xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7d894374551f6d5787db0aef2da8dd6aefa616fb)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RuntimeLibcalls.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
48 #include "llvm/CodeGen/StackMaps.h"
49 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
50 #include "llvm/CodeGen/TargetFrameLowering.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetOpcodes.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/WinEHFuncInfo.h"
56 #include "llvm/IR/Argument.h"
57 #include "llvm/IR/Attributes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/Constant.h"
62 #include "llvm/IR/ConstantRange.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfo.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/EHPersonalities.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/TargetParser/Triple.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include <cstddef>
102 #include <iterator>
103 #include <limits>
104 #include <optional>
105 #include <tuple>
106 
107 using namespace llvm;
108 using namespace PatternMatch;
109 using namespace SwitchCG;
110 
111 #define DEBUG_TYPE "isel"
112 
113 /// LimitFloatPrecision - Generate low-precision inline sequences for
114 /// some float libcalls (6, 8 or 12 bits).
115 static unsigned LimitFloatPrecision;
116 
117 static cl::opt<bool>
118     InsertAssertAlign("insert-assert-align", cl::init(true),
119                       cl::desc("Insert the experimental `assertalign` node."),
120                       cl::ReallyHidden);
121 
122 static cl::opt<unsigned, true>
123     LimitFPPrecision("limit-float-precision",
124                      cl::desc("Generate low-precision inline sequences "
125                               "for some float libcalls"),
126                      cl::location(LimitFloatPrecision), cl::Hidden,
127                      cl::init(0));
128 
129 static cl::opt<unsigned> SwitchPeelThreshold(
130     "switch-peel-threshold", cl::Hidden, cl::init(66),
131     cl::desc("Set the case probability threshold for peeling the case from a "
132              "switch statement. A value greater than 100 will void this "
133              "optimization"));
134 
135 // Limit the width of DAG chains. This is important in general to prevent
136 // DAG-based analysis from blowing up. For example, alias analysis and
137 // load clustering may not complete in reasonable time. It is difficult to
138 // recognize and avoid this situation within each individual analysis, and
139 // future analyses are likely to have the same behavior. Limiting DAG width is
140 // the safe approach and will be especially important with global DAGs.
141 //
142 // MaxParallelChains default is arbitrarily high to avoid affecting
143 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
144 // sequence over this should have been converted to llvm.memcpy by the
145 // frontend. It is easy to induce this behavior with .ll code such as:
146 // %buffer = alloca [4096 x i8]
147 // %data = load [4096 x i8]* %argPtr
148 // store [4096 x i8] %data, [4096 x i8]* %buffer
149 static const unsigned MaxParallelChains = 64;
150 
151 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
152                                       const SDValue *Parts, unsigned NumParts,
153                                       MVT PartVT, EVT ValueVT, const Value *V,
154                                       std::optional<CallingConv::ID> CC);
155 
156 /// getCopyFromParts - Create a value that contains the specified legal parts
157 /// combined into the value they represent.  If the parts combine to a type
158 /// larger than ValueVT then AssertOp can be used to specify whether the extra
159 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
160 /// (ISD::AssertSext).
161 static SDValue
162 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
163                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
164                  std::optional<CallingConv::ID> CC = std::nullopt,
165                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
166   // Let the target assemble the parts if it wants to
167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
168   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
169                                                    PartVT, ValueVT, CC))
170     return Val;
171 
172   if (ValueVT.isVector())
173     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
174                                   CC);
175 
176   assert(NumParts > 0 && "No parts to assemble!");
177   SDValue Val = Parts[0];
178 
179   if (NumParts > 1) {
180     // Assemble the value from multiple parts.
181     if (ValueVT.isInteger()) {
182       unsigned PartBits = PartVT.getSizeInBits();
183       unsigned ValueBits = ValueVT.getSizeInBits();
184 
185       // Assemble the power of 2 part.
186       unsigned RoundParts = llvm::bit_floor(NumParts);
187       unsigned RoundBits = PartBits * RoundParts;
188       EVT RoundVT = RoundBits == ValueBits ?
189         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
190       SDValue Lo, Hi;
191 
192       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
193 
194       if (RoundParts > 2) {
195         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
196                               PartVT, HalfVT, V);
197         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
198                               RoundParts / 2, PartVT, HalfVT, V);
199       } else {
200         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
201         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
202       }
203 
204       if (DAG.getDataLayout().isBigEndian())
205         std::swap(Lo, Hi);
206 
207       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
208 
209       if (RoundParts < NumParts) {
210         // Assemble the trailing non-power-of-2 part.
211         unsigned OddParts = NumParts - RoundParts;
212         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
213         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
214                               OddVT, V, CC);
215 
216         // Combine the round and odd parts.
217         Lo = Val;
218         if (DAG.getDataLayout().isBigEndian())
219           std::swap(Lo, Hi);
220         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
221         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
222         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
223                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
224                                          TLI.getShiftAmountTy(
225                                              TotalVT, DAG.getDataLayout())));
226         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
227         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
228       }
229     } else if (PartVT.isFloatingPoint()) {
230       // FP split into multiple FP parts (for ppcf128)
231       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
232              "Unexpected split");
233       SDValue Lo, Hi;
234       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
235       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
236       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
237         std::swap(Lo, Hi);
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
239     } else {
240       // FP split into integer parts (soft fp)
241       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
242              !PartVT.isVector() && "Unexpected split");
243       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
244       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
245     }
246   }
247 
248   // There is now one part, held in Val.  Correct it to match ValueVT.
249   // PartEVT is the type of the register class that holds the value.
250   // ValueVT is the type of the inline asm operation.
251   EVT PartEVT = Val.getValueType();
252 
253   if (PartEVT == ValueVT)
254     return Val;
255 
256   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
257       ValueVT.bitsLT(PartEVT)) {
258     // For an FP value in an integer part, we need to truncate to the right
259     // width first.
260     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
261     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
262   }
263 
264   // Handle types that have the same size.
265   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
266     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
267 
268   // Handle types with different sizes.
269   if (PartEVT.isInteger() && ValueVT.isInteger()) {
270     if (ValueVT.bitsLT(PartEVT)) {
271       // For a truncate, see if we have any information to
272       // indicate whether the truncated bits will always be
273       // zero or sign-extension.
274       if (AssertOp)
275         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
276                           DAG.getValueType(ValueVT));
277       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
278     }
279     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
280   }
281 
282   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
283     // FP_ROUND's are always exact here.
284     if (ValueVT.bitsLT(Val.getValueType()))
285       return DAG.getNode(
286           ISD::FP_ROUND, DL, ValueVT, Val,
287           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
288 
289     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
290   }
291 
292   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
293   // then truncating.
294   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
295       ValueVT.bitsLT(PartEVT)) {
296     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
297     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
298   }
299 
300   report_fatal_error("Unknown mismatch in getCopyFromParts!");
301 }
302 
303 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
304                                               const Twine &ErrMsg) {
305   const Instruction *I = dyn_cast_or_null<Instruction>(V);
306   if (!V)
307     return Ctx.emitError(ErrMsg);
308 
309   const char *AsmError = ", possible invalid constraint for vector type";
310   if (const CallInst *CI = dyn_cast<CallInst>(I))
311     if (CI->isInlineAsm())
312       return Ctx.emitError(I, ErrMsg + AsmError);
313 
314   return Ctx.emitError(I, ErrMsg);
315 }
316 
317 /// getCopyFromPartsVector - Create a value that contains the specified legal
318 /// parts combined into the value they represent.  If the parts combine to a
319 /// type larger than ValueVT then AssertOp can be used to specify whether the
320 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
321 /// ValueVT (ISD::AssertSext).
322 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
323                                       const SDValue *Parts, unsigned NumParts,
324                                       MVT PartVT, EVT ValueVT, const Value *V,
325                                       std::optional<CallingConv::ID> CallConv) {
326   assert(ValueVT.isVector() && "Not a vector value");
327   assert(NumParts > 0 && "No parts to assemble!");
328   const bool IsABIRegCopy = CallConv.has_value();
329 
330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
331   SDValue Val = Parts[0];
332 
333   // Handle a multi-element vector.
334   if (NumParts > 1) {
335     EVT IntermediateVT;
336     MVT RegisterVT;
337     unsigned NumIntermediates;
338     unsigned NumRegs;
339 
340     if (IsABIRegCopy) {
341       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
342           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
343           NumIntermediates, RegisterVT);
344     } else {
345       NumRegs =
346           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
347                                      NumIntermediates, RegisterVT);
348     }
349 
350     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
351     NumParts = NumRegs; // Silence a compiler warning.
352     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
353     assert(RegisterVT.getSizeInBits() ==
354            Parts[0].getSimpleValueType().getSizeInBits() &&
355            "Part type sizes don't match!");
356 
357     // Assemble the parts into intermediate operands.
358     SmallVector<SDValue, 8> Ops(NumIntermediates);
359     if (NumIntermediates == NumParts) {
360       // If the register was not expanded, truncate or copy the value,
361       // as appropriate.
362       for (unsigned i = 0; i != NumParts; ++i)
363         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
364                                   PartVT, IntermediateVT, V, CallConv);
365     } else if (NumParts > 0) {
366       // If the intermediate type was expanded, build the intermediate
367       // operands from the parts.
368       assert(NumParts % NumIntermediates == 0 &&
369              "Must expand into a divisible number of parts!");
370       unsigned Factor = NumParts / NumIntermediates;
371       for (unsigned i = 0; i != NumIntermediates; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
373                                   PartVT, IntermediateVT, V, CallConv);
374     }
375 
376     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
377     // intermediate operands.
378     EVT BuiltVectorTy =
379         IntermediateVT.isVector()
380             ? EVT::getVectorVT(
381                   *DAG.getContext(), IntermediateVT.getScalarType(),
382                   IntermediateVT.getVectorElementCount() * NumParts)
383             : EVT::getVectorVT(*DAG.getContext(),
384                                IntermediateVT.getScalarType(),
385                                NumIntermediates);
386     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
387                                                 : ISD::BUILD_VECTOR,
388                       DL, BuiltVectorTy, Ops);
389   }
390 
391   // There is now one part, held in Val.  Correct it to match ValueVT.
392   EVT PartEVT = Val.getValueType();
393 
394   if (PartEVT == ValueVT)
395     return Val;
396 
397   if (PartEVT.isVector()) {
398     // Vector/Vector bitcast.
399     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
400       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401 
402     // If the parts vector has more elements than the value vector, then we
403     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
404     // Extract the elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
419         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420     }
421 
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424   }
425 
426   // Trivial bitcast if the types are the same size and the destination
427   // vector type is legal.
428   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
429       TLI.isTypeLegal(ValueVT))
430     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
431 
432   if (ValueVT.getVectorNumElements() != 1) {
433      // Certain ABIs require that vectors are passed as integers. For vectors
434      // are the same size, this is an obvious bitcast.
435      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
436        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437      } else if (ValueVT.bitsLT(PartEVT)) {
438        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
439        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
440        // Drop the extra bits.
441        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
442        return DAG.getBitcast(ValueVT, Val);
443      }
444 
445      diagnosePossiblyInvalidConstraint(
446          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
447      return DAG.getUNDEF(ValueVT);
448   }
449 
450   // Handle cases such as i8 -> <1 x i1>
451   EVT ValueSVT = ValueVT.getVectorElementType();
452   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
453     unsigned ValueSize = ValueSVT.getSizeInBits();
454     if (ValueSize == PartEVT.getSizeInBits()) {
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
457       // It's possible a scalar floating point type gets softened to integer and
458       // then promoted to a larger integer. If PartEVT is the larger integer
459       // we need to truncate it and then bitcast to the FP type.
460       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
461       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463       Val = DAG.getBitcast(ValueSVT, Val);
464     } else {
465       Val = ValueVT.isFloatingPoint()
466                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
467                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
468     }
469   }
470 
471   return DAG.getBuildVector(ValueVT, DL, Val);
472 }
473 
474 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
475                                  SDValue Val, SDValue *Parts, unsigned NumParts,
476                                  MVT PartVT, const Value *V,
477                                  std::optional<CallingConv::ID> CallConv);
478 
479 /// getCopyToParts - Create a series of nodes that contain the specified value
480 /// split into legal parts.  If the parts contain more bits than Val, then, for
481 /// integers, ExtendKind can be used to specify how to generate the extra bits.
482 static void
483 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
484                unsigned NumParts, MVT PartVT, const Value *V,
485                std::optional<CallingConv::ID> CallConv = std::nullopt,
486                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
487   // Let the target split the parts if it wants to
488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
489   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
490                                       CallConv))
491     return;
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   unsigned PartBits = PartVT.getSizeInBits();
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = llvm::bit_floor(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
576 
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
620                                      const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   ElementCount PartNumElts = PartVT.getVectorElementCount();
626   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
627 
628   // We only support widening vectors with equivalent element types and
629   // fixed/scalable properties. If a target needs to widen a fixed-length type
630   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
631   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
632       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
633       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
634     return SDValue();
635 
636   // Widening a scalable vector to another scalable vector is done by inserting
637   // the vector into a larger undef one.
638   if (PartNumElts.isScalable())
639     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
640                        Val, DAG.getVectorIdxConstant(0, DL));
641 
642   EVT ElementVT = PartVT.getVectorElementType();
643   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
644   // undef elements.
645   SmallVector<SDValue, 16> Ops;
646   DAG.ExtractVectorElements(Val, Ops);
647   SDValue EltUndef = DAG.getUNDEF(ElementVT);
648   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
649 
650   // FIXME: Use CONCAT for 2x -> 4x.
651   return DAG.getBuildVector(PartVT, DL, Ops);
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  std::optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.has_value();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                    ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorElementCount() ==
678                    ValueVT.getVectorElementCount()) {
679 
680       // Promoted vector extract
681       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
682     } else if (PartEVT.isVector() &&
683                PartEVT.getVectorElementType() !=
684                    ValueVT.getVectorElementType() &&
685                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
686                    TargetLowering::TypeWidenVector) {
687       // Combination of widening and promotion.
688       EVT WidenVT =
689           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
690                            PartVT.getVectorElementCount());
691       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
692       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
693     } else {
694       // Don't extract an integer from a float vector. This can happen if the
695       // FP type gets softened to integer and then promoted. The promotion
696       // prevents it from being picked up by the earlier bitcast case.
697       if (ValueVT.getVectorElementCount().isScalar() &&
698           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
699         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
700                           DAG.getVectorIdxConstant(0, DL));
701       } else {
702         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
703         assert(PartVT.getFixedSizeInBits() > ValueSize &&
704                "lossy conversion of vector to scalar type");
705         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
706         Val = DAG.getBitcast(IntermediateType, Val);
707         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
708       }
709     }
710 
711     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
712     Parts[0] = Val;
713     return;
714   }
715 
716   // Handle a multi-element vector.
717   EVT IntermediateVT;
718   MVT RegisterVT;
719   unsigned NumIntermediates;
720   unsigned NumRegs;
721   if (IsABIRegCopy) {
722     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
723         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
724         RegisterVT);
725   } else {
726     NumRegs =
727         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
728                                    NumIntermediates, RegisterVT);
729   }
730 
731   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
732   NumParts = NumRegs; // Silence a compiler warning.
733   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
734 
735   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
736          "Mixing scalable and fixed vectors when copying in parts");
737 
738   std::optional<ElementCount> DestEltCnt;
739 
740   if (IntermediateVT.isVector())
741     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
742   else
743     DestEltCnt = ElementCount::getFixed(NumIntermediates);
744 
745   EVT BuiltVectorTy = EVT::getVectorVT(
746       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
747 
748   if (ValueVT == BuiltVectorTy) {
749     // Nothing to do.
750   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
751     // Bitconvert vector->vector case.
752     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
753   } else {
754     if (BuiltVectorTy.getVectorElementType().bitsGT(
755             ValueVT.getVectorElementType())) {
756       // Integer promotion.
757       ValueVT = EVT::getVectorVT(*DAG.getContext(),
758                                  BuiltVectorTy.getVectorElementType(),
759                                  ValueVT.getVectorElementCount());
760       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
761     }
762 
763     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
764       Val = Widened;
765     }
766   }
767 
768   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
769 
770   // Split the vector into intermediate operands.
771   SmallVector<SDValue, 8> Ops(NumIntermediates);
772   for (unsigned i = 0; i != NumIntermediates; ++i) {
773     if (IntermediateVT.isVector()) {
774       // This does something sensible for scalable vectors - see the
775       // definition of EXTRACT_SUBVECTOR for further details.
776       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
777       Ops[i] =
778           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
779                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
780     } else {
781       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
782                            DAG.getVectorIdxConstant(i, DL));
783     }
784   }
785 
786   // Split the intermediate operands into legal parts.
787   if (NumParts == NumIntermediates) {
788     // If the register was not expanded, promote or copy the value,
789     // as appropriate.
790     for (unsigned i = 0; i != NumParts; ++i)
791       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
792   } else if (NumParts > 0) {
793     // If the intermediate type was expanded, split each the value into
794     // legal parts.
795     assert(NumIntermediates != 0 && "division by zero");
796     assert(NumParts % NumIntermediates == 0 &&
797            "Must expand into a divisible number of parts!");
798     unsigned Factor = NumParts / NumIntermediates;
799     for (unsigned i = 0; i != NumIntermediates; ++i)
800       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
801                      CallConv);
802   }
803 }
804 
805 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
806                            EVT valuevt, std::optional<CallingConv::ID> CC)
807     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
808       RegCount(1, regs.size()), CallConv(CC) {}
809 
810 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
811                            const DataLayout &DL, unsigned Reg, Type *Ty,
812                            std::optional<CallingConv::ID> CC) {
813   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
814 
815   CallConv = CC;
816 
817   for (EVT ValueVT : ValueVTs) {
818     unsigned NumRegs =
819         isABIMangled()
820             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
821             : TLI.getNumRegisters(Context, ValueVT);
822     MVT RegisterVT =
823         isABIMangled()
824             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
825             : TLI.getRegisterType(Context, ValueVT);
826     for (unsigned i = 0; i != NumRegs; ++i)
827       Regs.push_back(Reg + i);
828     RegVTs.push_back(RegisterVT);
829     RegCount.push_back(NumRegs);
830     Reg += NumRegs;
831   }
832 }
833 
834 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
835                                       FunctionLoweringInfo &FuncInfo,
836                                       const SDLoc &dl, SDValue &Chain,
837                                       SDValue *Flag, const Value *V) const {
838   // A Value with type {} or [0 x %t] needs no registers.
839   if (ValueVTs.empty())
840     return SDValue();
841 
842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
843 
844   // Assemble the legal parts into the final values.
845   SmallVector<SDValue, 4> Values(ValueVTs.size());
846   SmallVector<SDValue, 8> Parts;
847   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
848     // Copy the legal parts from the registers.
849     EVT ValueVT = ValueVTs[Value];
850     unsigned NumRegs = RegCount[Value];
851     MVT RegisterVT = isABIMangled()
852                          ? TLI.getRegisterTypeForCallingConv(
853                                *DAG.getContext(), *CallConv, RegVTs[Value])
854                          : RegVTs[Value];
855 
856     Parts.resize(NumRegs);
857     for (unsigned i = 0; i != NumRegs; ++i) {
858       SDValue P;
859       if (!Flag) {
860         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
861       } else {
862         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
863         *Flag = P.getValue(2);
864       }
865 
866       Chain = P.getValue(1);
867       Parts[i] = P;
868 
869       // If the source register was virtual and if we know something about it,
870       // add an assert node.
871       if (!Register::isVirtualRegister(Regs[Part + i]) ||
872           !RegisterVT.isInteger())
873         continue;
874 
875       const FunctionLoweringInfo::LiveOutInfo *LOI =
876         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
877       if (!LOI)
878         continue;
879 
880       unsigned RegSize = RegisterVT.getScalarSizeInBits();
881       unsigned NumSignBits = LOI->NumSignBits;
882       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
883 
884       if (NumZeroBits == RegSize) {
885         // The current value is a zero.
886         // Explicitly express that as it would be easier for
887         // optimizations to kick in.
888         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
889         continue;
890       }
891 
892       // FIXME: We capture more information than the dag can represent.  For
893       // now, just use the tightest assertzext/assertsext possible.
894       bool isSExt;
895       EVT FromVT(MVT::Other);
896       if (NumZeroBits) {
897         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
898         isSExt = false;
899       } else if (NumSignBits > 1) {
900         FromVT =
901             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
902         isSExt = true;
903       } else {
904         continue;
905       }
906       // Add an assertion node.
907       assert(FromVT != MVT::Other);
908       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
909                              RegisterVT, P, DAG.getValueType(FromVT));
910     }
911 
912     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
913                                      RegisterVT, ValueVT, V, CallConv);
914     Part += NumRegs;
915     Parts.clear();
916   }
917 
918   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
919 }
920 
921 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
922                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
923                                  const Value *V,
924                                  ISD::NodeType PreferredExtendType) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926   ISD::NodeType ExtendKind = PreferredExtendType;
927 
928   // Get the list of the values's legal parts.
929   unsigned NumRegs = Regs.size();
930   SmallVector<SDValue, 8> Parts(NumRegs);
931   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
932     unsigned NumParts = RegCount[Value];
933 
934     MVT RegisterVT = isABIMangled()
935                          ? TLI.getRegisterTypeForCallingConv(
936                                *DAG.getContext(), *CallConv, RegVTs[Value])
937                          : RegVTs[Value];
938 
939     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
940       ExtendKind = ISD::ZERO_EXTEND;
941 
942     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
943                    NumParts, RegisterVT, V, CallConv, ExtendKind);
944     Part += NumParts;
945   }
946 
947   // Copy the parts into the registers.
948   SmallVector<SDValue, 8> Chains(NumRegs);
949   for (unsigned i = 0; i != NumRegs; ++i) {
950     SDValue Part;
951     if (!Flag) {
952       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
953     } else {
954       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
955       *Flag = Part.getValue(1);
956     }
957 
958     Chains[i] = Part.getValue(0);
959   }
960 
961   if (NumRegs == 1 || Flag)
962     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
963     // flagged to it. That is the CopyToReg nodes and the user are considered
964     // a single scheduling unit. If we create a TokenFactor and return it as
965     // chain, then the TokenFactor is both a predecessor (operand) of the
966     // user as well as a successor (the TF operands are flagged to the user).
967     // c1, f1 = CopyToReg
968     // c2, f2 = CopyToReg
969     // c3     = TokenFactor c1, c2
970     // ...
971     //        = op c3, ..., f2
972     Chain = Chains[NumRegs-1];
973   else
974     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
975 }
976 
977 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
978                                         unsigned MatchingIdx, const SDLoc &dl,
979                                         SelectionDAG &DAG,
980                                         std::vector<SDValue> &Ops) const {
981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
982 
983   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
984   if (HasMatching)
985     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
986   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
987     // Put the register class of the virtual registers in the flag word.  That
988     // way, later passes can recompute register class constraints for inline
989     // assembly as well as normal instructions.
990     // Don't do this for tied operands that can use the regclass information
991     // from the def.
992     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
993     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
994     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
995   }
996 
997   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
998   Ops.push_back(Res);
999 
1000   if (Code == InlineAsm::Kind_Clobber) {
1001     // Clobbers should always have a 1:1 mapping with registers, and may
1002     // reference registers that have illegal (e.g. vector) types. Hence, we
1003     // shouldn't try to apply any sort of splitting logic to them.
1004     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1005            "No 1:1 mapping from clobbers to regs?");
1006     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1007     (void)SP;
1008     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1009       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1010       assert(
1011           (Regs[I] != SP ||
1012            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1013           "If we clobbered the stack pointer, MFI should know about it.");
1014     }
1015     return;
1016   }
1017 
1018   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1019     MVT RegisterVT = RegVTs[Value];
1020     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1021                                            RegisterVT);
1022     for (unsigned i = 0; i != NumRegs; ++i) {
1023       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1024       unsigned TheReg = Regs[Reg++];
1025       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1026     }
1027   }
1028 }
1029 
1030 SmallVector<std::pair<unsigned, TypeSize>, 4>
1031 RegsForValue::getRegsAndSizes() const {
1032   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1033   unsigned I = 0;
1034   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1035     unsigned RegCount = std::get<0>(CountAndVT);
1036     MVT RegisterVT = std::get<1>(CountAndVT);
1037     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1038     for (unsigned E = I + RegCount; I != E; ++I)
1039       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1040   }
1041   return OutVec;
1042 }
1043 
1044 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1045                                AssumptionCache *ac,
1046                                const TargetLibraryInfo *li) {
1047   AA = aa;
1048   AC = ac;
1049   GFI = gfi;
1050   LibInfo = li;
1051   Context = DAG.getContext();
1052   LPadToCallSiteMap.clear();
1053   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1054 }
1055 
1056 void SelectionDAGBuilder::clear() {
1057   NodeMap.clear();
1058   UnusedArgNodeMap.clear();
1059   PendingLoads.clear();
1060   PendingExports.clear();
1061   PendingConstrainedFP.clear();
1062   PendingConstrainedFPStrict.clear();
1063   CurInst = nullptr;
1064   HasTailCall = false;
1065   SDNodeOrder = LowestSDNodeOrder;
1066   StatepointLowering.clear();
1067 }
1068 
1069 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1070   DanglingDebugInfoMap.clear();
1071 }
1072 
1073 // Update DAG root to include dependencies on Pending chains.
1074 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1075   SDValue Root = DAG.getRoot();
1076 
1077   if (Pending.empty())
1078     return Root;
1079 
1080   // Add current root to PendingChains, unless we already indirectly
1081   // depend on it.
1082   if (Root.getOpcode() != ISD::EntryToken) {
1083     unsigned i = 0, e = Pending.size();
1084     for (; i != e; ++i) {
1085       assert(Pending[i].getNode()->getNumOperands() > 1);
1086       if (Pending[i].getNode()->getOperand(0) == Root)
1087         break;  // Don't add the root if we already indirectly depend on it.
1088     }
1089 
1090     if (i == e)
1091       Pending.push_back(Root);
1092   }
1093 
1094   if (Pending.size() == 1)
1095     Root = Pending[0];
1096   else
1097     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1098 
1099   DAG.setRoot(Root);
1100   Pending.clear();
1101   return Root;
1102 }
1103 
1104 SDValue SelectionDAGBuilder::getMemoryRoot() {
1105   return updateRoot(PendingLoads);
1106 }
1107 
1108 SDValue SelectionDAGBuilder::getRoot() {
1109   // Chain up all pending constrained intrinsics together with all
1110   // pending loads, by simply appending them to PendingLoads and
1111   // then calling getMemoryRoot().
1112   PendingLoads.reserve(PendingLoads.size() +
1113                        PendingConstrainedFP.size() +
1114                        PendingConstrainedFPStrict.size());
1115   PendingLoads.append(PendingConstrainedFP.begin(),
1116                       PendingConstrainedFP.end());
1117   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1118                       PendingConstrainedFPStrict.end());
1119   PendingConstrainedFP.clear();
1120   PendingConstrainedFPStrict.clear();
1121   return getMemoryRoot();
1122 }
1123 
1124 SDValue SelectionDAGBuilder::getControlRoot() {
1125   // We need to emit pending fpexcept.strict constrained intrinsics,
1126   // so append them to the PendingExports list.
1127   PendingExports.append(PendingConstrainedFPStrict.begin(),
1128                         PendingConstrainedFPStrict.end());
1129   PendingConstrainedFPStrict.clear();
1130   return updateRoot(PendingExports);
1131 }
1132 
1133 void SelectionDAGBuilder::visit(const Instruction &I) {
1134   // Set up outgoing PHI node register values before emitting the terminator.
1135   if (I.isTerminator()) {
1136     HandlePHINodesInSuccessorBlocks(I.getParent());
1137   }
1138 
1139   // Add SDDbgValue nodes for any var locs here. Do so before updating
1140   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1141   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1142     // Add SDDbgValue nodes for any var locs here. Do so before updating
1143     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1144     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1145          It != End; ++It) {
1146       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1147       dropDanglingDebugInfo(Var, It->Expr);
1148       SmallVector<Value *> Values(It->Values.location_ops());
1149       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1150                             It->Values.hasArgList()))
1151         addDanglingDebugInfo(It, SDNodeOrder);
1152     }
1153   }
1154 
1155   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1156   if (!isa<DbgInfoIntrinsic>(I))
1157     ++SDNodeOrder;
1158 
1159   CurInst = &I;
1160 
1161   // Set inserted listener only if required.
1162   bool NodeInserted = false;
1163   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1164   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1165   if (PCSectionsMD) {
1166     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1167         DAG, [&](SDNode *) { NodeInserted = true; });
1168   }
1169 
1170   visit(I.getOpcode(), I);
1171 
1172   if (!I.isTerminator() && !HasTailCall &&
1173       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1174     CopyToExportRegsIfNeeded(&I);
1175 
1176   // Handle metadata.
1177   if (PCSectionsMD) {
1178     auto It = NodeMap.find(&I);
1179     if (It != NodeMap.end()) {
1180       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1181     } else if (NodeInserted) {
1182       // This should not happen; if it does, don't let it go unnoticed so we can
1183       // fix it. Relevant visit*() function is probably missing a setValue().
1184       errs() << "warning: loosing !pcsections metadata ["
1185              << I.getModule()->getName() << "]\n";
1186       LLVM_DEBUG(I.dump());
1187       assert(false);
1188     }
1189   }
1190 
1191   CurInst = nullptr;
1192 }
1193 
1194 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1195   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1196 }
1197 
1198 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1199   // Note: this doesn't use InstVisitor, because it has to work with
1200   // ConstantExpr's in addition to instructions.
1201   switch (Opcode) {
1202   default: llvm_unreachable("Unknown instruction type encountered!");
1203     // Build the switch statement using the Instruction.def file.
1204 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1205     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1206 #include "llvm/IR/Instruction.def"
1207   }
1208 }
1209 
1210 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1211                                             DILocalVariable *Variable,
1212                                             DebugLoc DL, unsigned Order,
1213                                             RawLocationWrapper Values,
1214                                             DIExpression *Expression) {
1215   if (!Values.hasArgList())
1216     return false;
1217   // For variadic dbg_values we will now insert an undef.
1218   // FIXME: We can potentially recover these!
1219   SmallVector<SDDbgOperand, 2> Locs;
1220   for (const Value *V : Values.location_ops()) {
1221     auto *Undef = UndefValue::get(V->getType());
1222     Locs.push_back(SDDbgOperand::fromConst(Undef));
1223   }
1224   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1225                                         /*IsIndirect=*/false, DL, Order,
1226                                         /*IsVariadic=*/true);
1227   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1228   return true;
1229 }
1230 
1231 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1232                                                unsigned Order) {
1233   if (!handleDanglingVariadicDebugInfo(
1234           DAG,
1235           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1236                                             ->getVariable(VarLoc->VariableID)
1237                                             .getVariable()),
1238           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1239     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1240         VarLoc, Order);
1241   }
1242 }
1243 
1244 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1245                                                unsigned Order) {
1246   // We treat variadic dbg_values differently at this stage.
1247   if (!handleDanglingVariadicDebugInfo(
1248           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1249           DI->getWrappedLocation(), DI->getExpression())) {
1250     // TODO: Dangling debug info will eventually either be resolved or produce
1251     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1252     // between the original dbg.value location and its resolved DBG_VALUE,
1253     // which we should ideally fill with an extra Undef DBG_VALUE.
1254     assert(DI->getNumVariableLocationOps() == 1 &&
1255            "DbgValueInst without an ArgList should have a single location "
1256            "operand.");
1257     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1258   }
1259 }
1260 
1261 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1262                                                 const DIExpression *Expr) {
1263   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1264     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1265     DIExpression *DanglingExpr = DDI.getExpression();
1266     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1267       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1268                         << "\n");
1269       return true;
1270     }
1271     return false;
1272   };
1273 
1274   for (auto &DDIMI : DanglingDebugInfoMap) {
1275     DanglingDebugInfoVector &DDIV = DDIMI.second;
1276 
1277     // If debug info is to be dropped, run it through final checks to see
1278     // whether it can be salvaged.
1279     for (auto &DDI : DDIV)
1280       if (isMatchingDbgValue(DDI))
1281         salvageUnresolvedDbgValue(DDI);
1282 
1283     erase_if(DDIV, isMatchingDbgValue);
1284   }
1285 }
1286 
1287 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1288 // generate the debug data structures now that we've seen its definition.
1289 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1290                                                    SDValue Val) {
1291   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1292   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1293     return;
1294 
1295   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1296   for (auto &DDI : DDIV) {
1297     DebugLoc DL = DDI.getDebugLoc();
1298     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1299     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1300     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1301     DIExpression *Expr = DDI.getExpression();
1302     assert(Variable->isValidLocationForIntrinsic(DL) &&
1303            "Expected inlined-at fields to agree");
1304     SDDbgValue *SDV;
1305     if (Val.getNode()) {
1306       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1307       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1308       // we couldn't resolve it directly when examining the DbgValue intrinsic
1309       // in the first place we should not be more successful here). Unless we
1310       // have some test case that prove this to be correct we should avoid
1311       // calling EmitFuncArgumentDbgValue here.
1312       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1313                                     FuncArgumentDbgValueKind::Value, Val)) {
1314         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1315                           << "\n");
1316         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1317         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1318         // inserted after the definition of Val when emitting the instructions
1319         // after ISel. An alternative could be to teach
1320         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1321         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1322                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1323                    << ValSDNodeOrder << "\n");
1324         SDV = getDbgValue(Val, Variable, Expr, DL,
1325                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1326         DAG.AddDbgValue(SDV, false);
1327       } else
1328         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1329                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1330     } else {
1331       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1332       auto Undef = UndefValue::get(V->getType());
1333       auto SDV =
1334           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1335       DAG.AddDbgValue(SDV, false);
1336     }
1337   }
1338   DDIV.clear();
1339 }
1340 
1341 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1342   // TODO: For the variadic implementation, instead of only checking the fail
1343   // state of `handleDebugValue`, we need know specifically which values were
1344   // invalid, so that we attempt to salvage only those values when processing
1345   // a DIArgList.
1346   Value *V = DDI.getVariableLocationOp(0);
1347   Value *OrigV = V;
1348   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1349   DIExpression *Expr = DDI.getExpression();
1350   DebugLoc DL = DDI.getDebugLoc();
1351   unsigned SDOrder = DDI.getSDNodeOrder();
1352 
1353   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1354   // that DW_OP_stack_value is desired.
1355   bool StackValue = true;
1356 
1357   // Can this Value can be encoded without any further work?
1358   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1359     return;
1360 
1361   // Attempt to salvage back through as many instructions as possible. Bail if
1362   // a non-instruction is seen, such as a constant expression or global
1363   // variable. FIXME: Further work could recover those too.
1364   while (isa<Instruction>(V)) {
1365     Instruction &VAsInst = *cast<Instruction>(V);
1366     // Temporary "0", awaiting real implementation.
1367     SmallVector<uint64_t, 16> Ops;
1368     SmallVector<Value *, 4> AdditionalValues;
1369     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1370                              AdditionalValues);
1371     // If we cannot salvage any further, and haven't yet found a suitable debug
1372     // expression, bail out.
1373     if (!V)
1374       break;
1375 
1376     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1377     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1378     // here for variadic dbg_values, remove that condition.
1379     if (!AdditionalValues.empty())
1380       break;
1381 
1382     // New value and expr now represent this debuginfo.
1383     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1384 
1385     // Some kind of simplification occurred: check whether the operand of the
1386     // salvaged debug expression can be encoded in this DAG.
1387     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1388       LLVM_DEBUG(
1389           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1390                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1391       return;
1392     }
1393   }
1394 
1395   // This was the final opportunity to salvage this debug information, and it
1396   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1397   // any earlier variable location.
1398   assert(OrigV && "V shouldn't be null");
1399   auto *Undef = UndefValue::get(OrigV->getType());
1400   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1401   DAG.AddDbgValue(SDV, false);
1402   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1403                     << "\n");
1404 }
1405 
1406 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1407                                            DILocalVariable *Var,
1408                                            DIExpression *Expr, DebugLoc DbgLoc,
1409                                            unsigned Order, bool IsVariadic) {
1410   if (Values.empty())
1411     return true;
1412   SmallVector<SDDbgOperand> LocationOps;
1413   SmallVector<SDNode *> Dependencies;
1414   for (const Value *V : Values) {
1415     // Constant value.
1416     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1417         isa<ConstantPointerNull>(V)) {
1418       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1419       continue;
1420     }
1421 
1422     // Look through IntToPtr constants.
1423     if (auto *CE = dyn_cast<ConstantExpr>(V))
1424       if (CE->getOpcode() == Instruction::IntToPtr) {
1425         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1426         continue;
1427       }
1428 
1429     // If the Value is a frame index, we can create a FrameIndex debug value
1430     // without relying on the DAG at all.
1431     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1432       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1433       if (SI != FuncInfo.StaticAllocaMap.end()) {
1434         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1435         continue;
1436       }
1437     }
1438 
1439     // Do not use getValue() in here; we don't want to generate code at
1440     // this point if it hasn't been done yet.
1441     SDValue N = NodeMap[V];
1442     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1443       N = UnusedArgNodeMap[V];
1444     if (N.getNode()) {
1445       // Only emit func arg dbg value for non-variadic dbg.values for now.
1446       if (!IsVariadic &&
1447           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1448                                    FuncArgumentDbgValueKind::Value, N))
1449         return true;
1450       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1451         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1452         // describe stack slot locations.
1453         //
1454         // Consider "int x = 0; int *px = &x;". There are two kinds of
1455         // interesting debug values here after optimization:
1456         //
1457         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1458         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1459         //
1460         // Both describe the direct values of their associated variables.
1461         Dependencies.push_back(N.getNode());
1462         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1463         continue;
1464       }
1465       LocationOps.emplace_back(
1466           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1467       continue;
1468     }
1469 
1470     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1471     // Special rules apply for the first dbg.values of parameter variables in a
1472     // function. Identify them by the fact they reference Argument Values, that
1473     // they're parameters, and they are parameters of the current function. We
1474     // need to let them dangle until they get an SDNode.
1475     bool IsParamOfFunc =
1476         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1477     if (IsParamOfFunc)
1478       return false;
1479 
1480     // The value is not used in this block yet (or it would have an SDNode).
1481     // We still want the value to appear for the user if possible -- if it has
1482     // an associated VReg, we can refer to that instead.
1483     auto VMI = FuncInfo.ValueMap.find(V);
1484     if (VMI != FuncInfo.ValueMap.end()) {
1485       unsigned Reg = VMI->second;
1486       // If this is a PHI node, it may be split up into several MI PHI nodes
1487       // (in FunctionLoweringInfo::set).
1488       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1489                        V->getType(), std::nullopt);
1490       if (RFV.occupiesMultipleRegs()) {
1491         // FIXME: We could potentially support variadic dbg_values here.
1492         if (IsVariadic)
1493           return false;
1494         unsigned Offset = 0;
1495         unsigned BitsToDescribe = 0;
1496         if (auto VarSize = Var->getSizeInBits())
1497           BitsToDescribe = *VarSize;
1498         if (auto Fragment = Expr->getFragmentInfo())
1499           BitsToDescribe = Fragment->SizeInBits;
1500         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1501           // Bail out if all bits are described already.
1502           if (Offset >= BitsToDescribe)
1503             break;
1504           // TODO: handle scalable vectors.
1505           unsigned RegisterSize = RegAndSize.second;
1506           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1507                                       ? BitsToDescribe - Offset
1508                                       : RegisterSize;
1509           auto FragmentExpr = DIExpression::createFragmentExpression(
1510               Expr, Offset, FragmentSize);
1511           if (!FragmentExpr)
1512             continue;
1513           SDDbgValue *SDV = DAG.getVRegDbgValue(
1514               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1515           DAG.AddDbgValue(SDV, false);
1516           Offset += RegisterSize;
1517         }
1518         return true;
1519       }
1520       // We can use simple vreg locations for variadic dbg_values as well.
1521       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1522       continue;
1523     }
1524     // We failed to create a SDDbgOperand for V.
1525     return false;
1526   }
1527 
1528   // We have created a SDDbgOperand for each Value in Values.
1529   // Should use Order instead of SDNodeOrder?
1530   assert(!LocationOps.empty());
1531   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1532                                         /*IsIndirect=*/false, DbgLoc,
1533                                         SDNodeOrder, IsVariadic);
1534   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1535   return true;
1536 }
1537 
1538 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1539   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1540   for (auto &Pair : DanglingDebugInfoMap)
1541     for (auto &DDI : Pair.second)
1542       salvageUnresolvedDbgValue(DDI);
1543   clearDanglingDebugInfo();
1544 }
1545 
1546 /// getCopyFromRegs - If there was virtual register allocated for the value V
1547 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1548 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1549   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1550   SDValue Result;
1551 
1552   if (It != FuncInfo.ValueMap.end()) {
1553     Register InReg = It->second;
1554 
1555     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1556                      DAG.getDataLayout(), InReg, Ty,
1557                      std::nullopt); // This is not an ABI copy.
1558     SDValue Chain = DAG.getEntryNode();
1559     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1560                                  V);
1561     resolveDanglingDebugInfo(V, Result);
1562   }
1563 
1564   return Result;
1565 }
1566 
1567 /// getValue - Return an SDValue for the given Value.
1568 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1569   // If we already have an SDValue for this value, use it. It's important
1570   // to do this first, so that we don't create a CopyFromReg if we already
1571   // have a regular SDValue.
1572   SDValue &N = NodeMap[V];
1573   if (N.getNode()) return N;
1574 
1575   // If there's a virtual register allocated and initialized for this
1576   // value, use it.
1577   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1578     return copyFromReg;
1579 
1580   // Otherwise create a new SDValue and remember it.
1581   SDValue Val = getValueImpl(V);
1582   NodeMap[V] = Val;
1583   resolveDanglingDebugInfo(V, Val);
1584   return Val;
1585 }
1586 
1587 /// getNonRegisterValue - Return an SDValue for the given Value, but
1588 /// don't look in FuncInfo.ValueMap for a virtual register.
1589 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1590   // If we already have an SDValue for this value, use it.
1591   SDValue &N = NodeMap[V];
1592   if (N.getNode()) {
1593     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1594       // Remove the debug location from the node as the node is about to be used
1595       // in a location which may differ from the original debug location.  This
1596       // is relevant to Constant and ConstantFP nodes because they can appear
1597       // as constant expressions inside PHI nodes.
1598       N->setDebugLoc(DebugLoc());
1599     }
1600     return N;
1601   }
1602 
1603   // Otherwise create a new SDValue and remember it.
1604   SDValue Val = getValueImpl(V);
1605   NodeMap[V] = Val;
1606   resolveDanglingDebugInfo(V, Val);
1607   return Val;
1608 }
1609 
1610 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1611 /// Create an SDValue for the given value.
1612 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1613   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1614 
1615   if (const Constant *C = dyn_cast<Constant>(V)) {
1616     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1617 
1618     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1619       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1620 
1621     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1622       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1623 
1624     if (isa<ConstantPointerNull>(C)) {
1625       unsigned AS = V->getType()->getPointerAddressSpace();
1626       return DAG.getConstant(0, getCurSDLoc(),
1627                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1628     }
1629 
1630     if (match(C, m_VScale()))
1631       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1632 
1633     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1634       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1635 
1636     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1637       return DAG.getUNDEF(VT);
1638 
1639     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1640       visit(CE->getOpcode(), *CE);
1641       SDValue N1 = NodeMap[V];
1642       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1643       return N1;
1644     }
1645 
1646     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1647       SmallVector<SDValue, 4> Constants;
1648       for (const Use &U : C->operands()) {
1649         SDNode *Val = getValue(U).getNode();
1650         // If the operand is an empty aggregate, there are no values.
1651         if (!Val) continue;
1652         // Add each leaf value from the operand to the Constants list
1653         // to form a flattened list of all the values.
1654         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1655           Constants.push_back(SDValue(Val, i));
1656       }
1657 
1658       return DAG.getMergeValues(Constants, getCurSDLoc());
1659     }
1660 
1661     if (const ConstantDataSequential *CDS =
1662           dyn_cast<ConstantDataSequential>(C)) {
1663       SmallVector<SDValue, 4> Ops;
1664       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1665         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1666         // Add each leaf value from the operand to the Constants list
1667         // to form a flattened list of all the values.
1668         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1669           Ops.push_back(SDValue(Val, i));
1670       }
1671 
1672       if (isa<ArrayType>(CDS->getType()))
1673         return DAG.getMergeValues(Ops, getCurSDLoc());
1674       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1675     }
1676 
1677     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1678       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1679              "Unknown struct or array constant!");
1680 
1681       SmallVector<EVT, 4> ValueVTs;
1682       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1683       unsigned NumElts = ValueVTs.size();
1684       if (NumElts == 0)
1685         return SDValue(); // empty struct
1686       SmallVector<SDValue, 4> Constants(NumElts);
1687       for (unsigned i = 0; i != NumElts; ++i) {
1688         EVT EltVT = ValueVTs[i];
1689         if (isa<UndefValue>(C))
1690           Constants[i] = DAG.getUNDEF(EltVT);
1691         else if (EltVT.isFloatingPoint())
1692           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1693         else
1694           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1695       }
1696 
1697       return DAG.getMergeValues(Constants, getCurSDLoc());
1698     }
1699 
1700     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1701       return DAG.getBlockAddress(BA, VT);
1702 
1703     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1704       return getValue(Equiv->getGlobalValue());
1705 
1706     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1707       return getValue(NC->getGlobalValue());
1708 
1709     VectorType *VecTy = cast<VectorType>(V->getType());
1710 
1711     // Now that we know the number and type of the elements, get that number of
1712     // elements into the Ops array based on what kind of constant it is.
1713     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1714       SmallVector<SDValue, 16> Ops;
1715       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1716       for (unsigned i = 0; i != NumElements; ++i)
1717         Ops.push_back(getValue(CV->getOperand(i)));
1718 
1719       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1720     }
1721 
1722     if (isa<ConstantAggregateZero>(C)) {
1723       EVT EltVT =
1724           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1725 
1726       SDValue Op;
1727       if (EltVT.isFloatingPoint())
1728         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1729       else
1730         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1731 
1732       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1733     }
1734 
1735     llvm_unreachable("Unknown vector constant");
1736   }
1737 
1738   // If this is a static alloca, generate it as the frameindex instead of
1739   // computation.
1740   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1741     DenseMap<const AllocaInst*, int>::iterator SI =
1742       FuncInfo.StaticAllocaMap.find(AI);
1743     if (SI != FuncInfo.StaticAllocaMap.end())
1744       return DAG.getFrameIndex(
1745           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1746   }
1747 
1748   // If this is an instruction which fast-isel has deferred, select it now.
1749   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1750     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1751 
1752     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1753                      Inst->getType(), std::nullopt);
1754     SDValue Chain = DAG.getEntryNode();
1755     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1756   }
1757 
1758   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1759     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1760 
1761   if (const auto *BB = dyn_cast<BasicBlock>(V))
1762     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1763 
1764   llvm_unreachable("Can't get register for value!");
1765 }
1766 
1767 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1768   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1769   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1770   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1771   bool IsSEH = isAsynchronousEHPersonality(Pers);
1772   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1773   if (!IsSEH)
1774     CatchPadMBB->setIsEHScopeEntry();
1775   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1776   if (IsMSVCCXX || IsCoreCLR)
1777     CatchPadMBB->setIsEHFuncletEntry();
1778 }
1779 
1780 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1781   // Update machine-CFG edge.
1782   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1783   FuncInfo.MBB->addSuccessor(TargetMBB);
1784   TargetMBB->setIsEHCatchretTarget(true);
1785   DAG.getMachineFunction().setHasEHCatchret(true);
1786 
1787   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1788   bool IsSEH = isAsynchronousEHPersonality(Pers);
1789   if (IsSEH) {
1790     // If this is not a fall-through branch or optimizations are switched off,
1791     // emit the branch.
1792     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1793         TM.getOptLevel() == CodeGenOpt::None)
1794       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1795                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1796     return;
1797   }
1798 
1799   // Figure out the funclet membership for the catchret's successor.
1800   // This will be used by the FuncletLayout pass to determine how to order the
1801   // BB's.
1802   // A 'catchret' returns to the outer scope's color.
1803   Value *ParentPad = I.getCatchSwitchParentPad();
1804   const BasicBlock *SuccessorColor;
1805   if (isa<ConstantTokenNone>(ParentPad))
1806     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1807   else
1808     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1809   assert(SuccessorColor && "No parent funclet for catchret!");
1810   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1811   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1812 
1813   // Create the terminator node.
1814   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1815                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1816                             DAG.getBasicBlock(SuccessorColorMBB));
1817   DAG.setRoot(Ret);
1818 }
1819 
1820 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1821   // Don't emit any special code for the cleanuppad instruction. It just marks
1822   // the start of an EH scope/funclet.
1823   FuncInfo.MBB->setIsEHScopeEntry();
1824   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1825   if (Pers != EHPersonality::Wasm_CXX) {
1826     FuncInfo.MBB->setIsEHFuncletEntry();
1827     FuncInfo.MBB->setIsCleanupFuncletEntry();
1828   }
1829 }
1830 
1831 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1832 // not match, it is OK to add only the first unwind destination catchpad to the
1833 // successors, because there will be at least one invoke instruction within the
1834 // catch scope that points to the next unwind destination, if one exists, so
1835 // CFGSort cannot mess up with BB sorting order.
1836 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1837 // call within them, and catchpads only consisting of 'catch (...)' have a
1838 // '__cxa_end_catch' call within them, both of which generate invokes in case
1839 // the next unwind destination exists, i.e., the next unwind destination is not
1840 // the caller.)
1841 //
1842 // Having at most one EH pad successor is also simpler and helps later
1843 // transformations.
1844 //
1845 // For example,
1846 // current:
1847 //   invoke void @foo to ... unwind label %catch.dispatch
1848 // catch.dispatch:
1849 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1850 // catch.start:
1851 //   ...
1852 //   ... in this BB or some other child BB dominated by this BB there will be an
1853 //   invoke that points to 'next' BB as an unwind destination
1854 //
1855 // next: ; We don't need to add this to 'current' BB's successor
1856 //   ...
1857 static void findWasmUnwindDestinations(
1858     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1859     BranchProbability Prob,
1860     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1861         &UnwindDests) {
1862   while (EHPadBB) {
1863     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1864     if (isa<CleanupPadInst>(Pad)) {
1865       // Stop on cleanup pads.
1866       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1867       UnwindDests.back().first->setIsEHScopeEntry();
1868       break;
1869     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1870       // Add the catchpad handlers to the possible destinations. We don't
1871       // continue to the unwind destination of the catchswitch for wasm.
1872       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1873         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1874         UnwindDests.back().first->setIsEHScopeEntry();
1875       }
1876       break;
1877     } else {
1878       continue;
1879     }
1880   }
1881 }
1882 
1883 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1884 /// many places it could ultimately go. In the IR, we have a single unwind
1885 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1886 /// This function skips over imaginary basic blocks that hold catchswitch
1887 /// instructions, and finds all the "real" machine
1888 /// basic block destinations. As those destinations may not be successors of
1889 /// EHPadBB, here we also calculate the edge probability to those destinations.
1890 /// The passed-in Prob is the edge probability to EHPadBB.
1891 static void findUnwindDestinations(
1892     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1893     BranchProbability Prob,
1894     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1895         &UnwindDests) {
1896   EHPersonality Personality =
1897     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1898   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1899   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1900   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1901   bool IsSEH = isAsynchronousEHPersonality(Personality);
1902 
1903   if (IsWasmCXX) {
1904     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1905     assert(UnwindDests.size() <= 1 &&
1906            "There should be at most one unwind destination for wasm");
1907     return;
1908   }
1909 
1910   while (EHPadBB) {
1911     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1912     BasicBlock *NewEHPadBB = nullptr;
1913     if (isa<LandingPadInst>(Pad)) {
1914       // Stop on landingpads. They are not funclets.
1915       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1916       break;
1917     } else if (isa<CleanupPadInst>(Pad)) {
1918       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1919       // personalities.
1920       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1921       UnwindDests.back().first->setIsEHScopeEntry();
1922       UnwindDests.back().first->setIsEHFuncletEntry();
1923       break;
1924     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1925       // Add the catchpad handlers to the possible destinations.
1926       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1927         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1928         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1929         if (IsMSVCCXX || IsCoreCLR)
1930           UnwindDests.back().first->setIsEHFuncletEntry();
1931         if (!IsSEH)
1932           UnwindDests.back().first->setIsEHScopeEntry();
1933       }
1934       NewEHPadBB = CatchSwitch->getUnwindDest();
1935     } else {
1936       continue;
1937     }
1938 
1939     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1940     if (BPI && NewEHPadBB)
1941       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1942     EHPadBB = NewEHPadBB;
1943   }
1944 }
1945 
1946 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1947   // Update successor info.
1948   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1949   auto UnwindDest = I.getUnwindDest();
1950   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1951   BranchProbability UnwindDestProb =
1952       (BPI && UnwindDest)
1953           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1954           : BranchProbability::getZero();
1955   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1956   for (auto &UnwindDest : UnwindDests) {
1957     UnwindDest.first->setIsEHPad();
1958     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1959   }
1960   FuncInfo.MBB->normalizeSuccProbs();
1961 
1962   // Create the terminator node.
1963   SDValue Ret =
1964       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1965   DAG.setRoot(Ret);
1966 }
1967 
1968 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1969   report_fatal_error("visitCatchSwitch not yet implemented!");
1970 }
1971 
1972 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1974   auto &DL = DAG.getDataLayout();
1975   SDValue Chain = getControlRoot();
1976   SmallVector<ISD::OutputArg, 8> Outs;
1977   SmallVector<SDValue, 8> OutVals;
1978 
1979   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1980   // lower
1981   //
1982   //   %val = call <ty> @llvm.experimental.deoptimize()
1983   //   ret <ty> %val
1984   //
1985   // differently.
1986   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1987     LowerDeoptimizingReturn();
1988     return;
1989   }
1990 
1991   if (!FuncInfo.CanLowerReturn) {
1992     unsigned DemoteReg = FuncInfo.DemoteRegister;
1993     const Function *F = I.getParent()->getParent();
1994 
1995     // Emit a store of the return value through the virtual register.
1996     // Leave Outs empty so that LowerReturn won't try to load return
1997     // registers the usual way.
1998     SmallVector<EVT, 1> PtrValueVTs;
1999     ComputeValueVTs(TLI, DL,
2000                     F->getReturnType()->getPointerTo(
2001                         DAG.getDataLayout().getAllocaAddrSpace()),
2002                     PtrValueVTs);
2003 
2004     SDValue RetPtr =
2005         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2006     SDValue RetOp = getValue(I.getOperand(0));
2007 
2008     SmallVector<EVT, 4> ValueVTs, MemVTs;
2009     SmallVector<uint64_t, 4> Offsets;
2010     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2011                     &Offsets);
2012     unsigned NumValues = ValueVTs.size();
2013 
2014     SmallVector<SDValue, 4> Chains(NumValues);
2015     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2016     for (unsigned i = 0; i != NumValues; ++i) {
2017       // An aggregate return value cannot wrap around the address space, so
2018       // offsets to its parts don't wrap either.
2019       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2020                                            TypeSize::Fixed(Offsets[i]));
2021 
2022       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2023       if (MemVTs[i] != ValueVTs[i])
2024         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2025       Chains[i] = DAG.getStore(
2026           Chain, getCurSDLoc(), Val,
2027           // FIXME: better loc info would be nice.
2028           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2029           commonAlignment(BaseAlign, Offsets[i]));
2030     }
2031 
2032     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2033                         MVT::Other, Chains);
2034   } else if (I.getNumOperands() != 0) {
2035     SmallVector<EVT, 4> ValueVTs;
2036     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2037     unsigned NumValues = ValueVTs.size();
2038     if (NumValues) {
2039       SDValue RetOp = getValue(I.getOperand(0));
2040 
2041       const Function *F = I.getParent()->getParent();
2042 
2043       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2044           I.getOperand(0)->getType(), F->getCallingConv(),
2045           /*IsVarArg*/ false, DL);
2046 
2047       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2048       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2049         ExtendKind = ISD::SIGN_EXTEND;
2050       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2051         ExtendKind = ISD::ZERO_EXTEND;
2052 
2053       LLVMContext &Context = F->getContext();
2054       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2055 
2056       for (unsigned j = 0; j != NumValues; ++j) {
2057         EVT VT = ValueVTs[j];
2058 
2059         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2060           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2061 
2062         CallingConv::ID CC = F->getCallingConv();
2063 
2064         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2065         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2066         SmallVector<SDValue, 4> Parts(NumParts);
2067         getCopyToParts(DAG, getCurSDLoc(),
2068                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2069                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2070 
2071         // 'inreg' on function refers to return value
2072         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2073         if (RetInReg)
2074           Flags.setInReg();
2075 
2076         if (I.getOperand(0)->getType()->isPointerTy()) {
2077           Flags.setPointer();
2078           Flags.setPointerAddrSpace(
2079               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2080         }
2081 
2082         if (NeedsRegBlock) {
2083           Flags.setInConsecutiveRegs();
2084           if (j == NumValues - 1)
2085             Flags.setInConsecutiveRegsLast();
2086         }
2087 
2088         // Propagate extension type if any
2089         if (ExtendKind == ISD::SIGN_EXTEND)
2090           Flags.setSExt();
2091         else if (ExtendKind == ISD::ZERO_EXTEND)
2092           Flags.setZExt();
2093 
2094         for (unsigned i = 0; i < NumParts; ++i) {
2095           Outs.push_back(ISD::OutputArg(Flags,
2096                                         Parts[i].getValueType().getSimpleVT(),
2097                                         VT, /*isfixed=*/true, 0, 0));
2098           OutVals.push_back(Parts[i]);
2099         }
2100       }
2101     }
2102   }
2103 
2104   // Push in swifterror virtual register as the last element of Outs. This makes
2105   // sure swifterror virtual register will be returned in the swifterror
2106   // physical register.
2107   const Function *F = I.getParent()->getParent();
2108   if (TLI.supportSwiftError() &&
2109       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2110     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2111     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2112     Flags.setSwiftError();
2113     Outs.push_back(ISD::OutputArg(
2114         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2115         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2116     // Create SDNode for the swifterror virtual register.
2117     OutVals.push_back(
2118         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2119                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2120                         EVT(TLI.getPointerTy(DL))));
2121   }
2122 
2123   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2124   CallingConv::ID CallConv =
2125     DAG.getMachineFunction().getFunction().getCallingConv();
2126   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2127       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2128 
2129   // Verify that the target's LowerReturn behaved as expected.
2130   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2131          "LowerReturn didn't return a valid chain!");
2132 
2133   // Update the DAG with the new chain value resulting from return lowering.
2134   DAG.setRoot(Chain);
2135 }
2136 
2137 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2138 /// created for it, emit nodes to copy the value into the virtual
2139 /// registers.
2140 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2141   // Skip empty types
2142   if (V->getType()->isEmptyTy())
2143     return;
2144 
2145   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2146   if (VMI != FuncInfo.ValueMap.end()) {
2147     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2148            "Unused value assigned virtual registers!");
2149     CopyValueToVirtualRegister(V, VMI->second);
2150   }
2151 }
2152 
2153 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2154 /// the current basic block, add it to ValueMap now so that we'll get a
2155 /// CopyTo/FromReg.
2156 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2157   // No need to export constants.
2158   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2159 
2160   // Already exported?
2161   if (FuncInfo.isExportedInst(V)) return;
2162 
2163   Register Reg = FuncInfo.InitializeRegForValue(V);
2164   CopyValueToVirtualRegister(V, Reg);
2165 }
2166 
2167 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2168                                                      const BasicBlock *FromBB) {
2169   // The operands of the setcc have to be in this block.  We don't know
2170   // how to export them from some other block.
2171   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2172     // Can export from current BB.
2173     if (VI->getParent() == FromBB)
2174       return true;
2175 
2176     // Is already exported, noop.
2177     return FuncInfo.isExportedInst(V);
2178   }
2179 
2180   // If this is an argument, we can export it if the BB is the entry block or
2181   // if it is already exported.
2182   if (isa<Argument>(V)) {
2183     if (FromBB->isEntryBlock())
2184       return true;
2185 
2186     // Otherwise, can only export this if it is already exported.
2187     return FuncInfo.isExportedInst(V);
2188   }
2189 
2190   // Otherwise, constants can always be exported.
2191   return true;
2192 }
2193 
2194 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2195 BranchProbability
2196 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2197                                         const MachineBasicBlock *Dst) const {
2198   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2199   const BasicBlock *SrcBB = Src->getBasicBlock();
2200   const BasicBlock *DstBB = Dst->getBasicBlock();
2201   if (!BPI) {
2202     // If BPI is not available, set the default probability as 1 / N, where N is
2203     // the number of successors.
2204     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2205     return BranchProbability(1, SuccSize);
2206   }
2207   return BPI->getEdgeProbability(SrcBB, DstBB);
2208 }
2209 
2210 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2211                                                MachineBasicBlock *Dst,
2212                                                BranchProbability Prob) {
2213   if (!FuncInfo.BPI)
2214     Src->addSuccessorWithoutProb(Dst);
2215   else {
2216     if (Prob.isUnknown())
2217       Prob = getEdgeProbability(Src, Dst);
2218     Src->addSuccessor(Dst, Prob);
2219   }
2220 }
2221 
2222 static bool InBlock(const Value *V, const BasicBlock *BB) {
2223   if (const Instruction *I = dyn_cast<Instruction>(V))
2224     return I->getParent() == BB;
2225   return true;
2226 }
2227 
2228 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2229 /// This function emits a branch and is used at the leaves of an OR or an
2230 /// AND operator tree.
2231 void
2232 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2233                                                   MachineBasicBlock *TBB,
2234                                                   MachineBasicBlock *FBB,
2235                                                   MachineBasicBlock *CurBB,
2236                                                   MachineBasicBlock *SwitchBB,
2237                                                   BranchProbability TProb,
2238                                                   BranchProbability FProb,
2239                                                   bool InvertCond) {
2240   const BasicBlock *BB = CurBB->getBasicBlock();
2241 
2242   // If the leaf of the tree is a comparison, merge the condition into
2243   // the caseblock.
2244   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2245     // The operands of the cmp have to be in this block.  We don't know
2246     // how to export them from some other block.  If this is the first block
2247     // of the sequence, no exporting is needed.
2248     if (CurBB == SwitchBB ||
2249         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2250          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2251       ISD::CondCode Condition;
2252       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2253         ICmpInst::Predicate Pred =
2254             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2255         Condition = getICmpCondCode(Pred);
2256       } else {
2257         const FCmpInst *FC = cast<FCmpInst>(Cond);
2258         FCmpInst::Predicate Pred =
2259             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2260         Condition = getFCmpCondCode(Pred);
2261         if (TM.Options.NoNaNsFPMath)
2262           Condition = getFCmpCodeWithoutNaN(Condition);
2263       }
2264 
2265       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2266                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2267       SL->SwitchCases.push_back(CB);
2268       return;
2269     }
2270   }
2271 
2272   // Create a CaseBlock record representing this branch.
2273   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2274   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2275                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2276   SL->SwitchCases.push_back(CB);
2277 }
2278 
2279 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2280                                                MachineBasicBlock *TBB,
2281                                                MachineBasicBlock *FBB,
2282                                                MachineBasicBlock *CurBB,
2283                                                MachineBasicBlock *SwitchBB,
2284                                                Instruction::BinaryOps Opc,
2285                                                BranchProbability TProb,
2286                                                BranchProbability FProb,
2287                                                bool InvertCond) {
2288   // Skip over not part of the tree and remember to invert op and operands at
2289   // next level.
2290   Value *NotCond;
2291   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2292       InBlock(NotCond, CurBB->getBasicBlock())) {
2293     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2294                          !InvertCond);
2295     return;
2296   }
2297 
2298   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2299   const Value *BOpOp0, *BOpOp1;
2300   // Compute the effective opcode for Cond, taking into account whether it needs
2301   // to be inverted, e.g.
2302   //   and (not (or A, B)), C
2303   // gets lowered as
2304   //   and (and (not A, not B), C)
2305   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2306   if (BOp) {
2307     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2308                ? Instruction::And
2309                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2310                       ? Instruction::Or
2311                       : (Instruction::BinaryOps)0);
2312     if (InvertCond) {
2313       if (BOpc == Instruction::And)
2314         BOpc = Instruction::Or;
2315       else if (BOpc == Instruction::Or)
2316         BOpc = Instruction::And;
2317     }
2318   }
2319 
2320   // If this node is not part of the or/and tree, emit it as a branch.
2321   // Note that all nodes in the tree should have same opcode.
2322   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2323   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2324       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2325       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2326     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2327                                  TProb, FProb, InvertCond);
2328     return;
2329   }
2330 
2331   //  Create TmpBB after CurBB.
2332   MachineFunction::iterator BBI(CurBB);
2333   MachineFunction &MF = DAG.getMachineFunction();
2334   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2335   CurBB->getParent()->insert(++BBI, TmpBB);
2336 
2337   if (Opc == Instruction::Or) {
2338     // Codegen X | Y as:
2339     // BB1:
2340     //   jmp_if_X TBB
2341     //   jmp TmpBB
2342     // TmpBB:
2343     //   jmp_if_Y TBB
2344     //   jmp FBB
2345     //
2346 
2347     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2348     // The requirement is that
2349     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2350     //     = TrueProb for original BB.
2351     // Assuming the original probabilities are A and B, one choice is to set
2352     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2353     // A/(1+B) and 2B/(1+B). This choice assumes that
2354     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2355     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2356     // TmpBB, but the math is more complicated.
2357 
2358     auto NewTrueProb = TProb / 2;
2359     auto NewFalseProb = TProb / 2 + FProb;
2360     // Emit the LHS condition.
2361     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2362                          NewFalseProb, InvertCond);
2363 
2364     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2365     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2366     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2367     // Emit the RHS condition into TmpBB.
2368     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2369                          Probs[1], InvertCond);
2370   } else {
2371     assert(Opc == Instruction::And && "Unknown merge op!");
2372     // Codegen X & Y as:
2373     // BB1:
2374     //   jmp_if_X TmpBB
2375     //   jmp FBB
2376     // TmpBB:
2377     //   jmp_if_Y TBB
2378     //   jmp FBB
2379     //
2380     //  This requires creation of TmpBB after CurBB.
2381 
2382     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2383     // The requirement is that
2384     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2385     //     = FalseProb for original BB.
2386     // Assuming the original probabilities are A and B, one choice is to set
2387     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2388     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2389     // TrueProb for BB1 * FalseProb for TmpBB.
2390 
2391     auto NewTrueProb = TProb + FProb / 2;
2392     auto NewFalseProb = FProb / 2;
2393     // Emit the LHS condition.
2394     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2395                          NewFalseProb, InvertCond);
2396 
2397     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2398     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2399     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2400     // Emit the RHS condition into TmpBB.
2401     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2402                          Probs[1], InvertCond);
2403   }
2404 }
2405 
2406 /// If the set of cases should be emitted as a series of branches, return true.
2407 /// If we should emit this as a bunch of and/or'd together conditions, return
2408 /// false.
2409 bool
2410 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2411   if (Cases.size() != 2) return true;
2412 
2413   // If this is two comparisons of the same values or'd or and'd together, they
2414   // will get folded into a single comparison, so don't emit two blocks.
2415   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2416        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2417       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2418        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2419     return false;
2420   }
2421 
2422   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2423   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2424   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2425       Cases[0].CC == Cases[1].CC &&
2426       isa<Constant>(Cases[0].CmpRHS) &&
2427       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2428     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2429       return false;
2430     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2431       return false;
2432   }
2433 
2434   return true;
2435 }
2436 
2437 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2438   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2439 
2440   // Update machine-CFG edges.
2441   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2442 
2443   if (I.isUnconditional()) {
2444     // Update machine-CFG edges.
2445     BrMBB->addSuccessor(Succ0MBB);
2446 
2447     // If this is not a fall-through branch or optimizations are switched off,
2448     // emit the branch.
2449     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2450       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2451                               MVT::Other, getControlRoot(),
2452                               DAG.getBasicBlock(Succ0MBB)));
2453 
2454     return;
2455   }
2456 
2457   // If this condition is one of the special cases we handle, do special stuff
2458   // now.
2459   const Value *CondVal = I.getCondition();
2460   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2461 
2462   // If this is a series of conditions that are or'd or and'd together, emit
2463   // this as a sequence of branches instead of setcc's with and/or operations.
2464   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2465   // unpredictable branches, and vector extracts because those jumps are likely
2466   // expensive for any target), this should improve performance.
2467   // For example, instead of something like:
2468   //     cmp A, B
2469   //     C = seteq
2470   //     cmp D, E
2471   //     F = setle
2472   //     or C, F
2473   //     jnz foo
2474   // Emit:
2475   //     cmp A, B
2476   //     je foo
2477   //     cmp D, E
2478   //     jle foo
2479   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2480   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2481       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2482     Value *Vec;
2483     const Value *BOp0, *BOp1;
2484     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2485     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2486       Opcode = Instruction::And;
2487     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2488       Opcode = Instruction::Or;
2489 
2490     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2491                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2492       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2493                            getEdgeProbability(BrMBB, Succ0MBB),
2494                            getEdgeProbability(BrMBB, Succ1MBB),
2495                            /*InvertCond=*/false);
2496       // If the compares in later blocks need to use values not currently
2497       // exported from this block, export them now.  This block should always
2498       // be the first entry.
2499       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2500 
2501       // Allow some cases to be rejected.
2502       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2503         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2504           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2505           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2506         }
2507 
2508         // Emit the branch for this block.
2509         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2510         SL->SwitchCases.erase(SL->SwitchCases.begin());
2511         return;
2512       }
2513 
2514       // Okay, we decided not to do this, remove any inserted MBB's and clear
2515       // SwitchCases.
2516       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2517         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2518 
2519       SL->SwitchCases.clear();
2520     }
2521   }
2522 
2523   // Create a CaseBlock record representing this branch.
2524   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2525                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2526 
2527   // Use visitSwitchCase to actually insert the fast branch sequence for this
2528   // cond branch.
2529   visitSwitchCase(CB, BrMBB);
2530 }
2531 
2532 /// visitSwitchCase - Emits the necessary code to represent a single node in
2533 /// the binary search tree resulting from lowering a switch instruction.
2534 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2535                                           MachineBasicBlock *SwitchBB) {
2536   SDValue Cond;
2537   SDValue CondLHS = getValue(CB.CmpLHS);
2538   SDLoc dl = CB.DL;
2539 
2540   if (CB.CC == ISD::SETTRUE) {
2541     // Branch or fall through to TrueBB.
2542     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2543     SwitchBB->normalizeSuccProbs();
2544     if (CB.TrueBB != NextBlock(SwitchBB)) {
2545       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2546                               DAG.getBasicBlock(CB.TrueBB)));
2547     }
2548     return;
2549   }
2550 
2551   auto &TLI = DAG.getTargetLoweringInfo();
2552   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2553 
2554   // Build the setcc now.
2555   if (!CB.CmpMHS) {
2556     // Fold "(X == true)" to X and "(X == false)" to !X to
2557     // handle common cases produced by branch lowering.
2558     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2559         CB.CC == ISD::SETEQ)
2560       Cond = CondLHS;
2561     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2562              CB.CC == ISD::SETEQ) {
2563       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2564       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2565     } else {
2566       SDValue CondRHS = getValue(CB.CmpRHS);
2567 
2568       // If a pointer's DAG type is larger than its memory type then the DAG
2569       // values are zero-extended. This breaks signed comparisons so truncate
2570       // back to the underlying type before doing the compare.
2571       if (CondLHS.getValueType() != MemVT) {
2572         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2573         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2574       }
2575       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2576     }
2577   } else {
2578     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2579 
2580     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2581     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2582 
2583     SDValue CmpOp = getValue(CB.CmpMHS);
2584     EVT VT = CmpOp.getValueType();
2585 
2586     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2587       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2588                           ISD::SETLE);
2589     } else {
2590       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2591                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2592       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2593                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2594     }
2595   }
2596 
2597   // Update successor info
2598   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2599   // TrueBB and FalseBB are always different unless the incoming IR is
2600   // degenerate. This only happens when running llc on weird IR.
2601   if (CB.TrueBB != CB.FalseBB)
2602     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2603   SwitchBB->normalizeSuccProbs();
2604 
2605   // If the lhs block is the next block, invert the condition so that we can
2606   // fall through to the lhs instead of the rhs block.
2607   if (CB.TrueBB == NextBlock(SwitchBB)) {
2608     std::swap(CB.TrueBB, CB.FalseBB);
2609     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2610     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2611   }
2612 
2613   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2614                                MVT::Other, getControlRoot(), Cond,
2615                                DAG.getBasicBlock(CB.TrueBB));
2616 
2617   setValue(CurInst, BrCond);
2618 
2619   // Insert the false branch. Do this even if it's a fall through branch,
2620   // this makes it easier to do DAG optimizations which require inverting
2621   // the branch condition.
2622   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2623                        DAG.getBasicBlock(CB.FalseBB));
2624 
2625   DAG.setRoot(BrCond);
2626 }
2627 
2628 /// visitJumpTable - Emit JumpTable node in the current MBB
2629 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2630   // Emit the code for the jump table
2631   assert(JT.Reg != -1U && "Should lower JT Header first!");
2632   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2633   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2634                                      JT.Reg, PTy);
2635   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2636   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2637                                     MVT::Other, Index.getValue(1),
2638                                     Table, Index);
2639   DAG.setRoot(BrJumpTable);
2640 }
2641 
2642 /// visitJumpTableHeader - This function emits necessary code to produce index
2643 /// in the JumpTable from switch case.
2644 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2645                                                JumpTableHeader &JTH,
2646                                                MachineBasicBlock *SwitchBB) {
2647   SDLoc dl = getCurSDLoc();
2648 
2649   // Subtract the lowest switch case value from the value being switched on.
2650   SDValue SwitchOp = getValue(JTH.SValue);
2651   EVT VT = SwitchOp.getValueType();
2652   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2653                             DAG.getConstant(JTH.First, dl, VT));
2654 
2655   // The SDNode we just created, which holds the value being switched on minus
2656   // the smallest case value, needs to be copied to a virtual register so it
2657   // can be used as an index into the jump table in a subsequent basic block.
2658   // This value may be smaller or larger than the target's pointer type, and
2659   // therefore require extension or truncating.
2660   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2661   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2662 
2663   unsigned JumpTableReg =
2664       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2665   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2666                                     JumpTableReg, SwitchOp);
2667   JT.Reg = JumpTableReg;
2668 
2669   if (!JTH.FallthroughUnreachable) {
2670     // Emit the range check for the jump table, and branch to the default block
2671     // for the switch statement if the value being switched on exceeds the
2672     // largest case in the switch.
2673     SDValue CMP = DAG.getSetCC(
2674         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2675                                    Sub.getValueType()),
2676         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2677 
2678     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2679                                  MVT::Other, CopyTo, CMP,
2680                                  DAG.getBasicBlock(JT.Default));
2681 
2682     // Avoid emitting unnecessary branches to the next block.
2683     if (JT.MBB != NextBlock(SwitchBB))
2684       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2685                            DAG.getBasicBlock(JT.MBB));
2686 
2687     DAG.setRoot(BrCond);
2688   } else {
2689     // Avoid emitting unnecessary branches to the next block.
2690     if (JT.MBB != NextBlock(SwitchBB))
2691       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2692                               DAG.getBasicBlock(JT.MBB)));
2693     else
2694       DAG.setRoot(CopyTo);
2695   }
2696 }
2697 
2698 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2699 /// variable if there exists one.
2700 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2701                                  SDValue &Chain) {
2702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2703   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2704   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2705   MachineFunction &MF = DAG.getMachineFunction();
2706   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2707   MachineSDNode *Node =
2708       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2709   if (Global) {
2710     MachinePointerInfo MPInfo(Global);
2711     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2712                  MachineMemOperand::MODereferenceable;
2713     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2714         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2715     DAG.setNodeMemRefs(Node, {MemRef});
2716   }
2717   if (PtrTy != PtrMemTy)
2718     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2719   return SDValue(Node, 0);
2720 }
2721 
2722 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2723 /// tail spliced into a stack protector check success bb.
2724 ///
2725 /// For a high level explanation of how this fits into the stack protector
2726 /// generation see the comment on the declaration of class
2727 /// StackProtectorDescriptor.
2728 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2729                                                   MachineBasicBlock *ParentBB) {
2730 
2731   // First create the loads to the guard/stack slot for the comparison.
2732   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2733   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2734   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2735 
2736   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2737   int FI = MFI.getStackProtectorIndex();
2738 
2739   SDValue Guard;
2740   SDLoc dl = getCurSDLoc();
2741   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2742   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2743   Align Align =
2744       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2745 
2746   // Generate code to load the content of the guard slot.
2747   SDValue GuardVal = DAG.getLoad(
2748       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2749       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2750       MachineMemOperand::MOVolatile);
2751 
2752   if (TLI.useStackGuardXorFP())
2753     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2754 
2755   // Retrieve guard check function, nullptr if instrumentation is inlined.
2756   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2757     // The target provides a guard check function to validate the guard value.
2758     // Generate a call to that function with the content of the guard slot as
2759     // argument.
2760     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2761     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2762 
2763     TargetLowering::ArgListTy Args;
2764     TargetLowering::ArgListEntry Entry;
2765     Entry.Node = GuardVal;
2766     Entry.Ty = FnTy->getParamType(0);
2767     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2768       Entry.IsInReg = true;
2769     Args.push_back(Entry);
2770 
2771     TargetLowering::CallLoweringInfo CLI(DAG);
2772     CLI.setDebugLoc(getCurSDLoc())
2773         .setChain(DAG.getEntryNode())
2774         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2775                    getValue(GuardCheckFn), std::move(Args));
2776 
2777     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2778     DAG.setRoot(Result.second);
2779     return;
2780   }
2781 
2782   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2783   // Otherwise, emit a volatile load to retrieve the stack guard value.
2784   SDValue Chain = DAG.getEntryNode();
2785   if (TLI.useLoadStackGuardNode()) {
2786     Guard = getLoadStackGuard(DAG, dl, Chain);
2787   } else {
2788     const Value *IRGuard = TLI.getSDagStackGuard(M);
2789     SDValue GuardPtr = getValue(IRGuard);
2790 
2791     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2792                         MachinePointerInfo(IRGuard, 0), Align,
2793                         MachineMemOperand::MOVolatile);
2794   }
2795 
2796   // Perform the comparison via a getsetcc.
2797   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2798                                                         *DAG.getContext(),
2799                                                         Guard.getValueType()),
2800                              Guard, GuardVal, ISD::SETNE);
2801 
2802   // If the guard/stackslot do not equal, branch to failure MBB.
2803   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2804                                MVT::Other, GuardVal.getOperand(0),
2805                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2806   // Otherwise branch to success MBB.
2807   SDValue Br = DAG.getNode(ISD::BR, dl,
2808                            MVT::Other, BrCond,
2809                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2810 
2811   DAG.setRoot(Br);
2812 }
2813 
2814 /// Codegen the failure basic block for a stack protector check.
2815 ///
2816 /// A failure stack protector machine basic block consists simply of a call to
2817 /// __stack_chk_fail().
2818 ///
2819 /// For a high level explanation of how this fits into the stack protector
2820 /// generation see the comment on the declaration of class
2821 /// StackProtectorDescriptor.
2822 void
2823 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2825   TargetLowering::MakeLibCallOptions CallOptions;
2826   CallOptions.setDiscardResult(true);
2827   SDValue Chain =
2828       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2829                       std::nullopt, CallOptions, getCurSDLoc())
2830           .second;
2831   // On PS4/PS5, the "return address" must still be within the calling
2832   // function, even if it's at the very end, so emit an explicit TRAP here.
2833   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2834   if (TM.getTargetTriple().isPS())
2835     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2836   // WebAssembly needs an unreachable instruction after a non-returning call,
2837   // because the function return type can be different from __stack_chk_fail's
2838   // return type (void).
2839   if (TM.getTargetTriple().isWasm())
2840     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2841 
2842   DAG.setRoot(Chain);
2843 }
2844 
2845 /// visitBitTestHeader - This function emits necessary code to produce value
2846 /// suitable for "bit tests"
2847 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2848                                              MachineBasicBlock *SwitchBB) {
2849   SDLoc dl = getCurSDLoc();
2850 
2851   // Subtract the minimum value.
2852   SDValue SwitchOp = getValue(B.SValue);
2853   EVT VT = SwitchOp.getValueType();
2854   SDValue RangeSub =
2855       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2856 
2857   // Determine the type of the test operands.
2858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2859   bool UsePtrType = false;
2860   if (!TLI.isTypeLegal(VT)) {
2861     UsePtrType = true;
2862   } else {
2863     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2864       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2865         // Switch table case range are encoded into series of masks.
2866         // Just use pointer type, it's guaranteed to fit.
2867         UsePtrType = true;
2868         break;
2869       }
2870   }
2871   SDValue Sub = RangeSub;
2872   if (UsePtrType) {
2873     VT = TLI.getPointerTy(DAG.getDataLayout());
2874     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2875   }
2876 
2877   B.RegVT = VT.getSimpleVT();
2878   B.Reg = FuncInfo.CreateReg(B.RegVT);
2879   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2880 
2881   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2882 
2883   if (!B.FallthroughUnreachable)
2884     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2885   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2886   SwitchBB->normalizeSuccProbs();
2887 
2888   SDValue Root = CopyTo;
2889   if (!B.FallthroughUnreachable) {
2890     // Conditional branch to the default block.
2891     SDValue RangeCmp = DAG.getSetCC(dl,
2892         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2893                                RangeSub.getValueType()),
2894         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2895         ISD::SETUGT);
2896 
2897     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2898                        DAG.getBasicBlock(B.Default));
2899   }
2900 
2901   // Avoid emitting unnecessary branches to the next block.
2902   if (MBB != NextBlock(SwitchBB))
2903     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2904 
2905   DAG.setRoot(Root);
2906 }
2907 
2908 /// visitBitTestCase - this function produces one "bit test"
2909 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2910                                            MachineBasicBlock* NextMBB,
2911                                            BranchProbability BranchProbToNext,
2912                                            unsigned Reg,
2913                                            BitTestCase &B,
2914                                            MachineBasicBlock *SwitchBB) {
2915   SDLoc dl = getCurSDLoc();
2916   MVT VT = BB.RegVT;
2917   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2918   SDValue Cmp;
2919   unsigned PopCount = llvm::popcount(B.Mask);
2920   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2921   if (PopCount == 1) {
2922     // Testing for a single bit; just compare the shift count with what it
2923     // would need to be to shift a 1 bit in that position.
2924     Cmp = DAG.getSetCC(
2925         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2926         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2927         ISD::SETEQ);
2928   } else if (PopCount == BB.Range) {
2929     // There is only one zero bit in the range, test for it directly.
2930     Cmp = DAG.getSetCC(
2931         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2932         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2933   } else {
2934     // Make desired shift
2935     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2936                                     DAG.getConstant(1, dl, VT), ShiftOp);
2937 
2938     // Emit bit tests and jumps
2939     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2940                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2941     Cmp = DAG.getSetCC(
2942         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2943         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2944   }
2945 
2946   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2947   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2948   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2949   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2950   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2951   // one as they are relative probabilities (and thus work more like weights),
2952   // and hence we need to normalize them to let the sum of them become one.
2953   SwitchBB->normalizeSuccProbs();
2954 
2955   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2956                               MVT::Other, getControlRoot(),
2957                               Cmp, DAG.getBasicBlock(B.TargetBB));
2958 
2959   // Avoid emitting unnecessary branches to the next block.
2960   if (NextMBB != NextBlock(SwitchBB))
2961     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2962                         DAG.getBasicBlock(NextMBB));
2963 
2964   DAG.setRoot(BrAnd);
2965 }
2966 
2967 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2968   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2969 
2970   // Retrieve successors. Look through artificial IR level blocks like
2971   // catchswitch for successors.
2972   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2973   const BasicBlock *EHPadBB = I.getSuccessor(1);
2974 
2975   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2976   // have to do anything here to lower funclet bundles.
2977   assert(!I.hasOperandBundlesOtherThan(
2978              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2979               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2980               LLVMContext::OB_cfguardtarget,
2981               LLVMContext::OB_clang_arc_attachedcall}) &&
2982          "Cannot lower invokes with arbitrary operand bundles yet!");
2983 
2984   const Value *Callee(I.getCalledOperand());
2985   const Function *Fn = dyn_cast<Function>(Callee);
2986   if (isa<InlineAsm>(Callee))
2987     visitInlineAsm(I, EHPadBB);
2988   else if (Fn && Fn->isIntrinsic()) {
2989     switch (Fn->getIntrinsicID()) {
2990     default:
2991       llvm_unreachable("Cannot invoke this intrinsic");
2992     case Intrinsic::donothing:
2993       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2994     case Intrinsic::seh_try_begin:
2995     case Intrinsic::seh_scope_begin:
2996     case Intrinsic::seh_try_end:
2997     case Intrinsic::seh_scope_end:
2998       break;
2999     case Intrinsic::experimental_patchpoint_void:
3000     case Intrinsic::experimental_patchpoint_i64:
3001       visitPatchpoint(I, EHPadBB);
3002       break;
3003     case Intrinsic::experimental_gc_statepoint:
3004       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3005       break;
3006     case Intrinsic::wasm_rethrow: {
3007       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3008       // special because it can be invoked, so we manually lower it to a DAG
3009       // node here.
3010       SmallVector<SDValue, 8> Ops;
3011       Ops.push_back(getRoot()); // inchain
3012       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3013       Ops.push_back(
3014           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3015                                 TLI.getPointerTy(DAG.getDataLayout())));
3016       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3017       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3018       break;
3019     }
3020     }
3021   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3022     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3023     // Eventually we will support lowering the @llvm.experimental.deoptimize
3024     // intrinsic, and right now there are no plans to support other intrinsics
3025     // with deopt state.
3026     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3027   } else {
3028     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3029   }
3030 
3031   // If the value of the invoke is used outside of its defining block, make it
3032   // available as a virtual register.
3033   // We already took care of the exported value for the statepoint instruction
3034   // during call to the LowerStatepoint.
3035   if (!isa<GCStatepointInst>(I)) {
3036     CopyToExportRegsIfNeeded(&I);
3037   }
3038 
3039   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3040   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3041   BranchProbability EHPadBBProb =
3042       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3043           : BranchProbability::getZero();
3044   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3045 
3046   // Update successor info.
3047   addSuccessorWithProb(InvokeMBB, Return);
3048   for (auto &UnwindDest : UnwindDests) {
3049     UnwindDest.first->setIsEHPad();
3050     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3051   }
3052   InvokeMBB->normalizeSuccProbs();
3053 
3054   // Drop into normal successor.
3055   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3056                           DAG.getBasicBlock(Return)));
3057 }
3058 
3059 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3060   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3061 
3062   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3063   // have to do anything here to lower funclet bundles.
3064   assert(!I.hasOperandBundlesOtherThan(
3065              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3066          "Cannot lower callbrs with arbitrary operand bundles yet!");
3067 
3068   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3069   visitInlineAsm(I);
3070   CopyToExportRegsIfNeeded(&I);
3071 
3072   // Retrieve successors.
3073   SmallPtrSet<BasicBlock *, 8> Dests;
3074   Dests.insert(I.getDefaultDest());
3075   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3076 
3077   // Update successor info.
3078   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3079   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3080     BasicBlock *Dest = I.getIndirectDest(i);
3081     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3082     Target->setIsInlineAsmBrIndirectTarget();
3083     Target->setMachineBlockAddressTaken();
3084     Target->setLabelMustBeEmitted();
3085     // Don't add duplicate machine successors.
3086     if (Dests.insert(Dest).second)
3087       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3088   }
3089   CallBrMBB->normalizeSuccProbs();
3090 
3091   // Drop into default successor.
3092   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3093                           MVT::Other, getControlRoot(),
3094                           DAG.getBasicBlock(Return)));
3095 }
3096 
3097 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3098   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3099 }
3100 
3101 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3102   assert(FuncInfo.MBB->isEHPad() &&
3103          "Call to landingpad not in landing pad!");
3104 
3105   // If there aren't registers to copy the values into (e.g., during SjLj
3106   // exceptions), then don't bother to create these DAG nodes.
3107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3108   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3109   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3110       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3111     return;
3112 
3113   // If landingpad's return type is token type, we don't create DAG nodes
3114   // for its exception pointer and selector value. The extraction of exception
3115   // pointer or selector value from token type landingpads is not currently
3116   // supported.
3117   if (LP.getType()->isTokenTy())
3118     return;
3119 
3120   SmallVector<EVT, 2> ValueVTs;
3121   SDLoc dl = getCurSDLoc();
3122   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3123   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3124 
3125   // Get the two live-in registers as SDValues. The physregs have already been
3126   // copied into virtual registers.
3127   SDValue Ops[2];
3128   if (FuncInfo.ExceptionPointerVirtReg) {
3129     Ops[0] = DAG.getZExtOrTrunc(
3130         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3131                            FuncInfo.ExceptionPointerVirtReg,
3132                            TLI.getPointerTy(DAG.getDataLayout())),
3133         dl, ValueVTs[0]);
3134   } else {
3135     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3136   }
3137   Ops[1] = DAG.getZExtOrTrunc(
3138       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3139                          FuncInfo.ExceptionSelectorVirtReg,
3140                          TLI.getPointerTy(DAG.getDataLayout())),
3141       dl, ValueVTs[1]);
3142 
3143   // Merge into one.
3144   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3145                             DAG.getVTList(ValueVTs), Ops);
3146   setValue(&LP, Res);
3147 }
3148 
3149 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3150                                            MachineBasicBlock *Last) {
3151   // Update JTCases.
3152   for (JumpTableBlock &JTB : SL->JTCases)
3153     if (JTB.first.HeaderBB == First)
3154       JTB.first.HeaderBB = Last;
3155 
3156   // Update BitTestCases.
3157   for (BitTestBlock &BTB : SL->BitTestCases)
3158     if (BTB.Parent == First)
3159       BTB.Parent = Last;
3160 }
3161 
3162 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3163   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3164 
3165   // Update machine-CFG edges with unique successors.
3166   SmallSet<BasicBlock*, 32> Done;
3167   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3168     BasicBlock *BB = I.getSuccessor(i);
3169     bool Inserted = Done.insert(BB).second;
3170     if (!Inserted)
3171         continue;
3172 
3173     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3174     addSuccessorWithProb(IndirectBrMBB, Succ);
3175   }
3176   IndirectBrMBB->normalizeSuccProbs();
3177 
3178   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3179                           MVT::Other, getControlRoot(),
3180                           getValue(I.getAddress())));
3181 }
3182 
3183 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3184   if (!DAG.getTarget().Options.TrapUnreachable)
3185     return;
3186 
3187   // We may be able to ignore unreachable behind a noreturn call.
3188   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3189     const BasicBlock &BB = *I.getParent();
3190     if (&I != &BB.front()) {
3191       BasicBlock::const_iterator PredI =
3192         std::prev(BasicBlock::const_iterator(&I));
3193       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3194         if (Call->doesNotReturn())
3195           return;
3196       }
3197     }
3198   }
3199 
3200   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3201 }
3202 
3203 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3204   SDNodeFlags Flags;
3205   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3206     Flags.copyFMF(*FPOp);
3207 
3208   SDValue Op = getValue(I.getOperand(0));
3209   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3210                                     Op, Flags);
3211   setValue(&I, UnNodeValue);
3212 }
3213 
3214 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3215   SDNodeFlags Flags;
3216   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3217     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3218     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3219   }
3220   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3221     Flags.setExact(ExactOp->isExact());
3222   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3223     Flags.copyFMF(*FPOp);
3224 
3225   SDValue Op1 = getValue(I.getOperand(0));
3226   SDValue Op2 = getValue(I.getOperand(1));
3227   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3228                                      Op1, Op2, Flags);
3229   setValue(&I, BinNodeValue);
3230 }
3231 
3232 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3233   SDValue Op1 = getValue(I.getOperand(0));
3234   SDValue Op2 = getValue(I.getOperand(1));
3235 
3236   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3237       Op1.getValueType(), DAG.getDataLayout());
3238 
3239   // Coerce the shift amount to the right type if we can. This exposes the
3240   // truncate or zext to optimization early.
3241   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3242     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3243            "Unexpected shift type");
3244     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3245   }
3246 
3247   bool nuw = false;
3248   bool nsw = false;
3249   bool exact = false;
3250 
3251   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3252 
3253     if (const OverflowingBinaryOperator *OFBinOp =
3254             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3255       nuw = OFBinOp->hasNoUnsignedWrap();
3256       nsw = OFBinOp->hasNoSignedWrap();
3257     }
3258     if (const PossiblyExactOperator *ExactOp =
3259             dyn_cast<const PossiblyExactOperator>(&I))
3260       exact = ExactOp->isExact();
3261   }
3262   SDNodeFlags Flags;
3263   Flags.setExact(exact);
3264   Flags.setNoSignedWrap(nsw);
3265   Flags.setNoUnsignedWrap(nuw);
3266   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3267                             Flags);
3268   setValue(&I, Res);
3269 }
3270 
3271 void SelectionDAGBuilder::visitSDiv(const User &I) {
3272   SDValue Op1 = getValue(I.getOperand(0));
3273   SDValue Op2 = getValue(I.getOperand(1));
3274 
3275   SDNodeFlags Flags;
3276   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3277                  cast<PossiblyExactOperator>(&I)->isExact());
3278   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3279                            Op2, Flags));
3280 }
3281 
3282 void SelectionDAGBuilder::visitICmp(const User &I) {
3283   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3284   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3285     predicate = IC->getPredicate();
3286   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3287     predicate = ICmpInst::Predicate(IC->getPredicate());
3288   SDValue Op1 = getValue(I.getOperand(0));
3289   SDValue Op2 = getValue(I.getOperand(1));
3290   ISD::CondCode Opcode = getICmpCondCode(predicate);
3291 
3292   auto &TLI = DAG.getTargetLoweringInfo();
3293   EVT MemVT =
3294       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3295 
3296   // If a pointer's DAG type is larger than its memory type then the DAG values
3297   // are zero-extended. This breaks signed comparisons so truncate back to the
3298   // underlying type before doing the compare.
3299   if (Op1.getValueType() != MemVT) {
3300     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3301     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3302   }
3303 
3304   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3305                                                         I.getType());
3306   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3307 }
3308 
3309 void SelectionDAGBuilder::visitFCmp(const User &I) {
3310   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3311   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3312     predicate = FC->getPredicate();
3313   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3314     predicate = FCmpInst::Predicate(FC->getPredicate());
3315   SDValue Op1 = getValue(I.getOperand(0));
3316   SDValue Op2 = getValue(I.getOperand(1));
3317 
3318   ISD::CondCode Condition = getFCmpCondCode(predicate);
3319   auto *FPMO = cast<FPMathOperator>(&I);
3320   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3321     Condition = getFCmpCodeWithoutNaN(Condition);
3322 
3323   SDNodeFlags Flags;
3324   Flags.copyFMF(*FPMO);
3325   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3326 
3327   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3328                                                         I.getType());
3329   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3330 }
3331 
3332 // Check if the condition of the select has one use or two users that are both
3333 // selects with the same condition.
3334 static bool hasOnlySelectUsers(const Value *Cond) {
3335   return llvm::all_of(Cond->users(), [](const Value *V) {
3336     return isa<SelectInst>(V);
3337   });
3338 }
3339 
3340 void SelectionDAGBuilder::visitSelect(const User &I) {
3341   SmallVector<EVT, 4> ValueVTs;
3342   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3343                   ValueVTs);
3344   unsigned NumValues = ValueVTs.size();
3345   if (NumValues == 0) return;
3346 
3347   SmallVector<SDValue, 4> Values(NumValues);
3348   SDValue Cond     = getValue(I.getOperand(0));
3349   SDValue LHSVal   = getValue(I.getOperand(1));
3350   SDValue RHSVal   = getValue(I.getOperand(2));
3351   SmallVector<SDValue, 1> BaseOps(1, Cond);
3352   ISD::NodeType OpCode =
3353       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3354 
3355   bool IsUnaryAbs = false;
3356   bool Negate = false;
3357 
3358   SDNodeFlags Flags;
3359   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3360     Flags.copyFMF(*FPOp);
3361 
3362   // Min/max matching is only viable if all output VTs are the same.
3363   if (all_equal(ValueVTs)) {
3364     EVT VT = ValueVTs[0];
3365     LLVMContext &Ctx = *DAG.getContext();
3366     auto &TLI = DAG.getTargetLoweringInfo();
3367 
3368     // We care about the legality of the operation after it has been type
3369     // legalized.
3370     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3371       VT = TLI.getTypeToTransformTo(Ctx, VT);
3372 
3373     // If the vselect is legal, assume we want to leave this as a vector setcc +
3374     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3375     // min/max is legal on the scalar type.
3376     bool UseScalarMinMax = VT.isVector() &&
3377       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3378 
3379     // ValueTracking's select pattern matching does not account for -0.0,
3380     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3381     // -0.0 is less than +0.0.
3382     Value *LHS, *RHS;
3383     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3384     ISD::NodeType Opc = ISD::DELETED_NODE;
3385     switch (SPR.Flavor) {
3386     case SPF_UMAX:    Opc = ISD::UMAX; break;
3387     case SPF_UMIN:    Opc = ISD::UMIN; break;
3388     case SPF_SMAX:    Opc = ISD::SMAX; break;
3389     case SPF_SMIN:    Opc = ISD::SMIN; break;
3390     case SPF_FMINNUM:
3391       switch (SPR.NaNBehavior) {
3392       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3393       case SPNB_RETURNS_NAN: break;
3394       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3395       case SPNB_RETURNS_ANY:
3396         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3397             (UseScalarMinMax &&
3398              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3399           Opc = ISD::FMINNUM;
3400         break;
3401       }
3402       break;
3403     case SPF_FMAXNUM:
3404       switch (SPR.NaNBehavior) {
3405       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3406       case SPNB_RETURNS_NAN: break;
3407       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3408       case SPNB_RETURNS_ANY:
3409         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3410             (UseScalarMinMax &&
3411              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3412           Opc = ISD::FMAXNUM;
3413         break;
3414       }
3415       break;
3416     case SPF_NABS:
3417       Negate = true;
3418       [[fallthrough]];
3419     case SPF_ABS:
3420       IsUnaryAbs = true;
3421       Opc = ISD::ABS;
3422       break;
3423     default: break;
3424     }
3425 
3426     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3427         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3428          (UseScalarMinMax &&
3429           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3430         // If the underlying comparison instruction is used by any other
3431         // instruction, the consumed instructions won't be destroyed, so it is
3432         // not profitable to convert to a min/max.
3433         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3434       OpCode = Opc;
3435       LHSVal = getValue(LHS);
3436       RHSVal = getValue(RHS);
3437       BaseOps.clear();
3438     }
3439 
3440     if (IsUnaryAbs) {
3441       OpCode = Opc;
3442       LHSVal = getValue(LHS);
3443       BaseOps.clear();
3444     }
3445   }
3446 
3447   if (IsUnaryAbs) {
3448     for (unsigned i = 0; i != NumValues; ++i) {
3449       SDLoc dl = getCurSDLoc();
3450       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3451       Values[i] =
3452           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3453       if (Negate)
3454         Values[i] = DAG.getNegative(Values[i], dl, VT);
3455     }
3456   } else {
3457     for (unsigned i = 0; i != NumValues; ++i) {
3458       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3459       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3460       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3461       Values[i] = DAG.getNode(
3462           OpCode, getCurSDLoc(),
3463           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3464     }
3465   }
3466 
3467   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3468                            DAG.getVTList(ValueVTs), Values));
3469 }
3470 
3471 void SelectionDAGBuilder::visitTrunc(const User &I) {
3472   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3473   SDValue N = getValue(I.getOperand(0));
3474   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3475                                                         I.getType());
3476   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3477 }
3478 
3479 void SelectionDAGBuilder::visitZExt(const User &I) {
3480   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3481   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3482   SDValue N = getValue(I.getOperand(0));
3483   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3484                                                         I.getType());
3485   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3486 }
3487 
3488 void SelectionDAGBuilder::visitSExt(const User &I) {
3489   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3490   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3491   SDValue N = getValue(I.getOperand(0));
3492   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3493                                                         I.getType());
3494   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3495 }
3496 
3497 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3498   // FPTrunc is never a no-op cast, no need to check
3499   SDValue N = getValue(I.getOperand(0));
3500   SDLoc dl = getCurSDLoc();
3501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3502   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3503   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3504                            DAG.getTargetConstant(
3505                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3506 }
3507 
3508 void SelectionDAGBuilder::visitFPExt(const User &I) {
3509   // FPExt is never a no-op cast, no need to check
3510   SDValue N = getValue(I.getOperand(0));
3511   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3512                                                         I.getType());
3513   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3514 }
3515 
3516 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3517   // FPToUI is never a no-op cast, no need to check
3518   SDValue N = getValue(I.getOperand(0));
3519   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3520                                                         I.getType());
3521   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3522 }
3523 
3524 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3525   // FPToSI is never a no-op cast, no need to check
3526   SDValue N = getValue(I.getOperand(0));
3527   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3528                                                         I.getType());
3529   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3530 }
3531 
3532 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3533   // UIToFP is never a no-op cast, no need to check
3534   SDValue N = getValue(I.getOperand(0));
3535   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3536                                                         I.getType());
3537   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3538 }
3539 
3540 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3541   // SIToFP is never a no-op cast, no need to check
3542   SDValue N = getValue(I.getOperand(0));
3543   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3544                                                         I.getType());
3545   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3546 }
3547 
3548 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3549   // What to do depends on the size of the integer and the size of the pointer.
3550   // We can either truncate, zero extend, or no-op, accordingly.
3551   SDValue N = getValue(I.getOperand(0));
3552   auto &TLI = DAG.getTargetLoweringInfo();
3553   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3554                                                         I.getType());
3555   EVT PtrMemVT =
3556       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3557   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3558   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3559   setValue(&I, N);
3560 }
3561 
3562 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3563   // What to do depends on the size of the integer and the size of the pointer.
3564   // We can either truncate, zero extend, or no-op, accordingly.
3565   SDValue N = getValue(I.getOperand(0));
3566   auto &TLI = DAG.getTargetLoweringInfo();
3567   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3568   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3569   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3570   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3571   setValue(&I, N);
3572 }
3573 
3574 void SelectionDAGBuilder::visitBitCast(const User &I) {
3575   SDValue N = getValue(I.getOperand(0));
3576   SDLoc dl = getCurSDLoc();
3577   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3578                                                         I.getType());
3579 
3580   // BitCast assures us that source and destination are the same size so this is
3581   // either a BITCAST or a no-op.
3582   if (DestVT != N.getValueType())
3583     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3584                              DestVT, N)); // convert types.
3585   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3586   // might fold any kind of constant expression to an integer constant and that
3587   // is not what we are looking for. Only recognize a bitcast of a genuine
3588   // constant integer as an opaque constant.
3589   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3590     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3591                                  /*isOpaque*/true));
3592   else
3593     setValue(&I, N);            // noop cast.
3594 }
3595 
3596 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3597   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3598   const Value *SV = I.getOperand(0);
3599   SDValue N = getValue(SV);
3600   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3601 
3602   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3603   unsigned DestAS = I.getType()->getPointerAddressSpace();
3604 
3605   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3606     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3607 
3608   setValue(&I, N);
3609 }
3610 
3611 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3612   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3613   SDValue InVec = getValue(I.getOperand(0));
3614   SDValue InVal = getValue(I.getOperand(1));
3615   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3616                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3617   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3618                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3619                            InVec, InVal, InIdx));
3620 }
3621 
3622 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3624   SDValue InVec = getValue(I.getOperand(0));
3625   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3626                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3627   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3628                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3629                            InVec, InIdx));
3630 }
3631 
3632 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3633   SDValue Src1 = getValue(I.getOperand(0));
3634   SDValue Src2 = getValue(I.getOperand(1));
3635   ArrayRef<int> Mask;
3636   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3637     Mask = SVI->getShuffleMask();
3638   else
3639     Mask = cast<ConstantExpr>(I).getShuffleMask();
3640   SDLoc DL = getCurSDLoc();
3641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3642   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3643   EVT SrcVT = Src1.getValueType();
3644 
3645   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3646       VT.isScalableVector()) {
3647     // Canonical splat form of first element of first input vector.
3648     SDValue FirstElt =
3649         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3650                     DAG.getVectorIdxConstant(0, DL));
3651     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3652     return;
3653   }
3654 
3655   // For now, we only handle splats for scalable vectors.
3656   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3657   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3658   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3659 
3660   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3661   unsigned MaskNumElts = Mask.size();
3662 
3663   if (SrcNumElts == MaskNumElts) {
3664     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3665     return;
3666   }
3667 
3668   // Normalize the shuffle vector since mask and vector length don't match.
3669   if (SrcNumElts < MaskNumElts) {
3670     // Mask is longer than the source vectors. We can use concatenate vector to
3671     // make the mask and vectors lengths match.
3672 
3673     if (MaskNumElts % SrcNumElts == 0) {
3674       // Mask length is a multiple of the source vector length.
3675       // Check if the shuffle is some kind of concatenation of the input
3676       // vectors.
3677       unsigned NumConcat = MaskNumElts / SrcNumElts;
3678       bool IsConcat = true;
3679       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3680       for (unsigned i = 0; i != MaskNumElts; ++i) {
3681         int Idx = Mask[i];
3682         if (Idx < 0)
3683           continue;
3684         // Ensure the indices in each SrcVT sized piece are sequential and that
3685         // the same source is used for the whole piece.
3686         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3687             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3688              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3689           IsConcat = false;
3690           break;
3691         }
3692         // Remember which source this index came from.
3693         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3694       }
3695 
3696       // The shuffle is concatenating multiple vectors together. Just emit
3697       // a CONCAT_VECTORS operation.
3698       if (IsConcat) {
3699         SmallVector<SDValue, 8> ConcatOps;
3700         for (auto Src : ConcatSrcs) {
3701           if (Src < 0)
3702             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3703           else if (Src == 0)
3704             ConcatOps.push_back(Src1);
3705           else
3706             ConcatOps.push_back(Src2);
3707         }
3708         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3709         return;
3710       }
3711     }
3712 
3713     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3714     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3715     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3716                                     PaddedMaskNumElts);
3717 
3718     // Pad both vectors with undefs to make them the same length as the mask.
3719     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3720 
3721     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3722     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3723     MOps1[0] = Src1;
3724     MOps2[0] = Src2;
3725 
3726     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3727     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3728 
3729     // Readjust mask for new input vector length.
3730     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3731     for (unsigned i = 0; i != MaskNumElts; ++i) {
3732       int Idx = Mask[i];
3733       if (Idx >= (int)SrcNumElts)
3734         Idx -= SrcNumElts - PaddedMaskNumElts;
3735       MappedOps[i] = Idx;
3736     }
3737 
3738     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3739 
3740     // If the concatenated vector was padded, extract a subvector with the
3741     // correct number of elements.
3742     if (MaskNumElts != PaddedMaskNumElts)
3743       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3744                            DAG.getVectorIdxConstant(0, DL));
3745 
3746     setValue(&I, Result);
3747     return;
3748   }
3749 
3750   if (SrcNumElts > MaskNumElts) {
3751     // Analyze the access pattern of the vector to see if we can extract
3752     // two subvectors and do the shuffle.
3753     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3754     bool CanExtract = true;
3755     for (int Idx : Mask) {
3756       unsigned Input = 0;
3757       if (Idx < 0)
3758         continue;
3759 
3760       if (Idx >= (int)SrcNumElts) {
3761         Input = 1;
3762         Idx -= SrcNumElts;
3763       }
3764 
3765       // If all the indices come from the same MaskNumElts sized portion of
3766       // the sources we can use extract. Also make sure the extract wouldn't
3767       // extract past the end of the source.
3768       int NewStartIdx = alignDown(Idx, MaskNumElts);
3769       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3770           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3771         CanExtract = false;
3772       // Make sure we always update StartIdx as we use it to track if all
3773       // elements are undef.
3774       StartIdx[Input] = NewStartIdx;
3775     }
3776 
3777     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3778       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3779       return;
3780     }
3781     if (CanExtract) {
3782       // Extract appropriate subvector and generate a vector shuffle
3783       for (unsigned Input = 0; Input < 2; ++Input) {
3784         SDValue &Src = Input == 0 ? Src1 : Src2;
3785         if (StartIdx[Input] < 0)
3786           Src = DAG.getUNDEF(VT);
3787         else {
3788           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3789                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3790         }
3791       }
3792 
3793       // Calculate new mask.
3794       SmallVector<int, 8> MappedOps(Mask);
3795       for (int &Idx : MappedOps) {
3796         if (Idx >= (int)SrcNumElts)
3797           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3798         else if (Idx >= 0)
3799           Idx -= StartIdx[0];
3800       }
3801 
3802       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3803       return;
3804     }
3805   }
3806 
3807   // We can't use either concat vectors or extract subvectors so fall back to
3808   // replacing the shuffle with extract and build vector.
3809   // to insert and build vector.
3810   EVT EltVT = VT.getVectorElementType();
3811   SmallVector<SDValue,8> Ops;
3812   for (int Idx : Mask) {
3813     SDValue Res;
3814 
3815     if (Idx < 0) {
3816       Res = DAG.getUNDEF(EltVT);
3817     } else {
3818       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3819       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3820 
3821       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3822                         DAG.getVectorIdxConstant(Idx, DL));
3823     }
3824 
3825     Ops.push_back(Res);
3826   }
3827 
3828   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3829 }
3830 
3831 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3832   ArrayRef<unsigned> Indices = I.getIndices();
3833   const Value *Op0 = I.getOperand(0);
3834   const Value *Op1 = I.getOperand(1);
3835   Type *AggTy = I.getType();
3836   Type *ValTy = Op1->getType();
3837   bool IntoUndef = isa<UndefValue>(Op0);
3838   bool FromUndef = isa<UndefValue>(Op1);
3839 
3840   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3841 
3842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3843   SmallVector<EVT, 4> AggValueVTs;
3844   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3845   SmallVector<EVT, 4> ValValueVTs;
3846   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3847 
3848   unsigned NumAggValues = AggValueVTs.size();
3849   unsigned NumValValues = ValValueVTs.size();
3850   SmallVector<SDValue, 4> Values(NumAggValues);
3851 
3852   // Ignore an insertvalue that produces an empty object
3853   if (!NumAggValues) {
3854     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3855     return;
3856   }
3857 
3858   SDValue Agg = getValue(Op0);
3859   unsigned i = 0;
3860   // Copy the beginning value(s) from the original aggregate.
3861   for (; i != LinearIndex; ++i)
3862     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3863                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3864   // Copy values from the inserted value(s).
3865   if (NumValValues) {
3866     SDValue Val = getValue(Op1);
3867     for (; i != LinearIndex + NumValValues; ++i)
3868       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3869                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3870   }
3871   // Copy remaining value(s) from the original aggregate.
3872   for (; i != NumAggValues; ++i)
3873     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3874                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3875 
3876   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3877                            DAG.getVTList(AggValueVTs), Values));
3878 }
3879 
3880 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3881   ArrayRef<unsigned> Indices = I.getIndices();
3882   const Value *Op0 = I.getOperand(0);
3883   Type *AggTy = Op0->getType();
3884   Type *ValTy = I.getType();
3885   bool OutOfUndef = isa<UndefValue>(Op0);
3886 
3887   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3888 
3889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3890   SmallVector<EVT, 4> ValValueVTs;
3891   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3892 
3893   unsigned NumValValues = ValValueVTs.size();
3894 
3895   // Ignore a extractvalue that produces an empty object
3896   if (!NumValValues) {
3897     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3898     return;
3899   }
3900 
3901   SmallVector<SDValue, 4> Values(NumValValues);
3902 
3903   SDValue Agg = getValue(Op0);
3904   // Copy out the selected value(s).
3905   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3906     Values[i - LinearIndex] =
3907       OutOfUndef ?
3908         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3909         SDValue(Agg.getNode(), Agg.getResNo() + i);
3910 
3911   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3912                            DAG.getVTList(ValValueVTs), Values));
3913 }
3914 
3915 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3916   Value *Op0 = I.getOperand(0);
3917   // Note that the pointer operand may be a vector of pointers. Take the scalar
3918   // element which holds a pointer.
3919   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3920   SDValue N = getValue(Op0);
3921   SDLoc dl = getCurSDLoc();
3922   auto &TLI = DAG.getTargetLoweringInfo();
3923 
3924   // Normalize Vector GEP - all scalar operands should be converted to the
3925   // splat vector.
3926   bool IsVectorGEP = I.getType()->isVectorTy();
3927   ElementCount VectorElementCount =
3928       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3929                   : ElementCount::getFixed(0);
3930 
3931   if (IsVectorGEP && !N.getValueType().isVector()) {
3932     LLVMContext &Context = *DAG.getContext();
3933     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3934     N = DAG.getSplat(VT, dl, N);
3935   }
3936 
3937   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3938        GTI != E; ++GTI) {
3939     const Value *Idx = GTI.getOperand();
3940     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3941       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3942       if (Field) {
3943         // N = N + Offset
3944         uint64_t Offset =
3945             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3946 
3947         // In an inbounds GEP with an offset that is nonnegative even when
3948         // interpreted as signed, assume there is no unsigned overflow.
3949         SDNodeFlags Flags;
3950         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3951           Flags.setNoUnsignedWrap(true);
3952 
3953         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3954                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3955       }
3956     } else {
3957       // IdxSize is the width of the arithmetic according to IR semantics.
3958       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3959       // (and fix up the result later).
3960       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3961       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3962       TypeSize ElementSize =
3963           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3964       // We intentionally mask away the high bits here; ElementSize may not
3965       // fit in IdxTy.
3966       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3967       bool ElementScalable = ElementSize.isScalable();
3968 
3969       // If this is a scalar constant or a splat vector of constants,
3970       // handle it quickly.
3971       const auto *C = dyn_cast<Constant>(Idx);
3972       if (C && isa<VectorType>(C->getType()))
3973         C = C->getSplatValue();
3974 
3975       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3976       if (CI && CI->isZero())
3977         continue;
3978       if (CI && !ElementScalable) {
3979         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3980         LLVMContext &Context = *DAG.getContext();
3981         SDValue OffsVal;
3982         if (IsVectorGEP)
3983           OffsVal = DAG.getConstant(
3984               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3985         else
3986           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3987 
3988         // In an inbounds GEP with an offset that is nonnegative even when
3989         // interpreted as signed, assume there is no unsigned overflow.
3990         SDNodeFlags Flags;
3991         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3992           Flags.setNoUnsignedWrap(true);
3993 
3994         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3995 
3996         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3997         continue;
3998       }
3999 
4000       // N = N + Idx * ElementMul;
4001       SDValue IdxN = getValue(Idx);
4002 
4003       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4004         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4005                                   VectorElementCount);
4006         IdxN = DAG.getSplat(VT, dl, IdxN);
4007       }
4008 
4009       // If the index is smaller or larger than intptr_t, truncate or extend
4010       // it.
4011       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4012 
4013       if (ElementScalable) {
4014         EVT VScaleTy = N.getValueType().getScalarType();
4015         SDValue VScale = DAG.getNode(
4016             ISD::VSCALE, dl, VScaleTy,
4017             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4018         if (IsVectorGEP)
4019           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4020         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4021       } else {
4022         // If this is a multiply by a power of two, turn it into a shl
4023         // immediately.  This is a very common case.
4024         if (ElementMul != 1) {
4025           if (ElementMul.isPowerOf2()) {
4026             unsigned Amt = ElementMul.logBase2();
4027             IdxN = DAG.getNode(ISD::SHL, dl,
4028                                N.getValueType(), IdxN,
4029                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4030           } else {
4031             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4032                                             IdxN.getValueType());
4033             IdxN = DAG.getNode(ISD::MUL, dl,
4034                                N.getValueType(), IdxN, Scale);
4035           }
4036         }
4037       }
4038 
4039       N = DAG.getNode(ISD::ADD, dl,
4040                       N.getValueType(), N, IdxN);
4041     }
4042   }
4043 
4044   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4045   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4046   if (IsVectorGEP) {
4047     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4048     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4049   }
4050 
4051   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4052     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4053 
4054   setValue(&I, N);
4055 }
4056 
4057 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4058   // If this is a fixed sized alloca in the entry block of the function,
4059   // allocate it statically on the stack.
4060   if (FuncInfo.StaticAllocaMap.count(&I))
4061     return;   // getValue will auto-populate this.
4062 
4063   SDLoc dl = getCurSDLoc();
4064   Type *Ty = I.getAllocatedType();
4065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4066   auto &DL = DAG.getDataLayout();
4067   TypeSize TySize = DL.getTypeAllocSize(Ty);
4068   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4069 
4070   SDValue AllocSize = getValue(I.getArraySize());
4071 
4072   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4073   if (AllocSize.getValueType() != IntPtr)
4074     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4075 
4076   if (TySize.isScalable())
4077     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4078                             DAG.getVScale(dl, IntPtr,
4079                                           APInt(IntPtr.getScalarSizeInBits(),
4080                                                 TySize.getKnownMinValue())));
4081   else
4082     AllocSize =
4083         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4084                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4085 
4086   // Handle alignment.  If the requested alignment is less than or equal to
4087   // the stack alignment, ignore it.  If the size is greater than or equal to
4088   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4089   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4090   if (*Alignment <= StackAlign)
4091     Alignment = std::nullopt;
4092 
4093   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4094   // Round the size of the allocation up to the stack alignment size
4095   // by add SA-1 to the size. This doesn't overflow because we're computing
4096   // an address inside an alloca.
4097   SDNodeFlags Flags;
4098   Flags.setNoUnsignedWrap(true);
4099   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4100                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4101 
4102   // Mask out the low bits for alignment purposes.
4103   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4104                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4105 
4106   SDValue Ops[] = {
4107       getRoot(), AllocSize,
4108       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4109   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4110   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4111   setValue(&I, DSA);
4112   DAG.setRoot(DSA.getValue(1));
4113 
4114   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4115 }
4116 
4117 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4118   if (I.isAtomic())
4119     return visitAtomicLoad(I);
4120 
4121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4122   const Value *SV = I.getOperand(0);
4123   if (TLI.supportSwiftError()) {
4124     // Swifterror values can come from either a function parameter with
4125     // swifterror attribute or an alloca with swifterror attribute.
4126     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4127       if (Arg->hasSwiftErrorAttr())
4128         return visitLoadFromSwiftError(I);
4129     }
4130 
4131     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4132       if (Alloca->isSwiftError())
4133         return visitLoadFromSwiftError(I);
4134     }
4135   }
4136 
4137   SDValue Ptr = getValue(SV);
4138 
4139   Type *Ty = I.getType();
4140   SmallVector<EVT, 4> ValueVTs, MemVTs;
4141   SmallVector<uint64_t, 4> Offsets;
4142   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4143   unsigned NumValues = ValueVTs.size();
4144   if (NumValues == 0)
4145     return;
4146 
4147   Align Alignment = I.getAlign();
4148   AAMDNodes AAInfo = I.getAAMetadata();
4149   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4150   bool isVolatile = I.isVolatile();
4151   MachineMemOperand::Flags MMOFlags =
4152       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4153 
4154   SDValue Root;
4155   bool ConstantMemory = false;
4156   if (isVolatile)
4157     // Serialize volatile loads with other side effects.
4158     Root = getRoot();
4159   else if (NumValues > MaxParallelChains)
4160     Root = getMemoryRoot();
4161   else if (AA &&
4162            AA->pointsToConstantMemory(MemoryLocation(
4163                SV,
4164                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4165                AAInfo))) {
4166     // Do not serialize (non-volatile) loads of constant memory with anything.
4167     Root = DAG.getEntryNode();
4168     ConstantMemory = true;
4169     MMOFlags |= MachineMemOperand::MOInvariant;
4170   } else {
4171     // Do not serialize non-volatile loads against each other.
4172     Root = DAG.getRoot();
4173   }
4174 
4175   SDLoc dl = getCurSDLoc();
4176 
4177   if (isVolatile)
4178     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4179 
4180   // An aggregate load cannot wrap around the address space, so offsets to its
4181   // parts don't wrap either.
4182   SDNodeFlags Flags;
4183   Flags.setNoUnsignedWrap(true);
4184 
4185   SmallVector<SDValue, 4> Values(NumValues);
4186   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4187   EVT PtrVT = Ptr.getValueType();
4188 
4189   unsigned ChainI = 0;
4190   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4191     // Serializing loads here may result in excessive register pressure, and
4192     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4193     // could recover a bit by hoisting nodes upward in the chain by recognizing
4194     // they are side-effect free or do not alias. The optimizer should really
4195     // avoid this case by converting large object/array copies to llvm.memcpy
4196     // (MaxParallelChains should always remain as failsafe).
4197     if (ChainI == MaxParallelChains) {
4198       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4199       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4200                                   ArrayRef(Chains.data(), ChainI));
4201       Root = Chain;
4202       ChainI = 0;
4203     }
4204     SDValue A = DAG.getNode(ISD::ADD, dl,
4205                             PtrVT, Ptr,
4206                             DAG.getConstant(Offsets[i], dl, PtrVT),
4207                             Flags);
4208 
4209     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4210                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4211                             MMOFlags, AAInfo, Ranges);
4212     Chains[ChainI] = L.getValue(1);
4213 
4214     if (MemVTs[i] != ValueVTs[i])
4215       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4216 
4217     Values[i] = L;
4218   }
4219 
4220   if (!ConstantMemory) {
4221     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4222                                 ArrayRef(Chains.data(), ChainI));
4223     if (isVolatile)
4224       DAG.setRoot(Chain);
4225     else
4226       PendingLoads.push_back(Chain);
4227   }
4228 
4229   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4230                            DAG.getVTList(ValueVTs), Values));
4231 }
4232 
4233 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4234   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4235          "call visitStoreToSwiftError when backend supports swifterror");
4236 
4237   SmallVector<EVT, 4> ValueVTs;
4238   SmallVector<uint64_t, 4> Offsets;
4239   const Value *SrcV = I.getOperand(0);
4240   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4241                   SrcV->getType(), ValueVTs, &Offsets);
4242   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4243          "expect a single EVT for swifterror");
4244 
4245   SDValue Src = getValue(SrcV);
4246   // Create a virtual register, then update the virtual register.
4247   Register VReg =
4248       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4249   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4250   // Chain can be getRoot or getControlRoot.
4251   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4252                                       SDValue(Src.getNode(), Src.getResNo()));
4253   DAG.setRoot(CopyNode);
4254 }
4255 
4256 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4257   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4258          "call visitLoadFromSwiftError when backend supports swifterror");
4259 
4260   assert(!I.isVolatile() &&
4261          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4262          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4263          "Support volatile, non temporal, invariant for load_from_swift_error");
4264 
4265   const Value *SV = I.getOperand(0);
4266   Type *Ty = I.getType();
4267   assert(
4268       (!AA ||
4269        !AA->pointsToConstantMemory(MemoryLocation(
4270            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4271            I.getAAMetadata()))) &&
4272       "load_from_swift_error should not be constant memory");
4273 
4274   SmallVector<EVT, 4> ValueVTs;
4275   SmallVector<uint64_t, 4> Offsets;
4276   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4277                   ValueVTs, &Offsets);
4278   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4279          "expect a single EVT for swifterror");
4280 
4281   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4282   SDValue L = DAG.getCopyFromReg(
4283       getRoot(), getCurSDLoc(),
4284       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4285 
4286   setValue(&I, L);
4287 }
4288 
4289 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4290   if (I.isAtomic())
4291     return visitAtomicStore(I);
4292 
4293   const Value *SrcV = I.getOperand(0);
4294   const Value *PtrV = I.getOperand(1);
4295 
4296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4297   if (TLI.supportSwiftError()) {
4298     // Swifterror values can come from either a function parameter with
4299     // swifterror attribute or an alloca with swifterror attribute.
4300     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4301       if (Arg->hasSwiftErrorAttr())
4302         return visitStoreToSwiftError(I);
4303     }
4304 
4305     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4306       if (Alloca->isSwiftError())
4307         return visitStoreToSwiftError(I);
4308     }
4309   }
4310 
4311   SmallVector<EVT, 4> ValueVTs, MemVTs;
4312   SmallVector<uint64_t, 4> Offsets;
4313   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4314                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4315   unsigned NumValues = ValueVTs.size();
4316   if (NumValues == 0)
4317     return;
4318 
4319   // Get the lowered operands. Note that we do this after
4320   // checking if NumResults is zero, because with zero results
4321   // the operands won't have values in the map.
4322   SDValue Src = getValue(SrcV);
4323   SDValue Ptr = getValue(PtrV);
4324 
4325   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4326   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4327   SDLoc dl = getCurSDLoc();
4328   Align Alignment = I.getAlign();
4329   AAMDNodes AAInfo = I.getAAMetadata();
4330 
4331   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4332 
4333   // An aggregate load cannot wrap around the address space, so offsets to its
4334   // parts don't wrap either.
4335   SDNodeFlags Flags;
4336   Flags.setNoUnsignedWrap(true);
4337 
4338   unsigned ChainI = 0;
4339   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4340     // See visitLoad comments.
4341     if (ChainI == MaxParallelChains) {
4342       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4343                                   ArrayRef(Chains.data(), ChainI));
4344       Root = Chain;
4345       ChainI = 0;
4346     }
4347     SDValue Add =
4348         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4349     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4350     if (MemVTs[i] != ValueVTs[i])
4351       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4352     SDValue St =
4353         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4354                      Alignment, MMOFlags, AAInfo);
4355     Chains[ChainI] = St;
4356   }
4357 
4358   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4359                                   ArrayRef(Chains.data(), ChainI));
4360   setValue(&I, StoreNode);
4361   DAG.setRoot(StoreNode);
4362 }
4363 
4364 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4365                                            bool IsCompressing) {
4366   SDLoc sdl = getCurSDLoc();
4367 
4368   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4369                                MaybeAlign &Alignment) {
4370     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4371     Src0 = I.getArgOperand(0);
4372     Ptr = I.getArgOperand(1);
4373     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4374     Mask = I.getArgOperand(3);
4375   };
4376   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4377                                     MaybeAlign &Alignment) {
4378     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4379     Src0 = I.getArgOperand(0);
4380     Ptr = I.getArgOperand(1);
4381     Mask = I.getArgOperand(2);
4382     Alignment = std::nullopt;
4383   };
4384 
4385   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4386   MaybeAlign Alignment;
4387   if (IsCompressing)
4388     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4389   else
4390     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4391 
4392   SDValue Ptr = getValue(PtrOperand);
4393   SDValue Src0 = getValue(Src0Operand);
4394   SDValue Mask = getValue(MaskOperand);
4395   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4396 
4397   EVT VT = Src0.getValueType();
4398   if (!Alignment)
4399     Alignment = DAG.getEVTAlign(VT);
4400 
4401   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4402       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4403       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4404   SDValue StoreNode =
4405       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4406                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4407   DAG.setRoot(StoreNode);
4408   setValue(&I, StoreNode);
4409 }
4410 
4411 // Get a uniform base for the Gather/Scatter intrinsic.
4412 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4413 // We try to represent it as a base pointer + vector of indices.
4414 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4415 // The first operand of the GEP may be a single pointer or a vector of pointers
4416 // Example:
4417 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4418 //  or
4419 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4420 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4421 //
4422 // When the first GEP operand is a single pointer - it is the uniform base we
4423 // are looking for. If first operand of the GEP is a splat vector - we
4424 // extract the splat value and use it as a uniform base.
4425 // In all other cases the function returns 'false'.
4426 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4427                            ISD::MemIndexType &IndexType, SDValue &Scale,
4428                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4429                            uint64_t ElemSize) {
4430   SelectionDAG& DAG = SDB->DAG;
4431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4432   const DataLayout &DL = DAG.getDataLayout();
4433 
4434   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4435 
4436   // Handle splat constant pointer.
4437   if (auto *C = dyn_cast<Constant>(Ptr)) {
4438     C = C->getSplatValue();
4439     if (!C)
4440       return false;
4441 
4442     Base = SDB->getValue(C);
4443 
4444     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4445     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4446     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4447     IndexType = ISD::SIGNED_SCALED;
4448     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4449     return true;
4450   }
4451 
4452   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4453   if (!GEP || GEP->getParent() != CurBB)
4454     return false;
4455 
4456   if (GEP->getNumOperands() != 2)
4457     return false;
4458 
4459   const Value *BasePtr = GEP->getPointerOperand();
4460   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4461 
4462   // Make sure the base is scalar and the index is a vector.
4463   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4464     return false;
4465 
4466   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4467 
4468   // Target may not support the required addressing mode.
4469   if (ScaleVal != 1 &&
4470       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4471     return false;
4472 
4473   Base = SDB->getValue(BasePtr);
4474   Index = SDB->getValue(IndexVal);
4475   IndexType = ISD::SIGNED_SCALED;
4476 
4477   Scale =
4478       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4479   return true;
4480 }
4481 
4482 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4483   SDLoc sdl = getCurSDLoc();
4484 
4485   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4486   const Value *Ptr = I.getArgOperand(1);
4487   SDValue Src0 = getValue(I.getArgOperand(0));
4488   SDValue Mask = getValue(I.getArgOperand(3));
4489   EVT VT = Src0.getValueType();
4490   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4491                         ->getMaybeAlignValue()
4492                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4494 
4495   SDValue Base;
4496   SDValue Index;
4497   ISD::MemIndexType IndexType;
4498   SDValue Scale;
4499   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4500                                     I.getParent(), VT.getScalarStoreSize());
4501 
4502   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4503   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4504       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4505       // TODO: Make MachineMemOperands aware of scalable
4506       // vectors.
4507       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4508   if (!UniformBase) {
4509     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4510     Index = getValue(Ptr);
4511     IndexType = ISD::SIGNED_SCALED;
4512     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4513   }
4514 
4515   EVT IdxVT = Index.getValueType();
4516   EVT EltTy = IdxVT.getVectorElementType();
4517   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4518     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4519     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4520   }
4521 
4522   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4523   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4524                                          Ops, MMO, IndexType, false);
4525   DAG.setRoot(Scatter);
4526   setValue(&I, Scatter);
4527 }
4528 
4529 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4530   SDLoc sdl = getCurSDLoc();
4531 
4532   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4533                               MaybeAlign &Alignment) {
4534     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4535     Ptr = I.getArgOperand(0);
4536     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4537     Mask = I.getArgOperand(2);
4538     Src0 = I.getArgOperand(3);
4539   };
4540   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4541                                  MaybeAlign &Alignment) {
4542     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4543     Ptr = I.getArgOperand(0);
4544     Alignment = std::nullopt;
4545     Mask = I.getArgOperand(1);
4546     Src0 = I.getArgOperand(2);
4547   };
4548 
4549   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4550   MaybeAlign Alignment;
4551   if (IsExpanding)
4552     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4553   else
4554     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4555 
4556   SDValue Ptr = getValue(PtrOperand);
4557   SDValue Src0 = getValue(Src0Operand);
4558   SDValue Mask = getValue(MaskOperand);
4559   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4560 
4561   EVT VT = Src0.getValueType();
4562   if (!Alignment)
4563     Alignment = DAG.getEVTAlign(VT);
4564 
4565   AAMDNodes AAInfo = I.getAAMetadata();
4566   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4567 
4568   // Do not serialize masked loads of constant memory with anything.
4569   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4570   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4571 
4572   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4573 
4574   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4575       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4576       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4577 
4578   SDValue Load =
4579       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4580                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4581   if (AddToChain)
4582     PendingLoads.push_back(Load.getValue(1));
4583   setValue(&I, Load);
4584 }
4585 
4586 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4587   SDLoc sdl = getCurSDLoc();
4588 
4589   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4590   const Value *Ptr = I.getArgOperand(0);
4591   SDValue Src0 = getValue(I.getArgOperand(3));
4592   SDValue Mask = getValue(I.getArgOperand(2));
4593 
4594   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4595   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4596   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4597                         ->getMaybeAlignValue()
4598                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4599 
4600   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4601 
4602   SDValue Root = DAG.getRoot();
4603   SDValue Base;
4604   SDValue Index;
4605   ISD::MemIndexType IndexType;
4606   SDValue Scale;
4607   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4608                                     I.getParent(), VT.getScalarStoreSize());
4609   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4610   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4611       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4612       // TODO: Make MachineMemOperands aware of scalable
4613       // vectors.
4614       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4615 
4616   if (!UniformBase) {
4617     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4618     Index = getValue(Ptr);
4619     IndexType = ISD::SIGNED_SCALED;
4620     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4621   }
4622 
4623   EVT IdxVT = Index.getValueType();
4624   EVT EltTy = IdxVT.getVectorElementType();
4625   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4626     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4627     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4628   }
4629 
4630   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4631   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4632                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4633 
4634   PendingLoads.push_back(Gather.getValue(1));
4635   setValue(&I, Gather);
4636 }
4637 
4638 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4639   SDLoc dl = getCurSDLoc();
4640   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4641   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4642   SyncScope::ID SSID = I.getSyncScopeID();
4643 
4644   SDValue InChain = getRoot();
4645 
4646   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4647   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4648 
4649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4650   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4651 
4652   MachineFunction &MF = DAG.getMachineFunction();
4653   MachineMemOperand *MMO = MF.getMachineMemOperand(
4654       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4655       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4656       FailureOrdering);
4657 
4658   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4659                                    dl, MemVT, VTs, InChain,
4660                                    getValue(I.getPointerOperand()),
4661                                    getValue(I.getCompareOperand()),
4662                                    getValue(I.getNewValOperand()), MMO);
4663 
4664   SDValue OutChain = L.getValue(2);
4665 
4666   setValue(&I, L);
4667   DAG.setRoot(OutChain);
4668 }
4669 
4670 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4671   SDLoc dl = getCurSDLoc();
4672   ISD::NodeType NT;
4673   switch (I.getOperation()) {
4674   default: llvm_unreachable("Unknown atomicrmw operation");
4675   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4676   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4677   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4678   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4679   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4680   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4681   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4682   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4683   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4684   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4685   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4686   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4687   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4688   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4689   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4690   case AtomicRMWInst::UIncWrap:
4691     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4692     break;
4693   case AtomicRMWInst::UDecWrap:
4694     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4695     break;
4696   }
4697   AtomicOrdering Ordering = I.getOrdering();
4698   SyncScope::ID SSID = I.getSyncScopeID();
4699 
4700   SDValue InChain = getRoot();
4701 
4702   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4704   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4705 
4706   MachineFunction &MF = DAG.getMachineFunction();
4707   MachineMemOperand *MMO = MF.getMachineMemOperand(
4708       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4709       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4710 
4711   SDValue L =
4712     DAG.getAtomic(NT, dl, MemVT, InChain,
4713                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4714                   MMO);
4715 
4716   SDValue OutChain = L.getValue(1);
4717 
4718   setValue(&I, L);
4719   DAG.setRoot(OutChain);
4720 }
4721 
4722 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4723   SDLoc dl = getCurSDLoc();
4724   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4725   SDValue Ops[3];
4726   Ops[0] = getRoot();
4727   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4728                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4729   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4730                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4731   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4732   setValue(&I, N);
4733   DAG.setRoot(N);
4734 }
4735 
4736 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4737   SDLoc dl = getCurSDLoc();
4738   AtomicOrdering Order = I.getOrdering();
4739   SyncScope::ID SSID = I.getSyncScopeID();
4740 
4741   SDValue InChain = getRoot();
4742 
4743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4744   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4745   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4746 
4747   if (!TLI.supportsUnalignedAtomics() &&
4748       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4749     report_fatal_error("Cannot generate unaligned atomic load");
4750 
4751   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4752 
4753   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4754       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4755       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4756 
4757   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4758 
4759   SDValue Ptr = getValue(I.getPointerOperand());
4760 
4761   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4762     // TODO: Once this is better exercised by tests, it should be merged with
4763     // the normal path for loads to prevent future divergence.
4764     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4765     if (MemVT != VT)
4766       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4767 
4768     setValue(&I, L);
4769     SDValue OutChain = L.getValue(1);
4770     if (!I.isUnordered())
4771       DAG.setRoot(OutChain);
4772     else
4773       PendingLoads.push_back(OutChain);
4774     return;
4775   }
4776 
4777   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4778                             Ptr, MMO);
4779 
4780   SDValue OutChain = L.getValue(1);
4781   if (MemVT != VT)
4782     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4783 
4784   setValue(&I, L);
4785   DAG.setRoot(OutChain);
4786 }
4787 
4788 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4789   SDLoc dl = getCurSDLoc();
4790 
4791   AtomicOrdering Ordering = I.getOrdering();
4792   SyncScope::ID SSID = I.getSyncScopeID();
4793 
4794   SDValue InChain = getRoot();
4795 
4796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4797   EVT MemVT =
4798       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4799 
4800   if (!TLI.supportsUnalignedAtomics() &&
4801       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4802     report_fatal_error("Cannot generate unaligned atomic store");
4803 
4804   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4805 
4806   MachineFunction &MF = DAG.getMachineFunction();
4807   MachineMemOperand *MMO = MF.getMachineMemOperand(
4808       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4809       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4810 
4811   SDValue Val = getValue(I.getValueOperand());
4812   if (Val.getValueType() != MemVT)
4813     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4814   SDValue Ptr = getValue(I.getPointerOperand());
4815 
4816   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4817     // TODO: Once this is better exercised by tests, it should be merged with
4818     // the normal path for stores to prevent future divergence.
4819     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4820     setValue(&I, S);
4821     DAG.setRoot(S);
4822     return;
4823   }
4824   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4825                                    Ptr, Val, MMO);
4826 
4827   setValue(&I, OutChain);
4828   DAG.setRoot(OutChain);
4829 }
4830 
4831 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4832 /// node.
4833 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4834                                                unsigned Intrinsic) {
4835   // Ignore the callsite's attributes. A specific call site may be marked with
4836   // readnone, but the lowering code will expect the chain based on the
4837   // definition.
4838   const Function *F = I.getCalledFunction();
4839   bool HasChain = !F->doesNotAccessMemory();
4840   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4841 
4842   // Build the operand list.
4843   SmallVector<SDValue, 8> Ops;
4844   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4845     if (OnlyLoad) {
4846       // We don't need to serialize loads against other loads.
4847       Ops.push_back(DAG.getRoot());
4848     } else {
4849       Ops.push_back(getRoot());
4850     }
4851   }
4852 
4853   // Info is set by getTgtMemIntrinsic
4854   TargetLowering::IntrinsicInfo Info;
4855   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4856   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4857                                                DAG.getMachineFunction(),
4858                                                Intrinsic);
4859 
4860   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4861   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4862       Info.opc == ISD::INTRINSIC_W_CHAIN)
4863     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4864                                         TLI.getPointerTy(DAG.getDataLayout())));
4865 
4866   // Add all operands of the call to the operand list.
4867   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4868     const Value *Arg = I.getArgOperand(i);
4869     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4870       Ops.push_back(getValue(Arg));
4871       continue;
4872     }
4873 
4874     // Use TargetConstant instead of a regular constant for immarg.
4875     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4876     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4877       assert(CI->getBitWidth() <= 64 &&
4878              "large intrinsic immediates not handled");
4879       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4880     } else {
4881       Ops.push_back(
4882           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4883     }
4884   }
4885 
4886   SmallVector<EVT, 4> ValueVTs;
4887   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4888 
4889   if (HasChain)
4890     ValueVTs.push_back(MVT::Other);
4891 
4892   SDVTList VTs = DAG.getVTList(ValueVTs);
4893 
4894   // Propagate fast-math-flags from IR to node(s).
4895   SDNodeFlags Flags;
4896   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4897     Flags.copyFMF(*FPMO);
4898   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4899 
4900   // Create the node.
4901   SDValue Result;
4902   // In some cases, custom collection of operands from CallInst I may be needed.
4903   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4904   if (IsTgtIntrinsic) {
4905     // This is target intrinsic that touches memory
4906     //
4907     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4908     //       didn't yield anything useful.
4909     MachinePointerInfo MPI;
4910     if (Info.ptrVal)
4911       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4912     else if (Info.fallbackAddressSpace)
4913       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4914     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4915                                      Info.memVT, MPI, Info.align, Info.flags,
4916                                      Info.size, I.getAAMetadata());
4917   } else if (!HasChain) {
4918     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4919   } else if (!I.getType()->isVoidTy()) {
4920     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4921   } else {
4922     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4923   }
4924 
4925   if (HasChain) {
4926     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4927     if (OnlyLoad)
4928       PendingLoads.push_back(Chain);
4929     else
4930       DAG.setRoot(Chain);
4931   }
4932 
4933   if (!I.getType()->isVoidTy()) {
4934     if (!isa<VectorType>(I.getType()))
4935       Result = lowerRangeToAssertZExt(DAG, I, Result);
4936 
4937     MaybeAlign Alignment = I.getRetAlign();
4938 
4939     // Insert `assertalign` node if there's an alignment.
4940     if (InsertAssertAlign && Alignment) {
4941       Result =
4942           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4943     }
4944 
4945     setValue(&I, Result);
4946   }
4947 }
4948 
4949 /// GetSignificand - Get the significand and build it into a floating-point
4950 /// number with exponent of 1:
4951 ///
4952 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4953 ///
4954 /// where Op is the hexadecimal representation of floating point value.
4955 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4956   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4957                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4958   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4959                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4960   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4961 }
4962 
4963 /// GetExponent - Get the exponent:
4964 ///
4965 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4966 ///
4967 /// where Op is the hexadecimal representation of floating point value.
4968 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4969                            const TargetLowering &TLI, const SDLoc &dl) {
4970   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4971                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4972   SDValue t1 = DAG.getNode(
4973       ISD::SRL, dl, MVT::i32, t0,
4974       DAG.getConstant(23, dl,
4975                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4976   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4977                            DAG.getConstant(127, dl, MVT::i32));
4978   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4979 }
4980 
4981 /// getF32Constant - Get 32-bit floating point constant.
4982 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4983                               const SDLoc &dl) {
4984   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4985                            MVT::f32);
4986 }
4987 
4988 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4989                                        SelectionDAG &DAG) {
4990   // TODO: What fast-math-flags should be set on the floating-point nodes?
4991 
4992   //   IntegerPartOfX = ((int32_t)(t0);
4993   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4994 
4995   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4996   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4997   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4998 
4999   //   IntegerPartOfX <<= 23;
5000   IntegerPartOfX =
5001       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5002                   DAG.getConstant(23, dl,
5003                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5004                                       MVT::i32, DAG.getDataLayout())));
5005 
5006   SDValue TwoToFractionalPartOfX;
5007   if (LimitFloatPrecision <= 6) {
5008     // For floating-point precision of 6:
5009     //
5010     //   TwoToFractionalPartOfX =
5011     //     0.997535578f +
5012     //       (0.735607626f + 0.252464424f * x) * x;
5013     //
5014     // error 0.0144103317, which is 6 bits
5015     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5016                              getF32Constant(DAG, 0x3e814304, dl));
5017     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5018                              getF32Constant(DAG, 0x3f3c50c8, dl));
5019     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5020     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5021                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5022   } else if (LimitFloatPrecision <= 12) {
5023     // For floating-point precision of 12:
5024     //
5025     //   TwoToFractionalPartOfX =
5026     //     0.999892986f +
5027     //       (0.696457318f +
5028     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5029     //
5030     // error 0.000107046256, which is 13 to 14 bits
5031     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5032                              getF32Constant(DAG, 0x3da235e3, dl));
5033     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5034                              getF32Constant(DAG, 0x3e65b8f3, dl));
5035     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5036     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5037                              getF32Constant(DAG, 0x3f324b07, dl));
5038     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5039     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5040                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5041   } else { // LimitFloatPrecision <= 18
5042     // For floating-point precision of 18:
5043     //
5044     //   TwoToFractionalPartOfX =
5045     //     0.999999982f +
5046     //       (0.693148872f +
5047     //         (0.240227044f +
5048     //           (0.554906021e-1f +
5049     //             (0.961591928e-2f +
5050     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5051     // error 2.47208000*10^(-7), which is better than 18 bits
5052     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5053                              getF32Constant(DAG, 0x3924b03e, dl));
5054     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5055                              getF32Constant(DAG, 0x3ab24b87, dl));
5056     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5057     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5058                              getF32Constant(DAG, 0x3c1d8c17, dl));
5059     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5060     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5061                              getF32Constant(DAG, 0x3d634a1d, dl));
5062     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5063     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5064                              getF32Constant(DAG, 0x3e75fe14, dl));
5065     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5066     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5067                               getF32Constant(DAG, 0x3f317234, dl));
5068     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5069     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5070                                          getF32Constant(DAG, 0x3f800000, dl));
5071   }
5072 
5073   // Add the exponent into the result in integer domain.
5074   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5075   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5076                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5077 }
5078 
5079 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5080 /// limited-precision mode.
5081 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5082                          const TargetLowering &TLI, SDNodeFlags Flags) {
5083   if (Op.getValueType() == MVT::f32 &&
5084       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5085 
5086     // Put the exponent in the right bit position for later addition to the
5087     // final result:
5088     //
5089     // t0 = Op * log2(e)
5090 
5091     // TODO: What fast-math-flags should be set here?
5092     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5093                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5094     return getLimitedPrecisionExp2(t0, dl, DAG);
5095   }
5096 
5097   // No special expansion.
5098   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5099 }
5100 
5101 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5102 /// limited-precision mode.
5103 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5104                          const TargetLowering &TLI, SDNodeFlags Flags) {
5105   // TODO: What fast-math-flags should be set on the floating-point nodes?
5106 
5107   if (Op.getValueType() == MVT::f32 &&
5108       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5109     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5110 
5111     // Scale the exponent by log(2).
5112     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5113     SDValue LogOfExponent =
5114         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5115                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5116 
5117     // Get the significand and build it into a floating-point number with
5118     // exponent of 1.
5119     SDValue X = GetSignificand(DAG, Op1, dl);
5120 
5121     SDValue LogOfMantissa;
5122     if (LimitFloatPrecision <= 6) {
5123       // For floating-point precision of 6:
5124       //
5125       //   LogofMantissa =
5126       //     -1.1609546f +
5127       //       (1.4034025f - 0.23903021f * x) * x;
5128       //
5129       // error 0.0034276066, which is better than 8 bits
5130       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5131                                getF32Constant(DAG, 0xbe74c456, dl));
5132       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5133                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5134       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5135       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5136                                   getF32Constant(DAG, 0x3f949a29, dl));
5137     } else if (LimitFloatPrecision <= 12) {
5138       // For floating-point precision of 12:
5139       //
5140       //   LogOfMantissa =
5141       //     -1.7417939f +
5142       //       (2.8212026f +
5143       //         (-1.4699568f +
5144       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5145       //
5146       // error 0.000061011436, which is 14 bits
5147       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5148                                getF32Constant(DAG, 0xbd67b6d6, dl));
5149       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5150                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5151       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5152       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5153                                getF32Constant(DAG, 0x3fbc278b, dl));
5154       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5155       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5156                                getF32Constant(DAG, 0x40348e95, dl));
5157       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5158       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5159                                   getF32Constant(DAG, 0x3fdef31a, dl));
5160     } else { // LimitFloatPrecision <= 18
5161       // For floating-point precision of 18:
5162       //
5163       //   LogOfMantissa =
5164       //     -2.1072184f +
5165       //       (4.2372794f +
5166       //         (-3.7029485f +
5167       //           (2.2781945f +
5168       //             (-0.87823314f +
5169       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5170       //
5171       // error 0.0000023660568, which is better than 18 bits
5172       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5173                                getF32Constant(DAG, 0xbc91e5ac, dl));
5174       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5175                                getF32Constant(DAG, 0x3e4350aa, dl));
5176       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5177       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5178                                getF32Constant(DAG, 0x3f60d3e3, dl));
5179       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5180       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5181                                getF32Constant(DAG, 0x4011cdf0, dl));
5182       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5183       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5184                                getF32Constant(DAG, 0x406cfd1c, dl));
5185       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5186       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5187                                getF32Constant(DAG, 0x408797cb, dl));
5188       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5189       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5190                                   getF32Constant(DAG, 0x4006dcab, dl));
5191     }
5192 
5193     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5194   }
5195 
5196   // No special expansion.
5197   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5198 }
5199 
5200 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5201 /// limited-precision mode.
5202 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5203                           const TargetLowering &TLI, SDNodeFlags Flags) {
5204   // TODO: What fast-math-flags should be set on the floating-point nodes?
5205 
5206   if (Op.getValueType() == MVT::f32 &&
5207       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5208     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5209 
5210     // Get the exponent.
5211     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5212 
5213     // Get the significand and build it into a floating-point number with
5214     // exponent of 1.
5215     SDValue X = GetSignificand(DAG, Op1, dl);
5216 
5217     // Different possible minimax approximations of significand in
5218     // floating-point for various degrees of accuracy over [1,2].
5219     SDValue Log2ofMantissa;
5220     if (LimitFloatPrecision <= 6) {
5221       // For floating-point precision of 6:
5222       //
5223       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5224       //
5225       // error 0.0049451742, which is more than 7 bits
5226       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5227                                getF32Constant(DAG, 0xbeb08fe0, dl));
5228       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5229                                getF32Constant(DAG, 0x40019463, dl));
5230       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5231       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5232                                    getF32Constant(DAG, 0x3fd6633d, dl));
5233     } else if (LimitFloatPrecision <= 12) {
5234       // For floating-point precision of 12:
5235       //
5236       //   Log2ofMantissa =
5237       //     -2.51285454f +
5238       //       (4.07009056f +
5239       //         (-2.12067489f +
5240       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5241       //
5242       // error 0.0000876136000, which is better than 13 bits
5243       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5244                                getF32Constant(DAG, 0xbda7262e, dl));
5245       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5246                                getF32Constant(DAG, 0x3f25280b, dl));
5247       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5248       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5249                                getF32Constant(DAG, 0x4007b923, dl));
5250       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5251       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5252                                getF32Constant(DAG, 0x40823e2f, dl));
5253       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5254       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5255                                    getF32Constant(DAG, 0x4020d29c, dl));
5256     } else { // LimitFloatPrecision <= 18
5257       // For floating-point precision of 18:
5258       //
5259       //   Log2ofMantissa =
5260       //     -3.0400495f +
5261       //       (6.1129976f +
5262       //         (-5.3420409f +
5263       //           (3.2865683f +
5264       //             (-1.2669343f +
5265       //               (0.27515199f -
5266       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5267       //
5268       // error 0.0000018516, which is better than 18 bits
5269       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5270                                getF32Constant(DAG, 0xbcd2769e, dl));
5271       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5272                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5273       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5274       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5275                                getF32Constant(DAG, 0x3fa22ae7, dl));
5276       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5277       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5278                                getF32Constant(DAG, 0x40525723, dl));
5279       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5280       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5281                                getF32Constant(DAG, 0x40aaf200, dl));
5282       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5283       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5284                                getF32Constant(DAG, 0x40c39dad, dl));
5285       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5286       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5287                                    getF32Constant(DAG, 0x4042902c, dl));
5288     }
5289 
5290     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5291   }
5292 
5293   // No special expansion.
5294   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5295 }
5296 
5297 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5298 /// limited-precision mode.
5299 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5300                            const TargetLowering &TLI, SDNodeFlags Flags) {
5301   // TODO: What fast-math-flags should be set on the floating-point nodes?
5302 
5303   if (Op.getValueType() == MVT::f32 &&
5304       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5305     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5306 
5307     // Scale the exponent by log10(2) [0.30102999f].
5308     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5309     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5310                                         getF32Constant(DAG, 0x3e9a209a, dl));
5311 
5312     // Get the significand and build it into a floating-point number with
5313     // exponent of 1.
5314     SDValue X = GetSignificand(DAG, Op1, dl);
5315 
5316     SDValue Log10ofMantissa;
5317     if (LimitFloatPrecision <= 6) {
5318       // For floating-point precision of 6:
5319       //
5320       //   Log10ofMantissa =
5321       //     -0.50419619f +
5322       //       (0.60948995f - 0.10380950f * x) * x;
5323       //
5324       // error 0.0014886165, which is 6 bits
5325       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5326                                getF32Constant(DAG, 0xbdd49a13, dl));
5327       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5328                                getF32Constant(DAG, 0x3f1c0789, dl));
5329       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5330       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5331                                     getF32Constant(DAG, 0x3f011300, dl));
5332     } else if (LimitFloatPrecision <= 12) {
5333       // For floating-point precision of 12:
5334       //
5335       //   Log10ofMantissa =
5336       //     -0.64831180f +
5337       //       (0.91751397f +
5338       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5339       //
5340       // error 0.00019228036, which is better than 12 bits
5341       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5342                                getF32Constant(DAG, 0x3d431f31, dl));
5343       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5344                                getF32Constant(DAG, 0x3ea21fb2, dl));
5345       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5346       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5347                                getF32Constant(DAG, 0x3f6ae232, dl));
5348       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5349       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5350                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5351     } else { // LimitFloatPrecision <= 18
5352       // For floating-point precision of 18:
5353       //
5354       //   Log10ofMantissa =
5355       //     -0.84299375f +
5356       //       (1.5327582f +
5357       //         (-1.0688956f +
5358       //           (0.49102474f +
5359       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5360       //
5361       // error 0.0000037995730, which is better than 18 bits
5362       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5363                                getF32Constant(DAG, 0x3c5d51ce, dl));
5364       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5365                                getF32Constant(DAG, 0x3e00685a, dl));
5366       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5367       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5368                                getF32Constant(DAG, 0x3efb6798, dl));
5369       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5370       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5371                                getF32Constant(DAG, 0x3f88d192, dl));
5372       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5373       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5374                                getF32Constant(DAG, 0x3fc4316c, dl));
5375       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5376       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5377                                     getF32Constant(DAG, 0x3f57ce70, dl));
5378     }
5379 
5380     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5381   }
5382 
5383   // No special expansion.
5384   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5385 }
5386 
5387 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5388 /// limited-precision mode.
5389 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5390                           const TargetLowering &TLI, SDNodeFlags Flags) {
5391   if (Op.getValueType() == MVT::f32 &&
5392       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5393     return getLimitedPrecisionExp2(Op, dl, DAG);
5394 
5395   // No special expansion.
5396   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5397 }
5398 
5399 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5400 /// limited-precision mode with x == 10.0f.
5401 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5402                          SelectionDAG &DAG, const TargetLowering &TLI,
5403                          SDNodeFlags Flags) {
5404   bool IsExp10 = false;
5405   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5406       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5407     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5408       APFloat Ten(10.0f);
5409       IsExp10 = LHSC->isExactlyValue(Ten);
5410     }
5411   }
5412 
5413   // TODO: What fast-math-flags should be set on the FMUL node?
5414   if (IsExp10) {
5415     // Put the exponent in the right bit position for later addition to the
5416     // final result:
5417     //
5418     //   #define LOG2OF10 3.3219281f
5419     //   t0 = Op * LOG2OF10;
5420     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5421                              getF32Constant(DAG, 0x40549a78, dl));
5422     return getLimitedPrecisionExp2(t0, dl, DAG);
5423   }
5424 
5425   // No special expansion.
5426   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5427 }
5428 
5429 /// ExpandPowI - Expand a llvm.powi intrinsic.
5430 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5431                           SelectionDAG &DAG) {
5432   // If RHS is a constant, we can expand this out to a multiplication tree if
5433   // it's beneficial on the target, otherwise we end up lowering to a call to
5434   // __powidf2 (for example).
5435   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5436     unsigned Val = RHSC->getSExtValue();
5437 
5438     // powi(x, 0) -> 1.0
5439     if (Val == 0)
5440       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5441 
5442     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5443             Val, DAG.shouldOptForSize())) {
5444       // Get the exponent as a positive value.
5445       if ((int)Val < 0)
5446         Val = -Val;
5447       // We use the simple binary decomposition method to generate the multiply
5448       // sequence.  There are more optimal ways to do this (for example,
5449       // powi(x,15) generates one more multiply than it should), but this has
5450       // the benefit of being both really simple and much better than a libcall.
5451       SDValue Res; // Logically starts equal to 1.0
5452       SDValue CurSquare = LHS;
5453       // TODO: Intrinsics should have fast-math-flags that propagate to these
5454       // nodes.
5455       while (Val) {
5456         if (Val & 1) {
5457           if (Res.getNode())
5458             Res =
5459                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5460           else
5461             Res = CurSquare; // 1.0*CurSquare.
5462         }
5463 
5464         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5465                                 CurSquare, CurSquare);
5466         Val >>= 1;
5467       }
5468 
5469       // If the original was negative, invert the result, producing 1/(x*x*x).
5470       if (RHSC->getSExtValue() < 0)
5471         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5472                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5473       return Res;
5474     }
5475   }
5476 
5477   // Otherwise, expand to a libcall.
5478   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5479 }
5480 
5481 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5482                             SDValue LHS, SDValue RHS, SDValue Scale,
5483                             SelectionDAG &DAG, const TargetLowering &TLI) {
5484   EVT VT = LHS.getValueType();
5485   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5486   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5487   LLVMContext &Ctx = *DAG.getContext();
5488 
5489   // If the type is legal but the operation isn't, this node might survive all
5490   // the way to operation legalization. If we end up there and we do not have
5491   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5492   // node.
5493 
5494   // Coax the legalizer into expanding the node during type legalization instead
5495   // by bumping the size by one bit. This will force it to Promote, enabling the
5496   // early expansion and avoiding the need to expand later.
5497 
5498   // We don't have to do this if Scale is 0; that can always be expanded, unless
5499   // it's a saturating signed operation. Those can experience true integer
5500   // division overflow, a case which we must avoid.
5501 
5502   // FIXME: We wouldn't have to do this (or any of the early
5503   // expansion/promotion) if it was possible to expand a libcall of an
5504   // illegal type during operation legalization. But it's not, so things
5505   // get a bit hacky.
5506   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5507   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5508       (TLI.isTypeLegal(VT) ||
5509        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5510     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5511         Opcode, VT, ScaleInt);
5512     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5513       EVT PromVT;
5514       if (VT.isScalarInteger())
5515         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5516       else if (VT.isVector()) {
5517         PromVT = VT.getVectorElementType();
5518         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5519         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5520       } else
5521         llvm_unreachable("Wrong VT for DIVFIX?");
5522       if (Signed) {
5523         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5524         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5525       } else {
5526         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5527         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5528       }
5529       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5530       // For saturating operations, we need to shift up the LHS to get the
5531       // proper saturation width, and then shift down again afterwards.
5532       if (Saturating)
5533         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5534                           DAG.getConstant(1, DL, ShiftTy));
5535       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5536       if (Saturating)
5537         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5538                           DAG.getConstant(1, DL, ShiftTy));
5539       return DAG.getZExtOrTrunc(Res, DL, VT);
5540     }
5541   }
5542 
5543   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5544 }
5545 
5546 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5547 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5548 static void
5549 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5550                      const SDValue &N) {
5551   switch (N.getOpcode()) {
5552   case ISD::CopyFromReg: {
5553     SDValue Op = N.getOperand(1);
5554     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5555                       Op.getValueType().getSizeInBits());
5556     return;
5557   }
5558   case ISD::BITCAST:
5559   case ISD::AssertZext:
5560   case ISD::AssertSext:
5561   case ISD::TRUNCATE:
5562     getUnderlyingArgRegs(Regs, N.getOperand(0));
5563     return;
5564   case ISD::BUILD_PAIR:
5565   case ISD::BUILD_VECTOR:
5566   case ISD::CONCAT_VECTORS:
5567     for (SDValue Op : N->op_values())
5568       getUnderlyingArgRegs(Regs, Op);
5569     return;
5570   default:
5571     return;
5572   }
5573 }
5574 
5575 /// If the DbgValueInst is a dbg_value of a function argument, create the
5576 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5577 /// instruction selection, they will be inserted to the entry BB.
5578 /// We don't currently support this for variadic dbg_values, as they shouldn't
5579 /// appear for function arguments or in the prologue.
5580 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5581     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5582     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5583   const Argument *Arg = dyn_cast<Argument>(V);
5584   if (!Arg)
5585     return false;
5586 
5587   MachineFunction &MF = DAG.getMachineFunction();
5588   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5589 
5590   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5591   // we've been asked to pursue.
5592   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5593                               bool Indirect) {
5594     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5595       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5596       // pointing at the VReg, which will be patched up later.
5597       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5598       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5599           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5600           /* isKill */ false, /* isDead */ false,
5601           /* isUndef */ false, /* isEarlyClobber */ false,
5602           /* SubReg */ 0, /* isDebug */ true)});
5603 
5604       auto *NewDIExpr = FragExpr;
5605       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5606       // the DIExpression.
5607       if (Indirect)
5608         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5609       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5610       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5611       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5612     } else {
5613       // Create a completely standard DBG_VALUE.
5614       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5615       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5616     }
5617   };
5618 
5619   if (Kind == FuncArgumentDbgValueKind::Value) {
5620     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5621     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5622     // the entry block.
5623     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5624     if (!IsInEntryBlock)
5625       return false;
5626 
5627     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5628     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5629     // variable that also is a param.
5630     //
5631     // Although, if we are at the top of the entry block already, we can still
5632     // emit using ArgDbgValue. This might catch some situations when the
5633     // dbg.value refers to an argument that isn't used in the entry block, so
5634     // any CopyToReg node would be optimized out and the only way to express
5635     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5636     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5637     // we should only emit as ArgDbgValue if the Variable is an argument to the
5638     // current function, and the dbg.value intrinsic is found in the entry
5639     // block.
5640     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5641         !DL->getInlinedAt();
5642     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5643     if (!IsInPrologue && !VariableIsFunctionInputArg)
5644       return false;
5645 
5646     // Here we assume that a function argument on IR level only can be used to
5647     // describe one input parameter on source level. If we for example have
5648     // source code like this
5649     //
5650     //    struct A { long x, y; };
5651     //    void foo(struct A a, long b) {
5652     //      ...
5653     //      b = a.x;
5654     //      ...
5655     //    }
5656     //
5657     // and IR like this
5658     //
5659     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5660     //  entry:
5661     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5662     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5663     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5664     //    ...
5665     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5666     //    ...
5667     //
5668     // then the last dbg.value is describing a parameter "b" using a value that
5669     // is an argument. But since we already has used %a1 to describe a parameter
5670     // we should not handle that last dbg.value here (that would result in an
5671     // incorrect hoisting of the DBG_VALUE to the function entry).
5672     // Notice that we allow one dbg.value per IR level argument, to accommodate
5673     // for the situation with fragments above.
5674     if (VariableIsFunctionInputArg) {
5675       unsigned ArgNo = Arg->getArgNo();
5676       if (ArgNo >= FuncInfo.DescribedArgs.size())
5677         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5678       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5679         return false;
5680       FuncInfo.DescribedArgs.set(ArgNo);
5681     }
5682   }
5683 
5684   bool IsIndirect = false;
5685   std::optional<MachineOperand> Op;
5686   // Some arguments' frame index is recorded during argument lowering.
5687   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5688   if (FI != std::numeric_limits<int>::max())
5689     Op = MachineOperand::CreateFI(FI);
5690 
5691   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5692   if (!Op && N.getNode()) {
5693     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5694     Register Reg;
5695     if (ArgRegsAndSizes.size() == 1)
5696       Reg = ArgRegsAndSizes.front().first;
5697 
5698     if (Reg && Reg.isVirtual()) {
5699       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5700       Register PR = RegInfo.getLiveInPhysReg(Reg);
5701       if (PR)
5702         Reg = PR;
5703     }
5704     if (Reg) {
5705       Op = MachineOperand::CreateReg(Reg, false);
5706       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5707     }
5708   }
5709 
5710   if (!Op && N.getNode()) {
5711     // Check if frame index is available.
5712     SDValue LCandidate = peekThroughBitcasts(N);
5713     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5714       if (FrameIndexSDNode *FINode =
5715           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5716         Op = MachineOperand::CreateFI(FINode->getIndex());
5717   }
5718 
5719   if (!Op) {
5720     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5721     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5722                                          SplitRegs) {
5723       unsigned Offset = 0;
5724       for (const auto &RegAndSize : SplitRegs) {
5725         // If the expression is already a fragment, the current register
5726         // offset+size might extend beyond the fragment. In this case, only
5727         // the register bits that are inside the fragment are relevant.
5728         int RegFragmentSizeInBits = RegAndSize.second;
5729         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5730           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5731           // The register is entirely outside the expression fragment,
5732           // so is irrelevant for debug info.
5733           if (Offset >= ExprFragmentSizeInBits)
5734             break;
5735           // The register is partially outside the expression fragment, only
5736           // the low bits within the fragment are relevant for debug info.
5737           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5738             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5739           }
5740         }
5741 
5742         auto FragmentExpr = DIExpression::createFragmentExpression(
5743             Expr, Offset, RegFragmentSizeInBits);
5744         Offset += RegAndSize.second;
5745         // If a valid fragment expression cannot be created, the variable's
5746         // correct value cannot be determined and so it is set as Undef.
5747         if (!FragmentExpr) {
5748           SDDbgValue *SDV = DAG.getConstantDbgValue(
5749               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5750           DAG.AddDbgValue(SDV, false);
5751           continue;
5752         }
5753         MachineInstr *NewMI =
5754             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5755                              Kind != FuncArgumentDbgValueKind::Value);
5756         FuncInfo.ArgDbgValues.push_back(NewMI);
5757       }
5758     };
5759 
5760     // Check if ValueMap has reg number.
5761     DenseMap<const Value *, Register>::const_iterator
5762       VMI = FuncInfo.ValueMap.find(V);
5763     if (VMI != FuncInfo.ValueMap.end()) {
5764       const auto &TLI = DAG.getTargetLoweringInfo();
5765       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5766                        V->getType(), std::nullopt);
5767       if (RFV.occupiesMultipleRegs()) {
5768         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5769         return true;
5770       }
5771 
5772       Op = MachineOperand::CreateReg(VMI->second, false);
5773       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5774     } else if (ArgRegsAndSizes.size() > 1) {
5775       // This was split due to the calling convention, and no virtual register
5776       // mapping exists for the value.
5777       splitMultiRegDbgValue(ArgRegsAndSizes);
5778       return true;
5779     }
5780   }
5781 
5782   if (!Op)
5783     return false;
5784 
5785   assert(Variable->isValidLocationForIntrinsic(DL) &&
5786          "Expected inlined-at fields to agree");
5787   MachineInstr *NewMI = nullptr;
5788 
5789   if (Op->isReg())
5790     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5791   else
5792     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5793                     Variable, Expr);
5794 
5795   // Otherwise, use ArgDbgValues.
5796   FuncInfo.ArgDbgValues.push_back(NewMI);
5797   return true;
5798 }
5799 
5800 /// Return the appropriate SDDbgValue based on N.
5801 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5802                                              DILocalVariable *Variable,
5803                                              DIExpression *Expr,
5804                                              const DebugLoc &dl,
5805                                              unsigned DbgSDNodeOrder) {
5806   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5807     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5808     // stack slot locations.
5809     //
5810     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5811     // debug values here after optimization:
5812     //
5813     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5814     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5815     //
5816     // Both describe the direct values of their associated variables.
5817     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5818                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5819   }
5820   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5821                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5822 }
5823 
5824 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5825   switch (Intrinsic) {
5826   case Intrinsic::smul_fix:
5827     return ISD::SMULFIX;
5828   case Intrinsic::umul_fix:
5829     return ISD::UMULFIX;
5830   case Intrinsic::smul_fix_sat:
5831     return ISD::SMULFIXSAT;
5832   case Intrinsic::umul_fix_sat:
5833     return ISD::UMULFIXSAT;
5834   case Intrinsic::sdiv_fix:
5835     return ISD::SDIVFIX;
5836   case Intrinsic::udiv_fix:
5837     return ISD::UDIVFIX;
5838   case Intrinsic::sdiv_fix_sat:
5839     return ISD::SDIVFIXSAT;
5840   case Intrinsic::udiv_fix_sat:
5841     return ISD::UDIVFIXSAT;
5842   default:
5843     llvm_unreachable("Unhandled fixed point intrinsic");
5844   }
5845 }
5846 
5847 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5848                                            const char *FunctionName) {
5849   assert(FunctionName && "FunctionName must not be nullptr");
5850   SDValue Callee = DAG.getExternalSymbol(
5851       FunctionName,
5852       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5853   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5854 }
5855 
5856 /// Given a @llvm.call.preallocated.setup, return the corresponding
5857 /// preallocated call.
5858 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5859   assert(cast<CallBase>(PreallocatedSetup)
5860                  ->getCalledFunction()
5861                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5862          "expected call_preallocated_setup Value");
5863   for (const auto *U : PreallocatedSetup->users()) {
5864     auto *UseCall = cast<CallBase>(U);
5865     const Function *Fn = UseCall->getCalledFunction();
5866     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5867       return UseCall;
5868     }
5869   }
5870   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5871 }
5872 
5873 /// Lower the call to the specified intrinsic function.
5874 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5875                                              unsigned Intrinsic) {
5876   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5877   SDLoc sdl = getCurSDLoc();
5878   DebugLoc dl = getCurDebugLoc();
5879   SDValue Res;
5880 
5881   SDNodeFlags Flags;
5882   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5883     Flags.copyFMF(*FPOp);
5884 
5885   switch (Intrinsic) {
5886   default:
5887     // By default, turn this into a target intrinsic node.
5888     visitTargetIntrinsic(I, Intrinsic);
5889     return;
5890   case Intrinsic::vscale: {
5891     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5892     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5893     return;
5894   }
5895   case Intrinsic::vastart:  visitVAStart(I); return;
5896   case Intrinsic::vaend:    visitVAEnd(I); return;
5897   case Intrinsic::vacopy:   visitVACopy(I); return;
5898   case Intrinsic::returnaddress:
5899     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5900                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5901                              getValue(I.getArgOperand(0))));
5902     return;
5903   case Intrinsic::addressofreturnaddress:
5904     setValue(&I,
5905              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5906                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5907     return;
5908   case Intrinsic::sponentry:
5909     setValue(&I,
5910              DAG.getNode(ISD::SPONENTRY, sdl,
5911                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5912     return;
5913   case Intrinsic::frameaddress:
5914     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5915                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5916                              getValue(I.getArgOperand(0))));
5917     return;
5918   case Intrinsic::read_volatile_register:
5919   case Intrinsic::read_register: {
5920     Value *Reg = I.getArgOperand(0);
5921     SDValue Chain = getRoot();
5922     SDValue RegName =
5923         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5924     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5925     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5926       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5927     setValue(&I, Res);
5928     DAG.setRoot(Res.getValue(1));
5929     return;
5930   }
5931   case Intrinsic::write_register: {
5932     Value *Reg = I.getArgOperand(0);
5933     Value *RegValue = I.getArgOperand(1);
5934     SDValue Chain = getRoot();
5935     SDValue RegName =
5936         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5937     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5938                             RegName, getValue(RegValue)));
5939     return;
5940   }
5941   case Intrinsic::memcpy: {
5942     const auto &MCI = cast<MemCpyInst>(I);
5943     SDValue Op1 = getValue(I.getArgOperand(0));
5944     SDValue Op2 = getValue(I.getArgOperand(1));
5945     SDValue Op3 = getValue(I.getArgOperand(2));
5946     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5947     Align DstAlign = MCI.getDestAlign().valueOrOne();
5948     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5949     Align Alignment = std::min(DstAlign, SrcAlign);
5950     bool isVol = MCI.isVolatile();
5951     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5952     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5953     // node.
5954     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5955     SDValue MC = DAG.getMemcpy(
5956         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5957         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5958         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5959     updateDAGForMaybeTailCall(MC);
5960     return;
5961   }
5962   case Intrinsic::memcpy_inline: {
5963     const auto &MCI = cast<MemCpyInlineInst>(I);
5964     SDValue Dst = getValue(I.getArgOperand(0));
5965     SDValue Src = getValue(I.getArgOperand(1));
5966     SDValue Size = getValue(I.getArgOperand(2));
5967     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5968     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5969     Align DstAlign = MCI.getDestAlign().valueOrOne();
5970     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5971     Align Alignment = std::min(DstAlign, SrcAlign);
5972     bool isVol = MCI.isVolatile();
5973     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5974     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5975     // node.
5976     SDValue MC = DAG.getMemcpy(
5977         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5978         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5979         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5980     updateDAGForMaybeTailCall(MC);
5981     return;
5982   }
5983   case Intrinsic::memset: {
5984     const auto &MSI = cast<MemSetInst>(I);
5985     SDValue Op1 = getValue(I.getArgOperand(0));
5986     SDValue Op2 = getValue(I.getArgOperand(1));
5987     SDValue Op3 = getValue(I.getArgOperand(2));
5988     // @llvm.memset defines 0 and 1 to both mean no alignment.
5989     Align Alignment = MSI.getDestAlign().valueOrOne();
5990     bool isVol = MSI.isVolatile();
5991     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5992     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5993     SDValue MS = DAG.getMemset(
5994         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5995         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5996     updateDAGForMaybeTailCall(MS);
5997     return;
5998   }
5999   case Intrinsic::memset_inline: {
6000     const auto &MSII = cast<MemSetInlineInst>(I);
6001     SDValue Dst = getValue(I.getArgOperand(0));
6002     SDValue Value = getValue(I.getArgOperand(1));
6003     SDValue Size = getValue(I.getArgOperand(2));
6004     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6005     // @llvm.memset defines 0 and 1 to both mean no alignment.
6006     Align DstAlign = MSII.getDestAlign().valueOrOne();
6007     bool isVol = MSII.isVolatile();
6008     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6009     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6010     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6011                                /* AlwaysInline */ true, isTC,
6012                                MachinePointerInfo(I.getArgOperand(0)),
6013                                I.getAAMetadata());
6014     updateDAGForMaybeTailCall(MC);
6015     return;
6016   }
6017   case Intrinsic::memmove: {
6018     const auto &MMI = cast<MemMoveInst>(I);
6019     SDValue Op1 = getValue(I.getArgOperand(0));
6020     SDValue Op2 = getValue(I.getArgOperand(1));
6021     SDValue Op3 = getValue(I.getArgOperand(2));
6022     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6023     Align DstAlign = MMI.getDestAlign().valueOrOne();
6024     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6025     Align Alignment = std::min(DstAlign, SrcAlign);
6026     bool isVol = MMI.isVolatile();
6027     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6028     // FIXME: Support passing different dest/src alignments to the memmove DAG
6029     // node.
6030     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6031     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6032                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6033                                 MachinePointerInfo(I.getArgOperand(1)),
6034                                 I.getAAMetadata(), AA);
6035     updateDAGForMaybeTailCall(MM);
6036     return;
6037   }
6038   case Intrinsic::memcpy_element_unordered_atomic: {
6039     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6040     SDValue Dst = getValue(MI.getRawDest());
6041     SDValue Src = getValue(MI.getRawSource());
6042     SDValue Length = getValue(MI.getLength());
6043 
6044     Type *LengthTy = MI.getLength()->getType();
6045     unsigned ElemSz = MI.getElementSizeInBytes();
6046     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6047     SDValue MC =
6048         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6049                             isTC, MachinePointerInfo(MI.getRawDest()),
6050                             MachinePointerInfo(MI.getRawSource()));
6051     updateDAGForMaybeTailCall(MC);
6052     return;
6053   }
6054   case Intrinsic::memmove_element_unordered_atomic: {
6055     auto &MI = cast<AtomicMemMoveInst>(I);
6056     SDValue Dst = getValue(MI.getRawDest());
6057     SDValue Src = getValue(MI.getRawSource());
6058     SDValue Length = getValue(MI.getLength());
6059 
6060     Type *LengthTy = MI.getLength()->getType();
6061     unsigned ElemSz = MI.getElementSizeInBytes();
6062     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6063     SDValue MC =
6064         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6065                              isTC, MachinePointerInfo(MI.getRawDest()),
6066                              MachinePointerInfo(MI.getRawSource()));
6067     updateDAGForMaybeTailCall(MC);
6068     return;
6069   }
6070   case Intrinsic::memset_element_unordered_atomic: {
6071     auto &MI = cast<AtomicMemSetInst>(I);
6072     SDValue Dst = getValue(MI.getRawDest());
6073     SDValue Val = getValue(MI.getValue());
6074     SDValue Length = getValue(MI.getLength());
6075 
6076     Type *LengthTy = MI.getLength()->getType();
6077     unsigned ElemSz = MI.getElementSizeInBytes();
6078     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6079     SDValue MC =
6080         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6081                             isTC, MachinePointerInfo(MI.getRawDest()));
6082     updateDAGForMaybeTailCall(MC);
6083     return;
6084   }
6085   case Intrinsic::call_preallocated_setup: {
6086     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6087     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6088     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6089                               getRoot(), SrcValue);
6090     setValue(&I, Res);
6091     DAG.setRoot(Res);
6092     return;
6093   }
6094   case Intrinsic::call_preallocated_arg: {
6095     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6096     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6097     SDValue Ops[3];
6098     Ops[0] = getRoot();
6099     Ops[1] = SrcValue;
6100     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6101                                    MVT::i32); // arg index
6102     SDValue Res = DAG.getNode(
6103         ISD::PREALLOCATED_ARG, sdl,
6104         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6105     setValue(&I, Res);
6106     DAG.setRoot(Res.getValue(1));
6107     return;
6108   }
6109   case Intrinsic::dbg_declare: {
6110     // Debug intrinsics are handled separately in assignment tracking mode.
6111     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6112       return;
6113     // Assume dbg.declare can not currently use DIArgList, i.e.
6114     // it is non-variadic.
6115     const auto &DI = cast<DbgVariableIntrinsic>(I);
6116     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6117     DILocalVariable *Variable = DI.getVariable();
6118     DIExpression *Expression = DI.getExpression();
6119     dropDanglingDebugInfo(Variable, Expression);
6120     assert(Variable && "Missing variable");
6121     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6122                       << "\n");
6123     // Check if address has undef value.
6124     const Value *Address = DI.getVariableLocationOp(0);
6125     if (!Address || isa<UndefValue>(Address) ||
6126         (Address->use_empty() && !isa<Argument>(Address))) {
6127       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6128                         << " (bad/undef/unused-arg address)\n");
6129       return;
6130     }
6131 
6132     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6133 
6134     // Check if this variable can be described by a frame index, typically
6135     // either as a static alloca or a byval parameter.
6136     int FI = std::numeric_limits<int>::max();
6137     if (const auto *AI =
6138             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6139       if (AI->isStaticAlloca()) {
6140         auto I = FuncInfo.StaticAllocaMap.find(AI);
6141         if (I != FuncInfo.StaticAllocaMap.end())
6142           FI = I->second;
6143       }
6144     } else if (const auto *Arg = dyn_cast<Argument>(
6145                    Address->stripInBoundsConstantOffsets())) {
6146       FI = FuncInfo.getArgumentFrameIndex(Arg);
6147     }
6148 
6149     // llvm.dbg.declare is handled as a frame index in the MachineFunction
6150     // variable table.
6151     if (FI != std::numeric_limits<int>::max()) {
6152       LLVM_DEBUG(dbgs() << "Skipping " << DI
6153                         << " (variable info stashed in MF side table)\n");
6154       return;
6155     }
6156 
6157     SDValue &N = NodeMap[Address];
6158     if (!N.getNode() && isa<Argument>(Address))
6159       // Check unused arguments map.
6160       N = UnusedArgNodeMap[Address];
6161     SDDbgValue *SDV;
6162     if (N.getNode()) {
6163       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6164         Address = BCI->getOperand(0);
6165       // Parameters are handled specially.
6166       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6167       if (isParameter && FINode) {
6168         // Byval parameter. We have a frame index at this point.
6169         SDV =
6170             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6171                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6172       } else if (isa<Argument>(Address)) {
6173         // Address is an argument, so try to emit its dbg value using
6174         // virtual register info from the FuncInfo.ValueMap.
6175         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6176                                  FuncArgumentDbgValueKind::Declare, N);
6177         return;
6178       } else {
6179         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6180                               true, dl, SDNodeOrder);
6181       }
6182       DAG.AddDbgValue(SDV, isParameter);
6183     } else {
6184       // If Address is an argument then try to emit its dbg value using
6185       // virtual register info from the FuncInfo.ValueMap.
6186       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6187                                     FuncArgumentDbgValueKind::Declare, N)) {
6188         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6189                           << " (could not emit func-arg dbg_value)\n");
6190       }
6191     }
6192     return;
6193   }
6194   case Intrinsic::dbg_label: {
6195     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6196     DILabel *Label = DI.getLabel();
6197     assert(Label && "Missing label");
6198 
6199     SDDbgLabel *SDV;
6200     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6201     DAG.AddDbgLabel(SDV);
6202     return;
6203   }
6204   case Intrinsic::dbg_assign: {
6205     // Debug intrinsics are handled seperately in assignment tracking mode.
6206     assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
6207            "expected assignment tracking to be enabled");
6208     return;
6209   }
6210   case Intrinsic::dbg_value: {
6211     // Debug intrinsics are handled seperately in assignment tracking mode.
6212     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6213       return;
6214     const DbgValueInst &DI = cast<DbgValueInst>(I);
6215     assert(DI.getVariable() && "Missing variable");
6216 
6217     DILocalVariable *Variable = DI.getVariable();
6218     DIExpression *Expression = DI.getExpression();
6219     dropDanglingDebugInfo(Variable, Expression);
6220     SmallVector<Value *, 4> Values(DI.getValues());
6221     if (Values.empty())
6222       return;
6223 
6224     if (llvm::is_contained(Values, nullptr))
6225       return;
6226 
6227     bool IsVariadic = DI.hasArgList();
6228     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6229                           SDNodeOrder, IsVariadic))
6230       addDanglingDebugInfo(&DI, SDNodeOrder);
6231     return;
6232   }
6233 
6234   case Intrinsic::eh_typeid_for: {
6235     // Find the type id for the given typeinfo.
6236     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6237     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6238     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6239     setValue(&I, Res);
6240     return;
6241   }
6242 
6243   case Intrinsic::eh_return_i32:
6244   case Intrinsic::eh_return_i64:
6245     DAG.getMachineFunction().setCallsEHReturn(true);
6246     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6247                             MVT::Other,
6248                             getControlRoot(),
6249                             getValue(I.getArgOperand(0)),
6250                             getValue(I.getArgOperand(1))));
6251     return;
6252   case Intrinsic::eh_unwind_init:
6253     DAG.getMachineFunction().setCallsUnwindInit(true);
6254     return;
6255   case Intrinsic::eh_dwarf_cfa:
6256     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6257                              TLI.getPointerTy(DAG.getDataLayout()),
6258                              getValue(I.getArgOperand(0))));
6259     return;
6260   case Intrinsic::eh_sjlj_callsite: {
6261     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6262     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6263     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6264 
6265     MMI.setCurrentCallSite(CI->getZExtValue());
6266     return;
6267   }
6268   case Intrinsic::eh_sjlj_functioncontext: {
6269     // Get and store the index of the function context.
6270     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6271     AllocaInst *FnCtx =
6272       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6273     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6274     MFI.setFunctionContextIndex(FI);
6275     return;
6276   }
6277   case Intrinsic::eh_sjlj_setjmp: {
6278     SDValue Ops[2];
6279     Ops[0] = getRoot();
6280     Ops[1] = getValue(I.getArgOperand(0));
6281     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6282                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6283     setValue(&I, Op.getValue(0));
6284     DAG.setRoot(Op.getValue(1));
6285     return;
6286   }
6287   case Intrinsic::eh_sjlj_longjmp:
6288     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6289                             getRoot(), getValue(I.getArgOperand(0))));
6290     return;
6291   case Intrinsic::eh_sjlj_setup_dispatch:
6292     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6293                             getRoot()));
6294     return;
6295   case Intrinsic::masked_gather:
6296     visitMaskedGather(I);
6297     return;
6298   case Intrinsic::masked_load:
6299     visitMaskedLoad(I);
6300     return;
6301   case Intrinsic::masked_scatter:
6302     visitMaskedScatter(I);
6303     return;
6304   case Intrinsic::masked_store:
6305     visitMaskedStore(I);
6306     return;
6307   case Intrinsic::masked_expandload:
6308     visitMaskedLoad(I, true /* IsExpanding */);
6309     return;
6310   case Intrinsic::masked_compressstore:
6311     visitMaskedStore(I, true /* IsCompressing */);
6312     return;
6313   case Intrinsic::powi:
6314     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6315                             getValue(I.getArgOperand(1)), DAG));
6316     return;
6317   case Intrinsic::log:
6318     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6319     return;
6320   case Intrinsic::log2:
6321     setValue(&I,
6322              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6323     return;
6324   case Intrinsic::log10:
6325     setValue(&I,
6326              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6327     return;
6328   case Intrinsic::exp:
6329     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6330     return;
6331   case Intrinsic::exp2:
6332     setValue(&I,
6333              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6334     return;
6335   case Intrinsic::pow:
6336     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6337                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6338     return;
6339   case Intrinsic::sqrt:
6340   case Intrinsic::fabs:
6341   case Intrinsic::sin:
6342   case Intrinsic::cos:
6343   case Intrinsic::floor:
6344   case Intrinsic::ceil:
6345   case Intrinsic::trunc:
6346   case Intrinsic::rint:
6347   case Intrinsic::nearbyint:
6348   case Intrinsic::round:
6349   case Intrinsic::roundeven:
6350   case Intrinsic::canonicalize: {
6351     unsigned Opcode;
6352     switch (Intrinsic) {
6353     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6354     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6355     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6356     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6357     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6358     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6359     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6360     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6361     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6362     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6363     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6364     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6365     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6366     }
6367 
6368     setValue(&I, DAG.getNode(Opcode, sdl,
6369                              getValue(I.getArgOperand(0)).getValueType(),
6370                              getValue(I.getArgOperand(0)), Flags));
6371     return;
6372   }
6373   case Intrinsic::lround:
6374   case Intrinsic::llround:
6375   case Intrinsic::lrint:
6376   case Intrinsic::llrint: {
6377     unsigned Opcode;
6378     switch (Intrinsic) {
6379     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6380     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6381     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6382     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6383     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6384     }
6385 
6386     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6387     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6388                              getValue(I.getArgOperand(0))));
6389     return;
6390   }
6391   case Intrinsic::minnum:
6392     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6393                              getValue(I.getArgOperand(0)).getValueType(),
6394                              getValue(I.getArgOperand(0)),
6395                              getValue(I.getArgOperand(1)), Flags));
6396     return;
6397   case Intrinsic::maxnum:
6398     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6399                              getValue(I.getArgOperand(0)).getValueType(),
6400                              getValue(I.getArgOperand(0)),
6401                              getValue(I.getArgOperand(1)), Flags));
6402     return;
6403   case Intrinsic::minimum:
6404     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6405                              getValue(I.getArgOperand(0)).getValueType(),
6406                              getValue(I.getArgOperand(0)),
6407                              getValue(I.getArgOperand(1)), Flags));
6408     return;
6409   case Intrinsic::maximum:
6410     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6411                              getValue(I.getArgOperand(0)).getValueType(),
6412                              getValue(I.getArgOperand(0)),
6413                              getValue(I.getArgOperand(1)), Flags));
6414     return;
6415   case Intrinsic::copysign:
6416     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6417                              getValue(I.getArgOperand(0)).getValueType(),
6418                              getValue(I.getArgOperand(0)),
6419                              getValue(I.getArgOperand(1)), Flags));
6420     return;
6421   case Intrinsic::arithmetic_fence: {
6422     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6423                              getValue(I.getArgOperand(0)).getValueType(),
6424                              getValue(I.getArgOperand(0)), Flags));
6425     return;
6426   }
6427   case Intrinsic::fma:
6428     setValue(&I, DAG.getNode(
6429                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6430                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6431                      getValue(I.getArgOperand(2)), Flags));
6432     return;
6433 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6434   case Intrinsic::INTRINSIC:
6435 #include "llvm/IR/ConstrainedOps.def"
6436     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6437     return;
6438 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6439 #include "llvm/IR/VPIntrinsics.def"
6440     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6441     return;
6442   case Intrinsic::fptrunc_round: {
6443     // Get the last argument, the metadata and convert it to an integer in the
6444     // call
6445     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6446     std::optional<RoundingMode> RoundMode =
6447         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6448 
6449     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6450 
6451     // Propagate fast-math-flags from IR to node(s).
6452     SDNodeFlags Flags;
6453     Flags.copyFMF(*cast<FPMathOperator>(&I));
6454     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6455 
6456     SDValue Result;
6457     Result = DAG.getNode(
6458         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6459         DAG.getTargetConstant((int)*RoundMode, sdl,
6460                               TLI.getPointerTy(DAG.getDataLayout())));
6461     setValue(&I, Result);
6462 
6463     return;
6464   }
6465   case Intrinsic::fmuladd: {
6466     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6467     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6468         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6469       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6470                                getValue(I.getArgOperand(0)).getValueType(),
6471                                getValue(I.getArgOperand(0)),
6472                                getValue(I.getArgOperand(1)),
6473                                getValue(I.getArgOperand(2)), Flags));
6474     } else {
6475       // TODO: Intrinsic calls should have fast-math-flags.
6476       SDValue Mul = DAG.getNode(
6477           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6478           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6479       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6480                                 getValue(I.getArgOperand(0)).getValueType(),
6481                                 Mul, getValue(I.getArgOperand(2)), Flags);
6482       setValue(&I, Add);
6483     }
6484     return;
6485   }
6486   case Intrinsic::convert_to_fp16:
6487     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6488                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6489                                          getValue(I.getArgOperand(0)),
6490                                          DAG.getTargetConstant(0, sdl,
6491                                                                MVT::i32))));
6492     return;
6493   case Intrinsic::convert_from_fp16:
6494     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6495                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6496                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6497                                          getValue(I.getArgOperand(0)))));
6498     return;
6499   case Intrinsic::fptosi_sat: {
6500     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6501     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6502                              getValue(I.getArgOperand(0)),
6503                              DAG.getValueType(VT.getScalarType())));
6504     return;
6505   }
6506   case Intrinsic::fptoui_sat: {
6507     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6508     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6509                              getValue(I.getArgOperand(0)),
6510                              DAG.getValueType(VT.getScalarType())));
6511     return;
6512   }
6513   case Intrinsic::set_rounding:
6514     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6515                       {getRoot(), getValue(I.getArgOperand(0))});
6516     setValue(&I, Res);
6517     DAG.setRoot(Res.getValue(0));
6518     return;
6519   case Intrinsic::is_fpclass: {
6520     const DataLayout DLayout = DAG.getDataLayout();
6521     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6522     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6523     FPClassTest Test = static_cast<FPClassTest>(
6524         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6525     MachineFunction &MF = DAG.getMachineFunction();
6526     const Function &F = MF.getFunction();
6527     SDValue Op = getValue(I.getArgOperand(0));
6528     SDNodeFlags Flags;
6529     Flags.setNoFPExcept(
6530         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6531     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6532     // expansion can use illegal types. Making expansion early allows
6533     // legalizing these types prior to selection.
6534     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6535       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6536       setValue(&I, Result);
6537       return;
6538     }
6539 
6540     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6541     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6542     setValue(&I, V);
6543     return;
6544   }
6545   case Intrinsic::pcmarker: {
6546     SDValue Tmp = getValue(I.getArgOperand(0));
6547     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6548     return;
6549   }
6550   case Intrinsic::readcyclecounter: {
6551     SDValue Op = getRoot();
6552     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6553                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6554     setValue(&I, Res);
6555     DAG.setRoot(Res.getValue(1));
6556     return;
6557   }
6558   case Intrinsic::bitreverse:
6559     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6560                              getValue(I.getArgOperand(0)).getValueType(),
6561                              getValue(I.getArgOperand(0))));
6562     return;
6563   case Intrinsic::bswap:
6564     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6565                              getValue(I.getArgOperand(0)).getValueType(),
6566                              getValue(I.getArgOperand(0))));
6567     return;
6568   case Intrinsic::cttz: {
6569     SDValue Arg = getValue(I.getArgOperand(0));
6570     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6571     EVT Ty = Arg.getValueType();
6572     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6573                              sdl, Ty, Arg));
6574     return;
6575   }
6576   case Intrinsic::ctlz: {
6577     SDValue Arg = getValue(I.getArgOperand(0));
6578     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6579     EVT Ty = Arg.getValueType();
6580     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6581                              sdl, Ty, Arg));
6582     return;
6583   }
6584   case Intrinsic::ctpop: {
6585     SDValue Arg = getValue(I.getArgOperand(0));
6586     EVT Ty = Arg.getValueType();
6587     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6588     return;
6589   }
6590   case Intrinsic::fshl:
6591   case Intrinsic::fshr: {
6592     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6593     SDValue X = getValue(I.getArgOperand(0));
6594     SDValue Y = getValue(I.getArgOperand(1));
6595     SDValue Z = getValue(I.getArgOperand(2));
6596     EVT VT = X.getValueType();
6597 
6598     if (X == Y) {
6599       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6600       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6601     } else {
6602       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6603       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6604     }
6605     return;
6606   }
6607   case Intrinsic::sadd_sat: {
6608     SDValue Op1 = getValue(I.getArgOperand(0));
6609     SDValue Op2 = getValue(I.getArgOperand(1));
6610     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6611     return;
6612   }
6613   case Intrinsic::uadd_sat: {
6614     SDValue Op1 = getValue(I.getArgOperand(0));
6615     SDValue Op2 = getValue(I.getArgOperand(1));
6616     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6617     return;
6618   }
6619   case Intrinsic::ssub_sat: {
6620     SDValue Op1 = getValue(I.getArgOperand(0));
6621     SDValue Op2 = getValue(I.getArgOperand(1));
6622     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6623     return;
6624   }
6625   case Intrinsic::usub_sat: {
6626     SDValue Op1 = getValue(I.getArgOperand(0));
6627     SDValue Op2 = getValue(I.getArgOperand(1));
6628     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6629     return;
6630   }
6631   case Intrinsic::sshl_sat: {
6632     SDValue Op1 = getValue(I.getArgOperand(0));
6633     SDValue Op2 = getValue(I.getArgOperand(1));
6634     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6635     return;
6636   }
6637   case Intrinsic::ushl_sat: {
6638     SDValue Op1 = getValue(I.getArgOperand(0));
6639     SDValue Op2 = getValue(I.getArgOperand(1));
6640     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6641     return;
6642   }
6643   case Intrinsic::smul_fix:
6644   case Intrinsic::umul_fix:
6645   case Intrinsic::smul_fix_sat:
6646   case Intrinsic::umul_fix_sat: {
6647     SDValue Op1 = getValue(I.getArgOperand(0));
6648     SDValue Op2 = getValue(I.getArgOperand(1));
6649     SDValue Op3 = getValue(I.getArgOperand(2));
6650     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6651                              Op1.getValueType(), Op1, Op2, Op3));
6652     return;
6653   }
6654   case Intrinsic::sdiv_fix:
6655   case Intrinsic::udiv_fix:
6656   case Intrinsic::sdiv_fix_sat:
6657   case Intrinsic::udiv_fix_sat: {
6658     SDValue Op1 = getValue(I.getArgOperand(0));
6659     SDValue Op2 = getValue(I.getArgOperand(1));
6660     SDValue Op3 = getValue(I.getArgOperand(2));
6661     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6662                               Op1, Op2, Op3, DAG, TLI));
6663     return;
6664   }
6665   case Intrinsic::smax: {
6666     SDValue Op1 = getValue(I.getArgOperand(0));
6667     SDValue Op2 = getValue(I.getArgOperand(1));
6668     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6669     return;
6670   }
6671   case Intrinsic::smin: {
6672     SDValue Op1 = getValue(I.getArgOperand(0));
6673     SDValue Op2 = getValue(I.getArgOperand(1));
6674     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6675     return;
6676   }
6677   case Intrinsic::umax: {
6678     SDValue Op1 = getValue(I.getArgOperand(0));
6679     SDValue Op2 = getValue(I.getArgOperand(1));
6680     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6681     return;
6682   }
6683   case Intrinsic::umin: {
6684     SDValue Op1 = getValue(I.getArgOperand(0));
6685     SDValue Op2 = getValue(I.getArgOperand(1));
6686     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6687     return;
6688   }
6689   case Intrinsic::abs: {
6690     // TODO: Preserve "int min is poison" arg in SDAG?
6691     SDValue Op1 = getValue(I.getArgOperand(0));
6692     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6693     return;
6694   }
6695   case Intrinsic::stacksave: {
6696     SDValue Op = getRoot();
6697     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6698     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6699     setValue(&I, Res);
6700     DAG.setRoot(Res.getValue(1));
6701     return;
6702   }
6703   case Intrinsic::stackrestore:
6704     Res = getValue(I.getArgOperand(0));
6705     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6706     return;
6707   case Intrinsic::get_dynamic_area_offset: {
6708     SDValue Op = getRoot();
6709     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6710     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6711     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6712     // target.
6713     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6714       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6715                          " intrinsic!");
6716     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6717                       Op);
6718     DAG.setRoot(Op);
6719     setValue(&I, Res);
6720     return;
6721   }
6722   case Intrinsic::stackguard: {
6723     MachineFunction &MF = DAG.getMachineFunction();
6724     const Module &M = *MF.getFunction().getParent();
6725     SDValue Chain = getRoot();
6726     if (TLI.useLoadStackGuardNode()) {
6727       Res = getLoadStackGuard(DAG, sdl, Chain);
6728     } else {
6729       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6730       const Value *Global = TLI.getSDagStackGuard(M);
6731       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6732       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6733                         MachinePointerInfo(Global, 0), Align,
6734                         MachineMemOperand::MOVolatile);
6735     }
6736     if (TLI.useStackGuardXorFP())
6737       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6738     DAG.setRoot(Chain);
6739     setValue(&I, Res);
6740     return;
6741   }
6742   case Intrinsic::stackprotector: {
6743     // Emit code into the DAG to store the stack guard onto the stack.
6744     MachineFunction &MF = DAG.getMachineFunction();
6745     MachineFrameInfo &MFI = MF.getFrameInfo();
6746     SDValue Src, Chain = getRoot();
6747 
6748     if (TLI.useLoadStackGuardNode())
6749       Src = getLoadStackGuard(DAG, sdl, Chain);
6750     else
6751       Src = getValue(I.getArgOperand(0));   // The guard's value.
6752 
6753     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6754 
6755     int FI = FuncInfo.StaticAllocaMap[Slot];
6756     MFI.setStackProtectorIndex(FI);
6757     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6758 
6759     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6760 
6761     // Store the stack protector onto the stack.
6762     Res = DAG.getStore(
6763         Chain, sdl, Src, FIN,
6764         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6765         MaybeAlign(), MachineMemOperand::MOVolatile);
6766     setValue(&I, Res);
6767     DAG.setRoot(Res);
6768     return;
6769   }
6770   case Intrinsic::objectsize:
6771     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6772 
6773   case Intrinsic::is_constant:
6774     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6775 
6776   case Intrinsic::annotation:
6777   case Intrinsic::ptr_annotation:
6778   case Intrinsic::launder_invariant_group:
6779   case Intrinsic::strip_invariant_group:
6780     // Drop the intrinsic, but forward the value
6781     setValue(&I, getValue(I.getOperand(0)));
6782     return;
6783 
6784   case Intrinsic::assume:
6785   case Intrinsic::experimental_noalias_scope_decl:
6786   case Intrinsic::var_annotation:
6787   case Intrinsic::sideeffect:
6788     // Discard annotate attributes, noalias scope declarations, assumptions, and
6789     // artificial side-effects.
6790     return;
6791 
6792   case Intrinsic::codeview_annotation: {
6793     // Emit a label associated with this metadata.
6794     MachineFunction &MF = DAG.getMachineFunction();
6795     MCSymbol *Label =
6796         MF.getMMI().getContext().createTempSymbol("annotation", true);
6797     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6798     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6799     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6800     DAG.setRoot(Res);
6801     return;
6802   }
6803 
6804   case Intrinsic::init_trampoline: {
6805     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6806 
6807     SDValue Ops[6];
6808     Ops[0] = getRoot();
6809     Ops[1] = getValue(I.getArgOperand(0));
6810     Ops[2] = getValue(I.getArgOperand(1));
6811     Ops[3] = getValue(I.getArgOperand(2));
6812     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6813     Ops[5] = DAG.getSrcValue(F);
6814 
6815     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6816 
6817     DAG.setRoot(Res);
6818     return;
6819   }
6820   case Intrinsic::adjust_trampoline:
6821     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6822                              TLI.getPointerTy(DAG.getDataLayout()),
6823                              getValue(I.getArgOperand(0))));
6824     return;
6825   case Intrinsic::gcroot: {
6826     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6827            "only valid in functions with gc specified, enforced by Verifier");
6828     assert(GFI && "implied by previous");
6829     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6830     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6831 
6832     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6833     GFI->addStackRoot(FI->getIndex(), TypeMap);
6834     return;
6835   }
6836   case Intrinsic::gcread:
6837   case Intrinsic::gcwrite:
6838     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6839   case Intrinsic::get_rounding:
6840     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6841     setValue(&I, Res);
6842     DAG.setRoot(Res.getValue(1));
6843     return;
6844 
6845   case Intrinsic::expect:
6846     // Just replace __builtin_expect(exp, c) with EXP.
6847     setValue(&I, getValue(I.getArgOperand(0)));
6848     return;
6849 
6850   case Intrinsic::ubsantrap:
6851   case Intrinsic::debugtrap:
6852   case Intrinsic::trap: {
6853     StringRef TrapFuncName =
6854         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6855     if (TrapFuncName.empty()) {
6856       switch (Intrinsic) {
6857       case Intrinsic::trap:
6858         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6859         break;
6860       case Intrinsic::debugtrap:
6861         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6862         break;
6863       case Intrinsic::ubsantrap:
6864         DAG.setRoot(DAG.getNode(
6865             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6866             DAG.getTargetConstant(
6867                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6868                 MVT::i32)));
6869         break;
6870       default: llvm_unreachable("unknown trap intrinsic");
6871       }
6872       return;
6873     }
6874     TargetLowering::ArgListTy Args;
6875     if (Intrinsic == Intrinsic::ubsantrap) {
6876       Args.push_back(TargetLoweringBase::ArgListEntry());
6877       Args[0].Val = I.getArgOperand(0);
6878       Args[0].Node = getValue(Args[0].Val);
6879       Args[0].Ty = Args[0].Val->getType();
6880     }
6881 
6882     TargetLowering::CallLoweringInfo CLI(DAG);
6883     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6884         CallingConv::C, I.getType(),
6885         DAG.getExternalSymbol(TrapFuncName.data(),
6886                               TLI.getPointerTy(DAG.getDataLayout())),
6887         std::move(Args));
6888 
6889     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6890     DAG.setRoot(Result.second);
6891     return;
6892   }
6893 
6894   case Intrinsic::uadd_with_overflow:
6895   case Intrinsic::sadd_with_overflow:
6896   case Intrinsic::usub_with_overflow:
6897   case Intrinsic::ssub_with_overflow:
6898   case Intrinsic::umul_with_overflow:
6899   case Intrinsic::smul_with_overflow: {
6900     ISD::NodeType Op;
6901     switch (Intrinsic) {
6902     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6903     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6904     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6905     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6906     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6907     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6908     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6909     }
6910     SDValue Op1 = getValue(I.getArgOperand(0));
6911     SDValue Op2 = getValue(I.getArgOperand(1));
6912 
6913     EVT ResultVT = Op1.getValueType();
6914     EVT OverflowVT = MVT::i1;
6915     if (ResultVT.isVector())
6916       OverflowVT = EVT::getVectorVT(
6917           *Context, OverflowVT, ResultVT.getVectorElementCount());
6918 
6919     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6920     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6921     return;
6922   }
6923   case Intrinsic::prefetch: {
6924     SDValue Ops[5];
6925     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6926     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6927     Ops[0] = DAG.getRoot();
6928     Ops[1] = getValue(I.getArgOperand(0));
6929     Ops[2] = getValue(I.getArgOperand(1));
6930     Ops[3] = getValue(I.getArgOperand(2));
6931     Ops[4] = getValue(I.getArgOperand(3));
6932     SDValue Result = DAG.getMemIntrinsicNode(
6933         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6934         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6935         /* align */ std::nullopt, Flags);
6936 
6937     // Chain the prefetch in parallell with any pending loads, to stay out of
6938     // the way of later optimizations.
6939     PendingLoads.push_back(Result);
6940     Result = getRoot();
6941     DAG.setRoot(Result);
6942     return;
6943   }
6944   case Intrinsic::lifetime_start:
6945   case Intrinsic::lifetime_end: {
6946     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6947     // Stack coloring is not enabled in O0, discard region information.
6948     if (TM.getOptLevel() == CodeGenOpt::None)
6949       return;
6950 
6951     const int64_t ObjectSize =
6952         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6953     Value *const ObjectPtr = I.getArgOperand(1);
6954     SmallVector<const Value *, 4> Allocas;
6955     getUnderlyingObjects(ObjectPtr, Allocas);
6956 
6957     for (const Value *Alloca : Allocas) {
6958       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6959 
6960       // Could not find an Alloca.
6961       if (!LifetimeObject)
6962         continue;
6963 
6964       // First check that the Alloca is static, otherwise it won't have a
6965       // valid frame index.
6966       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6967       if (SI == FuncInfo.StaticAllocaMap.end())
6968         return;
6969 
6970       const int FrameIndex = SI->second;
6971       int64_t Offset;
6972       if (GetPointerBaseWithConstantOffset(
6973               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6974         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6975       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6976                                 Offset);
6977       DAG.setRoot(Res);
6978     }
6979     return;
6980   }
6981   case Intrinsic::pseudoprobe: {
6982     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6983     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6984     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6985     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6986     DAG.setRoot(Res);
6987     return;
6988   }
6989   case Intrinsic::invariant_start:
6990     // Discard region information.
6991     setValue(&I,
6992              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6993     return;
6994   case Intrinsic::invariant_end:
6995     // Discard region information.
6996     return;
6997   case Intrinsic::clear_cache:
6998     /// FunctionName may be null.
6999     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7000       lowerCallToExternalSymbol(I, FunctionName);
7001     return;
7002   case Intrinsic::donothing:
7003   case Intrinsic::seh_try_begin:
7004   case Intrinsic::seh_scope_begin:
7005   case Intrinsic::seh_try_end:
7006   case Intrinsic::seh_scope_end:
7007     // ignore
7008     return;
7009   case Intrinsic::experimental_stackmap:
7010     visitStackmap(I);
7011     return;
7012   case Intrinsic::experimental_patchpoint_void:
7013   case Intrinsic::experimental_patchpoint_i64:
7014     visitPatchpoint(I);
7015     return;
7016   case Intrinsic::experimental_gc_statepoint:
7017     LowerStatepoint(cast<GCStatepointInst>(I));
7018     return;
7019   case Intrinsic::experimental_gc_result:
7020     visitGCResult(cast<GCResultInst>(I));
7021     return;
7022   case Intrinsic::experimental_gc_relocate:
7023     visitGCRelocate(cast<GCRelocateInst>(I));
7024     return;
7025   case Intrinsic::instrprof_cover:
7026     llvm_unreachable("instrprof failed to lower a cover");
7027   case Intrinsic::instrprof_increment:
7028     llvm_unreachable("instrprof failed to lower an increment");
7029   case Intrinsic::instrprof_value_profile:
7030     llvm_unreachable("instrprof failed to lower a value profiling call");
7031   case Intrinsic::localescape: {
7032     MachineFunction &MF = DAG.getMachineFunction();
7033     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7034 
7035     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7036     // is the same on all targets.
7037     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7038       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7039       if (isa<ConstantPointerNull>(Arg))
7040         continue; // Skip null pointers. They represent a hole in index space.
7041       AllocaInst *Slot = cast<AllocaInst>(Arg);
7042       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7043              "can only escape static allocas");
7044       int FI = FuncInfo.StaticAllocaMap[Slot];
7045       MCSymbol *FrameAllocSym =
7046           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7047               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7048       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7049               TII->get(TargetOpcode::LOCAL_ESCAPE))
7050           .addSym(FrameAllocSym)
7051           .addFrameIndex(FI);
7052     }
7053 
7054     return;
7055   }
7056 
7057   case Intrinsic::localrecover: {
7058     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7059     MachineFunction &MF = DAG.getMachineFunction();
7060 
7061     // Get the symbol that defines the frame offset.
7062     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7063     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7064     unsigned IdxVal =
7065         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7066     MCSymbol *FrameAllocSym =
7067         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7068             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7069 
7070     Value *FP = I.getArgOperand(1);
7071     SDValue FPVal = getValue(FP);
7072     EVT PtrVT = FPVal.getValueType();
7073 
7074     // Create a MCSymbol for the label to avoid any target lowering
7075     // that would make this PC relative.
7076     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7077     SDValue OffsetVal =
7078         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7079 
7080     // Add the offset to the FP.
7081     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7082     setValue(&I, Add);
7083 
7084     return;
7085   }
7086 
7087   case Intrinsic::eh_exceptionpointer:
7088   case Intrinsic::eh_exceptioncode: {
7089     // Get the exception pointer vreg, copy from it, and resize it to fit.
7090     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7091     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7092     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7093     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7094     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7095     if (Intrinsic == Intrinsic::eh_exceptioncode)
7096       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7097     setValue(&I, N);
7098     return;
7099   }
7100   case Intrinsic::xray_customevent: {
7101     // Here we want to make sure that the intrinsic behaves as if it has a
7102     // specific calling convention, and only for x86_64.
7103     // FIXME: Support other platforms later.
7104     const auto &Triple = DAG.getTarget().getTargetTriple();
7105     if (Triple.getArch() != Triple::x86_64)
7106       return;
7107 
7108     SmallVector<SDValue, 8> Ops;
7109 
7110     // We want to say that we always want the arguments in registers.
7111     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7112     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7113     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7114     SDValue Chain = getRoot();
7115     Ops.push_back(LogEntryVal);
7116     Ops.push_back(StrSizeVal);
7117     Ops.push_back(Chain);
7118 
7119     // We need to enforce the calling convention for the callsite, so that
7120     // argument ordering is enforced correctly, and that register allocation can
7121     // see that some registers may be assumed clobbered and have to preserve
7122     // them across calls to the intrinsic.
7123     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7124                                            sdl, NodeTys, Ops);
7125     SDValue patchableNode = SDValue(MN, 0);
7126     DAG.setRoot(patchableNode);
7127     setValue(&I, patchableNode);
7128     return;
7129   }
7130   case Intrinsic::xray_typedevent: {
7131     // Here we want to make sure that the intrinsic behaves as if it has a
7132     // specific calling convention, and only for x86_64.
7133     // FIXME: Support other platforms later.
7134     const auto &Triple = DAG.getTarget().getTargetTriple();
7135     if (Triple.getArch() != Triple::x86_64)
7136       return;
7137 
7138     SmallVector<SDValue, 8> Ops;
7139 
7140     // We want to say that we always want the arguments in registers.
7141     // It's unclear to me how manipulating the selection DAG here forces callers
7142     // to provide arguments in registers instead of on the stack.
7143     SDValue LogTypeId = getValue(I.getArgOperand(0));
7144     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7145     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7146     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7147     SDValue Chain = getRoot();
7148     Ops.push_back(LogTypeId);
7149     Ops.push_back(LogEntryVal);
7150     Ops.push_back(StrSizeVal);
7151     Ops.push_back(Chain);
7152 
7153     // We need to enforce the calling convention for the callsite, so that
7154     // argument ordering is enforced correctly, and that register allocation can
7155     // see that some registers may be assumed clobbered and have to preserve
7156     // them across calls to the intrinsic.
7157     MachineSDNode *MN = DAG.getMachineNode(
7158         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7159     SDValue patchableNode = SDValue(MN, 0);
7160     DAG.setRoot(patchableNode);
7161     setValue(&I, patchableNode);
7162     return;
7163   }
7164   case Intrinsic::experimental_deoptimize:
7165     LowerDeoptimizeCall(&I);
7166     return;
7167   case Intrinsic::experimental_stepvector:
7168     visitStepVector(I);
7169     return;
7170   case Intrinsic::vector_reduce_fadd:
7171   case Intrinsic::vector_reduce_fmul:
7172   case Intrinsic::vector_reduce_add:
7173   case Intrinsic::vector_reduce_mul:
7174   case Intrinsic::vector_reduce_and:
7175   case Intrinsic::vector_reduce_or:
7176   case Intrinsic::vector_reduce_xor:
7177   case Intrinsic::vector_reduce_smax:
7178   case Intrinsic::vector_reduce_smin:
7179   case Intrinsic::vector_reduce_umax:
7180   case Intrinsic::vector_reduce_umin:
7181   case Intrinsic::vector_reduce_fmax:
7182   case Intrinsic::vector_reduce_fmin:
7183     visitVectorReduce(I, Intrinsic);
7184     return;
7185 
7186   case Intrinsic::icall_branch_funnel: {
7187     SmallVector<SDValue, 16> Ops;
7188     Ops.push_back(getValue(I.getArgOperand(0)));
7189 
7190     int64_t Offset;
7191     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7192         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7193     if (!Base)
7194       report_fatal_error(
7195           "llvm.icall.branch.funnel operand must be a GlobalValue");
7196     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7197 
7198     struct BranchFunnelTarget {
7199       int64_t Offset;
7200       SDValue Target;
7201     };
7202     SmallVector<BranchFunnelTarget, 8> Targets;
7203 
7204     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7205       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7206           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7207       if (ElemBase != Base)
7208         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7209                            "to the same GlobalValue");
7210 
7211       SDValue Val = getValue(I.getArgOperand(Op + 1));
7212       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7213       if (!GA)
7214         report_fatal_error(
7215             "llvm.icall.branch.funnel operand must be a GlobalValue");
7216       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7217                                      GA->getGlobal(), sdl, Val.getValueType(),
7218                                      GA->getOffset())});
7219     }
7220     llvm::sort(Targets,
7221                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7222                  return T1.Offset < T2.Offset;
7223                });
7224 
7225     for (auto &T : Targets) {
7226       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7227       Ops.push_back(T.Target);
7228     }
7229 
7230     Ops.push_back(DAG.getRoot()); // Chain
7231     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7232                                  MVT::Other, Ops),
7233               0);
7234     DAG.setRoot(N);
7235     setValue(&I, N);
7236     HasTailCall = true;
7237     return;
7238   }
7239 
7240   case Intrinsic::wasm_landingpad_index:
7241     // Information this intrinsic contained has been transferred to
7242     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7243     // delete it now.
7244     return;
7245 
7246   case Intrinsic::aarch64_settag:
7247   case Intrinsic::aarch64_settag_zero: {
7248     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7249     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7250     SDValue Val = TSI.EmitTargetCodeForSetTag(
7251         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7252         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7253         ZeroMemory);
7254     DAG.setRoot(Val);
7255     setValue(&I, Val);
7256     return;
7257   }
7258   case Intrinsic::ptrmask: {
7259     SDValue Ptr = getValue(I.getOperand(0));
7260     SDValue Const = getValue(I.getOperand(1));
7261 
7262     EVT PtrVT = Ptr.getValueType();
7263     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7264                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7265     return;
7266   }
7267   case Intrinsic::threadlocal_address: {
7268     setValue(&I, getValue(I.getOperand(0)));
7269     return;
7270   }
7271   case Intrinsic::get_active_lane_mask: {
7272     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7273     SDValue Index = getValue(I.getOperand(0));
7274     EVT ElementVT = Index.getValueType();
7275 
7276     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7277       visitTargetIntrinsic(I, Intrinsic);
7278       return;
7279     }
7280 
7281     SDValue TripCount = getValue(I.getOperand(1));
7282     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7283 
7284     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7285     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7286     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7287     SDValue VectorInduction = DAG.getNode(
7288         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7289     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7290                                  VectorTripCount, ISD::CondCode::SETULT);
7291     setValue(&I, SetCC);
7292     return;
7293   }
7294   case Intrinsic::vector_insert: {
7295     SDValue Vec = getValue(I.getOperand(0));
7296     SDValue SubVec = getValue(I.getOperand(1));
7297     SDValue Index = getValue(I.getOperand(2));
7298 
7299     // The intrinsic's index type is i64, but the SDNode requires an index type
7300     // suitable for the target. Convert the index as required.
7301     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7302     if (Index.getValueType() != VectorIdxTy)
7303       Index = DAG.getVectorIdxConstant(
7304           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7305 
7306     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7307     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7308                              Index));
7309     return;
7310   }
7311   case Intrinsic::vector_extract: {
7312     SDValue Vec = getValue(I.getOperand(0));
7313     SDValue Index = getValue(I.getOperand(1));
7314     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7315 
7316     // The intrinsic's index type is i64, but the SDNode requires an index type
7317     // suitable for the target. Convert the index as required.
7318     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7319     if (Index.getValueType() != VectorIdxTy)
7320       Index = DAG.getVectorIdxConstant(
7321           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7322 
7323     setValue(&I,
7324              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7325     return;
7326   }
7327   case Intrinsic::experimental_vector_reverse:
7328     visitVectorReverse(I);
7329     return;
7330   case Intrinsic::experimental_vector_splice:
7331     visitVectorSplice(I);
7332     return;
7333   case Intrinsic::callbr_landingpad:
7334     visitCallBrLandingPad(I);
7335     return;
7336   case Intrinsic::experimental_vector_interleave2:
7337     visitVectorInterleave(I);
7338     return;
7339   case Intrinsic::experimental_vector_deinterleave2:
7340     visitVectorDeinterleave(I);
7341     return;
7342   }
7343 }
7344 
7345 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7346     const ConstrainedFPIntrinsic &FPI) {
7347   SDLoc sdl = getCurSDLoc();
7348 
7349   // We do not need to serialize constrained FP intrinsics against
7350   // each other or against (nonvolatile) loads, so they can be
7351   // chained like loads.
7352   SDValue Chain = DAG.getRoot();
7353   SmallVector<SDValue, 4> Opers;
7354   Opers.push_back(Chain);
7355   if (FPI.isUnaryOp()) {
7356     Opers.push_back(getValue(FPI.getArgOperand(0)));
7357   } else if (FPI.isTernaryOp()) {
7358     Opers.push_back(getValue(FPI.getArgOperand(0)));
7359     Opers.push_back(getValue(FPI.getArgOperand(1)));
7360     Opers.push_back(getValue(FPI.getArgOperand(2)));
7361   } else {
7362     Opers.push_back(getValue(FPI.getArgOperand(0)));
7363     Opers.push_back(getValue(FPI.getArgOperand(1)));
7364   }
7365 
7366   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7367     assert(Result.getNode()->getNumValues() == 2);
7368 
7369     // Push node to the appropriate list so that future instructions can be
7370     // chained up correctly.
7371     SDValue OutChain = Result.getValue(1);
7372     switch (EB) {
7373     case fp::ExceptionBehavior::ebIgnore:
7374       // The only reason why ebIgnore nodes still need to be chained is that
7375       // they might depend on the current rounding mode, and therefore must
7376       // not be moved across instruction that may change that mode.
7377       [[fallthrough]];
7378     case fp::ExceptionBehavior::ebMayTrap:
7379       // These must not be moved across calls or instructions that may change
7380       // floating-point exception masks.
7381       PendingConstrainedFP.push_back(OutChain);
7382       break;
7383     case fp::ExceptionBehavior::ebStrict:
7384       // These must not be moved across calls or instructions that may change
7385       // floating-point exception masks or read floating-point exception flags.
7386       // In addition, they cannot be optimized out even if unused.
7387       PendingConstrainedFPStrict.push_back(OutChain);
7388       break;
7389     }
7390   };
7391 
7392   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7393   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7394   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7395   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7396 
7397   SDNodeFlags Flags;
7398   if (EB == fp::ExceptionBehavior::ebIgnore)
7399     Flags.setNoFPExcept(true);
7400 
7401   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7402     Flags.copyFMF(*FPOp);
7403 
7404   unsigned Opcode;
7405   switch (FPI.getIntrinsicID()) {
7406   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7407 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7408   case Intrinsic::INTRINSIC:                                                   \
7409     Opcode = ISD::STRICT_##DAGN;                                               \
7410     break;
7411 #include "llvm/IR/ConstrainedOps.def"
7412   case Intrinsic::experimental_constrained_fmuladd: {
7413     Opcode = ISD::STRICT_FMA;
7414     // Break fmuladd into fmul and fadd.
7415     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7416         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7417       Opers.pop_back();
7418       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7419       pushOutChain(Mul, EB);
7420       Opcode = ISD::STRICT_FADD;
7421       Opers.clear();
7422       Opers.push_back(Mul.getValue(1));
7423       Opers.push_back(Mul.getValue(0));
7424       Opers.push_back(getValue(FPI.getArgOperand(2)));
7425     }
7426     break;
7427   }
7428   }
7429 
7430   // A few strict DAG nodes carry additional operands that are not
7431   // set up by the default code above.
7432   switch (Opcode) {
7433   default: break;
7434   case ISD::STRICT_FP_ROUND:
7435     Opers.push_back(
7436         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7437     break;
7438   case ISD::STRICT_FSETCC:
7439   case ISD::STRICT_FSETCCS: {
7440     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7441     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7442     if (TM.Options.NoNaNsFPMath)
7443       Condition = getFCmpCodeWithoutNaN(Condition);
7444     Opers.push_back(DAG.getCondCode(Condition));
7445     break;
7446   }
7447   }
7448 
7449   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7450   pushOutChain(Result, EB);
7451 
7452   SDValue FPResult = Result.getValue(0);
7453   setValue(&FPI, FPResult);
7454 }
7455 
7456 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7457   std::optional<unsigned> ResOPC;
7458   switch (VPIntrin.getIntrinsicID()) {
7459   case Intrinsic::vp_ctlz: {
7460     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7461     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7462     break;
7463   }
7464   case Intrinsic::vp_cttz: {
7465     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7466     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7467     break;
7468   }
7469 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7470   case Intrinsic::VPID:                                                        \
7471     ResOPC = ISD::VPSD;                                                        \
7472     break;
7473 #include "llvm/IR/VPIntrinsics.def"
7474   }
7475 
7476   if (!ResOPC)
7477     llvm_unreachable(
7478         "Inconsistency: no SDNode available for this VPIntrinsic!");
7479 
7480   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7481       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7482     if (VPIntrin.getFastMathFlags().allowReassoc())
7483       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7484                                                 : ISD::VP_REDUCE_FMUL;
7485   }
7486 
7487   return *ResOPC;
7488 }
7489 
7490 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7491                                       SmallVector<SDValue, 7> &OpValues) {
7492   SDLoc DL = getCurSDLoc();
7493   Value *PtrOperand = VPIntrin.getArgOperand(0);
7494   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7495   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7496   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7497   SDValue LD;
7498   bool AddToChain = true;
7499   // Do not serialize variable-length loads of constant memory with
7500   // anything.
7501   if (!Alignment)
7502     Alignment = DAG.getEVTAlign(VT);
7503   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7504   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7505   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7506   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7507       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7508       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7509   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7510                      MMO, false /*IsExpanding */);
7511   if (AddToChain)
7512     PendingLoads.push_back(LD.getValue(1));
7513   setValue(&VPIntrin, LD);
7514 }
7515 
7516 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7517                                         SmallVector<SDValue, 7> &OpValues) {
7518   SDLoc DL = getCurSDLoc();
7519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7520   Value *PtrOperand = VPIntrin.getArgOperand(0);
7521   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7522   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7523   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7524   SDValue LD;
7525   if (!Alignment)
7526     Alignment = DAG.getEVTAlign(VT.getScalarType());
7527   unsigned AS =
7528     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7529   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7530      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7531      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7532   SDValue Base, Index, Scale;
7533   ISD::MemIndexType IndexType;
7534   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7535                                     this, VPIntrin.getParent(),
7536                                     VT.getScalarStoreSize());
7537   if (!UniformBase) {
7538     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7539     Index = getValue(PtrOperand);
7540     IndexType = ISD::SIGNED_SCALED;
7541     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7542   }
7543   EVT IdxVT = Index.getValueType();
7544   EVT EltTy = IdxVT.getVectorElementType();
7545   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7546     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7547     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7548   }
7549   LD = DAG.getGatherVP(
7550       DAG.getVTList(VT, MVT::Other), VT, DL,
7551       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7552       IndexType);
7553   PendingLoads.push_back(LD.getValue(1));
7554   setValue(&VPIntrin, LD);
7555 }
7556 
7557 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7558                                        SmallVector<SDValue, 7> &OpValues) {
7559   SDLoc DL = getCurSDLoc();
7560   Value *PtrOperand = VPIntrin.getArgOperand(1);
7561   EVT VT = OpValues[0].getValueType();
7562   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7563   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7564   SDValue ST;
7565   if (!Alignment)
7566     Alignment = DAG.getEVTAlign(VT);
7567   SDValue Ptr = OpValues[1];
7568   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7569   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7570       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7571       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7572   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7573                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7574                       /* IsTruncating */ false, /*IsCompressing*/ false);
7575   DAG.setRoot(ST);
7576   setValue(&VPIntrin, ST);
7577 }
7578 
7579 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7580                                               SmallVector<SDValue, 7> &OpValues) {
7581   SDLoc DL = getCurSDLoc();
7582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7583   Value *PtrOperand = VPIntrin.getArgOperand(1);
7584   EVT VT = OpValues[0].getValueType();
7585   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7586   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7587   SDValue ST;
7588   if (!Alignment)
7589     Alignment = DAG.getEVTAlign(VT.getScalarType());
7590   unsigned AS =
7591       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7592   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7593       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7594       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7595   SDValue Base, Index, Scale;
7596   ISD::MemIndexType IndexType;
7597   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7598                                     this, VPIntrin.getParent(),
7599                                     VT.getScalarStoreSize());
7600   if (!UniformBase) {
7601     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7602     Index = getValue(PtrOperand);
7603     IndexType = ISD::SIGNED_SCALED;
7604     Scale =
7605       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7606   }
7607   EVT IdxVT = Index.getValueType();
7608   EVT EltTy = IdxVT.getVectorElementType();
7609   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7610     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7611     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7612   }
7613   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7614                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7615                          OpValues[2], OpValues[3]},
7616                         MMO, IndexType);
7617   DAG.setRoot(ST);
7618   setValue(&VPIntrin, ST);
7619 }
7620 
7621 void SelectionDAGBuilder::visitVPStridedLoad(
7622     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7623   SDLoc DL = getCurSDLoc();
7624   Value *PtrOperand = VPIntrin.getArgOperand(0);
7625   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7626   if (!Alignment)
7627     Alignment = DAG.getEVTAlign(VT.getScalarType());
7628   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7629   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7630   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7631   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7632   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7633   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7634       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7635       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7636 
7637   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7638                                     OpValues[2], OpValues[3], MMO,
7639                                     false /*IsExpanding*/);
7640 
7641   if (AddToChain)
7642     PendingLoads.push_back(LD.getValue(1));
7643   setValue(&VPIntrin, LD);
7644 }
7645 
7646 void SelectionDAGBuilder::visitVPStridedStore(
7647     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7648   SDLoc DL = getCurSDLoc();
7649   Value *PtrOperand = VPIntrin.getArgOperand(1);
7650   EVT VT = OpValues[0].getValueType();
7651   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7652   if (!Alignment)
7653     Alignment = DAG.getEVTAlign(VT.getScalarType());
7654   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7655   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7656       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7657       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7658 
7659   SDValue ST = DAG.getStridedStoreVP(
7660       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7661       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7662       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7663       /*IsCompressing*/ false);
7664 
7665   DAG.setRoot(ST);
7666   setValue(&VPIntrin, ST);
7667 }
7668 
7669 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7671   SDLoc DL = getCurSDLoc();
7672 
7673   ISD::CondCode Condition;
7674   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7675   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7676   if (IsFP) {
7677     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7678     // flags, but calls that don't return floating-point types can't be
7679     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7680     Condition = getFCmpCondCode(CondCode);
7681     if (TM.Options.NoNaNsFPMath)
7682       Condition = getFCmpCodeWithoutNaN(Condition);
7683   } else {
7684     Condition = getICmpCondCode(CondCode);
7685   }
7686 
7687   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7688   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7689   // #2 is the condition code
7690   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7691   SDValue EVL = getValue(VPIntrin.getOperand(4));
7692   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7693   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7694          "Unexpected target EVL type");
7695   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7696 
7697   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7698                                                         VPIntrin.getType());
7699   setValue(&VPIntrin,
7700            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7701 }
7702 
7703 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7704     const VPIntrinsic &VPIntrin) {
7705   SDLoc DL = getCurSDLoc();
7706   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7707 
7708   auto IID = VPIntrin.getIntrinsicID();
7709 
7710   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7711     return visitVPCmp(*CmpI);
7712 
7713   SmallVector<EVT, 4> ValueVTs;
7714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7715   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7716   SDVTList VTs = DAG.getVTList(ValueVTs);
7717 
7718   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7719 
7720   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7721   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7722          "Unexpected target EVL type");
7723 
7724   // Request operands.
7725   SmallVector<SDValue, 7> OpValues;
7726   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7727     auto Op = getValue(VPIntrin.getArgOperand(I));
7728     if (I == EVLParamPos)
7729       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7730     OpValues.push_back(Op);
7731   }
7732 
7733   switch (Opcode) {
7734   default: {
7735     SDNodeFlags SDFlags;
7736     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7737       SDFlags.copyFMF(*FPMO);
7738     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7739     setValue(&VPIntrin, Result);
7740     break;
7741   }
7742   case ISD::VP_LOAD:
7743     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7744     break;
7745   case ISD::VP_GATHER:
7746     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7747     break;
7748   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7749     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7750     break;
7751   case ISD::VP_STORE:
7752     visitVPStore(VPIntrin, OpValues);
7753     break;
7754   case ISD::VP_SCATTER:
7755     visitVPScatter(VPIntrin, OpValues);
7756     break;
7757   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7758     visitVPStridedStore(VPIntrin, OpValues);
7759     break;
7760   case ISD::VP_FMULADD: {
7761     assert(OpValues.size() == 5 && "Unexpected number of operands");
7762     SDNodeFlags SDFlags;
7763     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7764       SDFlags.copyFMF(*FPMO);
7765     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7766         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7767       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7768     } else {
7769       SDValue Mul = DAG.getNode(
7770           ISD::VP_FMUL, DL, VTs,
7771           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7772       SDValue Add =
7773           DAG.getNode(ISD::VP_FADD, DL, VTs,
7774                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7775       setValue(&VPIntrin, Add);
7776     }
7777     break;
7778   }
7779   case ISD::VP_INTTOPTR: {
7780     SDValue N = OpValues[0];
7781     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7782     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7783     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7784                                OpValues[2]);
7785     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7786                              OpValues[2]);
7787     setValue(&VPIntrin, N);
7788     break;
7789   }
7790   case ISD::VP_PTRTOINT: {
7791     SDValue N = OpValues[0];
7792     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7793                                                           VPIntrin.getType());
7794     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7795                                        VPIntrin.getOperand(0)->getType());
7796     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7797                                OpValues[2]);
7798     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7799                              OpValues[2]);
7800     setValue(&VPIntrin, N);
7801     break;
7802   }
7803   case ISD::VP_ABS:
7804   case ISD::VP_CTLZ:
7805   case ISD::VP_CTLZ_ZERO_UNDEF:
7806   case ISD::VP_CTTZ:
7807   case ISD::VP_CTTZ_ZERO_UNDEF: {
7808     SDValue Result =
7809         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7810     setValue(&VPIntrin, Result);
7811     break;
7812   }
7813   }
7814 }
7815 
7816 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7817                                           const BasicBlock *EHPadBB,
7818                                           MCSymbol *&BeginLabel) {
7819   MachineFunction &MF = DAG.getMachineFunction();
7820   MachineModuleInfo &MMI = MF.getMMI();
7821 
7822   // Insert a label before the invoke call to mark the try range.  This can be
7823   // used to detect deletion of the invoke via the MachineModuleInfo.
7824   BeginLabel = MMI.getContext().createTempSymbol();
7825 
7826   // For SjLj, keep track of which landing pads go with which invokes
7827   // so as to maintain the ordering of pads in the LSDA.
7828   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7829   if (CallSiteIndex) {
7830     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7831     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7832 
7833     // Now that the call site is handled, stop tracking it.
7834     MMI.setCurrentCallSite(0);
7835   }
7836 
7837   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7838 }
7839 
7840 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7841                                         const BasicBlock *EHPadBB,
7842                                         MCSymbol *BeginLabel) {
7843   assert(BeginLabel && "BeginLabel should've been set");
7844 
7845   MachineFunction &MF = DAG.getMachineFunction();
7846   MachineModuleInfo &MMI = MF.getMMI();
7847 
7848   // Insert a label at the end of the invoke call to mark the try range.  This
7849   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7850   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7851   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7852 
7853   // Inform MachineModuleInfo of range.
7854   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7855   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7856   // actually use outlined funclets and their LSDA info style.
7857   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7858     assert(II && "II should've been set");
7859     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7860     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7861   } else if (!isScopedEHPersonality(Pers)) {
7862     assert(EHPadBB);
7863     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7864   }
7865 
7866   return Chain;
7867 }
7868 
7869 std::pair<SDValue, SDValue>
7870 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7871                                     const BasicBlock *EHPadBB) {
7872   MCSymbol *BeginLabel = nullptr;
7873 
7874   if (EHPadBB) {
7875     // Both PendingLoads and PendingExports must be flushed here;
7876     // this call might not return.
7877     (void)getRoot();
7878     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7879     CLI.setChain(getRoot());
7880   }
7881 
7882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7883   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7884 
7885   assert((CLI.IsTailCall || Result.second.getNode()) &&
7886          "Non-null chain expected with non-tail call!");
7887   assert((Result.second.getNode() || !Result.first.getNode()) &&
7888          "Null value expected with tail call!");
7889 
7890   if (!Result.second.getNode()) {
7891     // As a special case, a null chain means that a tail call has been emitted
7892     // and the DAG root is already updated.
7893     HasTailCall = true;
7894 
7895     // Since there's no actual continuation from this block, nothing can be
7896     // relying on us setting vregs for them.
7897     PendingExports.clear();
7898   } else {
7899     DAG.setRoot(Result.second);
7900   }
7901 
7902   if (EHPadBB) {
7903     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7904                            BeginLabel));
7905   }
7906 
7907   return Result;
7908 }
7909 
7910 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7911                                       bool isTailCall,
7912                                       bool isMustTailCall,
7913                                       const BasicBlock *EHPadBB) {
7914   auto &DL = DAG.getDataLayout();
7915   FunctionType *FTy = CB.getFunctionType();
7916   Type *RetTy = CB.getType();
7917 
7918   TargetLowering::ArgListTy Args;
7919   Args.reserve(CB.arg_size());
7920 
7921   const Value *SwiftErrorVal = nullptr;
7922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7923 
7924   if (isTailCall) {
7925     // Avoid emitting tail calls in functions with the disable-tail-calls
7926     // attribute.
7927     auto *Caller = CB.getParent()->getParent();
7928     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7929         "true" && !isMustTailCall)
7930       isTailCall = false;
7931 
7932     // We can't tail call inside a function with a swifterror argument. Lowering
7933     // does not support this yet. It would have to move into the swifterror
7934     // register before the call.
7935     if (TLI.supportSwiftError() &&
7936         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7937       isTailCall = false;
7938   }
7939 
7940   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7941     TargetLowering::ArgListEntry Entry;
7942     const Value *V = *I;
7943 
7944     // Skip empty types
7945     if (V->getType()->isEmptyTy())
7946       continue;
7947 
7948     SDValue ArgNode = getValue(V);
7949     Entry.Node = ArgNode; Entry.Ty = V->getType();
7950 
7951     Entry.setAttributes(&CB, I - CB.arg_begin());
7952 
7953     // Use swifterror virtual register as input to the call.
7954     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7955       SwiftErrorVal = V;
7956       // We find the virtual register for the actual swifterror argument.
7957       // Instead of using the Value, we use the virtual register instead.
7958       Entry.Node =
7959           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7960                           EVT(TLI.getPointerTy(DL)));
7961     }
7962 
7963     Args.push_back(Entry);
7964 
7965     // If we have an explicit sret argument that is an Instruction, (i.e., it
7966     // might point to function-local memory), we can't meaningfully tail-call.
7967     if (Entry.IsSRet && isa<Instruction>(V))
7968       isTailCall = false;
7969   }
7970 
7971   // If call site has a cfguardtarget operand bundle, create and add an
7972   // additional ArgListEntry.
7973   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7974     TargetLowering::ArgListEntry Entry;
7975     Value *V = Bundle->Inputs[0];
7976     SDValue ArgNode = getValue(V);
7977     Entry.Node = ArgNode;
7978     Entry.Ty = V->getType();
7979     Entry.IsCFGuardTarget = true;
7980     Args.push_back(Entry);
7981   }
7982 
7983   // Check if target-independent constraints permit a tail call here.
7984   // Target-dependent constraints are checked within TLI->LowerCallTo.
7985   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7986     isTailCall = false;
7987 
7988   // Disable tail calls if there is an swifterror argument. Targets have not
7989   // been updated to support tail calls.
7990   if (TLI.supportSwiftError() && SwiftErrorVal)
7991     isTailCall = false;
7992 
7993   ConstantInt *CFIType = nullptr;
7994   if (CB.isIndirectCall()) {
7995     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7996       if (!TLI.supportKCFIBundles())
7997         report_fatal_error(
7998             "Target doesn't support calls with kcfi operand bundles.");
7999       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8000       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8001     }
8002   }
8003 
8004   TargetLowering::CallLoweringInfo CLI(DAG);
8005   CLI.setDebugLoc(getCurSDLoc())
8006       .setChain(getRoot())
8007       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8008       .setTailCall(isTailCall)
8009       .setConvergent(CB.isConvergent())
8010       .setIsPreallocated(
8011           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8012       .setCFIType(CFIType);
8013   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8014 
8015   if (Result.first.getNode()) {
8016     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8017     setValue(&CB, Result.first);
8018   }
8019 
8020   // The last element of CLI.InVals has the SDValue for swifterror return.
8021   // Here we copy it to a virtual register and update SwiftErrorMap for
8022   // book-keeping.
8023   if (SwiftErrorVal && TLI.supportSwiftError()) {
8024     // Get the last element of InVals.
8025     SDValue Src = CLI.InVals.back();
8026     Register VReg =
8027         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8028     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8029     DAG.setRoot(CopyNode);
8030   }
8031 }
8032 
8033 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8034                              SelectionDAGBuilder &Builder) {
8035   // Check to see if this load can be trivially constant folded, e.g. if the
8036   // input is from a string literal.
8037   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8038     // Cast pointer to the type we really want to load.
8039     Type *LoadTy =
8040         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8041     if (LoadVT.isVector())
8042       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8043 
8044     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8045                                          PointerType::getUnqual(LoadTy));
8046 
8047     if (const Constant *LoadCst =
8048             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8049                                          LoadTy, Builder.DAG.getDataLayout()))
8050       return Builder.getValue(LoadCst);
8051   }
8052 
8053   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8054   // still constant memory, the input chain can be the entry node.
8055   SDValue Root;
8056   bool ConstantMemory = false;
8057 
8058   // Do not serialize (non-volatile) loads of constant memory with anything.
8059   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8060     Root = Builder.DAG.getEntryNode();
8061     ConstantMemory = true;
8062   } else {
8063     // Do not serialize non-volatile loads against each other.
8064     Root = Builder.DAG.getRoot();
8065   }
8066 
8067   SDValue Ptr = Builder.getValue(PtrVal);
8068   SDValue LoadVal =
8069       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8070                           MachinePointerInfo(PtrVal), Align(1));
8071 
8072   if (!ConstantMemory)
8073     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8074   return LoadVal;
8075 }
8076 
8077 /// Record the value for an instruction that produces an integer result,
8078 /// converting the type where necessary.
8079 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8080                                                   SDValue Value,
8081                                                   bool IsSigned) {
8082   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8083                                                     I.getType(), true);
8084   if (IsSigned)
8085     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8086   else
8087     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8088   setValue(&I, Value);
8089 }
8090 
8091 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8092 /// true and lower it. Otherwise return false, and it will be lowered like a
8093 /// normal call.
8094 /// The caller already checked that \p I calls the appropriate LibFunc with a
8095 /// correct prototype.
8096 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8097   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8098   const Value *Size = I.getArgOperand(2);
8099   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8100   if (CSize && CSize->getZExtValue() == 0) {
8101     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8102                                                           I.getType(), true);
8103     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8104     return true;
8105   }
8106 
8107   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8108   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8109       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8110       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8111   if (Res.first.getNode()) {
8112     processIntegerCallValue(I, Res.first, true);
8113     PendingLoads.push_back(Res.second);
8114     return true;
8115   }
8116 
8117   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8118   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8119   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8120     return false;
8121 
8122   // If the target has a fast compare for the given size, it will return a
8123   // preferred load type for that size. Require that the load VT is legal and
8124   // that the target supports unaligned loads of that type. Otherwise, return
8125   // INVALID.
8126   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8127     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8128     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8129     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8130       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8131       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8132       // TODO: Check alignment of src and dest ptrs.
8133       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8134       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8135       if (!TLI.isTypeLegal(LVT) ||
8136           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8137           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8138         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8139     }
8140 
8141     return LVT;
8142   };
8143 
8144   // This turns into unaligned loads. We only do this if the target natively
8145   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8146   // we'll only produce a small number of byte loads.
8147   MVT LoadVT;
8148   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8149   switch (NumBitsToCompare) {
8150   default:
8151     return false;
8152   case 16:
8153     LoadVT = MVT::i16;
8154     break;
8155   case 32:
8156     LoadVT = MVT::i32;
8157     break;
8158   case 64:
8159   case 128:
8160   case 256:
8161     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8162     break;
8163   }
8164 
8165   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8166     return false;
8167 
8168   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8169   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8170 
8171   // Bitcast to a wide integer type if the loads are vectors.
8172   if (LoadVT.isVector()) {
8173     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8174     LoadL = DAG.getBitcast(CmpVT, LoadL);
8175     LoadR = DAG.getBitcast(CmpVT, LoadR);
8176   }
8177 
8178   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8179   processIntegerCallValue(I, Cmp, false);
8180   return true;
8181 }
8182 
8183 /// See if we can lower a memchr call into an optimized form. If so, return
8184 /// true and lower it. Otherwise return false, and it will be lowered like a
8185 /// normal call.
8186 /// The caller already checked that \p I calls the appropriate LibFunc with a
8187 /// correct prototype.
8188 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8189   const Value *Src = I.getArgOperand(0);
8190   const Value *Char = I.getArgOperand(1);
8191   const Value *Length = I.getArgOperand(2);
8192 
8193   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8194   std::pair<SDValue, SDValue> Res =
8195     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8196                                 getValue(Src), getValue(Char), getValue(Length),
8197                                 MachinePointerInfo(Src));
8198   if (Res.first.getNode()) {
8199     setValue(&I, Res.first);
8200     PendingLoads.push_back(Res.second);
8201     return true;
8202   }
8203 
8204   return false;
8205 }
8206 
8207 /// See if we can lower a mempcpy call into an optimized form. If so, return
8208 /// true and lower it. Otherwise return false, and it will be lowered like a
8209 /// normal call.
8210 /// The caller already checked that \p I calls the appropriate LibFunc with a
8211 /// correct prototype.
8212 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8213   SDValue Dst = getValue(I.getArgOperand(0));
8214   SDValue Src = getValue(I.getArgOperand(1));
8215   SDValue Size = getValue(I.getArgOperand(2));
8216 
8217   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8218   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8219   // DAG::getMemcpy needs Alignment to be defined.
8220   Align Alignment = std::min(DstAlign, SrcAlign);
8221 
8222   bool isVol = false;
8223   SDLoc sdl = getCurSDLoc();
8224 
8225   // In the mempcpy context we need to pass in a false value for isTailCall
8226   // because the return pointer needs to be adjusted by the size of
8227   // the copied memory.
8228   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8229   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8230                              /*isTailCall=*/false,
8231                              MachinePointerInfo(I.getArgOperand(0)),
8232                              MachinePointerInfo(I.getArgOperand(1)),
8233                              I.getAAMetadata());
8234   assert(MC.getNode() != nullptr &&
8235          "** memcpy should not be lowered as TailCall in mempcpy context **");
8236   DAG.setRoot(MC);
8237 
8238   // Check if Size needs to be truncated or extended.
8239   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8240 
8241   // Adjust return pointer to point just past the last dst byte.
8242   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8243                                     Dst, Size);
8244   setValue(&I, DstPlusSize);
8245   return true;
8246 }
8247 
8248 /// See if we can lower a strcpy call into an optimized form.  If so, return
8249 /// true and lower it, otherwise return false and it will be lowered like a
8250 /// normal call.
8251 /// The caller already checked that \p I calls the appropriate LibFunc with a
8252 /// correct prototype.
8253 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8254   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8255 
8256   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8257   std::pair<SDValue, SDValue> Res =
8258     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8259                                 getValue(Arg0), getValue(Arg1),
8260                                 MachinePointerInfo(Arg0),
8261                                 MachinePointerInfo(Arg1), isStpcpy);
8262   if (Res.first.getNode()) {
8263     setValue(&I, Res.first);
8264     DAG.setRoot(Res.second);
8265     return true;
8266   }
8267 
8268   return false;
8269 }
8270 
8271 /// See if we can lower a strcmp call into an optimized form.  If so, return
8272 /// true and lower it, otherwise return false and it will be lowered like a
8273 /// normal call.
8274 /// The caller already checked that \p I calls the appropriate LibFunc with a
8275 /// correct prototype.
8276 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8277   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8278 
8279   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8280   std::pair<SDValue, SDValue> Res =
8281     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8282                                 getValue(Arg0), getValue(Arg1),
8283                                 MachinePointerInfo(Arg0),
8284                                 MachinePointerInfo(Arg1));
8285   if (Res.first.getNode()) {
8286     processIntegerCallValue(I, Res.first, true);
8287     PendingLoads.push_back(Res.second);
8288     return true;
8289   }
8290 
8291   return false;
8292 }
8293 
8294 /// See if we can lower a strlen call into an optimized form.  If so, return
8295 /// true and lower it, otherwise return false and it will be lowered like a
8296 /// normal call.
8297 /// The caller already checked that \p I calls the appropriate LibFunc with a
8298 /// correct prototype.
8299 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8300   const Value *Arg0 = I.getArgOperand(0);
8301 
8302   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8303   std::pair<SDValue, SDValue> Res =
8304     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8305                                 getValue(Arg0), MachinePointerInfo(Arg0));
8306   if (Res.first.getNode()) {
8307     processIntegerCallValue(I, Res.first, false);
8308     PendingLoads.push_back(Res.second);
8309     return true;
8310   }
8311 
8312   return false;
8313 }
8314 
8315 /// See if we can lower a strnlen call into an optimized form.  If so, return
8316 /// true and lower it, otherwise return false and it will be lowered like a
8317 /// normal call.
8318 /// The caller already checked that \p I calls the appropriate LibFunc with a
8319 /// correct prototype.
8320 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8321   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8322 
8323   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8324   std::pair<SDValue, SDValue> Res =
8325     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8326                                  getValue(Arg0), getValue(Arg1),
8327                                  MachinePointerInfo(Arg0));
8328   if (Res.first.getNode()) {
8329     processIntegerCallValue(I, Res.first, false);
8330     PendingLoads.push_back(Res.second);
8331     return true;
8332   }
8333 
8334   return false;
8335 }
8336 
8337 /// See if we can lower a unary floating-point operation into an SDNode with
8338 /// the specified Opcode.  If so, return true and lower it, otherwise return
8339 /// false and it will be lowered like a normal call.
8340 /// The caller already checked that \p I calls the appropriate LibFunc with a
8341 /// correct prototype.
8342 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8343                                               unsigned Opcode) {
8344   // We already checked this call's prototype; verify it doesn't modify errno.
8345   if (!I.onlyReadsMemory())
8346     return false;
8347 
8348   SDNodeFlags Flags;
8349   Flags.copyFMF(cast<FPMathOperator>(I));
8350 
8351   SDValue Tmp = getValue(I.getArgOperand(0));
8352   setValue(&I,
8353            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8354   return true;
8355 }
8356 
8357 /// See if we can lower a binary floating-point operation into an SDNode with
8358 /// the specified Opcode. If so, return true and lower it. Otherwise return
8359 /// false, and it will be lowered like a normal call.
8360 /// The caller already checked that \p I calls the appropriate LibFunc with a
8361 /// correct prototype.
8362 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8363                                                unsigned Opcode) {
8364   // We already checked this call's prototype; verify it doesn't modify errno.
8365   if (!I.onlyReadsMemory())
8366     return false;
8367 
8368   SDNodeFlags Flags;
8369   Flags.copyFMF(cast<FPMathOperator>(I));
8370 
8371   SDValue Tmp0 = getValue(I.getArgOperand(0));
8372   SDValue Tmp1 = getValue(I.getArgOperand(1));
8373   EVT VT = Tmp0.getValueType();
8374   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8375   return true;
8376 }
8377 
8378 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8379   // Handle inline assembly differently.
8380   if (I.isInlineAsm()) {
8381     visitInlineAsm(I);
8382     return;
8383   }
8384 
8385   diagnoseDontCall(I);
8386 
8387   if (Function *F = I.getCalledFunction()) {
8388     if (F->isDeclaration()) {
8389       // Is this an LLVM intrinsic or a target-specific intrinsic?
8390       unsigned IID = F->getIntrinsicID();
8391       if (!IID)
8392         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8393           IID = II->getIntrinsicID(F);
8394 
8395       if (IID) {
8396         visitIntrinsicCall(I, IID);
8397         return;
8398       }
8399     }
8400 
8401     // Check for well-known libc/libm calls.  If the function is internal, it
8402     // can't be a library call.  Don't do the check if marked as nobuiltin for
8403     // some reason or the call site requires strict floating point semantics.
8404     LibFunc Func;
8405     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8406         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8407         LibInfo->hasOptimizedCodeGen(Func)) {
8408       switch (Func) {
8409       default: break;
8410       case LibFunc_bcmp:
8411         if (visitMemCmpBCmpCall(I))
8412           return;
8413         break;
8414       case LibFunc_copysign:
8415       case LibFunc_copysignf:
8416       case LibFunc_copysignl:
8417         // We already checked this call's prototype; verify it doesn't modify
8418         // errno.
8419         if (I.onlyReadsMemory()) {
8420           SDValue LHS = getValue(I.getArgOperand(0));
8421           SDValue RHS = getValue(I.getArgOperand(1));
8422           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8423                                    LHS.getValueType(), LHS, RHS));
8424           return;
8425         }
8426         break;
8427       case LibFunc_fabs:
8428       case LibFunc_fabsf:
8429       case LibFunc_fabsl:
8430         if (visitUnaryFloatCall(I, ISD::FABS))
8431           return;
8432         break;
8433       case LibFunc_fmin:
8434       case LibFunc_fminf:
8435       case LibFunc_fminl:
8436         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8437           return;
8438         break;
8439       case LibFunc_fmax:
8440       case LibFunc_fmaxf:
8441       case LibFunc_fmaxl:
8442         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8443           return;
8444         break;
8445       case LibFunc_sin:
8446       case LibFunc_sinf:
8447       case LibFunc_sinl:
8448         if (visitUnaryFloatCall(I, ISD::FSIN))
8449           return;
8450         break;
8451       case LibFunc_cos:
8452       case LibFunc_cosf:
8453       case LibFunc_cosl:
8454         if (visitUnaryFloatCall(I, ISD::FCOS))
8455           return;
8456         break;
8457       case LibFunc_sqrt:
8458       case LibFunc_sqrtf:
8459       case LibFunc_sqrtl:
8460       case LibFunc_sqrt_finite:
8461       case LibFunc_sqrtf_finite:
8462       case LibFunc_sqrtl_finite:
8463         if (visitUnaryFloatCall(I, ISD::FSQRT))
8464           return;
8465         break;
8466       case LibFunc_floor:
8467       case LibFunc_floorf:
8468       case LibFunc_floorl:
8469         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8470           return;
8471         break;
8472       case LibFunc_nearbyint:
8473       case LibFunc_nearbyintf:
8474       case LibFunc_nearbyintl:
8475         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8476           return;
8477         break;
8478       case LibFunc_ceil:
8479       case LibFunc_ceilf:
8480       case LibFunc_ceill:
8481         if (visitUnaryFloatCall(I, ISD::FCEIL))
8482           return;
8483         break;
8484       case LibFunc_rint:
8485       case LibFunc_rintf:
8486       case LibFunc_rintl:
8487         if (visitUnaryFloatCall(I, ISD::FRINT))
8488           return;
8489         break;
8490       case LibFunc_round:
8491       case LibFunc_roundf:
8492       case LibFunc_roundl:
8493         if (visitUnaryFloatCall(I, ISD::FROUND))
8494           return;
8495         break;
8496       case LibFunc_trunc:
8497       case LibFunc_truncf:
8498       case LibFunc_truncl:
8499         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8500           return;
8501         break;
8502       case LibFunc_log2:
8503       case LibFunc_log2f:
8504       case LibFunc_log2l:
8505         if (visitUnaryFloatCall(I, ISD::FLOG2))
8506           return;
8507         break;
8508       case LibFunc_exp2:
8509       case LibFunc_exp2f:
8510       case LibFunc_exp2l:
8511         if (visitUnaryFloatCall(I, ISD::FEXP2))
8512           return;
8513         break;
8514       case LibFunc_memcmp:
8515         if (visitMemCmpBCmpCall(I))
8516           return;
8517         break;
8518       case LibFunc_mempcpy:
8519         if (visitMemPCpyCall(I))
8520           return;
8521         break;
8522       case LibFunc_memchr:
8523         if (visitMemChrCall(I))
8524           return;
8525         break;
8526       case LibFunc_strcpy:
8527         if (visitStrCpyCall(I, false))
8528           return;
8529         break;
8530       case LibFunc_stpcpy:
8531         if (visitStrCpyCall(I, true))
8532           return;
8533         break;
8534       case LibFunc_strcmp:
8535         if (visitStrCmpCall(I))
8536           return;
8537         break;
8538       case LibFunc_strlen:
8539         if (visitStrLenCall(I))
8540           return;
8541         break;
8542       case LibFunc_strnlen:
8543         if (visitStrNLenCall(I))
8544           return;
8545         break;
8546       }
8547     }
8548   }
8549 
8550   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8551   // have to do anything here to lower funclet bundles.
8552   // CFGuardTarget bundles are lowered in LowerCallTo.
8553   assert(!I.hasOperandBundlesOtherThan(
8554              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8555               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8556               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8557          "Cannot lower calls with arbitrary operand bundles!");
8558 
8559   SDValue Callee = getValue(I.getCalledOperand());
8560 
8561   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8562     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8563   else
8564     // Check if we can potentially perform a tail call. More detailed checking
8565     // is be done within LowerCallTo, after more information about the call is
8566     // known.
8567     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8568 }
8569 
8570 namespace {
8571 
8572 /// AsmOperandInfo - This contains information for each constraint that we are
8573 /// lowering.
8574 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8575 public:
8576   /// CallOperand - If this is the result output operand or a clobber
8577   /// this is null, otherwise it is the incoming operand to the CallInst.
8578   /// This gets modified as the asm is processed.
8579   SDValue CallOperand;
8580 
8581   /// AssignedRegs - If this is a register or register class operand, this
8582   /// contains the set of register corresponding to the operand.
8583   RegsForValue AssignedRegs;
8584 
8585   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8586     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8587   }
8588 
8589   /// Whether or not this operand accesses memory
8590   bool hasMemory(const TargetLowering &TLI) const {
8591     // Indirect operand accesses access memory.
8592     if (isIndirect)
8593       return true;
8594 
8595     for (const auto &Code : Codes)
8596       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8597         return true;
8598 
8599     return false;
8600   }
8601 };
8602 
8603 
8604 } // end anonymous namespace
8605 
8606 /// Make sure that the output operand \p OpInfo and its corresponding input
8607 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8608 /// out).
8609 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8610                                SDISelAsmOperandInfo &MatchingOpInfo,
8611                                SelectionDAG &DAG) {
8612   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8613     return;
8614 
8615   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8616   const auto &TLI = DAG.getTargetLoweringInfo();
8617 
8618   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8619       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8620                                        OpInfo.ConstraintVT);
8621   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8622       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8623                                        MatchingOpInfo.ConstraintVT);
8624   if ((OpInfo.ConstraintVT.isInteger() !=
8625        MatchingOpInfo.ConstraintVT.isInteger()) ||
8626       (MatchRC.second != InputRC.second)) {
8627     // FIXME: error out in a more elegant fashion
8628     report_fatal_error("Unsupported asm: input constraint"
8629                        " with a matching output constraint of"
8630                        " incompatible type!");
8631   }
8632   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8633 }
8634 
8635 /// Get a direct memory input to behave well as an indirect operand.
8636 /// This may introduce stores, hence the need for a \p Chain.
8637 /// \return The (possibly updated) chain.
8638 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8639                                         SDISelAsmOperandInfo &OpInfo,
8640                                         SelectionDAG &DAG) {
8641   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8642 
8643   // If we don't have an indirect input, put it in the constpool if we can,
8644   // otherwise spill it to a stack slot.
8645   // TODO: This isn't quite right. We need to handle these according to
8646   // the addressing mode that the constraint wants. Also, this may take
8647   // an additional register for the computation and we don't want that
8648   // either.
8649 
8650   // If the operand is a float, integer, or vector constant, spill to a
8651   // constant pool entry to get its address.
8652   const Value *OpVal = OpInfo.CallOperandVal;
8653   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8654       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8655     OpInfo.CallOperand = DAG.getConstantPool(
8656         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8657     return Chain;
8658   }
8659 
8660   // Otherwise, create a stack slot and emit a store to it before the asm.
8661   Type *Ty = OpVal->getType();
8662   auto &DL = DAG.getDataLayout();
8663   uint64_t TySize = DL.getTypeAllocSize(Ty);
8664   MachineFunction &MF = DAG.getMachineFunction();
8665   int SSFI = MF.getFrameInfo().CreateStackObject(
8666       TySize, DL.getPrefTypeAlign(Ty), false);
8667   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8668   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8669                             MachinePointerInfo::getFixedStack(MF, SSFI),
8670                             TLI.getMemValueType(DL, Ty));
8671   OpInfo.CallOperand = StackSlot;
8672 
8673   return Chain;
8674 }
8675 
8676 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8677 /// specified operand.  We prefer to assign virtual registers, to allow the
8678 /// register allocator to handle the assignment process.  However, if the asm
8679 /// uses features that we can't model on machineinstrs, we have SDISel do the
8680 /// allocation.  This produces generally horrible, but correct, code.
8681 ///
8682 ///   OpInfo describes the operand
8683 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8684 static std::optional<unsigned>
8685 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8686                      SDISelAsmOperandInfo &OpInfo,
8687                      SDISelAsmOperandInfo &RefOpInfo) {
8688   LLVMContext &Context = *DAG.getContext();
8689   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8690 
8691   MachineFunction &MF = DAG.getMachineFunction();
8692   SmallVector<unsigned, 4> Regs;
8693   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8694 
8695   // No work to do for memory/address operands.
8696   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8697       OpInfo.ConstraintType == TargetLowering::C_Address)
8698     return std::nullopt;
8699 
8700   // If this is a constraint for a single physreg, or a constraint for a
8701   // register class, find it.
8702   unsigned AssignedReg;
8703   const TargetRegisterClass *RC;
8704   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8705       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8706   // RC is unset only on failure. Return immediately.
8707   if (!RC)
8708     return std::nullopt;
8709 
8710   // Get the actual register value type.  This is important, because the user
8711   // may have asked for (e.g.) the AX register in i32 type.  We need to
8712   // remember that AX is actually i16 to get the right extension.
8713   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8714 
8715   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8716     // If this is an FP operand in an integer register (or visa versa), or more
8717     // generally if the operand value disagrees with the register class we plan
8718     // to stick it in, fix the operand type.
8719     //
8720     // If this is an input value, the bitcast to the new type is done now.
8721     // Bitcast for output value is done at the end of visitInlineAsm().
8722     if ((OpInfo.Type == InlineAsm::isOutput ||
8723          OpInfo.Type == InlineAsm::isInput) &&
8724         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8725       // Try to convert to the first EVT that the reg class contains.  If the
8726       // types are identical size, use a bitcast to convert (e.g. two differing
8727       // vector types).  Note: output bitcast is done at the end of
8728       // visitInlineAsm().
8729       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8730         // Exclude indirect inputs while they are unsupported because the code
8731         // to perform the load is missing and thus OpInfo.CallOperand still
8732         // refers to the input address rather than the pointed-to value.
8733         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8734           OpInfo.CallOperand =
8735               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8736         OpInfo.ConstraintVT = RegVT;
8737         // If the operand is an FP value and we want it in integer registers,
8738         // use the corresponding integer type. This turns an f64 value into
8739         // i64, which can be passed with two i32 values on a 32-bit machine.
8740       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8741         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8742         if (OpInfo.Type == InlineAsm::isInput)
8743           OpInfo.CallOperand =
8744               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8745         OpInfo.ConstraintVT = VT;
8746       }
8747     }
8748   }
8749 
8750   // No need to allocate a matching input constraint since the constraint it's
8751   // matching to has already been allocated.
8752   if (OpInfo.isMatchingInputConstraint())
8753     return std::nullopt;
8754 
8755   EVT ValueVT = OpInfo.ConstraintVT;
8756   if (OpInfo.ConstraintVT == MVT::Other)
8757     ValueVT = RegVT;
8758 
8759   // Initialize NumRegs.
8760   unsigned NumRegs = 1;
8761   if (OpInfo.ConstraintVT != MVT::Other)
8762     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8763 
8764   // If this is a constraint for a specific physical register, like {r17},
8765   // assign it now.
8766 
8767   // If this associated to a specific register, initialize iterator to correct
8768   // place. If virtual, make sure we have enough registers
8769 
8770   // Initialize iterator if necessary
8771   TargetRegisterClass::iterator I = RC->begin();
8772   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8773 
8774   // Do not check for single registers.
8775   if (AssignedReg) {
8776     I = std::find(I, RC->end(), AssignedReg);
8777     if (I == RC->end()) {
8778       // RC does not contain the selected register, which indicates a
8779       // mismatch between the register and the required type/bitwidth.
8780       return {AssignedReg};
8781     }
8782   }
8783 
8784   for (; NumRegs; --NumRegs, ++I) {
8785     assert(I != RC->end() && "Ran out of registers to allocate!");
8786     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8787     Regs.push_back(R);
8788   }
8789 
8790   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8791   return std::nullopt;
8792 }
8793 
8794 static unsigned
8795 findMatchingInlineAsmOperand(unsigned OperandNo,
8796                              const std::vector<SDValue> &AsmNodeOperands) {
8797   // Scan until we find the definition we already emitted of this operand.
8798   unsigned CurOp = InlineAsm::Op_FirstOperand;
8799   for (; OperandNo; --OperandNo) {
8800     // Advance to the next operand.
8801     unsigned OpFlag =
8802         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8803     assert((InlineAsm::isRegDefKind(OpFlag) ||
8804             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8805             InlineAsm::isMemKind(OpFlag)) &&
8806            "Skipped past definitions?");
8807     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8808   }
8809   return CurOp;
8810 }
8811 
8812 namespace {
8813 
8814 class ExtraFlags {
8815   unsigned Flags = 0;
8816 
8817 public:
8818   explicit ExtraFlags(const CallBase &Call) {
8819     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8820     if (IA->hasSideEffects())
8821       Flags |= InlineAsm::Extra_HasSideEffects;
8822     if (IA->isAlignStack())
8823       Flags |= InlineAsm::Extra_IsAlignStack;
8824     if (Call.isConvergent())
8825       Flags |= InlineAsm::Extra_IsConvergent;
8826     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8827   }
8828 
8829   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8830     // Ideally, we would only check against memory constraints.  However, the
8831     // meaning of an Other constraint can be target-specific and we can't easily
8832     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8833     // for Other constraints as well.
8834     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8835         OpInfo.ConstraintType == TargetLowering::C_Other) {
8836       if (OpInfo.Type == InlineAsm::isInput)
8837         Flags |= InlineAsm::Extra_MayLoad;
8838       else if (OpInfo.Type == InlineAsm::isOutput)
8839         Flags |= InlineAsm::Extra_MayStore;
8840       else if (OpInfo.Type == InlineAsm::isClobber)
8841         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8842     }
8843   }
8844 
8845   unsigned get() const { return Flags; }
8846 };
8847 
8848 } // end anonymous namespace
8849 
8850 static bool isFunction(SDValue Op) {
8851   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8852     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8853       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8854 
8855       // In normal "call dllimport func" instruction (non-inlineasm) it force
8856       // indirect access by specifing call opcode. And usually specially print
8857       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8858       // not do in this way now. (In fact, this is similar with "Data Access"
8859       // action). So here we ignore dllimport function.
8860       if (Fn && !Fn->hasDLLImportStorageClass())
8861         return true;
8862     }
8863   }
8864   return false;
8865 }
8866 
8867 /// visitInlineAsm - Handle a call to an InlineAsm object.
8868 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8869                                          const BasicBlock *EHPadBB) {
8870   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8871 
8872   /// ConstraintOperands - Information about all of the constraints.
8873   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8874 
8875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8876   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8877       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8878 
8879   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8880   // AsmDialect, MayLoad, MayStore).
8881   bool HasSideEffect = IA->hasSideEffects();
8882   ExtraFlags ExtraInfo(Call);
8883 
8884   for (auto &T : TargetConstraints) {
8885     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8886     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8887 
8888     if (OpInfo.CallOperandVal)
8889       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8890 
8891     if (!HasSideEffect)
8892       HasSideEffect = OpInfo.hasMemory(TLI);
8893 
8894     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8895     // FIXME: Could we compute this on OpInfo rather than T?
8896 
8897     // Compute the constraint code and ConstraintType to use.
8898     TLI.ComputeConstraintToUse(T, SDValue());
8899 
8900     if (T.ConstraintType == TargetLowering::C_Immediate &&
8901         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8902       // We've delayed emitting a diagnostic like the "n" constraint because
8903       // inlining could cause an integer showing up.
8904       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8905                                           "' expects an integer constant "
8906                                           "expression");
8907 
8908     ExtraInfo.update(T);
8909   }
8910 
8911   // We won't need to flush pending loads if this asm doesn't touch
8912   // memory and is nonvolatile.
8913   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8914 
8915   bool EmitEHLabels = isa<InvokeInst>(Call);
8916   if (EmitEHLabels) {
8917     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8918   }
8919   bool IsCallBr = isa<CallBrInst>(Call);
8920 
8921   if (IsCallBr || EmitEHLabels) {
8922     // If this is a callbr or invoke we need to flush pending exports since
8923     // inlineasm_br and invoke are terminators.
8924     // We need to do this before nodes are glued to the inlineasm_br node.
8925     Chain = getControlRoot();
8926   }
8927 
8928   MCSymbol *BeginLabel = nullptr;
8929   if (EmitEHLabels) {
8930     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8931   }
8932 
8933   int OpNo = -1;
8934   SmallVector<StringRef> AsmStrs;
8935   IA->collectAsmStrs(AsmStrs);
8936 
8937   // Second pass over the constraints: compute which constraint option to use.
8938   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8939     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8940       OpNo++;
8941 
8942     // If this is an output operand with a matching input operand, look up the
8943     // matching input. If their types mismatch, e.g. one is an integer, the
8944     // other is floating point, or their sizes are different, flag it as an
8945     // error.
8946     if (OpInfo.hasMatchingInput()) {
8947       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8948       patchMatchingInput(OpInfo, Input, DAG);
8949     }
8950 
8951     // Compute the constraint code and ConstraintType to use.
8952     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8953 
8954     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8955          OpInfo.Type == InlineAsm::isClobber) ||
8956         OpInfo.ConstraintType == TargetLowering::C_Address)
8957       continue;
8958 
8959     // In Linux PIC model, there are 4 cases about value/label addressing:
8960     //
8961     // 1: Function call or Label jmp inside the module.
8962     // 2: Data access (such as global variable, static variable) inside module.
8963     // 3: Function call or Label jmp outside the module.
8964     // 4: Data access (such as global variable) outside the module.
8965     //
8966     // Due to current llvm inline asm architecture designed to not "recognize"
8967     // the asm code, there are quite troubles for us to treat mem addressing
8968     // differently for same value/adress used in different instuctions.
8969     // For example, in pic model, call a func may in plt way or direclty
8970     // pc-related, but lea/mov a function adress may use got.
8971     //
8972     // Here we try to "recognize" function call for the case 1 and case 3 in
8973     // inline asm. And try to adjust the constraint for them.
8974     //
8975     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8976     // label, so here we don't handle jmp function label now, but we need to
8977     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8978     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8979         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8980         TM.getCodeModel() != CodeModel::Large) {
8981       OpInfo.isIndirect = false;
8982       OpInfo.ConstraintType = TargetLowering::C_Address;
8983     }
8984 
8985     // If this is a memory input, and if the operand is not indirect, do what we
8986     // need to provide an address for the memory input.
8987     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8988         !OpInfo.isIndirect) {
8989       assert((OpInfo.isMultipleAlternative ||
8990               (OpInfo.Type == InlineAsm::isInput)) &&
8991              "Can only indirectify direct input operands!");
8992 
8993       // Memory operands really want the address of the value.
8994       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8995 
8996       // There is no longer a Value* corresponding to this operand.
8997       OpInfo.CallOperandVal = nullptr;
8998 
8999       // It is now an indirect operand.
9000       OpInfo.isIndirect = true;
9001     }
9002 
9003   }
9004 
9005   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9006   std::vector<SDValue> AsmNodeOperands;
9007   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9008   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9009       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9010 
9011   // If we have a !srcloc metadata node associated with it, we want to attach
9012   // this to the ultimately generated inline asm machineinstr.  To do this, we
9013   // pass in the third operand as this (potentially null) inline asm MDNode.
9014   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9015   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9016 
9017   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9018   // bits as operand 3.
9019   AsmNodeOperands.push_back(DAG.getTargetConstant(
9020       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9021 
9022   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9023   // this, assign virtual and physical registers for inputs and otput.
9024   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9025     // Assign Registers.
9026     SDISelAsmOperandInfo &RefOpInfo =
9027         OpInfo.isMatchingInputConstraint()
9028             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9029             : OpInfo;
9030     const auto RegError =
9031         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9032     if (RegError) {
9033       const MachineFunction &MF = DAG.getMachineFunction();
9034       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9035       const char *RegName = TRI.getName(*RegError);
9036       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9037                                    "' allocated for constraint '" +
9038                                    Twine(OpInfo.ConstraintCode) +
9039                                    "' does not match required type");
9040       return;
9041     }
9042 
9043     auto DetectWriteToReservedRegister = [&]() {
9044       const MachineFunction &MF = DAG.getMachineFunction();
9045       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9046       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9047         if (Register::isPhysicalRegister(Reg) &&
9048             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9049           const char *RegName = TRI.getName(Reg);
9050           emitInlineAsmError(Call, "write to reserved register '" +
9051                                        Twine(RegName) + "'");
9052           return true;
9053         }
9054       }
9055       return false;
9056     };
9057     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9058             (OpInfo.Type == InlineAsm::isInput &&
9059              !OpInfo.isMatchingInputConstraint())) &&
9060            "Only address as input operand is allowed.");
9061 
9062     switch (OpInfo.Type) {
9063     case InlineAsm::isOutput:
9064       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9065         unsigned ConstraintID =
9066             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9067         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9068                "Failed to convert memory constraint code to constraint id.");
9069 
9070         // Add information to the INLINEASM node to know about this output.
9071         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9072         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9073         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9074                                                         MVT::i32));
9075         AsmNodeOperands.push_back(OpInfo.CallOperand);
9076       } else {
9077         // Otherwise, this outputs to a register (directly for C_Register /
9078         // C_RegisterClass, and a target-defined fashion for
9079         // C_Immediate/C_Other). Find a register that we can use.
9080         if (OpInfo.AssignedRegs.Regs.empty()) {
9081           emitInlineAsmError(
9082               Call, "couldn't allocate output register for constraint '" +
9083                         Twine(OpInfo.ConstraintCode) + "'");
9084           return;
9085         }
9086 
9087         if (DetectWriteToReservedRegister())
9088           return;
9089 
9090         // Add information to the INLINEASM node to know that this register is
9091         // set.
9092         OpInfo.AssignedRegs.AddInlineAsmOperands(
9093             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9094                                   : InlineAsm::Kind_RegDef,
9095             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9096       }
9097       break;
9098 
9099     case InlineAsm::isInput:
9100     case InlineAsm::isLabel: {
9101       SDValue InOperandVal = OpInfo.CallOperand;
9102 
9103       if (OpInfo.isMatchingInputConstraint()) {
9104         // If this is required to match an output register we have already set,
9105         // just use its register.
9106         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9107                                                   AsmNodeOperands);
9108         unsigned OpFlag =
9109           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9110         if (InlineAsm::isRegDefKind(OpFlag) ||
9111             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9112           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9113           if (OpInfo.isIndirect) {
9114             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9115             emitInlineAsmError(Call, "inline asm not supported yet: "
9116                                      "don't know how to handle tied "
9117                                      "indirect register inputs");
9118             return;
9119           }
9120 
9121           SmallVector<unsigned, 4> Regs;
9122           MachineFunction &MF = DAG.getMachineFunction();
9123           MachineRegisterInfo &MRI = MF.getRegInfo();
9124           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9125           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9126           Register TiedReg = R->getReg();
9127           MVT RegVT = R->getSimpleValueType(0);
9128           const TargetRegisterClass *RC =
9129               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9130               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9131                                       : TRI.getMinimalPhysRegClass(TiedReg);
9132           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9133           for (unsigned i = 0; i != NumRegs; ++i)
9134             Regs.push_back(MRI.createVirtualRegister(RC));
9135 
9136           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9137 
9138           SDLoc dl = getCurSDLoc();
9139           // Use the produced MatchedRegs object to
9140           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9141           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9142                                            true, OpInfo.getMatchedOperand(), dl,
9143                                            DAG, AsmNodeOperands);
9144           break;
9145         }
9146 
9147         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9148         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9149                "Unexpected number of operands");
9150         // Add information to the INLINEASM node to know about this input.
9151         // See InlineAsm.h isUseOperandTiedToDef.
9152         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9153         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9154                                                     OpInfo.getMatchedOperand());
9155         AsmNodeOperands.push_back(DAG.getTargetConstant(
9156             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9157         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9158         break;
9159       }
9160 
9161       // Treat indirect 'X' constraint as memory.
9162       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9163           OpInfo.isIndirect)
9164         OpInfo.ConstraintType = TargetLowering::C_Memory;
9165 
9166       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9167           OpInfo.ConstraintType == TargetLowering::C_Other) {
9168         std::vector<SDValue> Ops;
9169         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9170                                           Ops, DAG);
9171         if (Ops.empty()) {
9172           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9173             if (isa<ConstantSDNode>(InOperandVal)) {
9174               emitInlineAsmError(Call, "value out of range for constraint '" +
9175                                            Twine(OpInfo.ConstraintCode) + "'");
9176               return;
9177             }
9178 
9179           emitInlineAsmError(Call,
9180                              "invalid operand for inline asm constraint '" +
9181                                  Twine(OpInfo.ConstraintCode) + "'");
9182           return;
9183         }
9184 
9185         // Add information to the INLINEASM node to know about this input.
9186         unsigned ResOpType =
9187           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9188         AsmNodeOperands.push_back(DAG.getTargetConstant(
9189             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9190         llvm::append_range(AsmNodeOperands, Ops);
9191         break;
9192       }
9193 
9194       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9195         assert((OpInfo.isIndirect ||
9196                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9197                "Operand must be indirect to be a mem!");
9198         assert(InOperandVal.getValueType() ==
9199                    TLI.getPointerTy(DAG.getDataLayout()) &&
9200                "Memory operands expect pointer values");
9201 
9202         unsigned ConstraintID =
9203             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9204         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9205                "Failed to convert memory constraint code to constraint id.");
9206 
9207         // Add information to the INLINEASM node to know about this input.
9208         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9209         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9210         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9211                                                         getCurSDLoc(),
9212                                                         MVT::i32));
9213         AsmNodeOperands.push_back(InOperandVal);
9214         break;
9215       }
9216 
9217       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9218         assert(InOperandVal.getValueType() ==
9219                    TLI.getPointerTy(DAG.getDataLayout()) &&
9220                "Address operands expect pointer values");
9221 
9222         unsigned ConstraintID =
9223             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9224         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9225                "Failed to convert memory constraint code to constraint id.");
9226 
9227         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9228 
9229         SDValue AsmOp = InOperandVal;
9230         if (isFunction(InOperandVal)) {
9231           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9232           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9233           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9234                                              InOperandVal.getValueType(),
9235                                              GA->getOffset());
9236         }
9237 
9238         // Add information to the INLINEASM node to know about this input.
9239         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9240 
9241         AsmNodeOperands.push_back(
9242             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9243 
9244         AsmNodeOperands.push_back(AsmOp);
9245         break;
9246       }
9247 
9248       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9249               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9250              "Unknown constraint type!");
9251 
9252       // TODO: Support this.
9253       if (OpInfo.isIndirect) {
9254         emitInlineAsmError(
9255             Call, "Don't know how to handle indirect register inputs yet "
9256                   "for constraint '" +
9257                       Twine(OpInfo.ConstraintCode) + "'");
9258         return;
9259       }
9260 
9261       // Copy the input into the appropriate registers.
9262       if (OpInfo.AssignedRegs.Regs.empty()) {
9263         emitInlineAsmError(Call,
9264                            "couldn't allocate input reg for constraint '" +
9265                                Twine(OpInfo.ConstraintCode) + "'");
9266         return;
9267       }
9268 
9269       if (DetectWriteToReservedRegister())
9270         return;
9271 
9272       SDLoc dl = getCurSDLoc();
9273 
9274       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9275                                         &Call);
9276 
9277       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9278                                                dl, DAG, AsmNodeOperands);
9279       break;
9280     }
9281     case InlineAsm::isClobber:
9282       // Add the clobbered value to the operand list, so that the register
9283       // allocator is aware that the physreg got clobbered.
9284       if (!OpInfo.AssignedRegs.Regs.empty())
9285         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9286                                                  false, 0, getCurSDLoc(), DAG,
9287                                                  AsmNodeOperands);
9288       break;
9289     }
9290   }
9291 
9292   // Finish up input operands.  Set the input chain and add the flag last.
9293   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9294   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9295 
9296   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9297   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9298                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9299   Flag = Chain.getValue(1);
9300 
9301   // Do additional work to generate outputs.
9302 
9303   SmallVector<EVT, 1> ResultVTs;
9304   SmallVector<SDValue, 1> ResultValues;
9305   SmallVector<SDValue, 8> OutChains;
9306 
9307   llvm::Type *CallResultType = Call.getType();
9308   ArrayRef<Type *> ResultTypes;
9309   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9310     ResultTypes = StructResult->elements();
9311   else if (!CallResultType->isVoidTy())
9312     ResultTypes = ArrayRef(CallResultType);
9313 
9314   auto CurResultType = ResultTypes.begin();
9315   auto handleRegAssign = [&](SDValue V) {
9316     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9317     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9318     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9319     ++CurResultType;
9320     // If the type of the inline asm call site return value is different but has
9321     // same size as the type of the asm output bitcast it.  One example of this
9322     // is for vectors with different width / number of elements.  This can
9323     // happen for register classes that can contain multiple different value
9324     // types.  The preg or vreg allocated may not have the same VT as was
9325     // expected.
9326     //
9327     // This can also happen for a return value that disagrees with the register
9328     // class it is put in, eg. a double in a general-purpose register on a
9329     // 32-bit machine.
9330     if (ResultVT != V.getValueType() &&
9331         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9332       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9333     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9334              V.getValueType().isInteger()) {
9335       // If a result value was tied to an input value, the computed result
9336       // may have a wider width than the expected result.  Extract the
9337       // relevant portion.
9338       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9339     }
9340     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9341     ResultVTs.push_back(ResultVT);
9342     ResultValues.push_back(V);
9343   };
9344 
9345   // Deal with output operands.
9346   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9347     if (OpInfo.Type == InlineAsm::isOutput) {
9348       SDValue Val;
9349       // Skip trivial output operands.
9350       if (OpInfo.AssignedRegs.Regs.empty())
9351         continue;
9352 
9353       switch (OpInfo.ConstraintType) {
9354       case TargetLowering::C_Register:
9355       case TargetLowering::C_RegisterClass:
9356         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9357                                                   Chain, &Flag, &Call);
9358         break;
9359       case TargetLowering::C_Immediate:
9360       case TargetLowering::C_Other:
9361         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9362                                               OpInfo, DAG);
9363         break;
9364       case TargetLowering::C_Memory:
9365         break; // Already handled.
9366       case TargetLowering::C_Address:
9367         break; // Silence warning.
9368       case TargetLowering::C_Unknown:
9369         assert(false && "Unexpected unknown constraint");
9370       }
9371 
9372       // Indirect output manifest as stores. Record output chains.
9373       if (OpInfo.isIndirect) {
9374         const Value *Ptr = OpInfo.CallOperandVal;
9375         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9376         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9377                                      MachinePointerInfo(Ptr));
9378         OutChains.push_back(Store);
9379       } else {
9380         // generate CopyFromRegs to associated registers.
9381         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9382         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9383           for (const SDValue &V : Val->op_values())
9384             handleRegAssign(V);
9385         } else
9386           handleRegAssign(Val);
9387       }
9388     }
9389   }
9390 
9391   // Set results.
9392   if (!ResultValues.empty()) {
9393     assert(CurResultType == ResultTypes.end() &&
9394            "Mismatch in number of ResultTypes");
9395     assert(ResultValues.size() == ResultTypes.size() &&
9396            "Mismatch in number of output operands in asm result");
9397 
9398     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9399                             DAG.getVTList(ResultVTs), ResultValues);
9400     setValue(&Call, V);
9401   }
9402 
9403   // Collect store chains.
9404   if (!OutChains.empty())
9405     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9406 
9407   if (EmitEHLabels) {
9408     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9409   }
9410 
9411   // Only Update Root if inline assembly has a memory effect.
9412   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9413       EmitEHLabels)
9414     DAG.setRoot(Chain);
9415 }
9416 
9417 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9418                                              const Twine &Message) {
9419   LLVMContext &Ctx = *DAG.getContext();
9420   Ctx.emitError(&Call, Message);
9421 
9422   // Make sure we leave the DAG in a valid state
9423   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9424   SmallVector<EVT, 1> ValueVTs;
9425   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9426 
9427   if (ValueVTs.empty())
9428     return;
9429 
9430   SmallVector<SDValue, 1> Ops;
9431   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9432     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9433 
9434   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9435 }
9436 
9437 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9438   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9439                           MVT::Other, getRoot(),
9440                           getValue(I.getArgOperand(0)),
9441                           DAG.getSrcValue(I.getArgOperand(0))));
9442 }
9443 
9444 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9445   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9446   const DataLayout &DL = DAG.getDataLayout();
9447   SDValue V = DAG.getVAArg(
9448       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9449       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9450       DL.getABITypeAlign(I.getType()).value());
9451   DAG.setRoot(V.getValue(1));
9452 
9453   if (I.getType()->isPointerTy())
9454     V = DAG.getPtrExtOrTrunc(
9455         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9456   setValue(&I, V);
9457 }
9458 
9459 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9460   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9461                           MVT::Other, getRoot(),
9462                           getValue(I.getArgOperand(0)),
9463                           DAG.getSrcValue(I.getArgOperand(0))));
9464 }
9465 
9466 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9467   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9468                           MVT::Other, getRoot(),
9469                           getValue(I.getArgOperand(0)),
9470                           getValue(I.getArgOperand(1)),
9471                           DAG.getSrcValue(I.getArgOperand(0)),
9472                           DAG.getSrcValue(I.getArgOperand(1))));
9473 }
9474 
9475 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9476                                                     const Instruction &I,
9477                                                     SDValue Op) {
9478   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9479   if (!Range)
9480     return Op;
9481 
9482   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9483   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9484     return Op;
9485 
9486   APInt Lo = CR.getUnsignedMin();
9487   if (!Lo.isMinValue())
9488     return Op;
9489 
9490   APInt Hi = CR.getUnsignedMax();
9491   unsigned Bits = std::max(Hi.getActiveBits(),
9492                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9493 
9494   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9495 
9496   SDLoc SL = getCurSDLoc();
9497 
9498   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9499                              DAG.getValueType(SmallVT));
9500   unsigned NumVals = Op.getNode()->getNumValues();
9501   if (NumVals == 1)
9502     return ZExt;
9503 
9504   SmallVector<SDValue, 4> Ops;
9505 
9506   Ops.push_back(ZExt);
9507   for (unsigned I = 1; I != NumVals; ++I)
9508     Ops.push_back(Op.getValue(I));
9509 
9510   return DAG.getMergeValues(Ops, SL);
9511 }
9512 
9513 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9514 /// the call being lowered.
9515 ///
9516 /// This is a helper for lowering intrinsics that follow a target calling
9517 /// convention or require stack pointer adjustment. Only a subset of the
9518 /// intrinsic's operands need to participate in the calling convention.
9519 void SelectionDAGBuilder::populateCallLoweringInfo(
9520     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9521     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9522     bool IsPatchPoint) {
9523   TargetLowering::ArgListTy Args;
9524   Args.reserve(NumArgs);
9525 
9526   // Populate the argument list.
9527   // Attributes for args start at offset 1, after the return attribute.
9528   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9529        ArgI != ArgE; ++ArgI) {
9530     const Value *V = Call->getOperand(ArgI);
9531 
9532     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9533 
9534     TargetLowering::ArgListEntry Entry;
9535     Entry.Node = getValue(V);
9536     Entry.Ty = V->getType();
9537     Entry.setAttributes(Call, ArgI);
9538     Args.push_back(Entry);
9539   }
9540 
9541   CLI.setDebugLoc(getCurSDLoc())
9542       .setChain(getRoot())
9543       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9544       .setDiscardResult(Call->use_empty())
9545       .setIsPatchPoint(IsPatchPoint)
9546       .setIsPreallocated(
9547           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9548 }
9549 
9550 /// Add a stack map intrinsic call's live variable operands to a stackmap
9551 /// or patchpoint target node's operand list.
9552 ///
9553 /// Constants are converted to TargetConstants purely as an optimization to
9554 /// avoid constant materialization and register allocation.
9555 ///
9556 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9557 /// generate addess computation nodes, and so FinalizeISel can convert the
9558 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9559 /// address materialization and register allocation, but may also be required
9560 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9561 /// alloca in the entry block, then the runtime may assume that the alloca's
9562 /// StackMap location can be read immediately after compilation and that the
9563 /// location is valid at any point during execution (this is similar to the
9564 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9565 /// only available in a register, then the runtime would need to trap when
9566 /// execution reaches the StackMap in order to read the alloca's location.
9567 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9568                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9569                                 SelectionDAGBuilder &Builder) {
9570   SelectionDAG &DAG = Builder.DAG;
9571   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9572     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9573 
9574     // Things on the stack are pointer-typed, meaning that they are already
9575     // legal and can be emitted directly to target nodes.
9576     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9577       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9578     } else {
9579       // Otherwise emit a target independent node to be legalised.
9580       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9581     }
9582   }
9583 }
9584 
9585 /// Lower llvm.experimental.stackmap.
9586 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9587   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9588   //                                  [live variables...])
9589 
9590   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9591 
9592   SDValue Chain, InFlag, Callee;
9593   SmallVector<SDValue, 32> Ops;
9594 
9595   SDLoc DL = getCurSDLoc();
9596   Callee = getValue(CI.getCalledOperand());
9597 
9598   // The stackmap intrinsic only records the live variables (the arguments
9599   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9600   // intrinsic, this won't be lowered to a function call. This means we don't
9601   // have to worry about calling conventions and target specific lowering code.
9602   // Instead we perform the call lowering right here.
9603   //
9604   // chain, flag = CALLSEQ_START(chain, 0, 0)
9605   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9606   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9607   //
9608   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9609   InFlag = Chain.getValue(1);
9610 
9611   // Add the STACKMAP operands, starting with DAG house-keeping.
9612   Ops.push_back(Chain);
9613   Ops.push_back(InFlag);
9614 
9615   // Add the <id>, <numShadowBytes> operands.
9616   //
9617   // These do not require legalisation, and can be emitted directly to target
9618   // constant nodes.
9619   SDValue ID = getValue(CI.getArgOperand(0));
9620   assert(ID.getValueType() == MVT::i64);
9621   SDValue IDConst = DAG.getTargetConstant(
9622       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9623   Ops.push_back(IDConst);
9624 
9625   SDValue Shad = getValue(CI.getArgOperand(1));
9626   assert(Shad.getValueType() == MVT::i32);
9627   SDValue ShadConst = DAG.getTargetConstant(
9628       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9629   Ops.push_back(ShadConst);
9630 
9631   // Add the live variables.
9632   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9633 
9634   // Create the STACKMAP node.
9635   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9636   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9637   InFlag = Chain.getValue(1);
9638 
9639   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9640 
9641   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9642 
9643   // Set the root to the target-lowered call chain.
9644   DAG.setRoot(Chain);
9645 
9646   // Inform the Frame Information that we have a stackmap in this function.
9647   FuncInfo.MF->getFrameInfo().setHasStackMap();
9648 }
9649 
9650 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9651 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9652                                           const BasicBlock *EHPadBB) {
9653   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9654   //                                                 i32 <numBytes>,
9655   //                                                 i8* <target>,
9656   //                                                 i32 <numArgs>,
9657   //                                                 [Args...],
9658   //                                                 [live variables...])
9659 
9660   CallingConv::ID CC = CB.getCallingConv();
9661   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9662   bool HasDef = !CB.getType()->isVoidTy();
9663   SDLoc dl = getCurSDLoc();
9664   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9665 
9666   // Handle immediate and symbolic callees.
9667   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9668     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9669                                    /*isTarget=*/true);
9670   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9671     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9672                                          SDLoc(SymbolicCallee),
9673                                          SymbolicCallee->getValueType(0));
9674 
9675   // Get the real number of arguments participating in the call <numArgs>
9676   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9677   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9678 
9679   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9680   // Intrinsics include all meta-operands up to but not including CC.
9681   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9682   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9683          "Not enough arguments provided to the patchpoint intrinsic");
9684 
9685   // For AnyRegCC the arguments are lowered later on manually.
9686   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9687   Type *ReturnTy =
9688       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9689 
9690   TargetLowering::CallLoweringInfo CLI(DAG);
9691   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9692                            ReturnTy, true);
9693   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9694 
9695   SDNode *CallEnd = Result.second.getNode();
9696   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9697     CallEnd = CallEnd->getOperand(0).getNode();
9698 
9699   /// Get a call instruction from the call sequence chain.
9700   /// Tail calls are not allowed.
9701   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9702          "Expected a callseq node.");
9703   SDNode *Call = CallEnd->getOperand(0).getNode();
9704   bool HasGlue = Call->getGluedNode();
9705 
9706   // Replace the target specific call node with the patchable intrinsic.
9707   SmallVector<SDValue, 8> Ops;
9708 
9709   // Push the chain.
9710   Ops.push_back(*(Call->op_begin()));
9711 
9712   // Optionally, push the glue (if any).
9713   if (HasGlue)
9714     Ops.push_back(*(Call->op_end() - 1));
9715 
9716   // Push the register mask info.
9717   if (HasGlue)
9718     Ops.push_back(*(Call->op_end() - 2));
9719   else
9720     Ops.push_back(*(Call->op_end() - 1));
9721 
9722   // Add the <id> and <numBytes> constants.
9723   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9724   Ops.push_back(DAG.getTargetConstant(
9725                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9726   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9727   Ops.push_back(DAG.getTargetConstant(
9728                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9729                   MVT::i32));
9730 
9731   // Add the callee.
9732   Ops.push_back(Callee);
9733 
9734   // Adjust <numArgs> to account for any arguments that have been passed on the
9735   // stack instead.
9736   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9737   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9738   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9739   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9740 
9741   // Add the calling convention
9742   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9743 
9744   // Add the arguments we omitted previously. The register allocator should
9745   // place these in any free register.
9746   if (IsAnyRegCC)
9747     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9748       Ops.push_back(getValue(CB.getArgOperand(i)));
9749 
9750   // Push the arguments from the call instruction.
9751   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9752   Ops.append(Call->op_begin() + 2, e);
9753 
9754   // Push live variables for the stack map.
9755   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9756 
9757   SDVTList NodeTys;
9758   if (IsAnyRegCC && HasDef) {
9759     // Create the return types based on the intrinsic definition
9760     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9761     SmallVector<EVT, 3> ValueVTs;
9762     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9763     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9764 
9765     // There is always a chain and a glue type at the end
9766     ValueVTs.push_back(MVT::Other);
9767     ValueVTs.push_back(MVT::Glue);
9768     NodeTys = DAG.getVTList(ValueVTs);
9769   } else
9770     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9771 
9772   // Replace the target specific call node with a PATCHPOINT node.
9773   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9774 
9775   // Update the NodeMap.
9776   if (HasDef) {
9777     if (IsAnyRegCC)
9778       setValue(&CB, SDValue(PPV.getNode(), 0));
9779     else
9780       setValue(&CB, Result.first);
9781   }
9782 
9783   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9784   // call sequence. Furthermore the location of the chain and glue can change
9785   // when the AnyReg calling convention is used and the intrinsic returns a
9786   // value.
9787   if (IsAnyRegCC && HasDef) {
9788     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9789     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9790     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9791   } else
9792     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9793   DAG.DeleteNode(Call);
9794 
9795   // Inform the Frame Information that we have a patchpoint in this function.
9796   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9797 }
9798 
9799 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9800                                             unsigned Intrinsic) {
9801   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9802   SDValue Op1 = getValue(I.getArgOperand(0));
9803   SDValue Op2;
9804   if (I.arg_size() > 1)
9805     Op2 = getValue(I.getArgOperand(1));
9806   SDLoc dl = getCurSDLoc();
9807   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9808   SDValue Res;
9809   SDNodeFlags SDFlags;
9810   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9811     SDFlags.copyFMF(*FPMO);
9812 
9813   switch (Intrinsic) {
9814   case Intrinsic::vector_reduce_fadd:
9815     if (SDFlags.hasAllowReassociation())
9816       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9817                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9818                         SDFlags);
9819     else
9820       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9821     break;
9822   case Intrinsic::vector_reduce_fmul:
9823     if (SDFlags.hasAllowReassociation())
9824       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9825                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9826                         SDFlags);
9827     else
9828       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9829     break;
9830   case Intrinsic::vector_reduce_add:
9831     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9832     break;
9833   case Intrinsic::vector_reduce_mul:
9834     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9835     break;
9836   case Intrinsic::vector_reduce_and:
9837     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9838     break;
9839   case Intrinsic::vector_reduce_or:
9840     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9841     break;
9842   case Intrinsic::vector_reduce_xor:
9843     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9844     break;
9845   case Intrinsic::vector_reduce_smax:
9846     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9847     break;
9848   case Intrinsic::vector_reduce_smin:
9849     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9850     break;
9851   case Intrinsic::vector_reduce_umax:
9852     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9853     break;
9854   case Intrinsic::vector_reduce_umin:
9855     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9856     break;
9857   case Intrinsic::vector_reduce_fmax:
9858     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9859     break;
9860   case Intrinsic::vector_reduce_fmin:
9861     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9862     break;
9863   default:
9864     llvm_unreachable("Unhandled vector reduce intrinsic");
9865   }
9866   setValue(&I, Res);
9867 }
9868 
9869 /// Returns an AttributeList representing the attributes applied to the return
9870 /// value of the given call.
9871 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9872   SmallVector<Attribute::AttrKind, 2> Attrs;
9873   if (CLI.RetSExt)
9874     Attrs.push_back(Attribute::SExt);
9875   if (CLI.RetZExt)
9876     Attrs.push_back(Attribute::ZExt);
9877   if (CLI.IsInReg)
9878     Attrs.push_back(Attribute::InReg);
9879 
9880   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9881                             Attrs);
9882 }
9883 
9884 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9885 /// implementation, which just calls LowerCall.
9886 /// FIXME: When all targets are
9887 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9888 std::pair<SDValue, SDValue>
9889 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9890   // Handle the incoming return values from the call.
9891   CLI.Ins.clear();
9892   Type *OrigRetTy = CLI.RetTy;
9893   SmallVector<EVT, 4> RetTys;
9894   SmallVector<uint64_t, 4> Offsets;
9895   auto &DL = CLI.DAG.getDataLayout();
9896   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9897 
9898   if (CLI.IsPostTypeLegalization) {
9899     // If we are lowering a libcall after legalization, split the return type.
9900     SmallVector<EVT, 4> OldRetTys;
9901     SmallVector<uint64_t, 4> OldOffsets;
9902     RetTys.swap(OldRetTys);
9903     Offsets.swap(OldOffsets);
9904 
9905     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9906       EVT RetVT = OldRetTys[i];
9907       uint64_t Offset = OldOffsets[i];
9908       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9909       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9910       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9911       RetTys.append(NumRegs, RegisterVT);
9912       for (unsigned j = 0; j != NumRegs; ++j)
9913         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9914     }
9915   }
9916 
9917   SmallVector<ISD::OutputArg, 4> Outs;
9918   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9919 
9920   bool CanLowerReturn =
9921       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9922                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9923 
9924   SDValue DemoteStackSlot;
9925   int DemoteStackIdx = -100;
9926   if (!CanLowerReturn) {
9927     // FIXME: equivalent assert?
9928     // assert(!CS.hasInAllocaArgument() &&
9929     //        "sret demotion is incompatible with inalloca");
9930     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9931     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9932     MachineFunction &MF = CLI.DAG.getMachineFunction();
9933     DemoteStackIdx =
9934         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9935     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9936                                               DL.getAllocaAddrSpace());
9937 
9938     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9939     ArgListEntry Entry;
9940     Entry.Node = DemoteStackSlot;
9941     Entry.Ty = StackSlotPtrType;
9942     Entry.IsSExt = false;
9943     Entry.IsZExt = false;
9944     Entry.IsInReg = false;
9945     Entry.IsSRet = true;
9946     Entry.IsNest = false;
9947     Entry.IsByVal = false;
9948     Entry.IsByRef = false;
9949     Entry.IsReturned = false;
9950     Entry.IsSwiftSelf = false;
9951     Entry.IsSwiftAsync = false;
9952     Entry.IsSwiftError = false;
9953     Entry.IsCFGuardTarget = false;
9954     Entry.Alignment = Alignment;
9955     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9956     CLI.NumFixedArgs += 1;
9957     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9958     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9959 
9960     // sret demotion isn't compatible with tail-calls, since the sret argument
9961     // points into the callers stack frame.
9962     CLI.IsTailCall = false;
9963   } else {
9964     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9965         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9966     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9967       ISD::ArgFlagsTy Flags;
9968       if (NeedsRegBlock) {
9969         Flags.setInConsecutiveRegs();
9970         if (I == RetTys.size() - 1)
9971           Flags.setInConsecutiveRegsLast();
9972       }
9973       EVT VT = RetTys[I];
9974       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9975                                                      CLI.CallConv, VT);
9976       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9977                                                        CLI.CallConv, VT);
9978       for (unsigned i = 0; i != NumRegs; ++i) {
9979         ISD::InputArg MyFlags;
9980         MyFlags.Flags = Flags;
9981         MyFlags.VT = RegisterVT;
9982         MyFlags.ArgVT = VT;
9983         MyFlags.Used = CLI.IsReturnValueUsed;
9984         if (CLI.RetTy->isPointerTy()) {
9985           MyFlags.Flags.setPointer();
9986           MyFlags.Flags.setPointerAddrSpace(
9987               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9988         }
9989         if (CLI.RetSExt)
9990           MyFlags.Flags.setSExt();
9991         if (CLI.RetZExt)
9992           MyFlags.Flags.setZExt();
9993         if (CLI.IsInReg)
9994           MyFlags.Flags.setInReg();
9995         CLI.Ins.push_back(MyFlags);
9996       }
9997     }
9998   }
9999 
10000   // We push in swifterror return as the last element of CLI.Ins.
10001   ArgListTy &Args = CLI.getArgs();
10002   if (supportSwiftError()) {
10003     for (const ArgListEntry &Arg : Args) {
10004       if (Arg.IsSwiftError) {
10005         ISD::InputArg MyFlags;
10006         MyFlags.VT = getPointerTy(DL);
10007         MyFlags.ArgVT = EVT(getPointerTy(DL));
10008         MyFlags.Flags.setSwiftError();
10009         CLI.Ins.push_back(MyFlags);
10010       }
10011     }
10012   }
10013 
10014   // Handle all of the outgoing arguments.
10015   CLI.Outs.clear();
10016   CLI.OutVals.clear();
10017   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10018     SmallVector<EVT, 4> ValueVTs;
10019     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10020     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10021     Type *FinalType = Args[i].Ty;
10022     if (Args[i].IsByVal)
10023       FinalType = Args[i].IndirectType;
10024     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10025         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10026     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10027          ++Value) {
10028       EVT VT = ValueVTs[Value];
10029       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10030       SDValue Op = SDValue(Args[i].Node.getNode(),
10031                            Args[i].Node.getResNo() + Value);
10032       ISD::ArgFlagsTy Flags;
10033 
10034       // Certain targets (such as MIPS), may have a different ABI alignment
10035       // for a type depending on the context. Give the target a chance to
10036       // specify the alignment it wants.
10037       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10038       Flags.setOrigAlign(OriginalAlignment);
10039 
10040       if (Args[i].Ty->isPointerTy()) {
10041         Flags.setPointer();
10042         Flags.setPointerAddrSpace(
10043             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10044       }
10045       if (Args[i].IsZExt)
10046         Flags.setZExt();
10047       if (Args[i].IsSExt)
10048         Flags.setSExt();
10049       if (Args[i].IsInReg) {
10050         // If we are using vectorcall calling convention, a structure that is
10051         // passed InReg - is surely an HVA
10052         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10053             isa<StructType>(FinalType)) {
10054           // The first value of a structure is marked
10055           if (0 == Value)
10056             Flags.setHvaStart();
10057           Flags.setHva();
10058         }
10059         // Set InReg Flag
10060         Flags.setInReg();
10061       }
10062       if (Args[i].IsSRet)
10063         Flags.setSRet();
10064       if (Args[i].IsSwiftSelf)
10065         Flags.setSwiftSelf();
10066       if (Args[i].IsSwiftAsync)
10067         Flags.setSwiftAsync();
10068       if (Args[i].IsSwiftError)
10069         Flags.setSwiftError();
10070       if (Args[i].IsCFGuardTarget)
10071         Flags.setCFGuardTarget();
10072       if (Args[i].IsByVal)
10073         Flags.setByVal();
10074       if (Args[i].IsByRef)
10075         Flags.setByRef();
10076       if (Args[i].IsPreallocated) {
10077         Flags.setPreallocated();
10078         // Set the byval flag for CCAssignFn callbacks that don't know about
10079         // preallocated.  This way we can know how many bytes we should've
10080         // allocated and how many bytes a callee cleanup function will pop.  If
10081         // we port preallocated to more targets, we'll have to add custom
10082         // preallocated handling in the various CC lowering callbacks.
10083         Flags.setByVal();
10084       }
10085       if (Args[i].IsInAlloca) {
10086         Flags.setInAlloca();
10087         // Set the byval flag for CCAssignFn callbacks that don't know about
10088         // inalloca.  This way we can know how many bytes we should've allocated
10089         // and how many bytes a callee cleanup function will pop.  If we port
10090         // inalloca to more targets, we'll have to add custom inalloca handling
10091         // in the various CC lowering callbacks.
10092         Flags.setByVal();
10093       }
10094       Align MemAlign;
10095       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10096         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10097         Flags.setByValSize(FrameSize);
10098 
10099         // info is not there but there are cases it cannot get right.
10100         if (auto MA = Args[i].Alignment)
10101           MemAlign = *MA;
10102         else
10103           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10104       } else if (auto MA = Args[i].Alignment) {
10105         MemAlign = *MA;
10106       } else {
10107         MemAlign = OriginalAlignment;
10108       }
10109       Flags.setMemAlign(MemAlign);
10110       if (Args[i].IsNest)
10111         Flags.setNest();
10112       if (NeedsRegBlock)
10113         Flags.setInConsecutiveRegs();
10114 
10115       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10116                                                  CLI.CallConv, VT);
10117       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10118                                                         CLI.CallConv, VT);
10119       SmallVector<SDValue, 4> Parts(NumParts);
10120       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10121 
10122       if (Args[i].IsSExt)
10123         ExtendKind = ISD::SIGN_EXTEND;
10124       else if (Args[i].IsZExt)
10125         ExtendKind = ISD::ZERO_EXTEND;
10126 
10127       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10128       // for now.
10129       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10130           CanLowerReturn) {
10131         assert((CLI.RetTy == Args[i].Ty ||
10132                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10133                  CLI.RetTy->getPointerAddressSpace() ==
10134                      Args[i].Ty->getPointerAddressSpace())) &&
10135                RetTys.size() == NumValues && "unexpected use of 'returned'");
10136         // Before passing 'returned' to the target lowering code, ensure that
10137         // either the register MVT and the actual EVT are the same size or that
10138         // the return value and argument are extended in the same way; in these
10139         // cases it's safe to pass the argument register value unchanged as the
10140         // return register value (although it's at the target's option whether
10141         // to do so)
10142         // TODO: allow code generation to take advantage of partially preserved
10143         // registers rather than clobbering the entire register when the
10144         // parameter extension method is not compatible with the return
10145         // extension method
10146         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10147             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10148              CLI.RetZExt == Args[i].IsZExt))
10149           Flags.setReturned();
10150       }
10151 
10152       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10153                      CLI.CallConv, ExtendKind);
10154 
10155       for (unsigned j = 0; j != NumParts; ++j) {
10156         // if it isn't first piece, alignment must be 1
10157         // For scalable vectors the scalable part is currently handled
10158         // by individual targets, so we just use the known minimum size here.
10159         ISD::OutputArg MyFlags(
10160             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10161             i < CLI.NumFixedArgs, i,
10162             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10163         if (NumParts > 1 && j == 0)
10164           MyFlags.Flags.setSplit();
10165         else if (j != 0) {
10166           MyFlags.Flags.setOrigAlign(Align(1));
10167           if (j == NumParts - 1)
10168             MyFlags.Flags.setSplitEnd();
10169         }
10170 
10171         CLI.Outs.push_back(MyFlags);
10172         CLI.OutVals.push_back(Parts[j]);
10173       }
10174 
10175       if (NeedsRegBlock && Value == NumValues - 1)
10176         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10177     }
10178   }
10179 
10180   SmallVector<SDValue, 4> InVals;
10181   CLI.Chain = LowerCall(CLI, InVals);
10182 
10183   // Update CLI.InVals to use outside of this function.
10184   CLI.InVals = InVals;
10185 
10186   // Verify that the target's LowerCall behaved as expected.
10187   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10188          "LowerCall didn't return a valid chain!");
10189   assert((!CLI.IsTailCall || InVals.empty()) &&
10190          "LowerCall emitted a return value for a tail call!");
10191   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10192          "LowerCall didn't emit the correct number of values!");
10193 
10194   // For a tail call, the return value is merely live-out and there aren't
10195   // any nodes in the DAG representing it. Return a special value to
10196   // indicate that a tail call has been emitted and no more Instructions
10197   // should be processed in the current block.
10198   if (CLI.IsTailCall) {
10199     CLI.DAG.setRoot(CLI.Chain);
10200     return std::make_pair(SDValue(), SDValue());
10201   }
10202 
10203 #ifndef NDEBUG
10204   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10205     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10206     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10207            "LowerCall emitted a value with the wrong type!");
10208   }
10209 #endif
10210 
10211   SmallVector<SDValue, 4> ReturnValues;
10212   if (!CanLowerReturn) {
10213     // The instruction result is the result of loading from the
10214     // hidden sret parameter.
10215     SmallVector<EVT, 1> PVTs;
10216     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10217 
10218     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10219     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10220     EVT PtrVT = PVTs[0];
10221 
10222     unsigned NumValues = RetTys.size();
10223     ReturnValues.resize(NumValues);
10224     SmallVector<SDValue, 4> Chains(NumValues);
10225 
10226     // An aggregate return value cannot wrap around the address space, so
10227     // offsets to its parts don't wrap either.
10228     SDNodeFlags Flags;
10229     Flags.setNoUnsignedWrap(true);
10230 
10231     MachineFunction &MF = CLI.DAG.getMachineFunction();
10232     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10233     for (unsigned i = 0; i < NumValues; ++i) {
10234       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10235                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10236                                                         PtrVT), Flags);
10237       SDValue L = CLI.DAG.getLoad(
10238           RetTys[i], CLI.DL, CLI.Chain, Add,
10239           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10240                                             DemoteStackIdx, Offsets[i]),
10241           HiddenSRetAlign);
10242       ReturnValues[i] = L;
10243       Chains[i] = L.getValue(1);
10244     }
10245 
10246     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10247   } else {
10248     // Collect the legal value parts into potentially illegal values
10249     // that correspond to the original function's return values.
10250     std::optional<ISD::NodeType> AssertOp;
10251     if (CLI.RetSExt)
10252       AssertOp = ISD::AssertSext;
10253     else if (CLI.RetZExt)
10254       AssertOp = ISD::AssertZext;
10255     unsigned CurReg = 0;
10256     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10257       EVT VT = RetTys[I];
10258       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10259                                                      CLI.CallConv, VT);
10260       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10261                                                        CLI.CallConv, VT);
10262 
10263       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10264                                               NumRegs, RegisterVT, VT, nullptr,
10265                                               CLI.CallConv, AssertOp));
10266       CurReg += NumRegs;
10267     }
10268 
10269     // For a function returning void, there is no return value. We can't create
10270     // such a node, so we just return a null return value in that case. In
10271     // that case, nothing will actually look at the value.
10272     if (ReturnValues.empty())
10273       return std::make_pair(SDValue(), CLI.Chain);
10274   }
10275 
10276   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10277                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10278   return std::make_pair(Res, CLI.Chain);
10279 }
10280 
10281 /// Places new result values for the node in Results (their number
10282 /// and types must exactly match those of the original return values of
10283 /// the node), or leaves Results empty, which indicates that the node is not
10284 /// to be custom lowered after all.
10285 void TargetLowering::LowerOperationWrapper(SDNode *N,
10286                                            SmallVectorImpl<SDValue> &Results,
10287                                            SelectionDAG &DAG) const {
10288   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10289 
10290   if (!Res.getNode())
10291     return;
10292 
10293   // If the original node has one result, take the return value from
10294   // LowerOperation as is. It might not be result number 0.
10295   if (N->getNumValues() == 1) {
10296     Results.push_back(Res);
10297     return;
10298   }
10299 
10300   // If the original node has multiple results, then the return node should
10301   // have the same number of results.
10302   assert((N->getNumValues() == Res->getNumValues()) &&
10303       "Lowering returned the wrong number of results!");
10304 
10305   // Places new result values base on N result number.
10306   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10307     Results.push_back(Res.getValue(I));
10308 }
10309 
10310 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10311   llvm_unreachable("LowerOperation not implemented for this target!");
10312 }
10313 
10314 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10315                                                      unsigned Reg,
10316                                                      ISD::NodeType ExtendType) {
10317   SDValue Op = getNonRegisterValue(V);
10318   assert((Op.getOpcode() != ISD::CopyFromReg ||
10319           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10320          "Copy from a reg to the same reg!");
10321   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10322 
10323   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10324   // If this is an InlineAsm we have to match the registers required, not the
10325   // notional registers required by the type.
10326 
10327   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10328                    std::nullopt); // This is not an ABI copy.
10329   SDValue Chain = DAG.getEntryNode();
10330 
10331   if (ExtendType == ISD::ANY_EXTEND) {
10332     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10333     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10334       ExtendType = PreferredExtendIt->second;
10335   }
10336   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10337   PendingExports.push_back(Chain);
10338 }
10339 
10340 #include "llvm/CodeGen/SelectionDAGISel.h"
10341 
10342 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10343 /// entry block, return true.  This includes arguments used by switches, since
10344 /// the switch may expand into multiple basic blocks.
10345 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10346   // With FastISel active, we may be splitting blocks, so force creation
10347   // of virtual registers for all non-dead arguments.
10348   if (FastISel)
10349     return A->use_empty();
10350 
10351   const BasicBlock &Entry = A->getParent()->front();
10352   for (const User *U : A->users())
10353     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10354       return false;  // Use not in entry block.
10355 
10356   return true;
10357 }
10358 
10359 using ArgCopyElisionMapTy =
10360     DenseMap<const Argument *,
10361              std::pair<const AllocaInst *, const StoreInst *>>;
10362 
10363 /// Scan the entry block of the function in FuncInfo for arguments that look
10364 /// like copies into a local alloca. Record any copied arguments in
10365 /// ArgCopyElisionCandidates.
10366 static void
10367 findArgumentCopyElisionCandidates(const DataLayout &DL,
10368                                   FunctionLoweringInfo *FuncInfo,
10369                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10370   // Record the state of every static alloca used in the entry block. Argument
10371   // allocas are all used in the entry block, so we need approximately as many
10372   // entries as we have arguments.
10373   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10374   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10375   unsigned NumArgs = FuncInfo->Fn->arg_size();
10376   StaticAllocas.reserve(NumArgs * 2);
10377 
10378   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10379     if (!V)
10380       return nullptr;
10381     V = V->stripPointerCasts();
10382     const auto *AI = dyn_cast<AllocaInst>(V);
10383     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10384       return nullptr;
10385     auto Iter = StaticAllocas.insert({AI, Unknown});
10386     return &Iter.first->second;
10387   };
10388 
10389   // Look for stores of arguments to static allocas. Look through bitcasts and
10390   // GEPs to handle type coercions, as long as the alloca is fully initialized
10391   // by the store. Any non-store use of an alloca escapes it and any subsequent
10392   // unanalyzed store might write it.
10393   // FIXME: Handle structs initialized with multiple stores.
10394   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10395     // Look for stores, and handle non-store uses conservatively.
10396     const auto *SI = dyn_cast<StoreInst>(&I);
10397     if (!SI) {
10398       // We will look through cast uses, so ignore them completely.
10399       if (I.isCast())
10400         continue;
10401       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10402       // to allocas.
10403       if (I.isDebugOrPseudoInst())
10404         continue;
10405       // This is an unknown instruction. Assume it escapes or writes to all
10406       // static alloca operands.
10407       for (const Use &U : I.operands()) {
10408         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10409           *Info = StaticAllocaInfo::Clobbered;
10410       }
10411       continue;
10412     }
10413 
10414     // If the stored value is a static alloca, mark it as escaped.
10415     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10416       *Info = StaticAllocaInfo::Clobbered;
10417 
10418     // Check if the destination is a static alloca.
10419     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10420     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10421     if (!Info)
10422       continue;
10423     const AllocaInst *AI = cast<AllocaInst>(Dst);
10424 
10425     // Skip allocas that have been initialized or clobbered.
10426     if (*Info != StaticAllocaInfo::Unknown)
10427       continue;
10428 
10429     // Check if the stored value is an argument, and that this store fully
10430     // initializes the alloca.
10431     // If the argument type has padding bits we can't directly forward a pointer
10432     // as the upper bits may contain garbage.
10433     // Don't elide copies from the same argument twice.
10434     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10435     const auto *Arg = dyn_cast<Argument>(Val);
10436     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10437         Arg->getType()->isEmptyTy() ||
10438         DL.getTypeStoreSize(Arg->getType()) !=
10439             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10440         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10441         ArgCopyElisionCandidates.count(Arg)) {
10442       *Info = StaticAllocaInfo::Clobbered;
10443       continue;
10444     }
10445 
10446     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10447                       << '\n');
10448 
10449     // Mark this alloca and store for argument copy elision.
10450     *Info = StaticAllocaInfo::Elidable;
10451     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10452 
10453     // Stop scanning if we've seen all arguments. This will happen early in -O0
10454     // builds, which is useful, because -O0 builds have large entry blocks and
10455     // many allocas.
10456     if (ArgCopyElisionCandidates.size() == NumArgs)
10457       break;
10458   }
10459 }
10460 
10461 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10462 /// ArgVal is a load from a suitable fixed stack object.
10463 static void tryToElideArgumentCopy(
10464     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10465     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10466     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10467     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10468     SDValue ArgVal, bool &ArgHasUses) {
10469   // Check if this is a load from a fixed stack object.
10470   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10471   if (!LNode)
10472     return;
10473   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10474   if (!FINode)
10475     return;
10476 
10477   // Check that the fixed stack object is the right size and alignment.
10478   // Look at the alignment that the user wrote on the alloca instead of looking
10479   // at the stack object.
10480   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10481   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10482   const AllocaInst *AI = ArgCopyIter->second.first;
10483   int FixedIndex = FINode->getIndex();
10484   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10485   int OldIndex = AllocaIndex;
10486   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10487   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10488     LLVM_DEBUG(
10489         dbgs() << "  argument copy elision failed due to bad fixed stack "
10490                   "object size\n");
10491     return;
10492   }
10493   Align RequiredAlignment = AI->getAlign();
10494   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10495     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10496                          "greater than stack argument alignment ("
10497                       << DebugStr(RequiredAlignment) << " vs "
10498                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10499     return;
10500   }
10501 
10502   // Perform the elision. Delete the old stack object and replace its only use
10503   // in the variable info map. Mark the stack object as mutable.
10504   LLVM_DEBUG({
10505     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10506            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10507            << '\n';
10508   });
10509   MFI.RemoveStackObject(OldIndex);
10510   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10511   AllocaIndex = FixedIndex;
10512   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10513   Chains.push_back(ArgVal.getValue(1));
10514 
10515   // Avoid emitting code for the store implementing the copy.
10516   const StoreInst *SI = ArgCopyIter->second.second;
10517   ElidedArgCopyInstrs.insert(SI);
10518 
10519   // Check for uses of the argument again so that we can avoid exporting ArgVal
10520   // if it is't used by anything other than the store.
10521   for (const Value *U : Arg.users()) {
10522     if (U != SI) {
10523       ArgHasUses = true;
10524       break;
10525     }
10526   }
10527 }
10528 
10529 void SelectionDAGISel::LowerArguments(const Function &F) {
10530   SelectionDAG &DAG = SDB->DAG;
10531   SDLoc dl = SDB->getCurSDLoc();
10532   const DataLayout &DL = DAG.getDataLayout();
10533   SmallVector<ISD::InputArg, 16> Ins;
10534 
10535   // In Naked functions we aren't going to save any registers.
10536   if (F.hasFnAttribute(Attribute::Naked))
10537     return;
10538 
10539   if (!FuncInfo->CanLowerReturn) {
10540     // Put in an sret pointer parameter before all the other parameters.
10541     SmallVector<EVT, 1> ValueVTs;
10542     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10543                     F.getReturnType()->getPointerTo(
10544                         DAG.getDataLayout().getAllocaAddrSpace()),
10545                     ValueVTs);
10546 
10547     // NOTE: Assuming that a pointer will never break down to more than one VT
10548     // or one register.
10549     ISD::ArgFlagsTy Flags;
10550     Flags.setSRet();
10551     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10552     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10553                          ISD::InputArg::NoArgIndex, 0);
10554     Ins.push_back(RetArg);
10555   }
10556 
10557   // Look for stores of arguments to static allocas. Mark such arguments with a
10558   // flag to ask the target to give us the memory location of that argument if
10559   // available.
10560   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10561   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10562                                     ArgCopyElisionCandidates);
10563 
10564   // Set up the incoming argument description vector.
10565   for (const Argument &Arg : F.args()) {
10566     unsigned ArgNo = Arg.getArgNo();
10567     SmallVector<EVT, 4> ValueVTs;
10568     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10569     bool isArgValueUsed = !Arg.use_empty();
10570     unsigned PartBase = 0;
10571     Type *FinalType = Arg.getType();
10572     if (Arg.hasAttribute(Attribute::ByVal))
10573       FinalType = Arg.getParamByValType();
10574     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10575         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10576     for (unsigned Value = 0, NumValues = ValueVTs.size();
10577          Value != NumValues; ++Value) {
10578       EVT VT = ValueVTs[Value];
10579       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10580       ISD::ArgFlagsTy Flags;
10581 
10582 
10583       if (Arg.getType()->isPointerTy()) {
10584         Flags.setPointer();
10585         Flags.setPointerAddrSpace(
10586             cast<PointerType>(Arg.getType())->getAddressSpace());
10587       }
10588       if (Arg.hasAttribute(Attribute::ZExt))
10589         Flags.setZExt();
10590       if (Arg.hasAttribute(Attribute::SExt))
10591         Flags.setSExt();
10592       if (Arg.hasAttribute(Attribute::InReg)) {
10593         // If we are using vectorcall calling convention, a structure that is
10594         // passed InReg - is surely an HVA
10595         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10596             isa<StructType>(Arg.getType())) {
10597           // The first value of a structure is marked
10598           if (0 == Value)
10599             Flags.setHvaStart();
10600           Flags.setHva();
10601         }
10602         // Set InReg Flag
10603         Flags.setInReg();
10604       }
10605       if (Arg.hasAttribute(Attribute::StructRet))
10606         Flags.setSRet();
10607       if (Arg.hasAttribute(Attribute::SwiftSelf))
10608         Flags.setSwiftSelf();
10609       if (Arg.hasAttribute(Attribute::SwiftAsync))
10610         Flags.setSwiftAsync();
10611       if (Arg.hasAttribute(Attribute::SwiftError))
10612         Flags.setSwiftError();
10613       if (Arg.hasAttribute(Attribute::ByVal))
10614         Flags.setByVal();
10615       if (Arg.hasAttribute(Attribute::ByRef))
10616         Flags.setByRef();
10617       if (Arg.hasAttribute(Attribute::InAlloca)) {
10618         Flags.setInAlloca();
10619         // Set the byval flag for CCAssignFn callbacks that don't know about
10620         // inalloca.  This way we can know how many bytes we should've allocated
10621         // and how many bytes a callee cleanup function will pop.  If we port
10622         // inalloca to more targets, we'll have to add custom inalloca handling
10623         // in the various CC lowering callbacks.
10624         Flags.setByVal();
10625       }
10626       if (Arg.hasAttribute(Attribute::Preallocated)) {
10627         Flags.setPreallocated();
10628         // Set the byval flag for CCAssignFn callbacks that don't know about
10629         // preallocated.  This way we can know how many bytes we should've
10630         // allocated and how many bytes a callee cleanup function will pop.  If
10631         // we port preallocated to more targets, we'll have to add custom
10632         // preallocated handling in the various CC lowering callbacks.
10633         Flags.setByVal();
10634       }
10635 
10636       // Certain targets (such as MIPS), may have a different ABI alignment
10637       // for a type depending on the context. Give the target a chance to
10638       // specify the alignment it wants.
10639       const Align OriginalAlignment(
10640           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10641       Flags.setOrigAlign(OriginalAlignment);
10642 
10643       Align MemAlign;
10644       Type *ArgMemTy = nullptr;
10645       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10646           Flags.isByRef()) {
10647         if (!ArgMemTy)
10648           ArgMemTy = Arg.getPointeeInMemoryValueType();
10649 
10650         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10651 
10652         // For in-memory arguments, size and alignment should be passed from FE.
10653         // BE will guess if this info is not there but there are cases it cannot
10654         // get right.
10655         if (auto ParamAlign = Arg.getParamStackAlign())
10656           MemAlign = *ParamAlign;
10657         else if ((ParamAlign = Arg.getParamAlign()))
10658           MemAlign = *ParamAlign;
10659         else
10660           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10661         if (Flags.isByRef())
10662           Flags.setByRefSize(MemSize);
10663         else
10664           Flags.setByValSize(MemSize);
10665       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10666         MemAlign = *ParamAlign;
10667       } else {
10668         MemAlign = OriginalAlignment;
10669       }
10670       Flags.setMemAlign(MemAlign);
10671 
10672       if (Arg.hasAttribute(Attribute::Nest))
10673         Flags.setNest();
10674       if (NeedsRegBlock)
10675         Flags.setInConsecutiveRegs();
10676       if (ArgCopyElisionCandidates.count(&Arg))
10677         Flags.setCopyElisionCandidate();
10678       if (Arg.hasAttribute(Attribute::Returned))
10679         Flags.setReturned();
10680 
10681       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10682           *CurDAG->getContext(), F.getCallingConv(), VT);
10683       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10684           *CurDAG->getContext(), F.getCallingConv(), VT);
10685       for (unsigned i = 0; i != NumRegs; ++i) {
10686         // For scalable vectors, use the minimum size; individual targets
10687         // are responsible for handling scalable vector arguments and
10688         // return values.
10689         ISD::InputArg MyFlags(
10690             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10691             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10692         if (NumRegs > 1 && i == 0)
10693           MyFlags.Flags.setSplit();
10694         // if it isn't first piece, alignment must be 1
10695         else if (i > 0) {
10696           MyFlags.Flags.setOrigAlign(Align(1));
10697           if (i == NumRegs - 1)
10698             MyFlags.Flags.setSplitEnd();
10699         }
10700         Ins.push_back(MyFlags);
10701       }
10702       if (NeedsRegBlock && Value == NumValues - 1)
10703         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10704       PartBase += VT.getStoreSize().getKnownMinValue();
10705     }
10706   }
10707 
10708   // Call the target to set up the argument values.
10709   SmallVector<SDValue, 8> InVals;
10710   SDValue NewRoot = TLI->LowerFormalArguments(
10711       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10712 
10713   // Verify that the target's LowerFormalArguments behaved as expected.
10714   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10715          "LowerFormalArguments didn't return a valid chain!");
10716   assert(InVals.size() == Ins.size() &&
10717          "LowerFormalArguments didn't emit the correct number of values!");
10718   LLVM_DEBUG({
10719     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10720       assert(InVals[i].getNode() &&
10721              "LowerFormalArguments emitted a null value!");
10722       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10723              "LowerFormalArguments emitted a value with the wrong type!");
10724     }
10725   });
10726 
10727   // Update the DAG with the new chain value resulting from argument lowering.
10728   DAG.setRoot(NewRoot);
10729 
10730   // Set up the argument values.
10731   unsigned i = 0;
10732   if (!FuncInfo->CanLowerReturn) {
10733     // Create a virtual register for the sret pointer, and put in a copy
10734     // from the sret argument into it.
10735     SmallVector<EVT, 1> ValueVTs;
10736     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10737                     F.getReturnType()->getPointerTo(
10738                         DAG.getDataLayout().getAllocaAddrSpace()),
10739                     ValueVTs);
10740     MVT VT = ValueVTs[0].getSimpleVT();
10741     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10742     std::optional<ISD::NodeType> AssertOp;
10743     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10744                                         nullptr, F.getCallingConv(), AssertOp);
10745 
10746     MachineFunction& MF = SDB->DAG.getMachineFunction();
10747     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10748     Register SRetReg =
10749         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10750     FuncInfo->DemoteRegister = SRetReg;
10751     NewRoot =
10752         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10753     DAG.setRoot(NewRoot);
10754 
10755     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10756     ++i;
10757   }
10758 
10759   SmallVector<SDValue, 4> Chains;
10760   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10761   for (const Argument &Arg : F.args()) {
10762     SmallVector<SDValue, 4> ArgValues;
10763     SmallVector<EVT, 4> ValueVTs;
10764     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10765     unsigned NumValues = ValueVTs.size();
10766     if (NumValues == 0)
10767       continue;
10768 
10769     bool ArgHasUses = !Arg.use_empty();
10770 
10771     // Elide the copying store if the target loaded this argument from a
10772     // suitable fixed stack object.
10773     if (Ins[i].Flags.isCopyElisionCandidate()) {
10774       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10775                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10776                              InVals[i], ArgHasUses);
10777     }
10778 
10779     // If this argument is unused then remember its value. It is used to generate
10780     // debugging information.
10781     bool isSwiftErrorArg =
10782         TLI->supportSwiftError() &&
10783         Arg.hasAttribute(Attribute::SwiftError);
10784     if (!ArgHasUses && !isSwiftErrorArg) {
10785       SDB->setUnusedArgValue(&Arg, InVals[i]);
10786 
10787       // Also remember any frame index for use in FastISel.
10788       if (FrameIndexSDNode *FI =
10789           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10790         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10791     }
10792 
10793     for (unsigned Val = 0; Val != NumValues; ++Val) {
10794       EVT VT = ValueVTs[Val];
10795       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10796                                                       F.getCallingConv(), VT);
10797       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10798           *CurDAG->getContext(), F.getCallingConv(), VT);
10799 
10800       // Even an apparent 'unused' swifterror argument needs to be returned. So
10801       // we do generate a copy for it that can be used on return from the
10802       // function.
10803       if (ArgHasUses || isSwiftErrorArg) {
10804         std::optional<ISD::NodeType> AssertOp;
10805         if (Arg.hasAttribute(Attribute::SExt))
10806           AssertOp = ISD::AssertSext;
10807         else if (Arg.hasAttribute(Attribute::ZExt))
10808           AssertOp = ISD::AssertZext;
10809 
10810         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10811                                              PartVT, VT, nullptr,
10812                                              F.getCallingConv(), AssertOp));
10813       }
10814 
10815       i += NumParts;
10816     }
10817 
10818     // We don't need to do anything else for unused arguments.
10819     if (ArgValues.empty())
10820       continue;
10821 
10822     // Note down frame index.
10823     if (FrameIndexSDNode *FI =
10824         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10825       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10826 
10827     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10828                                      SDB->getCurSDLoc());
10829 
10830     SDB->setValue(&Arg, Res);
10831     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10832       // We want to associate the argument with the frame index, among
10833       // involved operands, that correspond to the lowest address. The
10834       // getCopyFromParts function, called earlier, is swapping the order of
10835       // the operands to BUILD_PAIR depending on endianness. The result of
10836       // that swapping is that the least significant bits of the argument will
10837       // be in the first operand of the BUILD_PAIR node, and the most
10838       // significant bits will be in the second operand.
10839       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10840       if (LoadSDNode *LNode =
10841           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10842         if (FrameIndexSDNode *FI =
10843             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10844           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10845     }
10846 
10847     // Analyses past this point are naive and don't expect an assertion.
10848     if (Res.getOpcode() == ISD::AssertZext)
10849       Res = Res.getOperand(0);
10850 
10851     // Update the SwiftErrorVRegDefMap.
10852     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10853       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10854       if (Register::isVirtualRegister(Reg))
10855         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10856                                    Reg);
10857     }
10858 
10859     // If this argument is live outside of the entry block, insert a copy from
10860     // wherever we got it to the vreg that other BB's will reference it as.
10861     if (Res.getOpcode() == ISD::CopyFromReg) {
10862       // If we can, though, try to skip creating an unnecessary vreg.
10863       // FIXME: This isn't very clean... it would be nice to make this more
10864       // general.
10865       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10866       if (Register::isVirtualRegister(Reg)) {
10867         FuncInfo->ValueMap[&Arg] = Reg;
10868         continue;
10869       }
10870     }
10871     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10872       FuncInfo->InitializeRegForValue(&Arg);
10873       SDB->CopyToExportRegsIfNeeded(&Arg);
10874     }
10875   }
10876 
10877   if (!Chains.empty()) {
10878     Chains.push_back(NewRoot);
10879     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10880   }
10881 
10882   DAG.setRoot(NewRoot);
10883 
10884   assert(i == InVals.size() && "Argument register count mismatch!");
10885 
10886   // If any argument copy elisions occurred and we have debug info, update the
10887   // stale frame indices used in the dbg.declare variable info table.
10888   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10889   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10890     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10891       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10892       if (I != ArgCopyElisionFrameIndexMap.end())
10893         VI.Slot = I->second;
10894     }
10895   }
10896 
10897   // Finally, if the target has anything special to do, allow it to do so.
10898   emitFunctionEntryCode();
10899 }
10900 
10901 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10902 /// ensure constants are generated when needed.  Remember the virtual registers
10903 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10904 /// directly add them, because expansion might result in multiple MBB's for one
10905 /// BB.  As such, the start of the BB might correspond to a different MBB than
10906 /// the end.
10907 void
10908 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10910 
10911   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10912 
10913   // Check PHI nodes in successors that expect a value to be available from this
10914   // block.
10915   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10916     if (!isa<PHINode>(SuccBB->begin())) continue;
10917     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10918 
10919     // If this terminator has multiple identical successors (common for
10920     // switches), only handle each succ once.
10921     if (!SuccsHandled.insert(SuccMBB).second)
10922       continue;
10923 
10924     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10925 
10926     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10927     // nodes and Machine PHI nodes, but the incoming operands have not been
10928     // emitted yet.
10929     for (const PHINode &PN : SuccBB->phis()) {
10930       // Ignore dead phi's.
10931       if (PN.use_empty())
10932         continue;
10933 
10934       // Skip empty types
10935       if (PN.getType()->isEmptyTy())
10936         continue;
10937 
10938       unsigned Reg;
10939       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10940 
10941       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10942         unsigned &RegOut = ConstantsOut[C];
10943         if (RegOut == 0) {
10944           RegOut = FuncInfo.CreateRegs(C);
10945           // We need to zero/sign extend ConstantInt phi operands to match
10946           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10947           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10948           if (auto *CI = dyn_cast<ConstantInt>(C))
10949             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10950                                                     : ISD::ZERO_EXTEND;
10951           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10952         }
10953         Reg = RegOut;
10954       } else {
10955         DenseMap<const Value *, Register>::iterator I =
10956           FuncInfo.ValueMap.find(PHIOp);
10957         if (I != FuncInfo.ValueMap.end())
10958           Reg = I->second;
10959         else {
10960           assert(isa<AllocaInst>(PHIOp) &&
10961                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10962                  "Didn't codegen value into a register!??");
10963           Reg = FuncInfo.CreateRegs(PHIOp);
10964           CopyValueToVirtualRegister(PHIOp, Reg);
10965         }
10966       }
10967 
10968       // Remember that this register needs to added to the machine PHI node as
10969       // the input for this MBB.
10970       SmallVector<EVT, 4> ValueVTs;
10971       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10972       for (EVT VT : ValueVTs) {
10973         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10974         for (unsigned i = 0; i != NumRegisters; ++i)
10975           FuncInfo.PHINodesToUpdate.push_back(
10976               std::make_pair(&*MBBI++, Reg + i));
10977         Reg += NumRegisters;
10978       }
10979     }
10980   }
10981 
10982   ConstantsOut.clear();
10983 }
10984 
10985 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10986   MachineFunction::iterator I(MBB);
10987   if (++I == FuncInfo.MF->end())
10988     return nullptr;
10989   return &*I;
10990 }
10991 
10992 /// During lowering new call nodes can be created (such as memset, etc.).
10993 /// Those will become new roots of the current DAG, but complications arise
10994 /// when they are tail calls. In such cases, the call lowering will update
10995 /// the root, but the builder still needs to know that a tail call has been
10996 /// lowered in order to avoid generating an additional return.
10997 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10998   // If the node is null, we do have a tail call.
10999   if (MaybeTC.getNode() != nullptr)
11000     DAG.setRoot(MaybeTC);
11001   else
11002     HasTailCall = true;
11003 }
11004 
11005 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11006                                         MachineBasicBlock *SwitchMBB,
11007                                         MachineBasicBlock *DefaultMBB) {
11008   MachineFunction *CurMF = FuncInfo.MF;
11009   MachineBasicBlock *NextMBB = nullptr;
11010   MachineFunction::iterator BBI(W.MBB);
11011   if (++BBI != FuncInfo.MF->end())
11012     NextMBB = &*BBI;
11013 
11014   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11015 
11016   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11017 
11018   if (Size == 2 && W.MBB == SwitchMBB) {
11019     // If any two of the cases has the same destination, and if one value
11020     // is the same as the other, but has one bit unset that the other has set,
11021     // use bit manipulation to do two compares at once.  For example:
11022     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11023     // TODO: This could be extended to merge any 2 cases in switches with 3
11024     // cases.
11025     // TODO: Handle cases where W.CaseBB != SwitchBB.
11026     CaseCluster &Small = *W.FirstCluster;
11027     CaseCluster &Big = *W.LastCluster;
11028 
11029     if (Small.Low == Small.High && Big.Low == Big.High &&
11030         Small.MBB == Big.MBB) {
11031       const APInt &SmallValue = Small.Low->getValue();
11032       const APInt &BigValue = Big.Low->getValue();
11033 
11034       // Check that there is only one bit different.
11035       APInt CommonBit = BigValue ^ SmallValue;
11036       if (CommonBit.isPowerOf2()) {
11037         SDValue CondLHS = getValue(Cond);
11038         EVT VT = CondLHS.getValueType();
11039         SDLoc DL = getCurSDLoc();
11040 
11041         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11042                                  DAG.getConstant(CommonBit, DL, VT));
11043         SDValue Cond = DAG.getSetCC(
11044             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11045             ISD::SETEQ);
11046 
11047         // Update successor info.
11048         // Both Small and Big will jump to Small.BB, so we sum up the
11049         // probabilities.
11050         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11051         if (BPI)
11052           addSuccessorWithProb(
11053               SwitchMBB, DefaultMBB,
11054               // The default destination is the first successor in IR.
11055               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11056         else
11057           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11058 
11059         // Insert the true branch.
11060         SDValue BrCond =
11061             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11062                         DAG.getBasicBlock(Small.MBB));
11063         // Insert the false branch.
11064         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11065                              DAG.getBasicBlock(DefaultMBB));
11066 
11067         DAG.setRoot(BrCond);
11068         return;
11069       }
11070     }
11071   }
11072 
11073   if (TM.getOptLevel() != CodeGenOpt::None) {
11074     // Here, we order cases by probability so the most likely case will be
11075     // checked first. However, two clusters can have the same probability in
11076     // which case their relative ordering is non-deterministic. So we use Low
11077     // as a tie-breaker as clusters are guaranteed to never overlap.
11078     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11079                [](const CaseCluster &a, const CaseCluster &b) {
11080       return a.Prob != b.Prob ?
11081              a.Prob > b.Prob :
11082              a.Low->getValue().slt(b.Low->getValue());
11083     });
11084 
11085     // Rearrange the case blocks so that the last one falls through if possible
11086     // without changing the order of probabilities.
11087     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11088       --I;
11089       if (I->Prob > W.LastCluster->Prob)
11090         break;
11091       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11092         std::swap(*I, *W.LastCluster);
11093         break;
11094       }
11095     }
11096   }
11097 
11098   // Compute total probability.
11099   BranchProbability DefaultProb = W.DefaultProb;
11100   BranchProbability UnhandledProbs = DefaultProb;
11101   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11102     UnhandledProbs += I->Prob;
11103 
11104   MachineBasicBlock *CurMBB = W.MBB;
11105   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11106     bool FallthroughUnreachable = false;
11107     MachineBasicBlock *Fallthrough;
11108     if (I == W.LastCluster) {
11109       // For the last cluster, fall through to the default destination.
11110       Fallthrough = DefaultMBB;
11111       FallthroughUnreachable = isa<UnreachableInst>(
11112           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11113     } else {
11114       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11115       CurMF->insert(BBI, Fallthrough);
11116       // Put Cond in a virtual register to make it available from the new blocks.
11117       ExportFromCurrentBlock(Cond);
11118     }
11119     UnhandledProbs -= I->Prob;
11120 
11121     switch (I->Kind) {
11122       case CC_JumpTable: {
11123         // FIXME: Optimize away range check based on pivot comparisons.
11124         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11125         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11126 
11127         // The jump block hasn't been inserted yet; insert it here.
11128         MachineBasicBlock *JumpMBB = JT->MBB;
11129         CurMF->insert(BBI, JumpMBB);
11130 
11131         auto JumpProb = I->Prob;
11132         auto FallthroughProb = UnhandledProbs;
11133 
11134         // If the default statement is a target of the jump table, we evenly
11135         // distribute the default probability to successors of CurMBB. Also
11136         // update the probability on the edge from JumpMBB to Fallthrough.
11137         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11138                                               SE = JumpMBB->succ_end();
11139              SI != SE; ++SI) {
11140           if (*SI == DefaultMBB) {
11141             JumpProb += DefaultProb / 2;
11142             FallthroughProb -= DefaultProb / 2;
11143             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11144             JumpMBB->normalizeSuccProbs();
11145             break;
11146           }
11147         }
11148 
11149         if (FallthroughUnreachable)
11150           JTH->FallthroughUnreachable = true;
11151 
11152         if (!JTH->FallthroughUnreachable)
11153           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11154         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11155         CurMBB->normalizeSuccProbs();
11156 
11157         // The jump table header will be inserted in our current block, do the
11158         // range check, and fall through to our fallthrough block.
11159         JTH->HeaderBB = CurMBB;
11160         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11161 
11162         // If we're in the right place, emit the jump table header right now.
11163         if (CurMBB == SwitchMBB) {
11164           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11165           JTH->Emitted = true;
11166         }
11167         break;
11168       }
11169       case CC_BitTests: {
11170         // FIXME: Optimize away range check based on pivot comparisons.
11171         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11172 
11173         // The bit test blocks haven't been inserted yet; insert them here.
11174         for (BitTestCase &BTC : BTB->Cases)
11175           CurMF->insert(BBI, BTC.ThisBB);
11176 
11177         // Fill in fields of the BitTestBlock.
11178         BTB->Parent = CurMBB;
11179         BTB->Default = Fallthrough;
11180 
11181         BTB->DefaultProb = UnhandledProbs;
11182         // If the cases in bit test don't form a contiguous range, we evenly
11183         // distribute the probability on the edge to Fallthrough to two
11184         // successors of CurMBB.
11185         if (!BTB->ContiguousRange) {
11186           BTB->Prob += DefaultProb / 2;
11187           BTB->DefaultProb -= DefaultProb / 2;
11188         }
11189 
11190         if (FallthroughUnreachable)
11191           BTB->FallthroughUnreachable = true;
11192 
11193         // If we're in the right place, emit the bit test header right now.
11194         if (CurMBB == SwitchMBB) {
11195           visitBitTestHeader(*BTB, SwitchMBB);
11196           BTB->Emitted = true;
11197         }
11198         break;
11199       }
11200       case CC_Range: {
11201         const Value *RHS, *LHS, *MHS;
11202         ISD::CondCode CC;
11203         if (I->Low == I->High) {
11204           // Check Cond == I->Low.
11205           CC = ISD::SETEQ;
11206           LHS = Cond;
11207           RHS=I->Low;
11208           MHS = nullptr;
11209         } else {
11210           // Check I->Low <= Cond <= I->High.
11211           CC = ISD::SETLE;
11212           LHS = I->Low;
11213           MHS = Cond;
11214           RHS = I->High;
11215         }
11216 
11217         // If Fallthrough is unreachable, fold away the comparison.
11218         if (FallthroughUnreachable)
11219           CC = ISD::SETTRUE;
11220 
11221         // The false probability is the sum of all unhandled cases.
11222         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11223                      getCurSDLoc(), I->Prob, UnhandledProbs);
11224 
11225         if (CurMBB == SwitchMBB)
11226           visitSwitchCase(CB, SwitchMBB);
11227         else
11228           SL->SwitchCases.push_back(CB);
11229 
11230         break;
11231       }
11232     }
11233     CurMBB = Fallthrough;
11234   }
11235 }
11236 
11237 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11238                                               CaseClusterIt First,
11239                                               CaseClusterIt Last) {
11240   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11241     if (X.Prob != CC.Prob)
11242       return X.Prob > CC.Prob;
11243 
11244     // Ties are broken by comparing the case value.
11245     return X.Low->getValue().slt(CC.Low->getValue());
11246   });
11247 }
11248 
11249 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11250                                         const SwitchWorkListItem &W,
11251                                         Value *Cond,
11252                                         MachineBasicBlock *SwitchMBB) {
11253   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11254          "Clusters not sorted?");
11255 
11256   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11257 
11258   // Balance the tree based on branch probabilities to create a near-optimal (in
11259   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11260   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11261   CaseClusterIt LastLeft = W.FirstCluster;
11262   CaseClusterIt FirstRight = W.LastCluster;
11263   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11264   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11265 
11266   // Move LastLeft and FirstRight towards each other from opposite directions to
11267   // find a partitioning of the clusters which balances the probability on both
11268   // sides. If LeftProb and RightProb are equal, alternate which side is
11269   // taken to ensure 0-probability nodes are distributed evenly.
11270   unsigned I = 0;
11271   while (LastLeft + 1 < FirstRight) {
11272     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11273       LeftProb += (++LastLeft)->Prob;
11274     else
11275       RightProb += (--FirstRight)->Prob;
11276     I++;
11277   }
11278 
11279   while (true) {
11280     // Our binary search tree differs from a typical BST in that ours can have up
11281     // to three values in each leaf. The pivot selection above doesn't take that
11282     // into account, which means the tree might require more nodes and be less
11283     // efficient. We compensate for this here.
11284 
11285     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11286     unsigned NumRight = W.LastCluster - FirstRight + 1;
11287 
11288     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11289       // If one side has less than 3 clusters, and the other has more than 3,
11290       // consider taking a cluster from the other side.
11291 
11292       if (NumLeft < NumRight) {
11293         // Consider moving the first cluster on the right to the left side.
11294         CaseCluster &CC = *FirstRight;
11295         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11296         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11297         if (LeftSideRank <= RightSideRank) {
11298           // Moving the cluster to the left does not demote it.
11299           ++LastLeft;
11300           ++FirstRight;
11301           continue;
11302         }
11303       } else {
11304         assert(NumRight < NumLeft);
11305         // Consider moving the last element on the left to the right side.
11306         CaseCluster &CC = *LastLeft;
11307         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11308         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11309         if (RightSideRank <= LeftSideRank) {
11310           // Moving the cluster to the right does not demot it.
11311           --LastLeft;
11312           --FirstRight;
11313           continue;
11314         }
11315       }
11316     }
11317     break;
11318   }
11319 
11320   assert(LastLeft + 1 == FirstRight);
11321   assert(LastLeft >= W.FirstCluster);
11322   assert(FirstRight <= W.LastCluster);
11323 
11324   // Use the first element on the right as pivot since we will make less-than
11325   // comparisons against it.
11326   CaseClusterIt PivotCluster = FirstRight;
11327   assert(PivotCluster > W.FirstCluster);
11328   assert(PivotCluster <= W.LastCluster);
11329 
11330   CaseClusterIt FirstLeft = W.FirstCluster;
11331   CaseClusterIt LastRight = W.LastCluster;
11332 
11333   const ConstantInt *Pivot = PivotCluster->Low;
11334 
11335   // New blocks will be inserted immediately after the current one.
11336   MachineFunction::iterator BBI(W.MBB);
11337   ++BBI;
11338 
11339   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11340   // we can branch to its destination directly if it's squeezed exactly in
11341   // between the known lower bound and Pivot - 1.
11342   MachineBasicBlock *LeftMBB;
11343   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11344       FirstLeft->Low == W.GE &&
11345       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11346     LeftMBB = FirstLeft->MBB;
11347   } else {
11348     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11349     FuncInfo.MF->insert(BBI, LeftMBB);
11350     WorkList.push_back(
11351         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11352     // Put Cond in a virtual register to make it available from the new blocks.
11353     ExportFromCurrentBlock(Cond);
11354   }
11355 
11356   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11357   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11358   // directly if RHS.High equals the current upper bound.
11359   MachineBasicBlock *RightMBB;
11360   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11361       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11362     RightMBB = FirstRight->MBB;
11363   } else {
11364     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11365     FuncInfo.MF->insert(BBI, RightMBB);
11366     WorkList.push_back(
11367         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11368     // Put Cond in a virtual register to make it available from the new blocks.
11369     ExportFromCurrentBlock(Cond);
11370   }
11371 
11372   // Create the CaseBlock record that will be used to lower the branch.
11373   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11374                getCurSDLoc(), LeftProb, RightProb);
11375 
11376   if (W.MBB == SwitchMBB)
11377     visitSwitchCase(CB, SwitchMBB);
11378   else
11379     SL->SwitchCases.push_back(CB);
11380 }
11381 
11382 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11383 // from the swith statement.
11384 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11385                                             BranchProbability PeeledCaseProb) {
11386   if (PeeledCaseProb == BranchProbability::getOne())
11387     return BranchProbability::getZero();
11388   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11389 
11390   uint32_t Numerator = CaseProb.getNumerator();
11391   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11392   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11393 }
11394 
11395 // Try to peel the top probability case if it exceeds the threshold.
11396 // Return current MachineBasicBlock for the switch statement if the peeling
11397 // does not occur.
11398 // If the peeling is performed, return the newly created MachineBasicBlock
11399 // for the peeled switch statement. Also update Clusters to remove the peeled
11400 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11401 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11402     const SwitchInst &SI, CaseClusterVector &Clusters,
11403     BranchProbability &PeeledCaseProb) {
11404   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11405   // Don't perform if there is only one cluster or optimizing for size.
11406   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11407       TM.getOptLevel() == CodeGenOpt::None ||
11408       SwitchMBB->getParent()->getFunction().hasMinSize())
11409     return SwitchMBB;
11410 
11411   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11412   unsigned PeeledCaseIndex = 0;
11413   bool SwitchPeeled = false;
11414   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11415     CaseCluster &CC = Clusters[Index];
11416     if (CC.Prob < TopCaseProb)
11417       continue;
11418     TopCaseProb = CC.Prob;
11419     PeeledCaseIndex = Index;
11420     SwitchPeeled = true;
11421   }
11422   if (!SwitchPeeled)
11423     return SwitchMBB;
11424 
11425   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11426                     << TopCaseProb << "\n");
11427 
11428   // Record the MBB for the peeled switch statement.
11429   MachineFunction::iterator BBI(SwitchMBB);
11430   ++BBI;
11431   MachineBasicBlock *PeeledSwitchMBB =
11432       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11433   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11434 
11435   ExportFromCurrentBlock(SI.getCondition());
11436   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11437   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11438                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11439   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11440 
11441   Clusters.erase(PeeledCaseIt);
11442   for (CaseCluster &CC : Clusters) {
11443     LLVM_DEBUG(
11444         dbgs() << "Scale the probablity for one cluster, before scaling: "
11445                << CC.Prob << "\n");
11446     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11447     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11448   }
11449   PeeledCaseProb = TopCaseProb;
11450   return PeeledSwitchMBB;
11451 }
11452 
11453 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11454   // Extract cases from the switch.
11455   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11456   CaseClusterVector Clusters;
11457   Clusters.reserve(SI.getNumCases());
11458   for (auto I : SI.cases()) {
11459     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11460     const ConstantInt *CaseVal = I.getCaseValue();
11461     BranchProbability Prob =
11462         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11463             : BranchProbability(1, SI.getNumCases() + 1);
11464     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11465   }
11466 
11467   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11468 
11469   // Cluster adjacent cases with the same destination. We do this at all
11470   // optimization levels because it's cheap to do and will make codegen faster
11471   // if there are many clusters.
11472   sortAndRangeify(Clusters);
11473 
11474   // The branch probablity of the peeled case.
11475   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11476   MachineBasicBlock *PeeledSwitchMBB =
11477       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11478 
11479   // If there is only the default destination, jump there directly.
11480   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11481   if (Clusters.empty()) {
11482     assert(PeeledSwitchMBB == SwitchMBB);
11483     SwitchMBB->addSuccessor(DefaultMBB);
11484     if (DefaultMBB != NextBlock(SwitchMBB)) {
11485       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11486                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11487     }
11488     return;
11489   }
11490 
11491   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11492   SL->findBitTestClusters(Clusters, &SI);
11493 
11494   LLVM_DEBUG({
11495     dbgs() << "Case clusters: ";
11496     for (const CaseCluster &C : Clusters) {
11497       if (C.Kind == CC_JumpTable)
11498         dbgs() << "JT:";
11499       if (C.Kind == CC_BitTests)
11500         dbgs() << "BT:";
11501 
11502       C.Low->getValue().print(dbgs(), true);
11503       if (C.Low != C.High) {
11504         dbgs() << '-';
11505         C.High->getValue().print(dbgs(), true);
11506       }
11507       dbgs() << ' ';
11508     }
11509     dbgs() << '\n';
11510   });
11511 
11512   assert(!Clusters.empty());
11513   SwitchWorkList WorkList;
11514   CaseClusterIt First = Clusters.begin();
11515   CaseClusterIt Last = Clusters.end() - 1;
11516   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11517   // Scale the branchprobability for DefaultMBB if the peel occurs and
11518   // DefaultMBB is not replaced.
11519   if (PeeledCaseProb != BranchProbability::getZero() &&
11520       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11521     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11522   WorkList.push_back(
11523       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11524 
11525   while (!WorkList.empty()) {
11526     SwitchWorkListItem W = WorkList.pop_back_val();
11527     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11528 
11529     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11530         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11531       // For optimized builds, lower large range as a balanced binary tree.
11532       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11533       continue;
11534     }
11535 
11536     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11537   }
11538 }
11539 
11540 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11542   auto DL = getCurSDLoc();
11543   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11544   setValue(&I, DAG.getStepVector(DL, ResultVT));
11545 }
11546 
11547 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11548   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11549   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11550 
11551   SDLoc DL = getCurSDLoc();
11552   SDValue V = getValue(I.getOperand(0));
11553   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11554 
11555   if (VT.isScalableVector()) {
11556     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11557     return;
11558   }
11559 
11560   // Use VECTOR_SHUFFLE for the fixed-length vector
11561   // to maintain existing behavior.
11562   SmallVector<int, 8> Mask;
11563   unsigned NumElts = VT.getVectorMinNumElements();
11564   for (unsigned i = 0; i != NumElts; ++i)
11565     Mask.push_back(NumElts - 1 - i);
11566 
11567   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11568 }
11569 
11570 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11571   auto DL = getCurSDLoc();
11572   SDValue InVec = getValue(I.getOperand(0));
11573   EVT OutVT =
11574       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11575 
11576   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11577 
11578   // ISD Node needs the input vectors split into two equal parts
11579   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11580                            DAG.getVectorIdxConstant(0, DL));
11581   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11582                            DAG.getVectorIdxConstant(OutNumElts, DL));
11583 
11584   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11585   // legalisation and combines.
11586   if (OutVT.isFixedLengthVector()) {
11587     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11588                                         createStrideMask(0, 2, OutNumElts));
11589     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11590                                        createStrideMask(1, 2, OutNumElts));
11591     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11592     setValue(&I, Res);
11593     return;
11594   }
11595 
11596   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11597                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11598   setValue(&I, Res);
11599   return;
11600 }
11601 
11602 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11603   auto DL = getCurSDLoc();
11604   EVT InVT = getValue(I.getOperand(0)).getValueType();
11605   SDValue InVec0 = getValue(I.getOperand(0));
11606   SDValue InVec1 = getValue(I.getOperand(1));
11607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11608   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11609 
11610   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11611   // legalisation and combines.
11612   if (OutVT.isFixedLengthVector()) {
11613     unsigned NumElts = InVT.getVectorMinNumElements();
11614     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11615     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11616                                       createInterleaveMask(NumElts, 2)));
11617     return;
11618   }
11619 
11620   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11621                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11622   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11623                     Res.getValue(1));
11624   setValue(&I, Res);
11625   return;
11626 }
11627 
11628 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11629   SmallVector<EVT, 4> ValueVTs;
11630   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11631                   ValueVTs);
11632   unsigned NumValues = ValueVTs.size();
11633   if (NumValues == 0) return;
11634 
11635   SmallVector<SDValue, 4> Values(NumValues);
11636   SDValue Op = getValue(I.getOperand(0));
11637 
11638   for (unsigned i = 0; i != NumValues; ++i)
11639     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11640                             SDValue(Op.getNode(), Op.getResNo() + i));
11641 
11642   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11643                            DAG.getVTList(ValueVTs), Values));
11644 }
11645 
11646 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11648   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11649 
11650   SDLoc DL = getCurSDLoc();
11651   SDValue V1 = getValue(I.getOperand(0));
11652   SDValue V2 = getValue(I.getOperand(1));
11653   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11654 
11655   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11656   if (VT.isScalableVector()) {
11657     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11658     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11659                              DAG.getConstant(Imm, DL, IdxVT)));
11660     return;
11661   }
11662 
11663   unsigned NumElts = VT.getVectorNumElements();
11664 
11665   uint64_t Idx = (NumElts + Imm) % NumElts;
11666 
11667   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11668   SmallVector<int, 8> Mask;
11669   for (unsigned i = 0; i < NumElts; ++i)
11670     Mask.push_back(Idx + i);
11671   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11672 }
11673 
11674 // Consider the following MIR after SelectionDAG, which produces output in
11675 // phyregs in the first case or virtregs in the second case.
11676 //
11677 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11678 // %5:gr32 = COPY $ebx
11679 // %6:gr32 = COPY $edx
11680 // %1:gr32 = COPY %6:gr32
11681 // %0:gr32 = COPY %5:gr32
11682 //
11683 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11684 // %1:gr32 = COPY %6:gr32
11685 // %0:gr32 = COPY %5:gr32
11686 //
11687 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11688 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11689 //
11690 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11691 // to a single virtreg (such as %0). The remaining outputs monotonically
11692 // increase in virtreg number from there. If a callbr has no outputs, then it
11693 // should not have a corresponding callbr landingpad; in fact, the callbr
11694 // landingpad would not even be able to refer to such a callbr.
11695 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11696   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11697   // There is definitely at least one copy.
11698   assert(MI->getOpcode() == TargetOpcode::COPY &&
11699          "start of copy chain MUST be COPY");
11700   Reg = MI->getOperand(1).getReg();
11701   MI = MRI.def_begin(Reg)->getParent();
11702   // There may be an optional second copy.
11703   if (MI->getOpcode() == TargetOpcode::COPY) {
11704     assert(Reg.isVirtual() && "expected COPY of virtual register");
11705     Reg = MI->getOperand(1).getReg();
11706     assert(Reg.isPhysical() && "expected COPY of physical register");
11707     MI = MRI.def_begin(Reg)->getParent();
11708   }
11709   // The start of the chain must be an INLINEASM_BR.
11710   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11711          "end of copy chain MUST be INLINEASM_BR");
11712   return Reg;
11713 }
11714 
11715 // We must do this walk rather than the simpler
11716 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11717 // otherwise we will end up with copies of virtregs only valid along direct
11718 // edges.
11719 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11720   SmallVector<EVT, 8> ResultVTs;
11721   SmallVector<SDValue, 8> ResultValues;
11722   const auto *CBR =
11723       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11724 
11725   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11726   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11727   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11728 
11729   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11730   SDValue Chain = DAG.getRoot();
11731 
11732   // Re-parse the asm constraints string.
11733   TargetLowering::AsmOperandInfoVector TargetConstraints =
11734       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11735   for (auto &T : TargetConstraints) {
11736     SDISelAsmOperandInfo OpInfo(T);
11737     if (OpInfo.Type != InlineAsm::isOutput)
11738       continue;
11739 
11740     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11741     // individual constraint.
11742     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11743 
11744     switch (OpInfo.ConstraintType) {
11745     case TargetLowering::C_Register:
11746     case TargetLowering::C_RegisterClass: {
11747       // Fill in OpInfo.AssignedRegs.Regs.
11748       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11749 
11750       // getRegistersForValue may produce 1 to many registers based on whether
11751       // the OpInfo.ConstraintVT is legal on the target or not.
11752       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11753         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11754         if (Register::isPhysicalRegister(OriginalDef))
11755           FuncInfo.MBB->addLiveIn(OriginalDef);
11756         // Update the assigned registers to use the original defs.
11757         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11758       }
11759 
11760       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11761           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11762       ResultValues.push_back(V);
11763       ResultVTs.push_back(OpInfo.ConstraintVT);
11764       break;
11765     }
11766     case TargetLowering::C_Other: {
11767       SDValue Flag;
11768       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11769                                                   OpInfo, DAG);
11770       ++InitialDef;
11771       ResultValues.push_back(V);
11772       ResultVTs.push_back(OpInfo.ConstraintVT);
11773       break;
11774     }
11775     default:
11776       break;
11777     }
11778   }
11779   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11780                           DAG.getVTList(ResultVTs), ResultValues);
11781   setValue(&I, V);
11782 }
11783