xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7e570308f225139d353f8133882b4946e2aa9a43)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/DiagnosticInfo.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/InlineAsm.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/IntrinsicsAArch64.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/MC/MCSymbol.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <cstddef>
105 #include <cstring>
106 #include <iterator>
107 #include <limits>
108 #include <numeric>
109 #include <tuple>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 using namespace SwitchCG;
114 
115 #define DEBUG_TYPE "isel"
116 
117 /// LimitFloatPrecision - Generate low-precision inline sequences for
118 /// some float libcalls (6, 8 or 12 bits).
119 static unsigned LimitFloatPrecision;
120 
121 static cl::opt<bool>
122     InsertAssertAlign("insert-assert-align", cl::init(true),
123                       cl::desc("Insert the experimental `assertalign` node."),
124                       cl::ReallyHidden);
125 
126 static cl::opt<unsigned, true>
127     LimitFPPrecision("limit-float-precision",
128                      cl::desc("Generate low-precision inline sequences "
129                               "for some float libcalls"),
130                      cl::location(LimitFloatPrecision), cl::Hidden,
131                      cl::init(0));
132 
133 static cl::opt<unsigned> SwitchPeelThreshold(
134     "switch-peel-threshold", cl::Hidden, cl::init(66),
135     cl::desc("Set the case probability threshold for peeling the case from a "
136              "switch statement. A value greater than 100 will void this "
137              "optimization"));
138 
139 // Limit the width of DAG chains. This is important in general to prevent
140 // DAG-based analysis from blowing up. For example, alias analysis and
141 // load clustering may not complete in reasonable time. It is difficult to
142 // recognize and avoid this situation within each individual analysis, and
143 // future analyses are likely to have the same behavior. Limiting DAG width is
144 // the safe approach and will be especially important with global DAGs.
145 //
146 // MaxParallelChains default is arbitrarily high to avoid affecting
147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
148 // sequence over this should have been converted to llvm.memcpy by the
149 // frontend. It is easy to induce this behavior with .ll code such as:
150 // %buffer = alloca [4096 x i8]
151 // %data = load [4096 x i8]* %argPtr
152 // store [4096 x i8] %data, [4096 x i8]* %buffer
153 static const unsigned MaxParallelChains = 64;
154 
155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
156                                       const SDValue *Parts, unsigned NumParts,
157                                       MVT PartVT, EVT ValueVT, const Value *V,
158                                       Optional<CallingConv::ID> CC);
159 
160 /// getCopyFromParts - Create a value that contains the specified legal parts
161 /// combined into the value they represent.  If the parts combine to a type
162 /// larger than ValueVT then AssertOp can be used to specify whether the extra
163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164 /// (ISD::AssertSext).
165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
166                                 const SDValue *Parts, unsigned NumParts,
167                                 MVT PartVT, EVT ValueVT, const Value *V,
168                                 Optional<CallingConv::ID> CC = None,
169                                 Optional<ISD::NodeType> AssertOp = None) {
170   // Let the target assemble the parts if it wants to
171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
172   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
173                                                    PartVT, ValueVT, CC))
174     return Val;
175 
176   if (ValueVT.isVector())
177     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
178                                   CC);
179 
180   assert(NumParts > 0 && "No parts to assemble!");
181   SDValue Val = Parts[0];
182 
183   if (NumParts > 1) {
184     // Assemble the value from multiple parts.
185     if (ValueVT.isInteger()) {
186       unsigned PartBits = PartVT.getSizeInBits();
187       unsigned ValueBits = ValueVT.getSizeInBits();
188 
189       // Assemble the power of 2 part.
190       unsigned RoundParts =
191           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
192       unsigned RoundBits = PartBits * RoundParts;
193       EVT RoundVT = RoundBits == ValueBits ?
194         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195       SDValue Lo, Hi;
196 
197       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198 
199       if (RoundParts > 2) {
200         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
201                               PartVT, HalfVT, V);
202         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
203                               RoundParts / 2, PartVT, HalfVT, V);
204       } else {
205         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207       }
208 
209       if (DAG.getDataLayout().isBigEndian())
210         std::swap(Lo, Hi);
211 
212       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213 
214       if (RoundParts < NumParts) {
215         // Assemble the trailing non-power-of-2 part.
216         unsigned OddParts = NumParts - RoundParts;
217         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219                               OddVT, V, CC);
220 
221         // Combine the round and odd parts.
222         Lo = Val;
223         if (DAG.getDataLayout().isBigEndian())
224           std::swap(Lo, Hi);
225         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227         Hi =
228             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
229                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
230                                         TLI.getPointerTy(DAG.getDataLayout())));
231         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
232         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
233       }
234     } else if (PartVT.isFloatingPoint()) {
235       // FP split into multiple FP parts (for ppcf128)
236       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
237              "Unexpected split");
238       SDValue Lo, Hi;
239       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
240       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
241       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
242         std::swap(Lo, Hi);
243       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
244     } else {
245       // FP split into integer parts (soft fp)
246       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
247              !PartVT.isVector() && "Unexpected split");
248       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
249       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
250     }
251   }
252 
253   // There is now one part, held in Val.  Correct it to match ValueVT.
254   // PartEVT is the type of the register class that holds the value.
255   // ValueVT is the type of the inline asm operation.
256   EVT PartEVT = Val.getValueType();
257 
258   if (PartEVT == ValueVT)
259     return Val;
260 
261   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262       ValueVT.bitsLT(PartEVT)) {
263     // For an FP value in an integer part, we need to truncate to the right
264     // width first.
265     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
266     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267   }
268 
269   // Handle types that have the same size.
270   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 
273   // Handle types with different sizes.
274   if (PartEVT.isInteger() && ValueVT.isInteger()) {
275     if (ValueVT.bitsLT(PartEVT)) {
276       // For a truncate, see if we have any information to
277       // indicate whether the truncated bits will always be
278       // zero or sign-extension.
279       if (AssertOp.hasValue())
280         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281                           DAG.getValueType(ValueVT));
282       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283     }
284     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285   }
286 
287   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288     // FP_ROUND's are always exact here.
289     if (ValueVT.bitsLT(Val.getValueType()))
290       return DAG.getNode(
291           ISD::FP_ROUND, DL, ValueVT, Val,
292           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
293 
294     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
295   }
296 
297   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
298   // then truncating.
299   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
300       ValueVT.bitsLT(PartEVT)) {
301     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
302     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
303   }
304 
305   report_fatal_error("Unknown mismatch in getCopyFromParts!");
306 }
307 
308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
309                                               const Twine &ErrMsg) {
310   const Instruction *I = dyn_cast_or_null<Instruction>(V);
311   if (!V)
312     return Ctx.emitError(ErrMsg);
313 
314   const char *AsmError = ", possible invalid constraint for vector type";
315   if (const CallInst *CI = dyn_cast<CallInst>(I))
316     if (CI->isInlineAsm())
317       return Ctx.emitError(I, ErrMsg + AsmError);
318 
319   return Ctx.emitError(I, ErrMsg);
320 }
321 
322 /// getCopyFromPartsVector - Create a value that contains the specified legal
323 /// parts combined into the value they represent.  If the parts combine to a
324 /// type larger than ValueVT then AssertOp can be used to specify whether the
325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
326 /// ValueVT (ISD::AssertSext).
327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
328                                       const SDValue *Parts, unsigned NumParts,
329                                       MVT PartVT, EVT ValueVT, const Value *V,
330                                       Optional<CallingConv::ID> CallConv) {
331   assert(ValueVT.isVector() && "Not a vector value");
332   assert(NumParts > 0 && "No parts to assemble!");
333   const bool IsABIRegCopy = CallConv.hasValue();
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   SDValue Val = Parts[0];
337 
338   // Handle a multi-element vector.
339   if (NumParts > 1) {
340     EVT IntermediateVT;
341     MVT RegisterVT;
342     unsigned NumIntermediates;
343     unsigned NumRegs;
344 
345     if (IsABIRegCopy) {
346       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
347           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
348           NumIntermediates, RegisterVT);
349     } else {
350       NumRegs =
351           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
352                                      NumIntermediates, RegisterVT);
353     }
354 
355     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
356     NumParts = NumRegs; // Silence a compiler warning.
357     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
358     assert(RegisterVT.getSizeInBits() ==
359            Parts[0].getSimpleValueType().getSizeInBits() &&
360            "Part type sizes don't match!");
361 
362     // Assemble the parts into intermediate operands.
363     SmallVector<SDValue, 8> Ops(NumIntermediates);
364     if (NumIntermediates == NumParts) {
365       // If the register was not expanded, truncate or copy the value,
366       // as appropriate.
367       for (unsigned i = 0; i != NumParts; ++i)
368         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
369                                   PartVT, IntermediateVT, V, CallConv);
370     } else if (NumParts > 0) {
371       // If the intermediate type was expanded, build the intermediate
372       // operands from the parts.
373       assert(NumParts % NumIntermediates == 0 &&
374              "Must expand into a divisible number of parts!");
375       unsigned Factor = NumParts / NumIntermediates;
376       for (unsigned i = 0; i != NumIntermediates; ++i)
377         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
378                                   PartVT, IntermediateVT, V, CallConv);
379     }
380 
381     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
382     // intermediate operands.
383     EVT BuiltVectorTy =
384         IntermediateVT.isVector()
385             ? EVT::getVectorVT(
386                   *DAG.getContext(), IntermediateVT.getScalarType(),
387                   IntermediateVT.getVectorElementCount() * NumParts)
388             : EVT::getVectorVT(*DAG.getContext(),
389                                IntermediateVT.getScalarType(),
390                                NumIntermediates);
391     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
392                                                 : ISD::BUILD_VECTOR,
393                       DL, BuiltVectorTy, Ops);
394   }
395 
396   // There is now one part, held in Val.  Correct it to match ValueVT.
397   EVT PartEVT = Val.getValueType();
398 
399   if (PartEVT == ValueVT)
400     return Val;
401 
402   if (PartEVT.isVector()) {
403     // Vector/Vector bitcast.
404     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
405       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
406 
407     // If the element type of the source/dest vectors are the same, but the
408     // parts vector has more elements than the value vector, then we have a
409     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
410     // elements we want.
411     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
412       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
413               ValueVT.getVectorElementCount().getKnownMinValue()) &&
414              (PartEVT.getVectorElementCount().isScalable() ==
415               ValueVT.getVectorElementCount().isScalable()) &&
416              "Cannot narrow, it would be a lossy transformation");
417       PartEVT =
418           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
419                            ValueVT.getVectorElementCount());
420       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
421                         DAG.getVectorIdxConstant(0, DL));
422       if (PartEVT == ValueVT)
423         return Val;
424     }
425 
426     // Promoted vector extract
427     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
428   }
429 
430   // Trivial bitcast if the types are the same size and the destination
431   // vector type is legal.
432   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
433       TLI.isTypeLegal(ValueVT))
434     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436   if (ValueVT.getVectorNumElements() != 1) {
437      // Certain ABIs require that vectors are passed as integers. For vectors
438      // are the same size, this is an obvious bitcast.
439      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
440        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441      } else if (ValueVT.bitsLT(PartEVT)) {
442        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
443        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
444        // Drop the extra bits.
445        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
446        return DAG.getBitcast(ValueVT, Val);
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
614                                      const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   ElementCount PartNumElts = PartVT.getVectorElementCount();
620   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
621 
622   // We only support widening vectors with equivalent element types and
623   // fixed/scalable properties. If a target needs to widen a fixed-length type
624   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
625   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
626       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
627       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
628     return SDValue();
629 
630   // Widening a scalable vector to another scalable vector is done by inserting
631   // the vector into a larger undef one.
632   if (PartNumElts.isScalable())
633     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
634                        Val, DAG.getVectorIdxConstant(0, DL));
635 
636   EVT ElementVT = PartVT.getVectorElementType();
637   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
638   // undef elements.
639   SmallVector<SDValue, 16> Ops;
640   DAG.ExtractVectorElements(Val, Ops);
641   SDValue EltUndef = DAG.getUNDEF(ElementVT);
642   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
643 
644   // FIXME: Use CONCAT for 2x -> 4x.
645   return DAG.getBuildVector(PartVT, DL, Ops);
646 }
647 
648 /// getCopyToPartsVector - Create a series of nodes that contain the specified
649 /// value split into legal parts.
650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
651                                  SDValue Val, SDValue *Parts, unsigned NumParts,
652                                  MVT PartVT, const Value *V,
653                                  Optional<CallingConv::ID> CallConv) {
654   EVT ValueVT = Val.getValueType();
655   assert(ValueVT.isVector() && "Not a vector");
656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
657   const bool IsABIRegCopy = CallConv.hasValue();
658 
659   if (NumParts == 1) {
660     EVT PartEVT = PartVT;
661     if (PartEVT == ValueVT) {
662       // Nothing to do.
663     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
664       // Bitconvert vector->vector case.
665       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
666     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
667       Val = Widened;
668     } else if (PartVT.isVector() &&
669                PartEVT.getVectorElementType().bitsGE(
670                    ValueVT.getVectorElementType()) &&
671                PartEVT.getVectorElementCount() ==
672                    ValueVT.getVectorElementCount()) {
673 
674       // Promoted vector extract
675       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
676     } else if (PartEVT.isVector() &&
677                PartEVT.getVectorElementType() !=
678                    ValueVT.getVectorElementType() &&
679                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
680                    TargetLowering::TypeWidenVector) {
681       // Combination of widening and promotion.
682       EVT WidenVT =
683           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
684                            PartVT.getVectorElementCount());
685       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
686       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
687     } else {
688       if (ValueVT.getVectorElementCount().isScalar()) {
689         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
690                           DAG.getVectorIdxConstant(0, DL));
691       } else {
692         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
693         assert(PartVT.getFixedSizeInBits() > ValueSize &&
694                "lossy conversion of vector to scalar type");
695         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
696         Val = DAG.getBitcast(IntermediateType, Val);
697         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
698       }
699     }
700 
701     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
702     Parts[0] = Val;
703     return;
704   }
705 
706   // Handle a multi-element vector.
707   EVT IntermediateVT;
708   MVT RegisterVT;
709   unsigned NumIntermediates;
710   unsigned NumRegs;
711   if (IsABIRegCopy) {
712     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
713         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
714         NumIntermediates, RegisterVT);
715   } else {
716     NumRegs =
717         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
718                                    NumIntermediates, RegisterVT);
719   }
720 
721   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
722   NumParts = NumRegs; // Silence a compiler warning.
723   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
724 
725   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
726          "Mixing scalable and fixed vectors when copying in parts");
727 
728   Optional<ElementCount> DestEltCnt;
729 
730   if (IntermediateVT.isVector())
731     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
732   else
733     DestEltCnt = ElementCount::getFixed(NumIntermediates);
734 
735   EVT BuiltVectorTy = EVT::getVectorVT(
736       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
737 
738   if (ValueVT == BuiltVectorTy) {
739     // Nothing to do.
740   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
741     // Bitconvert vector->vector case.
742     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
743   } else {
744     if (BuiltVectorTy.getVectorElementType().bitsGT(
745             ValueVT.getVectorElementType())) {
746       // Integer promotion.
747       ValueVT = EVT::getVectorVT(*DAG.getContext(),
748                                  BuiltVectorTy.getVectorElementType(),
749                                  ValueVT.getVectorElementCount());
750       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
751     }
752 
753     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
754       Val = Widened;
755     }
756   }
757 
758   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
759 
760   // Split the vector into intermediate operands.
761   SmallVector<SDValue, 8> Ops(NumIntermediates);
762   for (unsigned i = 0; i != NumIntermediates; ++i) {
763     if (IntermediateVT.isVector()) {
764       // This does something sensible for scalable vectors - see the
765       // definition of EXTRACT_SUBVECTOR for further details.
766       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
767       Ops[i] =
768           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
769                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
770     } else {
771       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
772                            DAG.getVectorIdxConstant(i, DL));
773     }
774   }
775 
776   // Split the intermediate operands into legal parts.
777   if (NumParts == NumIntermediates) {
778     // If the register was not expanded, promote or copy the value,
779     // as appropriate.
780     for (unsigned i = 0; i != NumParts; ++i)
781       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
782   } else if (NumParts > 0) {
783     // If the intermediate type was expanded, split each the value into
784     // legal parts.
785     assert(NumIntermediates != 0 && "division by zero");
786     assert(NumParts % NumIntermediates == 0 &&
787            "Must expand into a divisible number of parts!");
788     unsigned Factor = NumParts / NumIntermediates;
789     for (unsigned i = 0; i != NumIntermediates; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
791                      CallConv);
792   }
793 }
794 
795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
796                            EVT valuevt, Optional<CallingConv::ID> CC)
797     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
798       RegCount(1, regs.size()), CallConv(CC) {}
799 
800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
801                            const DataLayout &DL, unsigned Reg, Type *Ty,
802                            Optional<CallingConv::ID> CC) {
803   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
804 
805   CallConv = CC;
806 
807   for (EVT ValueVT : ValueVTs) {
808     unsigned NumRegs =
809         isABIMangled()
810             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
811             : TLI.getNumRegisters(Context, ValueVT);
812     MVT RegisterVT =
813         isABIMangled()
814             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
815             : TLI.getRegisterType(Context, ValueVT);
816     for (unsigned i = 0; i != NumRegs; ++i)
817       Regs.push_back(Reg + i);
818     RegVTs.push_back(RegisterVT);
819     RegCount.push_back(NumRegs);
820     Reg += NumRegs;
821   }
822 }
823 
824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
825                                       FunctionLoweringInfo &FuncInfo,
826                                       const SDLoc &dl, SDValue &Chain,
827                                       SDValue *Flag, const Value *V) const {
828   // A Value with type {} or [0 x %t] needs no registers.
829   if (ValueVTs.empty())
830     return SDValue();
831 
832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
833 
834   // Assemble the legal parts into the final values.
835   SmallVector<SDValue, 4> Values(ValueVTs.size());
836   SmallVector<SDValue, 8> Parts;
837   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
838     // Copy the legal parts from the registers.
839     EVT ValueVT = ValueVTs[Value];
840     unsigned NumRegs = RegCount[Value];
841     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
842                                           *DAG.getContext(),
843                                           CallConv.getValue(), RegVTs[Value])
844                                     : RegVTs[Value];
845 
846     Parts.resize(NumRegs);
847     for (unsigned i = 0; i != NumRegs; ++i) {
848       SDValue P;
849       if (!Flag) {
850         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
851       } else {
852         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
853         *Flag = P.getValue(2);
854       }
855 
856       Chain = P.getValue(1);
857       Parts[i] = P;
858 
859       // If the source register was virtual and if we know something about it,
860       // add an assert node.
861       if (!Register::isVirtualRegister(Regs[Part + i]) ||
862           !RegisterVT.isInteger())
863         continue;
864 
865       const FunctionLoweringInfo::LiveOutInfo *LOI =
866         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
867       if (!LOI)
868         continue;
869 
870       unsigned RegSize = RegisterVT.getScalarSizeInBits();
871       unsigned NumSignBits = LOI->NumSignBits;
872       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
873 
874       if (NumZeroBits == RegSize) {
875         // The current value is a zero.
876         // Explicitly express that as it would be easier for
877         // optimizations to kick in.
878         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
879         continue;
880       }
881 
882       // FIXME: We capture more information than the dag can represent.  For
883       // now, just use the tightest assertzext/assertsext possible.
884       bool isSExt;
885       EVT FromVT(MVT::Other);
886       if (NumZeroBits) {
887         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
888         isSExt = false;
889       } else if (NumSignBits > 1) {
890         FromVT =
891             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
892         isSExt = true;
893       } else {
894         continue;
895       }
896       // Add an assertion node.
897       assert(FromVT != MVT::Other);
898       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
899                              RegisterVT, P, DAG.getValueType(FromVT));
900     }
901 
902     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
903                                      RegisterVT, ValueVT, V, CallConv);
904     Part += NumRegs;
905     Parts.clear();
906   }
907 
908   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
909 }
910 
911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
912                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
913                                  const Value *V,
914                                  ISD::NodeType PreferredExtendType) const {
915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
916   ISD::NodeType ExtendKind = PreferredExtendType;
917 
918   // Get the list of the values's legal parts.
919   unsigned NumRegs = Regs.size();
920   SmallVector<SDValue, 8> Parts(NumRegs);
921   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
922     unsigned NumParts = RegCount[Value];
923 
924     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
925                                           *DAG.getContext(),
926                                           CallConv.getValue(), RegVTs[Value])
927                                     : RegVTs[Value];
928 
929     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
930       ExtendKind = ISD::ZERO_EXTEND;
931 
932     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
933                    NumParts, RegisterVT, V, CallConv, ExtendKind);
934     Part += NumParts;
935   }
936 
937   // Copy the parts into the registers.
938   SmallVector<SDValue, 8> Chains(NumRegs);
939   for (unsigned i = 0; i != NumRegs; ++i) {
940     SDValue Part;
941     if (!Flag) {
942       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
943     } else {
944       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
945       *Flag = Part.getValue(1);
946     }
947 
948     Chains[i] = Part.getValue(0);
949   }
950 
951   if (NumRegs == 1 || Flag)
952     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
953     // flagged to it. That is the CopyToReg nodes and the user are considered
954     // a single scheduling unit. If we create a TokenFactor and return it as
955     // chain, then the TokenFactor is both a predecessor (operand) of the
956     // user as well as a successor (the TF operands are flagged to the user).
957     // c1, f1 = CopyToReg
958     // c2, f2 = CopyToReg
959     // c3     = TokenFactor c1, c2
960     // ...
961     //        = op c3, ..., f2
962     Chain = Chains[NumRegs-1];
963   else
964     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
965 }
966 
967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
968                                         unsigned MatchingIdx, const SDLoc &dl,
969                                         SelectionDAG &DAG,
970                                         std::vector<SDValue> &Ops) const {
971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
972 
973   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
974   if (HasMatching)
975     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
976   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
977     // Put the register class of the virtual registers in the flag word.  That
978     // way, later passes can recompute register class constraints for inline
979     // assembly as well as normal instructions.
980     // Don't do this for tied operands that can use the regclass information
981     // from the def.
982     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
983     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
984     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
985   }
986 
987   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
988   Ops.push_back(Res);
989 
990   if (Code == InlineAsm::Kind_Clobber) {
991     // Clobbers should always have a 1:1 mapping with registers, and may
992     // reference registers that have illegal (e.g. vector) types. Hence, we
993     // shouldn't try to apply any sort of splitting logic to them.
994     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
995            "No 1:1 mapping from clobbers to regs?");
996     Register SP = TLI.getStackPointerRegisterToSaveRestore();
997     (void)SP;
998     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
999       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1000       assert(
1001           (Regs[I] != SP ||
1002            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1003           "If we clobbered the stack pointer, MFI should know about it.");
1004     }
1005     return;
1006   }
1007 
1008   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1009     MVT RegisterVT = RegVTs[Value];
1010     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1011                                            RegisterVT);
1012     for (unsigned i = 0; i != NumRegs; ++i) {
1013       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1014       unsigned TheReg = Regs[Reg++];
1015       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1016     }
1017   }
1018 }
1019 
1020 SmallVector<std::pair<unsigned, TypeSize>, 4>
1021 RegsForValue::getRegsAndSizes() const {
1022   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1023   unsigned I = 0;
1024   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1025     unsigned RegCount = std::get<0>(CountAndVT);
1026     MVT RegisterVT = std::get<1>(CountAndVT);
1027     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1028     for (unsigned E = I + RegCount; I != E; ++I)
1029       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1030   }
1031   return OutVec;
1032 }
1033 
1034 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1035                                const TargetLibraryInfo *li) {
1036   AA = aa;
1037   GFI = gfi;
1038   LibInfo = li;
1039   Context = DAG.getContext();
1040   LPadToCallSiteMap.clear();
1041   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1042 }
1043 
1044 void SelectionDAGBuilder::clear() {
1045   NodeMap.clear();
1046   UnusedArgNodeMap.clear();
1047   PendingLoads.clear();
1048   PendingExports.clear();
1049   PendingConstrainedFP.clear();
1050   PendingConstrainedFPStrict.clear();
1051   CurInst = nullptr;
1052   HasTailCall = false;
1053   SDNodeOrder = LowestSDNodeOrder;
1054   StatepointLowering.clear();
1055 }
1056 
1057 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1058   DanglingDebugInfoMap.clear();
1059 }
1060 
1061 // Update DAG root to include dependencies on Pending chains.
1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1063   SDValue Root = DAG.getRoot();
1064 
1065   if (Pending.empty())
1066     return Root;
1067 
1068   // Add current root to PendingChains, unless we already indirectly
1069   // depend on it.
1070   if (Root.getOpcode() != ISD::EntryToken) {
1071     unsigned i = 0, e = Pending.size();
1072     for (; i != e; ++i) {
1073       assert(Pending[i].getNode()->getNumOperands() > 1);
1074       if (Pending[i].getNode()->getOperand(0) == Root)
1075         break;  // Don't add the root if we already indirectly depend on it.
1076     }
1077 
1078     if (i == e)
1079       Pending.push_back(Root);
1080   }
1081 
1082   if (Pending.size() == 1)
1083     Root = Pending[0];
1084   else
1085     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1086 
1087   DAG.setRoot(Root);
1088   Pending.clear();
1089   return Root;
1090 }
1091 
1092 SDValue SelectionDAGBuilder::getMemoryRoot() {
1093   return updateRoot(PendingLoads);
1094 }
1095 
1096 SDValue SelectionDAGBuilder::getRoot() {
1097   // Chain up all pending constrained intrinsics together with all
1098   // pending loads, by simply appending them to PendingLoads and
1099   // then calling getMemoryRoot().
1100   PendingLoads.reserve(PendingLoads.size() +
1101                        PendingConstrainedFP.size() +
1102                        PendingConstrainedFPStrict.size());
1103   PendingLoads.append(PendingConstrainedFP.begin(),
1104                       PendingConstrainedFP.end());
1105   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1106                       PendingConstrainedFPStrict.end());
1107   PendingConstrainedFP.clear();
1108   PendingConstrainedFPStrict.clear();
1109   return getMemoryRoot();
1110 }
1111 
1112 SDValue SelectionDAGBuilder::getControlRoot() {
1113   // We need to emit pending fpexcept.strict constrained intrinsics,
1114   // so append them to the PendingExports list.
1115   PendingExports.append(PendingConstrainedFPStrict.begin(),
1116                         PendingConstrainedFPStrict.end());
1117   PendingConstrainedFPStrict.clear();
1118   return updateRoot(PendingExports);
1119 }
1120 
1121 void SelectionDAGBuilder::visit(const Instruction &I) {
1122   // Set up outgoing PHI node register values before emitting the terminator.
1123   if (I.isTerminator()) {
1124     HandlePHINodesInSuccessorBlocks(I.getParent());
1125   }
1126 
1127   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1128   if (!isa<DbgInfoIntrinsic>(I))
1129     ++SDNodeOrder;
1130 
1131   CurInst = &I;
1132 
1133   visit(I.getOpcode(), I);
1134 
1135   if (!I.isTerminator() && !HasTailCall &&
1136       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1137     CopyToExportRegsIfNeeded(&I);
1138 
1139   CurInst = nullptr;
1140 }
1141 
1142 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1143   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1144 }
1145 
1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1147   // Note: this doesn't use InstVisitor, because it has to work with
1148   // ConstantExpr's in addition to instructions.
1149   switch (Opcode) {
1150   default: llvm_unreachable("Unknown instruction type encountered!");
1151     // Build the switch statement using the Instruction.def file.
1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1153     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1154 #include "llvm/IR/Instruction.def"
1155   }
1156 }
1157 
1158 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1159                                                DebugLoc DL, unsigned Order) {
1160   // We treat variadic dbg_values differently at this stage.
1161   if (DI->hasArgList()) {
1162     // For variadic dbg_values we will now insert an undef.
1163     // FIXME: We can potentially recover these!
1164     SmallVector<SDDbgOperand, 2> Locs;
1165     for (const Value *V : DI->getValues()) {
1166       auto Undef = UndefValue::get(V->getType());
1167       Locs.push_back(SDDbgOperand::fromConst(Undef));
1168     }
1169     SDDbgValue *SDV = DAG.getDbgValueList(
1170         DI->getVariable(), DI->getExpression(), Locs, {},
1171         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1172     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1173   } else {
1174     // TODO: Dangling debug info will eventually either be resolved or produce
1175     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1176     // between the original dbg.value location and its resolved DBG_VALUE,
1177     // which we should ideally fill with an extra Undef DBG_VALUE.
1178     assert(DI->getNumVariableLocationOps() == 1 &&
1179            "DbgValueInst without an ArgList should have a single location "
1180            "operand.");
1181     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1182   }
1183 }
1184 
1185 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1186                                                 const DIExpression *Expr) {
1187   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1188     const DbgValueInst *DI = DDI.getDI();
1189     DIVariable *DanglingVariable = DI->getVariable();
1190     DIExpression *DanglingExpr = DI->getExpression();
1191     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1192       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1193       return true;
1194     }
1195     return false;
1196   };
1197 
1198   for (auto &DDIMI : DanglingDebugInfoMap) {
1199     DanglingDebugInfoVector &DDIV = DDIMI.second;
1200 
1201     // If debug info is to be dropped, run it through final checks to see
1202     // whether it can be salvaged.
1203     for (auto &DDI : DDIV)
1204       if (isMatchingDbgValue(DDI))
1205         salvageUnresolvedDbgValue(DDI);
1206 
1207     erase_if(DDIV, isMatchingDbgValue);
1208   }
1209 }
1210 
1211 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1212 // generate the debug data structures now that we've seen its definition.
1213 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1214                                                    SDValue Val) {
1215   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1216   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1217     return;
1218 
1219   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1220   for (auto &DDI : DDIV) {
1221     const DbgValueInst *DI = DDI.getDI();
1222     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1223     assert(DI && "Ill-formed DanglingDebugInfo");
1224     DebugLoc dl = DDI.getdl();
1225     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1226     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1227     DILocalVariable *Variable = DI->getVariable();
1228     DIExpression *Expr = DI->getExpression();
1229     assert(Variable->isValidLocationForIntrinsic(dl) &&
1230            "Expected inlined-at fields to agree");
1231     SDDbgValue *SDV;
1232     if (Val.getNode()) {
1233       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1234       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1235       // we couldn't resolve it directly when examining the DbgValue intrinsic
1236       // in the first place we should not be more successful here). Unless we
1237       // have some test case that prove this to be correct we should avoid
1238       // calling EmitFuncArgumentDbgValue here.
1239       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1240         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1241                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1242         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1243         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1244         // inserted after the definition of Val when emitting the instructions
1245         // after ISel. An alternative could be to teach
1246         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1247         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1248                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1249                    << ValSDNodeOrder << "\n");
1250         SDV = getDbgValue(Val, Variable, Expr, dl,
1251                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1252         DAG.AddDbgValue(SDV, false);
1253       } else
1254         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1255                           << "in EmitFuncArgumentDbgValue\n");
1256     } else {
1257       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1258       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1259       auto SDV =
1260           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1261       DAG.AddDbgValue(SDV, false);
1262     }
1263   }
1264   DDIV.clear();
1265 }
1266 
1267 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1268   // TODO: For the variadic implementation, instead of only checking the fail
1269   // state of `handleDebugValue`, we need know specifically which values were
1270   // invalid, so that we attempt to salvage only those values when processing
1271   // a DIArgList.
1272   assert(!DDI.getDI()->hasArgList() &&
1273          "Not implemented for variadic dbg_values");
1274   Value *V = DDI.getDI()->getValue(0);
1275   DILocalVariable *Var = DDI.getDI()->getVariable();
1276   DIExpression *Expr = DDI.getDI()->getExpression();
1277   DebugLoc DL = DDI.getdl();
1278   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1279   unsigned SDOrder = DDI.getSDNodeOrder();
1280   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1281   // that DW_OP_stack_value is desired.
1282   assert(isa<DbgValueInst>(DDI.getDI()));
1283   bool StackValue = true;
1284 
1285   // Can this Value can be encoded without any further work?
1286   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1287     return;
1288 
1289   // Attempt to salvage back through as many instructions as possible. Bail if
1290   // a non-instruction is seen, such as a constant expression or global
1291   // variable. FIXME: Further work could recover those too.
1292   while (isa<Instruction>(V)) {
1293     Instruction &VAsInst = *cast<Instruction>(V);
1294     // Temporary "0", awaiting real implementation.
1295     SmallVector<uint64_t, 16> Ops;
1296     SmallVector<Value *, 4> AdditionalValues;
1297     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1298                              AdditionalValues);
1299     // If we cannot salvage any further, and haven't yet found a suitable debug
1300     // expression, bail out.
1301     if (!V)
1302       break;
1303 
1304     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1305     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1306     // here for variadic dbg_values, remove that condition.
1307     if (!AdditionalValues.empty())
1308       break;
1309 
1310     // New value and expr now represent this debuginfo.
1311     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1312 
1313     // Some kind of simplification occurred: check whether the operand of the
1314     // salvaged debug expression can be encoded in this DAG.
1315     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1316                          /*IsVariadic=*/false)) {
1317       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1318                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1319       return;
1320     }
1321   }
1322 
1323   // This was the final opportunity to salvage this debug information, and it
1324   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1325   // any earlier variable location.
1326   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1327   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1328   DAG.AddDbgValue(SDV, false);
1329 
1330   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1331                     << "\n");
1332   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1333                     << "\n");
1334 }
1335 
1336 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1337                                            DILocalVariable *Var,
1338                                            DIExpression *Expr, DebugLoc dl,
1339                                            DebugLoc InstDL, unsigned Order,
1340                                            bool IsVariadic) {
1341   if (Values.empty())
1342     return true;
1343   SmallVector<SDDbgOperand> LocationOps;
1344   SmallVector<SDNode *> Dependencies;
1345   for (const Value *V : Values) {
1346     // Constant value.
1347     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1348         isa<ConstantPointerNull>(V)) {
1349       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1350       continue;
1351     }
1352 
1353     // If the Value is a frame index, we can create a FrameIndex debug value
1354     // without relying on the DAG at all.
1355     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1356       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1357       if (SI != FuncInfo.StaticAllocaMap.end()) {
1358         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1359         continue;
1360       }
1361     }
1362 
1363     // Do not use getValue() in here; we don't want to generate code at
1364     // this point if it hasn't been done yet.
1365     SDValue N = NodeMap[V];
1366     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1367       N = UnusedArgNodeMap[V];
1368     if (N.getNode()) {
1369       // Only emit func arg dbg value for non-variadic dbg.values for now.
1370       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1371         return true;
1372       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1373         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1374         // describe stack slot locations.
1375         //
1376         // Consider "int x = 0; int *px = &x;". There are two kinds of
1377         // interesting debug values here after optimization:
1378         //
1379         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1380         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1381         //
1382         // Both describe the direct values of their associated variables.
1383         Dependencies.push_back(N.getNode());
1384         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1385         continue;
1386       }
1387       LocationOps.emplace_back(
1388           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1389       continue;
1390     }
1391 
1392     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1393     // Special rules apply for the first dbg.values of parameter variables in a
1394     // function. Identify them by the fact they reference Argument Values, that
1395     // they're parameters, and they are parameters of the current function. We
1396     // need to let them dangle until they get an SDNode.
1397     bool IsParamOfFunc =
1398         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1399     if (IsParamOfFunc)
1400       return false;
1401 
1402     // The value is not used in this block yet (or it would have an SDNode).
1403     // We still want the value to appear for the user if possible -- if it has
1404     // an associated VReg, we can refer to that instead.
1405     auto VMI = FuncInfo.ValueMap.find(V);
1406     if (VMI != FuncInfo.ValueMap.end()) {
1407       unsigned Reg = VMI->second;
1408       // If this is a PHI node, it may be split up into several MI PHI nodes
1409       // (in FunctionLoweringInfo::set).
1410       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1411                        V->getType(), None);
1412       if (RFV.occupiesMultipleRegs()) {
1413         // FIXME: We could potentially support variadic dbg_values here.
1414         if (IsVariadic)
1415           return false;
1416         unsigned Offset = 0;
1417         unsigned BitsToDescribe = 0;
1418         if (auto VarSize = Var->getSizeInBits())
1419           BitsToDescribe = *VarSize;
1420         if (auto Fragment = Expr->getFragmentInfo())
1421           BitsToDescribe = Fragment->SizeInBits;
1422         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1423           // Bail out if all bits are described already.
1424           if (Offset >= BitsToDescribe)
1425             break;
1426           // TODO: handle scalable vectors.
1427           unsigned RegisterSize = RegAndSize.second;
1428           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1429                                       ? BitsToDescribe - Offset
1430                                       : RegisterSize;
1431           auto FragmentExpr = DIExpression::createFragmentExpression(
1432               Expr, Offset, FragmentSize);
1433           if (!FragmentExpr)
1434             continue;
1435           SDDbgValue *SDV = DAG.getVRegDbgValue(
1436               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1437           DAG.AddDbgValue(SDV, false);
1438           Offset += RegisterSize;
1439         }
1440         return true;
1441       }
1442       // We can use simple vreg locations for variadic dbg_values as well.
1443       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1444       continue;
1445     }
1446     // We failed to create a SDDbgOperand for V.
1447     return false;
1448   }
1449 
1450   // We have created a SDDbgOperand for each Value in Values.
1451   // Should use Order instead of SDNodeOrder?
1452   assert(!LocationOps.empty());
1453   SDDbgValue *SDV =
1454       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1455                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1456   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1457   return true;
1458 }
1459 
1460 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1461   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1462   for (auto &Pair : DanglingDebugInfoMap)
1463     for (auto &DDI : Pair.second)
1464       salvageUnresolvedDbgValue(DDI);
1465   clearDanglingDebugInfo();
1466 }
1467 
1468 /// getCopyFromRegs - If there was virtual register allocated for the value V
1469 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1470 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1471   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1472   SDValue Result;
1473 
1474   if (It != FuncInfo.ValueMap.end()) {
1475     Register InReg = It->second;
1476 
1477     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1478                      DAG.getDataLayout(), InReg, Ty,
1479                      None); // This is not an ABI copy.
1480     SDValue Chain = DAG.getEntryNode();
1481     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1482                                  V);
1483     resolveDanglingDebugInfo(V, Result);
1484   }
1485 
1486   return Result;
1487 }
1488 
1489 /// getValue - Return an SDValue for the given Value.
1490 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1491   // If we already have an SDValue for this value, use it. It's important
1492   // to do this first, so that we don't create a CopyFromReg if we already
1493   // have a regular SDValue.
1494   SDValue &N = NodeMap[V];
1495   if (N.getNode()) return N;
1496 
1497   // If there's a virtual register allocated and initialized for this
1498   // value, use it.
1499   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1500     return copyFromReg;
1501 
1502   // Otherwise create a new SDValue and remember it.
1503   SDValue Val = getValueImpl(V);
1504   NodeMap[V] = Val;
1505   resolveDanglingDebugInfo(V, Val);
1506   return Val;
1507 }
1508 
1509 /// getNonRegisterValue - Return an SDValue for the given Value, but
1510 /// don't look in FuncInfo.ValueMap for a virtual register.
1511 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1512   // If we already have an SDValue for this value, use it.
1513   SDValue &N = NodeMap[V];
1514   if (N.getNode()) {
1515     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1516       // Remove the debug location from the node as the node is about to be used
1517       // in a location which may differ from the original debug location.  This
1518       // is relevant to Constant and ConstantFP nodes because they can appear
1519       // as constant expressions inside PHI nodes.
1520       N->setDebugLoc(DebugLoc());
1521     }
1522     return N;
1523   }
1524 
1525   // Otherwise create a new SDValue and remember it.
1526   SDValue Val = getValueImpl(V);
1527   NodeMap[V] = Val;
1528   resolveDanglingDebugInfo(V, Val);
1529   return Val;
1530 }
1531 
1532 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1533 /// Create an SDValue for the given value.
1534 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1536 
1537   if (const Constant *C = dyn_cast<Constant>(V)) {
1538     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1539 
1540     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1541       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1542 
1543     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1544       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1545 
1546     if (isa<ConstantPointerNull>(C)) {
1547       unsigned AS = V->getType()->getPointerAddressSpace();
1548       return DAG.getConstant(0, getCurSDLoc(),
1549                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1550     }
1551 
1552     if (match(C, m_VScale(DAG.getDataLayout())))
1553       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1554 
1555     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1556       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1557 
1558     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1559       return DAG.getUNDEF(VT);
1560 
1561     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1562       visit(CE->getOpcode(), *CE);
1563       SDValue N1 = NodeMap[V];
1564       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1565       return N1;
1566     }
1567 
1568     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1569       SmallVector<SDValue, 4> Constants;
1570       for (const Use &U : C->operands()) {
1571         SDNode *Val = getValue(U).getNode();
1572         // If the operand is an empty aggregate, there are no values.
1573         if (!Val) continue;
1574         // Add each leaf value from the operand to the Constants list
1575         // to form a flattened list of all the values.
1576         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1577           Constants.push_back(SDValue(Val, i));
1578       }
1579 
1580       return DAG.getMergeValues(Constants, getCurSDLoc());
1581     }
1582 
1583     if (const ConstantDataSequential *CDS =
1584           dyn_cast<ConstantDataSequential>(C)) {
1585       SmallVector<SDValue, 4> Ops;
1586       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1587         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1588         // Add each leaf value from the operand to the Constants list
1589         // to form a flattened list of all the values.
1590         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1591           Ops.push_back(SDValue(Val, i));
1592       }
1593 
1594       if (isa<ArrayType>(CDS->getType()))
1595         return DAG.getMergeValues(Ops, getCurSDLoc());
1596       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1597     }
1598 
1599     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1600       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1601              "Unknown struct or array constant!");
1602 
1603       SmallVector<EVT, 4> ValueVTs;
1604       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1605       unsigned NumElts = ValueVTs.size();
1606       if (NumElts == 0)
1607         return SDValue(); // empty struct
1608       SmallVector<SDValue, 4> Constants(NumElts);
1609       for (unsigned i = 0; i != NumElts; ++i) {
1610         EVT EltVT = ValueVTs[i];
1611         if (isa<UndefValue>(C))
1612           Constants[i] = DAG.getUNDEF(EltVT);
1613         else if (EltVT.isFloatingPoint())
1614           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1615         else
1616           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1617       }
1618 
1619       return DAG.getMergeValues(Constants, getCurSDLoc());
1620     }
1621 
1622     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1623       return DAG.getBlockAddress(BA, VT);
1624 
1625     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1626       return getValue(Equiv->getGlobalValue());
1627 
1628     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1629       return getValue(NC->getGlobalValue());
1630 
1631     VectorType *VecTy = cast<VectorType>(V->getType());
1632 
1633     // Now that we know the number and type of the elements, get that number of
1634     // elements into the Ops array based on what kind of constant it is.
1635     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1636       SmallVector<SDValue, 16> Ops;
1637       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1638       for (unsigned i = 0; i != NumElements; ++i)
1639         Ops.push_back(getValue(CV->getOperand(i)));
1640 
1641       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1642     } else if (isa<ConstantAggregateZero>(C)) {
1643       EVT EltVT =
1644           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1645 
1646       SDValue Op;
1647       if (EltVT.isFloatingPoint())
1648         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1649       else
1650         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1651 
1652       if (isa<ScalableVectorType>(VecTy))
1653         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1654       else {
1655         SmallVector<SDValue, 16> Ops;
1656         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1657         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1658       }
1659     }
1660     llvm_unreachable("Unknown vector constant");
1661   }
1662 
1663   // If this is a static alloca, generate it as the frameindex instead of
1664   // computation.
1665   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1666     DenseMap<const AllocaInst*, int>::iterator SI =
1667       FuncInfo.StaticAllocaMap.find(AI);
1668     if (SI != FuncInfo.StaticAllocaMap.end())
1669       return DAG.getFrameIndex(SI->second,
1670                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1671   }
1672 
1673   // If this is an instruction which fast-isel has deferred, select it now.
1674   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1675     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1676 
1677     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1678                      Inst->getType(), None);
1679     SDValue Chain = DAG.getEntryNode();
1680     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1681   }
1682 
1683   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1684     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1685   }
1686   if (const auto *BB = dyn_cast<BasicBlock>(V))
1687     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1688   llvm_unreachable("Can't get register for value!");
1689 }
1690 
1691 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1692   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1693   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1694   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1695   bool IsSEH = isAsynchronousEHPersonality(Pers);
1696   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1697   if (!IsSEH)
1698     CatchPadMBB->setIsEHScopeEntry();
1699   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1700   if (IsMSVCCXX || IsCoreCLR)
1701     CatchPadMBB->setIsEHFuncletEntry();
1702 }
1703 
1704 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1705   // Update machine-CFG edge.
1706   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1707   FuncInfo.MBB->addSuccessor(TargetMBB);
1708   TargetMBB->setIsEHCatchretTarget(true);
1709   DAG.getMachineFunction().setHasEHCatchret(true);
1710 
1711   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1712   bool IsSEH = isAsynchronousEHPersonality(Pers);
1713   if (IsSEH) {
1714     // If this is not a fall-through branch or optimizations are switched off,
1715     // emit the branch.
1716     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1717         TM.getOptLevel() == CodeGenOpt::None)
1718       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1719                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1720     return;
1721   }
1722 
1723   // Figure out the funclet membership for the catchret's successor.
1724   // This will be used by the FuncletLayout pass to determine how to order the
1725   // BB's.
1726   // A 'catchret' returns to the outer scope's color.
1727   Value *ParentPad = I.getCatchSwitchParentPad();
1728   const BasicBlock *SuccessorColor;
1729   if (isa<ConstantTokenNone>(ParentPad))
1730     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1731   else
1732     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1733   assert(SuccessorColor && "No parent funclet for catchret!");
1734   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1735   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1736 
1737   // Create the terminator node.
1738   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1739                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1740                             DAG.getBasicBlock(SuccessorColorMBB));
1741   DAG.setRoot(Ret);
1742 }
1743 
1744 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1745   // Don't emit any special code for the cleanuppad instruction. It just marks
1746   // the start of an EH scope/funclet.
1747   FuncInfo.MBB->setIsEHScopeEntry();
1748   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1749   if (Pers != EHPersonality::Wasm_CXX) {
1750     FuncInfo.MBB->setIsEHFuncletEntry();
1751     FuncInfo.MBB->setIsCleanupFuncletEntry();
1752   }
1753 }
1754 
1755 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1756 // not match, it is OK to add only the first unwind destination catchpad to the
1757 // successors, because there will be at least one invoke instruction within the
1758 // catch scope that points to the next unwind destination, if one exists, so
1759 // CFGSort cannot mess up with BB sorting order.
1760 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1761 // call within them, and catchpads only consisting of 'catch (...)' have a
1762 // '__cxa_end_catch' call within them, both of which generate invokes in case
1763 // the next unwind destination exists, i.e., the next unwind destination is not
1764 // the caller.)
1765 //
1766 // Having at most one EH pad successor is also simpler and helps later
1767 // transformations.
1768 //
1769 // For example,
1770 // current:
1771 //   invoke void @foo to ... unwind label %catch.dispatch
1772 // catch.dispatch:
1773 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1774 // catch.start:
1775 //   ...
1776 //   ... in this BB or some other child BB dominated by this BB there will be an
1777 //   invoke that points to 'next' BB as an unwind destination
1778 //
1779 // next: ; We don't need to add this to 'current' BB's successor
1780 //   ...
1781 static void findWasmUnwindDestinations(
1782     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1783     BranchProbability Prob,
1784     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1785         &UnwindDests) {
1786   while (EHPadBB) {
1787     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1788     if (isa<CleanupPadInst>(Pad)) {
1789       // Stop on cleanup pads.
1790       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1791       UnwindDests.back().first->setIsEHScopeEntry();
1792       break;
1793     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1794       // Add the catchpad handlers to the possible destinations. We don't
1795       // continue to the unwind destination of the catchswitch for wasm.
1796       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1797         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1798         UnwindDests.back().first->setIsEHScopeEntry();
1799       }
1800       break;
1801     } else {
1802       continue;
1803     }
1804   }
1805 }
1806 
1807 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1808 /// many places it could ultimately go. In the IR, we have a single unwind
1809 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1810 /// This function skips over imaginary basic blocks that hold catchswitch
1811 /// instructions, and finds all the "real" machine
1812 /// basic block destinations. As those destinations may not be successors of
1813 /// EHPadBB, here we also calculate the edge probability to those destinations.
1814 /// The passed-in Prob is the edge probability to EHPadBB.
1815 static void findUnwindDestinations(
1816     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1817     BranchProbability Prob,
1818     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1819         &UnwindDests) {
1820   EHPersonality Personality =
1821     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1822   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1823   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1824   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1825   bool IsSEH = isAsynchronousEHPersonality(Personality);
1826 
1827   if (IsWasmCXX) {
1828     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1829     assert(UnwindDests.size() <= 1 &&
1830            "There should be at most one unwind destination for wasm");
1831     return;
1832   }
1833 
1834   while (EHPadBB) {
1835     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1836     BasicBlock *NewEHPadBB = nullptr;
1837     if (isa<LandingPadInst>(Pad)) {
1838       // Stop on landingpads. They are not funclets.
1839       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1840       break;
1841     } else if (isa<CleanupPadInst>(Pad)) {
1842       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1843       // personalities.
1844       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1845       UnwindDests.back().first->setIsEHScopeEntry();
1846       UnwindDests.back().first->setIsEHFuncletEntry();
1847       break;
1848     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1849       // Add the catchpad handlers to the possible destinations.
1850       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1851         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1852         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1853         if (IsMSVCCXX || IsCoreCLR)
1854           UnwindDests.back().first->setIsEHFuncletEntry();
1855         if (!IsSEH)
1856           UnwindDests.back().first->setIsEHScopeEntry();
1857       }
1858       NewEHPadBB = CatchSwitch->getUnwindDest();
1859     } else {
1860       continue;
1861     }
1862 
1863     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1864     if (BPI && NewEHPadBB)
1865       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1866     EHPadBB = NewEHPadBB;
1867   }
1868 }
1869 
1870 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1871   // Update successor info.
1872   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1873   auto UnwindDest = I.getUnwindDest();
1874   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1875   BranchProbability UnwindDestProb =
1876       (BPI && UnwindDest)
1877           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1878           : BranchProbability::getZero();
1879   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1880   for (auto &UnwindDest : UnwindDests) {
1881     UnwindDest.first->setIsEHPad();
1882     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1883   }
1884   FuncInfo.MBB->normalizeSuccProbs();
1885 
1886   // Create the terminator node.
1887   SDValue Ret =
1888       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1889   DAG.setRoot(Ret);
1890 }
1891 
1892 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1893   report_fatal_error("visitCatchSwitch not yet implemented!");
1894 }
1895 
1896 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1898   auto &DL = DAG.getDataLayout();
1899   SDValue Chain = getControlRoot();
1900   SmallVector<ISD::OutputArg, 8> Outs;
1901   SmallVector<SDValue, 8> OutVals;
1902 
1903   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1904   // lower
1905   //
1906   //   %val = call <ty> @llvm.experimental.deoptimize()
1907   //   ret <ty> %val
1908   //
1909   // differently.
1910   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1911     LowerDeoptimizingReturn();
1912     return;
1913   }
1914 
1915   if (!FuncInfo.CanLowerReturn) {
1916     unsigned DemoteReg = FuncInfo.DemoteRegister;
1917     const Function *F = I.getParent()->getParent();
1918 
1919     // Emit a store of the return value through the virtual register.
1920     // Leave Outs empty so that LowerReturn won't try to load return
1921     // registers the usual way.
1922     SmallVector<EVT, 1> PtrValueVTs;
1923     ComputeValueVTs(TLI, DL,
1924                     F->getReturnType()->getPointerTo(
1925                         DAG.getDataLayout().getAllocaAddrSpace()),
1926                     PtrValueVTs);
1927 
1928     SDValue RetPtr =
1929         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1930     SDValue RetOp = getValue(I.getOperand(0));
1931 
1932     SmallVector<EVT, 4> ValueVTs, MemVTs;
1933     SmallVector<uint64_t, 4> Offsets;
1934     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1935                     &Offsets);
1936     unsigned NumValues = ValueVTs.size();
1937 
1938     SmallVector<SDValue, 4> Chains(NumValues);
1939     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1940     for (unsigned i = 0; i != NumValues; ++i) {
1941       // An aggregate return value cannot wrap around the address space, so
1942       // offsets to its parts don't wrap either.
1943       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1944                                            TypeSize::Fixed(Offsets[i]));
1945 
1946       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1947       if (MemVTs[i] != ValueVTs[i])
1948         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1949       Chains[i] = DAG.getStore(
1950           Chain, getCurSDLoc(), Val,
1951           // FIXME: better loc info would be nice.
1952           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1953           commonAlignment(BaseAlign, Offsets[i]));
1954     }
1955 
1956     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1957                         MVT::Other, Chains);
1958   } else if (I.getNumOperands() != 0) {
1959     SmallVector<EVT, 4> ValueVTs;
1960     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1961     unsigned NumValues = ValueVTs.size();
1962     if (NumValues) {
1963       SDValue RetOp = getValue(I.getOperand(0));
1964 
1965       const Function *F = I.getParent()->getParent();
1966 
1967       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1968           I.getOperand(0)->getType(), F->getCallingConv(),
1969           /*IsVarArg*/ false, DL);
1970 
1971       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1972       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1973         ExtendKind = ISD::SIGN_EXTEND;
1974       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1975         ExtendKind = ISD::ZERO_EXTEND;
1976 
1977       LLVMContext &Context = F->getContext();
1978       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1979 
1980       for (unsigned j = 0; j != NumValues; ++j) {
1981         EVT VT = ValueVTs[j];
1982 
1983         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1984           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1985 
1986         CallingConv::ID CC = F->getCallingConv();
1987 
1988         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1989         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1990         SmallVector<SDValue, 4> Parts(NumParts);
1991         getCopyToParts(DAG, getCurSDLoc(),
1992                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1993                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1994 
1995         // 'inreg' on function refers to return value
1996         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1997         if (RetInReg)
1998           Flags.setInReg();
1999 
2000         if (I.getOperand(0)->getType()->isPointerTy()) {
2001           Flags.setPointer();
2002           Flags.setPointerAddrSpace(
2003               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2004         }
2005 
2006         if (NeedsRegBlock) {
2007           Flags.setInConsecutiveRegs();
2008           if (j == NumValues - 1)
2009             Flags.setInConsecutiveRegsLast();
2010         }
2011 
2012         // Propagate extension type if any
2013         if (ExtendKind == ISD::SIGN_EXTEND)
2014           Flags.setSExt();
2015         else if (ExtendKind == ISD::ZERO_EXTEND)
2016           Flags.setZExt();
2017 
2018         for (unsigned i = 0; i < NumParts; ++i) {
2019           Outs.push_back(ISD::OutputArg(Flags,
2020                                         Parts[i].getValueType().getSimpleVT(),
2021                                         VT, /*isfixed=*/true, 0, 0));
2022           OutVals.push_back(Parts[i]);
2023         }
2024       }
2025     }
2026   }
2027 
2028   // Push in swifterror virtual register as the last element of Outs. This makes
2029   // sure swifterror virtual register will be returned in the swifterror
2030   // physical register.
2031   const Function *F = I.getParent()->getParent();
2032   if (TLI.supportSwiftError() &&
2033       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2034     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2035     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2036     Flags.setSwiftError();
2037     Outs.push_back(ISD::OutputArg(
2038         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2039         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2040     // Create SDNode for the swifterror virtual register.
2041     OutVals.push_back(
2042         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2043                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2044                         EVT(TLI.getPointerTy(DL))));
2045   }
2046 
2047   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2048   CallingConv::ID CallConv =
2049     DAG.getMachineFunction().getFunction().getCallingConv();
2050   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2051       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2052 
2053   // Verify that the target's LowerReturn behaved as expected.
2054   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2055          "LowerReturn didn't return a valid chain!");
2056 
2057   // Update the DAG with the new chain value resulting from return lowering.
2058   DAG.setRoot(Chain);
2059 }
2060 
2061 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2062 /// created for it, emit nodes to copy the value into the virtual
2063 /// registers.
2064 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2065   // Skip empty types
2066   if (V->getType()->isEmptyTy())
2067     return;
2068 
2069   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2070   if (VMI != FuncInfo.ValueMap.end()) {
2071     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2072     CopyValueToVirtualRegister(V, VMI->second);
2073   }
2074 }
2075 
2076 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2077 /// the current basic block, add it to ValueMap now so that we'll get a
2078 /// CopyTo/FromReg.
2079 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2080   // No need to export constants.
2081   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2082 
2083   // Already exported?
2084   if (FuncInfo.isExportedInst(V)) return;
2085 
2086   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2087   CopyValueToVirtualRegister(V, Reg);
2088 }
2089 
2090 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2091                                                      const BasicBlock *FromBB) {
2092   // The operands of the setcc have to be in this block.  We don't know
2093   // how to export them from some other block.
2094   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2095     // Can export from current BB.
2096     if (VI->getParent() == FromBB)
2097       return true;
2098 
2099     // Is already exported, noop.
2100     return FuncInfo.isExportedInst(V);
2101   }
2102 
2103   // If this is an argument, we can export it if the BB is the entry block or
2104   // if it is already exported.
2105   if (isa<Argument>(V)) {
2106     if (FromBB->isEntryBlock())
2107       return true;
2108 
2109     // Otherwise, can only export this if it is already exported.
2110     return FuncInfo.isExportedInst(V);
2111   }
2112 
2113   // Otherwise, constants can always be exported.
2114   return true;
2115 }
2116 
2117 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2118 BranchProbability
2119 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2120                                         const MachineBasicBlock *Dst) const {
2121   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2122   const BasicBlock *SrcBB = Src->getBasicBlock();
2123   const BasicBlock *DstBB = Dst->getBasicBlock();
2124   if (!BPI) {
2125     // If BPI is not available, set the default probability as 1 / N, where N is
2126     // the number of successors.
2127     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2128     return BranchProbability(1, SuccSize);
2129   }
2130   return BPI->getEdgeProbability(SrcBB, DstBB);
2131 }
2132 
2133 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2134                                                MachineBasicBlock *Dst,
2135                                                BranchProbability Prob) {
2136   if (!FuncInfo.BPI)
2137     Src->addSuccessorWithoutProb(Dst);
2138   else {
2139     if (Prob.isUnknown())
2140       Prob = getEdgeProbability(Src, Dst);
2141     Src->addSuccessor(Dst, Prob);
2142   }
2143 }
2144 
2145 static bool InBlock(const Value *V, const BasicBlock *BB) {
2146   if (const Instruction *I = dyn_cast<Instruction>(V))
2147     return I->getParent() == BB;
2148   return true;
2149 }
2150 
2151 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2152 /// This function emits a branch and is used at the leaves of an OR or an
2153 /// AND operator tree.
2154 void
2155 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2156                                                   MachineBasicBlock *TBB,
2157                                                   MachineBasicBlock *FBB,
2158                                                   MachineBasicBlock *CurBB,
2159                                                   MachineBasicBlock *SwitchBB,
2160                                                   BranchProbability TProb,
2161                                                   BranchProbability FProb,
2162                                                   bool InvertCond) {
2163   const BasicBlock *BB = CurBB->getBasicBlock();
2164 
2165   // If the leaf of the tree is a comparison, merge the condition into
2166   // the caseblock.
2167   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2168     // The operands of the cmp have to be in this block.  We don't know
2169     // how to export them from some other block.  If this is the first block
2170     // of the sequence, no exporting is needed.
2171     if (CurBB == SwitchBB ||
2172         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2173          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2174       ISD::CondCode Condition;
2175       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2176         ICmpInst::Predicate Pred =
2177             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2178         Condition = getICmpCondCode(Pred);
2179       } else {
2180         const FCmpInst *FC = cast<FCmpInst>(Cond);
2181         FCmpInst::Predicate Pred =
2182             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2183         Condition = getFCmpCondCode(Pred);
2184         if (TM.Options.NoNaNsFPMath)
2185           Condition = getFCmpCodeWithoutNaN(Condition);
2186       }
2187 
2188       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2189                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2190       SL->SwitchCases.push_back(CB);
2191       return;
2192     }
2193   }
2194 
2195   // Create a CaseBlock record representing this branch.
2196   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2197   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2198                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2199   SL->SwitchCases.push_back(CB);
2200 }
2201 
2202 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2203                                                MachineBasicBlock *TBB,
2204                                                MachineBasicBlock *FBB,
2205                                                MachineBasicBlock *CurBB,
2206                                                MachineBasicBlock *SwitchBB,
2207                                                Instruction::BinaryOps Opc,
2208                                                BranchProbability TProb,
2209                                                BranchProbability FProb,
2210                                                bool InvertCond) {
2211   // Skip over not part of the tree and remember to invert op and operands at
2212   // next level.
2213   Value *NotCond;
2214   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2215       InBlock(NotCond, CurBB->getBasicBlock())) {
2216     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2217                          !InvertCond);
2218     return;
2219   }
2220 
2221   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2222   const Value *BOpOp0, *BOpOp1;
2223   // Compute the effective opcode for Cond, taking into account whether it needs
2224   // to be inverted, e.g.
2225   //   and (not (or A, B)), C
2226   // gets lowered as
2227   //   and (and (not A, not B), C)
2228   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2229   if (BOp) {
2230     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2231                ? Instruction::And
2232                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2233                       ? Instruction::Or
2234                       : (Instruction::BinaryOps)0);
2235     if (InvertCond) {
2236       if (BOpc == Instruction::And)
2237         BOpc = Instruction::Or;
2238       else if (BOpc == Instruction::Or)
2239         BOpc = Instruction::And;
2240     }
2241   }
2242 
2243   // If this node is not part of the or/and tree, emit it as a branch.
2244   // Note that all nodes in the tree should have same opcode.
2245   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2246   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2247       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2248       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2249     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2250                                  TProb, FProb, InvertCond);
2251     return;
2252   }
2253 
2254   //  Create TmpBB after CurBB.
2255   MachineFunction::iterator BBI(CurBB);
2256   MachineFunction &MF = DAG.getMachineFunction();
2257   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2258   CurBB->getParent()->insert(++BBI, TmpBB);
2259 
2260   if (Opc == Instruction::Or) {
2261     // Codegen X | Y as:
2262     // BB1:
2263     //   jmp_if_X TBB
2264     //   jmp TmpBB
2265     // TmpBB:
2266     //   jmp_if_Y TBB
2267     //   jmp FBB
2268     //
2269 
2270     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2271     // The requirement is that
2272     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2273     //     = TrueProb for original BB.
2274     // Assuming the original probabilities are A and B, one choice is to set
2275     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2276     // A/(1+B) and 2B/(1+B). This choice assumes that
2277     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2278     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2279     // TmpBB, but the math is more complicated.
2280 
2281     auto NewTrueProb = TProb / 2;
2282     auto NewFalseProb = TProb / 2 + FProb;
2283     // Emit the LHS condition.
2284     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2285                          NewFalseProb, InvertCond);
2286 
2287     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2288     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2289     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2290     // Emit the RHS condition into TmpBB.
2291     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2292                          Probs[1], InvertCond);
2293   } else {
2294     assert(Opc == Instruction::And && "Unknown merge op!");
2295     // Codegen X & Y as:
2296     // BB1:
2297     //   jmp_if_X TmpBB
2298     //   jmp FBB
2299     // TmpBB:
2300     //   jmp_if_Y TBB
2301     //   jmp FBB
2302     //
2303     //  This requires creation of TmpBB after CurBB.
2304 
2305     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2306     // The requirement is that
2307     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2308     //     = FalseProb for original BB.
2309     // Assuming the original probabilities are A and B, one choice is to set
2310     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2311     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2312     // TrueProb for BB1 * FalseProb for TmpBB.
2313 
2314     auto NewTrueProb = TProb + FProb / 2;
2315     auto NewFalseProb = FProb / 2;
2316     // Emit the LHS condition.
2317     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2318                          NewFalseProb, InvertCond);
2319 
2320     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2321     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2322     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2323     // Emit the RHS condition into TmpBB.
2324     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2325                          Probs[1], InvertCond);
2326   }
2327 }
2328 
2329 /// If the set of cases should be emitted as a series of branches, return true.
2330 /// If we should emit this as a bunch of and/or'd together conditions, return
2331 /// false.
2332 bool
2333 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2334   if (Cases.size() != 2) return true;
2335 
2336   // If this is two comparisons of the same values or'd or and'd together, they
2337   // will get folded into a single comparison, so don't emit two blocks.
2338   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2339        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2340       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2341        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2342     return false;
2343   }
2344 
2345   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2346   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2347   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2348       Cases[0].CC == Cases[1].CC &&
2349       isa<Constant>(Cases[0].CmpRHS) &&
2350       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2351     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2352       return false;
2353     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2354       return false;
2355   }
2356 
2357   return true;
2358 }
2359 
2360 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2361   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2362 
2363   // Update machine-CFG edges.
2364   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2365 
2366   if (I.isUnconditional()) {
2367     // Update machine-CFG edges.
2368     BrMBB->addSuccessor(Succ0MBB);
2369 
2370     // If this is not a fall-through branch or optimizations are switched off,
2371     // emit the branch.
2372     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2373       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2374                               MVT::Other, getControlRoot(),
2375                               DAG.getBasicBlock(Succ0MBB)));
2376 
2377     return;
2378   }
2379 
2380   // If this condition is one of the special cases we handle, do special stuff
2381   // now.
2382   const Value *CondVal = I.getCondition();
2383   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2384 
2385   // If this is a series of conditions that are or'd or and'd together, emit
2386   // this as a sequence of branches instead of setcc's with and/or operations.
2387   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2388   // unpredictable branches, and vector extracts because those jumps are likely
2389   // expensive for any target), this should improve performance.
2390   // For example, instead of something like:
2391   //     cmp A, B
2392   //     C = seteq
2393   //     cmp D, E
2394   //     F = setle
2395   //     or C, F
2396   //     jnz foo
2397   // Emit:
2398   //     cmp A, B
2399   //     je foo
2400   //     cmp D, E
2401   //     jle foo
2402   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2403   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2404       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2405     Value *Vec;
2406     const Value *BOp0, *BOp1;
2407     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2408     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2409       Opcode = Instruction::And;
2410     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2411       Opcode = Instruction::Or;
2412 
2413     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2414                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2415       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2416                            getEdgeProbability(BrMBB, Succ0MBB),
2417                            getEdgeProbability(BrMBB, Succ1MBB),
2418                            /*InvertCond=*/false);
2419       // If the compares in later blocks need to use values not currently
2420       // exported from this block, export them now.  This block should always
2421       // be the first entry.
2422       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2423 
2424       // Allow some cases to be rejected.
2425       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2426         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2427           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2428           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2429         }
2430 
2431         // Emit the branch for this block.
2432         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2433         SL->SwitchCases.erase(SL->SwitchCases.begin());
2434         return;
2435       }
2436 
2437       // Okay, we decided not to do this, remove any inserted MBB's and clear
2438       // SwitchCases.
2439       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2440         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2441 
2442       SL->SwitchCases.clear();
2443     }
2444   }
2445 
2446   // Create a CaseBlock record representing this branch.
2447   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2448                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2449 
2450   // Use visitSwitchCase to actually insert the fast branch sequence for this
2451   // cond branch.
2452   visitSwitchCase(CB, BrMBB);
2453 }
2454 
2455 /// visitSwitchCase - Emits the necessary code to represent a single node in
2456 /// the binary search tree resulting from lowering a switch instruction.
2457 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2458                                           MachineBasicBlock *SwitchBB) {
2459   SDValue Cond;
2460   SDValue CondLHS = getValue(CB.CmpLHS);
2461   SDLoc dl = CB.DL;
2462 
2463   if (CB.CC == ISD::SETTRUE) {
2464     // Branch or fall through to TrueBB.
2465     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2466     SwitchBB->normalizeSuccProbs();
2467     if (CB.TrueBB != NextBlock(SwitchBB)) {
2468       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2469                               DAG.getBasicBlock(CB.TrueBB)));
2470     }
2471     return;
2472   }
2473 
2474   auto &TLI = DAG.getTargetLoweringInfo();
2475   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2476 
2477   // Build the setcc now.
2478   if (!CB.CmpMHS) {
2479     // Fold "(X == true)" to X and "(X == false)" to !X to
2480     // handle common cases produced by branch lowering.
2481     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2482         CB.CC == ISD::SETEQ)
2483       Cond = CondLHS;
2484     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2485              CB.CC == ISD::SETEQ) {
2486       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2487       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2488     } else {
2489       SDValue CondRHS = getValue(CB.CmpRHS);
2490 
2491       // If a pointer's DAG type is larger than its memory type then the DAG
2492       // values are zero-extended. This breaks signed comparisons so truncate
2493       // back to the underlying type before doing the compare.
2494       if (CondLHS.getValueType() != MemVT) {
2495         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2496         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2497       }
2498       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2499     }
2500   } else {
2501     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2502 
2503     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2504     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2505 
2506     SDValue CmpOp = getValue(CB.CmpMHS);
2507     EVT VT = CmpOp.getValueType();
2508 
2509     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2510       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2511                           ISD::SETLE);
2512     } else {
2513       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2514                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2515       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2516                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2517     }
2518   }
2519 
2520   // Update successor info
2521   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2522   // TrueBB and FalseBB are always different unless the incoming IR is
2523   // degenerate. This only happens when running llc on weird IR.
2524   if (CB.TrueBB != CB.FalseBB)
2525     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2526   SwitchBB->normalizeSuccProbs();
2527 
2528   // If the lhs block is the next block, invert the condition so that we can
2529   // fall through to the lhs instead of the rhs block.
2530   if (CB.TrueBB == NextBlock(SwitchBB)) {
2531     std::swap(CB.TrueBB, CB.FalseBB);
2532     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2533     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2534   }
2535 
2536   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2537                                MVT::Other, getControlRoot(), Cond,
2538                                DAG.getBasicBlock(CB.TrueBB));
2539 
2540   // Insert the false branch. Do this even if it's a fall through branch,
2541   // this makes it easier to do DAG optimizations which require inverting
2542   // the branch condition.
2543   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2544                        DAG.getBasicBlock(CB.FalseBB));
2545 
2546   DAG.setRoot(BrCond);
2547 }
2548 
2549 /// visitJumpTable - Emit JumpTable node in the current MBB
2550 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2551   // Emit the code for the jump table
2552   assert(JT.Reg != -1U && "Should lower JT Header first!");
2553   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2554   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2555                                      JT.Reg, PTy);
2556   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2557   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2558                                     MVT::Other, Index.getValue(1),
2559                                     Table, Index);
2560   DAG.setRoot(BrJumpTable);
2561 }
2562 
2563 /// visitJumpTableHeader - This function emits necessary code to produce index
2564 /// in the JumpTable from switch case.
2565 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2566                                                JumpTableHeader &JTH,
2567                                                MachineBasicBlock *SwitchBB) {
2568   SDLoc dl = getCurSDLoc();
2569 
2570   // Subtract the lowest switch case value from the value being switched on.
2571   SDValue SwitchOp = getValue(JTH.SValue);
2572   EVT VT = SwitchOp.getValueType();
2573   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2574                             DAG.getConstant(JTH.First, dl, VT));
2575 
2576   // The SDNode we just created, which holds the value being switched on minus
2577   // the smallest case value, needs to be copied to a virtual register so it
2578   // can be used as an index into the jump table in a subsequent basic block.
2579   // This value may be smaller or larger than the target's pointer type, and
2580   // therefore require extension or truncating.
2581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2582   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2583 
2584   unsigned JumpTableReg =
2585       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2586   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2587                                     JumpTableReg, SwitchOp);
2588   JT.Reg = JumpTableReg;
2589 
2590   if (!JTH.FallthroughUnreachable) {
2591     // Emit the range check for the jump table, and branch to the default block
2592     // for the switch statement if the value being switched on exceeds the
2593     // largest case in the switch.
2594     SDValue CMP = DAG.getSetCC(
2595         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2596                                    Sub.getValueType()),
2597         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2598 
2599     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2600                                  MVT::Other, CopyTo, CMP,
2601                                  DAG.getBasicBlock(JT.Default));
2602 
2603     // Avoid emitting unnecessary branches to the next block.
2604     if (JT.MBB != NextBlock(SwitchBB))
2605       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2606                            DAG.getBasicBlock(JT.MBB));
2607 
2608     DAG.setRoot(BrCond);
2609   } else {
2610     // Avoid emitting unnecessary branches to the next block.
2611     if (JT.MBB != NextBlock(SwitchBB))
2612       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2613                               DAG.getBasicBlock(JT.MBB)));
2614     else
2615       DAG.setRoot(CopyTo);
2616   }
2617 }
2618 
2619 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2620 /// variable if there exists one.
2621 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2622                                  SDValue &Chain) {
2623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2624   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2625   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2626   MachineFunction &MF = DAG.getMachineFunction();
2627   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2628   MachineSDNode *Node =
2629       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2630   if (Global) {
2631     MachinePointerInfo MPInfo(Global);
2632     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2633                  MachineMemOperand::MODereferenceable;
2634     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2635         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2636     DAG.setNodeMemRefs(Node, {MemRef});
2637   }
2638   if (PtrTy != PtrMemTy)
2639     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2640   return SDValue(Node, 0);
2641 }
2642 
2643 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2644 /// tail spliced into a stack protector check success bb.
2645 ///
2646 /// For a high level explanation of how this fits into the stack protector
2647 /// generation see the comment on the declaration of class
2648 /// StackProtectorDescriptor.
2649 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2650                                                   MachineBasicBlock *ParentBB) {
2651 
2652   // First create the loads to the guard/stack slot for the comparison.
2653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2654   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2655   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2656 
2657   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2658   int FI = MFI.getStackProtectorIndex();
2659 
2660   SDValue Guard;
2661   SDLoc dl = getCurSDLoc();
2662   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2663   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2664   Align Align =
2665       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2666 
2667   // Generate code to load the content of the guard slot.
2668   SDValue GuardVal = DAG.getLoad(
2669       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2670       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2671       MachineMemOperand::MOVolatile);
2672 
2673   if (TLI.useStackGuardXorFP())
2674     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2675 
2676   // Retrieve guard check function, nullptr if instrumentation is inlined.
2677   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2678     // The target provides a guard check function to validate the guard value.
2679     // Generate a call to that function with the content of the guard slot as
2680     // argument.
2681     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2682     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2683 
2684     TargetLowering::ArgListTy Args;
2685     TargetLowering::ArgListEntry Entry;
2686     Entry.Node = GuardVal;
2687     Entry.Ty = FnTy->getParamType(0);
2688     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2689       Entry.IsInReg = true;
2690     Args.push_back(Entry);
2691 
2692     TargetLowering::CallLoweringInfo CLI(DAG);
2693     CLI.setDebugLoc(getCurSDLoc())
2694         .setChain(DAG.getEntryNode())
2695         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2696                    getValue(GuardCheckFn), std::move(Args));
2697 
2698     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2699     DAG.setRoot(Result.second);
2700     return;
2701   }
2702 
2703   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2704   // Otherwise, emit a volatile load to retrieve the stack guard value.
2705   SDValue Chain = DAG.getEntryNode();
2706   if (TLI.useLoadStackGuardNode()) {
2707     Guard = getLoadStackGuard(DAG, dl, Chain);
2708   } else {
2709     const Value *IRGuard = TLI.getSDagStackGuard(M);
2710     SDValue GuardPtr = getValue(IRGuard);
2711 
2712     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2713                         MachinePointerInfo(IRGuard, 0), Align,
2714                         MachineMemOperand::MOVolatile);
2715   }
2716 
2717   // Perform the comparison via a getsetcc.
2718   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2719                                                         *DAG.getContext(),
2720                                                         Guard.getValueType()),
2721                              Guard, GuardVal, ISD::SETNE);
2722 
2723   // If the guard/stackslot do not equal, branch to failure MBB.
2724   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2725                                MVT::Other, GuardVal.getOperand(0),
2726                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2727   // Otherwise branch to success MBB.
2728   SDValue Br = DAG.getNode(ISD::BR, dl,
2729                            MVT::Other, BrCond,
2730                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2731 
2732   DAG.setRoot(Br);
2733 }
2734 
2735 /// Codegen the failure basic block for a stack protector check.
2736 ///
2737 /// A failure stack protector machine basic block consists simply of a call to
2738 /// __stack_chk_fail().
2739 ///
2740 /// For a high level explanation of how this fits into the stack protector
2741 /// generation see the comment on the declaration of class
2742 /// StackProtectorDescriptor.
2743 void
2744 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2746   TargetLowering::MakeLibCallOptions CallOptions;
2747   CallOptions.setDiscardResult(true);
2748   SDValue Chain =
2749       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2750                       None, CallOptions, getCurSDLoc()).second;
2751   // On PS4, the "return address" must still be within the calling function,
2752   // even if it's at the very end, so emit an explicit TRAP here.
2753   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2754   if (TM.getTargetTriple().isPS4())
2755     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2756   // WebAssembly needs an unreachable instruction after a non-returning call,
2757   // because the function return type can be different from __stack_chk_fail's
2758   // return type (void).
2759   if (TM.getTargetTriple().isWasm())
2760     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2761 
2762   DAG.setRoot(Chain);
2763 }
2764 
2765 /// visitBitTestHeader - This function emits necessary code to produce value
2766 /// suitable for "bit tests"
2767 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2768                                              MachineBasicBlock *SwitchBB) {
2769   SDLoc dl = getCurSDLoc();
2770 
2771   // Subtract the minimum value.
2772   SDValue SwitchOp = getValue(B.SValue);
2773   EVT VT = SwitchOp.getValueType();
2774   SDValue RangeSub =
2775       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2776 
2777   // Determine the type of the test operands.
2778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2779   bool UsePtrType = false;
2780   if (!TLI.isTypeLegal(VT)) {
2781     UsePtrType = true;
2782   } else {
2783     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2784       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2785         // Switch table case range are encoded into series of masks.
2786         // Just use pointer type, it's guaranteed to fit.
2787         UsePtrType = true;
2788         break;
2789       }
2790   }
2791   SDValue Sub = RangeSub;
2792   if (UsePtrType) {
2793     VT = TLI.getPointerTy(DAG.getDataLayout());
2794     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2795   }
2796 
2797   B.RegVT = VT.getSimpleVT();
2798   B.Reg = FuncInfo.CreateReg(B.RegVT);
2799   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2800 
2801   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2802 
2803   if (!B.FallthroughUnreachable)
2804     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2805   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2806   SwitchBB->normalizeSuccProbs();
2807 
2808   SDValue Root = CopyTo;
2809   if (!B.FallthroughUnreachable) {
2810     // Conditional branch to the default block.
2811     SDValue RangeCmp = DAG.getSetCC(dl,
2812         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2813                                RangeSub.getValueType()),
2814         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2815         ISD::SETUGT);
2816 
2817     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2818                        DAG.getBasicBlock(B.Default));
2819   }
2820 
2821   // Avoid emitting unnecessary branches to the next block.
2822   if (MBB != NextBlock(SwitchBB))
2823     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2824 
2825   DAG.setRoot(Root);
2826 }
2827 
2828 /// visitBitTestCase - this function produces one "bit test"
2829 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2830                                            MachineBasicBlock* NextMBB,
2831                                            BranchProbability BranchProbToNext,
2832                                            unsigned Reg,
2833                                            BitTestCase &B,
2834                                            MachineBasicBlock *SwitchBB) {
2835   SDLoc dl = getCurSDLoc();
2836   MVT VT = BB.RegVT;
2837   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2838   SDValue Cmp;
2839   unsigned PopCount = countPopulation(B.Mask);
2840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2841   if (PopCount == 1) {
2842     // Testing for a single bit; just compare the shift count with what it
2843     // would need to be to shift a 1 bit in that position.
2844     Cmp = DAG.getSetCC(
2845         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2846         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2847         ISD::SETEQ);
2848   } else if (PopCount == BB.Range) {
2849     // There is only one zero bit in the range, test for it directly.
2850     Cmp = DAG.getSetCC(
2851         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2852         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2853         ISD::SETNE);
2854   } else {
2855     // Make desired shift
2856     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2857                                     DAG.getConstant(1, dl, VT), ShiftOp);
2858 
2859     // Emit bit tests and jumps
2860     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2861                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2862     Cmp = DAG.getSetCC(
2863         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2864         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2865   }
2866 
2867   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2868   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2869   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2870   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2871   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2872   // one as they are relative probabilities (and thus work more like weights),
2873   // and hence we need to normalize them to let the sum of them become one.
2874   SwitchBB->normalizeSuccProbs();
2875 
2876   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2877                               MVT::Other, getControlRoot(),
2878                               Cmp, DAG.getBasicBlock(B.TargetBB));
2879 
2880   // Avoid emitting unnecessary branches to the next block.
2881   if (NextMBB != NextBlock(SwitchBB))
2882     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2883                         DAG.getBasicBlock(NextMBB));
2884 
2885   DAG.setRoot(BrAnd);
2886 }
2887 
2888 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2889   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2890 
2891   // Retrieve successors. Look through artificial IR level blocks like
2892   // catchswitch for successors.
2893   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2894   const BasicBlock *EHPadBB = I.getSuccessor(1);
2895 
2896   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2897   // have to do anything here to lower funclet bundles.
2898   assert(!I.hasOperandBundlesOtherThan(
2899              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2900               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2901               LLVMContext::OB_cfguardtarget,
2902               LLVMContext::OB_clang_arc_attachedcall}) &&
2903          "Cannot lower invokes with arbitrary operand bundles yet!");
2904 
2905   const Value *Callee(I.getCalledOperand());
2906   const Function *Fn = dyn_cast<Function>(Callee);
2907   if (isa<InlineAsm>(Callee))
2908     visitInlineAsm(I, EHPadBB);
2909   else if (Fn && Fn->isIntrinsic()) {
2910     switch (Fn->getIntrinsicID()) {
2911     default:
2912       llvm_unreachable("Cannot invoke this intrinsic");
2913     case Intrinsic::donothing:
2914       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2915     case Intrinsic::seh_try_begin:
2916     case Intrinsic::seh_scope_begin:
2917     case Intrinsic::seh_try_end:
2918     case Intrinsic::seh_scope_end:
2919       break;
2920     case Intrinsic::experimental_patchpoint_void:
2921     case Intrinsic::experimental_patchpoint_i64:
2922       visitPatchpoint(I, EHPadBB);
2923       break;
2924     case Intrinsic::experimental_gc_statepoint:
2925       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2926       break;
2927     case Intrinsic::wasm_rethrow: {
2928       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2929       // special because it can be invoked, so we manually lower it to a DAG
2930       // node here.
2931       SmallVector<SDValue, 8> Ops;
2932       Ops.push_back(getRoot()); // inchain
2933       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2934       Ops.push_back(
2935           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2936                                 TLI.getPointerTy(DAG.getDataLayout())));
2937       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2938       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2939       break;
2940     }
2941     }
2942   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2943     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2944     // Eventually we will support lowering the @llvm.experimental.deoptimize
2945     // intrinsic, and right now there are no plans to support other intrinsics
2946     // with deopt state.
2947     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2948   } else {
2949     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2950   }
2951 
2952   // If the value of the invoke is used outside of its defining block, make it
2953   // available as a virtual register.
2954   // We already took care of the exported value for the statepoint instruction
2955   // during call to the LowerStatepoint.
2956   if (!isa<GCStatepointInst>(I)) {
2957     CopyToExportRegsIfNeeded(&I);
2958   }
2959 
2960   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2961   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2962   BranchProbability EHPadBBProb =
2963       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2964           : BranchProbability::getZero();
2965   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2966 
2967   // Update successor info.
2968   addSuccessorWithProb(InvokeMBB, Return);
2969   for (auto &UnwindDest : UnwindDests) {
2970     UnwindDest.first->setIsEHPad();
2971     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2972   }
2973   InvokeMBB->normalizeSuccProbs();
2974 
2975   // Drop into normal successor.
2976   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2977                           DAG.getBasicBlock(Return)));
2978 }
2979 
2980 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2981   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2982 
2983   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2984   // have to do anything here to lower funclet bundles.
2985   assert(!I.hasOperandBundlesOtherThan(
2986              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2987          "Cannot lower callbrs with arbitrary operand bundles yet!");
2988 
2989   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2990   visitInlineAsm(I);
2991   CopyToExportRegsIfNeeded(&I);
2992 
2993   // Retrieve successors.
2994   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2995 
2996   // Update successor info.
2997   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2998   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2999     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
3000     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3001     Target->setIsInlineAsmBrIndirectTarget();
3002   }
3003   CallBrMBB->normalizeSuccProbs();
3004 
3005   // Drop into default successor.
3006   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3007                           MVT::Other, getControlRoot(),
3008                           DAG.getBasicBlock(Return)));
3009 }
3010 
3011 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3012   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3013 }
3014 
3015 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3016   assert(FuncInfo.MBB->isEHPad() &&
3017          "Call to landingpad not in landing pad!");
3018 
3019   // If there aren't registers to copy the values into (e.g., during SjLj
3020   // exceptions), then don't bother to create these DAG nodes.
3021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3022   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3023   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3024       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3025     return;
3026 
3027   // If landingpad's return type is token type, we don't create DAG nodes
3028   // for its exception pointer and selector value. The extraction of exception
3029   // pointer or selector value from token type landingpads is not currently
3030   // supported.
3031   if (LP.getType()->isTokenTy())
3032     return;
3033 
3034   SmallVector<EVT, 2> ValueVTs;
3035   SDLoc dl = getCurSDLoc();
3036   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3037   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3038 
3039   // Get the two live-in registers as SDValues. The physregs have already been
3040   // copied into virtual registers.
3041   SDValue Ops[2];
3042   if (FuncInfo.ExceptionPointerVirtReg) {
3043     Ops[0] = DAG.getZExtOrTrunc(
3044         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3045                            FuncInfo.ExceptionPointerVirtReg,
3046                            TLI.getPointerTy(DAG.getDataLayout())),
3047         dl, ValueVTs[0]);
3048   } else {
3049     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3050   }
3051   Ops[1] = DAG.getZExtOrTrunc(
3052       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3053                          FuncInfo.ExceptionSelectorVirtReg,
3054                          TLI.getPointerTy(DAG.getDataLayout())),
3055       dl, ValueVTs[1]);
3056 
3057   // Merge into one.
3058   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3059                             DAG.getVTList(ValueVTs), Ops);
3060   setValue(&LP, Res);
3061 }
3062 
3063 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3064                                            MachineBasicBlock *Last) {
3065   // Update JTCases.
3066   for (JumpTableBlock &JTB : SL->JTCases)
3067     if (JTB.first.HeaderBB == First)
3068       JTB.first.HeaderBB = Last;
3069 
3070   // Update BitTestCases.
3071   for (BitTestBlock &BTB : SL->BitTestCases)
3072     if (BTB.Parent == First)
3073       BTB.Parent = Last;
3074 }
3075 
3076 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3077   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3078 
3079   // Update machine-CFG edges with unique successors.
3080   SmallSet<BasicBlock*, 32> Done;
3081   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3082     BasicBlock *BB = I.getSuccessor(i);
3083     bool Inserted = Done.insert(BB).second;
3084     if (!Inserted)
3085         continue;
3086 
3087     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3088     addSuccessorWithProb(IndirectBrMBB, Succ);
3089   }
3090   IndirectBrMBB->normalizeSuccProbs();
3091 
3092   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3093                           MVT::Other, getControlRoot(),
3094                           getValue(I.getAddress())));
3095 }
3096 
3097 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3098   if (!DAG.getTarget().Options.TrapUnreachable)
3099     return;
3100 
3101   // We may be able to ignore unreachable behind a noreturn call.
3102   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3103     const BasicBlock &BB = *I.getParent();
3104     if (&I != &BB.front()) {
3105       BasicBlock::const_iterator PredI =
3106         std::prev(BasicBlock::const_iterator(&I));
3107       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3108         if (Call->doesNotReturn())
3109           return;
3110       }
3111     }
3112   }
3113 
3114   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3115 }
3116 
3117 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3118   SDNodeFlags Flags;
3119   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3120     Flags.copyFMF(*FPOp);
3121 
3122   SDValue Op = getValue(I.getOperand(0));
3123   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3124                                     Op, Flags);
3125   setValue(&I, UnNodeValue);
3126 }
3127 
3128 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3129   SDNodeFlags Flags;
3130   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3131     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3132     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3133   }
3134   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3135     Flags.setExact(ExactOp->isExact());
3136   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3137     Flags.copyFMF(*FPOp);
3138 
3139   SDValue Op1 = getValue(I.getOperand(0));
3140   SDValue Op2 = getValue(I.getOperand(1));
3141   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3142                                      Op1, Op2, Flags);
3143   setValue(&I, BinNodeValue);
3144 }
3145 
3146 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3147   SDValue Op1 = getValue(I.getOperand(0));
3148   SDValue Op2 = getValue(I.getOperand(1));
3149 
3150   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3151       Op1.getValueType(), DAG.getDataLayout());
3152 
3153   // Coerce the shift amount to the right type if we can. This exposes the
3154   // truncate or zext to optimization early.
3155   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3156     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3157            "Unexpected shift type");
3158     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3159   }
3160 
3161   bool nuw = false;
3162   bool nsw = false;
3163   bool exact = false;
3164 
3165   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3166 
3167     if (const OverflowingBinaryOperator *OFBinOp =
3168             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3169       nuw = OFBinOp->hasNoUnsignedWrap();
3170       nsw = OFBinOp->hasNoSignedWrap();
3171     }
3172     if (const PossiblyExactOperator *ExactOp =
3173             dyn_cast<const PossiblyExactOperator>(&I))
3174       exact = ExactOp->isExact();
3175   }
3176   SDNodeFlags Flags;
3177   Flags.setExact(exact);
3178   Flags.setNoSignedWrap(nsw);
3179   Flags.setNoUnsignedWrap(nuw);
3180   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3181                             Flags);
3182   setValue(&I, Res);
3183 }
3184 
3185 void SelectionDAGBuilder::visitSDiv(const User &I) {
3186   SDValue Op1 = getValue(I.getOperand(0));
3187   SDValue Op2 = getValue(I.getOperand(1));
3188 
3189   SDNodeFlags Flags;
3190   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3191                  cast<PossiblyExactOperator>(&I)->isExact());
3192   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3193                            Op2, Flags));
3194 }
3195 
3196 void SelectionDAGBuilder::visitICmp(const User &I) {
3197   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3198   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3199     predicate = IC->getPredicate();
3200   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3201     predicate = ICmpInst::Predicate(IC->getPredicate());
3202   SDValue Op1 = getValue(I.getOperand(0));
3203   SDValue Op2 = getValue(I.getOperand(1));
3204   ISD::CondCode Opcode = getICmpCondCode(predicate);
3205 
3206   auto &TLI = DAG.getTargetLoweringInfo();
3207   EVT MemVT =
3208       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3209 
3210   // If a pointer's DAG type is larger than its memory type then the DAG values
3211   // are zero-extended. This breaks signed comparisons so truncate back to the
3212   // underlying type before doing the compare.
3213   if (Op1.getValueType() != MemVT) {
3214     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3215     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3216   }
3217 
3218   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3219                                                         I.getType());
3220   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3221 }
3222 
3223 void SelectionDAGBuilder::visitFCmp(const User &I) {
3224   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3225   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3226     predicate = FC->getPredicate();
3227   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3228     predicate = FCmpInst::Predicate(FC->getPredicate());
3229   SDValue Op1 = getValue(I.getOperand(0));
3230   SDValue Op2 = getValue(I.getOperand(1));
3231 
3232   ISD::CondCode Condition = getFCmpCondCode(predicate);
3233   auto *FPMO = cast<FPMathOperator>(&I);
3234   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3235     Condition = getFCmpCodeWithoutNaN(Condition);
3236 
3237   SDNodeFlags Flags;
3238   Flags.copyFMF(*FPMO);
3239   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3240 
3241   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3242                                                         I.getType());
3243   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3244 }
3245 
3246 // Check if the condition of the select has one use or two users that are both
3247 // selects with the same condition.
3248 static bool hasOnlySelectUsers(const Value *Cond) {
3249   return llvm::all_of(Cond->users(), [](const Value *V) {
3250     return isa<SelectInst>(V);
3251   });
3252 }
3253 
3254 void SelectionDAGBuilder::visitSelect(const User &I) {
3255   SmallVector<EVT, 4> ValueVTs;
3256   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3257                   ValueVTs);
3258   unsigned NumValues = ValueVTs.size();
3259   if (NumValues == 0) return;
3260 
3261   SmallVector<SDValue, 4> Values(NumValues);
3262   SDValue Cond     = getValue(I.getOperand(0));
3263   SDValue LHSVal   = getValue(I.getOperand(1));
3264   SDValue RHSVal   = getValue(I.getOperand(2));
3265   SmallVector<SDValue, 1> BaseOps(1, Cond);
3266   ISD::NodeType OpCode =
3267       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3268 
3269   bool IsUnaryAbs = false;
3270   bool Negate = false;
3271 
3272   SDNodeFlags Flags;
3273   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3274     Flags.copyFMF(*FPOp);
3275 
3276   // Min/max matching is only viable if all output VTs are the same.
3277   if (is_splat(ValueVTs)) {
3278     EVT VT = ValueVTs[0];
3279     LLVMContext &Ctx = *DAG.getContext();
3280     auto &TLI = DAG.getTargetLoweringInfo();
3281 
3282     // We care about the legality of the operation after it has been type
3283     // legalized.
3284     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3285       VT = TLI.getTypeToTransformTo(Ctx, VT);
3286 
3287     // If the vselect is legal, assume we want to leave this as a vector setcc +
3288     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3289     // min/max is legal on the scalar type.
3290     bool UseScalarMinMax = VT.isVector() &&
3291       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3292 
3293     Value *LHS, *RHS;
3294     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3295     ISD::NodeType Opc = ISD::DELETED_NODE;
3296     switch (SPR.Flavor) {
3297     case SPF_UMAX:    Opc = ISD::UMAX; break;
3298     case SPF_UMIN:    Opc = ISD::UMIN; break;
3299     case SPF_SMAX:    Opc = ISD::SMAX; break;
3300     case SPF_SMIN:    Opc = ISD::SMIN; break;
3301     case SPF_FMINNUM:
3302       switch (SPR.NaNBehavior) {
3303       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3304       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3305       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3306       case SPNB_RETURNS_ANY: {
3307         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3308           Opc = ISD::FMINNUM;
3309         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3310           Opc = ISD::FMINIMUM;
3311         else if (UseScalarMinMax)
3312           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3313             ISD::FMINNUM : ISD::FMINIMUM;
3314         break;
3315       }
3316       }
3317       break;
3318     case SPF_FMAXNUM:
3319       switch (SPR.NaNBehavior) {
3320       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3321       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3322       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3323       case SPNB_RETURNS_ANY:
3324 
3325         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3326           Opc = ISD::FMAXNUM;
3327         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3328           Opc = ISD::FMAXIMUM;
3329         else if (UseScalarMinMax)
3330           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3331             ISD::FMAXNUM : ISD::FMAXIMUM;
3332         break;
3333       }
3334       break;
3335     case SPF_NABS:
3336       Negate = true;
3337       LLVM_FALLTHROUGH;
3338     case SPF_ABS:
3339       IsUnaryAbs = true;
3340       Opc = ISD::ABS;
3341       break;
3342     default: break;
3343     }
3344 
3345     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3346         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3347          (UseScalarMinMax &&
3348           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3349         // If the underlying comparison instruction is used by any other
3350         // instruction, the consumed instructions won't be destroyed, so it is
3351         // not profitable to convert to a min/max.
3352         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3353       OpCode = Opc;
3354       LHSVal = getValue(LHS);
3355       RHSVal = getValue(RHS);
3356       BaseOps.clear();
3357     }
3358 
3359     if (IsUnaryAbs) {
3360       OpCode = Opc;
3361       LHSVal = getValue(LHS);
3362       BaseOps.clear();
3363     }
3364   }
3365 
3366   if (IsUnaryAbs) {
3367     for (unsigned i = 0; i != NumValues; ++i) {
3368       SDLoc dl = getCurSDLoc();
3369       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3370       Values[i] =
3371           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3372       if (Negate)
3373         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3374                                 Values[i]);
3375     }
3376   } else {
3377     for (unsigned i = 0; i != NumValues; ++i) {
3378       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3379       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3380       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3381       Values[i] = DAG.getNode(
3382           OpCode, getCurSDLoc(),
3383           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3384     }
3385   }
3386 
3387   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3388                            DAG.getVTList(ValueVTs), Values));
3389 }
3390 
3391 void SelectionDAGBuilder::visitTrunc(const User &I) {
3392   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3393   SDValue N = getValue(I.getOperand(0));
3394   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3395                                                         I.getType());
3396   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3397 }
3398 
3399 void SelectionDAGBuilder::visitZExt(const User &I) {
3400   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3401   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3402   SDValue N = getValue(I.getOperand(0));
3403   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3404                                                         I.getType());
3405   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3406 }
3407 
3408 void SelectionDAGBuilder::visitSExt(const User &I) {
3409   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3410   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3411   SDValue N = getValue(I.getOperand(0));
3412   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3413                                                         I.getType());
3414   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3415 }
3416 
3417 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3418   // FPTrunc is never a no-op cast, no need to check
3419   SDValue N = getValue(I.getOperand(0));
3420   SDLoc dl = getCurSDLoc();
3421   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3422   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3423   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3424                            DAG.getTargetConstant(
3425                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3426 }
3427 
3428 void SelectionDAGBuilder::visitFPExt(const User &I) {
3429   // FPExt is never a no-op cast, no need to check
3430   SDValue N = getValue(I.getOperand(0));
3431   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3432                                                         I.getType());
3433   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3434 }
3435 
3436 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3437   // FPToUI is never a no-op cast, no need to check
3438   SDValue N = getValue(I.getOperand(0));
3439   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3440                                                         I.getType());
3441   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3442 }
3443 
3444 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3445   // FPToSI is never a no-op cast, no need to check
3446   SDValue N = getValue(I.getOperand(0));
3447   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3448                                                         I.getType());
3449   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3450 }
3451 
3452 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3453   // UIToFP is never a no-op cast, no need to check
3454   SDValue N = getValue(I.getOperand(0));
3455   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3456                                                         I.getType());
3457   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3458 }
3459 
3460 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3461   // SIToFP is never a no-op cast, no need to check
3462   SDValue N = getValue(I.getOperand(0));
3463   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3464                                                         I.getType());
3465   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3466 }
3467 
3468 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3469   // What to do depends on the size of the integer and the size of the pointer.
3470   // We can either truncate, zero extend, or no-op, accordingly.
3471   SDValue N = getValue(I.getOperand(0));
3472   auto &TLI = DAG.getTargetLoweringInfo();
3473   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3474                                                         I.getType());
3475   EVT PtrMemVT =
3476       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3477   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3478   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3479   setValue(&I, N);
3480 }
3481 
3482 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3483   // What to do depends on the size of the integer and the size of the pointer.
3484   // We can either truncate, zero extend, or no-op, accordingly.
3485   SDValue N = getValue(I.getOperand(0));
3486   auto &TLI = DAG.getTargetLoweringInfo();
3487   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3488   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3489   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3490   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3491   setValue(&I, N);
3492 }
3493 
3494 void SelectionDAGBuilder::visitBitCast(const User &I) {
3495   SDValue N = getValue(I.getOperand(0));
3496   SDLoc dl = getCurSDLoc();
3497   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3498                                                         I.getType());
3499 
3500   // BitCast assures us that source and destination are the same size so this is
3501   // either a BITCAST or a no-op.
3502   if (DestVT != N.getValueType())
3503     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3504                              DestVT, N)); // convert types.
3505   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3506   // might fold any kind of constant expression to an integer constant and that
3507   // is not what we are looking for. Only recognize a bitcast of a genuine
3508   // constant integer as an opaque constant.
3509   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3510     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3511                                  /*isOpaque*/true));
3512   else
3513     setValue(&I, N);            // noop cast.
3514 }
3515 
3516 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3518   const Value *SV = I.getOperand(0);
3519   SDValue N = getValue(SV);
3520   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3521 
3522   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3523   unsigned DestAS = I.getType()->getPointerAddressSpace();
3524 
3525   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3526     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3527 
3528   setValue(&I, N);
3529 }
3530 
3531 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3533   SDValue InVec = getValue(I.getOperand(0));
3534   SDValue InVal = getValue(I.getOperand(1));
3535   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3536                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3537   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3538                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3539                            InVec, InVal, InIdx));
3540 }
3541 
3542 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   SDValue InVec = getValue(I.getOperand(0));
3545   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3546                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3547   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3548                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3549                            InVec, InIdx));
3550 }
3551 
3552 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3553   SDValue Src1 = getValue(I.getOperand(0));
3554   SDValue Src2 = getValue(I.getOperand(1));
3555   ArrayRef<int> Mask;
3556   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3557     Mask = SVI->getShuffleMask();
3558   else
3559     Mask = cast<ConstantExpr>(I).getShuffleMask();
3560   SDLoc DL = getCurSDLoc();
3561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3562   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3563   EVT SrcVT = Src1.getValueType();
3564 
3565   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3566       VT.isScalableVector()) {
3567     // Canonical splat form of first element of first input vector.
3568     SDValue FirstElt =
3569         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3570                     DAG.getVectorIdxConstant(0, DL));
3571     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3572     return;
3573   }
3574 
3575   // For now, we only handle splats for scalable vectors.
3576   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3577   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3578   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3579 
3580   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3581   unsigned MaskNumElts = Mask.size();
3582 
3583   if (SrcNumElts == MaskNumElts) {
3584     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3585     return;
3586   }
3587 
3588   // Normalize the shuffle vector since mask and vector length don't match.
3589   if (SrcNumElts < MaskNumElts) {
3590     // Mask is longer than the source vectors. We can use concatenate vector to
3591     // make the mask and vectors lengths match.
3592 
3593     if (MaskNumElts % SrcNumElts == 0) {
3594       // Mask length is a multiple of the source vector length.
3595       // Check if the shuffle is some kind of concatenation of the input
3596       // vectors.
3597       unsigned NumConcat = MaskNumElts / SrcNumElts;
3598       bool IsConcat = true;
3599       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3600       for (unsigned i = 0; i != MaskNumElts; ++i) {
3601         int Idx = Mask[i];
3602         if (Idx < 0)
3603           continue;
3604         // Ensure the indices in each SrcVT sized piece are sequential and that
3605         // the same source is used for the whole piece.
3606         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3607             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3608              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3609           IsConcat = false;
3610           break;
3611         }
3612         // Remember which source this index came from.
3613         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3614       }
3615 
3616       // The shuffle is concatenating multiple vectors together. Just emit
3617       // a CONCAT_VECTORS operation.
3618       if (IsConcat) {
3619         SmallVector<SDValue, 8> ConcatOps;
3620         for (auto Src : ConcatSrcs) {
3621           if (Src < 0)
3622             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3623           else if (Src == 0)
3624             ConcatOps.push_back(Src1);
3625           else
3626             ConcatOps.push_back(Src2);
3627         }
3628         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3629         return;
3630       }
3631     }
3632 
3633     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3634     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3635     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3636                                     PaddedMaskNumElts);
3637 
3638     // Pad both vectors with undefs to make them the same length as the mask.
3639     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3640 
3641     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3642     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3643     MOps1[0] = Src1;
3644     MOps2[0] = Src2;
3645 
3646     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3647     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3648 
3649     // Readjust mask for new input vector length.
3650     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3651     for (unsigned i = 0; i != MaskNumElts; ++i) {
3652       int Idx = Mask[i];
3653       if (Idx >= (int)SrcNumElts)
3654         Idx -= SrcNumElts - PaddedMaskNumElts;
3655       MappedOps[i] = Idx;
3656     }
3657 
3658     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3659 
3660     // If the concatenated vector was padded, extract a subvector with the
3661     // correct number of elements.
3662     if (MaskNumElts != PaddedMaskNumElts)
3663       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3664                            DAG.getVectorIdxConstant(0, DL));
3665 
3666     setValue(&I, Result);
3667     return;
3668   }
3669 
3670   if (SrcNumElts > MaskNumElts) {
3671     // Analyze the access pattern of the vector to see if we can extract
3672     // two subvectors and do the shuffle.
3673     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3674     bool CanExtract = true;
3675     for (int Idx : Mask) {
3676       unsigned Input = 0;
3677       if (Idx < 0)
3678         continue;
3679 
3680       if (Idx >= (int)SrcNumElts) {
3681         Input = 1;
3682         Idx -= SrcNumElts;
3683       }
3684 
3685       // If all the indices come from the same MaskNumElts sized portion of
3686       // the sources we can use extract. Also make sure the extract wouldn't
3687       // extract past the end of the source.
3688       int NewStartIdx = alignDown(Idx, MaskNumElts);
3689       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3690           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3691         CanExtract = false;
3692       // Make sure we always update StartIdx as we use it to track if all
3693       // elements are undef.
3694       StartIdx[Input] = NewStartIdx;
3695     }
3696 
3697     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3698       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3699       return;
3700     }
3701     if (CanExtract) {
3702       // Extract appropriate subvector and generate a vector shuffle
3703       for (unsigned Input = 0; Input < 2; ++Input) {
3704         SDValue &Src = Input == 0 ? Src1 : Src2;
3705         if (StartIdx[Input] < 0)
3706           Src = DAG.getUNDEF(VT);
3707         else {
3708           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3709                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3710         }
3711       }
3712 
3713       // Calculate new mask.
3714       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3715       for (int &Idx : MappedOps) {
3716         if (Idx >= (int)SrcNumElts)
3717           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3718         else if (Idx >= 0)
3719           Idx -= StartIdx[0];
3720       }
3721 
3722       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3723       return;
3724     }
3725   }
3726 
3727   // We can't use either concat vectors or extract subvectors so fall back to
3728   // replacing the shuffle with extract and build vector.
3729   // to insert and build vector.
3730   EVT EltVT = VT.getVectorElementType();
3731   SmallVector<SDValue,8> Ops;
3732   for (int Idx : Mask) {
3733     SDValue Res;
3734 
3735     if (Idx < 0) {
3736       Res = DAG.getUNDEF(EltVT);
3737     } else {
3738       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3739       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3740 
3741       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3742                         DAG.getVectorIdxConstant(Idx, DL));
3743     }
3744 
3745     Ops.push_back(Res);
3746   }
3747 
3748   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3749 }
3750 
3751 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3752   ArrayRef<unsigned> Indices;
3753   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3754     Indices = IV->getIndices();
3755   else
3756     Indices = cast<ConstantExpr>(&I)->getIndices();
3757 
3758   const Value *Op0 = I.getOperand(0);
3759   const Value *Op1 = I.getOperand(1);
3760   Type *AggTy = I.getType();
3761   Type *ValTy = Op1->getType();
3762   bool IntoUndef = isa<UndefValue>(Op0);
3763   bool FromUndef = isa<UndefValue>(Op1);
3764 
3765   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3766 
3767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3768   SmallVector<EVT, 4> AggValueVTs;
3769   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3770   SmallVector<EVT, 4> ValValueVTs;
3771   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3772 
3773   unsigned NumAggValues = AggValueVTs.size();
3774   unsigned NumValValues = ValValueVTs.size();
3775   SmallVector<SDValue, 4> Values(NumAggValues);
3776 
3777   // Ignore an insertvalue that produces an empty object
3778   if (!NumAggValues) {
3779     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3780     return;
3781   }
3782 
3783   SDValue Agg = getValue(Op0);
3784   unsigned i = 0;
3785   // Copy the beginning value(s) from the original aggregate.
3786   for (; i != LinearIndex; ++i)
3787     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3788                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3789   // Copy values from the inserted value(s).
3790   if (NumValValues) {
3791     SDValue Val = getValue(Op1);
3792     for (; i != LinearIndex + NumValValues; ++i)
3793       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3794                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3795   }
3796   // Copy remaining value(s) from the original aggregate.
3797   for (; i != NumAggValues; ++i)
3798     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3799                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3800 
3801   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3802                            DAG.getVTList(AggValueVTs), Values));
3803 }
3804 
3805 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3806   ArrayRef<unsigned> Indices;
3807   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3808     Indices = EV->getIndices();
3809   else
3810     Indices = cast<ConstantExpr>(&I)->getIndices();
3811 
3812   const Value *Op0 = I.getOperand(0);
3813   Type *AggTy = Op0->getType();
3814   Type *ValTy = I.getType();
3815   bool OutOfUndef = isa<UndefValue>(Op0);
3816 
3817   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3818 
3819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3820   SmallVector<EVT, 4> ValValueVTs;
3821   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3822 
3823   unsigned NumValValues = ValValueVTs.size();
3824 
3825   // Ignore a extractvalue that produces an empty object
3826   if (!NumValValues) {
3827     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3828     return;
3829   }
3830 
3831   SmallVector<SDValue, 4> Values(NumValValues);
3832 
3833   SDValue Agg = getValue(Op0);
3834   // Copy out the selected value(s).
3835   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3836     Values[i - LinearIndex] =
3837       OutOfUndef ?
3838         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3839         SDValue(Agg.getNode(), Agg.getResNo() + i);
3840 
3841   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3842                            DAG.getVTList(ValValueVTs), Values));
3843 }
3844 
3845 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3846   Value *Op0 = I.getOperand(0);
3847   // Note that the pointer operand may be a vector of pointers. Take the scalar
3848   // element which holds a pointer.
3849   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3850   SDValue N = getValue(Op0);
3851   SDLoc dl = getCurSDLoc();
3852   auto &TLI = DAG.getTargetLoweringInfo();
3853 
3854   // Normalize Vector GEP - all scalar operands should be converted to the
3855   // splat vector.
3856   bool IsVectorGEP = I.getType()->isVectorTy();
3857   ElementCount VectorElementCount =
3858       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3859                   : ElementCount::getFixed(0);
3860 
3861   if (IsVectorGEP && !N.getValueType().isVector()) {
3862     LLVMContext &Context = *DAG.getContext();
3863     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3864     if (VectorElementCount.isScalable())
3865       N = DAG.getSplatVector(VT, dl, N);
3866     else
3867       N = DAG.getSplatBuildVector(VT, dl, N);
3868   }
3869 
3870   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3871        GTI != E; ++GTI) {
3872     const Value *Idx = GTI.getOperand();
3873     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3874       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3875       if (Field) {
3876         // N = N + Offset
3877         uint64_t Offset =
3878             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3879 
3880         // In an inbounds GEP with an offset that is nonnegative even when
3881         // interpreted as signed, assume there is no unsigned overflow.
3882         SDNodeFlags Flags;
3883         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3884           Flags.setNoUnsignedWrap(true);
3885 
3886         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3887                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3888       }
3889     } else {
3890       // IdxSize is the width of the arithmetic according to IR semantics.
3891       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3892       // (and fix up the result later).
3893       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3894       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3895       TypeSize ElementSize =
3896           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3897       // We intentionally mask away the high bits here; ElementSize may not
3898       // fit in IdxTy.
3899       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3900       bool ElementScalable = ElementSize.isScalable();
3901 
3902       // If this is a scalar constant or a splat vector of constants,
3903       // handle it quickly.
3904       const auto *C = dyn_cast<Constant>(Idx);
3905       if (C && isa<VectorType>(C->getType()))
3906         C = C->getSplatValue();
3907 
3908       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3909       if (CI && CI->isZero())
3910         continue;
3911       if (CI && !ElementScalable) {
3912         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3913         LLVMContext &Context = *DAG.getContext();
3914         SDValue OffsVal;
3915         if (IsVectorGEP)
3916           OffsVal = DAG.getConstant(
3917               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3918         else
3919           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3920 
3921         // In an inbounds GEP with an offset that is nonnegative even when
3922         // interpreted as signed, assume there is no unsigned overflow.
3923         SDNodeFlags Flags;
3924         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3925           Flags.setNoUnsignedWrap(true);
3926 
3927         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3928 
3929         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3930         continue;
3931       }
3932 
3933       // N = N + Idx * ElementMul;
3934       SDValue IdxN = getValue(Idx);
3935 
3936       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3937         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3938                                   VectorElementCount);
3939         if (VectorElementCount.isScalable())
3940           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3941         else
3942           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3943       }
3944 
3945       // If the index is smaller or larger than intptr_t, truncate or extend
3946       // it.
3947       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3948 
3949       if (ElementScalable) {
3950         EVT VScaleTy = N.getValueType().getScalarType();
3951         SDValue VScale = DAG.getNode(
3952             ISD::VSCALE, dl, VScaleTy,
3953             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3954         if (IsVectorGEP)
3955           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3956         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3957       } else {
3958         // If this is a multiply by a power of two, turn it into a shl
3959         // immediately.  This is a very common case.
3960         if (ElementMul != 1) {
3961           if (ElementMul.isPowerOf2()) {
3962             unsigned Amt = ElementMul.logBase2();
3963             IdxN = DAG.getNode(ISD::SHL, dl,
3964                                N.getValueType(), IdxN,
3965                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3966           } else {
3967             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3968                                             IdxN.getValueType());
3969             IdxN = DAG.getNode(ISD::MUL, dl,
3970                                N.getValueType(), IdxN, Scale);
3971           }
3972         }
3973       }
3974 
3975       N = DAG.getNode(ISD::ADD, dl,
3976                       N.getValueType(), N, IdxN);
3977     }
3978   }
3979 
3980   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3981   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3982   if (IsVectorGEP) {
3983     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3984     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3985   }
3986 
3987   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3988     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3989 
3990   setValue(&I, N);
3991 }
3992 
3993 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3994   // If this is a fixed sized alloca in the entry block of the function,
3995   // allocate it statically on the stack.
3996   if (FuncInfo.StaticAllocaMap.count(&I))
3997     return;   // getValue will auto-populate this.
3998 
3999   SDLoc dl = getCurSDLoc();
4000   Type *Ty = I.getAllocatedType();
4001   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4002   auto &DL = DAG.getDataLayout();
4003   TypeSize TySize = DL.getTypeAllocSize(Ty);
4004   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4005 
4006   SDValue AllocSize = getValue(I.getArraySize());
4007 
4008   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4009   if (AllocSize.getValueType() != IntPtr)
4010     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4011 
4012   if (TySize.isScalable())
4013     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4014                             DAG.getVScale(dl, IntPtr,
4015                                           APInt(IntPtr.getScalarSizeInBits(),
4016                                                 TySize.getKnownMinValue())));
4017   else
4018     AllocSize =
4019         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4020                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4021 
4022   // Handle alignment.  If the requested alignment is less than or equal to
4023   // the stack alignment, ignore it.  If the size is greater than or equal to
4024   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4025   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4026   if (*Alignment <= StackAlign)
4027     Alignment = None;
4028 
4029   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4030   // Round the size of the allocation up to the stack alignment size
4031   // by add SA-1 to the size. This doesn't overflow because we're computing
4032   // an address inside an alloca.
4033   SDNodeFlags Flags;
4034   Flags.setNoUnsignedWrap(true);
4035   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4036                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4037 
4038   // Mask out the low bits for alignment purposes.
4039   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4040                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4041 
4042   SDValue Ops[] = {
4043       getRoot(), AllocSize,
4044       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4045   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4046   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4047   setValue(&I, DSA);
4048   DAG.setRoot(DSA.getValue(1));
4049 
4050   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4051 }
4052 
4053 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4054   if (I.isAtomic())
4055     return visitAtomicLoad(I);
4056 
4057   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4058   const Value *SV = I.getOperand(0);
4059   if (TLI.supportSwiftError()) {
4060     // Swifterror values can come from either a function parameter with
4061     // swifterror attribute or an alloca with swifterror attribute.
4062     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4063       if (Arg->hasSwiftErrorAttr())
4064         return visitLoadFromSwiftError(I);
4065     }
4066 
4067     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4068       if (Alloca->isSwiftError())
4069         return visitLoadFromSwiftError(I);
4070     }
4071   }
4072 
4073   SDValue Ptr = getValue(SV);
4074 
4075   Type *Ty = I.getType();
4076   Align Alignment = I.getAlign();
4077 
4078   AAMDNodes AAInfo = I.getAAMetadata();
4079   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4080 
4081   SmallVector<EVT, 4> ValueVTs, MemVTs;
4082   SmallVector<uint64_t, 4> Offsets;
4083   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4084   unsigned NumValues = ValueVTs.size();
4085   if (NumValues == 0)
4086     return;
4087 
4088   bool isVolatile = I.isVolatile();
4089 
4090   SDValue Root;
4091   bool ConstantMemory = false;
4092   if (isVolatile)
4093     // Serialize volatile loads with other side effects.
4094     Root = getRoot();
4095   else if (NumValues > MaxParallelChains)
4096     Root = getMemoryRoot();
4097   else if (AA &&
4098            AA->pointsToConstantMemory(MemoryLocation(
4099                SV,
4100                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4101                AAInfo))) {
4102     // Do not serialize (non-volatile) loads of constant memory with anything.
4103     Root = DAG.getEntryNode();
4104     ConstantMemory = true;
4105   } else {
4106     // Do not serialize non-volatile loads against each other.
4107     Root = DAG.getRoot();
4108   }
4109 
4110   SDLoc dl = getCurSDLoc();
4111 
4112   if (isVolatile)
4113     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4114 
4115   // An aggregate load cannot wrap around the address space, so offsets to its
4116   // parts don't wrap either.
4117   SDNodeFlags Flags;
4118   Flags.setNoUnsignedWrap(true);
4119 
4120   SmallVector<SDValue, 4> Values(NumValues);
4121   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4122   EVT PtrVT = Ptr.getValueType();
4123 
4124   MachineMemOperand::Flags MMOFlags
4125     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4126 
4127   unsigned ChainI = 0;
4128   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4129     // Serializing loads here may result in excessive register pressure, and
4130     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4131     // could recover a bit by hoisting nodes upward in the chain by recognizing
4132     // they are side-effect free or do not alias. The optimizer should really
4133     // avoid this case by converting large object/array copies to llvm.memcpy
4134     // (MaxParallelChains should always remain as failsafe).
4135     if (ChainI == MaxParallelChains) {
4136       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4137       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4138                                   makeArrayRef(Chains.data(), ChainI));
4139       Root = Chain;
4140       ChainI = 0;
4141     }
4142     SDValue A = DAG.getNode(ISD::ADD, dl,
4143                             PtrVT, Ptr,
4144                             DAG.getConstant(Offsets[i], dl, PtrVT),
4145                             Flags);
4146 
4147     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4148                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4149                             MMOFlags, AAInfo, Ranges);
4150     Chains[ChainI] = L.getValue(1);
4151 
4152     if (MemVTs[i] != ValueVTs[i])
4153       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4154 
4155     Values[i] = L;
4156   }
4157 
4158   if (!ConstantMemory) {
4159     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4160                                 makeArrayRef(Chains.data(), ChainI));
4161     if (isVolatile)
4162       DAG.setRoot(Chain);
4163     else
4164       PendingLoads.push_back(Chain);
4165   }
4166 
4167   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4168                            DAG.getVTList(ValueVTs), Values));
4169 }
4170 
4171 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4172   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4173          "call visitStoreToSwiftError when backend supports swifterror");
4174 
4175   SmallVector<EVT, 4> ValueVTs;
4176   SmallVector<uint64_t, 4> Offsets;
4177   const Value *SrcV = I.getOperand(0);
4178   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4179                   SrcV->getType(), ValueVTs, &Offsets);
4180   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4181          "expect a single EVT for swifterror");
4182 
4183   SDValue Src = getValue(SrcV);
4184   // Create a virtual register, then update the virtual register.
4185   Register VReg =
4186       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4187   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4188   // Chain can be getRoot or getControlRoot.
4189   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4190                                       SDValue(Src.getNode(), Src.getResNo()));
4191   DAG.setRoot(CopyNode);
4192 }
4193 
4194 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4195   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4196          "call visitLoadFromSwiftError when backend supports swifterror");
4197 
4198   assert(!I.isVolatile() &&
4199          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4200          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4201          "Support volatile, non temporal, invariant for load_from_swift_error");
4202 
4203   const Value *SV = I.getOperand(0);
4204   Type *Ty = I.getType();
4205   assert(
4206       (!AA ||
4207        !AA->pointsToConstantMemory(MemoryLocation(
4208            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4209            I.getAAMetadata()))) &&
4210       "load_from_swift_error should not be constant memory");
4211 
4212   SmallVector<EVT, 4> ValueVTs;
4213   SmallVector<uint64_t, 4> Offsets;
4214   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4215                   ValueVTs, &Offsets);
4216   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4217          "expect a single EVT for swifterror");
4218 
4219   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4220   SDValue L = DAG.getCopyFromReg(
4221       getRoot(), getCurSDLoc(),
4222       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4223 
4224   setValue(&I, L);
4225 }
4226 
4227 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4228   if (I.isAtomic())
4229     return visitAtomicStore(I);
4230 
4231   const Value *SrcV = I.getOperand(0);
4232   const Value *PtrV = I.getOperand(1);
4233 
4234   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4235   if (TLI.supportSwiftError()) {
4236     // Swifterror values can come from either a function parameter with
4237     // swifterror attribute or an alloca with swifterror attribute.
4238     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4239       if (Arg->hasSwiftErrorAttr())
4240         return visitStoreToSwiftError(I);
4241     }
4242 
4243     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4244       if (Alloca->isSwiftError())
4245         return visitStoreToSwiftError(I);
4246     }
4247   }
4248 
4249   SmallVector<EVT, 4> ValueVTs, MemVTs;
4250   SmallVector<uint64_t, 4> Offsets;
4251   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4252                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4253   unsigned NumValues = ValueVTs.size();
4254   if (NumValues == 0)
4255     return;
4256 
4257   // Get the lowered operands. Note that we do this after
4258   // checking if NumResults is zero, because with zero results
4259   // the operands won't have values in the map.
4260   SDValue Src = getValue(SrcV);
4261   SDValue Ptr = getValue(PtrV);
4262 
4263   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4264   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4265   SDLoc dl = getCurSDLoc();
4266   Align Alignment = I.getAlign();
4267   AAMDNodes AAInfo = I.getAAMetadata();
4268 
4269   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4270 
4271   // An aggregate load cannot wrap around the address space, so offsets to its
4272   // parts don't wrap either.
4273   SDNodeFlags Flags;
4274   Flags.setNoUnsignedWrap(true);
4275 
4276   unsigned ChainI = 0;
4277   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4278     // See visitLoad comments.
4279     if (ChainI == MaxParallelChains) {
4280       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4281                                   makeArrayRef(Chains.data(), ChainI));
4282       Root = Chain;
4283       ChainI = 0;
4284     }
4285     SDValue Add =
4286         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4287     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4288     if (MemVTs[i] != ValueVTs[i])
4289       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4290     SDValue St =
4291         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4292                      Alignment, MMOFlags, AAInfo);
4293     Chains[ChainI] = St;
4294   }
4295 
4296   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4297                                   makeArrayRef(Chains.data(), ChainI));
4298   DAG.setRoot(StoreNode);
4299 }
4300 
4301 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4302                                            bool IsCompressing) {
4303   SDLoc sdl = getCurSDLoc();
4304 
4305   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4306                                MaybeAlign &Alignment) {
4307     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4308     Src0 = I.getArgOperand(0);
4309     Ptr = I.getArgOperand(1);
4310     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4311     Mask = I.getArgOperand(3);
4312   };
4313   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4314                                     MaybeAlign &Alignment) {
4315     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4316     Src0 = I.getArgOperand(0);
4317     Ptr = I.getArgOperand(1);
4318     Mask = I.getArgOperand(2);
4319     Alignment = None;
4320   };
4321 
4322   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4323   MaybeAlign Alignment;
4324   if (IsCompressing)
4325     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4326   else
4327     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4328 
4329   SDValue Ptr = getValue(PtrOperand);
4330   SDValue Src0 = getValue(Src0Operand);
4331   SDValue Mask = getValue(MaskOperand);
4332   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4333 
4334   EVT VT = Src0.getValueType();
4335   if (!Alignment)
4336     Alignment = DAG.getEVTAlign(VT);
4337 
4338   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4339       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4340       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4341   SDValue StoreNode =
4342       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4343                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4344   DAG.setRoot(StoreNode);
4345   setValue(&I, StoreNode);
4346 }
4347 
4348 // Get a uniform base for the Gather/Scatter intrinsic.
4349 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4350 // We try to represent it as a base pointer + vector of indices.
4351 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4352 // The first operand of the GEP may be a single pointer or a vector of pointers
4353 // Example:
4354 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4355 //  or
4356 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4357 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4358 //
4359 // When the first GEP operand is a single pointer - it is the uniform base we
4360 // are looking for. If first operand of the GEP is a splat vector - we
4361 // extract the splat value and use it as a uniform base.
4362 // In all other cases the function returns 'false'.
4363 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4364                            ISD::MemIndexType &IndexType, SDValue &Scale,
4365                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4366   SelectionDAG& DAG = SDB->DAG;
4367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4368   const DataLayout &DL = DAG.getDataLayout();
4369 
4370   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4371 
4372   // Handle splat constant pointer.
4373   if (auto *C = dyn_cast<Constant>(Ptr)) {
4374     C = C->getSplatValue();
4375     if (!C)
4376       return false;
4377 
4378     Base = SDB->getValue(C);
4379 
4380     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4381     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4382     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4383     IndexType = ISD::SIGNED_SCALED;
4384     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4385     return true;
4386   }
4387 
4388   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4389   if (!GEP || GEP->getParent() != CurBB)
4390     return false;
4391 
4392   if (GEP->getNumOperands() != 2)
4393     return false;
4394 
4395   const Value *BasePtr = GEP->getPointerOperand();
4396   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4397 
4398   // Make sure the base is scalar and the index is a vector.
4399   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4400     return false;
4401 
4402   Base = SDB->getValue(BasePtr);
4403   Index = SDB->getValue(IndexVal);
4404   IndexType = ISD::SIGNED_SCALED;
4405   Scale = DAG.getTargetConstant(
4406               DL.getTypeAllocSize(GEP->getResultElementType()),
4407               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4408   return true;
4409 }
4410 
4411 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4412   SDLoc sdl = getCurSDLoc();
4413 
4414   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4415   const Value *Ptr = I.getArgOperand(1);
4416   SDValue Src0 = getValue(I.getArgOperand(0));
4417   SDValue Mask = getValue(I.getArgOperand(3));
4418   EVT VT = Src0.getValueType();
4419   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4420                         ->getMaybeAlignValue()
4421                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4423 
4424   SDValue Base;
4425   SDValue Index;
4426   ISD::MemIndexType IndexType;
4427   SDValue Scale;
4428   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4429                                     I.getParent());
4430 
4431   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4432   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4433       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4434       // TODO: Make MachineMemOperands aware of scalable
4435       // vectors.
4436       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4437   if (!UniformBase) {
4438     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4439     Index = getValue(Ptr);
4440     IndexType = ISD::SIGNED_UNSCALED;
4441     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4442   }
4443 
4444   EVT IdxVT = Index.getValueType();
4445   EVT EltTy = IdxVT.getVectorElementType();
4446   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4447     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4448     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4449   }
4450 
4451   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4452   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4453                                          Ops, MMO, IndexType, false);
4454   DAG.setRoot(Scatter);
4455   setValue(&I, Scatter);
4456 }
4457 
4458 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4459   SDLoc sdl = getCurSDLoc();
4460 
4461   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4462                               MaybeAlign &Alignment) {
4463     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4464     Ptr = I.getArgOperand(0);
4465     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4466     Mask = I.getArgOperand(2);
4467     Src0 = I.getArgOperand(3);
4468   };
4469   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4470                                  MaybeAlign &Alignment) {
4471     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4472     Ptr = I.getArgOperand(0);
4473     Alignment = None;
4474     Mask = I.getArgOperand(1);
4475     Src0 = I.getArgOperand(2);
4476   };
4477 
4478   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4479   MaybeAlign Alignment;
4480   if (IsExpanding)
4481     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4482   else
4483     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4484 
4485   SDValue Ptr = getValue(PtrOperand);
4486   SDValue Src0 = getValue(Src0Operand);
4487   SDValue Mask = getValue(MaskOperand);
4488   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4489 
4490   EVT VT = Src0.getValueType();
4491   if (!Alignment)
4492     Alignment = DAG.getEVTAlign(VT);
4493 
4494   AAMDNodes AAInfo = I.getAAMetadata();
4495   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4496 
4497   // Do not serialize masked loads of constant memory with anything.
4498   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4499   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4500 
4501   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4502 
4503   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4504       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4505       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4506 
4507   SDValue Load =
4508       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4509                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4510   if (AddToChain)
4511     PendingLoads.push_back(Load.getValue(1));
4512   setValue(&I, Load);
4513 }
4514 
4515 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4516   SDLoc sdl = getCurSDLoc();
4517 
4518   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4519   const Value *Ptr = I.getArgOperand(0);
4520   SDValue Src0 = getValue(I.getArgOperand(3));
4521   SDValue Mask = getValue(I.getArgOperand(2));
4522 
4523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4524   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4525   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4526                         ->getMaybeAlignValue()
4527                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4528 
4529   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4530 
4531   SDValue Root = DAG.getRoot();
4532   SDValue Base;
4533   SDValue Index;
4534   ISD::MemIndexType IndexType;
4535   SDValue Scale;
4536   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4537                                     I.getParent());
4538   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4539   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4540       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4541       // TODO: Make MachineMemOperands aware of scalable
4542       // vectors.
4543       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4544 
4545   if (!UniformBase) {
4546     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4547     Index = getValue(Ptr);
4548     IndexType = ISD::SIGNED_UNSCALED;
4549     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4550   }
4551 
4552   EVT IdxVT = Index.getValueType();
4553   EVT EltTy = IdxVT.getVectorElementType();
4554   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4555     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4556     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4557   }
4558 
4559   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4560   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4561                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4562 
4563   PendingLoads.push_back(Gather.getValue(1));
4564   setValue(&I, Gather);
4565 }
4566 
4567 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4568   SDLoc dl = getCurSDLoc();
4569   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4570   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4571   SyncScope::ID SSID = I.getSyncScopeID();
4572 
4573   SDValue InChain = getRoot();
4574 
4575   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4576   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4577 
4578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4579   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4580 
4581   MachineFunction &MF = DAG.getMachineFunction();
4582   MachineMemOperand *MMO = MF.getMachineMemOperand(
4583       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4584       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4585       FailureOrdering);
4586 
4587   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4588                                    dl, MemVT, VTs, InChain,
4589                                    getValue(I.getPointerOperand()),
4590                                    getValue(I.getCompareOperand()),
4591                                    getValue(I.getNewValOperand()), MMO);
4592 
4593   SDValue OutChain = L.getValue(2);
4594 
4595   setValue(&I, L);
4596   DAG.setRoot(OutChain);
4597 }
4598 
4599 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4600   SDLoc dl = getCurSDLoc();
4601   ISD::NodeType NT;
4602   switch (I.getOperation()) {
4603   default: llvm_unreachable("Unknown atomicrmw operation");
4604   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4605   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4606   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4607   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4608   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4609   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4610   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4611   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4612   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4613   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4614   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4615   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4616   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4617   }
4618   AtomicOrdering Ordering = I.getOrdering();
4619   SyncScope::ID SSID = I.getSyncScopeID();
4620 
4621   SDValue InChain = getRoot();
4622 
4623   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4625   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4626 
4627   MachineFunction &MF = DAG.getMachineFunction();
4628   MachineMemOperand *MMO = MF.getMachineMemOperand(
4629       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4630       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4631 
4632   SDValue L =
4633     DAG.getAtomic(NT, dl, MemVT, InChain,
4634                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4635                   MMO);
4636 
4637   SDValue OutChain = L.getValue(1);
4638 
4639   setValue(&I, L);
4640   DAG.setRoot(OutChain);
4641 }
4642 
4643 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4644   SDLoc dl = getCurSDLoc();
4645   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4646   SDValue Ops[3];
4647   Ops[0] = getRoot();
4648   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4649                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4650   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4651                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4652   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4653 }
4654 
4655 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4656   SDLoc dl = getCurSDLoc();
4657   AtomicOrdering Order = I.getOrdering();
4658   SyncScope::ID SSID = I.getSyncScopeID();
4659 
4660   SDValue InChain = getRoot();
4661 
4662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4663   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4664   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4665 
4666   if (!TLI.supportsUnalignedAtomics() &&
4667       I.getAlignment() < MemVT.getSizeInBits() / 8)
4668     report_fatal_error("Cannot generate unaligned atomic load");
4669 
4670   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4671 
4672   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4673       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4674       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4675 
4676   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4677 
4678   SDValue Ptr = getValue(I.getPointerOperand());
4679 
4680   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4681     // TODO: Once this is better exercised by tests, it should be merged with
4682     // the normal path for loads to prevent future divergence.
4683     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4684     if (MemVT != VT)
4685       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4686 
4687     setValue(&I, L);
4688     SDValue OutChain = L.getValue(1);
4689     if (!I.isUnordered())
4690       DAG.setRoot(OutChain);
4691     else
4692       PendingLoads.push_back(OutChain);
4693     return;
4694   }
4695 
4696   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4697                             Ptr, MMO);
4698 
4699   SDValue OutChain = L.getValue(1);
4700   if (MemVT != VT)
4701     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4702 
4703   setValue(&I, L);
4704   DAG.setRoot(OutChain);
4705 }
4706 
4707 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4708   SDLoc dl = getCurSDLoc();
4709 
4710   AtomicOrdering Ordering = I.getOrdering();
4711   SyncScope::ID SSID = I.getSyncScopeID();
4712 
4713   SDValue InChain = getRoot();
4714 
4715   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4716   EVT MemVT =
4717       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4718 
4719   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4720     report_fatal_error("Cannot generate unaligned atomic store");
4721 
4722   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4723 
4724   MachineFunction &MF = DAG.getMachineFunction();
4725   MachineMemOperand *MMO = MF.getMachineMemOperand(
4726       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4727       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4728 
4729   SDValue Val = getValue(I.getValueOperand());
4730   if (Val.getValueType() != MemVT)
4731     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4732   SDValue Ptr = getValue(I.getPointerOperand());
4733 
4734   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4735     // TODO: Once this is better exercised by tests, it should be merged with
4736     // the normal path for stores to prevent future divergence.
4737     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4738     DAG.setRoot(S);
4739     return;
4740   }
4741   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4742                                    Ptr, Val, MMO);
4743 
4744 
4745   DAG.setRoot(OutChain);
4746 }
4747 
4748 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4749 /// node.
4750 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4751                                                unsigned Intrinsic) {
4752   // Ignore the callsite's attributes. A specific call site may be marked with
4753   // readnone, but the lowering code will expect the chain based on the
4754   // definition.
4755   const Function *F = I.getCalledFunction();
4756   bool HasChain = !F->doesNotAccessMemory();
4757   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4758 
4759   // Build the operand list.
4760   SmallVector<SDValue, 8> Ops;
4761   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4762     if (OnlyLoad) {
4763       // We don't need to serialize loads against other loads.
4764       Ops.push_back(DAG.getRoot());
4765     } else {
4766       Ops.push_back(getRoot());
4767     }
4768   }
4769 
4770   // Info is set by getTgtMemInstrinsic
4771   TargetLowering::IntrinsicInfo Info;
4772   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4773   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4774                                                DAG.getMachineFunction(),
4775                                                Intrinsic);
4776 
4777   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4778   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4779       Info.opc == ISD::INTRINSIC_W_CHAIN)
4780     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4781                                         TLI.getPointerTy(DAG.getDataLayout())));
4782 
4783   // Add all operands of the call to the operand list.
4784   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4785     const Value *Arg = I.getArgOperand(i);
4786     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4787       Ops.push_back(getValue(Arg));
4788       continue;
4789     }
4790 
4791     // Use TargetConstant instead of a regular constant for immarg.
4792     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4793     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4794       assert(CI->getBitWidth() <= 64 &&
4795              "large intrinsic immediates not handled");
4796       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4797     } else {
4798       Ops.push_back(
4799           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4800     }
4801   }
4802 
4803   SmallVector<EVT, 4> ValueVTs;
4804   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4805 
4806   if (HasChain)
4807     ValueVTs.push_back(MVT::Other);
4808 
4809   SDVTList VTs = DAG.getVTList(ValueVTs);
4810 
4811   // Propagate fast-math-flags from IR to node(s).
4812   SDNodeFlags Flags;
4813   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4814     Flags.copyFMF(*FPMO);
4815   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4816 
4817   // Create the node.
4818   SDValue Result;
4819   if (IsTgtIntrinsic) {
4820     // This is target intrinsic that touches memory
4821     Result =
4822         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4823                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4824                                 Info.align, Info.flags, Info.size,
4825                                 I.getAAMetadata());
4826   } else if (!HasChain) {
4827     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4828   } else if (!I.getType()->isVoidTy()) {
4829     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4830   } else {
4831     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4832   }
4833 
4834   if (HasChain) {
4835     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4836     if (OnlyLoad)
4837       PendingLoads.push_back(Chain);
4838     else
4839       DAG.setRoot(Chain);
4840   }
4841 
4842   if (!I.getType()->isVoidTy()) {
4843     if (!isa<VectorType>(I.getType()))
4844       Result = lowerRangeToAssertZExt(DAG, I, Result);
4845 
4846     MaybeAlign Alignment = I.getRetAlign();
4847     if (!Alignment)
4848       Alignment = F->getAttributes().getRetAlignment();
4849     // Insert `assertalign` node if there's an alignment.
4850     if (InsertAssertAlign && Alignment) {
4851       Result =
4852           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4853     }
4854 
4855     setValue(&I, Result);
4856   }
4857 }
4858 
4859 /// GetSignificand - Get the significand and build it into a floating-point
4860 /// number with exponent of 1:
4861 ///
4862 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4863 ///
4864 /// where Op is the hexadecimal representation of floating point value.
4865 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4866   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4867                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4868   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4869                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4870   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4871 }
4872 
4873 /// GetExponent - Get the exponent:
4874 ///
4875 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4876 ///
4877 /// where Op is the hexadecimal representation of floating point value.
4878 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4879                            const TargetLowering &TLI, const SDLoc &dl) {
4880   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4881                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4882   SDValue t1 = DAG.getNode(
4883       ISD::SRL, dl, MVT::i32, t0,
4884       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4885   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4886                            DAG.getConstant(127, dl, MVT::i32));
4887   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4888 }
4889 
4890 /// getF32Constant - Get 32-bit floating point constant.
4891 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4892                               const SDLoc &dl) {
4893   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4894                            MVT::f32);
4895 }
4896 
4897 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4898                                        SelectionDAG &DAG) {
4899   // TODO: What fast-math-flags should be set on the floating-point nodes?
4900 
4901   //   IntegerPartOfX = ((int32_t)(t0);
4902   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4903 
4904   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4905   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4906   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4907 
4908   //   IntegerPartOfX <<= 23;
4909   IntegerPartOfX = DAG.getNode(
4910       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4911       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4912                                   DAG.getDataLayout())));
4913 
4914   SDValue TwoToFractionalPartOfX;
4915   if (LimitFloatPrecision <= 6) {
4916     // For floating-point precision of 6:
4917     //
4918     //   TwoToFractionalPartOfX =
4919     //     0.997535578f +
4920     //       (0.735607626f + 0.252464424f * x) * x;
4921     //
4922     // error 0.0144103317, which is 6 bits
4923     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4924                              getF32Constant(DAG, 0x3e814304, dl));
4925     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4926                              getF32Constant(DAG, 0x3f3c50c8, dl));
4927     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4928     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4929                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4930   } else if (LimitFloatPrecision <= 12) {
4931     // For floating-point precision of 12:
4932     //
4933     //   TwoToFractionalPartOfX =
4934     //     0.999892986f +
4935     //       (0.696457318f +
4936     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4937     //
4938     // error 0.000107046256, which is 13 to 14 bits
4939     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4940                              getF32Constant(DAG, 0x3da235e3, dl));
4941     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4942                              getF32Constant(DAG, 0x3e65b8f3, dl));
4943     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4944     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4945                              getF32Constant(DAG, 0x3f324b07, dl));
4946     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4947     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4948                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4949   } else { // LimitFloatPrecision <= 18
4950     // For floating-point precision of 18:
4951     //
4952     //   TwoToFractionalPartOfX =
4953     //     0.999999982f +
4954     //       (0.693148872f +
4955     //         (0.240227044f +
4956     //           (0.554906021e-1f +
4957     //             (0.961591928e-2f +
4958     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4959     // error 2.47208000*10^(-7), which is better than 18 bits
4960     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4961                              getF32Constant(DAG, 0x3924b03e, dl));
4962     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4963                              getF32Constant(DAG, 0x3ab24b87, dl));
4964     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4965     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4966                              getF32Constant(DAG, 0x3c1d8c17, dl));
4967     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4968     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4969                              getF32Constant(DAG, 0x3d634a1d, dl));
4970     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4971     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4972                              getF32Constant(DAG, 0x3e75fe14, dl));
4973     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4974     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4975                               getF32Constant(DAG, 0x3f317234, dl));
4976     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4977     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4978                                          getF32Constant(DAG, 0x3f800000, dl));
4979   }
4980 
4981   // Add the exponent into the result in integer domain.
4982   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4983   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4984                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4985 }
4986 
4987 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4988 /// limited-precision mode.
4989 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4990                          const TargetLowering &TLI, SDNodeFlags Flags) {
4991   if (Op.getValueType() == MVT::f32 &&
4992       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4993 
4994     // Put the exponent in the right bit position for later addition to the
4995     // final result:
4996     //
4997     // t0 = Op * log2(e)
4998 
4999     // TODO: What fast-math-flags should be set here?
5000     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5001                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5002     return getLimitedPrecisionExp2(t0, dl, DAG);
5003   }
5004 
5005   // No special expansion.
5006   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5007 }
5008 
5009 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5010 /// limited-precision mode.
5011 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5012                          const TargetLowering &TLI, SDNodeFlags Flags) {
5013   // TODO: What fast-math-flags should be set on the floating-point nodes?
5014 
5015   if (Op.getValueType() == MVT::f32 &&
5016       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5017     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5018 
5019     // Scale the exponent by log(2).
5020     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5021     SDValue LogOfExponent =
5022         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5023                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5024 
5025     // Get the significand and build it into a floating-point number with
5026     // exponent of 1.
5027     SDValue X = GetSignificand(DAG, Op1, dl);
5028 
5029     SDValue LogOfMantissa;
5030     if (LimitFloatPrecision <= 6) {
5031       // For floating-point precision of 6:
5032       //
5033       //   LogofMantissa =
5034       //     -1.1609546f +
5035       //       (1.4034025f - 0.23903021f * x) * x;
5036       //
5037       // error 0.0034276066, which is better than 8 bits
5038       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5039                                getF32Constant(DAG, 0xbe74c456, dl));
5040       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5041                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5042       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5043       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5044                                   getF32Constant(DAG, 0x3f949a29, dl));
5045     } else if (LimitFloatPrecision <= 12) {
5046       // For floating-point precision of 12:
5047       //
5048       //   LogOfMantissa =
5049       //     -1.7417939f +
5050       //       (2.8212026f +
5051       //         (-1.4699568f +
5052       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5053       //
5054       // error 0.000061011436, which is 14 bits
5055       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5056                                getF32Constant(DAG, 0xbd67b6d6, dl));
5057       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5058                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5059       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5060       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5061                                getF32Constant(DAG, 0x3fbc278b, dl));
5062       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5063       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5064                                getF32Constant(DAG, 0x40348e95, dl));
5065       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5066       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5067                                   getF32Constant(DAG, 0x3fdef31a, dl));
5068     } else { // LimitFloatPrecision <= 18
5069       // For floating-point precision of 18:
5070       //
5071       //   LogOfMantissa =
5072       //     -2.1072184f +
5073       //       (4.2372794f +
5074       //         (-3.7029485f +
5075       //           (2.2781945f +
5076       //             (-0.87823314f +
5077       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5078       //
5079       // error 0.0000023660568, which is better than 18 bits
5080       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5081                                getF32Constant(DAG, 0xbc91e5ac, dl));
5082       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5083                                getF32Constant(DAG, 0x3e4350aa, dl));
5084       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5085       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5086                                getF32Constant(DAG, 0x3f60d3e3, dl));
5087       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5088       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5089                                getF32Constant(DAG, 0x4011cdf0, dl));
5090       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5091       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5092                                getF32Constant(DAG, 0x406cfd1c, dl));
5093       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5094       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5095                                getF32Constant(DAG, 0x408797cb, dl));
5096       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5097       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5098                                   getF32Constant(DAG, 0x4006dcab, dl));
5099     }
5100 
5101     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5102   }
5103 
5104   // No special expansion.
5105   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5106 }
5107 
5108 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5109 /// limited-precision mode.
5110 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5111                           const TargetLowering &TLI, SDNodeFlags Flags) {
5112   // TODO: What fast-math-flags should be set on the floating-point nodes?
5113 
5114   if (Op.getValueType() == MVT::f32 &&
5115       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5116     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5117 
5118     // Get the exponent.
5119     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5120 
5121     // Get the significand and build it into a floating-point number with
5122     // exponent of 1.
5123     SDValue X = GetSignificand(DAG, Op1, dl);
5124 
5125     // Different possible minimax approximations of significand in
5126     // floating-point for various degrees of accuracy over [1,2].
5127     SDValue Log2ofMantissa;
5128     if (LimitFloatPrecision <= 6) {
5129       // For floating-point precision of 6:
5130       //
5131       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5132       //
5133       // error 0.0049451742, which is more than 7 bits
5134       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5135                                getF32Constant(DAG, 0xbeb08fe0, dl));
5136       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5137                                getF32Constant(DAG, 0x40019463, dl));
5138       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5139       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5140                                    getF32Constant(DAG, 0x3fd6633d, dl));
5141     } else if (LimitFloatPrecision <= 12) {
5142       // For floating-point precision of 12:
5143       //
5144       //   Log2ofMantissa =
5145       //     -2.51285454f +
5146       //       (4.07009056f +
5147       //         (-2.12067489f +
5148       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5149       //
5150       // error 0.0000876136000, which is better than 13 bits
5151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5152                                getF32Constant(DAG, 0xbda7262e, dl));
5153       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5154                                getF32Constant(DAG, 0x3f25280b, dl));
5155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5156       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5157                                getF32Constant(DAG, 0x4007b923, dl));
5158       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5159       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5160                                getF32Constant(DAG, 0x40823e2f, dl));
5161       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5162       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5163                                    getF32Constant(DAG, 0x4020d29c, dl));
5164     } else { // LimitFloatPrecision <= 18
5165       // For floating-point precision of 18:
5166       //
5167       //   Log2ofMantissa =
5168       //     -3.0400495f +
5169       //       (6.1129976f +
5170       //         (-5.3420409f +
5171       //           (3.2865683f +
5172       //             (-1.2669343f +
5173       //               (0.27515199f -
5174       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5175       //
5176       // error 0.0000018516, which is better than 18 bits
5177       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5178                                getF32Constant(DAG, 0xbcd2769e, dl));
5179       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5180                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5181       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5182       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5183                                getF32Constant(DAG, 0x3fa22ae7, dl));
5184       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5185       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5186                                getF32Constant(DAG, 0x40525723, dl));
5187       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5188       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5189                                getF32Constant(DAG, 0x40aaf200, dl));
5190       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5191       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5192                                getF32Constant(DAG, 0x40c39dad, dl));
5193       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5194       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5195                                    getF32Constant(DAG, 0x4042902c, dl));
5196     }
5197 
5198     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5199   }
5200 
5201   // No special expansion.
5202   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5203 }
5204 
5205 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5206 /// limited-precision mode.
5207 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5208                            const TargetLowering &TLI, SDNodeFlags Flags) {
5209   // TODO: What fast-math-flags should be set on the floating-point nodes?
5210 
5211   if (Op.getValueType() == MVT::f32 &&
5212       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5213     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5214 
5215     // Scale the exponent by log10(2) [0.30102999f].
5216     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5217     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5218                                         getF32Constant(DAG, 0x3e9a209a, dl));
5219 
5220     // Get the significand and build it into a floating-point number with
5221     // exponent of 1.
5222     SDValue X = GetSignificand(DAG, Op1, dl);
5223 
5224     SDValue Log10ofMantissa;
5225     if (LimitFloatPrecision <= 6) {
5226       // For floating-point precision of 6:
5227       //
5228       //   Log10ofMantissa =
5229       //     -0.50419619f +
5230       //       (0.60948995f - 0.10380950f * x) * x;
5231       //
5232       // error 0.0014886165, which is 6 bits
5233       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5234                                getF32Constant(DAG, 0xbdd49a13, dl));
5235       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5236                                getF32Constant(DAG, 0x3f1c0789, dl));
5237       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5238       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5239                                     getF32Constant(DAG, 0x3f011300, dl));
5240     } else if (LimitFloatPrecision <= 12) {
5241       // For floating-point precision of 12:
5242       //
5243       //   Log10ofMantissa =
5244       //     -0.64831180f +
5245       //       (0.91751397f +
5246       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5247       //
5248       // error 0.00019228036, which is better than 12 bits
5249       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5250                                getF32Constant(DAG, 0x3d431f31, dl));
5251       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5252                                getF32Constant(DAG, 0x3ea21fb2, dl));
5253       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5254       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5255                                getF32Constant(DAG, 0x3f6ae232, dl));
5256       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5257       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5258                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5259     } else { // LimitFloatPrecision <= 18
5260       // For floating-point precision of 18:
5261       //
5262       //   Log10ofMantissa =
5263       //     -0.84299375f +
5264       //       (1.5327582f +
5265       //         (-1.0688956f +
5266       //           (0.49102474f +
5267       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5268       //
5269       // error 0.0000037995730, which is better than 18 bits
5270       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5271                                getF32Constant(DAG, 0x3c5d51ce, dl));
5272       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5273                                getF32Constant(DAG, 0x3e00685a, dl));
5274       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5275       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5276                                getF32Constant(DAG, 0x3efb6798, dl));
5277       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5278       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5279                                getF32Constant(DAG, 0x3f88d192, dl));
5280       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5281       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5282                                getF32Constant(DAG, 0x3fc4316c, dl));
5283       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5284       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5285                                     getF32Constant(DAG, 0x3f57ce70, dl));
5286     }
5287 
5288     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5289   }
5290 
5291   // No special expansion.
5292   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5293 }
5294 
5295 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5296 /// limited-precision mode.
5297 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5298                           const TargetLowering &TLI, SDNodeFlags Flags) {
5299   if (Op.getValueType() == MVT::f32 &&
5300       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5301     return getLimitedPrecisionExp2(Op, dl, DAG);
5302 
5303   // No special expansion.
5304   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5305 }
5306 
5307 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5308 /// limited-precision mode with x == 10.0f.
5309 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5310                          SelectionDAG &DAG, const TargetLowering &TLI,
5311                          SDNodeFlags Flags) {
5312   bool IsExp10 = false;
5313   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5314       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5315     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5316       APFloat Ten(10.0f);
5317       IsExp10 = LHSC->isExactlyValue(Ten);
5318     }
5319   }
5320 
5321   // TODO: What fast-math-flags should be set on the FMUL node?
5322   if (IsExp10) {
5323     // Put the exponent in the right bit position for later addition to the
5324     // final result:
5325     //
5326     //   #define LOG2OF10 3.3219281f
5327     //   t0 = Op * LOG2OF10;
5328     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5329                              getF32Constant(DAG, 0x40549a78, dl));
5330     return getLimitedPrecisionExp2(t0, dl, DAG);
5331   }
5332 
5333   // No special expansion.
5334   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5335 }
5336 
5337 /// ExpandPowI - Expand a llvm.powi intrinsic.
5338 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5339                           SelectionDAG &DAG) {
5340   // If RHS is a constant, we can expand this out to a multiplication tree,
5341   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5342   // optimizing for size, we only want to do this if the expansion would produce
5343   // a small number of multiplies, otherwise we do the full expansion.
5344   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5345     // Get the exponent as a positive value.
5346     unsigned Val = RHSC->getSExtValue();
5347     if ((int)Val < 0) Val = -Val;
5348 
5349     // powi(x, 0) -> 1.0
5350     if (Val == 0)
5351       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5352 
5353     bool OptForSize = DAG.shouldOptForSize();
5354     if (!OptForSize ||
5355         // If optimizing for size, don't insert too many multiplies.
5356         // This inserts up to 5 multiplies.
5357         countPopulation(Val) + Log2_32(Val) < 7) {
5358       // We use the simple binary decomposition method to generate the multiply
5359       // sequence.  There are more optimal ways to do this (for example,
5360       // powi(x,15) generates one more multiply than it should), but this has
5361       // the benefit of being both really simple and much better than a libcall.
5362       SDValue Res;  // Logically starts equal to 1.0
5363       SDValue CurSquare = LHS;
5364       // TODO: Intrinsics should have fast-math-flags that propagate to these
5365       // nodes.
5366       while (Val) {
5367         if (Val & 1) {
5368           if (Res.getNode())
5369             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5370           else
5371             Res = CurSquare;  // 1.0*CurSquare.
5372         }
5373 
5374         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5375                                 CurSquare, CurSquare);
5376         Val >>= 1;
5377       }
5378 
5379       // If the original was negative, invert the result, producing 1/(x*x*x).
5380       if (RHSC->getSExtValue() < 0)
5381         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5382                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5383       return Res;
5384     }
5385   }
5386 
5387   // Otherwise, expand to a libcall.
5388   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5389 }
5390 
5391 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5392                             SDValue LHS, SDValue RHS, SDValue Scale,
5393                             SelectionDAG &DAG, const TargetLowering &TLI) {
5394   EVT VT = LHS.getValueType();
5395   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5396   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5397   LLVMContext &Ctx = *DAG.getContext();
5398 
5399   // If the type is legal but the operation isn't, this node might survive all
5400   // the way to operation legalization. If we end up there and we do not have
5401   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5402   // node.
5403 
5404   // Coax the legalizer into expanding the node during type legalization instead
5405   // by bumping the size by one bit. This will force it to Promote, enabling the
5406   // early expansion and avoiding the need to expand later.
5407 
5408   // We don't have to do this if Scale is 0; that can always be expanded, unless
5409   // it's a saturating signed operation. Those can experience true integer
5410   // division overflow, a case which we must avoid.
5411 
5412   // FIXME: We wouldn't have to do this (or any of the early
5413   // expansion/promotion) if it was possible to expand a libcall of an
5414   // illegal type during operation legalization. But it's not, so things
5415   // get a bit hacky.
5416   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5417   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5418       (TLI.isTypeLegal(VT) ||
5419        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5420     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5421         Opcode, VT, ScaleInt);
5422     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5423       EVT PromVT;
5424       if (VT.isScalarInteger())
5425         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5426       else if (VT.isVector()) {
5427         PromVT = VT.getVectorElementType();
5428         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5429         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5430       } else
5431         llvm_unreachable("Wrong VT for DIVFIX?");
5432       if (Signed) {
5433         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5434         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5435       } else {
5436         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5437         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5438       }
5439       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5440       // For saturating operations, we need to shift up the LHS to get the
5441       // proper saturation width, and then shift down again afterwards.
5442       if (Saturating)
5443         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5444                           DAG.getConstant(1, DL, ShiftTy));
5445       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5446       if (Saturating)
5447         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5448                           DAG.getConstant(1, DL, ShiftTy));
5449       return DAG.getZExtOrTrunc(Res, DL, VT);
5450     }
5451   }
5452 
5453   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5454 }
5455 
5456 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5457 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5458 static void
5459 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5460                      const SDValue &N) {
5461   switch (N.getOpcode()) {
5462   case ISD::CopyFromReg: {
5463     SDValue Op = N.getOperand(1);
5464     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5465                       Op.getValueType().getSizeInBits());
5466     return;
5467   }
5468   case ISD::BITCAST:
5469   case ISD::AssertZext:
5470   case ISD::AssertSext:
5471   case ISD::TRUNCATE:
5472     getUnderlyingArgRegs(Regs, N.getOperand(0));
5473     return;
5474   case ISD::BUILD_PAIR:
5475   case ISD::BUILD_VECTOR:
5476   case ISD::CONCAT_VECTORS:
5477     for (SDValue Op : N->op_values())
5478       getUnderlyingArgRegs(Regs, Op);
5479     return;
5480   default:
5481     return;
5482   }
5483 }
5484 
5485 /// If the DbgValueInst is a dbg_value of a function argument, create the
5486 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5487 /// instruction selection, they will be inserted to the entry BB.
5488 /// We don't currently support this for variadic dbg_values, as they shouldn't
5489 /// appear for function arguments or in the prologue.
5490 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5491     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5492     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5493   const Argument *Arg = dyn_cast<Argument>(V);
5494   if (!Arg)
5495     return false;
5496 
5497   MachineFunction &MF = DAG.getMachineFunction();
5498   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5499 
5500   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5501   // we've been asked to pursue.
5502   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5503                               bool Indirect) {
5504     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5505       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5506       // pointing at the VReg, which will be patched up later.
5507       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5508       auto MIB = BuildMI(MF, DL, Inst);
5509       MIB.addReg(Reg);
5510       MIB.addImm(0);
5511       MIB.addMetadata(Variable);
5512       auto *NewDIExpr = FragExpr;
5513       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5514       // the DIExpression.
5515       if (Indirect)
5516         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5517       MIB.addMetadata(NewDIExpr);
5518       return MIB;
5519     } else {
5520       // Create a completely standard DBG_VALUE.
5521       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5522       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5523     }
5524   };
5525 
5526   if (!IsDbgDeclare) {
5527     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5528     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5529     // the entry block.
5530     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5531     if (!IsInEntryBlock)
5532       return false;
5533 
5534     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5535     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5536     // variable that also is a param.
5537     //
5538     // Although, if we are at the top of the entry block already, we can still
5539     // emit using ArgDbgValue. This might catch some situations when the
5540     // dbg.value refers to an argument that isn't used in the entry block, so
5541     // any CopyToReg node would be optimized out and the only way to express
5542     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5543     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5544     // we should only emit as ArgDbgValue if the Variable is an argument to the
5545     // current function, and the dbg.value intrinsic is found in the entry
5546     // block.
5547     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5548         !DL->getInlinedAt();
5549     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5550     if (!IsInPrologue && !VariableIsFunctionInputArg)
5551       return false;
5552 
5553     // Here we assume that a function argument on IR level only can be used to
5554     // describe one input parameter on source level. If we for example have
5555     // source code like this
5556     //
5557     //    struct A { long x, y; };
5558     //    void foo(struct A a, long b) {
5559     //      ...
5560     //      b = a.x;
5561     //      ...
5562     //    }
5563     //
5564     // and IR like this
5565     //
5566     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5567     //  entry:
5568     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5569     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5570     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5571     //    ...
5572     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5573     //    ...
5574     //
5575     // then the last dbg.value is describing a parameter "b" using a value that
5576     // is an argument. But since we already has used %a1 to describe a parameter
5577     // we should not handle that last dbg.value here (that would result in an
5578     // incorrect hoisting of the DBG_VALUE to the function entry).
5579     // Notice that we allow one dbg.value per IR level argument, to accommodate
5580     // for the situation with fragments above.
5581     if (VariableIsFunctionInputArg) {
5582       unsigned ArgNo = Arg->getArgNo();
5583       if (ArgNo >= FuncInfo.DescribedArgs.size())
5584         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5585       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5586         return false;
5587       FuncInfo.DescribedArgs.set(ArgNo);
5588     }
5589   }
5590 
5591   bool IsIndirect = false;
5592   Optional<MachineOperand> Op;
5593   // Some arguments' frame index is recorded during argument lowering.
5594   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5595   if (FI != std::numeric_limits<int>::max())
5596     Op = MachineOperand::CreateFI(FI);
5597 
5598   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5599   if (!Op && N.getNode()) {
5600     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5601     Register Reg;
5602     if (ArgRegsAndSizes.size() == 1)
5603       Reg = ArgRegsAndSizes.front().first;
5604 
5605     if (Reg && Reg.isVirtual()) {
5606       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5607       Register PR = RegInfo.getLiveInPhysReg(Reg);
5608       if (PR)
5609         Reg = PR;
5610     }
5611     if (Reg) {
5612       Op = MachineOperand::CreateReg(Reg, false);
5613       IsIndirect = IsDbgDeclare;
5614     }
5615   }
5616 
5617   if (!Op && N.getNode()) {
5618     // Check if frame index is available.
5619     SDValue LCandidate = peekThroughBitcasts(N);
5620     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5621       if (FrameIndexSDNode *FINode =
5622           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5623         Op = MachineOperand::CreateFI(FINode->getIndex());
5624   }
5625 
5626   if (!Op) {
5627     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5628     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5629                                          SplitRegs) {
5630       unsigned Offset = 0;
5631       for (const auto &RegAndSize : SplitRegs) {
5632         // If the expression is already a fragment, the current register
5633         // offset+size might extend beyond the fragment. In this case, only
5634         // the register bits that are inside the fragment are relevant.
5635         int RegFragmentSizeInBits = RegAndSize.second;
5636         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5637           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5638           // The register is entirely outside the expression fragment,
5639           // so is irrelevant for debug info.
5640           if (Offset >= ExprFragmentSizeInBits)
5641             break;
5642           // The register is partially outside the expression fragment, only
5643           // the low bits within the fragment are relevant for debug info.
5644           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5645             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5646           }
5647         }
5648 
5649         auto FragmentExpr = DIExpression::createFragmentExpression(
5650             Expr, Offset, RegFragmentSizeInBits);
5651         Offset += RegAndSize.second;
5652         // If a valid fragment expression cannot be created, the variable's
5653         // correct value cannot be determined and so it is set as Undef.
5654         if (!FragmentExpr) {
5655           SDDbgValue *SDV = DAG.getConstantDbgValue(
5656               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5657           DAG.AddDbgValue(SDV, false);
5658           continue;
5659         }
5660         MachineInstr *NewMI =
5661             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare);
5662         FuncInfo.ArgDbgValues.push_back(NewMI);
5663       }
5664     };
5665 
5666     // Check if ValueMap has reg number.
5667     DenseMap<const Value *, Register>::const_iterator
5668       VMI = FuncInfo.ValueMap.find(V);
5669     if (VMI != FuncInfo.ValueMap.end()) {
5670       const auto &TLI = DAG.getTargetLoweringInfo();
5671       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5672                        V->getType(), None);
5673       if (RFV.occupiesMultipleRegs()) {
5674         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5675         return true;
5676       }
5677 
5678       Op = MachineOperand::CreateReg(VMI->second, false);
5679       IsIndirect = IsDbgDeclare;
5680     } else if (ArgRegsAndSizes.size() > 1) {
5681       // This was split due to the calling convention, and no virtual register
5682       // mapping exists for the value.
5683       splitMultiRegDbgValue(ArgRegsAndSizes);
5684       return true;
5685     }
5686   }
5687 
5688   if (!Op)
5689     return false;
5690 
5691   assert(Variable->isValidLocationForIntrinsic(DL) &&
5692          "Expected inlined-at fields to agree");
5693   MachineInstr *NewMI = nullptr;
5694 
5695   if (Op->isReg())
5696     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5697   else
5698     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5699                     Variable, Expr);
5700 
5701   FuncInfo.ArgDbgValues.push_back(NewMI);
5702   return true;
5703 }
5704 
5705 /// Return the appropriate SDDbgValue based on N.
5706 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5707                                              DILocalVariable *Variable,
5708                                              DIExpression *Expr,
5709                                              const DebugLoc &dl,
5710                                              unsigned DbgSDNodeOrder) {
5711   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5712     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5713     // stack slot locations.
5714     //
5715     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5716     // debug values here after optimization:
5717     //
5718     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5719     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5720     //
5721     // Both describe the direct values of their associated variables.
5722     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5723                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5724   }
5725   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5726                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5727 }
5728 
5729 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5730   switch (Intrinsic) {
5731   case Intrinsic::smul_fix:
5732     return ISD::SMULFIX;
5733   case Intrinsic::umul_fix:
5734     return ISD::UMULFIX;
5735   case Intrinsic::smul_fix_sat:
5736     return ISD::SMULFIXSAT;
5737   case Intrinsic::umul_fix_sat:
5738     return ISD::UMULFIXSAT;
5739   case Intrinsic::sdiv_fix:
5740     return ISD::SDIVFIX;
5741   case Intrinsic::udiv_fix:
5742     return ISD::UDIVFIX;
5743   case Intrinsic::sdiv_fix_sat:
5744     return ISD::SDIVFIXSAT;
5745   case Intrinsic::udiv_fix_sat:
5746     return ISD::UDIVFIXSAT;
5747   default:
5748     llvm_unreachable("Unhandled fixed point intrinsic");
5749   }
5750 }
5751 
5752 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5753                                            const char *FunctionName) {
5754   assert(FunctionName && "FunctionName must not be nullptr");
5755   SDValue Callee = DAG.getExternalSymbol(
5756       FunctionName,
5757       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5758   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5759 }
5760 
5761 /// Given a @llvm.call.preallocated.setup, return the corresponding
5762 /// preallocated call.
5763 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5764   assert(cast<CallBase>(PreallocatedSetup)
5765                  ->getCalledFunction()
5766                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5767          "expected call_preallocated_setup Value");
5768   for (auto *U : PreallocatedSetup->users()) {
5769     auto *UseCall = cast<CallBase>(U);
5770     const Function *Fn = UseCall->getCalledFunction();
5771     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5772       return UseCall;
5773     }
5774   }
5775   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5776 }
5777 
5778 /// Lower the call to the specified intrinsic function.
5779 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5780                                              unsigned Intrinsic) {
5781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5782   SDLoc sdl = getCurSDLoc();
5783   DebugLoc dl = getCurDebugLoc();
5784   SDValue Res;
5785 
5786   SDNodeFlags Flags;
5787   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5788     Flags.copyFMF(*FPOp);
5789 
5790   switch (Intrinsic) {
5791   default:
5792     // By default, turn this into a target intrinsic node.
5793     visitTargetIntrinsic(I, Intrinsic);
5794     return;
5795   case Intrinsic::vscale: {
5796     match(&I, m_VScale(DAG.getDataLayout()));
5797     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5798     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5799     return;
5800   }
5801   case Intrinsic::vastart:  visitVAStart(I); return;
5802   case Intrinsic::vaend:    visitVAEnd(I); return;
5803   case Intrinsic::vacopy:   visitVACopy(I); return;
5804   case Intrinsic::returnaddress:
5805     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5806                              TLI.getPointerTy(DAG.getDataLayout()),
5807                              getValue(I.getArgOperand(0))));
5808     return;
5809   case Intrinsic::addressofreturnaddress:
5810     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5811                              TLI.getPointerTy(DAG.getDataLayout())));
5812     return;
5813   case Intrinsic::sponentry:
5814     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5815                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5816     return;
5817   case Intrinsic::frameaddress:
5818     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5819                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5820                              getValue(I.getArgOperand(0))));
5821     return;
5822   case Intrinsic::read_volatile_register:
5823   case Intrinsic::read_register: {
5824     Value *Reg = I.getArgOperand(0);
5825     SDValue Chain = getRoot();
5826     SDValue RegName =
5827         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5828     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5829     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5830       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5831     setValue(&I, Res);
5832     DAG.setRoot(Res.getValue(1));
5833     return;
5834   }
5835   case Intrinsic::write_register: {
5836     Value *Reg = I.getArgOperand(0);
5837     Value *RegValue = I.getArgOperand(1);
5838     SDValue Chain = getRoot();
5839     SDValue RegName =
5840         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5841     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5842                             RegName, getValue(RegValue)));
5843     return;
5844   }
5845   case Intrinsic::memcpy: {
5846     const auto &MCI = cast<MemCpyInst>(I);
5847     SDValue Op1 = getValue(I.getArgOperand(0));
5848     SDValue Op2 = getValue(I.getArgOperand(1));
5849     SDValue Op3 = getValue(I.getArgOperand(2));
5850     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5851     Align DstAlign = MCI.getDestAlign().valueOrOne();
5852     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5853     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5854     bool isVol = MCI.isVolatile();
5855     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5856     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5857     // node.
5858     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5859     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5860                                /* AlwaysInline */ false, isTC,
5861                                MachinePointerInfo(I.getArgOperand(0)),
5862                                MachinePointerInfo(I.getArgOperand(1)),
5863                                I.getAAMetadata());
5864     updateDAGForMaybeTailCall(MC);
5865     return;
5866   }
5867   case Intrinsic::memcpy_inline: {
5868     const auto &MCI = cast<MemCpyInlineInst>(I);
5869     SDValue Dst = getValue(I.getArgOperand(0));
5870     SDValue Src = getValue(I.getArgOperand(1));
5871     SDValue Size = getValue(I.getArgOperand(2));
5872     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5873     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5874     Align DstAlign = MCI.getDestAlign().valueOrOne();
5875     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5876     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5877     bool isVol = MCI.isVolatile();
5878     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5879     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5880     // node.
5881     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5882                                /* AlwaysInline */ true, isTC,
5883                                MachinePointerInfo(I.getArgOperand(0)),
5884                                MachinePointerInfo(I.getArgOperand(1)),
5885                                I.getAAMetadata());
5886     updateDAGForMaybeTailCall(MC);
5887     return;
5888   }
5889   case Intrinsic::memset: {
5890     const auto &MSI = cast<MemSetInst>(I);
5891     SDValue Op1 = getValue(I.getArgOperand(0));
5892     SDValue Op2 = getValue(I.getArgOperand(1));
5893     SDValue Op3 = getValue(I.getArgOperand(2));
5894     // @llvm.memset defines 0 and 1 to both mean no alignment.
5895     Align Alignment = MSI.getDestAlign().valueOrOne();
5896     bool isVol = MSI.isVolatile();
5897     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5898     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5899     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5900                                MachinePointerInfo(I.getArgOperand(0)),
5901                                I.getAAMetadata());
5902     updateDAGForMaybeTailCall(MS);
5903     return;
5904   }
5905   case Intrinsic::memmove: {
5906     const auto &MMI = cast<MemMoveInst>(I);
5907     SDValue Op1 = getValue(I.getArgOperand(0));
5908     SDValue Op2 = getValue(I.getArgOperand(1));
5909     SDValue Op3 = getValue(I.getArgOperand(2));
5910     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5911     Align DstAlign = MMI.getDestAlign().valueOrOne();
5912     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5913     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5914     bool isVol = MMI.isVolatile();
5915     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5916     // FIXME: Support passing different dest/src alignments to the memmove DAG
5917     // node.
5918     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5919     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5920                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5921                                 MachinePointerInfo(I.getArgOperand(1)),
5922                                 I.getAAMetadata());
5923     updateDAGForMaybeTailCall(MM);
5924     return;
5925   }
5926   case Intrinsic::memcpy_element_unordered_atomic: {
5927     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5928     SDValue Dst = getValue(MI.getRawDest());
5929     SDValue Src = getValue(MI.getRawSource());
5930     SDValue Length = getValue(MI.getLength());
5931 
5932     unsigned DstAlign = MI.getDestAlignment();
5933     unsigned SrcAlign = MI.getSourceAlignment();
5934     Type *LengthTy = MI.getLength()->getType();
5935     unsigned ElemSz = MI.getElementSizeInBytes();
5936     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5937     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5938                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5939                                      MachinePointerInfo(MI.getRawDest()),
5940                                      MachinePointerInfo(MI.getRawSource()));
5941     updateDAGForMaybeTailCall(MC);
5942     return;
5943   }
5944   case Intrinsic::memmove_element_unordered_atomic: {
5945     auto &MI = cast<AtomicMemMoveInst>(I);
5946     SDValue Dst = getValue(MI.getRawDest());
5947     SDValue Src = getValue(MI.getRawSource());
5948     SDValue Length = getValue(MI.getLength());
5949 
5950     unsigned DstAlign = MI.getDestAlignment();
5951     unsigned SrcAlign = MI.getSourceAlignment();
5952     Type *LengthTy = MI.getLength()->getType();
5953     unsigned ElemSz = MI.getElementSizeInBytes();
5954     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5955     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5956                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5957                                       MachinePointerInfo(MI.getRawDest()),
5958                                       MachinePointerInfo(MI.getRawSource()));
5959     updateDAGForMaybeTailCall(MC);
5960     return;
5961   }
5962   case Intrinsic::memset_element_unordered_atomic: {
5963     auto &MI = cast<AtomicMemSetInst>(I);
5964     SDValue Dst = getValue(MI.getRawDest());
5965     SDValue Val = getValue(MI.getValue());
5966     SDValue Length = getValue(MI.getLength());
5967 
5968     unsigned DstAlign = MI.getDestAlignment();
5969     Type *LengthTy = MI.getLength()->getType();
5970     unsigned ElemSz = MI.getElementSizeInBytes();
5971     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5972     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5973                                      LengthTy, ElemSz, isTC,
5974                                      MachinePointerInfo(MI.getRawDest()));
5975     updateDAGForMaybeTailCall(MC);
5976     return;
5977   }
5978   case Intrinsic::call_preallocated_setup: {
5979     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5980     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5981     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5982                               getRoot(), SrcValue);
5983     setValue(&I, Res);
5984     DAG.setRoot(Res);
5985     return;
5986   }
5987   case Intrinsic::call_preallocated_arg: {
5988     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5989     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5990     SDValue Ops[3];
5991     Ops[0] = getRoot();
5992     Ops[1] = SrcValue;
5993     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5994                                    MVT::i32); // arg index
5995     SDValue Res = DAG.getNode(
5996         ISD::PREALLOCATED_ARG, sdl,
5997         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5998     setValue(&I, Res);
5999     DAG.setRoot(Res.getValue(1));
6000     return;
6001   }
6002   case Intrinsic::dbg_addr:
6003   case Intrinsic::dbg_declare: {
6004     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6005     // they are non-variadic.
6006     const auto &DI = cast<DbgVariableIntrinsic>(I);
6007     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6008     DILocalVariable *Variable = DI.getVariable();
6009     DIExpression *Expression = DI.getExpression();
6010     dropDanglingDebugInfo(Variable, Expression);
6011     assert(Variable && "Missing variable");
6012     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6013                       << "\n");
6014     // Check if address has undef value.
6015     const Value *Address = DI.getVariableLocationOp(0);
6016     if (!Address || isa<UndefValue>(Address) ||
6017         (Address->use_empty() && !isa<Argument>(Address))) {
6018       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6019                         << " (bad/undef/unused-arg address)\n");
6020       return;
6021     }
6022 
6023     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6024 
6025     // Check if this variable can be described by a frame index, typically
6026     // either as a static alloca or a byval parameter.
6027     int FI = std::numeric_limits<int>::max();
6028     if (const auto *AI =
6029             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6030       if (AI->isStaticAlloca()) {
6031         auto I = FuncInfo.StaticAllocaMap.find(AI);
6032         if (I != FuncInfo.StaticAllocaMap.end())
6033           FI = I->second;
6034       }
6035     } else if (const auto *Arg = dyn_cast<Argument>(
6036                    Address->stripInBoundsConstantOffsets())) {
6037       FI = FuncInfo.getArgumentFrameIndex(Arg);
6038     }
6039 
6040     // llvm.dbg.addr is control dependent and always generates indirect
6041     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6042     // the MachineFunction variable table.
6043     if (FI != std::numeric_limits<int>::max()) {
6044       if (Intrinsic == Intrinsic::dbg_addr) {
6045         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6046             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6047             dl, SDNodeOrder);
6048         DAG.AddDbgValue(SDV, isParameter);
6049       } else {
6050         LLVM_DEBUG(dbgs() << "Skipping " << DI
6051                           << " (variable info stashed in MF side table)\n");
6052       }
6053       return;
6054     }
6055 
6056     SDValue &N = NodeMap[Address];
6057     if (!N.getNode() && isa<Argument>(Address))
6058       // Check unused arguments map.
6059       N = UnusedArgNodeMap[Address];
6060     SDDbgValue *SDV;
6061     if (N.getNode()) {
6062       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6063         Address = BCI->getOperand(0);
6064       // Parameters are handled specially.
6065       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6066       if (isParameter && FINode) {
6067         // Byval parameter. We have a frame index at this point.
6068         SDV =
6069             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6070                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6071       } else if (isa<Argument>(Address)) {
6072         // Address is an argument, so try to emit its dbg value using
6073         // virtual register info from the FuncInfo.ValueMap.
6074         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6075         return;
6076       } else {
6077         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6078                               true, dl, SDNodeOrder);
6079       }
6080       DAG.AddDbgValue(SDV, isParameter);
6081     } else {
6082       // If Address is an argument then try to emit its dbg value using
6083       // virtual register info from the FuncInfo.ValueMap.
6084       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6085                                     N)) {
6086         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6087                           << " (could not emit func-arg dbg_value)\n");
6088       }
6089     }
6090     return;
6091   }
6092   case Intrinsic::dbg_label: {
6093     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6094     DILabel *Label = DI.getLabel();
6095     assert(Label && "Missing label");
6096 
6097     SDDbgLabel *SDV;
6098     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6099     DAG.AddDbgLabel(SDV);
6100     return;
6101   }
6102   case Intrinsic::dbg_value: {
6103     const DbgValueInst &DI = cast<DbgValueInst>(I);
6104     assert(DI.getVariable() && "Missing variable");
6105 
6106     DILocalVariable *Variable = DI.getVariable();
6107     DIExpression *Expression = DI.getExpression();
6108     dropDanglingDebugInfo(Variable, Expression);
6109     SmallVector<Value *, 4> Values(DI.getValues());
6110     if (Values.empty())
6111       return;
6112 
6113     if (llvm::is_contained(Values, nullptr))
6114       return;
6115 
6116     bool IsVariadic = DI.hasArgList();
6117     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6118                           SDNodeOrder, IsVariadic))
6119       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6120     return;
6121   }
6122 
6123   case Intrinsic::eh_typeid_for: {
6124     // Find the type id for the given typeinfo.
6125     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6126     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6127     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6128     setValue(&I, Res);
6129     return;
6130   }
6131 
6132   case Intrinsic::eh_return_i32:
6133   case Intrinsic::eh_return_i64:
6134     DAG.getMachineFunction().setCallsEHReturn(true);
6135     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6136                             MVT::Other,
6137                             getControlRoot(),
6138                             getValue(I.getArgOperand(0)),
6139                             getValue(I.getArgOperand(1))));
6140     return;
6141   case Intrinsic::eh_unwind_init:
6142     DAG.getMachineFunction().setCallsUnwindInit(true);
6143     return;
6144   case Intrinsic::eh_dwarf_cfa:
6145     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6146                              TLI.getPointerTy(DAG.getDataLayout()),
6147                              getValue(I.getArgOperand(0))));
6148     return;
6149   case Intrinsic::eh_sjlj_callsite: {
6150     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6151     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6152     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6153     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6154 
6155     MMI.setCurrentCallSite(CI->getZExtValue());
6156     return;
6157   }
6158   case Intrinsic::eh_sjlj_functioncontext: {
6159     // Get and store the index of the function context.
6160     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6161     AllocaInst *FnCtx =
6162       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6163     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6164     MFI.setFunctionContextIndex(FI);
6165     return;
6166   }
6167   case Intrinsic::eh_sjlj_setjmp: {
6168     SDValue Ops[2];
6169     Ops[0] = getRoot();
6170     Ops[1] = getValue(I.getArgOperand(0));
6171     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6172                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6173     setValue(&I, Op.getValue(0));
6174     DAG.setRoot(Op.getValue(1));
6175     return;
6176   }
6177   case Intrinsic::eh_sjlj_longjmp:
6178     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6179                             getRoot(), getValue(I.getArgOperand(0))));
6180     return;
6181   case Intrinsic::eh_sjlj_setup_dispatch:
6182     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6183                             getRoot()));
6184     return;
6185   case Intrinsic::masked_gather:
6186     visitMaskedGather(I);
6187     return;
6188   case Intrinsic::masked_load:
6189     visitMaskedLoad(I);
6190     return;
6191   case Intrinsic::masked_scatter:
6192     visitMaskedScatter(I);
6193     return;
6194   case Intrinsic::masked_store:
6195     visitMaskedStore(I);
6196     return;
6197   case Intrinsic::masked_expandload:
6198     visitMaskedLoad(I, true /* IsExpanding */);
6199     return;
6200   case Intrinsic::masked_compressstore:
6201     visitMaskedStore(I, true /* IsCompressing */);
6202     return;
6203   case Intrinsic::powi:
6204     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6205                             getValue(I.getArgOperand(1)), DAG));
6206     return;
6207   case Intrinsic::log:
6208     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6209     return;
6210   case Intrinsic::log2:
6211     setValue(&I,
6212              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6213     return;
6214   case Intrinsic::log10:
6215     setValue(&I,
6216              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6217     return;
6218   case Intrinsic::exp:
6219     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6220     return;
6221   case Intrinsic::exp2:
6222     setValue(&I,
6223              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6224     return;
6225   case Intrinsic::pow:
6226     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6227                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6228     return;
6229   case Intrinsic::sqrt:
6230   case Intrinsic::fabs:
6231   case Intrinsic::sin:
6232   case Intrinsic::cos:
6233   case Intrinsic::floor:
6234   case Intrinsic::ceil:
6235   case Intrinsic::trunc:
6236   case Intrinsic::rint:
6237   case Intrinsic::nearbyint:
6238   case Intrinsic::round:
6239   case Intrinsic::roundeven:
6240   case Intrinsic::canonicalize: {
6241     unsigned Opcode;
6242     switch (Intrinsic) {
6243     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6244     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6245     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6246     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6247     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6248     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6249     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6250     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6251     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6252     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6253     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6254     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6255     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6256     }
6257 
6258     setValue(&I, DAG.getNode(Opcode, sdl,
6259                              getValue(I.getArgOperand(0)).getValueType(),
6260                              getValue(I.getArgOperand(0)), Flags));
6261     return;
6262   }
6263   case Intrinsic::lround:
6264   case Intrinsic::llround:
6265   case Intrinsic::lrint:
6266   case Intrinsic::llrint: {
6267     unsigned Opcode;
6268     switch (Intrinsic) {
6269     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6270     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6271     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6272     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6273     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6274     }
6275 
6276     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6277     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6278                              getValue(I.getArgOperand(0))));
6279     return;
6280   }
6281   case Intrinsic::minnum:
6282     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6283                              getValue(I.getArgOperand(0)).getValueType(),
6284                              getValue(I.getArgOperand(0)),
6285                              getValue(I.getArgOperand(1)), Flags));
6286     return;
6287   case Intrinsic::maxnum:
6288     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6289                              getValue(I.getArgOperand(0)).getValueType(),
6290                              getValue(I.getArgOperand(0)),
6291                              getValue(I.getArgOperand(1)), Flags));
6292     return;
6293   case Intrinsic::minimum:
6294     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6295                              getValue(I.getArgOperand(0)).getValueType(),
6296                              getValue(I.getArgOperand(0)),
6297                              getValue(I.getArgOperand(1)), Flags));
6298     return;
6299   case Intrinsic::maximum:
6300     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6301                              getValue(I.getArgOperand(0)).getValueType(),
6302                              getValue(I.getArgOperand(0)),
6303                              getValue(I.getArgOperand(1)), Flags));
6304     return;
6305   case Intrinsic::copysign:
6306     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6307                              getValue(I.getArgOperand(0)).getValueType(),
6308                              getValue(I.getArgOperand(0)),
6309                              getValue(I.getArgOperand(1)), Flags));
6310     return;
6311   case Intrinsic::arithmetic_fence: {
6312     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6313                              getValue(I.getArgOperand(0)).getValueType(),
6314                              getValue(I.getArgOperand(0)), Flags));
6315     return;
6316   }
6317   case Intrinsic::fma:
6318     setValue(&I, DAG.getNode(
6319                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6320                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6321                      getValue(I.getArgOperand(2)), Flags));
6322     return;
6323 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6324   case Intrinsic::INTRINSIC:
6325 #include "llvm/IR/ConstrainedOps.def"
6326     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6327     return;
6328 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6329 #include "llvm/IR/VPIntrinsics.def"
6330     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6331     return;
6332   case Intrinsic::fptrunc_round: {
6333     // Get the last argument, the metadata and convert it to an integer in the
6334     // call
6335     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6336     Optional<RoundingMode> RoundMode =
6337         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6338 
6339     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6340 
6341     // Propagate fast-math-flags from IR to node(s).
6342     SDNodeFlags Flags;
6343     Flags.copyFMF(*cast<FPMathOperator>(&I));
6344     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6345 
6346     SDValue Result;
6347     Result = DAG.getNode(
6348         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6349         DAG.getTargetConstant((int)RoundMode.getValue(), sdl,
6350                               TLI.getPointerTy(DAG.getDataLayout())));
6351     setValue(&I, Result);
6352 
6353     return;
6354   }
6355   case Intrinsic::fmuladd: {
6356     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6357     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6358         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6359       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6360                                getValue(I.getArgOperand(0)).getValueType(),
6361                                getValue(I.getArgOperand(0)),
6362                                getValue(I.getArgOperand(1)),
6363                                getValue(I.getArgOperand(2)), Flags));
6364     } else {
6365       // TODO: Intrinsic calls should have fast-math-flags.
6366       SDValue Mul = DAG.getNode(
6367           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6368           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6369       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6370                                 getValue(I.getArgOperand(0)).getValueType(),
6371                                 Mul, getValue(I.getArgOperand(2)), Flags);
6372       setValue(&I, Add);
6373     }
6374     return;
6375   }
6376   case Intrinsic::convert_to_fp16:
6377     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6378                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6379                                          getValue(I.getArgOperand(0)),
6380                                          DAG.getTargetConstant(0, sdl,
6381                                                                MVT::i32))));
6382     return;
6383   case Intrinsic::convert_from_fp16:
6384     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6385                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6386                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6387                                          getValue(I.getArgOperand(0)))));
6388     return;
6389   case Intrinsic::fptosi_sat: {
6390     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6391     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6392                              getValue(I.getArgOperand(0)),
6393                              DAG.getValueType(VT.getScalarType())));
6394     return;
6395   }
6396   case Intrinsic::fptoui_sat: {
6397     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6398     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6399                              getValue(I.getArgOperand(0)),
6400                              DAG.getValueType(VT.getScalarType())));
6401     return;
6402   }
6403   case Intrinsic::set_rounding:
6404     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6405                       {getRoot(), getValue(I.getArgOperand(0))});
6406     setValue(&I, Res);
6407     DAG.setRoot(Res.getValue(0));
6408     return;
6409   case Intrinsic::pcmarker: {
6410     SDValue Tmp = getValue(I.getArgOperand(0));
6411     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6412     return;
6413   }
6414   case Intrinsic::readcyclecounter: {
6415     SDValue Op = getRoot();
6416     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6417                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6418     setValue(&I, Res);
6419     DAG.setRoot(Res.getValue(1));
6420     return;
6421   }
6422   case Intrinsic::bitreverse:
6423     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6424                              getValue(I.getArgOperand(0)).getValueType(),
6425                              getValue(I.getArgOperand(0))));
6426     return;
6427   case Intrinsic::bswap:
6428     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6429                              getValue(I.getArgOperand(0)).getValueType(),
6430                              getValue(I.getArgOperand(0))));
6431     return;
6432   case Intrinsic::cttz: {
6433     SDValue Arg = getValue(I.getArgOperand(0));
6434     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6435     EVT Ty = Arg.getValueType();
6436     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6437                              sdl, Ty, Arg));
6438     return;
6439   }
6440   case Intrinsic::ctlz: {
6441     SDValue Arg = getValue(I.getArgOperand(0));
6442     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6443     EVT Ty = Arg.getValueType();
6444     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6445                              sdl, Ty, Arg));
6446     return;
6447   }
6448   case Intrinsic::ctpop: {
6449     SDValue Arg = getValue(I.getArgOperand(0));
6450     EVT Ty = Arg.getValueType();
6451     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6452     return;
6453   }
6454   case Intrinsic::fshl:
6455   case Intrinsic::fshr: {
6456     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6457     SDValue X = getValue(I.getArgOperand(0));
6458     SDValue Y = getValue(I.getArgOperand(1));
6459     SDValue Z = getValue(I.getArgOperand(2));
6460     EVT VT = X.getValueType();
6461 
6462     if (X == Y) {
6463       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6464       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6465     } else {
6466       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6467       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6468     }
6469     return;
6470   }
6471   case Intrinsic::sadd_sat: {
6472     SDValue Op1 = getValue(I.getArgOperand(0));
6473     SDValue Op2 = getValue(I.getArgOperand(1));
6474     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6475     return;
6476   }
6477   case Intrinsic::uadd_sat: {
6478     SDValue Op1 = getValue(I.getArgOperand(0));
6479     SDValue Op2 = getValue(I.getArgOperand(1));
6480     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6481     return;
6482   }
6483   case Intrinsic::ssub_sat: {
6484     SDValue Op1 = getValue(I.getArgOperand(0));
6485     SDValue Op2 = getValue(I.getArgOperand(1));
6486     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6487     return;
6488   }
6489   case Intrinsic::usub_sat: {
6490     SDValue Op1 = getValue(I.getArgOperand(0));
6491     SDValue Op2 = getValue(I.getArgOperand(1));
6492     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6493     return;
6494   }
6495   case Intrinsic::sshl_sat: {
6496     SDValue Op1 = getValue(I.getArgOperand(0));
6497     SDValue Op2 = getValue(I.getArgOperand(1));
6498     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6499     return;
6500   }
6501   case Intrinsic::ushl_sat: {
6502     SDValue Op1 = getValue(I.getArgOperand(0));
6503     SDValue Op2 = getValue(I.getArgOperand(1));
6504     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6505     return;
6506   }
6507   case Intrinsic::smul_fix:
6508   case Intrinsic::umul_fix:
6509   case Intrinsic::smul_fix_sat:
6510   case Intrinsic::umul_fix_sat: {
6511     SDValue Op1 = getValue(I.getArgOperand(0));
6512     SDValue Op2 = getValue(I.getArgOperand(1));
6513     SDValue Op3 = getValue(I.getArgOperand(2));
6514     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6515                              Op1.getValueType(), Op1, Op2, Op3));
6516     return;
6517   }
6518   case Intrinsic::sdiv_fix:
6519   case Intrinsic::udiv_fix:
6520   case Intrinsic::sdiv_fix_sat:
6521   case Intrinsic::udiv_fix_sat: {
6522     SDValue Op1 = getValue(I.getArgOperand(0));
6523     SDValue Op2 = getValue(I.getArgOperand(1));
6524     SDValue Op3 = getValue(I.getArgOperand(2));
6525     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6526                               Op1, Op2, Op3, DAG, TLI));
6527     return;
6528   }
6529   case Intrinsic::smax: {
6530     SDValue Op1 = getValue(I.getArgOperand(0));
6531     SDValue Op2 = getValue(I.getArgOperand(1));
6532     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6533     return;
6534   }
6535   case Intrinsic::smin: {
6536     SDValue Op1 = getValue(I.getArgOperand(0));
6537     SDValue Op2 = getValue(I.getArgOperand(1));
6538     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6539     return;
6540   }
6541   case Intrinsic::umax: {
6542     SDValue Op1 = getValue(I.getArgOperand(0));
6543     SDValue Op2 = getValue(I.getArgOperand(1));
6544     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6545     return;
6546   }
6547   case Intrinsic::umin: {
6548     SDValue Op1 = getValue(I.getArgOperand(0));
6549     SDValue Op2 = getValue(I.getArgOperand(1));
6550     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6551     return;
6552   }
6553   case Intrinsic::abs: {
6554     // TODO: Preserve "int min is poison" arg in SDAG?
6555     SDValue Op1 = getValue(I.getArgOperand(0));
6556     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6557     return;
6558   }
6559   case Intrinsic::stacksave: {
6560     SDValue Op = getRoot();
6561     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6562     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6563     setValue(&I, Res);
6564     DAG.setRoot(Res.getValue(1));
6565     return;
6566   }
6567   case Intrinsic::stackrestore:
6568     Res = getValue(I.getArgOperand(0));
6569     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6570     return;
6571   case Intrinsic::get_dynamic_area_offset: {
6572     SDValue Op = getRoot();
6573     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6574     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6575     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6576     // target.
6577     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6578       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6579                          " intrinsic!");
6580     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6581                       Op);
6582     DAG.setRoot(Op);
6583     setValue(&I, Res);
6584     return;
6585   }
6586   case Intrinsic::stackguard: {
6587     MachineFunction &MF = DAG.getMachineFunction();
6588     const Module &M = *MF.getFunction().getParent();
6589     SDValue Chain = getRoot();
6590     if (TLI.useLoadStackGuardNode()) {
6591       Res = getLoadStackGuard(DAG, sdl, Chain);
6592     } else {
6593       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6594       const Value *Global = TLI.getSDagStackGuard(M);
6595       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6596       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6597                         MachinePointerInfo(Global, 0), Align,
6598                         MachineMemOperand::MOVolatile);
6599     }
6600     if (TLI.useStackGuardXorFP())
6601       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6602     DAG.setRoot(Chain);
6603     setValue(&I, Res);
6604     return;
6605   }
6606   case Intrinsic::stackprotector: {
6607     // Emit code into the DAG to store the stack guard onto the stack.
6608     MachineFunction &MF = DAG.getMachineFunction();
6609     MachineFrameInfo &MFI = MF.getFrameInfo();
6610     SDValue Src, Chain = getRoot();
6611 
6612     if (TLI.useLoadStackGuardNode())
6613       Src = getLoadStackGuard(DAG, sdl, Chain);
6614     else
6615       Src = getValue(I.getArgOperand(0));   // The guard's value.
6616 
6617     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6618 
6619     int FI = FuncInfo.StaticAllocaMap[Slot];
6620     MFI.setStackProtectorIndex(FI);
6621     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6622 
6623     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6624 
6625     // Store the stack protector onto the stack.
6626     Res = DAG.getStore(
6627         Chain, sdl, Src, FIN,
6628         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6629         MaybeAlign(), MachineMemOperand::MOVolatile);
6630     setValue(&I, Res);
6631     DAG.setRoot(Res);
6632     return;
6633   }
6634   case Intrinsic::objectsize:
6635     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6636 
6637   case Intrinsic::is_constant:
6638     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6639 
6640   case Intrinsic::annotation:
6641   case Intrinsic::ptr_annotation:
6642   case Intrinsic::launder_invariant_group:
6643   case Intrinsic::strip_invariant_group:
6644     // Drop the intrinsic, but forward the value
6645     setValue(&I, getValue(I.getOperand(0)));
6646     return;
6647 
6648   case Intrinsic::assume:
6649   case Intrinsic::experimental_noalias_scope_decl:
6650   case Intrinsic::var_annotation:
6651   case Intrinsic::sideeffect:
6652     // Discard annotate attributes, noalias scope declarations, assumptions, and
6653     // artificial side-effects.
6654     return;
6655 
6656   case Intrinsic::codeview_annotation: {
6657     // Emit a label associated with this metadata.
6658     MachineFunction &MF = DAG.getMachineFunction();
6659     MCSymbol *Label =
6660         MF.getMMI().getContext().createTempSymbol("annotation", true);
6661     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6662     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6663     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6664     DAG.setRoot(Res);
6665     return;
6666   }
6667 
6668   case Intrinsic::init_trampoline: {
6669     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6670 
6671     SDValue Ops[6];
6672     Ops[0] = getRoot();
6673     Ops[1] = getValue(I.getArgOperand(0));
6674     Ops[2] = getValue(I.getArgOperand(1));
6675     Ops[3] = getValue(I.getArgOperand(2));
6676     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6677     Ops[5] = DAG.getSrcValue(F);
6678 
6679     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6680 
6681     DAG.setRoot(Res);
6682     return;
6683   }
6684   case Intrinsic::adjust_trampoline:
6685     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6686                              TLI.getPointerTy(DAG.getDataLayout()),
6687                              getValue(I.getArgOperand(0))));
6688     return;
6689   case Intrinsic::gcroot: {
6690     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6691            "only valid in functions with gc specified, enforced by Verifier");
6692     assert(GFI && "implied by previous");
6693     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6694     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6695 
6696     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6697     GFI->addStackRoot(FI->getIndex(), TypeMap);
6698     return;
6699   }
6700   case Intrinsic::gcread:
6701   case Intrinsic::gcwrite:
6702     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6703   case Intrinsic::flt_rounds:
6704     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6705     setValue(&I, Res);
6706     DAG.setRoot(Res.getValue(1));
6707     return;
6708 
6709   case Intrinsic::expect:
6710     // Just replace __builtin_expect(exp, c) with EXP.
6711     setValue(&I, getValue(I.getArgOperand(0)));
6712     return;
6713 
6714   case Intrinsic::ubsantrap:
6715   case Intrinsic::debugtrap:
6716   case Intrinsic::trap: {
6717     StringRef TrapFuncName =
6718         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6719     if (TrapFuncName.empty()) {
6720       switch (Intrinsic) {
6721       case Intrinsic::trap:
6722         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6723         break;
6724       case Intrinsic::debugtrap:
6725         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6726         break;
6727       case Intrinsic::ubsantrap:
6728         DAG.setRoot(DAG.getNode(
6729             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6730             DAG.getTargetConstant(
6731                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6732                 MVT::i32)));
6733         break;
6734       default: llvm_unreachable("unknown trap intrinsic");
6735       }
6736       return;
6737     }
6738     TargetLowering::ArgListTy Args;
6739     if (Intrinsic == Intrinsic::ubsantrap) {
6740       Args.push_back(TargetLoweringBase::ArgListEntry());
6741       Args[0].Val = I.getArgOperand(0);
6742       Args[0].Node = getValue(Args[0].Val);
6743       Args[0].Ty = Args[0].Val->getType();
6744     }
6745 
6746     TargetLowering::CallLoweringInfo CLI(DAG);
6747     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6748         CallingConv::C, I.getType(),
6749         DAG.getExternalSymbol(TrapFuncName.data(),
6750                               TLI.getPointerTy(DAG.getDataLayout())),
6751         std::move(Args));
6752 
6753     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6754     DAG.setRoot(Result.second);
6755     return;
6756   }
6757 
6758   case Intrinsic::uadd_with_overflow:
6759   case Intrinsic::sadd_with_overflow:
6760   case Intrinsic::usub_with_overflow:
6761   case Intrinsic::ssub_with_overflow:
6762   case Intrinsic::umul_with_overflow:
6763   case Intrinsic::smul_with_overflow: {
6764     ISD::NodeType Op;
6765     switch (Intrinsic) {
6766     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6767     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6768     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6769     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6770     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6771     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6772     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6773     }
6774     SDValue Op1 = getValue(I.getArgOperand(0));
6775     SDValue Op2 = getValue(I.getArgOperand(1));
6776 
6777     EVT ResultVT = Op1.getValueType();
6778     EVT OverflowVT = MVT::i1;
6779     if (ResultVT.isVector())
6780       OverflowVT = EVT::getVectorVT(
6781           *Context, OverflowVT, ResultVT.getVectorElementCount());
6782 
6783     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6784     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6785     return;
6786   }
6787   case Intrinsic::prefetch: {
6788     SDValue Ops[5];
6789     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6790     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6791     Ops[0] = DAG.getRoot();
6792     Ops[1] = getValue(I.getArgOperand(0));
6793     Ops[2] = getValue(I.getArgOperand(1));
6794     Ops[3] = getValue(I.getArgOperand(2));
6795     Ops[4] = getValue(I.getArgOperand(3));
6796     SDValue Result = DAG.getMemIntrinsicNode(
6797         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6798         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6799         /* align */ None, Flags);
6800 
6801     // Chain the prefetch in parallell with any pending loads, to stay out of
6802     // the way of later optimizations.
6803     PendingLoads.push_back(Result);
6804     Result = getRoot();
6805     DAG.setRoot(Result);
6806     return;
6807   }
6808   case Intrinsic::lifetime_start:
6809   case Intrinsic::lifetime_end: {
6810     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6811     // Stack coloring is not enabled in O0, discard region information.
6812     if (TM.getOptLevel() == CodeGenOpt::None)
6813       return;
6814 
6815     const int64_t ObjectSize =
6816         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6817     Value *const ObjectPtr = I.getArgOperand(1);
6818     SmallVector<const Value *, 4> Allocas;
6819     getUnderlyingObjects(ObjectPtr, Allocas);
6820 
6821     for (const Value *Alloca : Allocas) {
6822       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6823 
6824       // Could not find an Alloca.
6825       if (!LifetimeObject)
6826         continue;
6827 
6828       // First check that the Alloca is static, otherwise it won't have a
6829       // valid frame index.
6830       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6831       if (SI == FuncInfo.StaticAllocaMap.end())
6832         return;
6833 
6834       const int FrameIndex = SI->second;
6835       int64_t Offset;
6836       if (GetPointerBaseWithConstantOffset(
6837               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6838         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6839       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6840                                 Offset);
6841       DAG.setRoot(Res);
6842     }
6843     return;
6844   }
6845   case Intrinsic::pseudoprobe: {
6846     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6847     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6848     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6849     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6850     DAG.setRoot(Res);
6851     return;
6852   }
6853   case Intrinsic::invariant_start:
6854     // Discard region information.
6855     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6856     return;
6857   case Intrinsic::invariant_end:
6858     // Discard region information.
6859     return;
6860   case Intrinsic::clear_cache:
6861     /// FunctionName may be null.
6862     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6863       lowerCallToExternalSymbol(I, FunctionName);
6864     return;
6865   case Intrinsic::donothing:
6866   case Intrinsic::seh_try_begin:
6867   case Intrinsic::seh_scope_begin:
6868   case Intrinsic::seh_try_end:
6869   case Intrinsic::seh_scope_end:
6870     // ignore
6871     return;
6872   case Intrinsic::experimental_stackmap:
6873     visitStackmap(I);
6874     return;
6875   case Intrinsic::experimental_patchpoint_void:
6876   case Intrinsic::experimental_patchpoint_i64:
6877     visitPatchpoint(I);
6878     return;
6879   case Intrinsic::experimental_gc_statepoint:
6880     LowerStatepoint(cast<GCStatepointInst>(I));
6881     return;
6882   case Intrinsic::experimental_gc_result:
6883     visitGCResult(cast<GCResultInst>(I));
6884     return;
6885   case Intrinsic::experimental_gc_relocate:
6886     visitGCRelocate(cast<GCRelocateInst>(I));
6887     return;
6888   case Intrinsic::instrprof_cover:
6889     llvm_unreachable("instrprof failed to lower a cover");
6890   case Intrinsic::instrprof_increment:
6891     llvm_unreachable("instrprof failed to lower an increment");
6892   case Intrinsic::instrprof_value_profile:
6893     llvm_unreachable("instrprof failed to lower a value profiling call");
6894   case Intrinsic::localescape: {
6895     MachineFunction &MF = DAG.getMachineFunction();
6896     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6897 
6898     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6899     // is the same on all targets.
6900     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6901       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6902       if (isa<ConstantPointerNull>(Arg))
6903         continue; // Skip null pointers. They represent a hole in index space.
6904       AllocaInst *Slot = cast<AllocaInst>(Arg);
6905       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6906              "can only escape static allocas");
6907       int FI = FuncInfo.StaticAllocaMap[Slot];
6908       MCSymbol *FrameAllocSym =
6909           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6910               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6911       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6912               TII->get(TargetOpcode::LOCAL_ESCAPE))
6913           .addSym(FrameAllocSym)
6914           .addFrameIndex(FI);
6915     }
6916 
6917     return;
6918   }
6919 
6920   case Intrinsic::localrecover: {
6921     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6922     MachineFunction &MF = DAG.getMachineFunction();
6923 
6924     // Get the symbol that defines the frame offset.
6925     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6926     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6927     unsigned IdxVal =
6928         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6929     MCSymbol *FrameAllocSym =
6930         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6931             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6932 
6933     Value *FP = I.getArgOperand(1);
6934     SDValue FPVal = getValue(FP);
6935     EVT PtrVT = FPVal.getValueType();
6936 
6937     // Create a MCSymbol for the label to avoid any target lowering
6938     // that would make this PC relative.
6939     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6940     SDValue OffsetVal =
6941         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6942 
6943     // Add the offset to the FP.
6944     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6945     setValue(&I, Add);
6946 
6947     return;
6948   }
6949 
6950   case Intrinsic::eh_exceptionpointer:
6951   case Intrinsic::eh_exceptioncode: {
6952     // Get the exception pointer vreg, copy from it, and resize it to fit.
6953     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6954     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6955     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6956     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6957     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
6958     if (Intrinsic == Intrinsic::eh_exceptioncode)
6959       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
6960     setValue(&I, N);
6961     return;
6962   }
6963   case Intrinsic::xray_customevent: {
6964     // Here we want to make sure that the intrinsic behaves as if it has a
6965     // specific calling convention, and only for x86_64.
6966     // FIXME: Support other platforms later.
6967     const auto &Triple = DAG.getTarget().getTargetTriple();
6968     if (Triple.getArch() != Triple::x86_64)
6969       return;
6970 
6971     SmallVector<SDValue, 8> Ops;
6972 
6973     // We want to say that we always want the arguments in registers.
6974     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6975     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6976     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6977     SDValue Chain = getRoot();
6978     Ops.push_back(LogEntryVal);
6979     Ops.push_back(StrSizeVal);
6980     Ops.push_back(Chain);
6981 
6982     // We need to enforce the calling convention for the callsite, so that
6983     // argument ordering is enforced correctly, and that register allocation can
6984     // see that some registers may be assumed clobbered and have to preserve
6985     // them across calls to the intrinsic.
6986     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6987                                            sdl, NodeTys, Ops);
6988     SDValue patchableNode = SDValue(MN, 0);
6989     DAG.setRoot(patchableNode);
6990     setValue(&I, patchableNode);
6991     return;
6992   }
6993   case Intrinsic::xray_typedevent: {
6994     // Here we want to make sure that the intrinsic behaves as if it has a
6995     // specific calling convention, and only for x86_64.
6996     // FIXME: Support other platforms later.
6997     const auto &Triple = DAG.getTarget().getTargetTriple();
6998     if (Triple.getArch() != Triple::x86_64)
6999       return;
7000 
7001     SmallVector<SDValue, 8> Ops;
7002 
7003     // We want to say that we always want the arguments in registers.
7004     // It's unclear to me how manipulating the selection DAG here forces callers
7005     // to provide arguments in registers instead of on the stack.
7006     SDValue LogTypeId = getValue(I.getArgOperand(0));
7007     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7008     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7009     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7010     SDValue Chain = getRoot();
7011     Ops.push_back(LogTypeId);
7012     Ops.push_back(LogEntryVal);
7013     Ops.push_back(StrSizeVal);
7014     Ops.push_back(Chain);
7015 
7016     // We need to enforce the calling convention for the callsite, so that
7017     // argument ordering is enforced correctly, and that register allocation can
7018     // see that some registers may be assumed clobbered and have to preserve
7019     // them across calls to the intrinsic.
7020     MachineSDNode *MN = DAG.getMachineNode(
7021         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7022     SDValue patchableNode = SDValue(MN, 0);
7023     DAG.setRoot(patchableNode);
7024     setValue(&I, patchableNode);
7025     return;
7026   }
7027   case Intrinsic::experimental_deoptimize:
7028     LowerDeoptimizeCall(&I);
7029     return;
7030   case Intrinsic::experimental_stepvector:
7031     visitStepVector(I);
7032     return;
7033   case Intrinsic::vector_reduce_fadd:
7034   case Intrinsic::vector_reduce_fmul:
7035   case Intrinsic::vector_reduce_add:
7036   case Intrinsic::vector_reduce_mul:
7037   case Intrinsic::vector_reduce_and:
7038   case Intrinsic::vector_reduce_or:
7039   case Intrinsic::vector_reduce_xor:
7040   case Intrinsic::vector_reduce_smax:
7041   case Intrinsic::vector_reduce_smin:
7042   case Intrinsic::vector_reduce_umax:
7043   case Intrinsic::vector_reduce_umin:
7044   case Intrinsic::vector_reduce_fmax:
7045   case Intrinsic::vector_reduce_fmin:
7046     visitVectorReduce(I, Intrinsic);
7047     return;
7048 
7049   case Intrinsic::icall_branch_funnel: {
7050     SmallVector<SDValue, 16> Ops;
7051     Ops.push_back(getValue(I.getArgOperand(0)));
7052 
7053     int64_t Offset;
7054     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7055         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7056     if (!Base)
7057       report_fatal_error(
7058           "llvm.icall.branch.funnel operand must be a GlobalValue");
7059     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7060 
7061     struct BranchFunnelTarget {
7062       int64_t Offset;
7063       SDValue Target;
7064     };
7065     SmallVector<BranchFunnelTarget, 8> Targets;
7066 
7067     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7068       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7069           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7070       if (ElemBase != Base)
7071         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7072                            "to the same GlobalValue");
7073 
7074       SDValue Val = getValue(I.getArgOperand(Op + 1));
7075       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7076       if (!GA)
7077         report_fatal_error(
7078             "llvm.icall.branch.funnel operand must be a GlobalValue");
7079       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7080                                      GA->getGlobal(), sdl, Val.getValueType(),
7081                                      GA->getOffset())});
7082     }
7083     llvm::sort(Targets,
7084                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7085                  return T1.Offset < T2.Offset;
7086                });
7087 
7088     for (auto &T : Targets) {
7089       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7090       Ops.push_back(T.Target);
7091     }
7092 
7093     Ops.push_back(DAG.getRoot()); // Chain
7094     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7095                                  MVT::Other, Ops),
7096               0);
7097     DAG.setRoot(N);
7098     setValue(&I, N);
7099     HasTailCall = true;
7100     return;
7101   }
7102 
7103   case Intrinsic::wasm_landingpad_index:
7104     // Information this intrinsic contained has been transferred to
7105     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7106     // delete it now.
7107     return;
7108 
7109   case Intrinsic::aarch64_settag:
7110   case Intrinsic::aarch64_settag_zero: {
7111     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7112     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7113     SDValue Val = TSI.EmitTargetCodeForSetTag(
7114         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7115         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7116         ZeroMemory);
7117     DAG.setRoot(Val);
7118     setValue(&I, Val);
7119     return;
7120   }
7121   case Intrinsic::ptrmask: {
7122     SDValue Ptr = getValue(I.getOperand(0));
7123     SDValue Const = getValue(I.getOperand(1));
7124 
7125     EVT PtrVT = Ptr.getValueType();
7126     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7127                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7128     return;
7129   }
7130   case Intrinsic::get_active_lane_mask: {
7131     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7132     SDValue Index = getValue(I.getOperand(0));
7133     EVT ElementVT = Index.getValueType();
7134 
7135     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7136       visitTargetIntrinsic(I, Intrinsic);
7137       return;
7138     }
7139 
7140     SDValue TripCount = getValue(I.getOperand(1));
7141     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7142 
7143     SDValue VectorIndex, VectorTripCount;
7144     if (VecTy.isScalableVector()) {
7145       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7146       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7147     } else {
7148       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7149       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7150     }
7151     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7152     SDValue VectorInduction = DAG.getNode(
7153         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7154     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7155                                  VectorTripCount, ISD::CondCode::SETULT);
7156     setValue(&I, SetCC);
7157     return;
7158   }
7159   case Intrinsic::experimental_vector_insert: {
7160     SDValue Vec = getValue(I.getOperand(0));
7161     SDValue SubVec = getValue(I.getOperand(1));
7162     SDValue Index = getValue(I.getOperand(2));
7163 
7164     // The intrinsic's index type is i64, but the SDNode requires an index type
7165     // suitable for the target. Convert the index as required.
7166     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7167     if (Index.getValueType() != VectorIdxTy)
7168       Index = DAG.getVectorIdxConstant(
7169           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7170 
7171     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7172     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7173                              Index));
7174     return;
7175   }
7176   case Intrinsic::experimental_vector_extract: {
7177     SDValue Vec = getValue(I.getOperand(0));
7178     SDValue Index = getValue(I.getOperand(1));
7179     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7180 
7181     // The intrinsic's index type is i64, but the SDNode requires an index type
7182     // suitable for the target. Convert the index as required.
7183     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7184     if (Index.getValueType() != VectorIdxTy)
7185       Index = DAG.getVectorIdxConstant(
7186           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7187 
7188     setValue(&I,
7189              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7190     return;
7191   }
7192   case Intrinsic::experimental_vector_reverse:
7193     visitVectorReverse(I);
7194     return;
7195   case Intrinsic::experimental_vector_splice:
7196     visitVectorSplice(I);
7197     return;
7198   }
7199 }
7200 
7201 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7202     const ConstrainedFPIntrinsic &FPI) {
7203   SDLoc sdl = getCurSDLoc();
7204 
7205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7206   SmallVector<EVT, 4> ValueVTs;
7207   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7208   ValueVTs.push_back(MVT::Other); // Out chain
7209 
7210   // We do not need to serialize constrained FP intrinsics against
7211   // each other or against (nonvolatile) loads, so they can be
7212   // chained like loads.
7213   SDValue Chain = DAG.getRoot();
7214   SmallVector<SDValue, 4> Opers;
7215   Opers.push_back(Chain);
7216   if (FPI.isUnaryOp()) {
7217     Opers.push_back(getValue(FPI.getArgOperand(0)));
7218   } else if (FPI.isTernaryOp()) {
7219     Opers.push_back(getValue(FPI.getArgOperand(0)));
7220     Opers.push_back(getValue(FPI.getArgOperand(1)));
7221     Opers.push_back(getValue(FPI.getArgOperand(2)));
7222   } else {
7223     Opers.push_back(getValue(FPI.getArgOperand(0)));
7224     Opers.push_back(getValue(FPI.getArgOperand(1)));
7225   }
7226 
7227   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7228     assert(Result.getNode()->getNumValues() == 2);
7229 
7230     // Push node to the appropriate list so that future instructions can be
7231     // chained up correctly.
7232     SDValue OutChain = Result.getValue(1);
7233     switch (EB) {
7234     case fp::ExceptionBehavior::ebIgnore:
7235       // The only reason why ebIgnore nodes still need to be chained is that
7236       // they might depend on the current rounding mode, and therefore must
7237       // not be moved across instruction that may change that mode.
7238       LLVM_FALLTHROUGH;
7239     case fp::ExceptionBehavior::ebMayTrap:
7240       // These must not be moved across calls or instructions that may change
7241       // floating-point exception masks.
7242       PendingConstrainedFP.push_back(OutChain);
7243       break;
7244     case fp::ExceptionBehavior::ebStrict:
7245       // These must not be moved across calls or instructions that may change
7246       // floating-point exception masks or read floating-point exception flags.
7247       // In addition, they cannot be optimized out even if unused.
7248       PendingConstrainedFPStrict.push_back(OutChain);
7249       break;
7250     }
7251   };
7252 
7253   SDVTList VTs = DAG.getVTList(ValueVTs);
7254   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7255 
7256   SDNodeFlags Flags;
7257   if (EB == fp::ExceptionBehavior::ebIgnore)
7258     Flags.setNoFPExcept(true);
7259 
7260   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7261     Flags.copyFMF(*FPOp);
7262 
7263   unsigned Opcode;
7264   switch (FPI.getIntrinsicID()) {
7265   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7266 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7267   case Intrinsic::INTRINSIC:                                                   \
7268     Opcode = ISD::STRICT_##DAGN;                                               \
7269     break;
7270 #include "llvm/IR/ConstrainedOps.def"
7271   case Intrinsic::experimental_constrained_fmuladd: {
7272     Opcode = ISD::STRICT_FMA;
7273     // Break fmuladd into fmul and fadd.
7274     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7275         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7276                                         ValueVTs[0])) {
7277       Opers.pop_back();
7278       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7279       pushOutChain(Mul, EB);
7280       Opcode = ISD::STRICT_FADD;
7281       Opers.clear();
7282       Opers.push_back(Mul.getValue(1));
7283       Opers.push_back(Mul.getValue(0));
7284       Opers.push_back(getValue(FPI.getArgOperand(2)));
7285     }
7286     break;
7287   }
7288   }
7289 
7290   // A few strict DAG nodes carry additional operands that are not
7291   // set up by the default code above.
7292   switch (Opcode) {
7293   default: break;
7294   case ISD::STRICT_FP_ROUND:
7295     Opers.push_back(
7296         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7297     break;
7298   case ISD::STRICT_FSETCC:
7299   case ISD::STRICT_FSETCCS: {
7300     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7301     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7302     if (TM.Options.NoNaNsFPMath)
7303       Condition = getFCmpCodeWithoutNaN(Condition);
7304     Opers.push_back(DAG.getCondCode(Condition));
7305     break;
7306   }
7307   }
7308 
7309   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7310   pushOutChain(Result, EB);
7311 
7312   SDValue FPResult = Result.getValue(0);
7313   setValue(&FPI, FPResult);
7314 }
7315 
7316 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7317   Optional<unsigned> ResOPC;
7318   switch (VPIntrin.getIntrinsicID()) {
7319 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7320 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD;
7321 #define END_REGISTER_VP_INTRINSIC(VPID) break;
7322 #include "llvm/IR/VPIntrinsics.def"
7323   }
7324 
7325   if (!ResOPC.hasValue())
7326     llvm_unreachable(
7327         "Inconsistency: no SDNode available for this VPIntrinsic!");
7328 
7329   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7330       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7331     if (VPIntrin.getFastMathFlags().allowReassoc())
7332       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7333                                                 : ISD::VP_REDUCE_FMUL;
7334   }
7335 
7336   return ResOPC.getValue();
7337 }
7338 
7339 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7340                                             SmallVector<SDValue, 7> &OpValues,
7341                                             bool IsGather) {
7342   SDLoc DL = getCurSDLoc();
7343   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7344   Value *PtrOperand = VPIntrin.getArgOperand(0);
7345   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7346   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7347   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7348   SDValue LD;
7349   bool AddToChain = true;
7350   if (!IsGather) {
7351     // Do not serialize variable-length loads of constant memory with
7352     // anything.
7353     if (!Alignment)
7354       Alignment = DAG.getEVTAlign(VT);
7355     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7356     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7357     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7358     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7359         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7360         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7361     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7362                        MMO, false /*IsExpanding */);
7363   } else {
7364     if (!Alignment)
7365       Alignment = DAG.getEVTAlign(VT.getScalarType());
7366     unsigned AS =
7367         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7368     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7369         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7370         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7371     SDValue Base, Index, Scale;
7372     ISD::MemIndexType IndexType;
7373     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7374                                       this, VPIntrin.getParent());
7375     if (!UniformBase) {
7376       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7377       Index = getValue(PtrOperand);
7378       IndexType = ISD::SIGNED_UNSCALED;
7379       Scale =
7380           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7381     }
7382     EVT IdxVT = Index.getValueType();
7383     EVT EltTy = IdxVT.getVectorElementType();
7384     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7385       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7386       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7387     }
7388     LD = DAG.getGatherVP(
7389         DAG.getVTList(VT, MVT::Other), VT, DL,
7390         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7391         IndexType);
7392   }
7393   if (AddToChain)
7394     PendingLoads.push_back(LD.getValue(1));
7395   setValue(&VPIntrin, LD);
7396 }
7397 
7398 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7399                                               SmallVector<SDValue, 7> &OpValues,
7400                                               bool IsScatter) {
7401   SDLoc DL = getCurSDLoc();
7402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7403   Value *PtrOperand = VPIntrin.getArgOperand(1);
7404   EVT VT = OpValues[0].getValueType();
7405   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7406   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7407   SDValue ST;
7408   if (!IsScatter) {
7409     if (!Alignment)
7410       Alignment = DAG.getEVTAlign(VT);
7411     SDValue Ptr = OpValues[1];
7412     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7413     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7414         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7415         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7416     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7417                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7418                         /* IsTruncating */ false, /*IsCompressing*/ false);
7419   } else {
7420     if (!Alignment)
7421       Alignment = DAG.getEVTAlign(VT.getScalarType());
7422     unsigned AS =
7423         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7424     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7425         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7426         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7427     SDValue Base, Index, Scale;
7428     ISD::MemIndexType IndexType;
7429     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7430                                       this, VPIntrin.getParent());
7431     if (!UniformBase) {
7432       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7433       Index = getValue(PtrOperand);
7434       IndexType = ISD::SIGNED_UNSCALED;
7435       Scale =
7436           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7437     }
7438     EVT IdxVT = Index.getValueType();
7439     EVT EltTy = IdxVT.getVectorElementType();
7440     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7441       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7442       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7443     }
7444     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7445                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7446                            OpValues[2], OpValues[3]},
7447                           MMO, IndexType);
7448   }
7449   DAG.setRoot(ST);
7450   setValue(&VPIntrin, ST);
7451 }
7452 
7453 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7454     const VPIntrinsic &VPIntrin) {
7455   SDLoc DL = getCurSDLoc();
7456   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7457 
7458   SmallVector<EVT, 4> ValueVTs;
7459   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7460   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7461   SDVTList VTs = DAG.getVTList(ValueVTs);
7462 
7463   auto EVLParamPos =
7464       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7465 
7466   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7467   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7468          "Unexpected target EVL type");
7469 
7470   // Request operands.
7471   SmallVector<SDValue, 7> OpValues;
7472   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7473     auto Op = getValue(VPIntrin.getArgOperand(I));
7474     if (I == EVLParamPos)
7475       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7476     OpValues.push_back(Op);
7477   }
7478 
7479   switch (Opcode) {
7480   default: {
7481     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7482     setValue(&VPIntrin, Result);
7483     break;
7484   }
7485   case ISD::VP_LOAD:
7486   case ISD::VP_GATHER:
7487     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7488                       Opcode == ISD::VP_GATHER);
7489     break;
7490   case ISD::VP_STORE:
7491   case ISD::VP_SCATTER:
7492     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7493     break;
7494   }
7495 }
7496 
7497 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7498                                           const BasicBlock *EHPadBB,
7499                                           MCSymbol *&BeginLabel) {
7500   MachineFunction &MF = DAG.getMachineFunction();
7501   MachineModuleInfo &MMI = MF.getMMI();
7502 
7503   // Insert a label before the invoke call to mark the try range.  This can be
7504   // used to detect deletion of the invoke via the MachineModuleInfo.
7505   BeginLabel = MMI.getContext().createTempSymbol();
7506 
7507   // For SjLj, keep track of which landing pads go with which invokes
7508   // so as to maintain the ordering of pads in the LSDA.
7509   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7510   if (CallSiteIndex) {
7511     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7512     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7513 
7514     // Now that the call site is handled, stop tracking it.
7515     MMI.setCurrentCallSite(0);
7516   }
7517 
7518   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7519 }
7520 
7521 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7522                                         const BasicBlock *EHPadBB,
7523                                         MCSymbol *BeginLabel) {
7524   assert(BeginLabel && "BeginLabel should've been set");
7525 
7526   MachineFunction &MF = DAG.getMachineFunction();
7527   MachineModuleInfo &MMI = MF.getMMI();
7528 
7529   // Insert a label at the end of the invoke call to mark the try range.  This
7530   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7531   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7532   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7533 
7534   // Inform MachineModuleInfo of range.
7535   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7536   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7537   // actually use outlined funclets and their LSDA info style.
7538   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7539     assert(II && "II should've been set");
7540     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7541     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7542   } else if (!isScopedEHPersonality(Pers)) {
7543     assert(EHPadBB);
7544     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7545   }
7546 
7547   return Chain;
7548 }
7549 
7550 std::pair<SDValue, SDValue>
7551 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7552                                     const BasicBlock *EHPadBB) {
7553   MCSymbol *BeginLabel = nullptr;
7554 
7555   if (EHPadBB) {
7556     // Both PendingLoads and PendingExports must be flushed here;
7557     // this call might not return.
7558     (void)getRoot();
7559     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7560     CLI.setChain(getRoot());
7561   }
7562 
7563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7564   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7565 
7566   assert((CLI.IsTailCall || Result.second.getNode()) &&
7567          "Non-null chain expected with non-tail call!");
7568   assert((Result.second.getNode() || !Result.first.getNode()) &&
7569          "Null value expected with tail call!");
7570 
7571   if (!Result.second.getNode()) {
7572     // As a special case, a null chain means that a tail call has been emitted
7573     // and the DAG root is already updated.
7574     HasTailCall = true;
7575 
7576     // Since there's no actual continuation from this block, nothing can be
7577     // relying on us setting vregs for them.
7578     PendingExports.clear();
7579   } else {
7580     DAG.setRoot(Result.second);
7581   }
7582 
7583   if (EHPadBB) {
7584     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7585                            BeginLabel));
7586   }
7587 
7588   return Result;
7589 }
7590 
7591 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7592                                       bool isTailCall,
7593                                       bool isMustTailCall,
7594                                       const BasicBlock *EHPadBB) {
7595   auto &DL = DAG.getDataLayout();
7596   FunctionType *FTy = CB.getFunctionType();
7597   Type *RetTy = CB.getType();
7598 
7599   TargetLowering::ArgListTy Args;
7600   Args.reserve(CB.arg_size());
7601 
7602   const Value *SwiftErrorVal = nullptr;
7603   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7604 
7605   if (isTailCall) {
7606     // Avoid emitting tail calls in functions with the disable-tail-calls
7607     // attribute.
7608     auto *Caller = CB.getParent()->getParent();
7609     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7610         "true" && !isMustTailCall)
7611       isTailCall = false;
7612 
7613     // We can't tail call inside a function with a swifterror argument. Lowering
7614     // does not support this yet. It would have to move into the swifterror
7615     // register before the call.
7616     if (TLI.supportSwiftError() &&
7617         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7618       isTailCall = false;
7619   }
7620 
7621   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7622     TargetLowering::ArgListEntry Entry;
7623     const Value *V = *I;
7624 
7625     // Skip empty types
7626     if (V->getType()->isEmptyTy())
7627       continue;
7628 
7629     SDValue ArgNode = getValue(V);
7630     Entry.Node = ArgNode; Entry.Ty = V->getType();
7631 
7632     Entry.setAttributes(&CB, I - CB.arg_begin());
7633 
7634     // Use swifterror virtual register as input to the call.
7635     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7636       SwiftErrorVal = V;
7637       // We find the virtual register for the actual swifterror argument.
7638       // Instead of using the Value, we use the virtual register instead.
7639       Entry.Node =
7640           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7641                           EVT(TLI.getPointerTy(DL)));
7642     }
7643 
7644     Args.push_back(Entry);
7645 
7646     // If we have an explicit sret argument that is an Instruction, (i.e., it
7647     // might point to function-local memory), we can't meaningfully tail-call.
7648     if (Entry.IsSRet && isa<Instruction>(V))
7649       isTailCall = false;
7650   }
7651 
7652   // If call site has a cfguardtarget operand bundle, create and add an
7653   // additional ArgListEntry.
7654   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7655     TargetLowering::ArgListEntry Entry;
7656     Value *V = Bundle->Inputs[0];
7657     SDValue ArgNode = getValue(V);
7658     Entry.Node = ArgNode;
7659     Entry.Ty = V->getType();
7660     Entry.IsCFGuardTarget = true;
7661     Args.push_back(Entry);
7662   }
7663 
7664   // Check if target-independent constraints permit a tail call here.
7665   // Target-dependent constraints are checked within TLI->LowerCallTo.
7666   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7667     isTailCall = false;
7668 
7669   // Disable tail calls if there is an swifterror argument. Targets have not
7670   // been updated to support tail calls.
7671   if (TLI.supportSwiftError() && SwiftErrorVal)
7672     isTailCall = false;
7673 
7674   TargetLowering::CallLoweringInfo CLI(DAG);
7675   CLI.setDebugLoc(getCurSDLoc())
7676       .setChain(getRoot())
7677       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7678       .setTailCall(isTailCall)
7679       .setConvergent(CB.isConvergent())
7680       .setIsPreallocated(
7681           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7682   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7683 
7684   if (Result.first.getNode()) {
7685     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7686     setValue(&CB, Result.first);
7687   }
7688 
7689   // The last element of CLI.InVals has the SDValue for swifterror return.
7690   // Here we copy it to a virtual register and update SwiftErrorMap for
7691   // book-keeping.
7692   if (SwiftErrorVal && TLI.supportSwiftError()) {
7693     // Get the last element of InVals.
7694     SDValue Src = CLI.InVals.back();
7695     Register VReg =
7696         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7697     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7698     DAG.setRoot(CopyNode);
7699   }
7700 }
7701 
7702 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7703                              SelectionDAGBuilder &Builder) {
7704   // Check to see if this load can be trivially constant folded, e.g. if the
7705   // input is from a string literal.
7706   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7707     // Cast pointer to the type we really want to load.
7708     Type *LoadTy =
7709         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7710     if (LoadVT.isVector())
7711       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7712 
7713     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7714                                          PointerType::getUnqual(LoadTy));
7715 
7716     if (const Constant *LoadCst =
7717             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7718                                          LoadTy, Builder.DAG.getDataLayout()))
7719       return Builder.getValue(LoadCst);
7720   }
7721 
7722   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7723   // still constant memory, the input chain can be the entry node.
7724   SDValue Root;
7725   bool ConstantMemory = false;
7726 
7727   // Do not serialize (non-volatile) loads of constant memory with anything.
7728   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7729     Root = Builder.DAG.getEntryNode();
7730     ConstantMemory = true;
7731   } else {
7732     // Do not serialize non-volatile loads against each other.
7733     Root = Builder.DAG.getRoot();
7734   }
7735 
7736   SDValue Ptr = Builder.getValue(PtrVal);
7737   SDValue LoadVal =
7738       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7739                           MachinePointerInfo(PtrVal), Align(1));
7740 
7741   if (!ConstantMemory)
7742     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7743   return LoadVal;
7744 }
7745 
7746 /// Record the value for an instruction that produces an integer result,
7747 /// converting the type where necessary.
7748 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7749                                                   SDValue Value,
7750                                                   bool IsSigned) {
7751   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7752                                                     I.getType(), true);
7753   if (IsSigned)
7754     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7755   else
7756     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7757   setValue(&I, Value);
7758 }
7759 
7760 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7761 /// true and lower it. Otherwise return false, and it will be lowered like a
7762 /// normal call.
7763 /// The caller already checked that \p I calls the appropriate LibFunc with a
7764 /// correct prototype.
7765 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7766   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7767   const Value *Size = I.getArgOperand(2);
7768   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7769   if (CSize && CSize->getZExtValue() == 0) {
7770     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7771                                                           I.getType(), true);
7772     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7773     return true;
7774   }
7775 
7776   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7777   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7778       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7779       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7780   if (Res.first.getNode()) {
7781     processIntegerCallValue(I, Res.first, true);
7782     PendingLoads.push_back(Res.second);
7783     return true;
7784   }
7785 
7786   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7787   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7788   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7789     return false;
7790 
7791   // If the target has a fast compare for the given size, it will return a
7792   // preferred load type for that size. Require that the load VT is legal and
7793   // that the target supports unaligned loads of that type. Otherwise, return
7794   // INVALID.
7795   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7796     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7797     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7798     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7799       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7800       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7801       // TODO: Check alignment of src and dest ptrs.
7802       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7803       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7804       if (!TLI.isTypeLegal(LVT) ||
7805           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7806           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7807         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7808     }
7809 
7810     return LVT;
7811   };
7812 
7813   // This turns into unaligned loads. We only do this if the target natively
7814   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7815   // we'll only produce a small number of byte loads.
7816   MVT LoadVT;
7817   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7818   switch (NumBitsToCompare) {
7819   default:
7820     return false;
7821   case 16:
7822     LoadVT = MVT::i16;
7823     break;
7824   case 32:
7825     LoadVT = MVT::i32;
7826     break;
7827   case 64:
7828   case 128:
7829   case 256:
7830     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7831     break;
7832   }
7833 
7834   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7835     return false;
7836 
7837   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7838   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7839 
7840   // Bitcast to a wide integer type if the loads are vectors.
7841   if (LoadVT.isVector()) {
7842     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7843     LoadL = DAG.getBitcast(CmpVT, LoadL);
7844     LoadR = DAG.getBitcast(CmpVT, LoadR);
7845   }
7846 
7847   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7848   processIntegerCallValue(I, Cmp, false);
7849   return true;
7850 }
7851 
7852 /// See if we can lower a memchr call into an optimized form. If so, return
7853 /// true and lower it. Otherwise return false, and it will be lowered like a
7854 /// normal call.
7855 /// The caller already checked that \p I calls the appropriate LibFunc with a
7856 /// correct prototype.
7857 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7858   const Value *Src = I.getArgOperand(0);
7859   const Value *Char = I.getArgOperand(1);
7860   const Value *Length = I.getArgOperand(2);
7861 
7862   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7863   std::pair<SDValue, SDValue> Res =
7864     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7865                                 getValue(Src), getValue(Char), getValue(Length),
7866                                 MachinePointerInfo(Src));
7867   if (Res.first.getNode()) {
7868     setValue(&I, Res.first);
7869     PendingLoads.push_back(Res.second);
7870     return true;
7871   }
7872 
7873   return false;
7874 }
7875 
7876 /// See if we can lower a mempcpy call into an optimized form. If so, return
7877 /// true and lower it. Otherwise return false, and it will be lowered like a
7878 /// normal call.
7879 /// The caller already checked that \p I calls the appropriate LibFunc with a
7880 /// correct prototype.
7881 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7882   SDValue Dst = getValue(I.getArgOperand(0));
7883   SDValue Src = getValue(I.getArgOperand(1));
7884   SDValue Size = getValue(I.getArgOperand(2));
7885 
7886   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7887   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7888   // DAG::getMemcpy needs Alignment to be defined.
7889   Align Alignment = std::min(DstAlign, SrcAlign);
7890 
7891   bool isVol = false;
7892   SDLoc sdl = getCurSDLoc();
7893 
7894   // In the mempcpy context we need to pass in a false value for isTailCall
7895   // because the return pointer needs to be adjusted by the size of
7896   // the copied memory.
7897   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7898   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7899                              /*isTailCall=*/false,
7900                              MachinePointerInfo(I.getArgOperand(0)),
7901                              MachinePointerInfo(I.getArgOperand(1)),
7902                              I.getAAMetadata());
7903   assert(MC.getNode() != nullptr &&
7904          "** memcpy should not be lowered as TailCall in mempcpy context **");
7905   DAG.setRoot(MC);
7906 
7907   // Check if Size needs to be truncated or extended.
7908   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7909 
7910   // Adjust return pointer to point just past the last dst byte.
7911   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7912                                     Dst, Size);
7913   setValue(&I, DstPlusSize);
7914   return true;
7915 }
7916 
7917 /// See if we can lower a strcpy call into an optimized form.  If so, return
7918 /// true and lower it, otherwise return false and it will be lowered like a
7919 /// normal call.
7920 /// The caller already checked that \p I calls the appropriate LibFunc with a
7921 /// correct prototype.
7922 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7923   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7924 
7925   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7926   std::pair<SDValue, SDValue> Res =
7927     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7928                                 getValue(Arg0), getValue(Arg1),
7929                                 MachinePointerInfo(Arg0),
7930                                 MachinePointerInfo(Arg1), isStpcpy);
7931   if (Res.first.getNode()) {
7932     setValue(&I, Res.first);
7933     DAG.setRoot(Res.second);
7934     return true;
7935   }
7936 
7937   return false;
7938 }
7939 
7940 /// See if we can lower a strcmp call into an optimized form.  If so, return
7941 /// true and lower it, otherwise return false and it will be lowered like a
7942 /// normal call.
7943 /// The caller already checked that \p I calls the appropriate LibFunc with a
7944 /// correct prototype.
7945 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7946   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7947 
7948   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7949   std::pair<SDValue, SDValue> Res =
7950     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7951                                 getValue(Arg0), getValue(Arg1),
7952                                 MachinePointerInfo(Arg0),
7953                                 MachinePointerInfo(Arg1));
7954   if (Res.first.getNode()) {
7955     processIntegerCallValue(I, Res.first, true);
7956     PendingLoads.push_back(Res.second);
7957     return true;
7958   }
7959 
7960   return false;
7961 }
7962 
7963 /// See if we can lower a strlen call into an optimized form.  If so, return
7964 /// true and lower it, otherwise return false and it will be lowered like a
7965 /// normal call.
7966 /// The caller already checked that \p I calls the appropriate LibFunc with a
7967 /// correct prototype.
7968 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7969   const Value *Arg0 = I.getArgOperand(0);
7970 
7971   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7972   std::pair<SDValue, SDValue> Res =
7973     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7974                                 getValue(Arg0), MachinePointerInfo(Arg0));
7975   if (Res.first.getNode()) {
7976     processIntegerCallValue(I, Res.first, false);
7977     PendingLoads.push_back(Res.second);
7978     return true;
7979   }
7980 
7981   return false;
7982 }
7983 
7984 /// See if we can lower a strnlen call into an optimized form.  If so, return
7985 /// true and lower it, otherwise return false and it will be lowered like a
7986 /// normal call.
7987 /// The caller already checked that \p I calls the appropriate LibFunc with a
7988 /// correct prototype.
7989 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7990   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7991 
7992   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7993   std::pair<SDValue, SDValue> Res =
7994     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7995                                  getValue(Arg0), getValue(Arg1),
7996                                  MachinePointerInfo(Arg0));
7997   if (Res.first.getNode()) {
7998     processIntegerCallValue(I, Res.first, false);
7999     PendingLoads.push_back(Res.second);
8000     return true;
8001   }
8002 
8003   return false;
8004 }
8005 
8006 /// See if we can lower a unary floating-point operation into an SDNode with
8007 /// the specified Opcode.  If so, return true and lower it, otherwise return
8008 /// false and it will be lowered like a normal call.
8009 /// The caller already checked that \p I calls the appropriate LibFunc with a
8010 /// correct prototype.
8011 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8012                                               unsigned Opcode) {
8013   // We already checked this call's prototype; verify it doesn't modify errno.
8014   if (!I.onlyReadsMemory())
8015     return false;
8016 
8017   SDNodeFlags Flags;
8018   Flags.copyFMF(cast<FPMathOperator>(I));
8019 
8020   SDValue Tmp = getValue(I.getArgOperand(0));
8021   setValue(&I,
8022            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8023   return true;
8024 }
8025 
8026 /// See if we can lower a binary floating-point operation into an SDNode with
8027 /// the specified Opcode. If so, return true and lower it. Otherwise return
8028 /// false, and it will be lowered like a normal call.
8029 /// The caller already checked that \p I calls the appropriate LibFunc with a
8030 /// correct prototype.
8031 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8032                                                unsigned Opcode) {
8033   // We already checked this call's prototype; verify it doesn't modify errno.
8034   if (!I.onlyReadsMemory())
8035     return false;
8036 
8037   SDNodeFlags Flags;
8038   Flags.copyFMF(cast<FPMathOperator>(I));
8039 
8040   SDValue Tmp0 = getValue(I.getArgOperand(0));
8041   SDValue Tmp1 = getValue(I.getArgOperand(1));
8042   EVT VT = Tmp0.getValueType();
8043   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8044   return true;
8045 }
8046 
8047 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8048   // Handle inline assembly differently.
8049   if (I.isInlineAsm()) {
8050     visitInlineAsm(I);
8051     return;
8052   }
8053 
8054   if (Function *F = I.getCalledFunction()) {
8055     diagnoseDontCall(I);
8056 
8057     if (F->isDeclaration()) {
8058       // Is this an LLVM intrinsic or a target-specific intrinsic?
8059       unsigned IID = F->getIntrinsicID();
8060       if (!IID)
8061         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8062           IID = II->getIntrinsicID(F);
8063 
8064       if (IID) {
8065         visitIntrinsicCall(I, IID);
8066         return;
8067       }
8068     }
8069 
8070     // Check for well-known libc/libm calls.  If the function is internal, it
8071     // can't be a library call.  Don't do the check if marked as nobuiltin for
8072     // some reason or the call site requires strict floating point semantics.
8073     LibFunc Func;
8074     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8075         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8076         LibInfo->hasOptimizedCodeGen(Func)) {
8077       switch (Func) {
8078       default: break;
8079       case LibFunc_bcmp:
8080         if (visitMemCmpBCmpCall(I))
8081           return;
8082         break;
8083       case LibFunc_copysign:
8084       case LibFunc_copysignf:
8085       case LibFunc_copysignl:
8086         // We already checked this call's prototype; verify it doesn't modify
8087         // errno.
8088         if (I.onlyReadsMemory()) {
8089           SDValue LHS = getValue(I.getArgOperand(0));
8090           SDValue RHS = getValue(I.getArgOperand(1));
8091           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8092                                    LHS.getValueType(), LHS, RHS));
8093           return;
8094         }
8095         break;
8096       case LibFunc_fabs:
8097       case LibFunc_fabsf:
8098       case LibFunc_fabsl:
8099         if (visitUnaryFloatCall(I, ISD::FABS))
8100           return;
8101         break;
8102       case LibFunc_fmin:
8103       case LibFunc_fminf:
8104       case LibFunc_fminl:
8105         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8106           return;
8107         break;
8108       case LibFunc_fmax:
8109       case LibFunc_fmaxf:
8110       case LibFunc_fmaxl:
8111         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8112           return;
8113         break;
8114       case LibFunc_sin:
8115       case LibFunc_sinf:
8116       case LibFunc_sinl:
8117         if (visitUnaryFloatCall(I, ISD::FSIN))
8118           return;
8119         break;
8120       case LibFunc_cos:
8121       case LibFunc_cosf:
8122       case LibFunc_cosl:
8123         if (visitUnaryFloatCall(I, ISD::FCOS))
8124           return;
8125         break;
8126       case LibFunc_sqrt:
8127       case LibFunc_sqrtf:
8128       case LibFunc_sqrtl:
8129       case LibFunc_sqrt_finite:
8130       case LibFunc_sqrtf_finite:
8131       case LibFunc_sqrtl_finite:
8132         if (visitUnaryFloatCall(I, ISD::FSQRT))
8133           return;
8134         break;
8135       case LibFunc_floor:
8136       case LibFunc_floorf:
8137       case LibFunc_floorl:
8138         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8139           return;
8140         break;
8141       case LibFunc_nearbyint:
8142       case LibFunc_nearbyintf:
8143       case LibFunc_nearbyintl:
8144         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8145           return;
8146         break;
8147       case LibFunc_ceil:
8148       case LibFunc_ceilf:
8149       case LibFunc_ceill:
8150         if (visitUnaryFloatCall(I, ISD::FCEIL))
8151           return;
8152         break;
8153       case LibFunc_rint:
8154       case LibFunc_rintf:
8155       case LibFunc_rintl:
8156         if (visitUnaryFloatCall(I, ISD::FRINT))
8157           return;
8158         break;
8159       case LibFunc_round:
8160       case LibFunc_roundf:
8161       case LibFunc_roundl:
8162         if (visitUnaryFloatCall(I, ISD::FROUND))
8163           return;
8164         break;
8165       case LibFunc_trunc:
8166       case LibFunc_truncf:
8167       case LibFunc_truncl:
8168         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8169           return;
8170         break;
8171       case LibFunc_log2:
8172       case LibFunc_log2f:
8173       case LibFunc_log2l:
8174         if (visitUnaryFloatCall(I, ISD::FLOG2))
8175           return;
8176         break;
8177       case LibFunc_exp2:
8178       case LibFunc_exp2f:
8179       case LibFunc_exp2l:
8180         if (visitUnaryFloatCall(I, ISD::FEXP2))
8181           return;
8182         break;
8183       case LibFunc_memcmp:
8184         if (visitMemCmpBCmpCall(I))
8185           return;
8186         break;
8187       case LibFunc_mempcpy:
8188         if (visitMemPCpyCall(I))
8189           return;
8190         break;
8191       case LibFunc_memchr:
8192         if (visitMemChrCall(I))
8193           return;
8194         break;
8195       case LibFunc_strcpy:
8196         if (visitStrCpyCall(I, false))
8197           return;
8198         break;
8199       case LibFunc_stpcpy:
8200         if (visitStrCpyCall(I, true))
8201           return;
8202         break;
8203       case LibFunc_strcmp:
8204         if (visitStrCmpCall(I))
8205           return;
8206         break;
8207       case LibFunc_strlen:
8208         if (visitStrLenCall(I))
8209           return;
8210         break;
8211       case LibFunc_strnlen:
8212         if (visitStrNLenCall(I))
8213           return;
8214         break;
8215       }
8216     }
8217   }
8218 
8219   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8220   // have to do anything here to lower funclet bundles.
8221   // CFGuardTarget bundles are lowered in LowerCallTo.
8222   assert(!I.hasOperandBundlesOtherThan(
8223              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8224               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8225               LLVMContext::OB_clang_arc_attachedcall}) &&
8226          "Cannot lower calls with arbitrary operand bundles!");
8227 
8228   SDValue Callee = getValue(I.getCalledOperand());
8229 
8230   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8231     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8232   else
8233     // Check if we can potentially perform a tail call. More detailed checking
8234     // is be done within LowerCallTo, after more information about the call is
8235     // known.
8236     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8237 }
8238 
8239 namespace {
8240 
8241 /// AsmOperandInfo - This contains information for each constraint that we are
8242 /// lowering.
8243 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8244 public:
8245   /// CallOperand - If this is the result output operand or a clobber
8246   /// this is null, otherwise it is the incoming operand to the CallInst.
8247   /// This gets modified as the asm is processed.
8248   SDValue CallOperand;
8249 
8250   /// AssignedRegs - If this is a register or register class operand, this
8251   /// contains the set of register corresponding to the operand.
8252   RegsForValue AssignedRegs;
8253 
8254   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8255     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8256   }
8257 
8258   /// Whether or not this operand accesses memory
8259   bool hasMemory(const TargetLowering &TLI) const {
8260     // Indirect operand accesses access memory.
8261     if (isIndirect)
8262       return true;
8263 
8264     for (const auto &Code : Codes)
8265       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8266         return true;
8267 
8268     return false;
8269   }
8270 
8271   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8272   /// corresponds to.  If there is no Value* for this operand, it returns
8273   /// MVT::Other.
8274   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8275                            const DataLayout &DL,
8276                            llvm::Type *ParamElemType) const {
8277     if (!CallOperandVal) return MVT::Other;
8278 
8279     if (isa<BasicBlock>(CallOperandVal))
8280       return TLI.getProgramPointerTy(DL);
8281 
8282     llvm::Type *OpTy = CallOperandVal->getType();
8283 
8284     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8285     // If this is an indirect operand, the operand is a pointer to the
8286     // accessed type.
8287     if (isIndirect) {
8288       OpTy = ParamElemType;
8289       assert(OpTy && "Indirect operand must have elementtype attribute");
8290     }
8291 
8292     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8293     if (StructType *STy = dyn_cast<StructType>(OpTy))
8294       if (STy->getNumElements() == 1)
8295         OpTy = STy->getElementType(0);
8296 
8297     // If OpTy is not a single value, it may be a struct/union that we
8298     // can tile with integers.
8299     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8300       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8301       switch (BitSize) {
8302       default: break;
8303       case 1:
8304       case 8:
8305       case 16:
8306       case 32:
8307       case 64:
8308       case 128:
8309         OpTy = IntegerType::get(Context, BitSize);
8310         break;
8311       }
8312     }
8313 
8314     return TLI.getAsmOperandValueType(DL, OpTy, true);
8315   }
8316 };
8317 
8318 
8319 } // end anonymous namespace
8320 
8321 /// Make sure that the output operand \p OpInfo and its corresponding input
8322 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8323 /// out).
8324 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8325                                SDISelAsmOperandInfo &MatchingOpInfo,
8326                                SelectionDAG &DAG) {
8327   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8328     return;
8329 
8330   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8331   const auto &TLI = DAG.getTargetLoweringInfo();
8332 
8333   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8334       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8335                                        OpInfo.ConstraintVT);
8336   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8337       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8338                                        MatchingOpInfo.ConstraintVT);
8339   if ((OpInfo.ConstraintVT.isInteger() !=
8340        MatchingOpInfo.ConstraintVT.isInteger()) ||
8341       (MatchRC.second != InputRC.second)) {
8342     // FIXME: error out in a more elegant fashion
8343     report_fatal_error("Unsupported asm: input constraint"
8344                        " with a matching output constraint of"
8345                        " incompatible type!");
8346   }
8347   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8348 }
8349 
8350 /// Get a direct memory input to behave well as an indirect operand.
8351 /// This may introduce stores, hence the need for a \p Chain.
8352 /// \return The (possibly updated) chain.
8353 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8354                                         SDISelAsmOperandInfo &OpInfo,
8355                                         SelectionDAG &DAG) {
8356   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8357 
8358   // If we don't have an indirect input, put it in the constpool if we can,
8359   // otherwise spill it to a stack slot.
8360   // TODO: This isn't quite right. We need to handle these according to
8361   // the addressing mode that the constraint wants. Also, this may take
8362   // an additional register for the computation and we don't want that
8363   // either.
8364 
8365   // If the operand is a float, integer, or vector constant, spill to a
8366   // constant pool entry to get its address.
8367   const Value *OpVal = OpInfo.CallOperandVal;
8368   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8369       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8370     OpInfo.CallOperand = DAG.getConstantPool(
8371         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8372     return Chain;
8373   }
8374 
8375   // Otherwise, create a stack slot and emit a store to it before the asm.
8376   Type *Ty = OpVal->getType();
8377   auto &DL = DAG.getDataLayout();
8378   uint64_t TySize = DL.getTypeAllocSize(Ty);
8379   MachineFunction &MF = DAG.getMachineFunction();
8380   int SSFI = MF.getFrameInfo().CreateStackObject(
8381       TySize, DL.getPrefTypeAlign(Ty), false);
8382   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8383   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8384                             MachinePointerInfo::getFixedStack(MF, SSFI),
8385                             TLI.getMemValueType(DL, Ty));
8386   OpInfo.CallOperand = StackSlot;
8387 
8388   return Chain;
8389 }
8390 
8391 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8392 /// specified operand.  We prefer to assign virtual registers, to allow the
8393 /// register allocator to handle the assignment process.  However, if the asm
8394 /// uses features that we can't model on machineinstrs, we have SDISel do the
8395 /// allocation.  This produces generally horrible, but correct, code.
8396 ///
8397 ///   OpInfo describes the operand
8398 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8399 static llvm::Optional<unsigned>
8400 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8401                      SDISelAsmOperandInfo &OpInfo,
8402                      SDISelAsmOperandInfo &RefOpInfo) {
8403   LLVMContext &Context = *DAG.getContext();
8404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8405 
8406   MachineFunction &MF = DAG.getMachineFunction();
8407   SmallVector<unsigned, 4> Regs;
8408   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8409 
8410   // No work to do for memory operations.
8411   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8412     return None;
8413 
8414   // If this is a constraint for a single physreg, or a constraint for a
8415   // register class, find it.
8416   unsigned AssignedReg;
8417   const TargetRegisterClass *RC;
8418   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8419       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8420   // RC is unset only on failure. Return immediately.
8421   if (!RC)
8422     return None;
8423 
8424   // Get the actual register value type.  This is important, because the user
8425   // may have asked for (e.g.) the AX register in i32 type.  We need to
8426   // remember that AX is actually i16 to get the right extension.
8427   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8428 
8429   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8430     // If this is an FP operand in an integer register (or visa versa), or more
8431     // generally if the operand value disagrees with the register class we plan
8432     // to stick it in, fix the operand type.
8433     //
8434     // If this is an input value, the bitcast to the new type is done now.
8435     // Bitcast for output value is done at the end of visitInlineAsm().
8436     if ((OpInfo.Type == InlineAsm::isOutput ||
8437          OpInfo.Type == InlineAsm::isInput) &&
8438         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8439       // Try to convert to the first EVT that the reg class contains.  If the
8440       // types are identical size, use a bitcast to convert (e.g. two differing
8441       // vector types).  Note: output bitcast is done at the end of
8442       // visitInlineAsm().
8443       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8444         // Exclude indirect inputs while they are unsupported because the code
8445         // to perform the load is missing and thus OpInfo.CallOperand still
8446         // refers to the input address rather than the pointed-to value.
8447         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8448           OpInfo.CallOperand =
8449               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8450         OpInfo.ConstraintVT = RegVT;
8451         // If the operand is an FP value and we want it in integer registers,
8452         // use the corresponding integer type. This turns an f64 value into
8453         // i64, which can be passed with two i32 values on a 32-bit machine.
8454       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8455         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8456         if (OpInfo.Type == InlineAsm::isInput)
8457           OpInfo.CallOperand =
8458               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8459         OpInfo.ConstraintVT = VT;
8460       }
8461     }
8462   }
8463 
8464   // No need to allocate a matching input constraint since the constraint it's
8465   // matching to has already been allocated.
8466   if (OpInfo.isMatchingInputConstraint())
8467     return None;
8468 
8469   EVT ValueVT = OpInfo.ConstraintVT;
8470   if (OpInfo.ConstraintVT == MVT::Other)
8471     ValueVT = RegVT;
8472 
8473   // Initialize NumRegs.
8474   unsigned NumRegs = 1;
8475   if (OpInfo.ConstraintVT != MVT::Other)
8476     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8477 
8478   // If this is a constraint for a specific physical register, like {r17},
8479   // assign it now.
8480 
8481   // If this associated to a specific register, initialize iterator to correct
8482   // place. If virtual, make sure we have enough registers
8483 
8484   // Initialize iterator if necessary
8485   TargetRegisterClass::iterator I = RC->begin();
8486   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8487 
8488   // Do not check for single registers.
8489   if (AssignedReg) {
8490     I = std::find(I, RC->end(), AssignedReg);
8491     if (I == RC->end()) {
8492       // RC does not contain the selected register, which indicates a
8493       // mismatch between the register and the required type/bitwidth.
8494       return {AssignedReg};
8495     }
8496   }
8497 
8498   for (; NumRegs; --NumRegs, ++I) {
8499     assert(I != RC->end() && "Ran out of registers to allocate!");
8500     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8501     Regs.push_back(R);
8502   }
8503 
8504   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8505   return None;
8506 }
8507 
8508 static unsigned
8509 findMatchingInlineAsmOperand(unsigned OperandNo,
8510                              const std::vector<SDValue> &AsmNodeOperands) {
8511   // Scan until we find the definition we already emitted of this operand.
8512   unsigned CurOp = InlineAsm::Op_FirstOperand;
8513   for (; OperandNo; --OperandNo) {
8514     // Advance to the next operand.
8515     unsigned OpFlag =
8516         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8517     assert((InlineAsm::isRegDefKind(OpFlag) ||
8518             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8519             InlineAsm::isMemKind(OpFlag)) &&
8520            "Skipped past definitions?");
8521     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8522   }
8523   return CurOp;
8524 }
8525 
8526 namespace {
8527 
8528 class ExtraFlags {
8529   unsigned Flags = 0;
8530 
8531 public:
8532   explicit ExtraFlags(const CallBase &Call) {
8533     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8534     if (IA->hasSideEffects())
8535       Flags |= InlineAsm::Extra_HasSideEffects;
8536     if (IA->isAlignStack())
8537       Flags |= InlineAsm::Extra_IsAlignStack;
8538     if (Call.isConvergent())
8539       Flags |= InlineAsm::Extra_IsConvergent;
8540     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8541   }
8542 
8543   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8544     // Ideally, we would only check against memory constraints.  However, the
8545     // meaning of an Other constraint can be target-specific and we can't easily
8546     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8547     // for Other constraints as well.
8548     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8549         OpInfo.ConstraintType == TargetLowering::C_Other) {
8550       if (OpInfo.Type == InlineAsm::isInput)
8551         Flags |= InlineAsm::Extra_MayLoad;
8552       else if (OpInfo.Type == InlineAsm::isOutput)
8553         Flags |= InlineAsm::Extra_MayStore;
8554       else if (OpInfo.Type == InlineAsm::isClobber)
8555         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8556     }
8557   }
8558 
8559   unsigned get() const { return Flags; }
8560 };
8561 
8562 } // end anonymous namespace
8563 
8564 /// visitInlineAsm - Handle a call to an InlineAsm object.
8565 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8566                                          const BasicBlock *EHPadBB) {
8567   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8568 
8569   /// ConstraintOperands - Information about all of the constraints.
8570   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8571 
8572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8573   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8574       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8575 
8576   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8577   // AsmDialect, MayLoad, MayStore).
8578   bool HasSideEffect = IA->hasSideEffects();
8579   ExtraFlags ExtraInfo(Call);
8580 
8581   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8582   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8583   for (auto &T : TargetConstraints) {
8584     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8585     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8586 
8587     // Compute the value type for each operand.
8588     if (OpInfo.hasArg()) {
8589       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8590       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8591       Type *ParamElemTy = Call.getParamElementType(ArgNo);
8592       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8593                                            DAG.getDataLayout(), ParamElemTy);
8594       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8595       ArgNo++;
8596     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8597       // The return value of the call is this value.  As such, there is no
8598       // corresponding argument.
8599       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8600       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8601         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8602             DAG.getDataLayout(), STy->getElementType(ResNo));
8603       } else {
8604         assert(ResNo == 0 && "Asm only has one result!");
8605         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8606             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8607       }
8608       ++ResNo;
8609     } else {
8610       OpInfo.ConstraintVT = MVT::Other;
8611     }
8612 
8613     if (!HasSideEffect)
8614       HasSideEffect = OpInfo.hasMemory(TLI);
8615 
8616     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8617     // FIXME: Could we compute this on OpInfo rather than T?
8618 
8619     // Compute the constraint code and ConstraintType to use.
8620     TLI.ComputeConstraintToUse(T, SDValue());
8621 
8622     if (T.ConstraintType == TargetLowering::C_Immediate &&
8623         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8624       // We've delayed emitting a diagnostic like the "n" constraint because
8625       // inlining could cause an integer showing up.
8626       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8627                                           "' expects an integer constant "
8628                                           "expression");
8629 
8630     ExtraInfo.update(T);
8631   }
8632 
8633   // We won't need to flush pending loads if this asm doesn't touch
8634   // memory and is nonvolatile.
8635   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8636 
8637   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8638   if (EmitEHLabels) {
8639     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8640   }
8641   bool IsCallBr = isa<CallBrInst>(Call);
8642 
8643   if (IsCallBr || EmitEHLabels) {
8644     // If this is a callbr or invoke we need to flush pending exports since
8645     // inlineasm_br and invoke are terminators.
8646     // We need to do this before nodes are glued to the inlineasm_br node.
8647     Chain = getControlRoot();
8648   }
8649 
8650   MCSymbol *BeginLabel = nullptr;
8651   if (EmitEHLabels) {
8652     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8653   }
8654 
8655   // Second pass over the constraints: compute which constraint option to use.
8656   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8657     // If this is an output operand with a matching input operand, look up the
8658     // matching input. If their types mismatch, e.g. one is an integer, the
8659     // other is floating point, or their sizes are different, flag it as an
8660     // error.
8661     if (OpInfo.hasMatchingInput()) {
8662       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8663       patchMatchingInput(OpInfo, Input, DAG);
8664     }
8665 
8666     // Compute the constraint code and ConstraintType to use.
8667     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8668 
8669     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8670         OpInfo.Type == InlineAsm::isClobber)
8671       continue;
8672 
8673     // If this is a memory input, and if the operand is not indirect, do what we
8674     // need to provide an address for the memory input.
8675     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8676         !OpInfo.isIndirect) {
8677       assert((OpInfo.isMultipleAlternative ||
8678               (OpInfo.Type == InlineAsm::isInput)) &&
8679              "Can only indirectify direct input operands!");
8680 
8681       // Memory operands really want the address of the value.
8682       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8683 
8684       // There is no longer a Value* corresponding to this operand.
8685       OpInfo.CallOperandVal = nullptr;
8686 
8687       // It is now an indirect operand.
8688       OpInfo.isIndirect = true;
8689     }
8690 
8691   }
8692 
8693   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8694   std::vector<SDValue> AsmNodeOperands;
8695   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8696   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8697       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8698 
8699   // If we have a !srcloc metadata node associated with it, we want to attach
8700   // this to the ultimately generated inline asm machineinstr.  To do this, we
8701   // pass in the third operand as this (potentially null) inline asm MDNode.
8702   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8703   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8704 
8705   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8706   // bits as operand 3.
8707   AsmNodeOperands.push_back(DAG.getTargetConstant(
8708       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8709 
8710   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8711   // this, assign virtual and physical registers for inputs and otput.
8712   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8713     // Assign Registers.
8714     SDISelAsmOperandInfo &RefOpInfo =
8715         OpInfo.isMatchingInputConstraint()
8716             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8717             : OpInfo;
8718     const auto RegError =
8719         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8720     if (RegError.hasValue()) {
8721       const MachineFunction &MF = DAG.getMachineFunction();
8722       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8723       const char *RegName = TRI.getName(RegError.getValue());
8724       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8725                                    "' allocated for constraint '" +
8726                                    Twine(OpInfo.ConstraintCode) +
8727                                    "' does not match required type");
8728       return;
8729     }
8730 
8731     auto DetectWriteToReservedRegister = [&]() {
8732       const MachineFunction &MF = DAG.getMachineFunction();
8733       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8734       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8735         if (Register::isPhysicalRegister(Reg) &&
8736             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8737           const char *RegName = TRI.getName(Reg);
8738           emitInlineAsmError(Call, "write to reserved register '" +
8739                                        Twine(RegName) + "'");
8740           return true;
8741         }
8742       }
8743       return false;
8744     };
8745 
8746     switch (OpInfo.Type) {
8747     case InlineAsm::isOutput:
8748       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8749         unsigned ConstraintID =
8750             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8751         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8752                "Failed to convert memory constraint code to constraint id.");
8753 
8754         // Add information to the INLINEASM node to know about this output.
8755         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8756         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8757         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8758                                                         MVT::i32));
8759         AsmNodeOperands.push_back(OpInfo.CallOperand);
8760       } else {
8761         // Otherwise, this outputs to a register (directly for C_Register /
8762         // C_RegisterClass, and a target-defined fashion for
8763         // C_Immediate/C_Other). Find a register that we can use.
8764         if (OpInfo.AssignedRegs.Regs.empty()) {
8765           emitInlineAsmError(
8766               Call, "couldn't allocate output register for constraint '" +
8767                         Twine(OpInfo.ConstraintCode) + "'");
8768           return;
8769         }
8770 
8771         if (DetectWriteToReservedRegister())
8772           return;
8773 
8774         // Add information to the INLINEASM node to know that this register is
8775         // set.
8776         OpInfo.AssignedRegs.AddInlineAsmOperands(
8777             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8778                                   : InlineAsm::Kind_RegDef,
8779             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8780       }
8781       break;
8782 
8783     case InlineAsm::isInput: {
8784       SDValue InOperandVal = OpInfo.CallOperand;
8785 
8786       if (OpInfo.isMatchingInputConstraint()) {
8787         // If this is required to match an output register we have already set,
8788         // just use its register.
8789         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8790                                                   AsmNodeOperands);
8791         unsigned OpFlag =
8792           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8793         if (InlineAsm::isRegDefKind(OpFlag) ||
8794             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8795           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8796           if (OpInfo.isIndirect) {
8797             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8798             emitInlineAsmError(Call, "inline asm not supported yet: "
8799                                      "don't know how to handle tied "
8800                                      "indirect register inputs");
8801             return;
8802           }
8803 
8804           SmallVector<unsigned, 4> Regs;
8805           MachineFunction &MF = DAG.getMachineFunction();
8806           MachineRegisterInfo &MRI = MF.getRegInfo();
8807           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8808           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8809           Register TiedReg = R->getReg();
8810           MVT RegVT = R->getSimpleValueType(0);
8811           const TargetRegisterClass *RC =
8812               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8813               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8814                                       : TRI.getMinimalPhysRegClass(TiedReg);
8815           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8816           for (unsigned i = 0; i != NumRegs; ++i)
8817             Regs.push_back(MRI.createVirtualRegister(RC));
8818 
8819           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8820 
8821           SDLoc dl = getCurSDLoc();
8822           // Use the produced MatchedRegs object to
8823           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8824           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8825                                            true, OpInfo.getMatchedOperand(), dl,
8826                                            DAG, AsmNodeOperands);
8827           break;
8828         }
8829 
8830         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8831         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8832                "Unexpected number of operands");
8833         // Add information to the INLINEASM node to know about this input.
8834         // See InlineAsm.h isUseOperandTiedToDef.
8835         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8836         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8837                                                     OpInfo.getMatchedOperand());
8838         AsmNodeOperands.push_back(DAG.getTargetConstant(
8839             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8840         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8841         break;
8842       }
8843 
8844       // Treat indirect 'X' constraint as memory.
8845       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8846           OpInfo.isIndirect)
8847         OpInfo.ConstraintType = TargetLowering::C_Memory;
8848 
8849       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8850           OpInfo.ConstraintType == TargetLowering::C_Other) {
8851         std::vector<SDValue> Ops;
8852         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8853                                           Ops, DAG);
8854         if (Ops.empty()) {
8855           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8856             if (isa<ConstantSDNode>(InOperandVal)) {
8857               emitInlineAsmError(Call, "value out of range for constraint '" +
8858                                            Twine(OpInfo.ConstraintCode) + "'");
8859               return;
8860             }
8861 
8862           emitInlineAsmError(Call,
8863                              "invalid operand for inline asm constraint '" +
8864                                  Twine(OpInfo.ConstraintCode) + "'");
8865           return;
8866         }
8867 
8868         // Add information to the INLINEASM node to know about this input.
8869         unsigned ResOpType =
8870           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8871         AsmNodeOperands.push_back(DAG.getTargetConstant(
8872             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8873         llvm::append_range(AsmNodeOperands, Ops);
8874         break;
8875       }
8876 
8877       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8878         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8879         assert(InOperandVal.getValueType() ==
8880                    TLI.getPointerTy(DAG.getDataLayout()) &&
8881                "Memory operands expect pointer values");
8882 
8883         unsigned ConstraintID =
8884             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8885         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8886                "Failed to convert memory constraint code to constraint id.");
8887 
8888         // Add information to the INLINEASM node to know about this input.
8889         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8890         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8891         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8892                                                         getCurSDLoc(),
8893                                                         MVT::i32));
8894         AsmNodeOperands.push_back(InOperandVal);
8895         break;
8896       }
8897 
8898       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8899               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8900              "Unknown constraint type!");
8901 
8902       // TODO: Support this.
8903       if (OpInfo.isIndirect) {
8904         emitInlineAsmError(
8905             Call, "Don't know how to handle indirect register inputs yet "
8906                   "for constraint '" +
8907                       Twine(OpInfo.ConstraintCode) + "'");
8908         return;
8909       }
8910 
8911       // Copy the input into the appropriate registers.
8912       if (OpInfo.AssignedRegs.Regs.empty()) {
8913         emitInlineAsmError(Call,
8914                            "couldn't allocate input reg for constraint '" +
8915                                Twine(OpInfo.ConstraintCode) + "'");
8916         return;
8917       }
8918 
8919       if (DetectWriteToReservedRegister())
8920         return;
8921 
8922       SDLoc dl = getCurSDLoc();
8923 
8924       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8925                                         &Call);
8926 
8927       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8928                                                dl, DAG, AsmNodeOperands);
8929       break;
8930     }
8931     case InlineAsm::isClobber:
8932       // Add the clobbered value to the operand list, so that the register
8933       // allocator is aware that the physreg got clobbered.
8934       if (!OpInfo.AssignedRegs.Regs.empty())
8935         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8936                                                  false, 0, getCurSDLoc(), DAG,
8937                                                  AsmNodeOperands);
8938       break;
8939     }
8940   }
8941 
8942   // Finish up input operands.  Set the input chain and add the flag last.
8943   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8944   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8945 
8946   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8947   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8948                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8949   Flag = Chain.getValue(1);
8950 
8951   // Do additional work to generate outputs.
8952 
8953   SmallVector<EVT, 1> ResultVTs;
8954   SmallVector<SDValue, 1> ResultValues;
8955   SmallVector<SDValue, 8> OutChains;
8956 
8957   llvm::Type *CallResultType = Call.getType();
8958   ArrayRef<Type *> ResultTypes;
8959   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8960     ResultTypes = StructResult->elements();
8961   else if (!CallResultType->isVoidTy())
8962     ResultTypes = makeArrayRef(CallResultType);
8963 
8964   auto CurResultType = ResultTypes.begin();
8965   auto handleRegAssign = [&](SDValue V) {
8966     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8967     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8968     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8969     ++CurResultType;
8970     // If the type of the inline asm call site return value is different but has
8971     // same size as the type of the asm output bitcast it.  One example of this
8972     // is for vectors with different width / number of elements.  This can
8973     // happen for register classes that can contain multiple different value
8974     // types.  The preg or vreg allocated may not have the same VT as was
8975     // expected.
8976     //
8977     // This can also happen for a return value that disagrees with the register
8978     // class it is put in, eg. a double in a general-purpose register on a
8979     // 32-bit machine.
8980     if (ResultVT != V.getValueType() &&
8981         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8982       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8983     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8984              V.getValueType().isInteger()) {
8985       // If a result value was tied to an input value, the computed result
8986       // may have a wider width than the expected result.  Extract the
8987       // relevant portion.
8988       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8989     }
8990     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8991     ResultVTs.push_back(ResultVT);
8992     ResultValues.push_back(V);
8993   };
8994 
8995   // Deal with output operands.
8996   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8997     if (OpInfo.Type == InlineAsm::isOutput) {
8998       SDValue Val;
8999       // Skip trivial output operands.
9000       if (OpInfo.AssignedRegs.Regs.empty())
9001         continue;
9002 
9003       switch (OpInfo.ConstraintType) {
9004       case TargetLowering::C_Register:
9005       case TargetLowering::C_RegisterClass:
9006         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9007                                                   Chain, &Flag, &Call);
9008         break;
9009       case TargetLowering::C_Immediate:
9010       case TargetLowering::C_Other:
9011         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9012                                               OpInfo, DAG);
9013         break;
9014       case TargetLowering::C_Memory:
9015         break; // Already handled.
9016       case TargetLowering::C_Unknown:
9017         assert(false && "Unexpected unknown constraint");
9018       }
9019 
9020       // Indirect output manifest as stores. Record output chains.
9021       if (OpInfo.isIndirect) {
9022         const Value *Ptr = OpInfo.CallOperandVal;
9023         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9024         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9025                                      MachinePointerInfo(Ptr));
9026         OutChains.push_back(Store);
9027       } else {
9028         // generate CopyFromRegs to associated registers.
9029         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9030         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9031           for (const SDValue &V : Val->op_values())
9032             handleRegAssign(V);
9033         } else
9034           handleRegAssign(Val);
9035       }
9036     }
9037   }
9038 
9039   // Set results.
9040   if (!ResultValues.empty()) {
9041     assert(CurResultType == ResultTypes.end() &&
9042            "Mismatch in number of ResultTypes");
9043     assert(ResultValues.size() == ResultTypes.size() &&
9044            "Mismatch in number of output operands in asm result");
9045 
9046     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9047                             DAG.getVTList(ResultVTs), ResultValues);
9048     setValue(&Call, V);
9049   }
9050 
9051   // Collect store chains.
9052   if (!OutChains.empty())
9053     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9054 
9055   if (EmitEHLabels) {
9056     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9057   }
9058 
9059   // Only Update Root if inline assembly has a memory effect.
9060   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9061       EmitEHLabels)
9062     DAG.setRoot(Chain);
9063 }
9064 
9065 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9066                                              const Twine &Message) {
9067   LLVMContext &Ctx = *DAG.getContext();
9068   Ctx.emitError(&Call, Message);
9069 
9070   // Make sure we leave the DAG in a valid state
9071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9072   SmallVector<EVT, 1> ValueVTs;
9073   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9074 
9075   if (ValueVTs.empty())
9076     return;
9077 
9078   SmallVector<SDValue, 1> Ops;
9079   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9080     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9081 
9082   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9083 }
9084 
9085 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9086   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9087                           MVT::Other, getRoot(),
9088                           getValue(I.getArgOperand(0)),
9089                           DAG.getSrcValue(I.getArgOperand(0))));
9090 }
9091 
9092 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9093   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9094   const DataLayout &DL = DAG.getDataLayout();
9095   SDValue V = DAG.getVAArg(
9096       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9097       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9098       DL.getABITypeAlign(I.getType()).value());
9099   DAG.setRoot(V.getValue(1));
9100 
9101   if (I.getType()->isPointerTy())
9102     V = DAG.getPtrExtOrTrunc(
9103         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9104   setValue(&I, V);
9105 }
9106 
9107 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9108   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9109                           MVT::Other, getRoot(),
9110                           getValue(I.getArgOperand(0)),
9111                           DAG.getSrcValue(I.getArgOperand(0))));
9112 }
9113 
9114 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9115   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9116                           MVT::Other, getRoot(),
9117                           getValue(I.getArgOperand(0)),
9118                           getValue(I.getArgOperand(1)),
9119                           DAG.getSrcValue(I.getArgOperand(0)),
9120                           DAG.getSrcValue(I.getArgOperand(1))));
9121 }
9122 
9123 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9124                                                     const Instruction &I,
9125                                                     SDValue Op) {
9126   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9127   if (!Range)
9128     return Op;
9129 
9130   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9131   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9132     return Op;
9133 
9134   APInt Lo = CR.getUnsignedMin();
9135   if (!Lo.isMinValue())
9136     return Op;
9137 
9138   APInt Hi = CR.getUnsignedMax();
9139   unsigned Bits = std::max(Hi.getActiveBits(),
9140                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9141 
9142   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9143 
9144   SDLoc SL = getCurSDLoc();
9145 
9146   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9147                              DAG.getValueType(SmallVT));
9148   unsigned NumVals = Op.getNode()->getNumValues();
9149   if (NumVals == 1)
9150     return ZExt;
9151 
9152   SmallVector<SDValue, 4> Ops;
9153 
9154   Ops.push_back(ZExt);
9155   for (unsigned I = 1; I != NumVals; ++I)
9156     Ops.push_back(Op.getValue(I));
9157 
9158   return DAG.getMergeValues(Ops, SL);
9159 }
9160 
9161 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9162 /// the call being lowered.
9163 ///
9164 /// This is a helper for lowering intrinsics that follow a target calling
9165 /// convention or require stack pointer adjustment. Only a subset of the
9166 /// intrinsic's operands need to participate in the calling convention.
9167 void SelectionDAGBuilder::populateCallLoweringInfo(
9168     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9169     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9170     bool IsPatchPoint) {
9171   TargetLowering::ArgListTy Args;
9172   Args.reserve(NumArgs);
9173 
9174   // Populate the argument list.
9175   // Attributes for args start at offset 1, after the return attribute.
9176   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9177        ArgI != ArgE; ++ArgI) {
9178     const Value *V = Call->getOperand(ArgI);
9179 
9180     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9181 
9182     TargetLowering::ArgListEntry Entry;
9183     Entry.Node = getValue(V);
9184     Entry.Ty = V->getType();
9185     Entry.setAttributes(Call, ArgI);
9186     Args.push_back(Entry);
9187   }
9188 
9189   CLI.setDebugLoc(getCurSDLoc())
9190       .setChain(getRoot())
9191       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9192       .setDiscardResult(Call->use_empty())
9193       .setIsPatchPoint(IsPatchPoint)
9194       .setIsPreallocated(
9195           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9196 }
9197 
9198 /// Add a stack map intrinsic call's live variable operands to a stackmap
9199 /// or patchpoint target node's operand list.
9200 ///
9201 /// Constants are converted to TargetConstants purely as an optimization to
9202 /// avoid constant materialization and register allocation.
9203 ///
9204 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9205 /// generate addess computation nodes, and so FinalizeISel can convert the
9206 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9207 /// address materialization and register allocation, but may also be required
9208 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9209 /// alloca in the entry block, then the runtime may assume that the alloca's
9210 /// StackMap location can be read immediately after compilation and that the
9211 /// location is valid at any point during execution (this is similar to the
9212 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9213 /// only available in a register, then the runtime would need to trap when
9214 /// execution reaches the StackMap in order to read the alloca's location.
9215 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9216                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9217                                 SelectionDAGBuilder &Builder) {
9218   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9219     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9220     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9221       Ops.push_back(
9222         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9223       Ops.push_back(
9224         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9225     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9226       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9227       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9228           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9229     } else
9230       Ops.push_back(OpVal);
9231   }
9232 }
9233 
9234 /// Lower llvm.experimental.stackmap directly to its target opcode.
9235 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9236   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9237   //                                  [live variables...])
9238 
9239   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9240 
9241   SDValue Chain, InFlag, Callee, NullPtr;
9242   SmallVector<SDValue, 32> Ops;
9243 
9244   SDLoc DL = getCurSDLoc();
9245   Callee = getValue(CI.getCalledOperand());
9246   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9247 
9248   // The stackmap intrinsic only records the live variables (the arguments
9249   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9250   // intrinsic, this won't be lowered to a function call. This means we don't
9251   // have to worry about calling conventions and target specific lowering code.
9252   // Instead we perform the call lowering right here.
9253   //
9254   // chain, flag = CALLSEQ_START(chain, 0, 0)
9255   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9256   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9257   //
9258   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9259   InFlag = Chain.getValue(1);
9260 
9261   // Add the <id> and <numBytes> constants.
9262   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9263   Ops.push_back(DAG.getTargetConstant(
9264                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9265   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9266   Ops.push_back(DAG.getTargetConstant(
9267                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9268                   MVT::i32));
9269 
9270   // Push live variables for the stack map.
9271   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9272 
9273   // We are not pushing any register mask info here on the operands list,
9274   // because the stackmap doesn't clobber anything.
9275 
9276   // Push the chain and the glue flag.
9277   Ops.push_back(Chain);
9278   Ops.push_back(InFlag);
9279 
9280   // Create the STACKMAP node.
9281   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9282   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9283   Chain = SDValue(SM, 0);
9284   InFlag = Chain.getValue(1);
9285 
9286   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9287 
9288   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9289 
9290   // Set the root to the target-lowered call chain.
9291   DAG.setRoot(Chain);
9292 
9293   // Inform the Frame Information that we have a stackmap in this function.
9294   FuncInfo.MF->getFrameInfo().setHasStackMap();
9295 }
9296 
9297 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9298 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9299                                           const BasicBlock *EHPadBB) {
9300   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9301   //                                                 i32 <numBytes>,
9302   //                                                 i8* <target>,
9303   //                                                 i32 <numArgs>,
9304   //                                                 [Args...],
9305   //                                                 [live variables...])
9306 
9307   CallingConv::ID CC = CB.getCallingConv();
9308   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9309   bool HasDef = !CB.getType()->isVoidTy();
9310   SDLoc dl = getCurSDLoc();
9311   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9312 
9313   // Handle immediate and symbolic callees.
9314   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9315     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9316                                    /*isTarget=*/true);
9317   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9318     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9319                                          SDLoc(SymbolicCallee),
9320                                          SymbolicCallee->getValueType(0));
9321 
9322   // Get the real number of arguments participating in the call <numArgs>
9323   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9324   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9325 
9326   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9327   // Intrinsics include all meta-operands up to but not including CC.
9328   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9329   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9330          "Not enough arguments provided to the patchpoint intrinsic");
9331 
9332   // For AnyRegCC the arguments are lowered later on manually.
9333   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9334   Type *ReturnTy =
9335       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9336 
9337   TargetLowering::CallLoweringInfo CLI(DAG);
9338   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9339                            ReturnTy, true);
9340   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9341 
9342   SDNode *CallEnd = Result.second.getNode();
9343   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9344     CallEnd = CallEnd->getOperand(0).getNode();
9345 
9346   /// Get a call instruction from the call sequence chain.
9347   /// Tail calls are not allowed.
9348   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9349          "Expected a callseq node.");
9350   SDNode *Call = CallEnd->getOperand(0).getNode();
9351   bool HasGlue = Call->getGluedNode();
9352 
9353   // Replace the target specific call node with the patchable intrinsic.
9354   SmallVector<SDValue, 8> Ops;
9355 
9356   // Add the <id> and <numBytes> constants.
9357   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9358   Ops.push_back(DAG.getTargetConstant(
9359                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9360   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9361   Ops.push_back(DAG.getTargetConstant(
9362                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9363                   MVT::i32));
9364 
9365   // Add the callee.
9366   Ops.push_back(Callee);
9367 
9368   // Adjust <numArgs> to account for any arguments that have been passed on the
9369   // stack instead.
9370   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9371   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9372   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9373   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9374 
9375   // Add the calling convention
9376   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9377 
9378   // Add the arguments we omitted previously. The register allocator should
9379   // place these in any free register.
9380   if (IsAnyRegCC)
9381     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9382       Ops.push_back(getValue(CB.getArgOperand(i)));
9383 
9384   // Push the arguments from the call instruction up to the register mask.
9385   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9386   Ops.append(Call->op_begin() + 2, e);
9387 
9388   // Push live variables for the stack map.
9389   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9390 
9391   // Push the register mask info.
9392   if (HasGlue)
9393     Ops.push_back(*(Call->op_end()-2));
9394   else
9395     Ops.push_back(*(Call->op_end()-1));
9396 
9397   // Push the chain (this is originally the first operand of the call, but
9398   // becomes now the last or second to last operand).
9399   Ops.push_back(*(Call->op_begin()));
9400 
9401   // Push the glue flag (last operand).
9402   if (HasGlue)
9403     Ops.push_back(*(Call->op_end()-1));
9404 
9405   SDVTList NodeTys;
9406   if (IsAnyRegCC && HasDef) {
9407     // Create the return types based on the intrinsic definition
9408     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9409     SmallVector<EVT, 3> ValueVTs;
9410     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9411     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9412 
9413     // There is always a chain and a glue type at the end
9414     ValueVTs.push_back(MVT::Other);
9415     ValueVTs.push_back(MVT::Glue);
9416     NodeTys = DAG.getVTList(ValueVTs);
9417   } else
9418     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9419 
9420   // Replace the target specific call node with a PATCHPOINT node.
9421   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9422                                          dl, NodeTys, Ops);
9423 
9424   // Update the NodeMap.
9425   if (HasDef) {
9426     if (IsAnyRegCC)
9427       setValue(&CB, SDValue(MN, 0));
9428     else
9429       setValue(&CB, Result.first);
9430   }
9431 
9432   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9433   // call sequence. Furthermore the location of the chain and glue can change
9434   // when the AnyReg calling convention is used and the intrinsic returns a
9435   // value.
9436   if (IsAnyRegCC && HasDef) {
9437     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9438     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9439     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9440   } else
9441     DAG.ReplaceAllUsesWith(Call, MN);
9442   DAG.DeleteNode(Call);
9443 
9444   // Inform the Frame Information that we have a patchpoint in this function.
9445   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9446 }
9447 
9448 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9449                                             unsigned Intrinsic) {
9450   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9451   SDValue Op1 = getValue(I.getArgOperand(0));
9452   SDValue Op2;
9453   if (I.arg_size() > 1)
9454     Op2 = getValue(I.getArgOperand(1));
9455   SDLoc dl = getCurSDLoc();
9456   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9457   SDValue Res;
9458   SDNodeFlags SDFlags;
9459   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9460     SDFlags.copyFMF(*FPMO);
9461 
9462   switch (Intrinsic) {
9463   case Intrinsic::vector_reduce_fadd:
9464     if (SDFlags.hasAllowReassociation())
9465       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9466                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9467                         SDFlags);
9468     else
9469       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9470     break;
9471   case Intrinsic::vector_reduce_fmul:
9472     if (SDFlags.hasAllowReassociation())
9473       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9474                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9475                         SDFlags);
9476     else
9477       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9478     break;
9479   case Intrinsic::vector_reduce_add:
9480     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9481     break;
9482   case Intrinsic::vector_reduce_mul:
9483     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9484     break;
9485   case Intrinsic::vector_reduce_and:
9486     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9487     break;
9488   case Intrinsic::vector_reduce_or:
9489     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9490     break;
9491   case Intrinsic::vector_reduce_xor:
9492     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9493     break;
9494   case Intrinsic::vector_reduce_smax:
9495     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9496     break;
9497   case Intrinsic::vector_reduce_smin:
9498     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9499     break;
9500   case Intrinsic::vector_reduce_umax:
9501     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9502     break;
9503   case Intrinsic::vector_reduce_umin:
9504     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9505     break;
9506   case Intrinsic::vector_reduce_fmax:
9507     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9508     break;
9509   case Intrinsic::vector_reduce_fmin:
9510     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9511     break;
9512   default:
9513     llvm_unreachable("Unhandled vector reduce intrinsic");
9514   }
9515   setValue(&I, Res);
9516 }
9517 
9518 /// Returns an AttributeList representing the attributes applied to the return
9519 /// value of the given call.
9520 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9521   SmallVector<Attribute::AttrKind, 2> Attrs;
9522   if (CLI.RetSExt)
9523     Attrs.push_back(Attribute::SExt);
9524   if (CLI.RetZExt)
9525     Attrs.push_back(Attribute::ZExt);
9526   if (CLI.IsInReg)
9527     Attrs.push_back(Attribute::InReg);
9528 
9529   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9530                             Attrs);
9531 }
9532 
9533 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9534 /// implementation, which just calls LowerCall.
9535 /// FIXME: When all targets are
9536 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9537 std::pair<SDValue, SDValue>
9538 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9539   // Handle the incoming return values from the call.
9540   CLI.Ins.clear();
9541   Type *OrigRetTy = CLI.RetTy;
9542   SmallVector<EVT, 4> RetTys;
9543   SmallVector<uint64_t, 4> Offsets;
9544   auto &DL = CLI.DAG.getDataLayout();
9545   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9546 
9547   if (CLI.IsPostTypeLegalization) {
9548     // If we are lowering a libcall after legalization, split the return type.
9549     SmallVector<EVT, 4> OldRetTys;
9550     SmallVector<uint64_t, 4> OldOffsets;
9551     RetTys.swap(OldRetTys);
9552     Offsets.swap(OldOffsets);
9553 
9554     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9555       EVT RetVT = OldRetTys[i];
9556       uint64_t Offset = OldOffsets[i];
9557       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9558       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9559       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9560       RetTys.append(NumRegs, RegisterVT);
9561       for (unsigned j = 0; j != NumRegs; ++j)
9562         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9563     }
9564   }
9565 
9566   SmallVector<ISD::OutputArg, 4> Outs;
9567   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9568 
9569   bool CanLowerReturn =
9570       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9571                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9572 
9573   SDValue DemoteStackSlot;
9574   int DemoteStackIdx = -100;
9575   if (!CanLowerReturn) {
9576     // FIXME: equivalent assert?
9577     // assert(!CS.hasInAllocaArgument() &&
9578     //        "sret demotion is incompatible with inalloca");
9579     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9580     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9581     MachineFunction &MF = CLI.DAG.getMachineFunction();
9582     DemoteStackIdx =
9583         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9584     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9585                                               DL.getAllocaAddrSpace());
9586 
9587     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9588     ArgListEntry Entry;
9589     Entry.Node = DemoteStackSlot;
9590     Entry.Ty = StackSlotPtrType;
9591     Entry.IsSExt = false;
9592     Entry.IsZExt = false;
9593     Entry.IsInReg = false;
9594     Entry.IsSRet = true;
9595     Entry.IsNest = false;
9596     Entry.IsByVal = false;
9597     Entry.IsByRef = false;
9598     Entry.IsReturned = false;
9599     Entry.IsSwiftSelf = false;
9600     Entry.IsSwiftAsync = false;
9601     Entry.IsSwiftError = false;
9602     Entry.IsCFGuardTarget = false;
9603     Entry.Alignment = Alignment;
9604     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9605     CLI.NumFixedArgs += 1;
9606     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9607 
9608     // sret demotion isn't compatible with tail-calls, since the sret argument
9609     // points into the callers stack frame.
9610     CLI.IsTailCall = false;
9611   } else {
9612     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9613         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9614     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9615       ISD::ArgFlagsTy Flags;
9616       if (NeedsRegBlock) {
9617         Flags.setInConsecutiveRegs();
9618         if (I == RetTys.size() - 1)
9619           Flags.setInConsecutiveRegsLast();
9620       }
9621       EVT VT = RetTys[I];
9622       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9623                                                      CLI.CallConv, VT);
9624       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9625                                                        CLI.CallConv, VT);
9626       for (unsigned i = 0; i != NumRegs; ++i) {
9627         ISD::InputArg MyFlags;
9628         MyFlags.Flags = Flags;
9629         MyFlags.VT = RegisterVT;
9630         MyFlags.ArgVT = VT;
9631         MyFlags.Used = CLI.IsReturnValueUsed;
9632         if (CLI.RetTy->isPointerTy()) {
9633           MyFlags.Flags.setPointer();
9634           MyFlags.Flags.setPointerAddrSpace(
9635               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9636         }
9637         if (CLI.RetSExt)
9638           MyFlags.Flags.setSExt();
9639         if (CLI.RetZExt)
9640           MyFlags.Flags.setZExt();
9641         if (CLI.IsInReg)
9642           MyFlags.Flags.setInReg();
9643         CLI.Ins.push_back(MyFlags);
9644       }
9645     }
9646   }
9647 
9648   // We push in swifterror return as the last element of CLI.Ins.
9649   ArgListTy &Args = CLI.getArgs();
9650   if (supportSwiftError()) {
9651     for (const ArgListEntry &Arg : Args) {
9652       if (Arg.IsSwiftError) {
9653         ISD::InputArg MyFlags;
9654         MyFlags.VT = getPointerTy(DL);
9655         MyFlags.ArgVT = EVT(getPointerTy(DL));
9656         MyFlags.Flags.setSwiftError();
9657         CLI.Ins.push_back(MyFlags);
9658       }
9659     }
9660   }
9661 
9662   // Handle all of the outgoing arguments.
9663   CLI.Outs.clear();
9664   CLI.OutVals.clear();
9665   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9666     SmallVector<EVT, 4> ValueVTs;
9667     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9668     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9669     Type *FinalType = Args[i].Ty;
9670     if (Args[i].IsByVal)
9671       FinalType = Args[i].IndirectType;
9672     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9673         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9674     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9675          ++Value) {
9676       EVT VT = ValueVTs[Value];
9677       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9678       SDValue Op = SDValue(Args[i].Node.getNode(),
9679                            Args[i].Node.getResNo() + Value);
9680       ISD::ArgFlagsTy Flags;
9681 
9682       // Certain targets (such as MIPS), may have a different ABI alignment
9683       // for a type depending on the context. Give the target a chance to
9684       // specify the alignment it wants.
9685       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9686       Flags.setOrigAlign(OriginalAlignment);
9687 
9688       if (Args[i].Ty->isPointerTy()) {
9689         Flags.setPointer();
9690         Flags.setPointerAddrSpace(
9691             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9692       }
9693       if (Args[i].IsZExt)
9694         Flags.setZExt();
9695       if (Args[i].IsSExt)
9696         Flags.setSExt();
9697       if (Args[i].IsInReg) {
9698         // If we are using vectorcall calling convention, a structure that is
9699         // passed InReg - is surely an HVA
9700         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9701             isa<StructType>(FinalType)) {
9702           // The first value of a structure is marked
9703           if (0 == Value)
9704             Flags.setHvaStart();
9705           Flags.setHva();
9706         }
9707         // Set InReg Flag
9708         Flags.setInReg();
9709       }
9710       if (Args[i].IsSRet)
9711         Flags.setSRet();
9712       if (Args[i].IsSwiftSelf)
9713         Flags.setSwiftSelf();
9714       if (Args[i].IsSwiftAsync)
9715         Flags.setSwiftAsync();
9716       if (Args[i].IsSwiftError)
9717         Flags.setSwiftError();
9718       if (Args[i].IsCFGuardTarget)
9719         Flags.setCFGuardTarget();
9720       if (Args[i].IsByVal)
9721         Flags.setByVal();
9722       if (Args[i].IsByRef)
9723         Flags.setByRef();
9724       if (Args[i].IsPreallocated) {
9725         Flags.setPreallocated();
9726         // Set the byval flag for CCAssignFn callbacks that don't know about
9727         // preallocated.  This way we can know how many bytes we should've
9728         // allocated and how many bytes a callee cleanup function will pop.  If
9729         // we port preallocated to more targets, we'll have to add custom
9730         // preallocated handling in the various CC lowering callbacks.
9731         Flags.setByVal();
9732       }
9733       if (Args[i].IsInAlloca) {
9734         Flags.setInAlloca();
9735         // Set the byval flag for CCAssignFn callbacks that don't know about
9736         // inalloca.  This way we can know how many bytes we should've allocated
9737         // and how many bytes a callee cleanup function will pop.  If we port
9738         // inalloca to more targets, we'll have to add custom inalloca handling
9739         // in the various CC lowering callbacks.
9740         Flags.setByVal();
9741       }
9742       Align MemAlign;
9743       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9744         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9745         Flags.setByValSize(FrameSize);
9746 
9747         // info is not there but there are cases it cannot get right.
9748         if (auto MA = Args[i].Alignment)
9749           MemAlign = *MA;
9750         else
9751           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9752       } else if (auto MA = Args[i].Alignment) {
9753         MemAlign = *MA;
9754       } else {
9755         MemAlign = OriginalAlignment;
9756       }
9757       Flags.setMemAlign(MemAlign);
9758       if (Args[i].IsNest)
9759         Flags.setNest();
9760       if (NeedsRegBlock)
9761         Flags.setInConsecutiveRegs();
9762 
9763       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9764                                                  CLI.CallConv, VT);
9765       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9766                                                         CLI.CallConv, VT);
9767       SmallVector<SDValue, 4> Parts(NumParts);
9768       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9769 
9770       if (Args[i].IsSExt)
9771         ExtendKind = ISD::SIGN_EXTEND;
9772       else if (Args[i].IsZExt)
9773         ExtendKind = ISD::ZERO_EXTEND;
9774 
9775       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9776       // for now.
9777       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9778           CanLowerReturn) {
9779         assert((CLI.RetTy == Args[i].Ty ||
9780                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9781                  CLI.RetTy->getPointerAddressSpace() ==
9782                      Args[i].Ty->getPointerAddressSpace())) &&
9783                RetTys.size() == NumValues && "unexpected use of 'returned'");
9784         // Before passing 'returned' to the target lowering code, ensure that
9785         // either the register MVT and the actual EVT are the same size or that
9786         // the return value and argument are extended in the same way; in these
9787         // cases it's safe to pass the argument register value unchanged as the
9788         // return register value (although it's at the target's option whether
9789         // to do so)
9790         // TODO: allow code generation to take advantage of partially preserved
9791         // registers rather than clobbering the entire register when the
9792         // parameter extension method is not compatible with the return
9793         // extension method
9794         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9795             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9796              CLI.RetZExt == Args[i].IsZExt))
9797           Flags.setReturned();
9798       }
9799 
9800       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9801                      CLI.CallConv, ExtendKind);
9802 
9803       for (unsigned j = 0; j != NumParts; ++j) {
9804         // if it isn't first piece, alignment must be 1
9805         // For scalable vectors the scalable part is currently handled
9806         // by individual targets, so we just use the known minimum size here.
9807         ISD::OutputArg MyFlags(
9808             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9809             i < CLI.NumFixedArgs, i,
9810             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9811         if (NumParts > 1 && j == 0)
9812           MyFlags.Flags.setSplit();
9813         else if (j != 0) {
9814           MyFlags.Flags.setOrigAlign(Align(1));
9815           if (j == NumParts - 1)
9816             MyFlags.Flags.setSplitEnd();
9817         }
9818 
9819         CLI.Outs.push_back(MyFlags);
9820         CLI.OutVals.push_back(Parts[j]);
9821       }
9822 
9823       if (NeedsRegBlock && Value == NumValues - 1)
9824         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9825     }
9826   }
9827 
9828   SmallVector<SDValue, 4> InVals;
9829   CLI.Chain = LowerCall(CLI, InVals);
9830 
9831   // Update CLI.InVals to use outside of this function.
9832   CLI.InVals = InVals;
9833 
9834   // Verify that the target's LowerCall behaved as expected.
9835   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9836          "LowerCall didn't return a valid chain!");
9837   assert((!CLI.IsTailCall || InVals.empty()) &&
9838          "LowerCall emitted a return value for a tail call!");
9839   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9840          "LowerCall didn't emit the correct number of values!");
9841 
9842   // For a tail call, the return value is merely live-out and there aren't
9843   // any nodes in the DAG representing it. Return a special value to
9844   // indicate that a tail call has been emitted and no more Instructions
9845   // should be processed in the current block.
9846   if (CLI.IsTailCall) {
9847     CLI.DAG.setRoot(CLI.Chain);
9848     return std::make_pair(SDValue(), SDValue());
9849   }
9850 
9851 #ifndef NDEBUG
9852   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9853     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9854     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9855            "LowerCall emitted a value with the wrong type!");
9856   }
9857 #endif
9858 
9859   SmallVector<SDValue, 4> ReturnValues;
9860   if (!CanLowerReturn) {
9861     // The instruction result is the result of loading from the
9862     // hidden sret parameter.
9863     SmallVector<EVT, 1> PVTs;
9864     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9865 
9866     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9867     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9868     EVT PtrVT = PVTs[0];
9869 
9870     unsigned NumValues = RetTys.size();
9871     ReturnValues.resize(NumValues);
9872     SmallVector<SDValue, 4> Chains(NumValues);
9873 
9874     // An aggregate return value cannot wrap around the address space, so
9875     // offsets to its parts don't wrap either.
9876     SDNodeFlags Flags;
9877     Flags.setNoUnsignedWrap(true);
9878 
9879     MachineFunction &MF = CLI.DAG.getMachineFunction();
9880     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9881     for (unsigned i = 0; i < NumValues; ++i) {
9882       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9883                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9884                                                         PtrVT), Flags);
9885       SDValue L = CLI.DAG.getLoad(
9886           RetTys[i], CLI.DL, CLI.Chain, Add,
9887           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9888                                             DemoteStackIdx, Offsets[i]),
9889           HiddenSRetAlign);
9890       ReturnValues[i] = L;
9891       Chains[i] = L.getValue(1);
9892     }
9893 
9894     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9895   } else {
9896     // Collect the legal value parts into potentially illegal values
9897     // that correspond to the original function's return values.
9898     Optional<ISD::NodeType> AssertOp;
9899     if (CLI.RetSExt)
9900       AssertOp = ISD::AssertSext;
9901     else if (CLI.RetZExt)
9902       AssertOp = ISD::AssertZext;
9903     unsigned CurReg = 0;
9904     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9905       EVT VT = RetTys[I];
9906       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9907                                                      CLI.CallConv, VT);
9908       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9909                                                        CLI.CallConv, VT);
9910 
9911       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9912                                               NumRegs, RegisterVT, VT, nullptr,
9913                                               CLI.CallConv, AssertOp));
9914       CurReg += NumRegs;
9915     }
9916 
9917     // For a function returning void, there is no return value. We can't create
9918     // such a node, so we just return a null return value in that case. In
9919     // that case, nothing will actually look at the value.
9920     if (ReturnValues.empty())
9921       return std::make_pair(SDValue(), CLI.Chain);
9922   }
9923 
9924   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9925                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9926   return std::make_pair(Res, CLI.Chain);
9927 }
9928 
9929 /// Places new result values for the node in Results (their number
9930 /// and types must exactly match those of the original return values of
9931 /// the node), or leaves Results empty, which indicates that the node is not
9932 /// to be custom lowered after all.
9933 void TargetLowering::LowerOperationWrapper(SDNode *N,
9934                                            SmallVectorImpl<SDValue> &Results,
9935                                            SelectionDAG &DAG) const {
9936   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9937 
9938   if (!Res.getNode())
9939     return;
9940 
9941   // If the original node has one result, take the return value from
9942   // LowerOperation as is. It might not be result number 0.
9943   if (N->getNumValues() == 1) {
9944     Results.push_back(Res);
9945     return;
9946   }
9947 
9948   // If the original node has multiple results, then the return node should
9949   // have the same number of results.
9950   assert((N->getNumValues() == Res->getNumValues()) &&
9951       "Lowering returned the wrong number of results!");
9952 
9953   // Places new result values base on N result number.
9954   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9955     Results.push_back(Res.getValue(I));
9956 }
9957 
9958 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9959   llvm_unreachable("LowerOperation not implemented for this target!");
9960 }
9961 
9962 void
9963 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9964   SDValue Op = getNonRegisterValue(V);
9965   assert((Op.getOpcode() != ISD::CopyFromReg ||
9966           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9967          "Copy from a reg to the same reg!");
9968   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9969 
9970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9971   // If this is an InlineAsm we have to match the registers required, not the
9972   // notional registers required by the type.
9973 
9974   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9975                    None); // This is not an ABI copy.
9976   SDValue Chain = DAG.getEntryNode();
9977 
9978   ISD::NodeType ExtendType = ISD::ANY_EXTEND;
9979   auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
9980   if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
9981     ExtendType = PreferredExtendIt->second;
9982   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9983   PendingExports.push_back(Chain);
9984 }
9985 
9986 #include "llvm/CodeGen/SelectionDAGISel.h"
9987 
9988 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9989 /// entry block, return true.  This includes arguments used by switches, since
9990 /// the switch may expand into multiple basic blocks.
9991 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9992   // With FastISel active, we may be splitting blocks, so force creation
9993   // of virtual registers for all non-dead arguments.
9994   if (FastISel)
9995     return A->use_empty();
9996 
9997   const BasicBlock &Entry = A->getParent()->front();
9998   for (const User *U : A->users())
9999     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10000       return false;  // Use not in entry block.
10001 
10002   return true;
10003 }
10004 
10005 using ArgCopyElisionMapTy =
10006     DenseMap<const Argument *,
10007              std::pair<const AllocaInst *, const StoreInst *>>;
10008 
10009 /// Scan the entry block of the function in FuncInfo for arguments that look
10010 /// like copies into a local alloca. Record any copied arguments in
10011 /// ArgCopyElisionCandidates.
10012 static void
10013 findArgumentCopyElisionCandidates(const DataLayout &DL,
10014                                   FunctionLoweringInfo *FuncInfo,
10015                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10016   // Record the state of every static alloca used in the entry block. Argument
10017   // allocas are all used in the entry block, so we need approximately as many
10018   // entries as we have arguments.
10019   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10020   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10021   unsigned NumArgs = FuncInfo->Fn->arg_size();
10022   StaticAllocas.reserve(NumArgs * 2);
10023 
10024   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10025     if (!V)
10026       return nullptr;
10027     V = V->stripPointerCasts();
10028     const auto *AI = dyn_cast<AllocaInst>(V);
10029     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10030       return nullptr;
10031     auto Iter = StaticAllocas.insert({AI, Unknown});
10032     return &Iter.first->second;
10033   };
10034 
10035   // Look for stores of arguments to static allocas. Look through bitcasts and
10036   // GEPs to handle type coercions, as long as the alloca is fully initialized
10037   // by the store. Any non-store use of an alloca escapes it and any subsequent
10038   // unanalyzed store might write it.
10039   // FIXME: Handle structs initialized with multiple stores.
10040   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10041     // Look for stores, and handle non-store uses conservatively.
10042     const auto *SI = dyn_cast<StoreInst>(&I);
10043     if (!SI) {
10044       // We will look through cast uses, so ignore them completely.
10045       if (I.isCast())
10046         continue;
10047       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10048       // to allocas.
10049       if (I.isDebugOrPseudoInst())
10050         continue;
10051       // This is an unknown instruction. Assume it escapes or writes to all
10052       // static alloca operands.
10053       for (const Use &U : I.operands()) {
10054         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10055           *Info = StaticAllocaInfo::Clobbered;
10056       }
10057       continue;
10058     }
10059 
10060     // If the stored value is a static alloca, mark it as escaped.
10061     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10062       *Info = StaticAllocaInfo::Clobbered;
10063 
10064     // Check if the destination is a static alloca.
10065     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10066     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10067     if (!Info)
10068       continue;
10069     const AllocaInst *AI = cast<AllocaInst>(Dst);
10070 
10071     // Skip allocas that have been initialized or clobbered.
10072     if (*Info != StaticAllocaInfo::Unknown)
10073       continue;
10074 
10075     // Check if the stored value is an argument, and that this store fully
10076     // initializes the alloca.
10077     // If the argument type has padding bits we can't directly forward a pointer
10078     // as the upper bits may contain garbage.
10079     // Don't elide copies from the same argument twice.
10080     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10081     const auto *Arg = dyn_cast<Argument>(Val);
10082     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10083         Arg->getType()->isEmptyTy() ||
10084         DL.getTypeStoreSize(Arg->getType()) !=
10085             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10086         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10087         ArgCopyElisionCandidates.count(Arg)) {
10088       *Info = StaticAllocaInfo::Clobbered;
10089       continue;
10090     }
10091 
10092     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10093                       << '\n');
10094 
10095     // Mark this alloca and store for argument copy elision.
10096     *Info = StaticAllocaInfo::Elidable;
10097     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10098 
10099     // Stop scanning if we've seen all arguments. This will happen early in -O0
10100     // builds, which is useful, because -O0 builds have large entry blocks and
10101     // many allocas.
10102     if (ArgCopyElisionCandidates.size() == NumArgs)
10103       break;
10104   }
10105 }
10106 
10107 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10108 /// ArgVal is a load from a suitable fixed stack object.
10109 static void tryToElideArgumentCopy(
10110     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10111     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10112     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10113     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10114     SDValue ArgVal, bool &ArgHasUses) {
10115   // Check if this is a load from a fixed stack object.
10116   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10117   if (!LNode)
10118     return;
10119   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10120   if (!FINode)
10121     return;
10122 
10123   // Check that the fixed stack object is the right size and alignment.
10124   // Look at the alignment that the user wrote on the alloca instead of looking
10125   // at the stack object.
10126   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10127   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10128   const AllocaInst *AI = ArgCopyIter->second.first;
10129   int FixedIndex = FINode->getIndex();
10130   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10131   int OldIndex = AllocaIndex;
10132   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10133   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10134     LLVM_DEBUG(
10135         dbgs() << "  argument copy elision failed due to bad fixed stack "
10136                   "object size\n");
10137     return;
10138   }
10139   Align RequiredAlignment = AI->getAlign();
10140   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10141     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10142                          "greater than stack argument alignment ("
10143                       << DebugStr(RequiredAlignment) << " vs "
10144                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10145     return;
10146   }
10147 
10148   // Perform the elision. Delete the old stack object and replace its only use
10149   // in the variable info map. Mark the stack object as mutable.
10150   LLVM_DEBUG({
10151     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10152            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10153            << '\n';
10154   });
10155   MFI.RemoveStackObject(OldIndex);
10156   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10157   AllocaIndex = FixedIndex;
10158   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10159   Chains.push_back(ArgVal.getValue(1));
10160 
10161   // Avoid emitting code for the store implementing the copy.
10162   const StoreInst *SI = ArgCopyIter->second.second;
10163   ElidedArgCopyInstrs.insert(SI);
10164 
10165   // Check for uses of the argument again so that we can avoid exporting ArgVal
10166   // if it is't used by anything other than the store.
10167   for (const Value *U : Arg.users()) {
10168     if (U != SI) {
10169       ArgHasUses = true;
10170       break;
10171     }
10172   }
10173 }
10174 
10175 void SelectionDAGISel::LowerArguments(const Function &F) {
10176   SelectionDAG &DAG = SDB->DAG;
10177   SDLoc dl = SDB->getCurSDLoc();
10178   const DataLayout &DL = DAG.getDataLayout();
10179   SmallVector<ISD::InputArg, 16> Ins;
10180 
10181   // In Naked functions we aren't going to save any registers.
10182   if (F.hasFnAttribute(Attribute::Naked))
10183     return;
10184 
10185   if (!FuncInfo->CanLowerReturn) {
10186     // Put in an sret pointer parameter before all the other parameters.
10187     SmallVector<EVT, 1> ValueVTs;
10188     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10189                     F.getReturnType()->getPointerTo(
10190                         DAG.getDataLayout().getAllocaAddrSpace()),
10191                     ValueVTs);
10192 
10193     // NOTE: Assuming that a pointer will never break down to more than one VT
10194     // or one register.
10195     ISD::ArgFlagsTy Flags;
10196     Flags.setSRet();
10197     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10198     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10199                          ISD::InputArg::NoArgIndex, 0);
10200     Ins.push_back(RetArg);
10201   }
10202 
10203   // Look for stores of arguments to static allocas. Mark such arguments with a
10204   // flag to ask the target to give us the memory location of that argument if
10205   // available.
10206   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10207   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10208                                     ArgCopyElisionCandidates);
10209 
10210   // Set up the incoming argument description vector.
10211   for (const Argument &Arg : F.args()) {
10212     unsigned ArgNo = Arg.getArgNo();
10213     SmallVector<EVT, 4> ValueVTs;
10214     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10215     bool isArgValueUsed = !Arg.use_empty();
10216     unsigned PartBase = 0;
10217     Type *FinalType = Arg.getType();
10218     if (Arg.hasAttribute(Attribute::ByVal))
10219       FinalType = Arg.getParamByValType();
10220     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10221         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10222     for (unsigned Value = 0, NumValues = ValueVTs.size();
10223          Value != NumValues; ++Value) {
10224       EVT VT = ValueVTs[Value];
10225       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10226       ISD::ArgFlagsTy Flags;
10227 
10228 
10229       if (Arg.getType()->isPointerTy()) {
10230         Flags.setPointer();
10231         Flags.setPointerAddrSpace(
10232             cast<PointerType>(Arg.getType())->getAddressSpace());
10233       }
10234       if (Arg.hasAttribute(Attribute::ZExt))
10235         Flags.setZExt();
10236       if (Arg.hasAttribute(Attribute::SExt))
10237         Flags.setSExt();
10238       if (Arg.hasAttribute(Attribute::InReg)) {
10239         // If we are using vectorcall calling convention, a structure that is
10240         // passed InReg - is surely an HVA
10241         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10242             isa<StructType>(Arg.getType())) {
10243           // The first value of a structure is marked
10244           if (0 == Value)
10245             Flags.setHvaStart();
10246           Flags.setHva();
10247         }
10248         // Set InReg Flag
10249         Flags.setInReg();
10250       }
10251       if (Arg.hasAttribute(Attribute::StructRet))
10252         Flags.setSRet();
10253       if (Arg.hasAttribute(Attribute::SwiftSelf))
10254         Flags.setSwiftSelf();
10255       if (Arg.hasAttribute(Attribute::SwiftAsync))
10256         Flags.setSwiftAsync();
10257       if (Arg.hasAttribute(Attribute::SwiftError))
10258         Flags.setSwiftError();
10259       if (Arg.hasAttribute(Attribute::ByVal))
10260         Flags.setByVal();
10261       if (Arg.hasAttribute(Attribute::ByRef))
10262         Flags.setByRef();
10263       if (Arg.hasAttribute(Attribute::InAlloca)) {
10264         Flags.setInAlloca();
10265         // Set the byval flag for CCAssignFn callbacks that don't know about
10266         // inalloca.  This way we can know how many bytes we should've allocated
10267         // and how many bytes a callee cleanup function will pop.  If we port
10268         // inalloca to more targets, we'll have to add custom inalloca handling
10269         // in the various CC lowering callbacks.
10270         Flags.setByVal();
10271       }
10272       if (Arg.hasAttribute(Attribute::Preallocated)) {
10273         Flags.setPreallocated();
10274         // Set the byval flag for CCAssignFn callbacks that don't know about
10275         // preallocated.  This way we can know how many bytes we should've
10276         // allocated and how many bytes a callee cleanup function will pop.  If
10277         // we port preallocated to more targets, we'll have to add custom
10278         // preallocated handling in the various CC lowering callbacks.
10279         Flags.setByVal();
10280       }
10281 
10282       // Certain targets (such as MIPS), may have a different ABI alignment
10283       // for a type depending on the context. Give the target a chance to
10284       // specify the alignment it wants.
10285       const Align OriginalAlignment(
10286           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10287       Flags.setOrigAlign(OriginalAlignment);
10288 
10289       Align MemAlign;
10290       Type *ArgMemTy = nullptr;
10291       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10292           Flags.isByRef()) {
10293         if (!ArgMemTy)
10294           ArgMemTy = Arg.getPointeeInMemoryValueType();
10295 
10296         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10297 
10298         // For in-memory arguments, size and alignment should be passed from FE.
10299         // BE will guess if this info is not there but there are cases it cannot
10300         // get right.
10301         if (auto ParamAlign = Arg.getParamStackAlign())
10302           MemAlign = *ParamAlign;
10303         else if ((ParamAlign = Arg.getParamAlign()))
10304           MemAlign = *ParamAlign;
10305         else
10306           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10307         if (Flags.isByRef())
10308           Flags.setByRefSize(MemSize);
10309         else
10310           Flags.setByValSize(MemSize);
10311       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10312         MemAlign = *ParamAlign;
10313       } else {
10314         MemAlign = OriginalAlignment;
10315       }
10316       Flags.setMemAlign(MemAlign);
10317 
10318       if (Arg.hasAttribute(Attribute::Nest))
10319         Flags.setNest();
10320       if (NeedsRegBlock)
10321         Flags.setInConsecutiveRegs();
10322       if (ArgCopyElisionCandidates.count(&Arg))
10323         Flags.setCopyElisionCandidate();
10324       if (Arg.hasAttribute(Attribute::Returned))
10325         Flags.setReturned();
10326 
10327       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10328           *CurDAG->getContext(), F.getCallingConv(), VT);
10329       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10330           *CurDAG->getContext(), F.getCallingConv(), VT);
10331       for (unsigned i = 0; i != NumRegs; ++i) {
10332         // For scalable vectors, use the minimum size; individual targets
10333         // are responsible for handling scalable vector arguments and
10334         // return values.
10335         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10336                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10337         if (NumRegs > 1 && i == 0)
10338           MyFlags.Flags.setSplit();
10339         // if it isn't first piece, alignment must be 1
10340         else if (i > 0) {
10341           MyFlags.Flags.setOrigAlign(Align(1));
10342           if (i == NumRegs - 1)
10343             MyFlags.Flags.setSplitEnd();
10344         }
10345         Ins.push_back(MyFlags);
10346       }
10347       if (NeedsRegBlock && Value == NumValues - 1)
10348         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10349       PartBase += VT.getStoreSize().getKnownMinSize();
10350     }
10351   }
10352 
10353   // Call the target to set up the argument values.
10354   SmallVector<SDValue, 8> InVals;
10355   SDValue NewRoot = TLI->LowerFormalArguments(
10356       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10357 
10358   // Verify that the target's LowerFormalArguments behaved as expected.
10359   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10360          "LowerFormalArguments didn't return a valid chain!");
10361   assert(InVals.size() == Ins.size() &&
10362          "LowerFormalArguments didn't emit the correct number of values!");
10363   LLVM_DEBUG({
10364     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10365       assert(InVals[i].getNode() &&
10366              "LowerFormalArguments emitted a null value!");
10367       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10368              "LowerFormalArguments emitted a value with the wrong type!");
10369     }
10370   });
10371 
10372   // Update the DAG with the new chain value resulting from argument lowering.
10373   DAG.setRoot(NewRoot);
10374 
10375   // Set up the argument values.
10376   unsigned i = 0;
10377   if (!FuncInfo->CanLowerReturn) {
10378     // Create a virtual register for the sret pointer, and put in a copy
10379     // from the sret argument into it.
10380     SmallVector<EVT, 1> ValueVTs;
10381     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10382                     F.getReturnType()->getPointerTo(
10383                         DAG.getDataLayout().getAllocaAddrSpace()),
10384                     ValueVTs);
10385     MVT VT = ValueVTs[0].getSimpleVT();
10386     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10387     Optional<ISD::NodeType> AssertOp = None;
10388     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10389                                         nullptr, F.getCallingConv(), AssertOp);
10390 
10391     MachineFunction& MF = SDB->DAG.getMachineFunction();
10392     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10393     Register SRetReg =
10394         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10395     FuncInfo->DemoteRegister = SRetReg;
10396     NewRoot =
10397         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10398     DAG.setRoot(NewRoot);
10399 
10400     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10401     ++i;
10402   }
10403 
10404   SmallVector<SDValue, 4> Chains;
10405   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10406   for (const Argument &Arg : F.args()) {
10407     SmallVector<SDValue, 4> ArgValues;
10408     SmallVector<EVT, 4> ValueVTs;
10409     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10410     unsigned NumValues = ValueVTs.size();
10411     if (NumValues == 0)
10412       continue;
10413 
10414     bool ArgHasUses = !Arg.use_empty();
10415 
10416     // Elide the copying store if the target loaded this argument from a
10417     // suitable fixed stack object.
10418     if (Ins[i].Flags.isCopyElisionCandidate()) {
10419       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10420                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10421                              InVals[i], ArgHasUses);
10422     }
10423 
10424     // If this argument is unused then remember its value. It is used to generate
10425     // debugging information.
10426     bool isSwiftErrorArg =
10427         TLI->supportSwiftError() &&
10428         Arg.hasAttribute(Attribute::SwiftError);
10429     if (!ArgHasUses && !isSwiftErrorArg) {
10430       SDB->setUnusedArgValue(&Arg, InVals[i]);
10431 
10432       // Also remember any frame index for use in FastISel.
10433       if (FrameIndexSDNode *FI =
10434           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10435         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10436     }
10437 
10438     for (unsigned Val = 0; Val != NumValues; ++Val) {
10439       EVT VT = ValueVTs[Val];
10440       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10441                                                       F.getCallingConv(), VT);
10442       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10443           *CurDAG->getContext(), F.getCallingConv(), VT);
10444 
10445       // Even an apparent 'unused' swifterror argument needs to be returned. So
10446       // we do generate a copy for it that can be used on return from the
10447       // function.
10448       if (ArgHasUses || isSwiftErrorArg) {
10449         Optional<ISD::NodeType> AssertOp;
10450         if (Arg.hasAttribute(Attribute::SExt))
10451           AssertOp = ISD::AssertSext;
10452         else if (Arg.hasAttribute(Attribute::ZExt))
10453           AssertOp = ISD::AssertZext;
10454 
10455         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10456                                              PartVT, VT, nullptr,
10457                                              F.getCallingConv(), AssertOp));
10458       }
10459 
10460       i += NumParts;
10461     }
10462 
10463     // We don't need to do anything else for unused arguments.
10464     if (ArgValues.empty())
10465       continue;
10466 
10467     // Note down frame index.
10468     if (FrameIndexSDNode *FI =
10469         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10470       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10471 
10472     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10473                                      SDB->getCurSDLoc());
10474 
10475     SDB->setValue(&Arg, Res);
10476     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10477       // We want to associate the argument with the frame index, among
10478       // involved operands, that correspond to the lowest address. The
10479       // getCopyFromParts function, called earlier, is swapping the order of
10480       // the operands to BUILD_PAIR depending on endianness. The result of
10481       // that swapping is that the least significant bits of the argument will
10482       // be in the first operand of the BUILD_PAIR node, and the most
10483       // significant bits will be in the second operand.
10484       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10485       if (LoadSDNode *LNode =
10486           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10487         if (FrameIndexSDNode *FI =
10488             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10489           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10490     }
10491 
10492     // Analyses past this point are naive and don't expect an assertion.
10493     if (Res.getOpcode() == ISD::AssertZext)
10494       Res = Res.getOperand(0);
10495 
10496     // Update the SwiftErrorVRegDefMap.
10497     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10498       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10499       if (Register::isVirtualRegister(Reg))
10500         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10501                                    Reg);
10502     }
10503 
10504     // If this argument is live outside of the entry block, insert a copy from
10505     // wherever we got it to the vreg that other BB's will reference it as.
10506     if (Res.getOpcode() == ISD::CopyFromReg) {
10507       // If we can, though, try to skip creating an unnecessary vreg.
10508       // FIXME: This isn't very clean... it would be nice to make this more
10509       // general.
10510       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10511       if (Register::isVirtualRegister(Reg)) {
10512         FuncInfo->ValueMap[&Arg] = Reg;
10513         continue;
10514       }
10515     }
10516     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10517       FuncInfo->InitializeRegForValue(&Arg);
10518       SDB->CopyToExportRegsIfNeeded(&Arg);
10519     }
10520   }
10521 
10522   if (!Chains.empty()) {
10523     Chains.push_back(NewRoot);
10524     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10525   }
10526 
10527   DAG.setRoot(NewRoot);
10528 
10529   assert(i == InVals.size() && "Argument register count mismatch!");
10530 
10531   // If any argument copy elisions occurred and we have debug info, update the
10532   // stale frame indices used in the dbg.declare variable info table.
10533   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10534   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10535     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10536       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10537       if (I != ArgCopyElisionFrameIndexMap.end())
10538         VI.Slot = I->second;
10539     }
10540   }
10541 
10542   // Finally, if the target has anything special to do, allow it to do so.
10543   emitFunctionEntryCode();
10544 }
10545 
10546 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10547 /// ensure constants are generated when needed.  Remember the virtual registers
10548 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10549 /// directly add them, because expansion might result in multiple MBB's for one
10550 /// BB.  As such, the start of the BB might correspond to a different MBB than
10551 /// the end.
10552 void
10553 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10554   const Instruction *TI = LLVMBB->getTerminator();
10555 
10556   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10557 
10558   // Check PHI nodes in successors that expect a value to be available from this
10559   // block.
10560   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10561     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10562     if (!isa<PHINode>(SuccBB->begin())) continue;
10563     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10564 
10565     // If this terminator has multiple identical successors (common for
10566     // switches), only handle each succ once.
10567     if (!SuccsHandled.insert(SuccMBB).second)
10568       continue;
10569 
10570     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10571 
10572     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10573     // nodes and Machine PHI nodes, but the incoming operands have not been
10574     // emitted yet.
10575     for (const PHINode &PN : SuccBB->phis()) {
10576       // Ignore dead phi's.
10577       if (PN.use_empty())
10578         continue;
10579 
10580       // Skip empty types
10581       if (PN.getType()->isEmptyTy())
10582         continue;
10583 
10584       unsigned Reg;
10585       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10586 
10587       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10588         unsigned &RegOut = ConstantsOut[C];
10589         if (RegOut == 0) {
10590           RegOut = FuncInfo.CreateRegs(C);
10591           CopyValueToVirtualRegister(C, RegOut);
10592         }
10593         Reg = RegOut;
10594       } else {
10595         DenseMap<const Value *, Register>::iterator I =
10596           FuncInfo.ValueMap.find(PHIOp);
10597         if (I != FuncInfo.ValueMap.end())
10598           Reg = I->second;
10599         else {
10600           assert(isa<AllocaInst>(PHIOp) &&
10601                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10602                  "Didn't codegen value into a register!??");
10603           Reg = FuncInfo.CreateRegs(PHIOp);
10604           CopyValueToVirtualRegister(PHIOp, Reg);
10605         }
10606       }
10607 
10608       // Remember that this register needs to added to the machine PHI node as
10609       // the input for this MBB.
10610       SmallVector<EVT, 4> ValueVTs;
10611       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10612       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10613       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10614         EVT VT = ValueVTs[vti];
10615         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10616         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10617           FuncInfo.PHINodesToUpdate.push_back(
10618               std::make_pair(&*MBBI++, Reg + i));
10619         Reg += NumRegisters;
10620       }
10621     }
10622   }
10623 
10624   ConstantsOut.clear();
10625 }
10626 
10627 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10628   MachineFunction::iterator I(MBB);
10629   if (++I == FuncInfo.MF->end())
10630     return nullptr;
10631   return &*I;
10632 }
10633 
10634 /// During lowering new call nodes can be created (such as memset, etc.).
10635 /// Those will become new roots of the current DAG, but complications arise
10636 /// when they are tail calls. In such cases, the call lowering will update
10637 /// the root, but the builder still needs to know that a tail call has been
10638 /// lowered in order to avoid generating an additional return.
10639 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10640   // If the node is null, we do have a tail call.
10641   if (MaybeTC.getNode() != nullptr)
10642     DAG.setRoot(MaybeTC);
10643   else
10644     HasTailCall = true;
10645 }
10646 
10647 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10648                                         MachineBasicBlock *SwitchMBB,
10649                                         MachineBasicBlock *DefaultMBB) {
10650   MachineFunction *CurMF = FuncInfo.MF;
10651   MachineBasicBlock *NextMBB = nullptr;
10652   MachineFunction::iterator BBI(W.MBB);
10653   if (++BBI != FuncInfo.MF->end())
10654     NextMBB = &*BBI;
10655 
10656   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10657 
10658   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10659 
10660   if (Size == 2 && W.MBB == SwitchMBB) {
10661     // If any two of the cases has the same destination, and if one value
10662     // is the same as the other, but has one bit unset that the other has set,
10663     // use bit manipulation to do two compares at once.  For example:
10664     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10665     // TODO: This could be extended to merge any 2 cases in switches with 3
10666     // cases.
10667     // TODO: Handle cases where W.CaseBB != SwitchBB.
10668     CaseCluster &Small = *W.FirstCluster;
10669     CaseCluster &Big = *W.LastCluster;
10670 
10671     if (Small.Low == Small.High && Big.Low == Big.High &&
10672         Small.MBB == Big.MBB) {
10673       const APInt &SmallValue = Small.Low->getValue();
10674       const APInt &BigValue = Big.Low->getValue();
10675 
10676       // Check that there is only one bit different.
10677       APInt CommonBit = BigValue ^ SmallValue;
10678       if (CommonBit.isPowerOf2()) {
10679         SDValue CondLHS = getValue(Cond);
10680         EVT VT = CondLHS.getValueType();
10681         SDLoc DL = getCurSDLoc();
10682 
10683         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10684                                  DAG.getConstant(CommonBit, DL, VT));
10685         SDValue Cond = DAG.getSetCC(
10686             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10687             ISD::SETEQ);
10688 
10689         // Update successor info.
10690         // Both Small and Big will jump to Small.BB, so we sum up the
10691         // probabilities.
10692         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10693         if (BPI)
10694           addSuccessorWithProb(
10695               SwitchMBB, DefaultMBB,
10696               // The default destination is the first successor in IR.
10697               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10698         else
10699           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10700 
10701         // Insert the true branch.
10702         SDValue BrCond =
10703             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10704                         DAG.getBasicBlock(Small.MBB));
10705         // Insert the false branch.
10706         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10707                              DAG.getBasicBlock(DefaultMBB));
10708 
10709         DAG.setRoot(BrCond);
10710         return;
10711       }
10712     }
10713   }
10714 
10715   if (TM.getOptLevel() != CodeGenOpt::None) {
10716     // Here, we order cases by probability so the most likely case will be
10717     // checked first. However, two clusters can have the same probability in
10718     // which case their relative ordering is non-deterministic. So we use Low
10719     // as a tie-breaker as clusters are guaranteed to never overlap.
10720     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10721                [](const CaseCluster &a, const CaseCluster &b) {
10722       return a.Prob != b.Prob ?
10723              a.Prob > b.Prob :
10724              a.Low->getValue().slt(b.Low->getValue());
10725     });
10726 
10727     // Rearrange the case blocks so that the last one falls through if possible
10728     // without changing the order of probabilities.
10729     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10730       --I;
10731       if (I->Prob > W.LastCluster->Prob)
10732         break;
10733       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10734         std::swap(*I, *W.LastCluster);
10735         break;
10736       }
10737     }
10738   }
10739 
10740   // Compute total probability.
10741   BranchProbability DefaultProb = W.DefaultProb;
10742   BranchProbability UnhandledProbs = DefaultProb;
10743   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10744     UnhandledProbs += I->Prob;
10745 
10746   MachineBasicBlock *CurMBB = W.MBB;
10747   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10748     bool FallthroughUnreachable = false;
10749     MachineBasicBlock *Fallthrough;
10750     if (I == W.LastCluster) {
10751       // For the last cluster, fall through to the default destination.
10752       Fallthrough = DefaultMBB;
10753       FallthroughUnreachable = isa<UnreachableInst>(
10754           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10755     } else {
10756       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10757       CurMF->insert(BBI, Fallthrough);
10758       // Put Cond in a virtual register to make it available from the new blocks.
10759       ExportFromCurrentBlock(Cond);
10760     }
10761     UnhandledProbs -= I->Prob;
10762 
10763     switch (I->Kind) {
10764       case CC_JumpTable: {
10765         // FIXME: Optimize away range check based on pivot comparisons.
10766         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10767         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10768 
10769         // The jump block hasn't been inserted yet; insert it here.
10770         MachineBasicBlock *JumpMBB = JT->MBB;
10771         CurMF->insert(BBI, JumpMBB);
10772 
10773         auto JumpProb = I->Prob;
10774         auto FallthroughProb = UnhandledProbs;
10775 
10776         // If the default statement is a target of the jump table, we evenly
10777         // distribute the default probability to successors of CurMBB. Also
10778         // update the probability on the edge from JumpMBB to Fallthrough.
10779         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10780                                               SE = JumpMBB->succ_end();
10781              SI != SE; ++SI) {
10782           if (*SI == DefaultMBB) {
10783             JumpProb += DefaultProb / 2;
10784             FallthroughProb -= DefaultProb / 2;
10785             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10786             JumpMBB->normalizeSuccProbs();
10787             break;
10788           }
10789         }
10790 
10791         if (FallthroughUnreachable)
10792           JTH->FallthroughUnreachable = true;
10793 
10794         if (!JTH->FallthroughUnreachable)
10795           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10796         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10797         CurMBB->normalizeSuccProbs();
10798 
10799         // The jump table header will be inserted in our current block, do the
10800         // range check, and fall through to our fallthrough block.
10801         JTH->HeaderBB = CurMBB;
10802         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10803 
10804         // If we're in the right place, emit the jump table header right now.
10805         if (CurMBB == SwitchMBB) {
10806           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10807           JTH->Emitted = true;
10808         }
10809         break;
10810       }
10811       case CC_BitTests: {
10812         // FIXME: Optimize away range check based on pivot comparisons.
10813         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10814 
10815         // The bit test blocks haven't been inserted yet; insert them here.
10816         for (BitTestCase &BTC : BTB->Cases)
10817           CurMF->insert(BBI, BTC.ThisBB);
10818 
10819         // Fill in fields of the BitTestBlock.
10820         BTB->Parent = CurMBB;
10821         BTB->Default = Fallthrough;
10822 
10823         BTB->DefaultProb = UnhandledProbs;
10824         // If the cases in bit test don't form a contiguous range, we evenly
10825         // distribute the probability on the edge to Fallthrough to two
10826         // successors of CurMBB.
10827         if (!BTB->ContiguousRange) {
10828           BTB->Prob += DefaultProb / 2;
10829           BTB->DefaultProb -= DefaultProb / 2;
10830         }
10831 
10832         if (FallthroughUnreachable)
10833           BTB->FallthroughUnreachable = true;
10834 
10835         // If we're in the right place, emit the bit test header right now.
10836         if (CurMBB == SwitchMBB) {
10837           visitBitTestHeader(*BTB, SwitchMBB);
10838           BTB->Emitted = true;
10839         }
10840         break;
10841       }
10842       case CC_Range: {
10843         const Value *RHS, *LHS, *MHS;
10844         ISD::CondCode CC;
10845         if (I->Low == I->High) {
10846           // Check Cond == I->Low.
10847           CC = ISD::SETEQ;
10848           LHS = Cond;
10849           RHS=I->Low;
10850           MHS = nullptr;
10851         } else {
10852           // Check I->Low <= Cond <= I->High.
10853           CC = ISD::SETLE;
10854           LHS = I->Low;
10855           MHS = Cond;
10856           RHS = I->High;
10857         }
10858 
10859         // If Fallthrough is unreachable, fold away the comparison.
10860         if (FallthroughUnreachable)
10861           CC = ISD::SETTRUE;
10862 
10863         // The false probability is the sum of all unhandled cases.
10864         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10865                      getCurSDLoc(), I->Prob, UnhandledProbs);
10866 
10867         if (CurMBB == SwitchMBB)
10868           visitSwitchCase(CB, SwitchMBB);
10869         else
10870           SL->SwitchCases.push_back(CB);
10871 
10872         break;
10873       }
10874     }
10875     CurMBB = Fallthrough;
10876   }
10877 }
10878 
10879 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10880                                               CaseClusterIt First,
10881                                               CaseClusterIt Last) {
10882   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10883     if (X.Prob != CC.Prob)
10884       return X.Prob > CC.Prob;
10885 
10886     // Ties are broken by comparing the case value.
10887     return X.Low->getValue().slt(CC.Low->getValue());
10888   });
10889 }
10890 
10891 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10892                                         const SwitchWorkListItem &W,
10893                                         Value *Cond,
10894                                         MachineBasicBlock *SwitchMBB) {
10895   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10896          "Clusters not sorted?");
10897 
10898   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10899 
10900   // Balance the tree based on branch probabilities to create a near-optimal (in
10901   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10902   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10903   CaseClusterIt LastLeft = W.FirstCluster;
10904   CaseClusterIt FirstRight = W.LastCluster;
10905   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10906   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10907 
10908   // Move LastLeft and FirstRight towards each other from opposite directions to
10909   // find a partitioning of the clusters which balances the probability on both
10910   // sides. If LeftProb and RightProb are equal, alternate which side is
10911   // taken to ensure 0-probability nodes are distributed evenly.
10912   unsigned I = 0;
10913   while (LastLeft + 1 < FirstRight) {
10914     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10915       LeftProb += (++LastLeft)->Prob;
10916     else
10917       RightProb += (--FirstRight)->Prob;
10918     I++;
10919   }
10920 
10921   while (true) {
10922     // Our binary search tree differs from a typical BST in that ours can have up
10923     // to three values in each leaf. The pivot selection above doesn't take that
10924     // into account, which means the tree might require more nodes and be less
10925     // efficient. We compensate for this here.
10926 
10927     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10928     unsigned NumRight = W.LastCluster - FirstRight + 1;
10929 
10930     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10931       // If one side has less than 3 clusters, and the other has more than 3,
10932       // consider taking a cluster from the other side.
10933 
10934       if (NumLeft < NumRight) {
10935         // Consider moving the first cluster on the right to the left side.
10936         CaseCluster &CC = *FirstRight;
10937         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10938         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10939         if (LeftSideRank <= RightSideRank) {
10940           // Moving the cluster to the left does not demote it.
10941           ++LastLeft;
10942           ++FirstRight;
10943           continue;
10944         }
10945       } else {
10946         assert(NumRight < NumLeft);
10947         // Consider moving the last element on the left to the right side.
10948         CaseCluster &CC = *LastLeft;
10949         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10950         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10951         if (RightSideRank <= LeftSideRank) {
10952           // Moving the cluster to the right does not demot it.
10953           --LastLeft;
10954           --FirstRight;
10955           continue;
10956         }
10957       }
10958     }
10959     break;
10960   }
10961 
10962   assert(LastLeft + 1 == FirstRight);
10963   assert(LastLeft >= W.FirstCluster);
10964   assert(FirstRight <= W.LastCluster);
10965 
10966   // Use the first element on the right as pivot since we will make less-than
10967   // comparisons against it.
10968   CaseClusterIt PivotCluster = FirstRight;
10969   assert(PivotCluster > W.FirstCluster);
10970   assert(PivotCluster <= W.LastCluster);
10971 
10972   CaseClusterIt FirstLeft = W.FirstCluster;
10973   CaseClusterIt LastRight = W.LastCluster;
10974 
10975   const ConstantInt *Pivot = PivotCluster->Low;
10976 
10977   // New blocks will be inserted immediately after the current one.
10978   MachineFunction::iterator BBI(W.MBB);
10979   ++BBI;
10980 
10981   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10982   // we can branch to its destination directly if it's squeezed exactly in
10983   // between the known lower bound and Pivot - 1.
10984   MachineBasicBlock *LeftMBB;
10985   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10986       FirstLeft->Low == W.GE &&
10987       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10988     LeftMBB = FirstLeft->MBB;
10989   } else {
10990     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10991     FuncInfo.MF->insert(BBI, LeftMBB);
10992     WorkList.push_back(
10993         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10994     // Put Cond in a virtual register to make it available from the new blocks.
10995     ExportFromCurrentBlock(Cond);
10996   }
10997 
10998   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10999   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11000   // directly if RHS.High equals the current upper bound.
11001   MachineBasicBlock *RightMBB;
11002   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11003       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11004     RightMBB = FirstRight->MBB;
11005   } else {
11006     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11007     FuncInfo.MF->insert(BBI, RightMBB);
11008     WorkList.push_back(
11009         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11010     // Put Cond in a virtual register to make it available from the new blocks.
11011     ExportFromCurrentBlock(Cond);
11012   }
11013 
11014   // Create the CaseBlock record that will be used to lower the branch.
11015   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11016                getCurSDLoc(), LeftProb, RightProb);
11017 
11018   if (W.MBB == SwitchMBB)
11019     visitSwitchCase(CB, SwitchMBB);
11020   else
11021     SL->SwitchCases.push_back(CB);
11022 }
11023 
11024 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11025 // from the swith statement.
11026 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11027                                             BranchProbability PeeledCaseProb) {
11028   if (PeeledCaseProb == BranchProbability::getOne())
11029     return BranchProbability::getZero();
11030   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11031 
11032   uint32_t Numerator = CaseProb.getNumerator();
11033   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11034   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11035 }
11036 
11037 // Try to peel the top probability case if it exceeds the threshold.
11038 // Return current MachineBasicBlock for the switch statement if the peeling
11039 // does not occur.
11040 // If the peeling is performed, return the newly created MachineBasicBlock
11041 // for the peeled switch statement. Also update Clusters to remove the peeled
11042 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11043 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11044     const SwitchInst &SI, CaseClusterVector &Clusters,
11045     BranchProbability &PeeledCaseProb) {
11046   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11047   // Don't perform if there is only one cluster or optimizing for size.
11048   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11049       TM.getOptLevel() == CodeGenOpt::None ||
11050       SwitchMBB->getParent()->getFunction().hasMinSize())
11051     return SwitchMBB;
11052 
11053   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11054   unsigned PeeledCaseIndex = 0;
11055   bool SwitchPeeled = false;
11056   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11057     CaseCluster &CC = Clusters[Index];
11058     if (CC.Prob < TopCaseProb)
11059       continue;
11060     TopCaseProb = CC.Prob;
11061     PeeledCaseIndex = Index;
11062     SwitchPeeled = true;
11063   }
11064   if (!SwitchPeeled)
11065     return SwitchMBB;
11066 
11067   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11068                     << TopCaseProb << "\n");
11069 
11070   // Record the MBB for the peeled switch statement.
11071   MachineFunction::iterator BBI(SwitchMBB);
11072   ++BBI;
11073   MachineBasicBlock *PeeledSwitchMBB =
11074       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11075   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11076 
11077   ExportFromCurrentBlock(SI.getCondition());
11078   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11079   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11080                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11081   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11082 
11083   Clusters.erase(PeeledCaseIt);
11084   for (CaseCluster &CC : Clusters) {
11085     LLVM_DEBUG(
11086         dbgs() << "Scale the probablity for one cluster, before scaling: "
11087                << CC.Prob << "\n");
11088     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11089     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11090   }
11091   PeeledCaseProb = TopCaseProb;
11092   return PeeledSwitchMBB;
11093 }
11094 
11095 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11096   // Extract cases from the switch.
11097   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11098   CaseClusterVector Clusters;
11099   Clusters.reserve(SI.getNumCases());
11100   for (auto I : SI.cases()) {
11101     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11102     const ConstantInt *CaseVal = I.getCaseValue();
11103     BranchProbability Prob =
11104         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11105             : BranchProbability(1, SI.getNumCases() + 1);
11106     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11107   }
11108 
11109   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11110 
11111   // Cluster adjacent cases with the same destination. We do this at all
11112   // optimization levels because it's cheap to do and will make codegen faster
11113   // if there are many clusters.
11114   sortAndRangeify(Clusters);
11115 
11116   // The branch probablity of the peeled case.
11117   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11118   MachineBasicBlock *PeeledSwitchMBB =
11119       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11120 
11121   // If there is only the default destination, jump there directly.
11122   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11123   if (Clusters.empty()) {
11124     assert(PeeledSwitchMBB == SwitchMBB);
11125     SwitchMBB->addSuccessor(DefaultMBB);
11126     if (DefaultMBB != NextBlock(SwitchMBB)) {
11127       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11128                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11129     }
11130     return;
11131   }
11132 
11133   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11134   SL->findBitTestClusters(Clusters, &SI);
11135 
11136   LLVM_DEBUG({
11137     dbgs() << "Case clusters: ";
11138     for (const CaseCluster &C : Clusters) {
11139       if (C.Kind == CC_JumpTable)
11140         dbgs() << "JT:";
11141       if (C.Kind == CC_BitTests)
11142         dbgs() << "BT:";
11143 
11144       C.Low->getValue().print(dbgs(), true);
11145       if (C.Low != C.High) {
11146         dbgs() << '-';
11147         C.High->getValue().print(dbgs(), true);
11148       }
11149       dbgs() << ' ';
11150     }
11151     dbgs() << '\n';
11152   });
11153 
11154   assert(!Clusters.empty());
11155   SwitchWorkList WorkList;
11156   CaseClusterIt First = Clusters.begin();
11157   CaseClusterIt Last = Clusters.end() - 1;
11158   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11159   // Scale the branchprobability for DefaultMBB if the peel occurs and
11160   // DefaultMBB is not replaced.
11161   if (PeeledCaseProb != BranchProbability::getZero() &&
11162       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11163     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11164   WorkList.push_back(
11165       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11166 
11167   while (!WorkList.empty()) {
11168     SwitchWorkListItem W = WorkList.pop_back_val();
11169     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11170 
11171     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11172         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11173       // For optimized builds, lower large range as a balanced binary tree.
11174       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11175       continue;
11176     }
11177 
11178     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11179   }
11180 }
11181 
11182 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11184   auto DL = getCurSDLoc();
11185   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11186   setValue(&I, DAG.getStepVector(DL, ResultVT));
11187 }
11188 
11189 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11191   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11192 
11193   SDLoc DL = getCurSDLoc();
11194   SDValue V = getValue(I.getOperand(0));
11195   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11196 
11197   if (VT.isScalableVector()) {
11198     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11199     return;
11200   }
11201 
11202   // Use VECTOR_SHUFFLE for the fixed-length vector
11203   // to maintain existing behavior.
11204   SmallVector<int, 8> Mask;
11205   unsigned NumElts = VT.getVectorMinNumElements();
11206   for (unsigned i = 0; i != NumElts; ++i)
11207     Mask.push_back(NumElts - 1 - i);
11208 
11209   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11210 }
11211 
11212 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11213   SmallVector<EVT, 4> ValueVTs;
11214   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11215                   ValueVTs);
11216   unsigned NumValues = ValueVTs.size();
11217   if (NumValues == 0) return;
11218 
11219   SmallVector<SDValue, 4> Values(NumValues);
11220   SDValue Op = getValue(I.getOperand(0));
11221 
11222   for (unsigned i = 0; i != NumValues; ++i)
11223     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11224                             SDValue(Op.getNode(), Op.getResNo() + i));
11225 
11226   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11227                            DAG.getVTList(ValueVTs), Values));
11228 }
11229 
11230 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11231   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11232   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11233 
11234   SDLoc DL = getCurSDLoc();
11235   SDValue V1 = getValue(I.getOperand(0));
11236   SDValue V2 = getValue(I.getOperand(1));
11237   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11238 
11239   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11240   if (VT.isScalableVector()) {
11241     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11242     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11243                              DAG.getConstant(Imm, DL, IdxVT)));
11244     return;
11245   }
11246 
11247   unsigned NumElts = VT.getVectorNumElements();
11248 
11249   uint64_t Idx = (NumElts + Imm) % NumElts;
11250 
11251   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11252   SmallVector<int, 8> Mask;
11253   for (unsigned i = 0; i < NumElts; ++i)
11254     Mask.push_back(Idx + i);
11255   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11256 }
11257