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6383     return;
6384   }
6385   case Intrinsic::umax: {
6386     SDValue Op1 = getValue(I.getArgOperand(0));
6387     SDValue Op2 = getValue(I.getArgOperand(1));
6388     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6389     return;
6390   }
6391   case Intrinsic::umin: {
6392     SDValue Op1 = getValue(I.getArgOperand(0));
6393     SDValue Op2 = getValue(I.getArgOperand(1));
6394     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6395     return;
6396   }
6397   case Intrinsic::abs: {
6398     // TODO: Preserve "int min is poison" arg in SDAG?
6399     SDValue Op1 = getValue(I.getArgOperand(0));
6400     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6401     return;
6402   }
6403   case Intrinsic::stacksave: {
6404     SDValue Op = getRoot();
6405     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6406     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6407     setValue(&I, Res);
6408     DAG.setRoot(Res.getValue(1));
6409     return;
6410   }
6411   case Intrinsic::stackrestore:
6412     Res = getValue(I.getArgOperand(0));
6413     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6414     return;
6415   case Intrinsic::get_dynamic_area_offset: {
6416     SDValue Op = getRoot();
6417     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6418     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6419     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6420     // target.
6421     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6422       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6423                          " intrinsic!");
6424     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6425                       Op);
6426     DAG.setRoot(Op);
6427     setValue(&I, Res);
6428     return;
6429   }
6430   case Intrinsic::stackguard: {
6431     MachineFunction &MF = DAG.getMachineFunction();
6432     const Module &M = *MF.getFunction().getParent();
6433     SDValue Chain = getRoot();
6434     if (TLI.useLoadStackGuardNode()) {
6435       Res = getLoadStackGuard(DAG, sdl, Chain);
6436     } else {
6437       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6438       const Value *Global = TLI.getSDagStackGuard(M);
6439       Align Align = DL->getPrefTypeAlign(Global->getType());
6440       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6441                         MachinePointerInfo(Global, 0), Align,
6442                         MachineMemOperand::MOVolatile);
6443     }
6444     if (TLI.useStackGuardXorFP())
6445       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6446     DAG.setRoot(Chain);
6447     setValue(&I, Res);
6448     return;
6449   }
6450   case Intrinsic::stackprotector: {
6451     // Emit code into the DAG to store the stack guard onto the stack.
6452     MachineFunction &MF = DAG.getMachineFunction();
6453     MachineFrameInfo &MFI = MF.getFrameInfo();
6454     SDValue Src, Chain = getRoot();
6455 
6456     if (TLI.useLoadStackGuardNode())
6457       Src = getLoadStackGuard(DAG, sdl, Chain);
6458     else
6459       Src = getValue(I.getArgOperand(0));   // The guard's value.
6460 
6461     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6462 
6463     int FI = FuncInfo.StaticAllocaMap[Slot];
6464     MFI.setStackProtectorIndex(FI);
6465     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6466 
6467     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6468 
6469     // Store the stack protector onto the stack.
6470     Res = DAG.getStore(
6471         Chain, sdl, Src, FIN,
6472         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6473         MaybeAlign(), MachineMemOperand::MOVolatile);
6474     setValue(&I, Res);
6475     DAG.setRoot(Res);
6476     return;
6477   }
6478   case Intrinsic::objectsize:
6479     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6480 
6481   case Intrinsic::is_constant:
6482     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6483 
6484   case Intrinsic::annotation:
6485   case Intrinsic::ptr_annotation:
6486   case Intrinsic::launder_invariant_group:
6487   case Intrinsic::strip_invariant_group:
6488     // Drop the intrinsic, but forward the value
6489     setValue(&I, getValue(I.getOperand(0)));
6490     return;
6491 
6492   case Intrinsic::assume:
6493   case Intrinsic::experimental_noalias_scope_decl:
6494   case Intrinsic::var_annotation:
6495   case Intrinsic::sideeffect:
6496     // Discard annotate attributes, noalias scope declarations, assumptions, and
6497     // artificial side-effects.
6498     return;
6499 
6500   case Intrinsic::codeview_annotation: {
6501     // Emit a label associated with this metadata.
6502     MachineFunction &MF = DAG.getMachineFunction();
6503     MCSymbol *Label =
6504         MF.getMMI().getContext().createTempSymbol("annotation", true);
6505     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6506     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6507     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6508     DAG.setRoot(Res);
6509     return;
6510   }
6511 
6512   case Intrinsic::init_trampoline: {
6513     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6514 
6515     SDValue Ops[6];
6516     Ops[0] = getRoot();
6517     Ops[1] = getValue(I.getArgOperand(0));
6518     Ops[2] = getValue(I.getArgOperand(1));
6519     Ops[3] = getValue(I.getArgOperand(2));
6520     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6521     Ops[5] = DAG.getSrcValue(F);
6522 
6523     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6524 
6525     DAG.setRoot(Res);
6526     return;
6527   }
6528   case Intrinsic::adjust_trampoline:
6529     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6530                              TLI.getPointerTy(DAG.getDataLayout()),
6531                              getValue(I.getArgOperand(0))));
6532     return;
6533   case Intrinsic::gcroot: {
6534     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6535            "only valid in functions with gc specified, enforced by Verifier");
6536     assert(GFI && "implied by previous");
6537     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6538     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6539 
6540     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6541     GFI->addStackRoot(FI->getIndex(), TypeMap);
6542     return;
6543   }
6544   case Intrinsic::gcread:
6545   case Intrinsic::gcwrite:
6546     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6547   case Intrinsic::flt_rounds:
6548     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6549     setValue(&I, Res);
6550     DAG.setRoot(Res.getValue(1));
6551     return;
6552 
6553   case Intrinsic::expect:
6554     // Just replace __builtin_expect(exp, c) with EXP.
6555     setValue(&I, getValue(I.getArgOperand(0)));
6556     return;
6557 
6558   case Intrinsic::ubsantrap:
6559   case Intrinsic::debugtrap:
6560   case Intrinsic::trap: {
6561     StringRef TrapFuncName =
6562         I.getAttributes()
6563             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6564             .getValueAsString();
6565     if (TrapFuncName.empty()) {
6566       switch (Intrinsic) {
6567       case Intrinsic::trap:
6568         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6569         break;
6570       case Intrinsic::debugtrap:
6571         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6572         break;
6573       case Intrinsic::ubsantrap:
6574         DAG.setRoot(DAG.getNode(
6575             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6576             DAG.getTargetConstant(
6577                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6578                 MVT::i32)));
6579         break;
6580       default: llvm_unreachable("unknown trap intrinsic");
6581       }
6582       return;
6583     }
6584     TargetLowering::ArgListTy Args;
6585     if (Intrinsic == Intrinsic::ubsantrap) {
6586       Args.push_back(TargetLoweringBase::ArgListEntry());
6587       Args[0].Val = I.getArgOperand(0);
6588       Args[0].Node = getValue(Args[0].Val);
6589       Args[0].Ty = Args[0].Val->getType();
6590     }
6591 
6592     TargetLowering::CallLoweringInfo CLI(DAG);
6593     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6594         CallingConv::C, I.getType(),
6595         DAG.getExternalSymbol(TrapFuncName.data(),
6596                               TLI.getPointerTy(DAG.getDataLayout())),
6597         std::move(Args));
6598 
6599     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6600     DAG.setRoot(Result.second);
6601     return;
6602   }
6603 
6604   case Intrinsic::uadd_with_overflow:
6605   case Intrinsic::sadd_with_overflow:
6606   case Intrinsic::usub_with_overflow:
6607   case Intrinsic::ssub_with_overflow:
6608   case Intrinsic::umul_with_overflow:
6609   case Intrinsic::smul_with_overflow: {
6610     ISD::NodeType Op;
6611     switch (Intrinsic) {
6612     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6613     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6614     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6615     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6616     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6617     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6618     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6619     }
6620     SDValue Op1 = getValue(I.getArgOperand(0));
6621     SDValue Op2 = getValue(I.getArgOperand(1));
6622 
6623     EVT ResultVT = Op1.getValueType();
6624     EVT OverflowVT = MVT::i1;
6625     if (ResultVT.isVector())
6626       OverflowVT = EVT::getVectorVT(
6627           *Context, OverflowVT, ResultVT.getVectorElementCount());
6628 
6629     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6630     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6631     return;
6632   }
6633   case Intrinsic::prefetch: {
6634     SDValue Ops[5];
6635     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6636     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6637     Ops[0] = DAG.getRoot();
6638     Ops[1] = getValue(I.getArgOperand(0));
6639     Ops[2] = getValue(I.getArgOperand(1));
6640     Ops[3] = getValue(I.getArgOperand(2));
6641     Ops[4] = getValue(I.getArgOperand(3));
6642     SDValue Result = DAG.getMemIntrinsicNode(
6643         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6644         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6645         /* align */ None, Flags);
6646 
6647     // Chain the prefetch in parallell with any pending loads, to stay out of
6648     // the way of later optimizations.
6649     PendingLoads.push_back(Result);
6650     Result = getRoot();
6651     DAG.setRoot(Result);
6652     return;
6653   }
6654   case Intrinsic::lifetime_start:
6655   case Intrinsic::lifetime_end: {
6656     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6657     // Stack coloring is not enabled in O0, discard region information.
6658     if (TM.getOptLevel() == CodeGenOpt::None)
6659       return;
6660 
6661     const int64_t ObjectSize =
6662         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6663     Value *const ObjectPtr = I.getArgOperand(1);
6664     SmallVector<const Value *, 4> Allocas;
6665     getUnderlyingObjects(ObjectPtr, Allocas);
6666 
6667     for (const Value *Alloca : Allocas) {
6668       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6669 
6670       // Could not find an Alloca.
6671       if (!LifetimeObject)
6672         continue;
6673 
6674       // First check that the Alloca is static, otherwise it won't have a
6675       // valid frame index.
6676       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6677       if (SI == FuncInfo.StaticAllocaMap.end())
6678         return;
6679 
6680       const int FrameIndex = SI->second;
6681       int64_t Offset;
6682       if (GetPointerBaseWithConstantOffset(
6683               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6684         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6685       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6686                                 Offset);
6687       DAG.setRoot(Res);
6688     }
6689     return;
6690   }
6691   case Intrinsic::pseudoprobe: {
6692     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6693     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6694     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6695     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6696     DAG.setRoot(Res);
6697     return;
6698   }
6699   case Intrinsic::invariant_start:
6700     // Discard region information.
6701     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6702     return;
6703   case Intrinsic::invariant_end:
6704     // Discard region information.
6705     return;
6706   case Intrinsic::clear_cache:
6707     /// FunctionName may be null.
6708     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6709       lowerCallToExternalSymbol(I, FunctionName);
6710     return;
6711   case Intrinsic::donothing:
6712     // ignore
6713     return;
6714   case Intrinsic::experimental_stackmap:
6715     visitStackmap(I);
6716     return;
6717   case Intrinsic::experimental_patchpoint_void:
6718   case Intrinsic::experimental_patchpoint_i64:
6719     visitPatchpoint(I);
6720     return;
6721   case Intrinsic::experimental_gc_statepoint:
6722     LowerStatepoint(cast<GCStatepointInst>(I));
6723     return;
6724   case Intrinsic::experimental_gc_result:
6725     visitGCResult(cast<GCResultInst>(I));
6726     return;
6727   case Intrinsic::experimental_gc_relocate:
6728     visitGCRelocate(cast<GCRelocateInst>(I));
6729     return;
6730   case Intrinsic::instrprof_increment:
6731     llvm_unreachable("instrprof failed to lower an increment");
6732   case Intrinsic::instrprof_value_profile:
6733     llvm_unreachable("instrprof failed to lower a value profiling call");
6734   case Intrinsic::localescape: {
6735     MachineFunction &MF = DAG.getMachineFunction();
6736     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6737 
6738     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6739     // is the same on all targets.
6740     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6741       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6742       if (isa<ConstantPointerNull>(Arg))
6743         continue; // Skip null pointers. They represent a hole in index space.
6744       AllocaInst *Slot = cast<AllocaInst>(Arg);
6745       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6746              "can only escape static allocas");
6747       int FI = FuncInfo.StaticAllocaMap[Slot];
6748       MCSymbol *FrameAllocSym =
6749           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6750               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6751       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6752               TII->get(TargetOpcode::LOCAL_ESCAPE))
6753           .addSym(FrameAllocSym)
6754           .addFrameIndex(FI);
6755     }
6756 
6757     return;
6758   }
6759 
6760   case Intrinsic::localrecover: {
6761     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6762     MachineFunction &MF = DAG.getMachineFunction();
6763 
6764     // Get the symbol that defines the frame offset.
6765     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6766     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6767     unsigned IdxVal =
6768         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6769     MCSymbol *FrameAllocSym =
6770         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6771             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6772 
6773     Value *FP = I.getArgOperand(1);
6774     SDValue FPVal = getValue(FP);
6775     EVT PtrVT = FPVal.getValueType();
6776 
6777     // Create a MCSymbol for the label to avoid any target lowering
6778     // that would make this PC relative.
6779     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6780     SDValue OffsetVal =
6781         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6782 
6783     // Add the offset to the FP.
6784     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6785     setValue(&I, Add);
6786 
6787     return;
6788   }
6789 
6790   case Intrinsic::eh_exceptionpointer:
6791   case Intrinsic::eh_exceptioncode: {
6792     // Get the exception pointer vreg, copy from it, and resize it to fit.
6793     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6794     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6795     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6796     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6797     SDValue N =
6798         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6799     if (Intrinsic == Intrinsic::eh_exceptioncode)
6800       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6801     setValue(&I, N);
6802     return;
6803   }
6804   case Intrinsic::xray_customevent: {
6805     // Here we want to make sure that the intrinsic behaves as if it has a
6806     // specific calling convention, and only for x86_64.
6807     // FIXME: Support other platforms later.
6808     const auto &Triple = DAG.getTarget().getTargetTriple();
6809     if (Triple.getArch() != Triple::x86_64)
6810       return;
6811 
6812     SDLoc DL = getCurSDLoc();
6813     SmallVector<SDValue, 8> Ops;
6814 
6815     // We want to say that we always want the arguments in registers.
6816     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6817     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6818     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6819     SDValue Chain = getRoot();
6820     Ops.push_back(LogEntryVal);
6821     Ops.push_back(StrSizeVal);
6822     Ops.push_back(Chain);
6823 
6824     // We need to enforce the calling convention for the callsite, so that
6825     // argument ordering is enforced correctly, and that register allocation can
6826     // see that some registers may be assumed clobbered and have to preserve
6827     // them across calls to the intrinsic.
6828     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6829                                            DL, NodeTys, Ops);
6830     SDValue patchableNode = SDValue(MN, 0);
6831     DAG.setRoot(patchableNode);
6832     setValue(&I, patchableNode);
6833     return;
6834   }
6835   case Intrinsic::xray_typedevent: {
6836     // Here we want to make sure that the intrinsic behaves as if it has a
6837     // specific calling convention, and only for x86_64.
6838     // FIXME: Support other platforms later.
6839     const auto &Triple = DAG.getTarget().getTargetTriple();
6840     if (Triple.getArch() != Triple::x86_64)
6841       return;
6842 
6843     SDLoc DL = getCurSDLoc();
6844     SmallVector<SDValue, 8> Ops;
6845 
6846     // We want to say that we always want the arguments in registers.
6847     // It's unclear to me how manipulating the selection DAG here forces callers
6848     // to provide arguments in registers instead of on the stack.
6849     SDValue LogTypeId = getValue(I.getArgOperand(0));
6850     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6851     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6852     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6853     SDValue Chain = getRoot();
6854     Ops.push_back(LogTypeId);
6855     Ops.push_back(LogEntryVal);
6856     Ops.push_back(StrSizeVal);
6857     Ops.push_back(Chain);
6858 
6859     // We need to enforce the calling convention for the callsite, so that
6860     // argument ordering is enforced correctly, and that register allocation can
6861     // see that some registers may be assumed clobbered and have to preserve
6862     // them across calls to the intrinsic.
6863     MachineSDNode *MN = DAG.getMachineNode(
6864         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6865     SDValue patchableNode = SDValue(MN, 0);
6866     DAG.setRoot(patchableNode);
6867     setValue(&I, patchableNode);
6868     return;
6869   }
6870   case Intrinsic::experimental_deoptimize:
6871     LowerDeoptimizeCall(&I);
6872     return;
6873 
6874   case Intrinsic::vector_reduce_fadd:
6875   case Intrinsic::vector_reduce_fmul:
6876   case Intrinsic::vector_reduce_add:
6877   case Intrinsic::vector_reduce_mul:
6878   case Intrinsic::vector_reduce_and:
6879   case Intrinsic::vector_reduce_or:
6880   case Intrinsic::vector_reduce_xor:
6881   case Intrinsic::vector_reduce_smax:
6882   case Intrinsic::vector_reduce_smin:
6883   case Intrinsic::vector_reduce_umax:
6884   case Intrinsic::vector_reduce_umin:
6885   case Intrinsic::vector_reduce_fmax:
6886   case Intrinsic::vector_reduce_fmin:
6887     visitVectorReduce(I, Intrinsic);
6888     return;
6889 
6890   case Intrinsic::icall_branch_funnel: {
6891     SmallVector<SDValue, 16> Ops;
6892     Ops.push_back(getValue(I.getArgOperand(0)));
6893 
6894     int64_t Offset;
6895     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6896         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6897     if (!Base)
6898       report_fatal_error(
6899           "llvm.icall.branch.funnel operand must be a GlobalValue");
6900     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6901 
6902     struct BranchFunnelTarget {
6903       int64_t Offset;
6904       SDValue Target;
6905     };
6906     SmallVector<BranchFunnelTarget, 8> Targets;
6907 
6908     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6909       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6910           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6911       if (ElemBase != Base)
6912         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6913                            "to the same GlobalValue");
6914 
6915       SDValue Val = getValue(I.getArgOperand(Op + 1));
6916       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6917       if (!GA)
6918         report_fatal_error(
6919             "llvm.icall.branch.funnel operand must be a GlobalValue");
6920       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6921                                      GA->getGlobal(), getCurSDLoc(),
6922                                      Val.getValueType(), GA->getOffset())});
6923     }
6924     llvm::sort(Targets,
6925                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6926                  return T1.Offset < T2.Offset;
6927                });
6928 
6929     for (auto &T : Targets) {
6930       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6931       Ops.push_back(T.Target);
6932     }
6933 
6934     Ops.push_back(DAG.getRoot()); // Chain
6935     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6936                                  getCurSDLoc(), MVT::Other, Ops),
6937               0);
6938     DAG.setRoot(N);
6939     setValue(&I, N);
6940     HasTailCall = true;
6941     return;
6942   }
6943 
6944   case Intrinsic::wasm_landingpad_index:
6945     // Information this intrinsic contained has been transferred to
6946     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6947     // delete it now.
6948     return;
6949 
6950   case Intrinsic::aarch64_settag:
6951   case Intrinsic::aarch64_settag_zero: {
6952     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6953     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6954     SDValue Val = TSI.EmitTargetCodeForSetTag(
6955         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6956         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6957         ZeroMemory);
6958     DAG.setRoot(Val);
6959     setValue(&I, Val);
6960     return;
6961   }
6962   case Intrinsic::ptrmask: {
6963     SDValue Ptr = getValue(I.getOperand(0));
6964     SDValue Const = getValue(I.getOperand(1));
6965 
6966     EVT PtrVT = Ptr.getValueType();
6967     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6968                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6969     return;
6970   }
6971   case Intrinsic::get_active_lane_mask: {
6972     auto DL = getCurSDLoc();
6973     SDValue Index = getValue(I.getOperand(0));
6974     SDValue TripCount = getValue(I.getOperand(1));
6975     Type *ElementTy = I.getOperand(0)->getType();
6976     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6977     unsigned VecWidth = VT.getVectorNumElements();
6978 
6979     SmallVector<SDValue, 16> OpsTripCount;
6980     SmallVector<SDValue, 16> OpsIndex;
6981     SmallVector<SDValue, 16> OpsStepConstants;
6982     for (unsigned i = 0; i < VecWidth; i++) {
6983       OpsTripCount.push_back(TripCount);
6984       OpsIndex.push_back(Index);
6985       OpsStepConstants.push_back(
6986           DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6987     }
6988 
6989     EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6990 
6991     auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6992     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6993     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6994     SDValue VectorInduction = DAG.getNode(
6995        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6996     SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6997     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6998                                  VectorTripCount, ISD::CondCode::SETULT);
6999     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7000                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7001                              SetCC));
7002     return;
7003   }
7004   case Intrinsic::experimental_vector_insert: {
7005     auto DL = getCurSDLoc();
7006 
7007     SDValue Vec = getValue(I.getOperand(0));
7008     SDValue SubVec = getValue(I.getOperand(1));
7009     SDValue Index = getValue(I.getOperand(2));
7010     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7011     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7012                              Index));
7013     return;
7014   }
7015   case Intrinsic::experimental_vector_extract: {
7016     auto DL = getCurSDLoc();
7017 
7018     SDValue Vec = getValue(I.getOperand(0));
7019     SDValue Index = getValue(I.getOperand(1));
7020     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7021 
7022     setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7023     return;
7024   }
7025   }
7026 }
7027 
7028 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7029     const ConstrainedFPIntrinsic &FPI) {
7030   SDLoc sdl = getCurSDLoc();
7031 
7032   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7033   SmallVector<EVT, 4> ValueVTs;
7034   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7035   ValueVTs.push_back(MVT::Other); // Out chain
7036 
7037   // We do not need to serialize constrained FP intrinsics against
7038   // each other or against (nonvolatile) loads, so they can be
7039   // chained like loads.
7040   SDValue Chain = DAG.getRoot();
7041   SmallVector<SDValue, 4> Opers;
7042   Opers.push_back(Chain);
7043   if (FPI.isUnaryOp()) {
7044     Opers.push_back(getValue(FPI.getArgOperand(0)));
7045   } else if (FPI.isTernaryOp()) {
7046     Opers.push_back(getValue(FPI.getArgOperand(0)));
7047     Opers.push_back(getValue(FPI.getArgOperand(1)));
7048     Opers.push_back(getValue(FPI.getArgOperand(2)));
7049   } else {
7050     Opers.push_back(getValue(FPI.getArgOperand(0)));
7051     Opers.push_back(getValue(FPI.getArgOperand(1)));
7052   }
7053 
7054   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7055     assert(Result.getNode()->getNumValues() == 2);
7056 
7057     // Push node to the appropriate list so that future instructions can be
7058     // chained up correctly.
7059     SDValue OutChain = Result.getValue(1);
7060     switch (EB) {
7061     case fp::ExceptionBehavior::ebIgnore:
7062       // The only reason why ebIgnore nodes still need to be chained is that
7063       // they might depend on the current rounding mode, and therefore must
7064       // not be moved across instruction that may change that mode.
7065       LLVM_FALLTHROUGH;
7066     case fp::ExceptionBehavior::ebMayTrap:
7067       // These must not be moved across calls or instructions that may change
7068       // floating-point exception masks.
7069       PendingConstrainedFP.push_back(OutChain);
7070       break;
7071     case fp::ExceptionBehavior::ebStrict:
7072       // These must not be moved across calls or instructions that may change
7073       // floating-point exception masks or read floating-point exception flags.
7074       // In addition, they cannot be optimized out even if unused.
7075       PendingConstrainedFPStrict.push_back(OutChain);
7076       break;
7077     }
7078   };
7079 
7080   SDVTList VTs = DAG.getVTList(ValueVTs);
7081   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7082 
7083   SDNodeFlags Flags;
7084   if (EB == fp::ExceptionBehavior::ebIgnore)
7085     Flags.setNoFPExcept(true);
7086 
7087   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7088     Flags.copyFMF(*FPOp);
7089 
7090   unsigned Opcode;
7091   switch (FPI.getIntrinsicID()) {
7092   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7093 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7094   case Intrinsic::INTRINSIC:                                                   \
7095     Opcode = ISD::STRICT_##DAGN;                                               \
7096     break;
7097 #include "llvm/IR/ConstrainedOps.def"
7098   case Intrinsic::experimental_constrained_fmuladd: {
7099     Opcode = ISD::STRICT_FMA;
7100     // Break fmuladd into fmul and fadd.
7101     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7102         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7103                                         ValueVTs[0])) {
7104       Opers.pop_back();
7105       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7106       pushOutChain(Mul, EB);
7107       Opcode = ISD::STRICT_FADD;
7108       Opers.clear();
7109       Opers.push_back(Mul.getValue(1));
7110       Opers.push_back(Mul.getValue(0));
7111       Opers.push_back(getValue(FPI.getArgOperand(2)));
7112     }
7113     break;
7114   }
7115   }
7116 
7117   // A few strict DAG nodes carry additional operands that are not
7118   // set up by the default code above.
7119   switch (Opcode) {
7120   default: break;
7121   case ISD::STRICT_FP_ROUND:
7122     Opers.push_back(
7123         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7124     break;
7125   case ISD::STRICT_FSETCC:
7126   case ISD::STRICT_FSETCCS: {
7127     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7128     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7129     break;
7130   }
7131   }
7132 
7133   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7134   pushOutChain(Result, EB);
7135 
7136   SDValue FPResult = Result.getValue(0);
7137   setValue(&FPI, FPResult);
7138 }
7139 
7140 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7141   Optional<unsigned> ResOPC;
7142   switch (VPIntrin.getIntrinsicID()) {
7143 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7144 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7145 #define END_REGISTER_VP_INTRINSIC(...) break;
7146 #include "llvm/IR/VPIntrinsics.def"
7147   }
7148 
7149   if (!ResOPC.hasValue())
7150     llvm_unreachable(
7151         "Inconsistency: no SDNode available for this VPIntrinsic!");
7152 
7153   return ResOPC.getValue();
7154 }
7155 
7156 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7157     const VPIntrinsic &VPIntrin) {
7158   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7159 
7160   SmallVector<EVT, 4> ValueVTs;
7161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7162   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7163   SDVTList VTs = DAG.getVTList(ValueVTs);
7164 
7165   // Request operands.
7166   SmallVector<SDValue, 7> OpValues;
7167   for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i)
7168     OpValues.push_back(getValue(VPIntrin.getArgOperand(i)));
7169 
7170   SDLoc DL = getCurSDLoc();
7171   SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7172   setValue(&VPIntrin, Result);
7173 }
7174 
7175 std::pair<SDValue, SDValue>
7176 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7177                                     const BasicBlock *EHPadBB) {
7178   MachineFunction &MF = DAG.getMachineFunction();
7179   MachineModuleInfo &MMI = MF.getMMI();
7180   MCSymbol *BeginLabel = nullptr;
7181 
7182   if (EHPadBB) {
7183     // Insert a label before the invoke call to mark the try range.  This can be
7184     // used to detect deletion of the invoke via the MachineModuleInfo.
7185     BeginLabel = MMI.getContext().createTempSymbol();
7186 
7187     // For SjLj, keep track of which landing pads go with which invokes
7188     // so as to maintain the ordering of pads in the LSDA.
7189     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7190     if (CallSiteIndex) {
7191       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7192       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7193 
7194       // Now that the call site is handled, stop tracking it.
7195       MMI.setCurrentCallSite(0);
7196     }
7197 
7198     // Both PendingLoads and PendingExports must be flushed here;
7199     // this call might not return.
7200     (void)getRoot();
7201     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7202 
7203     CLI.setChain(getRoot());
7204   }
7205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7206   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7207 
7208   assert((CLI.IsTailCall || Result.second.getNode()) &&
7209          "Non-null chain expected with non-tail call!");
7210   assert((Result.second.getNode() || !Result.first.getNode()) &&
7211          "Null value expected with tail call!");
7212 
7213   if (!Result.second.getNode()) {
7214     // As a special case, a null chain means that a tail call has been emitted
7215     // and the DAG root is already updated.
7216     HasTailCall = true;
7217 
7218     // Since there's no actual continuation from this block, nothing can be
7219     // relying on us setting vregs for them.
7220     PendingExports.clear();
7221   } else {
7222     DAG.setRoot(Result.second);
7223   }
7224 
7225   if (EHPadBB) {
7226     // Insert a label at the end of the invoke call to mark the try range.  This
7227     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7228     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7229     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7230 
7231     // Inform MachineModuleInfo of range.
7232     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7233     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7234     // actually use outlined funclets and their LSDA info style.
7235     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7236       assert(CLI.CB);
7237       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7238       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7239     } else if (!isScopedEHPersonality(Pers)) {
7240       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7241     }
7242   }
7243 
7244   return Result;
7245 }
7246 
7247 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7248                                       bool isTailCall,
7249                                       const BasicBlock *EHPadBB) {
7250   auto &DL = DAG.getDataLayout();
7251   FunctionType *FTy = CB.getFunctionType();
7252   Type *RetTy = CB.getType();
7253 
7254   TargetLowering::ArgListTy Args;
7255   Args.reserve(CB.arg_size());
7256 
7257   const Value *SwiftErrorVal = nullptr;
7258   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7259 
7260   if (isTailCall) {
7261     // Avoid emitting tail calls in functions with the disable-tail-calls
7262     // attribute.
7263     auto *Caller = CB.getParent()->getParent();
7264     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7265         "true")
7266       isTailCall = false;
7267 
7268     // We can't tail call inside a function with a swifterror argument. Lowering
7269     // does not support this yet. It would have to move into the swifterror
7270     // register before the call.
7271     if (TLI.supportSwiftError() &&
7272         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7273       isTailCall = false;
7274   }
7275 
7276   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7277     TargetLowering::ArgListEntry Entry;
7278     const Value *V = *I;
7279 
7280     // Skip empty types
7281     if (V->getType()->isEmptyTy())
7282       continue;
7283 
7284     SDValue ArgNode = getValue(V);
7285     Entry.Node = ArgNode; Entry.Ty = V->getType();
7286 
7287     Entry.setAttributes(&CB, I - CB.arg_begin());
7288 
7289     // Use swifterror virtual register as input to the call.
7290     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7291       SwiftErrorVal = V;
7292       // We find the virtual register for the actual swifterror argument.
7293       // Instead of using the Value, we use the virtual register instead.
7294       Entry.Node =
7295           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7296                           EVT(TLI.getPointerTy(DL)));
7297     }
7298 
7299     Args.push_back(Entry);
7300 
7301     // If we have an explicit sret argument that is an Instruction, (i.e., it
7302     // might point to function-local memory), we can't meaningfully tail-call.
7303     if (Entry.IsSRet && isa<Instruction>(V))
7304       isTailCall = false;
7305   }
7306 
7307   // If call site has a cfguardtarget operand bundle, create and add an
7308   // additional ArgListEntry.
7309   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7310     TargetLowering::ArgListEntry Entry;
7311     Value *V = Bundle->Inputs[0];
7312     SDValue ArgNode = getValue(V);
7313     Entry.Node = ArgNode;
7314     Entry.Ty = V->getType();
7315     Entry.IsCFGuardTarget = true;
7316     Args.push_back(Entry);
7317   }
7318 
7319   // Check if target-independent constraints permit a tail call here.
7320   // Target-dependent constraints are checked within TLI->LowerCallTo.
7321   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7322     isTailCall = false;
7323 
7324   // Disable tail calls if there is an swifterror argument. Targets have not
7325   // been updated to support tail calls.
7326   if (TLI.supportSwiftError() && SwiftErrorVal)
7327     isTailCall = false;
7328 
7329   TargetLowering::CallLoweringInfo CLI(DAG);
7330   CLI.setDebugLoc(getCurSDLoc())
7331       .setChain(getRoot())
7332       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7333       .setTailCall(isTailCall)
7334       .setConvergent(CB.isConvergent())
7335       .setIsPreallocated(
7336           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7337   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7338 
7339   if (Result.first.getNode()) {
7340     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7341     setValue(&CB, Result.first);
7342   }
7343 
7344   // The last element of CLI.InVals has the SDValue for swifterror return.
7345   // Here we copy it to a virtual register and update SwiftErrorMap for
7346   // book-keeping.
7347   if (SwiftErrorVal && TLI.supportSwiftError()) {
7348     // Get the last element of InVals.
7349     SDValue Src = CLI.InVals.back();
7350     Register VReg =
7351         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7352     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7353     DAG.setRoot(CopyNode);
7354   }
7355 }
7356 
7357 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7358                              SelectionDAGBuilder &Builder) {
7359   // Check to see if this load can be trivially constant folded, e.g. if the
7360   // input is from a string literal.
7361   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7362     // Cast pointer to the type we really want to load.
7363     Type *LoadTy =
7364         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7365     if (LoadVT.isVector())
7366       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7367 
7368     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7369                                          PointerType::getUnqual(LoadTy));
7370 
7371     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7372             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7373       return Builder.getValue(LoadCst);
7374   }
7375 
7376   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7377   // still constant memory, the input chain can be the entry node.
7378   SDValue Root;
7379   bool ConstantMemory = false;
7380 
7381   // Do not serialize (non-volatile) loads of constant memory with anything.
7382   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7383     Root = Builder.DAG.getEntryNode();
7384     ConstantMemory = true;
7385   } else {
7386     // Do not serialize non-volatile loads against each other.
7387     Root = Builder.DAG.getRoot();
7388   }
7389 
7390   SDValue Ptr = Builder.getValue(PtrVal);
7391   SDValue LoadVal =
7392       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7393                           MachinePointerInfo(PtrVal), Align(1));
7394 
7395   if (!ConstantMemory)
7396     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7397   return LoadVal;
7398 }
7399 
7400 /// Record the value for an instruction that produces an integer result,
7401 /// converting the type where necessary.
7402 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7403                                                   SDValue Value,
7404                                                   bool IsSigned) {
7405   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7406                                                     I.getType(), true);
7407   if (IsSigned)
7408     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7409   else
7410     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7411   setValue(&I, Value);
7412 }
7413 
7414 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7415 /// true and lower it. Otherwise return false, and it will be lowered like a
7416 /// normal call.
7417 /// The caller already checked that \p I calls the appropriate LibFunc with a
7418 /// correct prototype.
7419 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7420   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7421   const Value *Size = I.getArgOperand(2);
7422   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7423   if (CSize && CSize->getZExtValue() == 0) {
7424     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7425                                                           I.getType(), true);
7426     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7427     return true;
7428   }
7429 
7430   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7431   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7432       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7433       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7434   if (Res.first.getNode()) {
7435     processIntegerCallValue(I, Res.first, true);
7436     PendingLoads.push_back(Res.second);
7437     return true;
7438   }
7439 
7440   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7441   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7442   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7443     return false;
7444 
7445   // If the target has a fast compare for the given size, it will return a
7446   // preferred load type for that size. Require that the load VT is legal and
7447   // that the target supports unaligned loads of that type. Otherwise, return
7448   // INVALID.
7449   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7450     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7451     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7452     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7453       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7454       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7455       // TODO: Check alignment of src and dest ptrs.
7456       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7457       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7458       if (!TLI.isTypeLegal(LVT) ||
7459           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7460           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7461         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7462     }
7463 
7464     return LVT;
7465   };
7466 
7467   // This turns into unaligned loads. We only do this if the target natively
7468   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7469   // we'll only produce a small number of byte loads.
7470   MVT LoadVT;
7471   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7472   switch (NumBitsToCompare) {
7473   default:
7474     return false;
7475   case 16:
7476     LoadVT = MVT::i16;
7477     break;
7478   case 32:
7479     LoadVT = MVT::i32;
7480     break;
7481   case 64:
7482   case 128:
7483   case 256:
7484     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7485     break;
7486   }
7487 
7488   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7489     return false;
7490 
7491   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7492   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7493 
7494   // Bitcast to a wide integer type if the loads are vectors.
7495   if (LoadVT.isVector()) {
7496     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7497     LoadL = DAG.getBitcast(CmpVT, LoadL);
7498     LoadR = DAG.getBitcast(CmpVT, LoadR);
7499   }
7500 
7501   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7502   processIntegerCallValue(I, Cmp, false);
7503   return true;
7504 }
7505 
7506 /// See if we can lower a memchr call into an optimized form. If so, return
7507 /// true and lower it. Otherwise return false, and it will be lowered like a
7508 /// normal call.
7509 /// The caller already checked that \p I calls the appropriate LibFunc with a
7510 /// correct prototype.
7511 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7512   const Value *Src = I.getArgOperand(0);
7513   const Value *Char = I.getArgOperand(1);
7514   const Value *Length = I.getArgOperand(2);
7515 
7516   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7517   std::pair<SDValue, SDValue> Res =
7518     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7519                                 getValue(Src), getValue(Char), getValue(Length),
7520                                 MachinePointerInfo(Src));
7521   if (Res.first.getNode()) {
7522     setValue(&I, Res.first);
7523     PendingLoads.push_back(Res.second);
7524     return true;
7525   }
7526 
7527   return false;
7528 }
7529 
7530 /// See if we can lower a mempcpy call into an optimized form. If so, return
7531 /// true and lower it. Otherwise return false, and it will be lowered like a
7532 /// normal call.
7533 /// The caller already checked that \p I calls the appropriate LibFunc with a
7534 /// correct prototype.
7535 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7536   SDValue Dst = getValue(I.getArgOperand(0));
7537   SDValue Src = getValue(I.getArgOperand(1));
7538   SDValue Size = getValue(I.getArgOperand(2));
7539 
7540   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7541   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7542   // DAG::getMemcpy needs Alignment to be defined.
7543   Align Alignment = std::min(DstAlign, SrcAlign);
7544 
7545   bool isVol = false;
7546   SDLoc sdl = getCurSDLoc();
7547 
7548   // In the mempcpy context we need to pass in a false value for isTailCall
7549   // because the return pointer needs to be adjusted by the size of
7550   // the copied memory.
7551   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7552   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7553                              /*isTailCall=*/false,
7554                              MachinePointerInfo(I.getArgOperand(0)),
7555                              MachinePointerInfo(I.getArgOperand(1)));
7556   assert(MC.getNode() != nullptr &&
7557          "** memcpy should not be lowered as TailCall in mempcpy context **");
7558   DAG.setRoot(MC);
7559 
7560   // Check if Size needs to be truncated or extended.
7561   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7562 
7563   // Adjust return pointer to point just past the last dst byte.
7564   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7565                                     Dst, Size);
7566   setValue(&I, DstPlusSize);
7567   return true;
7568 }
7569 
7570 /// See if we can lower a strcpy call into an optimized form.  If so, return
7571 /// true and lower it, otherwise return false and it will be lowered like a
7572 /// normal call.
7573 /// The caller already checked that \p I calls the appropriate LibFunc with a
7574 /// correct prototype.
7575 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7576   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7577 
7578   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7579   std::pair<SDValue, SDValue> Res =
7580     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7581                                 getValue(Arg0), getValue(Arg1),
7582                                 MachinePointerInfo(Arg0),
7583                                 MachinePointerInfo(Arg1), isStpcpy);
7584   if (Res.first.getNode()) {
7585     setValue(&I, Res.first);
7586     DAG.setRoot(Res.second);
7587     return true;
7588   }
7589 
7590   return false;
7591 }
7592 
7593 /// See if we can lower a strcmp call into an optimized form.  If so, return
7594 /// true and lower it, otherwise return false and it will be lowered like a
7595 /// normal call.
7596 /// The caller already checked that \p I calls the appropriate LibFunc with a
7597 /// correct prototype.
7598 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7599   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7600 
7601   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7602   std::pair<SDValue, SDValue> Res =
7603     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7604                                 getValue(Arg0), getValue(Arg1),
7605                                 MachinePointerInfo(Arg0),
7606                                 MachinePointerInfo(Arg1));
7607   if (Res.first.getNode()) {
7608     processIntegerCallValue(I, Res.first, true);
7609     PendingLoads.push_back(Res.second);
7610     return true;
7611   }
7612 
7613   return false;
7614 }
7615 
7616 /// See if we can lower a strlen call into an optimized form.  If so, return
7617 /// true and lower it, otherwise return false and it will be lowered like a
7618 /// normal call.
7619 /// The caller already checked that \p I calls the appropriate LibFunc with a
7620 /// correct prototype.
7621 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7622   const Value *Arg0 = I.getArgOperand(0);
7623 
7624   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7625   std::pair<SDValue, SDValue> Res =
7626     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7627                                 getValue(Arg0), MachinePointerInfo(Arg0));
7628   if (Res.first.getNode()) {
7629     processIntegerCallValue(I, Res.first, false);
7630     PendingLoads.push_back(Res.second);
7631     return true;
7632   }
7633 
7634   return false;
7635 }
7636 
7637 /// See if we can lower a strnlen call into an optimized form.  If so, return
7638 /// true and lower it, otherwise return false and it will be lowered like a
7639 /// normal call.
7640 /// The caller already checked that \p I calls the appropriate LibFunc with a
7641 /// correct prototype.
7642 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7643   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7644 
7645   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7646   std::pair<SDValue, SDValue> Res =
7647     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7648                                  getValue(Arg0), getValue(Arg1),
7649                                  MachinePointerInfo(Arg0));
7650   if (Res.first.getNode()) {
7651     processIntegerCallValue(I, Res.first, false);
7652     PendingLoads.push_back(Res.second);
7653     return true;
7654   }
7655 
7656   return false;
7657 }
7658 
7659 /// See if we can lower a unary floating-point operation into an SDNode with
7660 /// the specified Opcode.  If so, return true and lower it, otherwise return
7661 /// false and it will be lowered like a normal call.
7662 /// The caller already checked that \p I calls the appropriate LibFunc with a
7663 /// correct prototype.
7664 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7665                                               unsigned Opcode) {
7666   // We already checked this call's prototype; verify it doesn't modify errno.
7667   if (!I.onlyReadsMemory())
7668     return false;
7669 
7670   SDNodeFlags Flags;
7671   Flags.copyFMF(cast<FPMathOperator>(I));
7672 
7673   SDValue Tmp = getValue(I.getArgOperand(0));
7674   setValue(&I,
7675            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7676   return true;
7677 }
7678 
7679 /// See if we can lower a binary floating-point operation into an SDNode with
7680 /// the specified Opcode. If so, return true and lower it. Otherwise return
7681 /// false, and it will be lowered like a normal call.
7682 /// The caller already checked that \p I calls the appropriate LibFunc with a
7683 /// correct prototype.
7684 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7685                                                unsigned Opcode) {
7686   // We already checked this call's prototype; verify it doesn't modify errno.
7687   if (!I.onlyReadsMemory())
7688     return false;
7689 
7690   SDNodeFlags Flags;
7691   Flags.copyFMF(cast<FPMathOperator>(I));
7692 
7693   SDValue Tmp0 = getValue(I.getArgOperand(0));
7694   SDValue Tmp1 = getValue(I.getArgOperand(1));
7695   EVT VT = Tmp0.getValueType();
7696   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7697   return true;
7698 }
7699 
7700 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7701   // Handle inline assembly differently.
7702   if (I.isInlineAsm()) {
7703     visitInlineAsm(I);
7704     return;
7705   }
7706 
7707   if (Function *F = I.getCalledFunction()) {
7708     if (F->isDeclaration()) {
7709       // Is this an LLVM intrinsic or a target-specific intrinsic?
7710       unsigned IID = F->getIntrinsicID();
7711       if (!IID)
7712         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7713           IID = II->getIntrinsicID(F);
7714 
7715       if (IID) {
7716         visitIntrinsicCall(I, IID);
7717         return;
7718       }
7719     }
7720 
7721     // Check for well-known libc/libm calls.  If the function is internal, it
7722     // can't be a library call.  Don't do the check if marked as nobuiltin for
7723     // some reason or the call site requires strict floating point semantics.
7724     LibFunc Func;
7725     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7726         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7727         LibInfo->hasOptimizedCodeGen(Func)) {
7728       switch (Func) {
7729       default: break;
7730       case LibFunc_bcmp:
7731         if (visitMemCmpBCmpCall(I))
7732           return;
7733         break;
7734       case LibFunc_copysign:
7735       case LibFunc_copysignf:
7736       case LibFunc_copysignl:
7737         // We already checked this call's prototype; verify it doesn't modify
7738         // errno.
7739         if (I.onlyReadsMemory()) {
7740           SDValue LHS = getValue(I.getArgOperand(0));
7741           SDValue RHS = getValue(I.getArgOperand(1));
7742           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7743                                    LHS.getValueType(), LHS, RHS));
7744           return;
7745         }
7746         break;
7747       case LibFunc_fabs:
7748       case LibFunc_fabsf:
7749       case LibFunc_fabsl:
7750         if (visitUnaryFloatCall(I, ISD::FABS))
7751           return;
7752         break;
7753       case LibFunc_fmin:
7754       case LibFunc_fminf:
7755       case LibFunc_fminl:
7756         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7757           return;
7758         break;
7759       case LibFunc_fmax:
7760       case LibFunc_fmaxf:
7761       case LibFunc_fmaxl:
7762         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7763           return;
7764         break;
7765       case LibFunc_sin:
7766       case LibFunc_sinf:
7767       case LibFunc_sinl:
7768         if (visitUnaryFloatCall(I, ISD::FSIN))
7769           return;
7770         break;
7771       case LibFunc_cos:
7772       case LibFunc_cosf:
7773       case LibFunc_cosl:
7774         if (visitUnaryFloatCall(I, ISD::FCOS))
7775           return;
7776         break;
7777       case LibFunc_sqrt:
7778       case LibFunc_sqrtf:
7779       case LibFunc_sqrtl:
7780       case LibFunc_sqrt_finite:
7781       case LibFunc_sqrtf_finite:
7782       case LibFunc_sqrtl_finite:
7783         if (visitUnaryFloatCall(I, ISD::FSQRT))
7784           return;
7785         break;
7786       case LibFunc_floor:
7787       case LibFunc_floorf:
7788       case LibFunc_floorl:
7789         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7790           return;
7791         break;
7792       case LibFunc_nearbyint:
7793       case LibFunc_nearbyintf:
7794       case LibFunc_nearbyintl:
7795         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7796           return;
7797         break;
7798       case LibFunc_ceil:
7799       case LibFunc_ceilf:
7800       case LibFunc_ceill:
7801         if (visitUnaryFloatCall(I, ISD::FCEIL))
7802           return;
7803         break;
7804       case LibFunc_rint:
7805       case LibFunc_rintf:
7806       case LibFunc_rintl:
7807         if (visitUnaryFloatCall(I, ISD::FRINT))
7808           return;
7809         break;
7810       case LibFunc_round:
7811       case LibFunc_roundf:
7812       case LibFunc_roundl:
7813         if (visitUnaryFloatCall(I, ISD::FROUND))
7814           return;
7815         break;
7816       case LibFunc_trunc:
7817       case LibFunc_truncf:
7818       case LibFunc_truncl:
7819         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7820           return;
7821         break;
7822       case LibFunc_log2:
7823       case LibFunc_log2f:
7824       case LibFunc_log2l:
7825         if (visitUnaryFloatCall(I, ISD::FLOG2))
7826           return;
7827         break;
7828       case LibFunc_exp2:
7829       case LibFunc_exp2f:
7830       case LibFunc_exp2l:
7831         if (visitUnaryFloatCall(I, ISD::FEXP2))
7832           return;
7833         break;
7834       case LibFunc_memcmp:
7835         if (visitMemCmpBCmpCall(I))
7836           return;
7837         break;
7838       case LibFunc_mempcpy:
7839         if (visitMemPCpyCall(I))
7840           return;
7841         break;
7842       case LibFunc_memchr:
7843         if (visitMemChrCall(I))
7844           return;
7845         break;
7846       case LibFunc_strcpy:
7847         if (visitStrCpyCall(I, false))
7848           return;
7849         break;
7850       case LibFunc_stpcpy:
7851         if (visitStrCpyCall(I, true))
7852           return;
7853         break;
7854       case LibFunc_strcmp:
7855         if (visitStrCmpCall(I))
7856           return;
7857         break;
7858       case LibFunc_strlen:
7859         if (visitStrLenCall(I))
7860           return;
7861         break;
7862       case LibFunc_strnlen:
7863         if (visitStrNLenCall(I))
7864           return;
7865         break;
7866       }
7867     }
7868   }
7869 
7870   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7871   // have to do anything here to lower funclet bundles.
7872   // CFGuardTarget bundles are lowered in LowerCallTo.
7873   assert(!I.hasOperandBundlesOtherThan(
7874              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7875               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7876          "Cannot lower calls with arbitrary operand bundles!");
7877 
7878   SDValue Callee = getValue(I.getCalledOperand());
7879 
7880   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7881     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7882   else
7883     // Check if we can potentially perform a tail call. More detailed checking
7884     // is be done within LowerCallTo, after more information about the call is
7885     // known.
7886     LowerCallTo(I, Callee, I.isTailCall());
7887 }
7888 
7889 namespace {
7890 
7891 /// AsmOperandInfo - This contains information for each constraint that we are
7892 /// lowering.
7893 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7894 public:
7895   /// CallOperand - If this is the result output operand or a clobber
7896   /// this is null, otherwise it is the incoming operand to the CallInst.
7897   /// This gets modified as the asm is processed.
7898   SDValue CallOperand;
7899 
7900   /// AssignedRegs - If this is a register or register class operand, this
7901   /// contains the set of register corresponding to the operand.
7902   RegsForValue AssignedRegs;
7903 
7904   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7905     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7906   }
7907 
7908   /// Whether or not this operand accesses memory
7909   bool hasMemory(const TargetLowering &TLI) const {
7910     // Indirect operand accesses access memory.
7911     if (isIndirect)
7912       return true;
7913 
7914     for (const auto &Code : Codes)
7915       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7916         return true;
7917 
7918     return false;
7919   }
7920 
7921   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7922   /// corresponds to.  If there is no Value* for this operand, it returns
7923   /// MVT::Other.
7924   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7925                            const DataLayout &DL) const {
7926     if (!CallOperandVal) return MVT::Other;
7927 
7928     if (isa<BasicBlock>(CallOperandVal))
7929       return TLI.getProgramPointerTy(DL);
7930 
7931     llvm::Type *OpTy = CallOperandVal->getType();
7932 
7933     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7934     // If this is an indirect operand, the operand is a pointer to the
7935     // accessed type.
7936     if (isIndirect) {
7937       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7938       if (!PtrTy)
7939         report_fatal_error("Indirect operand for inline asm not a pointer!");
7940       OpTy = PtrTy->getElementType();
7941     }
7942 
7943     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7944     if (StructType *STy = dyn_cast<StructType>(OpTy))
7945       if (STy->getNumElements() == 1)
7946         OpTy = STy->getElementType(0);
7947 
7948     // If OpTy is not a single value, it may be a struct/union that we
7949     // can tile with integers.
7950     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7951       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7952       switch (BitSize) {
7953       default: break;
7954       case 1:
7955       case 8:
7956       case 16:
7957       case 32:
7958       case 64:
7959       case 128:
7960         OpTy = IntegerType::get(Context, BitSize);
7961         break;
7962       }
7963     }
7964 
7965     return TLI.getValueType(DL, OpTy, true);
7966   }
7967 };
7968 
7969 
7970 } // end anonymous namespace
7971 
7972 /// Make sure that the output operand \p OpInfo and its corresponding input
7973 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7974 /// out).
7975 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7976                                SDISelAsmOperandInfo &MatchingOpInfo,
7977                                SelectionDAG &DAG) {
7978   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7979     return;
7980 
7981   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7982   const auto &TLI = DAG.getTargetLoweringInfo();
7983 
7984   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7985       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7986                                        OpInfo.ConstraintVT);
7987   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7988       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7989                                        MatchingOpInfo.ConstraintVT);
7990   if ((OpInfo.ConstraintVT.isInteger() !=
7991        MatchingOpInfo.ConstraintVT.isInteger()) ||
7992       (MatchRC.second != InputRC.second)) {
7993     // FIXME: error out in a more elegant fashion
7994     report_fatal_error("Unsupported asm: input constraint"
7995                        " with a matching output constraint of"
7996                        " incompatible type!");
7997   }
7998   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7999 }
8000 
8001 /// Get a direct memory input to behave well as an indirect operand.
8002 /// This may introduce stores, hence the need for a \p Chain.
8003 /// \return The (possibly updated) chain.
8004 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8005                                         SDISelAsmOperandInfo &OpInfo,
8006                                         SelectionDAG &DAG) {
8007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8008 
8009   // If we don't have an indirect input, put it in the constpool if we can,
8010   // otherwise spill it to a stack slot.
8011   // TODO: This isn't quite right. We need to handle these according to
8012   // the addressing mode that the constraint wants. Also, this may take
8013   // an additional register for the computation and we don't want that
8014   // either.
8015 
8016   // If the operand is a float, integer, or vector constant, spill to a
8017   // constant pool entry to get its address.
8018   const Value *OpVal = OpInfo.CallOperandVal;
8019   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8020       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8021     OpInfo.CallOperand = DAG.getConstantPool(
8022         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8023     return Chain;
8024   }
8025 
8026   // Otherwise, create a stack slot and emit a store to it before the asm.
8027   Type *Ty = OpVal->getType();
8028   auto &DL = DAG.getDataLayout();
8029   uint64_t TySize = DL.getTypeAllocSize(Ty);
8030   MachineFunction &MF = DAG.getMachineFunction();
8031   int SSFI = MF.getFrameInfo().CreateStackObject(
8032       TySize, DL.getPrefTypeAlign(Ty), false);
8033   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8034   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8035                             MachinePointerInfo::getFixedStack(MF, SSFI),
8036                             TLI.getMemValueType(DL, Ty));
8037   OpInfo.CallOperand = StackSlot;
8038 
8039   return Chain;
8040 }
8041 
8042 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8043 /// specified operand.  We prefer to assign virtual registers, to allow the
8044 /// register allocator to handle the assignment process.  However, if the asm
8045 /// uses features that we can't model on machineinstrs, we have SDISel do the
8046 /// allocation.  This produces generally horrible, but correct, code.
8047 ///
8048 ///   OpInfo describes the operand
8049 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8050 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8051                                  SDISelAsmOperandInfo &OpInfo,
8052                                  SDISelAsmOperandInfo &RefOpInfo) {
8053   LLVMContext &Context = *DAG.getContext();
8054   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8055 
8056   MachineFunction &MF = DAG.getMachineFunction();
8057   SmallVector<unsigned, 4> Regs;
8058   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8059 
8060   // No work to do for memory operations.
8061   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8062     return;
8063 
8064   // If this is a constraint for a single physreg, or a constraint for a
8065   // register class, find it.
8066   unsigned AssignedReg;
8067   const TargetRegisterClass *RC;
8068   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8069       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8070   // RC is unset only on failure. Return immediately.
8071   if (!RC)
8072     return;
8073 
8074   // Get the actual register value type.  This is important, because the user
8075   // may have asked for (e.g.) the AX register in i32 type.  We need to
8076   // remember that AX is actually i16 to get the right extension.
8077   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8078 
8079   if (OpInfo.ConstraintVT != MVT::Other) {
8080     // If this is an FP operand in an integer register (or visa versa), or more
8081     // generally if the operand value disagrees with the register class we plan
8082     // to stick it in, fix the operand type.
8083     //
8084     // If this is an input value, the bitcast to the new type is done now.
8085     // Bitcast for output value is done at the end of visitInlineAsm().
8086     if ((OpInfo.Type == InlineAsm::isOutput ||
8087          OpInfo.Type == InlineAsm::isInput) &&
8088         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8089       // Try to convert to the first EVT that the reg class contains.  If the
8090       // types are identical size, use a bitcast to convert (e.g. two differing
8091       // vector types).  Note: output bitcast is done at the end of
8092       // visitInlineAsm().
8093       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8094         // Exclude indirect inputs while they are unsupported because the code
8095         // to perform the load is missing and thus OpInfo.CallOperand still
8096         // refers to the input address rather than the pointed-to value.
8097         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8098           OpInfo.CallOperand =
8099               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8100         OpInfo.ConstraintVT = RegVT;
8101         // If the operand is an FP value and we want it in integer registers,
8102         // use the corresponding integer type. This turns an f64 value into
8103         // i64, which can be passed with two i32 values on a 32-bit machine.
8104       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8105         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8106         if (OpInfo.Type == InlineAsm::isInput)
8107           OpInfo.CallOperand =
8108               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8109         OpInfo.ConstraintVT = VT;
8110       }
8111     }
8112   }
8113 
8114   // No need to allocate a matching input constraint since the constraint it's
8115   // matching to has already been allocated.
8116   if (OpInfo.isMatchingInputConstraint())
8117     return;
8118 
8119   EVT ValueVT = OpInfo.ConstraintVT;
8120   if (OpInfo.ConstraintVT == MVT::Other)
8121     ValueVT = RegVT;
8122 
8123   // Initialize NumRegs.
8124   unsigned NumRegs = 1;
8125   if (OpInfo.ConstraintVT != MVT::Other)
8126     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8127 
8128   // If this is a constraint for a specific physical register, like {r17},
8129   // assign it now.
8130 
8131   // If this associated to a specific register, initialize iterator to correct
8132   // place. If virtual, make sure we have enough registers
8133 
8134   // Initialize iterator if necessary
8135   TargetRegisterClass::iterator I = RC->begin();
8136   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8137 
8138   // Do not check for single registers.
8139   if (AssignedReg) {
8140       for (; *I != AssignedReg; ++I)
8141         assert(I != RC->end() && "AssignedReg should be member of RC");
8142   }
8143 
8144   for (; NumRegs; --NumRegs, ++I) {
8145     assert(I != RC->end() && "Ran out of registers to allocate!");
8146     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8147     Regs.push_back(R);
8148   }
8149 
8150   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8151 }
8152 
8153 static unsigned
8154 findMatchingInlineAsmOperand(unsigned OperandNo,
8155                              const std::vector<SDValue> &AsmNodeOperands) {
8156   // Scan until we find the definition we already emitted of this operand.
8157   unsigned CurOp = InlineAsm::Op_FirstOperand;
8158   for (; OperandNo; --OperandNo) {
8159     // Advance to the next operand.
8160     unsigned OpFlag =
8161         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8162     assert((InlineAsm::isRegDefKind(OpFlag) ||
8163             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8164             InlineAsm::isMemKind(OpFlag)) &&
8165            "Skipped past definitions?");
8166     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8167   }
8168   return CurOp;
8169 }
8170 
8171 namespace {
8172 
8173 class ExtraFlags {
8174   unsigned Flags = 0;
8175 
8176 public:
8177   explicit ExtraFlags(const CallBase &Call) {
8178     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8179     if (IA->hasSideEffects())
8180       Flags |= InlineAsm::Extra_HasSideEffects;
8181     if (IA->isAlignStack())
8182       Flags |= InlineAsm::Extra_IsAlignStack;
8183     if (Call.isConvergent())
8184       Flags |= InlineAsm::Extra_IsConvergent;
8185     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8186   }
8187 
8188   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8189     // Ideally, we would only check against memory constraints.  However, the
8190     // meaning of an Other constraint can be target-specific and we can't easily
8191     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8192     // for Other constraints as well.
8193     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8194         OpInfo.ConstraintType == TargetLowering::C_Other) {
8195       if (OpInfo.Type == InlineAsm::isInput)
8196         Flags |= InlineAsm::Extra_MayLoad;
8197       else if (OpInfo.Type == InlineAsm::isOutput)
8198         Flags |= InlineAsm::Extra_MayStore;
8199       else if (OpInfo.Type == InlineAsm::isClobber)
8200         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8201     }
8202   }
8203 
8204   unsigned get() const { return Flags; }
8205 };
8206 
8207 } // end anonymous namespace
8208 
8209 /// visitInlineAsm - Handle a call to an InlineAsm object.
8210 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8211   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8212 
8213   /// ConstraintOperands - Information about all of the constraints.
8214   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8215 
8216   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8217   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8218       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8219 
8220   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8221   // AsmDialect, MayLoad, MayStore).
8222   bool HasSideEffect = IA->hasSideEffects();
8223   ExtraFlags ExtraInfo(Call);
8224 
8225   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8226   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8227   unsigned NumMatchingOps = 0;
8228   for (auto &T : TargetConstraints) {
8229     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8230     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8231 
8232     // Compute the value type for each operand.
8233     if (OpInfo.Type == InlineAsm::isInput ||
8234         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8235       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8236 
8237       // Process the call argument. BasicBlocks are labels, currently appearing
8238       // only in asm's.
8239       if (isa<CallBrInst>(Call) &&
8240           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8241                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8242                         NumMatchingOps) &&
8243           (NumMatchingOps == 0 ||
8244            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8245                         NumMatchingOps))) {
8246         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8247         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8248         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8249       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8250         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8251       } else {
8252         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8253       }
8254 
8255       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8256                                            DAG.getDataLayout());
8257       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8258     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8259       // The return value of the call is this value.  As such, there is no
8260       // corresponding argument.
8261       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8262       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8263         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8264             DAG.getDataLayout(), STy->getElementType(ResNo));
8265       } else {
8266         assert(ResNo == 0 && "Asm only has one result!");
8267         OpInfo.ConstraintVT =
8268             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8269       }
8270       ++ResNo;
8271     } else {
8272       OpInfo.ConstraintVT = MVT::Other;
8273     }
8274 
8275     if (OpInfo.hasMatchingInput())
8276       ++NumMatchingOps;
8277 
8278     if (!HasSideEffect)
8279       HasSideEffect = OpInfo.hasMemory(TLI);
8280 
8281     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8282     // FIXME: Could we compute this on OpInfo rather than T?
8283 
8284     // Compute the constraint code and ConstraintType to use.
8285     TLI.ComputeConstraintToUse(T, SDValue());
8286 
8287     if (T.ConstraintType == TargetLowering::C_Immediate &&
8288         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8289       // We've delayed emitting a diagnostic like the "n" constraint because
8290       // inlining could cause an integer showing up.
8291       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8292                                           "' expects an integer constant "
8293                                           "expression");
8294 
8295     ExtraInfo.update(T);
8296   }
8297 
8298 
8299   // We won't need to flush pending loads if this asm doesn't touch
8300   // memory and is nonvolatile.
8301   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8302 
8303   bool IsCallBr = isa<CallBrInst>(Call);
8304   if (IsCallBr) {
8305     // If this is a callbr we need to flush pending exports since inlineasm_br
8306     // is a terminator. We need to do this before nodes are glued to
8307     // the inlineasm_br node.
8308     Chain = getControlRoot();
8309   }
8310 
8311   // Second pass over the constraints: compute which constraint option to use.
8312   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8313     // If this is an output operand with a matching input operand, look up the
8314     // matching input. If their types mismatch, e.g. one is an integer, the
8315     // other is floating point, or their sizes are different, flag it as an
8316     // error.
8317     if (OpInfo.hasMatchingInput()) {
8318       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8319       patchMatchingInput(OpInfo, Input, DAG);
8320     }
8321 
8322     // Compute the constraint code and ConstraintType to use.
8323     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8324 
8325     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8326         OpInfo.Type == InlineAsm::isClobber)
8327       continue;
8328 
8329     // If this is a memory input, and if the operand is not indirect, do what we
8330     // need to provide an address for the memory input.
8331     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8332         !OpInfo.isIndirect) {
8333       assert((OpInfo.isMultipleAlternative ||
8334               (OpInfo.Type == InlineAsm::isInput)) &&
8335              "Can only indirectify direct input operands!");
8336 
8337       // Memory operands really want the address of the value.
8338       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8339 
8340       // There is no longer a Value* corresponding to this operand.
8341       OpInfo.CallOperandVal = nullptr;
8342 
8343       // It is now an indirect operand.
8344       OpInfo.isIndirect = true;
8345     }
8346 
8347   }
8348 
8349   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8350   std::vector<SDValue> AsmNodeOperands;
8351   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8352   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8353       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8354 
8355   // If we have a !srcloc metadata node associated with it, we want to attach
8356   // this to the ultimately generated inline asm machineinstr.  To do this, we
8357   // pass in the third operand as this (potentially null) inline asm MDNode.
8358   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8359   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8360 
8361   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8362   // bits as operand 3.
8363   AsmNodeOperands.push_back(DAG.getTargetConstant(
8364       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8365 
8366   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8367   // this, assign virtual and physical registers for inputs and otput.
8368   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8369     // Assign Registers.
8370     SDISelAsmOperandInfo &RefOpInfo =
8371         OpInfo.isMatchingInputConstraint()
8372             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8373             : OpInfo;
8374     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8375 
8376     auto DetectWriteToReservedRegister = [&]() {
8377       const MachineFunction &MF = DAG.getMachineFunction();
8378       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8379       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8380         if (Register::isPhysicalRegister(Reg) &&
8381             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8382           const char *RegName = TRI.getName(Reg);
8383           emitInlineAsmError(Call, "write to reserved register '" +
8384                                        Twine(RegName) + "'");
8385           return true;
8386         }
8387       }
8388       return false;
8389     };
8390 
8391     switch (OpInfo.Type) {
8392     case InlineAsm::isOutput:
8393       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8394         unsigned ConstraintID =
8395             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8396         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8397                "Failed to convert memory constraint code to constraint id.");
8398 
8399         // Add information to the INLINEASM node to know about this output.
8400         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8401         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8402         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8403                                                         MVT::i32));
8404         AsmNodeOperands.push_back(OpInfo.CallOperand);
8405       } else {
8406         // Otherwise, this outputs to a register (directly for C_Register /
8407         // C_RegisterClass, and a target-defined fashion for
8408         // C_Immediate/C_Other). Find a register that we can use.
8409         if (OpInfo.AssignedRegs.Regs.empty()) {
8410           emitInlineAsmError(
8411               Call, "couldn't allocate output register for constraint '" +
8412                         Twine(OpInfo.ConstraintCode) + "'");
8413           return;
8414         }
8415 
8416         if (DetectWriteToReservedRegister())
8417           return;
8418 
8419         // Add information to the INLINEASM node to know that this register is
8420         // set.
8421         OpInfo.AssignedRegs.AddInlineAsmOperands(
8422             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8423                                   : InlineAsm::Kind_RegDef,
8424             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8425       }
8426       break;
8427 
8428     case InlineAsm::isInput: {
8429       SDValue InOperandVal = OpInfo.CallOperand;
8430 
8431       if (OpInfo.isMatchingInputConstraint()) {
8432         // If this is required to match an output register we have already set,
8433         // just use its register.
8434         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8435                                                   AsmNodeOperands);
8436         unsigned OpFlag =
8437           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8438         if (InlineAsm::isRegDefKind(OpFlag) ||
8439             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8440           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8441           if (OpInfo.isIndirect) {
8442             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8443             emitInlineAsmError(Call, "inline asm not supported yet: "
8444                                      "don't know how to handle tied "
8445                                      "indirect register inputs");
8446             return;
8447           }
8448 
8449           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8450           SmallVector<unsigned, 4> Regs;
8451 
8452           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8453             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8454             MachineRegisterInfo &RegInfo =
8455                 DAG.getMachineFunction().getRegInfo();
8456             for (unsigned i = 0; i != NumRegs; ++i)
8457               Regs.push_back(RegInfo.createVirtualRegister(RC));
8458           } else {
8459             emitInlineAsmError(Call,
8460                                "inline asm error: This value type register "
8461                                "class is not natively supported!");
8462             return;
8463           }
8464 
8465           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8466 
8467           SDLoc dl = getCurSDLoc();
8468           // Use the produced MatchedRegs object to
8469           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8470           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8471                                            true, OpInfo.getMatchedOperand(), dl,
8472                                            DAG, AsmNodeOperands);
8473           break;
8474         }
8475 
8476         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8477         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8478                "Unexpected number of operands");
8479         // Add information to the INLINEASM node to know about this input.
8480         // See InlineAsm.h isUseOperandTiedToDef.
8481         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8482         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8483                                                     OpInfo.getMatchedOperand());
8484         AsmNodeOperands.push_back(DAG.getTargetConstant(
8485             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8486         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8487         break;
8488       }
8489 
8490       // Treat indirect 'X' constraint as memory.
8491       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8492           OpInfo.isIndirect)
8493         OpInfo.ConstraintType = TargetLowering::C_Memory;
8494 
8495       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8496           OpInfo.ConstraintType == TargetLowering::C_Other) {
8497         std::vector<SDValue> Ops;
8498         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8499                                           Ops, DAG);
8500         if (Ops.empty()) {
8501           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8502             if (isa<ConstantSDNode>(InOperandVal)) {
8503               emitInlineAsmError(Call, "value out of range for constraint '" +
8504                                            Twine(OpInfo.ConstraintCode) + "'");
8505               return;
8506             }
8507 
8508           emitInlineAsmError(Call,
8509                              "invalid operand for inline asm constraint '" +
8510                                  Twine(OpInfo.ConstraintCode) + "'");
8511           return;
8512         }
8513 
8514         // Add information to the INLINEASM node to know about this input.
8515         unsigned ResOpType =
8516           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8517         AsmNodeOperands.push_back(DAG.getTargetConstant(
8518             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8519         llvm::append_range(AsmNodeOperands, Ops);
8520         break;
8521       }
8522 
8523       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8524         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8525         assert(InOperandVal.getValueType() ==
8526                    TLI.getPointerTy(DAG.getDataLayout()) &&
8527                "Memory operands expect pointer values");
8528 
8529         unsigned ConstraintID =
8530             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8531         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8532                "Failed to convert memory constraint code to constraint id.");
8533 
8534         // Add information to the INLINEASM node to know about this input.
8535         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8536         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8537         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8538                                                         getCurSDLoc(),
8539                                                         MVT::i32));
8540         AsmNodeOperands.push_back(InOperandVal);
8541         break;
8542       }
8543 
8544       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8545               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8546              "Unknown constraint type!");
8547 
8548       // TODO: Support this.
8549       if (OpInfo.isIndirect) {
8550         emitInlineAsmError(
8551             Call, "Don't know how to handle indirect register inputs yet "
8552                   "for constraint '" +
8553                       Twine(OpInfo.ConstraintCode) + "'");
8554         return;
8555       }
8556 
8557       // Copy the input into the appropriate registers.
8558       if (OpInfo.AssignedRegs.Regs.empty()) {
8559         emitInlineAsmError(Call,
8560                            "couldn't allocate input reg for constraint '" +
8561                                Twine(OpInfo.ConstraintCode) + "'");
8562         return;
8563       }
8564 
8565       if (DetectWriteToReservedRegister())
8566         return;
8567 
8568       SDLoc dl = getCurSDLoc();
8569 
8570       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8571                                         &Call);
8572 
8573       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8574                                                dl, DAG, AsmNodeOperands);
8575       break;
8576     }
8577     case InlineAsm::isClobber:
8578       // Add the clobbered value to the operand list, so that the register
8579       // allocator is aware that the physreg got clobbered.
8580       if (!OpInfo.AssignedRegs.Regs.empty())
8581         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8582                                                  false, 0, getCurSDLoc(), DAG,
8583                                                  AsmNodeOperands);
8584       break;
8585     }
8586   }
8587 
8588   // Finish up input operands.  Set the input chain and add the flag last.
8589   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8590   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8591 
8592   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8593   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8594                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8595   Flag = Chain.getValue(1);
8596 
8597   // Do additional work to generate outputs.
8598 
8599   SmallVector<EVT, 1> ResultVTs;
8600   SmallVector<SDValue, 1> ResultValues;
8601   SmallVector<SDValue, 8> OutChains;
8602 
8603   llvm::Type *CallResultType = Call.getType();
8604   ArrayRef<Type *> ResultTypes;
8605   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8606     ResultTypes = StructResult->elements();
8607   else if (!CallResultType->isVoidTy())
8608     ResultTypes = makeArrayRef(CallResultType);
8609 
8610   auto CurResultType = ResultTypes.begin();
8611   auto handleRegAssign = [&](SDValue V) {
8612     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8613     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8614     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8615     ++CurResultType;
8616     // If the type of the inline asm call site return value is different but has
8617     // same size as the type of the asm output bitcast it.  One example of this
8618     // is for vectors with different width / number of elements.  This can
8619     // happen for register classes that can contain multiple different value
8620     // types.  The preg or vreg allocated may not have the same VT as was
8621     // expected.
8622     //
8623     // This can also happen for a return value that disagrees with the register
8624     // class it is put in, eg. a double in a general-purpose register on a
8625     // 32-bit machine.
8626     if (ResultVT != V.getValueType() &&
8627         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8628       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8629     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8630              V.getValueType().isInteger()) {
8631       // If a result value was tied to an input value, the computed result
8632       // may have a wider width than the expected result.  Extract the
8633       // relevant portion.
8634       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8635     }
8636     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8637     ResultVTs.push_back(ResultVT);
8638     ResultValues.push_back(V);
8639   };
8640 
8641   // Deal with output operands.
8642   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8643     if (OpInfo.Type == InlineAsm::isOutput) {
8644       SDValue Val;
8645       // Skip trivial output operands.
8646       if (OpInfo.AssignedRegs.Regs.empty())
8647         continue;
8648 
8649       switch (OpInfo.ConstraintType) {
8650       case TargetLowering::C_Register:
8651       case TargetLowering::C_RegisterClass:
8652         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8653                                                   Chain, &Flag, &Call);
8654         break;
8655       case TargetLowering::C_Immediate:
8656       case TargetLowering::C_Other:
8657         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8658                                               OpInfo, DAG);
8659         break;
8660       case TargetLowering::C_Memory:
8661         break; // Already handled.
8662       case TargetLowering::C_Unknown:
8663         assert(false && "Unexpected unknown constraint");
8664       }
8665 
8666       // Indirect output manifest as stores. Record output chains.
8667       if (OpInfo.isIndirect) {
8668         const Value *Ptr = OpInfo.CallOperandVal;
8669         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8670         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8671                                      MachinePointerInfo(Ptr));
8672         OutChains.push_back(Store);
8673       } else {
8674         // generate CopyFromRegs to associated registers.
8675         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8676         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8677           for (const SDValue &V : Val->op_values())
8678             handleRegAssign(V);
8679         } else
8680           handleRegAssign(Val);
8681       }
8682     }
8683   }
8684 
8685   // Set results.
8686   if (!ResultValues.empty()) {
8687     assert(CurResultType == ResultTypes.end() &&
8688            "Mismatch in number of ResultTypes");
8689     assert(ResultValues.size() == ResultTypes.size() &&
8690            "Mismatch in number of output operands in asm result");
8691 
8692     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8693                             DAG.getVTList(ResultVTs), ResultValues);
8694     setValue(&Call, V);
8695   }
8696 
8697   // Collect store chains.
8698   if (!OutChains.empty())
8699     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8700 
8701   // Only Update Root if inline assembly has a memory effect.
8702   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8703     DAG.setRoot(Chain);
8704 }
8705 
8706 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8707                                              const Twine &Message) {
8708   LLVMContext &Ctx = *DAG.getContext();
8709   Ctx.emitError(&Call, Message);
8710 
8711   // Make sure we leave the DAG in a valid state
8712   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8713   SmallVector<EVT, 1> ValueVTs;
8714   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8715 
8716   if (ValueVTs.empty())
8717     return;
8718 
8719   SmallVector<SDValue, 1> Ops;
8720   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8721     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8722 
8723   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8724 }
8725 
8726 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8727   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8728                           MVT::Other, getRoot(),
8729                           getValue(I.getArgOperand(0)),
8730                           DAG.getSrcValue(I.getArgOperand(0))));
8731 }
8732 
8733 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8735   const DataLayout &DL = DAG.getDataLayout();
8736   SDValue V = DAG.getVAArg(
8737       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8738       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8739       DL.getABITypeAlign(I.getType()).value());
8740   DAG.setRoot(V.getValue(1));
8741 
8742   if (I.getType()->isPointerTy())
8743     V = DAG.getPtrExtOrTrunc(
8744         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8745   setValue(&I, V);
8746 }
8747 
8748 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8749   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8750                           MVT::Other, getRoot(),
8751                           getValue(I.getArgOperand(0)),
8752                           DAG.getSrcValue(I.getArgOperand(0))));
8753 }
8754 
8755 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8756   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8757                           MVT::Other, getRoot(),
8758                           getValue(I.getArgOperand(0)),
8759                           getValue(I.getArgOperand(1)),
8760                           DAG.getSrcValue(I.getArgOperand(0)),
8761                           DAG.getSrcValue(I.getArgOperand(1))));
8762 }
8763 
8764 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8765                                                     const Instruction &I,
8766                                                     SDValue Op) {
8767   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8768   if (!Range)
8769     return Op;
8770 
8771   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8772   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8773     return Op;
8774 
8775   APInt Lo = CR.getUnsignedMin();
8776   if (!Lo.isMinValue())
8777     return Op;
8778 
8779   APInt Hi = CR.getUnsignedMax();
8780   unsigned Bits = std::max(Hi.getActiveBits(),
8781                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8782 
8783   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8784 
8785   SDLoc SL = getCurSDLoc();
8786 
8787   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8788                              DAG.getValueType(SmallVT));
8789   unsigned NumVals = Op.getNode()->getNumValues();
8790   if (NumVals == 1)
8791     return ZExt;
8792 
8793   SmallVector<SDValue, 4> Ops;
8794 
8795   Ops.push_back(ZExt);
8796   for (unsigned I = 1; I != NumVals; ++I)
8797     Ops.push_back(Op.getValue(I));
8798 
8799   return DAG.getMergeValues(Ops, SL);
8800 }
8801 
8802 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8803 /// the call being lowered.
8804 ///
8805 /// This is a helper for lowering intrinsics that follow a target calling
8806 /// convention or require stack pointer adjustment. Only a subset of the
8807 /// intrinsic's operands need to participate in the calling convention.
8808 void SelectionDAGBuilder::populateCallLoweringInfo(
8809     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8810     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8811     bool IsPatchPoint) {
8812   TargetLowering::ArgListTy Args;
8813   Args.reserve(NumArgs);
8814 
8815   // Populate the argument list.
8816   // Attributes for args start at offset 1, after the return attribute.
8817   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8818        ArgI != ArgE; ++ArgI) {
8819     const Value *V = Call->getOperand(ArgI);
8820 
8821     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8822 
8823     TargetLowering::ArgListEntry Entry;
8824     Entry.Node = getValue(V);
8825     Entry.Ty = V->getType();
8826     Entry.setAttributes(Call, ArgI);
8827     Args.push_back(Entry);
8828   }
8829 
8830   CLI.setDebugLoc(getCurSDLoc())
8831       .setChain(getRoot())
8832       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8833       .setDiscardResult(Call->use_empty())
8834       .setIsPatchPoint(IsPatchPoint)
8835       .setIsPreallocated(
8836           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8837 }
8838 
8839 /// Add a stack map intrinsic call's live variable operands to a stackmap
8840 /// or patchpoint target node's operand list.
8841 ///
8842 /// Constants are converted to TargetConstants purely as an optimization to
8843 /// avoid constant materialization and register allocation.
8844 ///
8845 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8846 /// generate addess computation nodes, and so FinalizeISel can convert the
8847 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8848 /// address materialization and register allocation, but may also be required
8849 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8850 /// alloca in the entry block, then the runtime may assume that the alloca's
8851 /// StackMap location can be read immediately after compilation and that the
8852 /// location is valid at any point during execution (this is similar to the
8853 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8854 /// only available in a register, then the runtime would need to trap when
8855 /// execution reaches the StackMap in order to read the alloca's location.
8856 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8857                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8858                                 SelectionDAGBuilder &Builder) {
8859   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8860     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8861     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8862       Ops.push_back(
8863         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8864       Ops.push_back(
8865         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8866     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8867       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8868       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8869           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8870     } else
8871       Ops.push_back(OpVal);
8872   }
8873 }
8874 
8875 /// Lower llvm.experimental.stackmap directly to its target opcode.
8876 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8877   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8878   //                                  [live variables...])
8879 
8880   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8881 
8882   SDValue Chain, InFlag, Callee, NullPtr;
8883   SmallVector<SDValue, 32> Ops;
8884 
8885   SDLoc DL = getCurSDLoc();
8886   Callee = getValue(CI.getCalledOperand());
8887   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8888 
8889   // The stackmap intrinsic only records the live variables (the arguments
8890   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8891   // intrinsic, this won't be lowered to a function call. This means we don't
8892   // have to worry about calling conventions and target specific lowering code.
8893   // Instead we perform the call lowering right here.
8894   //
8895   // chain, flag = CALLSEQ_START(chain, 0, 0)
8896   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8897   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8898   //
8899   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8900   InFlag = Chain.getValue(1);
8901 
8902   // Add the <id> and <numBytes> constants.
8903   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8904   Ops.push_back(DAG.getTargetConstant(
8905                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8906   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8907   Ops.push_back(DAG.getTargetConstant(
8908                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8909                   MVT::i32));
8910 
8911   // Push live variables for the stack map.
8912   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8913 
8914   // We are not pushing any register mask info here on the operands list,
8915   // because the stackmap doesn't clobber anything.
8916 
8917   // Push the chain and the glue flag.
8918   Ops.push_back(Chain);
8919   Ops.push_back(InFlag);
8920 
8921   // Create the STACKMAP node.
8922   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8923   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8924   Chain = SDValue(SM, 0);
8925   InFlag = Chain.getValue(1);
8926 
8927   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8928 
8929   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8930 
8931   // Set the root to the target-lowered call chain.
8932   DAG.setRoot(Chain);
8933 
8934   // Inform the Frame Information that we have a stackmap in this function.
8935   FuncInfo.MF->getFrameInfo().setHasStackMap();
8936 }
8937 
8938 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8939 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8940                                           const BasicBlock *EHPadBB) {
8941   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8942   //                                                 i32 <numBytes>,
8943   //                                                 i8* <target>,
8944   //                                                 i32 <numArgs>,
8945   //                                                 [Args...],
8946   //                                                 [live variables...])
8947 
8948   CallingConv::ID CC = CB.getCallingConv();
8949   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8950   bool HasDef = !CB.getType()->isVoidTy();
8951   SDLoc dl = getCurSDLoc();
8952   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8953 
8954   // Handle immediate and symbolic callees.
8955   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8956     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8957                                    /*isTarget=*/true);
8958   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8959     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8960                                          SDLoc(SymbolicCallee),
8961                                          SymbolicCallee->getValueType(0));
8962 
8963   // Get the real number of arguments participating in the call <numArgs>
8964   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8965   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8966 
8967   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8968   // Intrinsics include all meta-operands up to but not including CC.
8969   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8970   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8971          "Not enough arguments provided to the patchpoint intrinsic");
8972 
8973   // For AnyRegCC the arguments are lowered later on manually.
8974   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8975   Type *ReturnTy =
8976       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8977 
8978   TargetLowering::CallLoweringInfo CLI(DAG);
8979   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8980                            ReturnTy, true);
8981   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8982 
8983   SDNode *CallEnd = Result.second.getNode();
8984   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8985     CallEnd = CallEnd->getOperand(0).getNode();
8986 
8987   /// Get a call instruction from the call sequence chain.
8988   /// Tail calls are not allowed.
8989   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8990          "Expected a callseq node.");
8991   SDNode *Call = CallEnd->getOperand(0).getNode();
8992   bool HasGlue = Call->getGluedNode();
8993 
8994   // Replace the target specific call node with the patchable intrinsic.
8995   SmallVector<SDValue, 8> Ops;
8996 
8997   // Add the <id> and <numBytes> constants.
8998   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8999   Ops.push_back(DAG.getTargetConstant(
9000                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9001   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9002   Ops.push_back(DAG.getTargetConstant(
9003                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9004                   MVT::i32));
9005 
9006   // Add the callee.
9007   Ops.push_back(Callee);
9008 
9009   // Adjust <numArgs> to account for any arguments that have been passed on the
9010   // stack instead.
9011   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9012   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9013   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9014   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9015 
9016   // Add the calling convention
9017   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9018 
9019   // Add the arguments we omitted previously. The register allocator should
9020   // place these in any free register.
9021   if (IsAnyRegCC)
9022     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9023       Ops.push_back(getValue(CB.getArgOperand(i)));
9024 
9025   // Push the arguments from the call instruction up to the register mask.
9026   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9027   Ops.append(Call->op_begin() + 2, e);
9028 
9029   // Push live variables for the stack map.
9030   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9031 
9032   // Push the register mask info.
9033   if (HasGlue)
9034     Ops.push_back(*(Call->op_end()-2));
9035   else
9036     Ops.push_back(*(Call->op_end()-1));
9037 
9038   // Push the chain (this is originally the first operand of the call, but
9039   // becomes now the last or second to last operand).
9040   Ops.push_back(*(Call->op_begin()));
9041 
9042   // Push the glue flag (last operand).
9043   if (HasGlue)
9044     Ops.push_back(*(Call->op_end()-1));
9045 
9046   SDVTList NodeTys;
9047   if (IsAnyRegCC && HasDef) {
9048     // Create the return types based on the intrinsic definition
9049     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9050     SmallVector<EVT, 3> ValueVTs;
9051     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9052     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9053 
9054     // There is always a chain and a glue type at the end
9055     ValueVTs.push_back(MVT::Other);
9056     ValueVTs.push_back(MVT::Glue);
9057     NodeTys = DAG.getVTList(ValueVTs);
9058   } else
9059     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9060 
9061   // Replace the target specific call node with a PATCHPOINT node.
9062   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9063                                          dl, NodeTys, Ops);
9064 
9065   // Update the NodeMap.
9066   if (HasDef) {
9067     if (IsAnyRegCC)
9068       setValue(&CB, SDValue(MN, 0));
9069     else
9070       setValue(&CB, Result.first);
9071   }
9072 
9073   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9074   // call sequence. Furthermore the location of the chain and glue can change
9075   // when the AnyReg calling convention is used and the intrinsic returns a
9076   // value.
9077   if (IsAnyRegCC && HasDef) {
9078     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9079     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9080     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9081   } else
9082     DAG.ReplaceAllUsesWith(Call, MN);
9083   DAG.DeleteNode(Call);
9084 
9085   // Inform the Frame Information that we have a patchpoint in this function.
9086   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9087 }
9088 
9089 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9090                                             unsigned Intrinsic) {
9091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9092   SDValue Op1 = getValue(I.getArgOperand(0));
9093   SDValue Op2;
9094   if (I.getNumArgOperands() > 1)
9095     Op2 = getValue(I.getArgOperand(1));
9096   SDLoc dl = getCurSDLoc();
9097   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9098   SDValue Res;
9099   SDNodeFlags SDFlags;
9100   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9101     SDFlags.copyFMF(*FPMO);
9102 
9103   switch (Intrinsic) {
9104   case Intrinsic::vector_reduce_fadd:
9105     if (SDFlags.hasAllowReassociation())
9106       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9107                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9108                         SDFlags);
9109     else
9110       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9111     break;
9112   case Intrinsic::vector_reduce_fmul:
9113     if (SDFlags.hasAllowReassociation())
9114       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9115                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9116                         SDFlags);
9117     else
9118       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9119     break;
9120   case Intrinsic::vector_reduce_add:
9121     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9122     break;
9123   case Intrinsic::vector_reduce_mul:
9124     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9125     break;
9126   case Intrinsic::vector_reduce_and:
9127     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9128     break;
9129   case Intrinsic::vector_reduce_or:
9130     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9131     break;
9132   case Intrinsic::vector_reduce_xor:
9133     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9134     break;
9135   case Intrinsic::vector_reduce_smax:
9136     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9137     break;
9138   case Intrinsic::vector_reduce_smin:
9139     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9140     break;
9141   case Intrinsic::vector_reduce_umax:
9142     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9143     break;
9144   case Intrinsic::vector_reduce_umin:
9145     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9146     break;
9147   case Intrinsic::vector_reduce_fmax:
9148     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9149     break;
9150   case Intrinsic::vector_reduce_fmin:
9151     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9152     break;
9153   default:
9154     llvm_unreachable("Unhandled vector reduce intrinsic");
9155   }
9156   setValue(&I, Res);
9157 }
9158 
9159 /// Returns an AttributeList representing the attributes applied to the return
9160 /// value of the given call.
9161 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9162   SmallVector<Attribute::AttrKind, 2> Attrs;
9163   if (CLI.RetSExt)
9164     Attrs.push_back(Attribute::SExt);
9165   if (CLI.RetZExt)
9166     Attrs.push_back(Attribute::ZExt);
9167   if (CLI.IsInReg)
9168     Attrs.push_back(Attribute::InReg);
9169 
9170   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9171                             Attrs);
9172 }
9173 
9174 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9175 /// implementation, which just calls LowerCall.
9176 /// FIXME: When all targets are
9177 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9178 std::pair<SDValue, SDValue>
9179 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9180   // Handle the incoming return values from the call.
9181   CLI.Ins.clear();
9182   Type *OrigRetTy = CLI.RetTy;
9183   SmallVector<EVT, 4> RetTys;
9184   SmallVector<uint64_t, 4> Offsets;
9185   auto &DL = CLI.DAG.getDataLayout();
9186   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9187 
9188   if (CLI.IsPostTypeLegalization) {
9189     // If we are lowering a libcall after legalization, split the return type.
9190     SmallVector<EVT, 4> OldRetTys;
9191     SmallVector<uint64_t, 4> OldOffsets;
9192     RetTys.swap(OldRetTys);
9193     Offsets.swap(OldOffsets);
9194 
9195     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9196       EVT RetVT = OldRetTys[i];
9197       uint64_t Offset = OldOffsets[i];
9198       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9199       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9200       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9201       RetTys.append(NumRegs, RegisterVT);
9202       for (unsigned j = 0; j != NumRegs; ++j)
9203         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9204     }
9205   }
9206 
9207   SmallVector<ISD::OutputArg, 4> Outs;
9208   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9209 
9210   bool CanLowerReturn =
9211       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9212                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9213 
9214   SDValue DemoteStackSlot;
9215   int DemoteStackIdx = -100;
9216   if (!CanLowerReturn) {
9217     // FIXME: equivalent assert?
9218     // assert(!CS.hasInAllocaArgument() &&
9219     //        "sret demotion is incompatible with inalloca");
9220     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9221     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9222     MachineFunction &MF = CLI.DAG.getMachineFunction();
9223     DemoteStackIdx =
9224         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9225     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9226                                               DL.getAllocaAddrSpace());
9227 
9228     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9229     ArgListEntry Entry;
9230     Entry.Node = DemoteStackSlot;
9231     Entry.Ty = StackSlotPtrType;
9232     Entry.IsSExt = false;
9233     Entry.IsZExt = false;
9234     Entry.IsInReg = false;
9235     Entry.IsSRet = true;
9236     Entry.IsNest = false;
9237     Entry.IsByVal = false;
9238     Entry.IsByRef = false;
9239     Entry.IsReturned = false;
9240     Entry.IsSwiftSelf = false;
9241     Entry.IsSwiftError = false;
9242     Entry.IsCFGuardTarget = false;
9243     Entry.Alignment = Alignment;
9244     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9245     CLI.NumFixedArgs += 1;
9246     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9247 
9248     // sret demotion isn't compatible with tail-calls, since the sret argument
9249     // points into the callers stack frame.
9250     CLI.IsTailCall = false;
9251   } else {
9252     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9253         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9254     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9255       ISD::ArgFlagsTy Flags;
9256       if (NeedsRegBlock) {
9257         Flags.setInConsecutiveRegs();
9258         if (I == RetTys.size() - 1)
9259           Flags.setInConsecutiveRegsLast();
9260       }
9261       EVT VT = RetTys[I];
9262       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9263                                                      CLI.CallConv, VT);
9264       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9265                                                        CLI.CallConv, VT);
9266       for (unsigned i = 0; i != NumRegs; ++i) {
9267         ISD::InputArg MyFlags;
9268         MyFlags.Flags = Flags;
9269         MyFlags.VT = RegisterVT;
9270         MyFlags.ArgVT = VT;
9271         MyFlags.Used = CLI.IsReturnValueUsed;
9272         if (CLI.RetTy->isPointerTy()) {
9273           MyFlags.Flags.setPointer();
9274           MyFlags.Flags.setPointerAddrSpace(
9275               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9276         }
9277         if (CLI.RetSExt)
9278           MyFlags.Flags.setSExt();
9279         if (CLI.RetZExt)
9280           MyFlags.Flags.setZExt();
9281         if (CLI.IsInReg)
9282           MyFlags.Flags.setInReg();
9283         CLI.Ins.push_back(MyFlags);
9284       }
9285     }
9286   }
9287 
9288   // We push in swifterror return as the last element of CLI.Ins.
9289   ArgListTy &Args = CLI.getArgs();
9290   if (supportSwiftError()) {
9291     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9292       if (Args[i].IsSwiftError) {
9293         ISD::InputArg MyFlags;
9294         MyFlags.VT = getPointerTy(DL);
9295         MyFlags.ArgVT = EVT(getPointerTy(DL));
9296         MyFlags.Flags.setSwiftError();
9297         CLI.Ins.push_back(MyFlags);
9298       }
9299     }
9300   }
9301 
9302   // Handle all of the outgoing arguments.
9303   CLI.Outs.clear();
9304   CLI.OutVals.clear();
9305   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9306     SmallVector<EVT, 4> ValueVTs;
9307     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9308     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9309     Type *FinalType = Args[i].Ty;
9310     if (Args[i].IsByVal)
9311       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9312     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9313         FinalType, CLI.CallConv, CLI.IsVarArg);
9314     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9315          ++Value) {
9316       EVT VT = ValueVTs[Value];
9317       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9318       SDValue Op = SDValue(Args[i].Node.getNode(),
9319                            Args[i].Node.getResNo() + Value);
9320       ISD::ArgFlagsTy Flags;
9321 
9322       // Certain targets (such as MIPS), may have a different ABI alignment
9323       // for a type depending on the context. Give the target a chance to
9324       // specify the alignment it wants.
9325       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9326 
9327       if (Args[i].Ty->isPointerTy()) {
9328         Flags.setPointer();
9329         Flags.setPointerAddrSpace(
9330             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9331       }
9332       if (Args[i].IsZExt)
9333         Flags.setZExt();
9334       if (Args[i].IsSExt)
9335         Flags.setSExt();
9336       if (Args[i].IsInReg) {
9337         // If we are using vectorcall calling convention, a structure that is
9338         // passed InReg - is surely an HVA
9339         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9340             isa<StructType>(FinalType)) {
9341           // The first value of a structure is marked
9342           if (0 == Value)
9343             Flags.setHvaStart();
9344           Flags.setHva();
9345         }
9346         // Set InReg Flag
9347         Flags.setInReg();
9348       }
9349       if (Args[i].IsSRet)
9350         Flags.setSRet();
9351       if (Args[i].IsSwiftSelf)
9352         Flags.setSwiftSelf();
9353       if (Args[i].IsSwiftError)
9354         Flags.setSwiftError();
9355       if (Args[i].IsCFGuardTarget)
9356         Flags.setCFGuardTarget();
9357       if (Args[i].IsByVal)
9358         Flags.setByVal();
9359       if (Args[i].IsByRef)
9360         Flags.setByRef();
9361       if (Args[i].IsPreallocated) {
9362         Flags.setPreallocated();
9363         // Set the byval flag for CCAssignFn callbacks that don't know about
9364         // preallocated.  This way we can know how many bytes we should've
9365         // allocated and how many bytes a callee cleanup function will pop.  If
9366         // we port preallocated to more targets, we'll have to add custom
9367         // preallocated handling in the various CC lowering callbacks.
9368         Flags.setByVal();
9369       }
9370       if (Args[i].IsInAlloca) {
9371         Flags.setInAlloca();
9372         // Set the byval flag for CCAssignFn callbacks that don't know about
9373         // inalloca.  This way we can know how many bytes we should've allocated
9374         // and how many bytes a callee cleanup function will pop.  If we port
9375         // inalloca to more targets, we'll have to add custom inalloca handling
9376         // in the various CC lowering callbacks.
9377         Flags.setByVal();
9378       }
9379       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9380         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9381         Type *ElementTy = Ty->getElementType();
9382 
9383         unsigned FrameSize = DL.getTypeAllocSize(
9384             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9385         Flags.setByValSize(FrameSize);
9386 
9387         // info is not there but there are cases it cannot get right.
9388         Align FrameAlign;
9389         if (auto MA = Args[i].Alignment)
9390           FrameAlign = *MA;
9391         else
9392           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9393         Flags.setByValAlign(FrameAlign);
9394       }
9395       if (Args[i].IsNest)
9396         Flags.setNest();
9397       if (NeedsRegBlock)
9398         Flags.setInConsecutiveRegs();
9399       Flags.setOrigAlign(OriginalAlignment);
9400 
9401       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9402                                                  CLI.CallConv, VT);
9403       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9404                                                         CLI.CallConv, VT);
9405       SmallVector<SDValue, 4> Parts(NumParts);
9406       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9407 
9408       if (Args[i].IsSExt)
9409         ExtendKind = ISD::SIGN_EXTEND;
9410       else if (Args[i].IsZExt)
9411         ExtendKind = ISD::ZERO_EXTEND;
9412 
9413       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9414       // for now.
9415       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9416           CanLowerReturn) {
9417         assert((CLI.RetTy == Args[i].Ty ||
9418                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9419                  CLI.RetTy->getPointerAddressSpace() ==
9420                      Args[i].Ty->getPointerAddressSpace())) &&
9421                RetTys.size() == NumValues && "unexpected use of 'returned'");
9422         // Before passing 'returned' to the target lowering code, ensure that
9423         // either the register MVT and the actual EVT are the same size or that
9424         // the return value and argument are extended in the same way; in these
9425         // cases it's safe to pass the argument register value unchanged as the
9426         // return register value (although it's at the target's option whether
9427         // to do so)
9428         // TODO: allow code generation to take advantage of partially preserved
9429         // registers rather than clobbering the entire register when the
9430         // parameter extension method is not compatible with the return
9431         // extension method
9432         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9433             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9434              CLI.RetZExt == Args[i].IsZExt))
9435           Flags.setReturned();
9436       }
9437 
9438       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9439                      CLI.CallConv, ExtendKind);
9440 
9441       for (unsigned j = 0; j != NumParts; ++j) {
9442         // if it isn't first piece, alignment must be 1
9443         // For scalable vectors the scalable part is currently handled
9444         // by individual targets, so we just use the known minimum size here.
9445         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9446                     i < CLI.NumFixedArgs, i,
9447                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9448         if (NumParts > 1 && j == 0)
9449           MyFlags.Flags.setSplit();
9450         else if (j != 0) {
9451           MyFlags.Flags.setOrigAlign(Align(1));
9452           if (j == NumParts - 1)
9453             MyFlags.Flags.setSplitEnd();
9454         }
9455 
9456         CLI.Outs.push_back(MyFlags);
9457         CLI.OutVals.push_back(Parts[j]);
9458       }
9459 
9460       if (NeedsRegBlock && Value == NumValues - 1)
9461         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9462     }
9463   }
9464 
9465   SmallVector<SDValue, 4> InVals;
9466   CLI.Chain = LowerCall(CLI, InVals);
9467 
9468   // Update CLI.InVals to use outside of this function.
9469   CLI.InVals = InVals;
9470 
9471   // Verify that the target's LowerCall behaved as expected.
9472   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9473          "LowerCall didn't return a valid chain!");
9474   assert((!CLI.IsTailCall || InVals.empty()) &&
9475          "LowerCall emitted a return value for a tail call!");
9476   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9477          "LowerCall didn't emit the correct number of values!");
9478 
9479   // For a tail call, the return value is merely live-out and there aren't
9480   // any nodes in the DAG representing it. Return a special value to
9481   // indicate that a tail call has been emitted and no more Instructions
9482   // should be processed in the current block.
9483   if (CLI.IsTailCall) {
9484     CLI.DAG.setRoot(CLI.Chain);
9485     return std::make_pair(SDValue(), SDValue());
9486   }
9487 
9488 #ifndef NDEBUG
9489   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9490     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9491     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9492            "LowerCall emitted a value with the wrong type!");
9493   }
9494 #endif
9495 
9496   SmallVector<SDValue, 4> ReturnValues;
9497   if (!CanLowerReturn) {
9498     // The instruction result is the result of loading from the
9499     // hidden sret parameter.
9500     SmallVector<EVT, 1> PVTs;
9501     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9502 
9503     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9504     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9505     EVT PtrVT = PVTs[0];
9506 
9507     unsigned NumValues = RetTys.size();
9508     ReturnValues.resize(NumValues);
9509     SmallVector<SDValue, 4> Chains(NumValues);
9510 
9511     // An aggregate return value cannot wrap around the address space, so
9512     // offsets to its parts don't wrap either.
9513     SDNodeFlags Flags;
9514     Flags.setNoUnsignedWrap(true);
9515 
9516     MachineFunction &MF = CLI.DAG.getMachineFunction();
9517     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9518     for (unsigned i = 0; i < NumValues; ++i) {
9519       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9520                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9521                                                         PtrVT), Flags);
9522       SDValue L = CLI.DAG.getLoad(
9523           RetTys[i], CLI.DL, CLI.Chain, Add,
9524           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9525                                             DemoteStackIdx, Offsets[i]),
9526           HiddenSRetAlign);
9527       ReturnValues[i] = L;
9528       Chains[i] = L.getValue(1);
9529     }
9530 
9531     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9532   } else {
9533     // Collect the legal value parts into potentially illegal values
9534     // that correspond to the original function's return values.
9535     Optional<ISD::NodeType> AssertOp;
9536     if (CLI.RetSExt)
9537       AssertOp = ISD::AssertSext;
9538     else if (CLI.RetZExt)
9539       AssertOp = ISD::AssertZext;
9540     unsigned CurReg = 0;
9541     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9542       EVT VT = RetTys[I];
9543       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9544                                                      CLI.CallConv, VT);
9545       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9546                                                        CLI.CallConv, VT);
9547 
9548       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9549                                               NumRegs, RegisterVT, VT, nullptr,
9550                                               CLI.CallConv, AssertOp));
9551       CurReg += NumRegs;
9552     }
9553 
9554     // For a function returning void, there is no return value. We can't create
9555     // such a node, so we just return a null return value in that case. In
9556     // that case, nothing will actually look at the value.
9557     if (ReturnValues.empty())
9558       return std::make_pair(SDValue(), CLI.Chain);
9559   }
9560 
9561   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9562                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9563   return std::make_pair(Res, CLI.Chain);
9564 }
9565 
9566 /// Places new result values for the node in Results (their number
9567 /// and types must exactly match those of the original return values of
9568 /// the node), or leaves Results empty, which indicates that the node is not
9569 /// to be custom lowered after all.
9570 void TargetLowering::LowerOperationWrapper(SDNode *N,
9571                                            SmallVectorImpl<SDValue> &Results,
9572                                            SelectionDAG &DAG) const {
9573   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9574 
9575   if (!Res.getNode())
9576     return;
9577 
9578   // If the original node has one result, take the return value from
9579   // LowerOperation as is. It might not be result number 0.
9580   if (N->getNumValues() == 1) {
9581     Results.push_back(Res);
9582     return;
9583   }
9584 
9585   // If the original node has multiple results, then the return node should
9586   // have the same number of results.
9587   assert((N->getNumValues() == Res->getNumValues()) &&
9588       "Lowering returned the wrong number of results!");
9589 
9590   // Places new result values base on N result number.
9591   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9592     Results.push_back(Res.getValue(I));
9593 }
9594 
9595 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9596   llvm_unreachable("LowerOperation not implemented for this target!");
9597 }
9598 
9599 void
9600 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9601   SDValue Op = getNonRegisterValue(V);
9602   assert((Op.getOpcode() != ISD::CopyFromReg ||
9603           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9604          "Copy from a reg to the same reg!");
9605   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9606 
9607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9608   // If this is an InlineAsm we have to match the registers required, not the
9609   // notional registers required by the type.
9610 
9611   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9612                    None); // This is not an ABI copy.
9613   SDValue Chain = DAG.getEntryNode();
9614 
9615   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9616                               FuncInfo.PreferredExtendType.end())
9617                                  ? ISD::ANY_EXTEND
9618                                  : FuncInfo.PreferredExtendType[V];
9619   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9620   PendingExports.push_back(Chain);
9621 }
9622 
9623 #include "llvm/CodeGen/SelectionDAGISel.h"
9624 
9625 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9626 /// entry block, return true.  This includes arguments used by switches, since
9627 /// the switch may expand into multiple basic blocks.
9628 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9629   // With FastISel active, we may be splitting blocks, so force creation
9630   // of virtual registers for all non-dead arguments.
9631   if (FastISel)
9632     return A->use_empty();
9633 
9634   const BasicBlock &Entry = A->getParent()->front();
9635   for (const User *U : A->users())
9636     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9637       return false;  // Use not in entry block.
9638 
9639   return true;
9640 }
9641 
9642 using ArgCopyElisionMapTy =
9643     DenseMap<const Argument *,
9644              std::pair<const AllocaInst *, const StoreInst *>>;
9645 
9646 /// Scan the entry block of the function in FuncInfo for arguments that look
9647 /// like copies into a local alloca. Record any copied arguments in
9648 /// ArgCopyElisionCandidates.
9649 static void
9650 findArgumentCopyElisionCandidates(const DataLayout &DL,
9651                                   FunctionLoweringInfo *FuncInfo,
9652                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9653   // Record the state of every static alloca used in the entry block. Argument
9654   // allocas are all used in the entry block, so we need approximately as many
9655   // entries as we have arguments.
9656   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9657   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9658   unsigned NumArgs = FuncInfo->Fn->arg_size();
9659   StaticAllocas.reserve(NumArgs * 2);
9660 
9661   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9662     if (!V)
9663       return nullptr;
9664     V = V->stripPointerCasts();
9665     const auto *AI = dyn_cast<AllocaInst>(V);
9666     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9667       return nullptr;
9668     auto Iter = StaticAllocas.insert({AI, Unknown});
9669     return &Iter.first->second;
9670   };
9671 
9672   // Look for stores of arguments to static allocas. Look through bitcasts and
9673   // GEPs to handle type coercions, as long as the alloca is fully initialized
9674   // by the store. Any non-store use of an alloca escapes it and any subsequent
9675   // unanalyzed store might write it.
9676   // FIXME: Handle structs initialized with multiple stores.
9677   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9678     // Look for stores, and handle non-store uses conservatively.
9679     const auto *SI = dyn_cast<StoreInst>(&I);
9680     if (!SI) {
9681       // We will look through cast uses, so ignore them completely.
9682       if (I.isCast())
9683         continue;
9684       // Ignore debug info intrinsics, they don't escape or store to allocas.
9685       if (isa<DbgInfoIntrinsic>(I))
9686         continue;
9687       // This is an unknown instruction. Assume it escapes or writes to all
9688       // static alloca operands.
9689       for (const Use &U : I.operands()) {
9690         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9691           *Info = StaticAllocaInfo::Clobbered;
9692       }
9693       continue;
9694     }
9695 
9696     // If the stored value is a static alloca, mark it as escaped.
9697     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9698       *Info = StaticAllocaInfo::Clobbered;
9699 
9700     // Check if the destination is a static alloca.
9701     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9702     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9703     if (!Info)
9704       continue;
9705     const AllocaInst *AI = cast<AllocaInst>(Dst);
9706 
9707     // Skip allocas that have been initialized or clobbered.
9708     if (*Info != StaticAllocaInfo::Unknown)
9709       continue;
9710 
9711     // Check if the stored value is an argument, and that this store fully
9712     // initializes the alloca. Don't elide copies from the same argument twice.
9713     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9714     const auto *Arg = dyn_cast<Argument>(Val);
9715     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9716         Arg->getType()->isEmptyTy() ||
9717         DL.getTypeStoreSize(Arg->getType()) !=
9718             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9719         ArgCopyElisionCandidates.count(Arg)) {
9720       *Info = StaticAllocaInfo::Clobbered;
9721       continue;
9722     }
9723 
9724     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9725                       << '\n');
9726 
9727     // Mark this alloca and store for argument copy elision.
9728     *Info = StaticAllocaInfo::Elidable;
9729     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9730 
9731     // Stop scanning if we've seen all arguments. This will happen early in -O0
9732     // builds, which is useful, because -O0 builds have large entry blocks and
9733     // many allocas.
9734     if (ArgCopyElisionCandidates.size() == NumArgs)
9735       break;
9736   }
9737 }
9738 
9739 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9740 /// ArgVal is a load from a suitable fixed stack object.
9741 static void tryToElideArgumentCopy(
9742     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9743     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9744     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9745     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9746     SDValue ArgVal, bool &ArgHasUses) {
9747   // Check if this is a load from a fixed stack object.
9748   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9749   if (!LNode)
9750     return;
9751   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9752   if (!FINode)
9753     return;
9754 
9755   // Check that the fixed stack object is the right size and alignment.
9756   // Look at the alignment that the user wrote on the alloca instead of looking
9757   // at the stack object.
9758   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9759   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9760   const AllocaInst *AI = ArgCopyIter->second.first;
9761   int FixedIndex = FINode->getIndex();
9762   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9763   int OldIndex = AllocaIndex;
9764   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9765   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9766     LLVM_DEBUG(
9767         dbgs() << "  argument copy elision failed due to bad fixed stack "
9768                   "object size\n");
9769     return;
9770   }
9771   Align RequiredAlignment = AI->getAlign();
9772   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9773     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9774                          "greater than stack argument alignment ("
9775                       << DebugStr(RequiredAlignment) << " vs "
9776                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9777     return;
9778   }
9779 
9780   // Perform the elision. Delete the old stack object and replace its only use
9781   // in the variable info map. Mark the stack object as mutable.
9782   LLVM_DEBUG({
9783     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9784            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9785            << '\n';
9786   });
9787   MFI.RemoveStackObject(OldIndex);
9788   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9789   AllocaIndex = FixedIndex;
9790   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9791   Chains.push_back(ArgVal.getValue(1));
9792 
9793   // Avoid emitting code for the store implementing the copy.
9794   const StoreInst *SI = ArgCopyIter->second.second;
9795   ElidedArgCopyInstrs.insert(SI);
9796 
9797   // Check for uses of the argument again so that we can avoid exporting ArgVal
9798   // if it is't used by anything other than the store.
9799   for (const Value *U : Arg.users()) {
9800     if (U != SI) {
9801       ArgHasUses = true;
9802       break;
9803     }
9804   }
9805 }
9806 
9807 void SelectionDAGISel::LowerArguments(const Function &F) {
9808   SelectionDAG &DAG = SDB->DAG;
9809   SDLoc dl = SDB->getCurSDLoc();
9810   const DataLayout &DL = DAG.getDataLayout();
9811   SmallVector<ISD::InputArg, 16> Ins;
9812 
9813   // In Naked functions we aren't going to save any registers.
9814   if (F.hasFnAttribute(Attribute::Naked))
9815     return;
9816 
9817   if (!FuncInfo->CanLowerReturn) {
9818     // Put in an sret pointer parameter before all the other parameters.
9819     SmallVector<EVT, 1> ValueVTs;
9820     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9821                     F.getReturnType()->getPointerTo(
9822                         DAG.getDataLayout().getAllocaAddrSpace()),
9823                     ValueVTs);
9824 
9825     // NOTE: Assuming that a pointer will never break down to more than one VT
9826     // or one register.
9827     ISD::ArgFlagsTy Flags;
9828     Flags.setSRet();
9829     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9830     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9831                          ISD::InputArg::NoArgIndex, 0);
9832     Ins.push_back(RetArg);
9833   }
9834 
9835   // Look for stores of arguments to static allocas. Mark such arguments with a
9836   // flag to ask the target to give us the memory location of that argument if
9837   // available.
9838   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9839   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9840                                     ArgCopyElisionCandidates);
9841 
9842   // Set up the incoming argument description vector.
9843   for (const Argument &Arg : F.args()) {
9844     unsigned ArgNo = Arg.getArgNo();
9845     SmallVector<EVT, 4> ValueVTs;
9846     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9847     bool isArgValueUsed = !Arg.use_empty();
9848     unsigned PartBase = 0;
9849     Type *FinalType = Arg.getType();
9850     if (Arg.hasAttribute(Attribute::ByVal))
9851       FinalType = Arg.getParamByValType();
9852     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9853         FinalType, F.getCallingConv(), F.isVarArg());
9854     for (unsigned Value = 0, NumValues = ValueVTs.size();
9855          Value != NumValues; ++Value) {
9856       EVT VT = ValueVTs[Value];
9857       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9858       ISD::ArgFlagsTy Flags;
9859 
9860       // Certain targets (such as MIPS), may have a different ABI alignment
9861       // for a type depending on the context. Give the target a chance to
9862       // specify the alignment it wants.
9863       const Align OriginalAlignment(
9864           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9865 
9866       if (Arg.getType()->isPointerTy()) {
9867         Flags.setPointer();
9868         Flags.setPointerAddrSpace(
9869             cast<PointerType>(Arg.getType())->getAddressSpace());
9870       }
9871       if (Arg.hasAttribute(Attribute::ZExt))
9872         Flags.setZExt();
9873       if (Arg.hasAttribute(Attribute::SExt))
9874         Flags.setSExt();
9875       if (Arg.hasAttribute(Attribute::InReg)) {
9876         // If we are using vectorcall calling convention, a structure that is
9877         // passed InReg - is surely an HVA
9878         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9879             isa<StructType>(Arg.getType())) {
9880           // The first value of a structure is marked
9881           if (0 == Value)
9882             Flags.setHvaStart();
9883           Flags.setHva();
9884         }
9885         // Set InReg Flag
9886         Flags.setInReg();
9887       }
9888       if (Arg.hasAttribute(Attribute::StructRet))
9889         Flags.setSRet();
9890       if (Arg.hasAttribute(Attribute::SwiftSelf))
9891         Flags.setSwiftSelf();
9892       if (Arg.hasAttribute(Attribute::SwiftError))
9893         Flags.setSwiftError();
9894       if (Arg.hasAttribute(Attribute::ByVal))
9895         Flags.setByVal();
9896       if (Arg.hasAttribute(Attribute::ByRef))
9897         Flags.setByRef();
9898       if (Arg.hasAttribute(Attribute::InAlloca)) {
9899         Flags.setInAlloca();
9900         // Set the byval flag for CCAssignFn callbacks that don't know about
9901         // inalloca.  This way we can know how many bytes we should've allocated
9902         // and how many bytes a callee cleanup function will pop.  If we port
9903         // inalloca to more targets, we'll have to add custom inalloca handling
9904         // in the various CC lowering callbacks.
9905         Flags.setByVal();
9906       }
9907       if (Arg.hasAttribute(Attribute::Preallocated)) {
9908         Flags.setPreallocated();
9909         // Set the byval flag for CCAssignFn callbacks that don't know about
9910         // preallocated.  This way we can know how many bytes we should've
9911         // allocated and how many bytes a callee cleanup function will pop.  If
9912         // we port preallocated to more targets, we'll have to add custom
9913         // preallocated handling in the various CC lowering callbacks.
9914         Flags.setByVal();
9915       }
9916 
9917       Type *ArgMemTy = nullptr;
9918       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9919           Flags.isByRef()) {
9920         if (!ArgMemTy)
9921           ArgMemTy = Arg.getPointeeInMemoryValueType();
9922 
9923         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9924 
9925         // For in-memory arguments, size and alignment should be passed from FE.
9926         // BE will guess if this info is not there but there are cases it cannot
9927         // get right.
9928         MaybeAlign MemAlign = Arg.getParamAlign();
9929         if (!MemAlign)
9930           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9931 
9932         if (Flags.isByRef()) {
9933           Flags.setByRefSize(MemSize);
9934           Flags.setByRefAlign(*MemAlign);
9935         } else {
9936           Flags.setByValSize(MemSize);
9937           Flags.setByValAlign(*MemAlign);
9938         }
9939       }
9940 
9941       if (Arg.hasAttribute(Attribute::Nest))
9942         Flags.setNest();
9943       if (NeedsRegBlock)
9944         Flags.setInConsecutiveRegs();
9945       Flags.setOrigAlign(OriginalAlignment);
9946       if (ArgCopyElisionCandidates.count(&Arg))
9947         Flags.setCopyElisionCandidate();
9948       if (Arg.hasAttribute(Attribute::Returned))
9949         Flags.setReturned();
9950 
9951       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9952           *CurDAG->getContext(), F.getCallingConv(), VT);
9953       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9954           *CurDAG->getContext(), F.getCallingConv(), VT);
9955       for (unsigned i = 0; i != NumRegs; ++i) {
9956         // For scalable vectors, use the minimum size; individual targets
9957         // are responsible for handling scalable vector arguments and
9958         // return values.
9959         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9960                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9961         if (NumRegs > 1 && i == 0)
9962           MyFlags.Flags.setSplit();
9963         // if it isn't first piece, alignment must be 1
9964         else if (i > 0) {
9965           MyFlags.Flags.setOrigAlign(Align(1));
9966           if (i == NumRegs - 1)
9967             MyFlags.Flags.setSplitEnd();
9968         }
9969         Ins.push_back(MyFlags);
9970       }
9971       if (NeedsRegBlock && Value == NumValues - 1)
9972         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9973       PartBase += VT.getStoreSize().getKnownMinSize();
9974     }
9975   }
9976 
9977   // Call the target to set up the argument values.
9978   SmallVector<SDValue, 8> InVals;
9979   SDValue NewRoot = TLI->LowerFormalArguments(
9980       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9981 
9982   // Verify that the target's LowerFormalArguments behaved as expected.
9983   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9984          "LowerFormalArguments didn't return a valid chain!");
9985   assert(InVals.size() == Ins.size() &&
9986          "LowerFormalArguments didn't emit the correct number of values!");
9987   LLVM_DEBUG({
9988     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9989       assert(InVals[i].getNode() &&
9990              "LowerFormalArguments emitted a null value!");
9991       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9992              "LowerFormalArguments emitted a value with the wrong type!");
9993     }
9994   });
9995 
9996   // Update the DAG with the new chain value resulting from argument lowering.
9997   DAG.setRoot(NewRoot);
9998 
9999   // Set up the argument values.
10000   unsigned i = 0;
10001   if (!FuncInfo->CanLowerReturn) {
10002     // Create a virtual register for the sret pointer, and put in a copy
10003     // from the sret argument into it.
10004     SmallVector<EVT, 1> ValueVTs;
10005     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10006                     F.getReturnType()->getPointerTo(
10007                         DAG.getDataLayout().getAllocaAddrSpace()),
10008                     ValueVTs);
10009     MVT VT = ValueVTs[0].getSimpleVT();
10010     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10011     Optional<ISD::NodeType> AssertOp = None;
10012     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10013                                         nullptr, F.getCallingConv(), AssertOp);
10014 
10015     MachineFunction& MF = SDB->DAG.getMachineFunction();
10016     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10017     Register SRetReg =
10018         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10019     FuncInfo->DemoteRegister = SRetReg;
10020     NewRoot =
10021         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10022     DAG.setRoot(NewRoot);
10023 
10024     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10025     ++i;
10026   }
10027 
10028   SmallVector<SDValue, 4> Chains;
10029   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10030   for (const Argument &Arg : F.args()) {
10031     SmallVector<SDValue, 4> ArgValues;
10032     SmallVector<EVT, 4> ValueVTs;
10033     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10034     unsigned NumValues = ValueVTs.size();
10035     if (NumValues == 0)
10036       continue;
10037 
10038     bool ArgHasUses = !Arg.use_empty();
10039 
10040     // Elide the copying store if the target loaded this argument from a
10041     // suitable fixed stack object.
10042     if (Ins[i].Flags.isCopyElisionCandidate()) {
10043       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10044                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10045                              InVals[i], ArgHasUses);
10046     }
10047 
10048     // If this argument is unused then remember its value. It is used to generate
10049     // debugging information.
10050     bool isSwiftErrorArg =
10051         TLI->supportSwiftError() &&
10052         Arg.hasAttribute(Attribute::SwiftError);
10053     if (!ArgHasUses && !isSwiftErrorArg) {
10054       SDB->setUnusedArgValue(&Arg, InVals[i]);
10055 
10056       // Also remember any frame index for use in FastISel.
10057       if (FrameIndexSDNode *FI =
10058           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10059         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10060     }
10061 
10062     for (unsigned Val = 0; Val != NumValues; ++Val) {
10063       EVT VT = ValueVTs[Val];
10064       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10065                                                       F.getCallingConv(), VT);
10066       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10067           *CurDAG->getContext(), F.getCallingConv(), VT);
10068 
10069       // Even an apparent 'unused' swifterror argument needs to be returned. So
10070       // we do generate a copy for it that can be used on return from the
10071       // function.
10072       if (ArgHasUses || isSwiftErrorArg) {
10073         Optional<ISD::NodeType> AssertOp;
10074         if (Arg.hasAttribute(Attribute::SExt))
10075           AssertOp = ISD::AssertSext;
10076         else if (Arg.hasAttribute(Attribute::ZExt))
10077           AssertOp = ISD::AssertZext;
10078 
10079         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10080                                              PartVT, VT, nullptr,
10081                                              F.getCallingConv(), AssertOp));
10082       }
10083 
10084       i += NumParts;
10085     }
10086 
10087     // We don't need to do anything else for unused arguments.
10088     if (ArgValues.empty())
10089       continue;
10090 
10091     // Note down frame index.
10092     if (FrameIndexSDNode *FI =
10093         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10094       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10095 
10096     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10097                                      SDB->getCurSDLoc());
10098 
10099     SDB->setValue(&Arg, Res);
10100     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10101       // We want to associate the argument with the frame index, among
10102       // involved operands, that correspond to the lowest address. The
10103       // getCopyFromParts function, called earlier, is swapping the order of
10104       // the operands to BUILD_PAIR depending on endianness. The result of
10105       // that swapping is that the least significant bits of the argument will
10106       // be in the first operand of the BUILD_PAIR node, and the most
10107       // significant bits will be in the second operand.
10108       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10109       if (LoadSDNode *LNode =
10110           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10111         if (FrameIndexSDNode *FI =
10112             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10113           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10114     }
10115 
10116     // Analyses past this point are naive and don't expect an assertion.
10117     if (Res.getOpcode() == ISD::AssertZext)
10118       Res = Res.getOperand(0);
10119 
10120     // Update the SwiftErrorVRegDefMap.
10121     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10122       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10123       if (Register::isVirtualRegister(Reg))
10124         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10125                                    Reg);
10126     }
10127 
10128     // If this argument is live outside of the entry block, insert a copy from
10129     // wherever we got it to the vreg that other BB's will reference it as.
10130     if (Res.getOpcode() == ISD::CopyFromReg) {
10131       // If we can, though, try to skip creating an unnecessary vreg.
10132       // FIXME: This isn't very clean... it would be nice to make this more
10133       // general.
10134       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10135       if (Register::isVirtualRegister(Reg)) {
10136         FuncInfo->ValueMap[&Arg] = Reg;
10137         continue;
10138       }
10139     }
10140     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10141       FuncInfo->InitializeRegForValue(&Arg);
10142       SDB->CopyToExportRegsIfNeeded(&Arg);
10143     }
10144   }
10145 
10146   if (!Chains.empty()) {
10147     Chains.push_back(NewRoot);
10148     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10149   }
10150 
10151   DAG.setRoot(NewRoot);
10152 
10153   assert(i == InVals.size() && "Argument register count mismatch!");
10154 
10155   // If any argument copy elisions occurred and we have debug info, update the
10156   // stale frame indices used in the dbg.declare variable info table.
10157   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10158   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10159     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10160       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10161       if (I != ArgCopyElisionFrameIndexMap.end())
10162         VI.Slot = I->second;
10163     }
10164   }
10165 
10166   // Finally, if the target has anything special to do, allow it to do so.
10167   emitFunctionEntryCode();
10168 }
10169 
10170 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10171 /// ensure constants are generated when needed.  Remember the virtual registers
10172 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10173 /// directly add them, because expansion might result in multiple MBB's for one
10174 /// BB.  As such, the start of the BB might correspond to a different MBB than
10175 /// the end.
10176 void
10177 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10178   const Instruction *TI = LLVMBB->getTerminator();
10179 
10180   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10181 
10182   // Check PHI nodes in successors that expect a value to be available from this
10183   // block.
10184   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10185     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10186     if (!isa<PHINode>(SuccBB->begin())) continue;
10187     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10188 
10189     // If this terminator has multiple identical successors (common for
10190     // switches), only handle each succ once.
10191     if (!SuccsHandled.insert(SuccMBB).second)
10192       continue;
10193 
10194     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10195 
10196     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10197     // nodes and Machine PHI nodes, but the incoming operands have not been
10198     // emitted yet.
10199     for (const PHINode &PN : SuccBB->phis()) {
10200       // Ignore dead phi's.
10201       if (PN.use_empty())
10202         continue;
10203 
10204       // Skip empty types
10205       if (PN.getType()->isEmptyTy())
10206         continue;
10207 
10208       unsigned Reg;
10209       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10210 
10211       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10212         unsigned &RegOut = ConstantsOut[C];
10213         if (RegOut == 0) {
10214           RegOut = FuncInfo.CreateRegs(C);
10215           CopyValueToVirtualRegister(C, RegOut);
10216         }
10217         Reg = RegOut;
10218       } else {
10219         DenseMap<const Value *, Register>::iterator I =
10220           FuncInfo.ValueMap.find(PHIOp);
10221         if (I != FuncInfo.ValueMap.end())
10222           Reg = I->second;
10223         else {
10224           assert(isa<AllocaInst>(PHIOp) &&
10225                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10226                  "Didn't codegen value into a register!??");
10227           Reg = FuncInfo.CreateRegs(PHIOp);
10228           CopyValueToVirtualRegister(PHIOp, Reg);
10229         }
10230       }
10231 
10232       // Remember that this register needs to added to the machine PHI node as
10233       // the input for this MBB.
10234       SmallVector<EVT, 4> ValueVTs;
10235       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10236       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10237       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10238         EVT VT = ValueVTs[vti];
10239         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10240         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10241           FuncInfo.PHINodesToUpdate.push_back(
10242               std::make_pair(&*MBBI++, Reg + i));
10243         Reg += NumRegisters;
10244       }
10245     }
10246   }
10247 
10248   ConstantsOut.clear();
10249 }
10250 
10251 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10252 /// is 0.
10253 MachineBasicBlock *
10254 SelectionDAGBuilder::StackProtectorDescriptor::
10255 AddSuccessorMBB(const BasicBlock *BB,
10256                 MachineBasicBlock *ParentMBB,
10257                 bool IsLikely,
10258                 MachineBasicBlock *SuccMBB) {
10259   // If SuccBB has not been created yet, create it.
10260   if (!SuccMBB) {
10261     MachineFunction *MF = ParentMBB->getParent();
10262     MachineFunction::iterator BBI(ParentMBB);
10263     SuccMBB = MF->CreateMachineBasicBlock(BB);
10264     MF->insert(++BBI, SuccMBB);
10265   }
10266   // Add it as a successor of ParentMBB.
10267   ParentMBB->addSuccessor(
10268       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10269   return SuccMBB;
10270 }
10271 
10272 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10273   MachineFunction::iterator I(MBB);
10274   if (++I == FuncInfo.MF->end())
10275     return nullptr;
10276   return &*I;
10277 }
10278 
10279 /// During lowering new call nodes can be created (such as memset, etc.).
10280 /// Those will become new roots of the current DAG, but complications arise
10281 /// when they are tail calls. In such cases, the call lowering will update
10282 /// the root, but the builder still needs to know that a tail call has been
10283 /// lowered in order to avoid generating an additional return.
10284 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10285   // If the node is null, we do have a tail call.
10286   if (MaybeTC.getNode() != nullptr)
10287     DAG.setRoot(MaybeTC);
10288   else
10289     HasTailCall = true;
10290 }
10291 
10292 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10293                                         MachineBasicBlock *SwitchMBB,
10294                                         MachineBasicBlock *DefaultMBB) {
10295   MachineFunction *CurMF = FuncInfo.MF;
10296   MachineBasicBlock *NextMBB = nullptr;
10297   MachineFunction::iterator BBI(W.MBB);
10298   if (++BBI != FuncInfo.MF->end())
10299     NextMBB = &*BBI;
10300 
10301   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10302 
10303   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10304 
10305   if (Size == 2 && W.MBB == SwitchMBB) {
10306     // If any two of the cases has the same destination, and if one value
10307     // is the same as the other, but has one bit unset that the other has set,
10308     // use bit manipulation to do two compares at once.  For example:
10309     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10310     // TODO: This could be extended to merge any 2 cases in switches with 3
10311     // cases.
10312     // TODO: Handle cases where W.CaseBB != SwitchBB.
10313     CaseCluster &Small = *W.FirstCluster;
10314     CaseCluster &Big = *W.LastCluster;
10315 
10316     if (Small.Low == Small.High && Big.Low == Big.High &&
10317         Small.MBB == Big.MBB) {
10318       const APInt &SmallValue = Small.Low->getValue();
10319       const APInt &BigValue = Big.Low->getValue();
10320 
10321       // Check that there is only one bit different.
10322       APInt CommonBit = BigValue ^ SmallValue;
10323       if (CommonBit.isPowerOf2()) {
10324         SDValue CondLHS = getValue(Cond);
10325         EVT VT = CondLHS.getValueType();
10326         SDLoc DL = getCurSDLoc();
10327 
10328         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10329                                  DAG.getConstant(CommonBit, DL, VT));
10330         SDValue Cond = DAG.getSetCC(
10331             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10332             ISD::SETEQ);
10333 
10334         // Update successor info.
10335         // Both Small and Big will jump to Small.BB, so we sum up the
10336         // probabilities.
10337         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10338         if (BPI)
10339           addSuccessorWithProb(
10340               SwitchMBB, DefaultMBB,
10341               // The default destination is the first successor in IR.
10342               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10343         else
10344           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10345 
10346         // Insert the true branch.
10347         SDValue BrCond =
10348             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10349                         DAG.getBasicBlock(Small.MBB));
10350         // Insert the false branch.
10351         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10352                              DAG.getBasicBlock(DefaultMBB));
10353 
10354         DAG.setRoot(BrCond);
10355         return;
10356       }
10357     }
10358   }
10359 
10360   if (TM.getOptLevel() != CodeGenOpt::None) {
10361     // Here, we order cases by probability so the most likely case will be
10362     // checked first. However, two clusters can have the same probability in
10363     // which case their relative ordering is non-deterministic. So we use Low
10364     // as a tie-breaker as clusters are guaranteed to never overlap.
10365     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10366                [](const CaseCluster &a, const CaseCluster &b) {
10367       return a.Prob != b.Prob ?
10368              a.Prob > b.Prob :
10369              a.Low->getValue().slt(b.Low->getValue());
10370     });
10371 
10372     // Rearrange the case blocks so that the last one falls through if possible
10373     // without changing the order of probabilities.
10374     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10375       --I;
10376       if (I->Prob > W.LastCluster->Prob)
10377         break;
10378       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10379         std::swap(*I, *W.LastCluster);
10380         break;
10381       }
10382     }
10383   }
10384 
10385   // Compute total probability.
10386   BranchProbability DefaultProb = W.DefaultProb;
10387   BranchProbability UnhandledProbs = DefaultProb;
10388   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10389     UnhandledProbs += I->Prob;
10390 
10391   MachineBasicBlock *CurMBB = W.MBB;
10392   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10393     bool FallthroughUnreachable = false;
10394     MachineBasicBlock *Fallthrough;
10395     if (I == W.LastCluster) {
10396       // For the last cluster, fall through to the default destination.
10397       Fallthrough = DefaultMBB;
10398       FallthroughUnreachable = isa<UnreachableInst>(
10399           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10400     } else {
10401       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10402       CurMF->insert(BBI, Fallthrough);
10403       // Put Cond in a virtual register to make it available from the new blocks.
10404       ExportFromCurrentBlock(Cond);
10405     }
10406     UnhandledProbs -= I->Prob;
10407 
10408     switch (I->Kind) {
10409       case CC_JumpTable: {
10410         // FIXME: Optimize away range check based on pivot comparisons.
10411         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10412         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10413 
10414         // The jump block hasn't been inserted yet; insert it here.
10415         MachineBasicBlock *JumpMBB = JT->MBB;
10416         CurMF->insert(BBI, JumpMBB);
10417 
10418         auto JumpProb = I->Prob;
10419         auto FallthroughProb = UnhandledProbs;
10420 
10421         // If the default statement is a target of the jump table, we evenly
10422         // distribute the default probability to successors of CurMBB. Also
10423         // update the probability on the edge from JumpMBB to Fallthrough.
10424         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10425                                               SE = JumpMBB->succ_end();
10426              SI != SE; ++SI) {
10427           if (*SI == DefaultMBB) {
10428             JumpProb += DefaultProb / 2;
10429             FallthroughProb -= DefaultProb / 2;
10430             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10431             JumpMBB->normalizeSuccProbs();
10432             break;
10433           }
10434         }
10435 
10436         if (FallthroughUnreachable) {
10437           // Skip the range check if the fallthrough block is unreachable.
10438           JTH->OmitRangeCheck = true;
10439         }
10440 
10441         if (!JTH->OmitRangeCheck)
10442           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10443         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10444         CurMBB->normalizeSuccProbs();
10445 
10446         // The jump table header will be inserted in our current block, do the
10447         // range check, and fall through to our fallthrough block.
10448         JTH->HeaderBB = CurMBB;
10449         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10450 
10451         // If we're in the right place, emit the jump table header right now.
10452         if (CurMBB == SwitchMBB) {
10453           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10454           JTH->Emitted = true;
10455         }
10456         break;
10457       }
10458       case CC_BitTests: {
10459         // FIXME: Optimize away range check based on pivot comparisons.
10460         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10461 
10462         // The bit test blocks haven't been inserted yet; insert them here.
10463         for (BitTestCase &BTC : BTB->Cases)
10464           CurMF->insert(BBI, BTC.ThisBB);
10465 
10466         // Fill in fields of the BitTestBlock.
10467         BTB->Parent = CurMBB;
10468         BTB->Default = Fallthrough;
10469 
10470         BTB->DefaultProb = UnhandledProbs;
10471         // If the cases in bit test don't form a contiguous range, we evenly
10472         // distribute the probability on the edge to Fallthrough to two
10473         // successors of CurMBB.
10474         if (!BTB->ContiguousRange) {
10475           BTB->Prob += DefaultProb / 2;
10476           BTB->DefaultProb -= DefaultProb / 2;
10477         }
10478 
10479         if (FallthroughUnreachable) {
10480           // Skip the range check if the fallthrough block is unreachable.
10481           BTB->OmitRangeCheck = true;
10482         }
10483 
10484         // If we're in the right place, emit the bit test header right now.
10485         if (CurMBB == SwitchMBB) {
10486           visitBitTestHeader(*BTB, SwitchMBB);
10487           BTB->Emitted = true;
10488         }
10489         break;
10490       }
10491       case CC_Range: {
10492         const Value *RHS, *LHS, *MHS;
10493         ISD::CondCode CC;
10494         if (I->Low == I->High) {
10495           // Check Cond == I->Low.
10496           CC = ISD::SETEQ;
10497           LHS = Cond;
10498           RHS=I->Low;
10499           MHS = nullptr;
10500         } else {
10501           // Check I->Low <= Cond <= I->High.
10502           CC = ISD::SETLE;
10503           LHS = I->Low;
10504           MHS = Cond;
10505           RHS = I->High;
10506         }
10507 
10508         // If Fallthrough is unreachable, fold away the comparison.
10509         if (FallthroughUnreachable)
10510           CC = ISD::SETTRUE;
10511 
10512         // The false probability is the sum of all unhandled cases.
10513         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10514                      getCurSDLoc(), I->Prob, UnhandledProbs);
10515 
10516         if (CurMBB == SwitchMBB)
10517           visitSwitchCase(CB, SwitchMBB);
10518         else
10519           SL->SwitchCases.push_back(CB);
10520 
10521         break;
10522       }
10523     }
10524     CurMBB = Fallthrough;
10525   }
10526 }
10527 
10528 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10529                                               CaseClusterIt First,
10530                                               CaseClusterIt Last) {
10531   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10532     if (X.Prob != CC.Prob)
10533       return X.Prob > CC.Prob;
10534 
10535     // Ties are broken by comparing the case value.
10536     return X.Low->getValue().slt(CC.Low->getValue());
10537   });
10538 }
10539 
10540 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10541                                         const SwitchWorkListItem &W,
10542                                         Value *Cond,
10543                                         MachineBasicBlock *SwitchMBB) {
10544   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10545          "Clusters not sorted?");
10546 
10547   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10548 
10549   // Balance the tree based on branch probabilities to create a near-optimal (in
10550   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10551   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10552   CaseClusterIt LastLeft = W.FirstCluster;
10553   CaseClusterIt FirstRight = W.LastCluster;
10554   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10555   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10556 
10557   // Move LastLeft and FirstRight towards each other from opposite directions to
10558   // find a partitioning of the clusters which balances the probability on both
10559   // sides. If LeftProb and RightProb are equal, alternate which side is
10560   // taken to ensure 0-probability nodes are distributed evenly.
10561   unsigned I = 0;
10562   while (LastLeft + 1 < FirstRight) {
10563     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10564       LeftProb += (++LastLeft)->Prob;
10565     else
10566       RightProb += (--FirstRight)->Prob;
10567     I++;
10568   }
10569 
10570   while (true) {
10571     // Our binary search tree differs from a typical BST in that ours can have up
10572     // to three values in each leaf. The pivot selection above doesn't take that
10573     // into account, which means the tree might require more nodes and be less
10574     // efficient. We compensate for this here.
10575 
10576     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10577     unsigned NumRight = W.LastCluster - FirstRight + 1;
10578 
10579     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10580       // If one side has less than 3 clusters, and the other has more than 3,
10581       // consider taking a cluster from the other side.
10582 
10583       if (NumLeft < NumRight) {
10584         // Consider moving the first cluster on the right to the left side.
10585         CaseCluster &CC = *FirstRight;
10586         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10587         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10588         if (LeftSideRank <= RightSideRank) {
10589           // Moving the cluster to the left does not demote it.
10590           ++LastLeft;
10591           ++FirstRight;
10592           continue;
10593         }
10594       } else {
10595         assert(NumRight < NumLeft);
10596         // Consider moving the last element on the left to the right side.
10597         CaseCluster &CC = *LastLeft;
10598         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10599         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10600         if (RightSideRank <= LeftSideRank) {
10601           // Moving the cluster to the right does not demot it.
10602           --LastLeft;
10603           --FirstRight;
10604           continue;
10605         }
10606       }
10607     }
10608     break;
10609   }
10610 
10611   assert(LastLeft + 1 == FirstRight);
10612   assert(LastLeft >= W.FirstCluster);
10613   assert(FirstRight <= W.LastCluster);
10614 
10615   // Use the first element on the right as pivot since we will make less-than
10616   // comparisons against it.
10617   CaseClusterIt PivotCluster = FirstRight;
10618   assert(PivotCluster > W.FirstCluster);
10619   assert(PivotCluster <= W.LastCluster);
10620 
10621   CaseClusterIt FirstLeft = W.FirstCluster;
10622   CaseClusterIt LastRight = W.LastCluster;
10623 
10624   const ConstantInt *Pivot = PivotCluster->Low;
10625 
10626   // New blocks will be inserted immediately after the current one.
10627   MachineFunction::iterator BBI(W.MBB);
10628   ++BBI;
10629 
10630   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10631   // we can branch to its destination directly if it's squeezed exactly in
10632   // between the known lower bound and Pivot - 1.
10633   MachineBasicBlock *LeftMBB;
10634   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10635       FirstLeft->Low == W.GE &&
10636       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10637     LeftMBB = FirstLeft->MBB;
10638   } else {
10639     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10640     FuncInfo.MF->insert(BBI, LeftMBB);
10641     WorkList.push_back(
10642         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10643     // Put Cond in a virtual register to make it available from the new blocks.
10644     ExportFromCurrentBlock(Cond);
10645   }
10646 
10647   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10648   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10649   // directly if RHS.High equals the current upper bound.
10650   MachineBasicBlock *RightMBB;
10651   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10652       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10653     RightMBB = FirstRight->MBB;
10654   } else {
10655     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10656     FuncInfo.MF->insert(BBI, RightMBB);
10657     WorkList.push_back(
10658         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10659     // Put Cond in a virtual register to make it available from the new blocks.
10660     ExportFromCurrentBlock(Cond);
10661   }
10662 
10663   // Create the CaseBlock record that will be used to lower the branch.
10664   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10665                getCurSDLoc(), LeftProb, RightProb);
10666 
10667   if (W.MBB == SwitchMBB)
10668     visitSwitchCase(CB, SwitchMBB);
10669   else
10670     SL->SwitchCases.push_back(CB);
10671 }
10672 
10673 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10674 // from the swith statement.
10675 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10676                                             BranchProbability PeeledCaseProb) {
10677   if (PeeledCaseProb == BranchProbability::getOne())
10678     return BranchProbability::getZero();
10679   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10680 
10681   uint32_t Numerator = CaseProb.getNumerator();
10682   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10683   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10684 }
10685 
10686 // Try to peel the top probability case if it exceeds the threshold.
10687 // Return current MachineBasicBlock for the switch statement if the peeling
10688 // does not occur.
10689 // If the peeling is performed, return the newly created MachineBasicBlock
10690 // for the peeled switch statement. Also update Clusters to remove the peeled
10691 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10692 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10693     const SwitchInst &SI, CaseClusterVector &Clusters,
10694     BranchProbability &PeeledCaseProb) {
10695   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10696   // Don't perform if there is only one cluster or optimizing for size.
10697   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10698       TM.getOptLevel() == CodeGenOpt::None ||
10699       SwitchMBB->getParent()->getFunction().hasMinSize())
10700     return SwitchMBB;
10701 
10702   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10703   unsigned PeeledCaseIndex = 0;
10704   bool SwitchPeeled = false;
10705   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10706     CaseCluster &CC = Clusters[Index];
10707     if (CC.Prob < TopCaseProb)
10708       continue;
10709     TopCaseProb = CC.Prob;
10710     PeeledCaseIndex = Index;
10711     SwitchPeeled = true;
10712   }
10713   if (!SwitchPeeled)
10714     return SwitchMBB;
10715 
10716   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10717                     << TopCaseProb << "\n");
10718 
10719   // Record the MBB for the peeled switch statement.
10720   MachineFunction::iterator BBI(SwitchMBB);
10721   ++BBI;
10722   MachineBasicBlock *PeeledSwitchMBB =
10723       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10724   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10725 
10726   ExportFromCurrentBlock(SI.getCondition());
10727   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10728   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10729                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10730   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10731 
10732   Clusters.erase(PeeledCaseIt);
10733   for (CaseCluster &CC : Clusters) {
10734     LLVM_DEBUG(
10735         dbgs() << "Scale the probablity for one cluster, before scaling: "
10736                << CC.Prob << "\n");
10737     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10738     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10739   }
10740   PeeledCaseProb = TopCaseProb;
10741   return PeeledSwitchMBB;
10742 }
10743 
10744 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10745   // Extract cases from the switch.
10746   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10747   CaseClusterVector Clusters;
10748   Clusters.reserve(SI.getNumCases());
10749   for (auto I : SI.cases()) {
10750     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10751     const ConstantInt *CaseVal = I.getCaseValue();
10752     BranchProbability Prob =
10753         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10754             : BranchProbability(1, SI.getNumCases() + 1);
10755     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10756   }
10757 
10758   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10759 
10760   // Cluster adjacent cases with the same destination. We do this at all
10761   // optimization levels because it's cheap to do and will make codegen faster
10762   // if there are many clusters.
10763   sortAndRangeify(Clusters);
10764 
10765   // The branch probablity of the peeled case.
10766   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10767   MachineBasicBlock *PeeledSwitchMBB =
10768       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10769 
10770   // If there is only the default destination, jump there directly.
10771   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10772   if (Clusters.empty()) {
10773     assert(PeeledSwitchMBB == SwitchMBB);
10774     SwitchMBB->addSuccessor(DefaultMBB);
10775     if (DefaultMBB != NextBlock(SwitchMBB)) {
10776       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10777                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10778     }
10779     return;
10780   }
10781 
10782   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10783   SL->findBitTestClusters(Clusters, &SI);
10784 
10785   LLVM_DEBUG({
10786     dbgs() << "Case clusters: ";
10787     for (const CaseCluster &C : Clusters) {
10788       if (C.Kind == CC_JumpTable)
10789         dbgs() << "JT:";
10790       if (C.Kind == CC_BitTests)
10791         dbgs() << "BT:";
10792 
10793       C.Low->getValue().print(dbgs(), true);
10794       if (C.Low != C.High) {
10795         dbgs() << '-';
10796         C.High->getValue().print(dbgs(), true);
10797       }
10798       dbgs() << ' ';
10799     }
10800     dbgs() << '\n';
10801   });
10802 
10803   assert(!Clusters.empty());
10804   SwitchWorkList WorkList;
10805   CaseClusterIt First = Clusters.begin();
10806   CaseClusterIt Last = Clusters.end() - 1;
10807   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10808   // Scale the branchprobability for DefaultMBB if the peel occurs and
10809   // DefaultMBB is not replaced.
10810   if (PeeledCaseProb != BranchProbability::getZero() &&
10811       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10812     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10813   WorkList.push_back(
10814       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10815 
10816   while (!WorkList.empty()) {
10817     SwitchWorkListItem W = WorkList.pop_back_val();
10818     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10819 
10820     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10821         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10822       // For optimized builds, lower large range as a balanced binary tree.
10823       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10824       continue;
10825     }
10826 
10827     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10828   }
10829 }
10830 
10831 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10832   SmallVector<EVT, 4> ValueVTs;
10833   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10834                   ValueVTs);
10835   unsigned NumValues = ValueVTs.size();
10836   if (NumValues == 0) return;
10837 
10838   SmallVector<SDValue, 4> Values(NumValues);
10839   SDValue Op = getValue(I.getOperand(0));
10840 
10841   for (unsigned i = 0; i != NumValues; ++i)
10842     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10843                             SDValue(Op.getNode(), Op.getResNo() + i));
10844 
10845   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10846                            DAG.getVTList(ValueVTs), Values));
10847 }
10848