1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/DerivedTypes.h" 26 #include "llvm/Function.h" 27 #include "llvm/GlobalVariable.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/Instructions.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/IntrinsicInst.h" 32 #include "llvm/LLVMContext.h" 33 #include "llvm/Module.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/FastISel.h" 36 #include "llvm/CodeGen/FunctionLoweringInfo.h" 37 #include "llvm/CodeGen/GCStrategy.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineJumpTableInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/IntegersSubsetMapping.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 // Limit the width of DAG chains. This is important in general to prevent 74 // prevent DAG-based analysis from blowing up. For example, alias analysis and 75 // load clustering may not complete in reasonable time. It is difficult to 76 // recognize and avoid this situation within each individual analysis, and 77 // future analyses are likely to have the same behavior. Limiting DAG width is 78 // the safe approach, and will be especially important with global DAGs. 79 // 80 // MaxParallelChains default is arbitrarily high to avoid affecting 81 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 82 // sequence over this should have been converted to llvm.memcpy by the 83 // frontend. It easy to induce this behavior with .ll code such as: 84 // %buffer = alloca [4096 x i8] 85 // %data = load [4096 x i8]* %argPtr 86 // store [4096 x i8] %data, [4096 x i8]* %buffer 87 static const unsigned MaxParallelChains = 64; 88 89 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 90 const SDValue *Parts, unsigned NumParts, 91 EVT PartVT, EVT ValueVT); 92 93 /// getCopyFromParts - Create a value that contains the specified legal parts 94 /// combined into the value they represent. If the parts combine to a type 95 /// larger then ValueVT then AssertOp can be used to specify whether the extra 96 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 97 /// (ISD::AssertSext). 98 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 99 const SDValue *Parts, 100 unsigned NumParts, EVT PartVT, EVT ValueVT, 101 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 102 if (ValueVT.isVector()) 103 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 104 105 assert(NumParts > 0 && "No parts to assemble!"); 106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 107 SDValue Val = Parts[0]; 108 109 if (NumParts > 1) { 110 // Assemble the value from multiple parts. 111 if (ValueVT.isInteger()) { 112 unsigned PartBits = PartVT.getSizeInBits(); 113 unsigned ValueBits = ValueVT.getSizeInBits(); 114 115 // Assemble the power of 2 part. 116 unsigned RoundParts = NumParts & (NumParts - 1) ? 117 1 << Log2_32(NumParts) : NumParts; 118 unsigned RoundBits = PartBits * RoundParts; 119 EVT RoundVT = RoundBits == ValueBits ? 120 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 121 SDValue Lo, Hi; 122 123 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 124 125 if (RoundParts > 2) { 126 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 127 PartVT, HalfVT); 128 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 129 RoundParts / 2, PartVT, HalfVT); 130 } else { 131 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 132 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 133 } 134 135 if (TLI.isBigEndian()) 136 std::swap(Lo, Hi); 137 138 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 139 140 if (RoundParts < NumParts) { 141 // Assemble the trailing non-power-of-2 part. 142 unsigned OddParts = NumParts - RoundParts; 143 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 144 Hi = getCopyFromParts(DAG, DL, 145 Parts + RoundParts, OddParts, PartVT, OddVT); 146 147 // Combine the round and odd parts. 148 Lo = Val; 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 152 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 153 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 154 DAG.getConstant(Lo.getValueType().getSizeInBits(), 155 TLI.getPointerTy())); 156 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 157 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 158 } 159 } else if (PartVT.isFloatingPoint()) { 160 // FP split into multiple FP parts (for ppcf128) 161 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 162 "Unexpected split"); 163 SDValue Lo, Hi; 164 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 165 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 166 if (TLI.isBigEndian()) 167 std::swap(Lo, Hi); 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 169 } else { 170 // FP split into integer parts (soft fp) 171 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 172 !PartVT.isVector() && "Unexpected split"); 173 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 174 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 175 } 176 } 177 178 // There is now one part, held in Val. Correct it to match ValueVT. 179 PartVT = Val.getValueType(); 180 181 if (PartVT == ValueVT) 182 return Val; 183 184 if (PartVT.isInteger() && ValueVT.isInteger()) { 185 if (ValueVT.bitsLT(PartVT)) { 186 // For a truncate, see if we have any information to 187 // indicate whether the truncated bits will always be 188 // zero or sign-extension. 189 if (AssertOp != ISD::DELETED_NODE) 190 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 191 DAG.getValueType(ValueVT)); 192 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 193 } 194 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 195 } 196 197 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 198 // FP_ROUND's are always exact here. 199 if (ValueVT.bitsLT(Val.getValueType())) 200 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 201 DAG.getTargetConstant(1, TLI.getPointerTy())); 202 203 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 207 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 208 209 llvm_unreachable("Unknown mismatch!"); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 357 ValueVT.isInteger() && 358 "Unknown mismatch!"); 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 361 if (PartVT == MVT::x86mmx) 362 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 371 ValueVT.isInteger() && 372 "Unknown mismatch!"); 373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 374 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 375 if (PartVT == MVT::x86mmx) 376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 377 } 378 379 // The value may have changed - recompute ValueVT. 380 ValueVT = Val.getValueType(); 381 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 382 "Failed to tile the value with PartVT!"); 383 384 if (NumParts == 1) { 385 assert(PartVT == ValueVT && "Type conversion failed!"); 386 Parts[0] = Val; 387 return; 388 } 389 390 // Expand the value into multiple parts. 391 if (NumParts & (NumParts - 1)) { 392 // The number of parts is not a power of 2. Split off and copy the tail. 393 assert(PartVT.isInteger() && ValueVT.isInteger() && 394 "Do not know what to expand to!"); 395 unsigned RoundParts = 1 << Log2_32(NumParts); 396 unsigned RoundBits = RoundParts * PartBits; 397 unsigned OddParts = NumParts - RoundParts; 398 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 399 DAG.getIntPtrConstant(RoundBits)); 400 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 401 402 if (TLI.isBigEndian()) 403 // The odd parts were reversed by getCopyToParts - unreverse them. 404 std::reverse(Parts + RoundParts, Parts + NumParts); 405 406 NumParts = RoundParts; 407 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 408 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 409 } 410 411 // The number of parts is a power of 2. Repeatedly bisect the value using 412 // EXTRACT_ELEMENT. 413 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 414 EVT::getIntegerVT(*DAG.getContext(), 415 ValueVT.getSizeInBits()), 416 Val); 417 418 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 419 for (unsigned i = 0; i < NumParts; i += StepSize) { 420 unsigned ThisBits = StepSize * PartBits / 2; 421 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 422 SDValue &Part0 = Parts[i]; 423 SDValue &Part1 = Parts[i+StepSize/2]; 424 425 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 426 ThisVT, Part0, DAG.getIntPtrConstant(1)); 427 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 428 ThisVT, Part0, DAG.getIntPtrConstant(0)); 429 430 if (ThisBits == PartBits && ThisVT != PartVT) { 431 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 432 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 } 440 441 442 /// getCopyToPartsVector - Create a series of nodes that contain the specified 443 /// value split into legal parts. 444 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 445 SDValue Val, SDValue *Parts, unsigned NumParts, 446 EVT PartVT) { 447 EVT ValueVT = Val.getValueType(); 448 assert(ValueVT.isVector() && "Not a vector"); 449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 450 451 if (NumParts == 1) { 452 if (PartVT == ValueVT) { 453 // Nothing to do. 454 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 455 // Bitconvert vector->vector case. 456 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 457 } else if (PartVT.isVector() && 458 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 459 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 460 EVT ElementVT = PartVT.getVectorElementType(); 461 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 462 // undef elements. 463 SmallVector<SDValue, 16> Ops; 464 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 465 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 466 ElementVT, Val, DAG.getIntPtrConstant(i))); 467 468 for (unsigned i = ValueVT.getVectorNumElements(), 469 e = PartVT.getVectorNumElements(); i != e; ++i) 470 Ops.push_back(DAG.getUNDEF(ElementVT)); 471 472 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 473 474 // FIXME: Use CONCAT for 2x -> 4x. 475 476 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 477 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 478 } else if (PartVT.isVector() && 479 PartVT.getVectorElementType().bitsGE( 480 ValueVT.getVectorElementType()) && 481 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 482 483 // Promoted vector extract 484 bool Smaller = PartVT.bitsLE(ValueVT); 485 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 486 DL, PartVT, Val); 487 } else{ 488 // Vector -> scalar conversion. 489 assert(ValueVT.getVectorNumElements() == 1 && 490 "Only trivial vector-to-scalar conversions should get here!"); 491 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 PartVT, Val, DAG.getIntPtrConstant(0)); 493 494 bool Smaller = ValueVT.bitsLE(PartVT); 495 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 496 DL, PartVT, Val); 497 } 498 499 Parts[0] = Val; 500 return; 501 } 502 503 // Handle a multi-element vector. 504 EVT IntermediateVT, RegisterVT; 505 unsigned NumIntermediates; 506 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 507 IntermediateVT, 508 NumIntermediates, RegisterVT); 509 unsigned NumElements = ValueVT.getVectorNumElements(); 510 511 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 512 NumParts = NumRegs; // Silence a compiler warning. 513 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 514 515 // Split the vector into intermediate operands. 516 SmallVector<SDValue, 8> Ops(NumIntermediates); 517 for (unsigned i = 0; i != NumIntermediates; ++i) { 518 if (IntermediateVT.isVector()) 519 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 520 IntermediateVT, Val, 521 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 522 else 523 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 525 } 526 527 // Split the intermediate operands into legal parts. 528 if (NumParts == NumIntermediates) { 529 // If the register was not expanded, promote or copy the value, 530 // as appropriate. 531 for (unsigned i = 0; i != NumParts; ++i) 532 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 533 } else if (NumParts > 0) { 534 // If the intermediate type was expanded, split each the value into 535 // legal parts. 536 assert(NumParts % NumIntermediates == 0 && 537 "Must expand into a divisible number of parts!"); 538 unsigned Factor = NumParts / NumIntermediates; 539 for (unsigned i = 0; i != NumIntermediates; ++i) 540 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 541 } 542 } 543 544 545 546 547 namespace { 548 /// RegsForValue - This struct represents the registers (physical or virtual) 549 /// that a particular set of values is assigned, and the type information 550 /// about the value. The most common situation is to represent one value at a 551 /// time, but struct or array values are handled element-wise as multiple 552 /// values. The splitting of aggregates is performed recursively, so that we 553 /// never have aggregate-typed registers. The values at this point do not 554 /// necessarily have legal types, so each value may require one or more 555 /// registers of some legal type. 556 /// 557 struct RegsForValue { 558 /// ValueVTs - The value types of the values, which may not be legal, and 559 /// may need be promoted or synthesized from one or more registers. 560 /// 561 SmallVector<EVT, 4> ValueVTs; 562 563 /// RegVTs - The value types of the registers. This is the same size as 564 /// ValueVTs and it records, for each value, what the type of the assigned 565 /// register or registers are. (Individual values are never synthesized 566 /// from more than one type of register.) 567 /// 568 /// With virtual registers, the contents of RegVTs is redundant with TLI's 569 /// getRegisterType member function, however when with physical registers 570 /// it is necessary to have a separate record of the types. 571 /// 572 SmallVector<EVT, 4> RegVTs; 573 574 /// Regs - This list holds the registers assigned to the values. 575 /// Each legal or promoted value requires one register, and each 576 /// expanded value requires multiple registers. 577 /// 578 SmallVector<unsigned, 4> Regs; 579 580 RegsForValue() {} 581 582 RegsForValue(const SmallVector<unsigned, 4> ®s, 583 EVT regvt, EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 587 unsigned Reg, Type *Ty) { 588 ComputeValueVTs(tli, Ty, ValueVTs); 589 590 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 591 EVT ValueVT = ValueVTs[Value]; 592 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 593 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// areValueTypesLegal - Return true if types of all the values are legal. 602 bool areValueTypesLegal(const TargetLowering &TLI) { 603 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 604 EVT RegisterVT = RegVTs[Value]; 605 if (!TLI.isTypeLegal(RegisterVT)) 606 return false; 607 } 608 return true; 609 } 610 611 /// append - Add the specified values to this one. 612 void append(const RegsForValue &RHS) { 613 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 614 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 615 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 616 } 617 618 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 619 /// this value and returns the result as a ValueVTs value. This uses 620 /// Chain/Flag as the input and updates them for the output Chain/Flag. 621 /// If the Flag pointer is NULL, no flag is used. 622 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 623 DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 627 /// specified value into the registers specified by this object. This uses 628 /// Chain/Flag as the input and updates them for the output Chain/Flag. 629 /// If the Flag pointer is NULL, no flag is used. 630 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 631 SDValue &Chain, SDValue *Flag) const; 632 633 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 634 /// operand list. This adds the code marker, matching input operand index 635 /// (if applicable), and includes the number of values added into it. 636 void AddInlineAsmOperands(unsigned Kind, 637 bool HasMatching, unsigned MatchingIdx, 638 SelectionDAG &DAG, 639 std::vector<SDValue> &Ops) const; 640 }; 641 } 642 643 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 644 /// this value and returns the result as a ValueVT value. This uses 645 /// Chain/Flag as the input and updates them for the output Chain/Flag. 646 /// If the Flag pointer is NULL, no flag is used. 647 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 648 FunctionLoweringInfo &FuncInfo, 649 DebugLoc dl, 650 SDValue &Chain, SDValue *Flag) const { 651 // A Value with type {} or [0 x %t] needs no registers. 652 if (ValueVTs.empty()) 653 return SDValue(); 654 655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 656 657 // Assemble the legal parts into the final values. 658 SmallVector<SDValue, 4> Values(ValueVTs.size()); 659 SmallVector<SDValue, 8> Parts; 660 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 661 // Copy the legal parts from the registers. 662 EVT ValueVT = ValueVTs[Value]; 663 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 664 EVT RegisterVT = RegVTs[Value]; 665 666 Parts.resize(NumRegs); 667 for (unsigned i = 0; i != NumRegs; ++i) { 668 SDValue P; 669 if (Flag == 0) { 670 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 671 } else { 672 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 673 *Flag = P.getValue(2); 674 } 675 676 Chain = P.getValue(1); 677 Parts[i] = P; 678 679 // If the source register was virtual and if we know something about it, 680 // add an assert node. 681 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 682 !RegisterVT.isInteger() || RegisterVT.isVector()) 683 continue; 684 685 const FunctionLoweringInfo::LiveOutInfo *LOI = 686 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 687 if (!LOI) 688 continue; 689 690 unsigned RegSize = RegisterVT.getSizeInBits(); 691 unsigned NumSignBits = LOI->NumSignBits; 692 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) 699 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 700 else if (NumZeroBits >= RegSize-1) 701 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 702 else if (NumSignBits > RegSize-8) 703 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 704 else if (NumZeroBits >= RegSize-8) 705 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 706 else if (NumSignBits > RegSize-16) 707 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 708 else if (NumZeroBits >= RegSize-16) 709 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 710 else if (NumSignBits > RegSize-32) 711 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 712 else if (NumZeroBits >= RegSize-32) 713 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 714 else 715 continue; 716 717 // Add an assertion node. 718 assert(FromVT != MVT::Other); 719 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 720 RegisterVT, P, DAG.getValueType(FromVT)); 721 } 722 723 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 724 NumRegs, RegisterVT, ValueVT); 725 Part += NumRegs; 726 Parts.clear(); 727 } 728 729 return DAG.getNode(ISD::MERGE_VALUES, dl, 730 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 731 &Values[0], ValueVTs.size()); 732 } 733 734 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 735 /// specified value into the registers specified by this object. This uses 736 /// Chain/Flag as the input and updates them for the output Chain/Flag. 737 /// If the Flag pointer is NULL, no flag is used. 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 739 SDValue &Chain, SDValue *Flag) const { 740 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 741 742 // Get the list of the values's legal parts. 743 unsigned NumRegs = Regs.size(); 744 SmallVector<SDValue, 8> Parts(NumRegs); 745 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 746 EVT ValueVT = ValueVTs[Value]; 747 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 748 EVT RegisterVT = RegVTs[Value]; 749 750 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 751 &Parts[Part], NumParts, RegisterVT); 752 Part += NumParts; 753 } 754 755 // Copy the parts into the registers. 756 SmallVector<SDValue, 8> Chains(NumRegs); 757 for (unsigned i = 0; i != NumRegs; ++i) { 758 SDValue Part; 759 if (Flag == 0) { 760 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 761 } else { 762 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 763 *Flag = Part.getValue(1); 764 } 765 766 Chains[i] = Part.getValue(0); 767 } 768 769 if (NumRegs == 1 || Flag) 770 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 771 // flagged to it. That is the CopyToReg nodes and the user are considered 772 // a single scheduling unit. If we create a TokenFactor and return it as 773 // chain, then the TokenFactor is both a predecessor (operand) of the 774 // user as well as a successor (the TF operands are flagged to the user). 775 // c1, f1 = CopyToReg 776 // c2, f2 = CopyToReg 777 // c3 = TokenFactor c1, c2 778 // ... 779 // = op c3, ..., f2 780 Chain = Chains[NumRegs-1]; 781 else 782 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 783 } 784 785 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 786 /// operand list. This adds the code marker and includes the number of 787 /// values added into it. 788 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 789 unsigned MatchingIdx, 790 SelectionDAG &DAG, 791 std::vector<SDValue> &Ops) const { 792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 793 794 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 795 if (HasMatching) 796 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 797 else if (!Regs.empty() && 798 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 799 // Put the register class of the virtual registers in the flag word. That 800 // way, later passes can recompute register class constraints for inline 801 // assembly as well as normal instructions. 802 // Don't do this for tied operands that can use the regclass information 803 // from the def. 804 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 805 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 806 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 807 } 808 809 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 810 Ops.push_back(Res); 811 812 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 814 EVT RegisterVT = RegVTs[Value]; 815 for (unsigned i = 0; i != NumRegs; ++i) { 816 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 817 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 818 } 819 } 820 } 821 822 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 823 const TargetLibraryInfo *li) { 824 AA = &aa; 825 GFI = gfi; 826 LibInfo = li; 827 TD = DAG.getTarget().getTargetData(); 828 LPadToCallSiteMap.clear(); 829 } 830 831 /// clear - Clear out the current SelectionDAG and the associated 832 /// state and prepare this SelectionDAGBuilder object to be used 833 /// for a new block. This doesn't clear out information about 834 /// additional blocks that are needed to complete switch lowering 835 /// or PHI node updating; that information is cleared out as it is 836 /// consumed. 837 void SelectionDAGBuilder::clear() { 838 NodeMap.clear(); 839 UnusedArgNodeMap.clear(); 840 PendingLoads.clear(); 841 PendingExports.clear(); 842 CurDebugLoc = DebugLoc(); 843 HasTailCall = false; 844 } 845 846 /// clearDanglingDebugInfo - Clear the dangling debug information 847 /// map. This function is separated from the clear so that debug 848 /// information that is dangling in a basic block can be properly 849 /// resolved in a different basic block. This allows the 850 /// SelectionDAG to resolve dangling debug information attached 851 /// to PHI nodes. 852 void SelectionDAGBuilder::clearDanglingDebugInfo() { 853 DanglingDebugInfoMap.clear(); 854 } 855 856 /// getRoot - Return the current virtual root of the Selection DAG, 857 /// flushing any PendingLoad items. This must be done before emitting 858 /// a store or any other node that may need to be ordered after any 859 /// prior load instructions. 860 /// 861 SDValue SelectionDAGBuilder::getRoot() { 862 if (PendingLoads.empty()) 863 return DAG.getRoot(); 864 865 if (PendingLoads.size() == 1) { 866 SDValue Root = PendingLoads[0]; 867 DAG.setRoot(Root); 868 PendingLoads.clear(); 869 return Root; 870 } 871 872 // Otherwise, we have to make a token factor node. 873 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 874 &PendingLoads[0], PendingLoads.size()); 875 PendingLoads.clear(); 876 DAG.setRoot(Root); 877 return Root; 878 } 879 880 /// getControlRoot - Similar to getRoot, but instead of flushing all the 881 /// PendingLoad items, flush all the PendingExports items. It is necessary 882 /// to do this before emitting a terminator instruction. 883 /// 884 SDValue SelectionDAGBuilder::getControlRoot() { 885 SDValue Root = DAG.getRoot(); 886 887 if (PendingExports.empty()) 888 return Root; 889 890 // Turn all of the CopyToReg chains into one factored node. 891 if (Root.getOpcode() != ISD::EntryToken) { 892 unsigned i = 0, e = PendingExports.size(); 893 for (; i != e; ++i) { 894 assert(PendingExports[i].getNode()->getNumOperands() > 1); 895 if (PendingExports[i].getNode()->getOperand(0) == Root) 896 break; // Don't add the root if we already indirectly depend on it. 897 } 898 899 if (i == e) 900 PendingExports.push_back(Root); 901 } 902 903 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 904 &PendingExports[0], 905 PendingExports.size()); 906 PendingExports.clear(); 907 DAG.setRoot(Root); 908 return Root; 909 } 910 911 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 912 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 913 DAG.AssignOrdering(Node, SDNodeOrder); 914 915 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 916 AssignOrderingToNode(Node->getOperand(I).getNode()); 917 } 918 919 void SelectionDAGBuilder::visit(const Instruction &I) { 920 // Set up outgoing PHI node register values before emitting the terminator. 921 if (isa<TerminatorInst>(&I)) 922 HandlePHINodesInSuccessorBlocks(I.getParent()); 923 924 CurDebugLoc = I.getDebugLoc(); 925 926 visit(I.getOpcode(), I); 927 928 if (!isa<TerminatorInst>(&I) && !HasTailCall) 929 CopyToExportRegsIfNeeded(&I); 930 931 CurDebugLoc = DebugLoc(); 932 } 933 934 void SelectionDAGBuilder::visitPHI(const PHINode &) { 935 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 936 } 937 938 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 939 // Note: this doesn't use InstVisitor, because it has to work with 940 // ConstantExpr's in addition to instructions. 941 switch (Opcode) { 942 default: llvm_unreachable("Unknown instruction type encountered!"); 943 // Build the switch statement using the Instruction.def file. 944 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 945 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 946 #include "llvm/Instruction.def" 947 } 948 949 // Assign the ordering to the freshly created DAG nodes. 950 if (NodeMap.count(&I)) { 951 ++SDNodeOrder; 952 AssignOrderingToNode(getValue(&I).getNode()); 953 } 954 } 955 956 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 957 // generate the debug data structures now that we've seen its definition. 958 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 959 SDValue Val) { 960 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 961 if (DDI.getDI()) { 962 const DbgValueInst *DI = DDI.getDI(); 963 DebugLoc dl = DDI.getdl(); 964 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 965 MDNode *Variable = DI->getVariable(); 966 uint64_t Offset = DI->getOffset(); 967 SDDbgValue *SDV; 968 if (Val.getNode()) { 969 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 970 SDV = DAG.getDbgValue(Variable, Val.getNode(), 971 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 972 DAG.AddDbgValue(SDV, Val.getNode(), false); 973 } 974 } else 975 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 976 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 977 } 978 } 979 980 /// getValue - Return an SDValue for the given Value. 981 SDValue SelectionDAGBuilder::getValue(const Value *V) { 982 // If we already have an SDValue for this value, use it. It's important 983 // to do this first, so that we don't create a CopyFromReg if we already 984 // have a regular SDValue. 985 SDValue &N = NodeMap[V]; 986 if (N.getNode()) return N; 987 988 // If there's a virtual register allocated and initialized for this 989 // value, use it. 990 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 991 if (It != FuncInfo.ValueMap.end()) { 992 unsigned InReg = It->second; 993 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 994 SDValue Chain = DAG.getEntryNode(); 995 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 996 resolveDanglingDebugInfo(V, N); 997 return N; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 /// getNonRegisterValue - Return an SDValue for the given Value, but 1008 /// don't look in FuncInfo.ValueMap for a virtual register. 1009 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. 1011 SDValue &N = NodeMap[V]; 1012 if (N.getNode()) return N; 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 if (const Constant *C = dyn_cast<Constant>(V)) { 1025 EVT VT = TLI.getValueType(V->getType(), true); 1026 1027 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1028 return DAG.getConstant(*CI, VT); 1029 1030 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1031 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1032 1033 if (isa<ConstantPointerNull>(C)) 1034 return DAG.getConstant(0, TLI.getPointerTy()); 1035 1036 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1037 return DAG.getConstantFP(*CFP, VT); 1038 1039 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1040 return DAG.getUNDEF(VT); 1041 1042 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1043 visit(CE->getOpcode(), *CE); 1044 SDValue N1 = NodeMap[V]; 1045 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1046 return N1; 1047 } 1048 1049 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1050 SmallVector<SDValue, 4> Constants; 1051 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1052 OI != OE; ++OI) { 1053 SDNode *Val = getValue(*OI).getNode(); 1054 // If the operand is an empty aggregate, there are no values. 1055 if (!Val) continue; 1056 // Add each leaf value from the operand to the Constants list 1057 // to form a flattened list of all the values. 1058 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1059 Constants.push_back(SDValue(Val, i)); 1060 } 1061 1062 return DAG.getMergeValues(&Constants[0], Constants.size(), 1063 getCurDebugLoc()); 1064 } 1065 1066 if (const ConstantDataSequential *CDS = 1067 dyn_cast<ConstantDataSequential>(C)) { 1068 SmallVector<SDValue, 4> Ops; 1069 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1070 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1071 // Add each leaf value from the operand to the Constants list 1072 // to form a flattened list of all the values. 1073 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1074 Ops.push_back(SDValue(Val, i)); 1075 } 1076 1077 if (isa<ArrayType>(CDS->getType())) 1078 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1079 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1080 VT, &Ops[0], Ops.size()); 1081 } 1082 1083 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1084 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1085 "Unknown struct or array constant!"); 1086 1087 SmallVector<EVT, 4> ValueVTs; 1088 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1089 unsigned NumElts = ValueVTs.size(); 1090 if (NumElts == 0) 1091 return SDValue(); // empty struct 1092 SmallVector<SDValue, 4> Constants(NumElts); 1093 for (unsigned i = 0; i != NumElts; ++i) { 1094 EVT EltVT = ValueVTs[i]; 1095 if (isa<UndefValue>(C)) 1096 Constants[i] = DAG.getUNDEF(EltVT); 1097 else if (EltVT.isFloatingPoint()) 1098 Constants[i] = DAG.getConstantFP(0, EltVT); 1099 else 1100 Constants[i] = DAG.getConstant(0, EltVT); 1101 } 1102 1103 return DAG.getMergeValues(&Constants[0], NumElts, 1104 getCurDebugLoc()); 1105 } 1106 1107 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1108 return DAG.getBlockAddress(BA, VT); 1109 1110 VectorType *VecTy = cast<VectorType>(V->getType()); 1111 unsigned NumElements = VecTy->getNumElements(); 1112 1113 // Now that we know the number and type of the elements, get that number of 1114 // elements into the Ops array based on what kind of constant it is. 1115 SmallVector<SDValue, 16> Ops; 1116 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1117 for (unsigned i = 0; i != NumElements; ++i) 1118 Ops.push_back(getValue(CV->getOperand(i))); 1119 } else { 1120 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1121 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1122 1123 SDValue Op; 1124 if (EltVT.isFloatingPoint()) 1125 Op = DAG.getConstantFP(0, EltVT); 1126 else 1127 Op = DAG.getConstant(0, EltVT); 1128 Ops.assign(NumElements, Op); 1129 } 1130 1131 // Create a BUILD_VECTOR node. 1132 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1133 VT, &Ops[0], Ops.size()); 1134 } 1135 1136 // If this is a static alloca, generate it as the frameindex instead of 1137 // computation. 1138 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1139 DenseMap<const AllocaInst*, int>::iterator SI = 1140 FuncInfo.StaticAllocaMap.find(AI); 1141 if (SI != FuncInfo.StaticAllocaMap.end()) 1142 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1143 } 1144 1145 // If this is an instruction which fast-isel has deferred, select it now. 1146 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1147 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1148 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1149 SDValue Chain = DAG.getEntryNode(); 1150 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1151 } 1152 1153 llvm_unreachable("Can't get register for value!"); 1154 } 1155 1156 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1157 SDValue Chain = getControlRoot(); 1158 SmallVector<ISD::OutputArg, 8> Outs; 1159 SmallVector<SDValue, 8> OutVals; 1160 1161 if (!FuncInfo.CanLowerReturn) { 1162 unsigned DemoteReg = FuncInfo.DemoteRegister; 1163 const Function *F = I.getParent()->getParent(); 1164 1165 // Emit a store of the return value through the virtual register. 1166 // Leave Outs empty so that LowerReturn won't try to load return 1167 // registers the usual way. 1168 SmallVector<EVT, 1> PtrValueVTs; 1169 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1170 PtrValueVTs); 1171 1172 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1173 SDValue RetOp = getValue(I.getOperand(0)); 1174 1175 SmallVector<EVT, 4> ValueVTs; 1176 SmallVector<uint64_t, 4> Offsets; 1177 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1178 unsigned NumValues = ValueVTs.size(); 1179 1180 SmallVector<SDValue, 4> Chains(NumValues); 1181 for (unsigned i = 0; i != NumValues; ++i) { 1182 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1183 RetPtr.getValueType(), RetPtr, 1184 DAG.getIntPtrConstant(Offsets[i])); 1185 Chains[i] = 1186 DAG.getStore(Chain, getCurDebugLoc(), 1187 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1188 // FIXME: better loc info would be nice. 1189 Add, MachinePointerInfo(), false, false, 0); 1190 } 1191 1192 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1193 MVT::Other, &Chains[0], NumValues); 1194 } else if (I.getNumOperands() != 0) { 1195 SmallVector<EVT, 4> ValueVTs; 1196 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1197 unsigned NumValues = ValueVTs.size(); 1198 if (NumValues) { 1199 SDValue RetOp = getValue(I.getOperand(0)); 1200 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1201 EVT VT = ValueVTs[j]; 1202 1203 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1204 1205 const Function *F = I.getParent()->getParent(); 1206 if (F->paramHasAttr(0, Attribute::SExt)) 1207 ExtendKind = ISD::SIGN_EXTEND; 1208 else if (F->paramHasAttr(0, Attribute::ZExt)) 1209 ExtendKind = ISD::ZERO_EXTEND; 1210 1211 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1212 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1213 1214 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1215 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1216 SmallVector<SDValue, 4> Parts(NumParts); 1217 getCopyToParts(DAG, getCurDebugLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1219 &Parts[0], NumParts, PartVT, ExtendKind); 1220 1221 // 'inreg' on function refers to return value 1222 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1223 if (F->paramHasAttr(0, Attribute::InReg)) 1224 Flags.setInReg(); 1225 1226 // Propagate extension type if any 1227 if (ExtendKind == ISD::SIGN_EXTEND) 1228 Flags.setSExt(); 1229 else if (ExtendKind == ISD::ZERO_EXTEND) 1230 Flags.setZExt(); 1231 1232 for (unsigned i = 0; i < NumParts; ++i) { 1233 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1234 /*isfixed=*/true)); 1235 OutVals.push_back(Parts[i]); 1236 } 1237 } 1238 } 1239 } 1240 1241 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1242 CallingConv::ID CallConv = 1243 DAG.getMachineFunction().getFunction()->getCallingConv(); 1244 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1245 Outs, OutVals, getCurDebugLoc(), DAG); 1246 1247 // Verify that the target's LowerReturn behaved as expected. 1248 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1249 "LowerReturn didn't return a valid chain!"); 1250 1251 // Update the DAG with the new chain value resulting from return lowering. 1252 DAG.setRoot(Chain); 1253 } 1254 1255 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1256 /// created for it, emit nodes to copy the value into the virtual 1257 /// registers. 1258 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1259 // Skip empty types 1260 if (V->getType()->isEmptyTy()) 1261 return; 1262 1263 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1264 if (VMI != FuncInfo.ValueMap.end()) { 1265 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1266 CopyValueToVirtualRegister(V, VMI->second); 1267 } 1268 } 1269 1270 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1271 /// the current basic block, add it to ValueMap now so that we'll get a 1272 /// CopyTo/FromReg. 1273 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1274 // No need to export constants. 1275 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1276 1277 // Already exported? 1278 if (FuncInfo.isExportedInst(V)) return; 1279 1280 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1281 CopyValueToVirtualRegister(V, Reg); 1282 } 1283 1284 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1285 const BasicBlock *FromBB) { 1286 // The operands of the setcc have to be in this block. We don't know 1287 // how to export them from some other block. 1288 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1289 // Can export from current BB. 1290 if (VI->getParent() == FromBB) 1291 return true; 1292 1293 // Is already exported, noop. 1294 return FuncInfo.isExportedInst(V); 1295 } 1296 1297 // If this is an argument, we can export it if the BB is the entry block or 1298 // if it is already exported. 1299 if (isa<Argument>(V)) { 1300 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1301 return true; 1302 1303 // Otherwise, can only export this if it is already exported. 1304 return FuncInfo.isExportedInst(V); 1305 } 1306 1307 // Otherwise, constants can always be exported. 1308 return true; 1309 } 1310 1311 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1312 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1313 const MachineBasicBlock *Dst) const { 1314 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1315 if (!BPI) 1316 return 0; 1317 const BasicBlock *SrcBB = Src->getBasicBlock(); 1318 const BasicBlock *DstBB = Dst->getBasicBlock(); 1319 return BPI->getEdgeWeight(SrcBB, DstBB); 1320 } 1321 1322 void SelectionDAGBuilder:: 1323 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1324 uint32_t Weight /* = 0 */) { 1325 if (!Weight) 1326 Weight = getEdgeWeight(Src, Dst); 1327 Src->addSuccessor(Dst, Weight); 1328 } 1329 1330 1331 static bool InBlock(const Value *V, const BasicBlock *BB) { 1332 if (const Instruction *I = dyn_cast<Instruction>(V)) 1333 return I->getParent() == BB; 1334 return true; 1335 } 1336 1337 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1338 /// This function emits a branch and is used at the leaves of an OR or an 1339 /// AND operator tree. 1340 /// 1341 void 1342 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1343 MachineBasicBlock *TBB, 1344 MachineBasicBlock *FBB, 1345 MachineBasicBlock *CurBB, 1346 MachineBasicBlock *SwitchBB) { 1347 const BasicBlock *BB = CurBB->getBasicBlock(); 1348 1349 // If the leaf of the tree is a comparison, merge the condition into 1350 // the caseblock. 1351 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1352 // The operands of the cmp have to be in this block. We don't know 1353 // how to export them from some other block. If this is the first block 1354 // of the sequence, no exporting is needed. 1355 if (CurBB == SwitchBB || 1356 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1357 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1358 ISD::CondCode Condition; 1359 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1360 Condition = getICmpCondCode(IC->getPredicate()); 1361 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1362 Condition = getFCmpCondCode(FC->getPredicate()); 1363 if (TM.Options.NoNaNsFPMath) 1364 Condition = getFCmpCodeWithoutNaN(Condition); 1365 } else { 1366 Condition = ISD::SETEQ; // silence warning. 1367 llvm_unreachable("Unknown compare instruction"); 1368 } 1369 1370 CaseBlock CB(Condition, BOp->getOperand(0), 1371 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1372 SwitchCases.push_back(CB); 1373 return; 1374 } 1375 } 1376 1377 // Create a CaseBlock record representing this branch. 1378 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1379 NULL, TBB, FBB, CurBB); 1380 SwitchCases.push_back(CB); 1381 } 1382 1383 /// FindMergedConditions - If Cond is an expression like 1384 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1385 MachineBasicBlock *TBB, 1386 MachineBasicBlock *FBB, 1387 MachineBasicBlock *CurBB, 1388 MachineBasicBlock *SwitchBB, 1389 unsigned Opc) { 1390 // If this node is not part of the or/and tree, emit it as a branch. 1391 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1392 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1393 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1394 BOp->getParent() != CurBB->getBasicBlock() || 1395 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1396 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1397 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1398 return; 1399 } 1400 1401 // Create TmpBB after CurBB. 1402 MachineFunction::iterator BBI = CurBB; 1403 MachineFunction &MF = DAG.getMachineFunction(); 1404 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1405 CurBB->getParent()->insert(++BBI, TmpBB); 1406 1407 if (Opc == Instruction::Or) { 1408 // Codegen X | Y as: 1409 // jmp_if_X TBB 1410 // jmp TmpBB 1411 // TmpBB: 1412 // jmp_if_Y TBB 1413 // jmp FBB 1414 // 1415 1416 // Emit the LHS condition. 1417 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1418 1419 // Emit the RHS condition into TmpBB. 1420 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1421 } else { 1422 assert(Opc == Instruction::And && "Unknown merge op!"); 1423 // Codegen X & Y as: 1424 // jmp_if_X TmpBB 1425 // jmp FBB 1426 // TmpBB: 1427 // jmp_if_Y TBB 1428 // jmp FBB 1429 // 1430 // This requires creation of TmpBB after CurBB. 1431 1432 // Emit the LHS condition. 1433 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1434 1435 // Emit the RHS condition into TmpBB. 1436 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1437 } 1438 } 1439 1440 /// If the set of cases should be emitted as a series of branches, return true. 1441 /// If we should emit this as a bunch of and/or'd together conditions, return 1442 /// false. 1443 bool 1444 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1445 if (Cases.size() != 2) return true; 1446 1447 // If this is two comparisons of the same values or'd or and'd together, they 1448 // will get folded into a single comparison, so don't emit two blocks. 1449 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1450 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1451 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1452 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1453 return false; 1454 } 1455 1456 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1457 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1458 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1459 Cases[0].CC == Cases[1].CC && 1460 isa<Constant>(Cases[0].CmpRHS) && 1461 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1462 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1463 return false; 1464 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1465 return false; 1466 } 1467 1468 return true; 1469 } 1470 1471 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1472 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1473 1474 // Update machine-CFG edges. 1475 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1476 1477 // Figure out which block is immediately after the current one. 1478 MachineBasicBlock *NextBlock = 0; 1479 MachineFunction::iterator BBI = BrMBB; 1480 if (++BBI != FuncInfo.MF->end()) 1481 NextBlock = BBI; 1482 1483 if (I.isUnconditional()) { 1484 // Update machine-CFG edges. 1485 BrMBB->addSuccessor(Succ0MBB); 1486 1487 // If this is not a fall-through branch, emit the branch. 1488 if (Succ0MBB != NextBlock) 1489 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1490 MVT::Other, getControlRoot(), 1491 DAG.getBasicBlock(Succ0MBB))); 1492 1493 return; 1494 } 1495 1496 // If this condition is one of the special cases we handle, do special stuff 1497 // now. 1498 const Value *CondVal = I.getCondition(); 1499 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1500 1501 // If this is a series of conditions that are or'd or and'd together, emit 1502 // this as a sequence of branches instead of setcc's with and/or operations. 1503 // As long as jumps are not expensive, this should improve performance. 1504 // For example, instead of something like: 1505 // cmp A, B 1506 // C = seteq 1507 // cmp D, E 1508 // F = setle 1509 // or C, F 1510 // jnz foo 1511 // Emit: 1512 // cmp A, B 1513 // je foo 1514 // cmp D, E 1515 // jle foo 1516 // 1517 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1518 if (!TLI.isJumpExpensive() && 1519 BOp->hasOneUse() && 1520 (BOp->getOpcode() == Instruction::And || 1521 BOp->getOpcode() == Instruction::Or)) { 1522 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1523 BOp->getOpcode()); 1524 // If the compares in later blocks need to use values not currently 1525 // exported from this block, export them now. This block should always 1526 // be the first entry. 1527 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1528 1529 // Allow some cases to be rejected. 1530 if (ShouldEmitAsBranches(SwitchCases)) { 1531 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1532 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1533 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1534 } 1535 1536 // Emit the branch for this block. 1537 visitSwitchCase(SwitchCases[0], BrMBB); 1538 SwitchCases.erase(SwitchCases.begin()); 1539 return; 1540 } 1541 1542 // Okay, we decided not to do this, remove any inserted MBB's and clear 1543 // SwitchCases. 1544 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1545 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1546 1547 SwitchCases.clear(); 1548 } 1549 } 1550 1551 // Create a CaseBlock record representing this branch. 1552 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1553 NULL, Succ0MBB, Succ1MBB, BrMBB); 1554 1555 // Use visitSwitchCase to actually insert the fast branch sequence for this 1556 // cond branch. 1557 visitSwitchCase(CB, BrMBB); 1558 } 1559 1560 /// visitSwitchCase - Emits the necessary code to represent a single node in 1561 /// the binary search tree resulting from lowering a switch instruction. 1562 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1563 MachineBasicBlock *SwitchBB) { 1564 SDValue Cond; 1565 SDValue CondLHS = getValue(CB.CmpLHS); 1566 DebugLoc dl = getCurDebugLoc(); 1567 1568 // Build the setcc now. 1569 if (CB.CmpMHS == NULL) { 1570 // Fold "(X == true)" to X and "(X == false)" to !X to 1571 // handle common cases produced by branch lowering. 1572 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1573 CB.CC == ISD::SETEQ) 1574 Cond = CondLHS; 1575 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1576 CB.CC == ISD::SETEQ) { 1577 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1578 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1579 } else 1580 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1581 } else { 1582 assert(CB.CC == ISD::SETCC_INVALID && 1583 "Condition is undefined for to-the-range belonging check."); 1584 1585 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1586 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1587 1588 SDValue CmpOp = getValue(CB.CmpMHS); 1589 EVT VT = CmpOp.getValueType(); 1590 1591 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1592 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1593 ISD::SETULE); 1594 } else { 1595 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1596 VT, CmpOp, DAG.getConstant(Low, VT)); 1597 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1598 DAG.getConstant(High-Low, VT), ISD::SETULE); 1599 } 1600 } 1601 1602 // Update successor info 1603 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1604 // TrueBB and FalseBB are always different unless the incoming IR is 1605 // degenerate. This only happens when running llc on weird IR. 1606 if (CB.TrueBB != CB.FalseBB) 1607 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1608 1609 // Set NextBlock to be the MBB immediately after the current one, if any. 1610 // This is used to avoid emitting unnecessary branches to the next block. 1611 MachineBasicBlock *NextBlock = 0; 1612 MachineFunction::iterator BBI = SwitchBB; 1613 if (++BBI != FuncInfo.MF->end()) 1614 NextBlock = BBI; 1615 1616 // If the lhs block is the next block, invert the condition so that we can 1617 // fall through to the lhs instead of the rhs block. 1618 if (CB.TrueBB == NextBlock) { 1619 std::swap(CB.TrueBB, CB.FalseBB); 1620 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1621 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1622 } 1623 1624 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1625 MVT::Other, getControlRoot(), Cond, 1626 DAG.getBasicBlock(CB.TrueBB)); 1627 1628 // Insert the false branch. Do this even if it's a fall through branch, 1629 // this makes it easier to do DAG optimizations which require inverting 1630 // the branch condition. 1631 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1632 DAG.getBasicBlock(CB.FalseBB)); 1633 1634 DAG.setRoot(BrCond); 1635 } 1636 1637 /// visitJumpTable - Emit JumpTable node in the current MBB 1638 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1639 // Emit the code for the jump table 1640 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1641 EVT PTy = TLI.getPointerTy(); 1642 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1643 JT.Reg, PTy); 1644 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1645 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1646 MVT::Other, Index.getValue(1), 1647 Table, Index); 1648 DAG.setRoot(BrJumpTable); 1649 } 1650 1651 /// visitJumpTableHeader - This function emits necessary code to produce index 1652 /// in the JumpTable from switch case. 1653 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1654 JumpTableHeader &JTH, 1655 MachineBasicBlock *SwitchBB) { 1656 // Subtract the lowest switch case value from the value being switched on and 1657 // conditional branch to default mbb if the result is greater than the 1658 // difference between smallest and largest cases. 1659 SDValue SwitchOp = getValue(JTH.SValue); 1660 EVT VT = SwitchOp.getValueType(); 1661 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1662 DAG.getConstant(JTH.First, VT)); 1663 1664 // The SDNode we just created, which holds the value being switched on minus 1665 // the smallest case value, needs to be copied to a virtual register so it 1666 // can be used as an index into the jump table in a subsequent basic block. 1667 // This value may be smaller or larger than the target's pointer type, and 1668 // therefore require extension or truncating. 1669 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1670 1671 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1672 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1673 JumpTableReg, SwitchOp); 1674 JT.Reg = JumpTableReg; 1675 1676 // Emit the range check for the jump table, and branch to the default block 1677 // for the switch statement if the value being switched on exceeds the largest 1678 // case in the switch. 1679 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1680 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1681 DAG.getConstant(JTH.Last-JTH.First,VT), 1682 ISD::SETUGT); 1683 1684 // Set NextBlock to be the MBB immediately after the current one, if any. 1685 // This is used to avoid emitting unnecessary branches to the next block. 1686 MachineBasicBlock *NextBlock = 0; 1687 MachineFunction::iterator BBI = SwitchBB; 1688 1689 if (++BBI != FuncInfo.MF->end()) 1690 NextBlock = BBI; 1691 1692 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1693 MVT::Other, CopyTo, CMP, 1694 DAG.getBasicBlock(JT.Default)); 1695 1696 if (JT.MBB != NextBlock) 1697 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1698 DAG.getBasicBlock(JT.MBB)); 1699 1700 DAG.setRoot(BrCond); 1701 } 1702 1703 /// visitBitTestHeader - This function emits necessary code to produce value 1704 /// suitable for "bit tests" 1705 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1706 MachineBasicBlock *SwitchBB) { 1707 // Subtract the minimum value 1708 SDValue SwitchOp = getValue(B.SValue); 1709 EVT VT = SwitchOp.getValueType(); 1710 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1711 DAG.getConstant(B.First, VT)); 1712 1713 // Check range 1714 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1715 TLI.getSetCCResultType(Sub.getValueType()), 1716 Sub, DAG.getConstant(B.Range, VT), 1717 ISD::SETUGT); 1718 1719 // Determine the type of the test operands. 1720 bool UsePtrType = false; 1721 if (!TLI.isTypeLegal(VT)) 1722 UsePtrType = true; 1723 else { 1724 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1725 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1726 // Switch table case range are encoded into series of masks. 1727 // Just use pointer type, it's guaranteed to fit. 1728 UsePtrType = true; 1729 break; 1730 } 1731 } 1732 if (UsePtrType) { 1733 VT = TLI.getPointerTy(); 1734 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1735 } 1736 1737 B.RegVT = VT; 1738 B.Reg = FuncInfo.CreateReg(VT); 1739 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1740 B.Reg, Sub); 1741 1742 // Set NextBlock to be the MBB immediately after the current one, if any. 1743 // This is used to avoid emitting unnecessary branches to the next block. 1744 MachineBasicBlock *NextBlock = 0; 1745 MachineFunction::iterator BBI = SwitchBB; 1746 if (++BBI != FuncInfo.MF->end()) 1747 NextBlock = BBI; 1748 1749 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1750 1751 addSuccessorWithWeight(SwitchBB, B.Default); 1752 addSuccessorWithWeight(SwitchBB, MBB); 1753 1754 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1755 MVT::Other, CopyTo, RangeCmp, 1756 DAG.getBasicBlock(B.Default)); 1757 1758 if (MBB != NextBlock) 1759 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1760 DAG.getBasicBlock(MBB)); 1761 1762 DAG.setRoot(BrRange); 1763 } 1764 1765 /// visitBitTestCase - this function produces one "bit test" 1766 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1767 MachineBasicBlock* NextMBB, 1768 unsigned Reg, 1769 BitTestCase &B, 1770 MachineBasicBlock *SwitchBB) { 1771 EVT VT = BB.RegVT; 1772 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1773 Reg, VT); 1774 SDValue Cmp; 1775 unsigned PopCount = CountPopulation_64(B.Mask); 1776 if (PopCount == 1) { 1777 // Testing for a single bit; just compare the shift count with what it 1778 // would need to be to shift a 1 bit in that position. 1779 Cmp = DAG.getSetCC(getCurDebugLoc(), 1780 TLI.getSetCCResultType(VT), 1781 ShiftOp, 1782 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1783 ISD::SETEQ); 1784 } else if (PopCount == BB.Range) { 1785 // There is only one zero bit in the range, test for it directly. 1786 Cmp = DAG.getSetCC(getCurDebugLoc(), 1787 TLI.getSetCCResultType(VT), 1788 ShiftOp, 1789 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1790 ISD::SETNE); 1791 } else { 1792 // Make desired shift 1793 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1794 DAG.getConstant(1, VT), ShiftOp); 1795 1796 // Emit bit tests and jumps 1797 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1798 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1799 Cmp = DAG.getSetCC(getCurDebugLoc(), 1800 TLI.getSetCCResultType(VT), 1801 AndOp, DAG.getConstant(0, VT), 1802 ISD::SETNE); 1803 } 1804 1805 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1806 addSuccessorWithWeight(SwitchBB, NextMBB); 1807 1808 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1809 MVT::Other, getControlRoot(), 1810 Cmp, DAG.getBasicBlock(B.TargetBB)); 1811 1812 // Set NextBlock to be the MBB immediately after the current one, if any. 1813 // This is used to avoid emitting unnecessary branches to the next block. 1814 MachineBasicBlock *NextBlock = 0; 1815 MachineFunction::iterator BBI = SwitchBB; 1816 if (++BBI != FuncInfo.MF->end()) 1817 NextBlock = BBI; 1818 1819 if (NextMBB != NextBlock) 1820 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1821 DAG.getBasicBlock(NextMBB)); 1822 1823 DAG.setRoot(BrAnd); 1824 } 1825 1826 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1827 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1828 1829 // Retrieve successors. 1830 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1831 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1832 1833 const Value *Callee(I.getCalledValue()); 1834 const Function *Fn = dyn_cast<Function>(Callee); 1835 if (isa<InlineAsm>(Callee)) 1836 visitInlineAsm(&I); 1837 else if (Fn && Fn->isIntrinsic()) { 1838 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1839 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1840 } else 1841 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1842 1843 // If the value of the invoke is used outside of its defining block, make it 1844 // available as a virtual register. 1845 CopyToExportRegsIfNeeded(&I); 1846 1847 // Update successor info 1848 addSuccessorWithWeight(InvokeMBB, Return); 1849 addSuccessorWithWeight(InvokeMBB, LandingPad); 1850 1851 // Drop into normal successor. 1852 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1853 MVT::Other, getControlRoot(), 1854 DAG.getBasicBlock(Return))); 1855 } 1856 1857 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1858 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1859 } 1860 1861 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1862 assert(FuncInfo.MBB->isLandingPad() && 1863 "Call to landingpad not in landing pad!"); 1864 1865 MachineBasicBlock *MBB = FuncInfo.MBB; 1866 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1867 AddLandingPadInfo(LP, MMI, MBB); 1868 1869 // If there aren't registers to copy the values into (e.g., during SjLj 1870 // exceptions), then don't bother to create these DAG nodes. 1871 if (TLI.getExceptionPointerRegister() == 0 && 1872 TLI.getExceptionSelectorRegister() == 0) 1873 return; 1874 1875 SmallVector<EVT, 2> ValueVTs; 1876 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1877 1878 // Insert the EXCEPTIONADDR instruction. 1879 assert(FuncInfo.MBB->isLandingPad() && 1880 "Call to eh.exception not in landing pad!"); 1881 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1882 SDValue Ops[2]; 1883 Ops[0] = DAG.getRoot(); 1884 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1885 SDValue Chain = Op1.getValue(1); 1886 1887 // Insert the EHSELECTION instruction. 1888 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1889 Ops[0] = Op1; 1890 Ops[1] = Chain; 1891 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1892 Chain = Op2.getValue(1); 1893 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1894 1895 Ops[0] = Op1; 1896 Ops[1] = Op2; 1897 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1898 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1899 &Ops[0], 2); 1900 1901 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1902 setValue(&LP, RetPair.first); 1903 DAG.setRoot(RetPair.second); 1904 } 1905 1906 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1907 /// small case ranges). 1908 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1909 CaseRecVector& WorkList, 1910 const Value* SV, 1911 MachineBasicBlock *Default, 1912 MachineBasicBlock *SwitchBB) { 1913 // Size is the number of Cases represented by this range. 1914 size_t Size = CR.Range.second - CR.Range.first; 1915 if (Size > 3) 1916 return false; 1917 1918 // Get the MachineFunction which holds the current MBB. This is used when 1919 // inserting any additional MBBs necessary to represent the switch. 1920 MachineFunction *CurMF = FuncInfo.MF; 1921 1922 // Figure out which block is immediately after the current one. 1923 MachineBasicBlock *NextBlock = 0; 1924 MachineFunction::iterator BBI = CR.CaseBB; 1925 1926 if (++BBI != FuncInfo.MF->end()) 1927 NextBlock = BBI; 1928 1929 // If any two of the cases has the same destination, and if one value 1930 // is the same as the other, but has one bit unset that the other has set, 1931 // use bit manipulation to do two compares at once. For example: 1932 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1933 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1934 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1935 if (Size == 2 && CR.CaseBB == SwitchBB) { 1936 Case &Small = *CR.Range.first; 1937 Case &Big = *(CR.Range.second-1); 1938 1939 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1940 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1941 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1942 1943 // Check that there is only one bit different. 1944 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1945 (SmallValue | BigValue) == BigValue) { 1946 // Isolate the common bit. 1947 APInt CommonBit = BigValue & ~SmallValue; 1948 assert((SmallValue | CommonBit) == BigValue && 1949 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1950 1951 SDValue CondLHS = getValue(SV); 1952 EVT VT = CondLHS.getValueType(); 1953 DebugLoc DL = getCurDebugLoc(); 1954 1955 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1956 DAG.getConstant(CommonBit, VT)); 1957 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1958 Or, DAG.getConstant(BigValue, VT), 1959 ISD::SETEQ); 1960 1961 // Update successor info. 1962 addSuccessorWithWeight(SwitchBB, Small.BB); 1963 addSuccessorWithWeight(SwitchBB, Default); 1964 1965 // Insert the true branch. 1966 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1967 getControlRoot(), Cond, 1968 DAG.getBasicBlock(Small.BB)); 1969 1970 // Insert the false branch. 1971 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1972 DAG.getBasicBlock(Default)); 1973 1974 DAG.setRoot(BrCond); 1975 return true; 1976 } 1977 } 1978 } 1979 1980 // Order cases by weight so the most likely case will be checked first. 1981 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1982 if (BPI) { 1983 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 1984 uint32_t IWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(), 1985 I->BB->getBasicBlock()); 1986 for (CaseItr J = CR.Range.first; J < I; ++J) { 1987 uint32_t JWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(), 1988 J->BB->getBasicBlock()); 1989 if (IWeight > JWeight) 1990 std::swap(*I, *J); 1991 } 1992 } 1993 } 1994 // Rearrange the case blocks so that the last one falls through if possible. 1995 Case &BackCase = *(CR.Range.second-1); 1996 if (Size > 1 && 1997 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1998 // The last case block won't fall through into 'NextBlock' if we emit the 1999 // branches in this order. See if rearranging a case value would help. 2000 // We start at the bottom as it's the case with the least weight. 2001 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2002 if (I->BB == NextBlock) { 2003 std::swap(*I, BackCase); 2004 break; 2005 } 2006 } 2007 } 2008 2009 // Create a CaseBlock record representing a conditional branch to 2010 // the Case's target mbb if the value being switched on SV is equal 2011 // to C. 2012 MachineBasicBlock *CurBlock = CR.CaseBB; 2013 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2014 MachineBasicBlock *FallThrough; 2015 if (I != E-1) { 2016 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2017 CurMF->insert(BBI, FallThrough); 2018 2019 // Put SV in a virtual register to make it available from the new blocks. 2020 ExportFromCurrentBlock(SV); 2021 } else { 2022 // If the last case doesn't match, go to the default block. 2023 FallThrough = Default; 2024 } 2025 2026 const Value *RHS, *LHS, *MHS; 2027 ISD::CondCode CC; 2028 if (I->High == I->Low) { 2029 // This is just small small case range :) containing exactly 1 case 2030 CC = ISD::SETEQ; 2031 LHS = SV; RHS = I->High; MHS = NULL; 2032 } else { 2033 CC = ISD::SETCC_INVALID; 2034 LHS = I->Low; MHS = SV; RHS = I->High; 2035 } 2036 2037 uint32_t ExtraWeight = I->ExtraWeight; 2038 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2039 /* me */ CurBlock, 2040 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 2041 2042 // If emitting the first comparison, just call visitSwitchCase to emit the 2043 // code into the current block. Otherwise, push the CaseBlock onto the 2044 // vector to be later processed by SDISel, and insert the node's MBB 2045 // before the next MBB. 2046 if (CurBlock == SwitchBB) 2047 visitSwitchCase(CB, SwitchBB); 2048 else 2049 SwitchCases.push_back(CB); 2050 2051 CurBlock = FallThrough; 2052 } 2053 2054 return true; 2055 } 2056 2057 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2058 return TLI.supportJumpTables() && 2059 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2060 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2061 } 2062 2063 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2064 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2065 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2066 return (LastExt - FirstExt + 1ULL); 2067 } 2068 2069 /// handleJTSwitchCase - Emit jumptable for current switch case range 2070 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2071 CaseRecVector &WorkList, 2072 const Value *SV, 2073 MachineBasicBlock *Default, 2074 MachineBasicBlock *SwitchBB) { 2075 Case& FrontCase = *CR.Range.first; 2076 Case& BackCase = *(CR.Range.second-1); 2077 2078 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2079 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2080 2081 APInt TSize(First.getBitWidth(), 0); 2082 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2083 TSize += I->size(); 2084 2085 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2086 return false; 2087 2088 APInt Range = ComputeRange(First, Last); 2089 // The density is TSize / Range. Require at least 40%. 2090 // It should not be possible for IntTSize to saturate for sane code, but make 2091 // sure we handle Range saturation correctly. 2092 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2093 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2094 if (IntTSize * 10 < IntRange * 4) 2095 return false; 2096 2097 DEBUG(dbgs() << "Lowering jump table\n" 2098 << "First entry: " << First << ". Last entry: " << Last << '\n' 2099 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2100 2101 // Get the MachineFunction which holds the current MBB. This is used when 2102 // inserting any additional MBBs necessary to represent the switch. 2103 MachineFunction *CurMF = FuncInfo.MF; 2104 2105 // Figure out which block is immediately after the current one. 2106 MachineFunction::iterator BBI = CR.CaseBB; 2107 ++BBI; 2108 2109 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2110 2111 // Create a new basic block to hold the code for loading the address 2112 // of the jump table, and jumping to it. Update successor information; 2113 // we will either branch to the default case for the switch, or the jump 2114 // table. 2115 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2116 CurMF->insert(BBI, JumpTableBB); 2117 2118 addSuccessorWithWeight(CR.CaseBB, Default); 2119 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2120 2121 // Build a vector of destination BBs, corresponding to each target 2122 // of the jump table. If the value of the jump table slot corresponds to 2123 // a case statement, push the case's BB onto the vector, otherwise, push 2124 // the default BB. 2125 std::vector<MachineBasicBlock*> DestBBs; 2126 APInt TEI = First; 2127 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2128 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2129 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2130 2131 if (Low.ule(TEI) && TEI.ule(High)) { 2132 DestBBs.push_back(I->BB); 2133 if (TEI==High) 2134 ++I; 2135 } else { 2136 DestBBs.push_back(Default); 2137 } 2138 } 2139 2140 // Update successor info. Add one edge to each unique successor. 2141 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2142 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2143 E = DestBBs.end(); I != E; ++I) { 2144 if (!SuccsHandled[(*I)->getNumber()]) { 2145 SuccsHandled[(*I)->getNumber()] = true; 2146 addSuccessorWithWeight(JumpTableBB, *I); 2147 } 2148 } 2149 2150 // Create a jump table index for this jump table. 2151 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2152 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2153 ->createJumpTableIndex(DestBBs); 2154 2155 // Set the jump table information so that we can codegen it as a second 2156 // MachineBasicBlock 2157 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2158 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2159 if (CR.CaseBB == SwitchBB) 2160 visitJumpTableHeader(JT, JTH, SwitchBB); 2161 2162 JTCases.push_back(JumpTableBlock(JTH, JT)); 2163 return true; 2164 } 2165 2166 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2167 /// 2 subtrees. 2168 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2169 CaseRecVector& WorkList, 2170 const Value* SV, 2171 MachineBasicBlock *Default, 2172 MachineBasicBlock *SwitchBB) { 2173 // Get the MachineFunction which holds the current MBB. This is used when 2174 // inserting any additional MBBs necessary to represent the switch. 2175 MachineFunction *CurMF = FuncInfo.MF; 2176 2177 // Figure out which block is immediately after the current one. 2178 MachineFunction::iterator BBI = CR.CaseBB; 2179 ++BBI; 2180 2181 Case& FrontCase = *CR.Range.first; 2182 Case& BackCase = *(CR.Range.second-1); 2183 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2184 2185 // Size is the number of Cases represented by this range. 2186 unsigned Size = CR.Range.second - CR.Range.first; 2187 2188 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2189 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2190 double FMetric = 0; 2191 CaseItr Pivot = CR.Range.first + Size/2; 2192 2193 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2194 // (heuristically) allow us to emit JumpTable's later. 2195 APInt TSize(First.getBitWidth(), 0); 2196 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2197 I!=E; ++I) 2198 TSize += I->size(); 2199 2200 APInt LSize = FrontCase.size(); 2201 APInt RSize = TSize-LSize; 2202 DEBUG(dbgs() << "Selecting best pivot: \n" 2203 << "First: " << First << ", Last: " << Last <<'\n' 2204 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2205 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2206 J!=E; ++I, ++J) { 2207 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2208 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2209 APInt Range = ComputeRange(LEnd, RBegin); 2210 assert((Range - 2ULL).isNonNegative() && 2211 "Invalid case distance"); 2212 // Use volatile double here to avoid excess precision issues on some hosts, 2213 // e.g. that use 80-bit X87 registers. 2214 volatile double LDensity = 2215 (double)LSize.roundToDouble() / 2216 (LEnd - First + 1ULL).roundToDouble(); 2217 volatile double RDensity = 2218 (double)RSize.roundToDouble() / 2219 (Last - RBegin + 1ULL).roundToDouble(); 2220 double Metric = Range.logBase2()*(LDensity+RDensity); 2221 // Should always split in some non-trivial place 2222 DEBUG(dbgs() <<"=>Step\n" 2223 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2224 << "LDensity: " << LDensity 2225 << ", RDensity: " << RDensity << '\n' 2226 << "Metric: " << Metric << '\n'); 2227 if (FMetric < Metric) { 2228 Pivot = J; 2229 FMetric = Metric; 2230 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2231 } 2232 2233 LSize += J->size(); 2234 RSize -= J->size(); 2235 } 2236 if (areJTsAllowed(TLI)) { 2237 // If our case is dense we *really* should handle it earlier! 2238 assert((FMetric > 0) && "Should handle dense range earlier!"); 2239 } else { 2240 Pivot = CR.Range.first + Size/2; 2241 } 2242 2243 CaseRange LHSR(CR.Range.first, Pivot); 2244 CaseRange RHSR(Pivot, CR.Range.second); 2245 const Constant *C = Pivot->Low; 2246 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2247 2248 // We know that we branch to the LHS if the Value being switched on is 2249 // less than the Pivot value, C. We use this to optimize our binary 2250 // tree a bit, by recognizing that if SV is greater than or equal to the 2251 // LHS's Case Value, and that Case Value is exactly one less than the 2252 // Pivot's Value, then we can branch directly to the LHS's Target, 2253 // rather than creating a leaf node for it. 2254 if ((LHSR.second - LHSR.first) == 1 && 2255 LHSR.first->High == CR.GE && 2256 cast<ConstantInt>(C)->getValue() == 2257 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2258 TrueBB = LHSR.first->BB; 2259 } else { 2260 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2261 CurMF->insert(BBI, TrueBB); 2262 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2263 2264 // Put SV in a virtual register to make it available from the new blocks. 2265 ExportFromCurrentBlock(SV); 2266 } 2267 2268 // Similar to the optimization above, if the Value being switched on is 2269 // known to be less than the Constant CR.LT, and the current Case Value 2270 // is CR.LT - 1, then we can branch directly to the target block for 2271 // the current Case Value, rather than emitting a RHS leaf node for it. 2272 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2273 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2274 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2275 FalseBB = RHSR.first->BB; 2276 } else { 2277 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2278 CurMF->insert(BBI, FalseBB); 2279 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2280 2281 // Put SV in a virtual register to make it available from the new blocks. 2282 ExportFromCurrentBlock(SV); 2283 } 2284 2285 // Create a CaseBlock record representing a conditional branch to 2286 // the LHS node if the value being switched on SV is less than C. 2287 // Otherwise, branch to LHS. 2288 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2289 2290 if (CR.CaseBB == SwitchBB) 2291 visitSwitchCase(CB, SwitchBB); 2292 else 2293 SwitchCases.push_back(CB); 2294 2295 return true; 2296 } 2297 2298 /// handleBitTestsSwitchCase - if current case range has few destination and 2299 /// range span less, than machine word bitwidth, encode case range into series 2300 /// of masks and emit bit tests with these masks. 2301 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2302 CaseRecVector& WorkList, 2303 const Value* SV, 2304 MachineBasicBlock* Default, 2305 MachineBasicBlock *SwitchBB){ 2306 EVT PTy = TLI.getPointerTy(); 2307 unsigned IntPtrBits = PTy.getSizeInBits(); 2308 2309 Case& FrontCase = *CR.Range.first; 2310 Case& BackCase = *(CR.Range.second-1); 2311 2312 // Get the MachineFunction which holds the current MBB. This is used when 2313 // inserting any additional MBBs necessary to represent the switch. 2314 MachineFunction *CurMF = FuncInfo.MF; 2315 2316 // If target does not have legal shift left, do not emit bit tests at all. 2317 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2318 return false; 2319 2320 size_t numCmps = 0; 2321 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2322 I!=E; ++I) { 2323 // Single case counts one, case range - two. 2324 numCmps += (I->Low == I->High ? 1 : 2); 2325 } 2326 2327 // Count unique destinations 2328 SmallSet<MachineBasicBlock*, 4> Dests; 2329 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2330 Dests.insert(I->BB); 2331 if (Dests.size() > 3) 2332 // Don't bother the code below, if there are too much unique destinations 2333 return false; 2334 } 2335 DEBUG(dbgs() << "Total number of unique destinations: " 2336 << Dests.size() << '\n' 2337 << "Total number of comparisons: " << numCmps << '\n'); 2338 2339 // Compute span of values. 2340 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2341 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2342 APInt cmpRange = maxValue - minValue; 2343 2344 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2345 << "Low bound: " << minValue << '\n' 2346 << "High bound: " << maxValue << '\n'); 2347 2348 if (cmpRange.uge(IntPtrBits) || 2349 (!(Dests.size() == 1 && numCmps >= 3) && 2350 !(Dests.size() == 2 && numCmps >= 5) && 2351 !(Dests.size() >= 3 && numCmps >= 6))) 2352 return false; 2353 2354 DEBUG(dbgs() << "Emitting bit tests\n"); 2355 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2356 2357 // Optimize the case where all the case values fit in a 2358 // word without having to subtract minValue. In this case, 2359 // we can optimize away the subtraction. 2360 if (maxValue.ult(IntPtrBits)) { 2361 cmpRange = maxValue; 2362 } else { 2363 lowBound = minValue; 2364 } 2365 2366 CaseBitsVector CasesBits; 2367 unsigned i, count = 0; 2368 2369 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2370 MachineBasicBlock* Dest = I->BB; 2371 for (i = 0; i < count; ++i) 2372 if (Dest == CasesBits[i].BB) 2373 break; 2374 2375 if (i == count) { 2376 assert((count < 3) && "Too much destinations to test!"); 2377 CasesBits.push_back(CaseBits(0, Dest, 0)); 2378 count++; 2379 } 2380 2381 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2382 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2383 2384 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2385 uint64_t hi = (highValue - lowBound).getZExtValue(); 2386 2387 for (uint64_t j = lo; j <= hi; j++) { 2388 CasesBits[i].Mask |= 1ULL << j; 2389 CasesBits[i].Bits++; 2390 } 2391 2392 } 2393 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2394 2395 BitTestInfo BTC; 2396 2397 // Figure out which block is immediately after the current one. 2398 MachineFunction::iterator BBI = CR.CaseBB; 2399 ++BBI; 2400 2401 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2402 2403 DEBUG(dbgs() << "Cases:\n"); 2404 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2405 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2406 << ", Bits: " << CasesBits[i].Bits 2407 << ", BB: " << CasesBits[i].BB << '\n'); 2408 2409 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2410 CurMF->insert(BBI, CaseBB); 2411 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2412 CaseBB, 2413 CasesBits[i].BB)); 2414 2415 // Put SV in a virtual register to make it available from the new blocks. 2416 ExportFromCurrentBlock(SV); 2417 } 2418 2419 BitTestBlock BTB(lowBound, cmpRange, SV, 2420 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2421 CR.CaseBB, Default, BTC); 2422 2423 if (CR.CaseBB == SwitchBB) 2424 visitBitTestHeader(BTB, SwitchBB); 2425 2426 BitTestCases.push_back(BTB); 2427 2428 return true; 2429 } 2430 2431 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2432 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2433 const SwitchInst& SI) { 2434 2435 /// Use a shorter form of declaration, and also 2436 /// show the we want to use CRSBuilder as Clusterifier. 2437 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2438 2439 Clusterifier TheClusterifier; 2440 2441 // Start with "simple" cases 2442 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2443 i != e; ++i) { 2444 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2445 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2446 2447 TheClusterifier.add(i.getCaseValueEx(), SMBB); 2448 } 2449 2450 TheClusterifier.optimize(); 2451 2452 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2453 size_t numCmps = 0; 2454 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2455 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2456 Clusterifier::Cluster &C = *i; 2457 unsigned W = 0; 2458 if (BPI) { 2459 W = BPI->getEdgeWeight(SI.getParent(), C.second->getBasicBlock()); 2460 if (!W) 2461 W = 16; 2462 W *= C.first.Weight; 2463 BPI->setEdgeWeight(SI.getParent(), C.second->getBasicBlock(), W); 2464 } 2465 2466 // FIXME: Currently work with ConstantInt based numbers. 2467 // Changing it to APInt based is a pretty heavy for this commit. 2468 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2469 C.first.getHigh().toConstantInt(), C.second, W)); 2470 2471 if (C.first.getLow() != C.first.getHigh()) 2472 // A range counts double, since it requires two compares. 2473 ++numCmps; 2474 } 2475 2476 return numCmps; 2477 } 2478 2479 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2480 MachineBasicBlock *Last) { 2481 // Update JTCases. 2482 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2483 if (JTCases[i].first.HeaderBB == First) 2484 JTCases[i].first.HeaderBB = Last; 2485 2486 // Update BitTestCases. 2487 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2488 if (BitTestCases[i].Parent == First) 2489 BitTestCases[i].Parent = Last; 2490 } 2491 2492 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2493 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2494 2495 // Figure out which block is immediately after the current one. 2496 MachineBasicBlock *NextBlock = 0; 2497 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2498 2499 // If there is only the default destination, branch to it if it is not the 2500 // next basic block. Otherwise, just fall through. 2501 if (!SI.getNumCases()) { 2502 // Update machine-CFG edges. 2503 2504 // If this is not a fall-through branch, emit the branch. 2505 SwitchMBB->addSuccessor(Default); 2506 if (Default != NextBlock) 2507 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2508 MVT::Other, getControlRoot(), 2509 DAG.getBasicBlock(Default))); 2510 2511 return; 2512 } 2513 2514 // If there are any non-default case statements, create a vector of Cases 2515 // representing each one, and sort the vector so that we can efficiently 2516 // create a binary search tree from them. 2517 CaseVector Cases; 2518 size_t numCmps = Clusterify(Cases, SI); 2519 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2520 << ". Total compares: " << numCmps << '\n'); 2521 (void)numCmps; 2522 2523 // Get the Value to be switched on and default basic blocks, which will be 2524 // inserted into CaseBlock records, representing basic blocks in the binary 2525 // search tree. 2526 const Value *SV = SI.getCondition(); 2527 2528 // Push the initial CaseRec onto the worklist 2529 CaseRecVector WorkList; 2530 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2531 CaseRange(Cases.begin(),Cases.end()))); 2532 2533 while (!WorkList.empty()) { 2534 // Grab a record representing a case range to process off the worklist 2535 CaseRec CR = WorkList.back(); 2536 WorkList.pop_back(); 2537 2538 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2539 continue; 2540 2541 // If the range has few cases (two or less) emit a series of specific 2542 // tests. 2543 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2544 continue; 2545 2546 // If the switch has more than 5 blocks, and at least 40% dense, and the 2547 // target supports indirect branches, then emit a jump table rather than 2548 // lowering the switch to a binary tree of conditional branches. 2549 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2550 continue; 2551 2552 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2553 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2554 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2555 } 2556 } 2557 2558 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2559 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2560 2561 // Update machine-CFG edges with unique successors. 2562 SmallVector<BasicBlock*, 32> succs; 2563 succs.reserve(I.getNumSuccessors()); 2564 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2565 succs.push_back(I.getSuccessor(i)); 2566 array_pod_sort(succs.begin(), succs.end()); 2567 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2568 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2569 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2570 addSuccessorWithWeight(IndirectBrMBB, Succ); 2571 } 2572 2573 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2574 MVT::Other, getControlRoot(), 2575 getValue(I.getAddress()))); 2576 } 2577 2578 void SelectionDAGBuilder::visitFSub(const User &I) { 2579 // -0.0 - X --> fneg 2580 Type *Ty = I.getType(); 2581 if (isa<Constant>(I.getOperand(0)) && 2582 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2583 SDValue Op2 = getValue(I.getOperand(1)); 2584 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2585 Op2.getValueType(), Op2)); 2586 return; 2587 } 2588 2589 visitBinary(I, ISD::FSUB); 2590 } 2591 2592 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2593 SDValue Op1 = getValue(I.getOperand(0)); 2594 SDValue Op2 = getValue(I.getOperand(1)); 2595 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2596 Op1.getValueType(), Op1, Op2)); 2597 } 2598 2599 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2600 SDValue Op1 = getValue(I.getOperand(0)); 2601 SDValue Op2 = getValue(I.getOperand(1)); 2602 2603 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2604 2605 // Coerce the shift amount to the right type if we can. 2606 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2607 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2608 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2609 DebugLoc DL = getCurDebugLoc(); 2610 2611 // If the operand is smaller than the shift count type, promote it. 2612 if (ShiftSize > Op2Size) 2613 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2614 2615 // If the operand is larger than the shift count type but the shift 2616 // count type has enough bits to represent any shift value, truncate 2617 // it now. This is a common case and it exposes the truncate to 2618 // optimization early. 2619 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2620 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2621 // Otherwise we'll need to temporarily settle for some other convenient 2622 // type. Type legalization will make adjustments once the shiftee is split. 2623 else 2624 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2625 } 2626 2627 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2628 Op1.getValueType(), Op1, Op2)); 2629 } 2630 2631 void SelectionDAGBuilder::visitSDiv(const User &I) { 2632 SDValue Op1 = getValue(I.getOperand(0)); 2633 SDValue Op2 = getValue(I.getOperand(1)); 2634 2635 // Turn exact SDivs into multiplications. 2636 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2637 // exact bit. 2638 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2639 !isa<ConstantSDNode>(Op1) && 2640 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2641 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2642 else 2643 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2644 Op1, Op2)); 2645 } 2646 2647 void SelectionDAGBuilder::visitICmp(const User &I) { 2648 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2649 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2650 predicate = IC->getPredicate(); 2651 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2652 predicate = ICmpInst::Predicate(IC->getPredicate()); 2653 SDValue Op1 = getValue(I.getOperand(0)); 2654 SDValue Op2 = getValue(I.getOperand(1)); 2655 ISD::CondCode Opcode = getICmpCondCode(predicate); 2656 2657 EVT DestVT = TLI.getValueType(I.getType()); 2658 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2659 } 2660 2661 void SelectionDAGBuilder::visitFCmp(const User &I) { 2662 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2663 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2664 predicate = FC->getPredicate(); 2665 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2666 predicate = FCmpInst::Predicate(FC->getPredicate()); 2667 SDValue Op1 = getValue(I.getOperand(0)); 2668 SDValue Op2 = getValue(I.getOperand(1)); 2669 ISD::CondCode Condition = getFCmpCondCode(predicate); 2670 if (TM.Options.NoNaNsFPMath) 2671 Condition = getFCmpCodeWithoutNaN(Condition); 2672 EVT DestVT = TLI.getValueType(I.getType()); 2673 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2674 } 2675 2676 void SelectionDAGBuilder::visitSelect(const User &I) { 2677 SmallVector<EVT, 4> ValueVTs; 2678 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2679 unsigned NumValues = ValueVTs.size(); 2680 if (NumValues == 0) return; 2681 2682 SmallVector<SDValue, 4> Values(NumValues); 2683 SDValue Cond = getValue(I.getOperand(0)); 2684 SDValue TrueVal = getValue(I.getOperand(1)); 2685 SDValue FalseVal = getValue(I.getOperand(2)); 2686 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2687 ISD::VSELECT : ISD::SELECT; 2688 2689 for (unsigned i = 0; i != NumValues; ++i) 2690 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2691 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2692 Cond, 2693 SDValue(TrueVal.getNode(), 2694 TrueVal.getResNo() + i), 2695 SDValue(FalseVal.getNode(), 2696 FalseVal.getResNo() + i)); 2697 2698 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2699 DAG.getVTList(&ValueVTs[0], NumValues), 2700 &Values[0], NumValues)); 2701 } 2702 2703 void SelectionDAGBuilder::visitTrunc(const User &I) { 2704 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2705 SDValue N = getValue(I.getOperand(0)); 2706 EVT DestVT = TLI.getValueType(I.getType()); 2707 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2708 } 2709 2710 void SelectionDAGBuilder::visitZExt(const User &I) { 2711 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2712 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2713 SDValue N = getValue(I.getOperand(0)); 2714 EVT DestVT = TLI.getValueType(I.getType()); 2715 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2716 } 2717 2718 void SelectionDAGBuilder::visitSExt(const User &I) { 2719 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2720 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2721 SDValue N = getValue(I.getOperand(0)); 2722 EVT DestVT = TLI.getValueType(I.getType()); 2723 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2724 } 2725 2726 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2727 // FPTrunc is never a no-op cast, no need to check 2728 SDValue N = getValue(I.getOperand(0)); 2729 EVT DestVT = TLI.getValueType(I.getType()); 2730 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2731 DestVT, N, 2732 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2733 } 2734 2735 void SelectionDAGBuilder::visitFPExt(const User &I){ 2736 // FPExt is never a no-op cast, no need to check 2737 SDValue N = getValue(I.getOperand(0)); 2738 EVT DestVT = TLI.getValueType(I.getType()); 2739 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2740 } 2741 2742 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2743 // FPToUI is never a no-op cast, no need to check 2744 SDValue N = getValue(I.getOperand(0)); 2745 EVT DestVT = TLI.getValueType(I.getType()); 2746 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2747 } 2748 2749 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2750 // FPToSI is never a no-op cast, no need to check 2751 SDValue N = getValue(I.getOperand(0)); 2752 EVT DestVT = TLI.getValueType(I.getType()); 2753 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2754 } 2755 2756 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2757 // UIToFP is never a no-op cast, no need to check 2758 SDValue N = getValue(I.getOperand(0)); 2759 EVT DestVT = TLI.getValueType(I.getType()); 2760 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2761 } 2762 2763 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2764 // SIToFP is never a no-op cast, no need to check 2765 SDValue N = getValue(I.getOperand(0)); 2766 EVT DestVT = TLI.getValueType(I.getType()); 2767 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2768 } 2769 2770 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2771 // What to do depends on the size of the integer and the size of the pointer. 2772 // We can either truncate, zero extend, or no-op, accordingly. 2773 SDValue N = getValue(I.getOperand(0)); 2774 EVT DestVT = TLI.getValueType(I.getType()); 2775 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2776 } 2777 2778 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2779 // What to do depends on the size of the integer and the size of the pointer. 2780 // We can either truncate, zero extend, or no-op, accordingly. 2781 SDValue N = getValue(I.getOperand(0)); 2782 EVT DestVT = TLI.getValueType(I.getType()); 2783 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2784 } 2785 2786 void SelectionDAGBuilder::visitBitCast(const User &I) { 2787 SDValue N = getValue(I.getOperand(0)); 2788 EVT DestVT = TLI.getValueType(I.getType()); 2789 2790 // BitCast assures us that source and destination are the same size so this is 2791 // either a BITCAST or a no-op. 2792 if (DestVT != N.getValueType()) 2793 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2794 DestVT, N)); // convert types. 2795 else 2796 setValue(&I, N); // noop cast. 2797 } 2798 2799 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2800 SDValue InVec = getValue(I.getOperand(0)); 2801 SDValue InVal = getValue(I.getOperand(1)); 2802 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2803 TLI.getPointerTy(), 2804 getValue(I.getOperand(2))); 2805 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2806 TLI.getValueType(I.getType()), 2807 InVec, InVal, InIdx)); 2808 } 2809 2810 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2811 SDValue InVec = getValue(I.getOperand(0)); 2812 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2813 TLI.getPointerTy(), 2814 getValue(I.getOperand(1))); 2815 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2816 TLI.getValueType(I.getType()), InVec, InIdx)); 2817 } 2818 2819 // Utility for visitShuffleVector - Return true if every element in Mask, 2820 // beginning from position Pos and ending in Pos+Size, falls within the 2821 // specified sequential range [L, L+Pos). or is undef. 2822 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2823 unsigned Pos, unsigned Size, int Low) { 2824 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2825 if (Mask[i] >= 0 && Mask[i] != Low) 2826 return false; 2827 return true; 2828 } 2829 2830 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2831 SDValue Src1 = getValue(I.getOperand(0)); 2832 SDValue Src2 = getValue(I.getOperand(1)); 2833 2834 SmallVector<int, 8> Mask; 2835 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2836 unsigned MaskNumElts = Mask.size(); 2837 2838 EVT VT = TLI.getValueType(I.getType()); 2839 EVT SrcVT = Src1.getValueType(); 2840 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2841 2842 if (SrcNumElts == MaskNumElts) { 2843 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2844 &Mask[0])); 2845 return; 2846 } 2847 2848 // Normalize the shuffle vector since mask and vector length don't match. 2849 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2850 // Mask is longer than the source vectors and is a multiple of the source 2851 // vectors. We can use concatenate vector to make the mask and vectors 2852 // lengths match. 2853 if (SrcNumElts*2 == MaskNumElts) { 2854 // First check for Src1 in low and Src2 in high 2855 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2856 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2857 // The shuffle is concatenating two vectors together. 2858 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2859 VT, Src1, Src2)); 2860 return; 2861 } 2862 // Then check for Src2 in low and Src1 in high 2863 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2864 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2865 // The shuffle is concatenating two vectors together. 2866 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2867 VT, Src2, Src1)); 2868 return; 2869 } 2870 } 2871 2872 // Pad both vectors with undefs to make them the same length as the mask. 2873 unsigned NumConcat = MaskNumElts / SrcNumElts; 2874 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2875 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2876 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2877 2878 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2879 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2880 MOps1[0] = Src1; 2881 MOps2[0] = Src2; 2882 2883 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2884 getCurDebugLoc(), VT, 2885 &MOps1[0], NumConcat); 2886 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2887 getCurDebugLoc(), VT, 2888 &MOps2[0], NumConcat); 2889 2890 // Readjust mask for new input vector length. 2891 SmallVector<int, 8> MappedOps; 2892 for (unsigned i = 0; i != MaskNumElts; ++i) { 2893 int Idx = Mask[i]; 2894 if (Idx >= (int)SrcNumElts) 2895 Idx -= SrcNumElts - MaskNumElts; 2896 MappedOps.push_back(Idx); 2897 } 2898 2899 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2900 &MappedOps[0])); 2901 return; 2902 } 2903 2904 if (SrcNumElts > MaskNumElts) { 2905 // Analyze the access pattern of the vector to see if we can extract 2906 // two subvectors and do the shuffle. The analysis is done by calculating 2907 // the range of elements the mask access on both vectors. 2908 int MinRange[2] = { static_cast<int>(SrcNumElts), 2909 static_cast<int>(SrcNumElts)}; 2910 int MaxRange[2] = {-1, -1}; 2911 2912 for (unsigned i = 0; i != MaskNumElts; ++i) { 2913 int Idx = Mask[i]; 2914 unsigned Input = 0; 2915 if (Idx < 0) 2916 continue; 2917 2918 if (Idx >= (int)SrcNumElts) { 2919 Input = 1; 2920 Idx -= SrcNumElts; 2921 } 2922 if (Idx > MaxRange[Input]) 2923 MaxRange[Input] = Idx; 2924 if (Idx < MinRange[Input]) 2925 MinRange[Input] = Idx; 2926 } 2927 2928 // Check if the access is smaller than the vector size and can we find 2929 // a reasonable extract index. 2930 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2931 // Extract. 2932 int StartIdx[2]; // StartIdx to extract from 2933 for (unsigned Input = 0; Input < 2; ++Input) { 2934 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2935 RangeUse[Input] = 0; // Unused 2936 StartIdx[Input] = 0; 2937 continue; 2938 } 2939 2940 // Find a good start index that is a multiple of the mask length. Then 2941 // see if the rest of the elements are in range. 2942 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2943 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2944 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2945 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2946 } 2947 2948 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2949 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2950 return; 2951 } 2952 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2953 // Extract appropriate subvector and generate a vector shuffle 2954 for (unsigned Input = 0; Input < 2; ++Input) { 2955 SDValue &Src = Input == 0 ? Src1 : Src2; 2956 if (RangeUse[Input] == 0) 2957 Src = DAG.getUNDEF(VT); 2958 else 2959 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2960 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2961 } 2962 2963 // Calculate new mask. 2964 SmallVector<int, 8> MappedOps; 2965 for (unsigned i = 0; i != MaskNumElts; ++i) { 2966 int Idx = Mask[i]; 2967 if (Idx >= 0) { 2968 if (Idx < (int)SrcNumElts) 2969 Idx -= StartIdx[0]; 2970 else 2971 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2972 } 2973 MappedOps.push_back(Idx); 2974 } 2975 2976 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2977 &MappedOps[0])); 2978 return; 2979 } 2980 } 2981 2982 // We can't use either concat vectors or extract subvectors so fall back to 2983 // replacing the shuffle with extract and build vector. 2984 // to insert and build vector. 2985 EVT EltVT = VT.getVectorElementType(); 2986 EVT PtrVT = TLI.getPointerTy(); 2987 SmallVector<SDValue,8> Ops; 2988 for (unsigned i = 0; i != MaskNumElts; ++i) { 2989 int Idx = Mask[i]; 2990 SDValue Res; 2991 2992 if (Idx < 0) { 2993 Res = DAG.getUNDEF(EltVT); 2994 } else { 2995 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2996 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2997 2998 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2999 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3000 } 3001 3002 Ops.push_back(Res); 3003 } 3004 3005 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3006 VT, &Ops[0], Ops.size())); 3007 } 3008 3009 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3010 const Value *Op0 = I.getOperand(0); 3011 const Value *Op1 = I.getOperand(1); 3012 Type *AggTy = I.getType(); 3013 Type *ValTy = Op1->getType(); 3014 bool IntoUndef = isa<UndefValue>(Op0); 3015 bool FromUndef = isa<UndefValue>(Op1); 3016 3017 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3018 3019 SmallVector<EVT, 4> AggValueVTs; 3020 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3021 SmallVector<EVT, 4> ValValueVTs; 3022 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3023 3024 unsigned NumAggValues = AggValueVTs.size(); 3025 unsigned NumValValues = ValValueVTs.size(); 3026 SmallVector<SDValue, 4> Values(NumAggValues); 3027 3028 SDValue Agg = getValue(Op0); 3029 unsigned i = 0; 3030 // Copy the beginning value(s) from the original aggregate. 3031 for (; i != LinearIndex; ++i) 3032 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3033 SDValue(Agg.getNode(), Agg.getResNo() + i); 3034 // Copy values from the inserted value(s). 3035 if (NumValValues) { 3036 SDValue Val = getValue(Op1); 3037 for (; i != LinearIndex + NumValValues; ++i) 3038 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3039 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3040 } 3041 // Copy remaining value(s) from the original aggregate. 3042 for (; i != NumAggValues; ++i) 3043 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3044 SDValue(Agg.getNode(), Agg.getResNo() + i); 3045 3046 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3047 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3048 &Values[0], NumAggValues)); 3049 } 3050 3051 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3052 const Value *Op0 = I.getOperand(0); 3053 Type *AggTy = Op0->getType(); 3054 Type *ValTy = I.getType(); 3055 bool OutOfUndef = isa<UndefValue>(Op0); 3056 3057 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3058 3059 SmallVector<EVT, 4> ValValueVTs; 3060 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3061 3062 unsigned NumValValues = ValValueVTs.size(); 3063 3064 // Ignore a extractvalue that produces an empty object 3065 if (!NumValValues) { 3066 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3067 return; 3068 } 3069 3070 SmallVector<SDValue, 4> Values(NumValValues); 3071 3072 SDValue Agg = getValue(Op0); 3073 // Copy out the selected value(s). 3074 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3075 Values[i - LinearIndex] = 3076 OutOfUndef ? 3077 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3078 SDValue(Agg.getNode(), Agg.getResNo() + i); 3079 3080 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3081 DAG.getVTList(&ValValueVTs[0], NumValValues), 3082 &Values[0], NumValValues)); 3083 } 3084 3085 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3086 SDValue N = getValue(I.getOperand(0)); 3087 // Note that the pointer operand may be a vector of pointers. Take the scalar 3088 // element which holds a pointer. 3089 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3090 3091 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3092 OI != E; ++OI) { 3093 const Value *Idx = *OI; 3094 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3095 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3096 if (Field) { 3097 // N = N + Offset 3098 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3099 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3100 DAG.getIntPtrConstant(Offset)); 3101 } 3102 3103 Ty = StTy->getElementType(Field); 3104 } else { 3105 Ty = cast<SequentialType>(Ty)->getElementType(); 3106 3107 // If this is a constant subscript, handle it quickly. 3108 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3109 if (CI->isZero()) continue; 3110 uint64_t Offs = 3111 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3112 SDValue OffsVal; 3113 EVT PTy = TLI.getPointerTy(); 3114 unsigned PtrBits = PTy.getSizeInBits(); 3115 if (PtrBits < 64) 3116 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3117 TLI.getPointerTy(), 3118 DAG.getConstant(Offs, MVT::i64)); 3119 else 3120 OffsVal = DAG.getIntPtrConstant(Offs); 3121 3122 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3123 OffsVal); 3124 continue; 3125 } 3126 3127 // N = N + Idx * ElementSize; 3128 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3129 TD->getTypeAllocSize(Ty)); 3130 SDValue IdxN = getValue(Idx); 3131 3132 // If the index is smaller or larger than intptr_t, truncate or extend 3133 // it. 3134 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3135 3136 // If this is a multiply by a power of two, turn it into a shl 3137 // immediately. This is a very common case. 3138 if (ElementSize != 1) { 3139 if (ElementSize.isPowerOf2()) { 3140 unsigned Amt = ElementSize.logBase2(); 3141 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3142 N.getValueType(), IdxN, 3143 DAG.getConstant(Amt, IdxN.getValueType())); 3144 } else { 3145 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3146 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3147 N.getValueType(), IdxN, Scale); 3148 } 3149 } 3150 3151 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3152 N.getValueType(), N, IdxN); 3153 } 3154 } 3155 3156 setValue(&I, N); 3157 } 3158 3159 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3160 // If this is a fixed sized alloca in the entry block of the function, 3161 // allocate it statically on the stack. 3162 if (FuncInfo.StaticAllocaMap.count(&I)) 3163 return; // getValue will auto-populate this. 3164 3165 Type *Ty = I.getAllocatedType(); 3166 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3167 unsigned Align = 3168 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3169 I.getAlignment()); 3170 3171 SDValue AllocSize = getValue(I.getArraySize()); 3172 3173 EVT IntPtr = TLI.getPointerTy(); 3174 if (AllocSize.getValueType() != IntPtr) 3175 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3176 3177 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3178 AllocSize, 3179 DAG.getConstant(TySize, IntPtr)); 3180 3181 // Handle alignment. If the requested alignment is less than or equal to 3182 // the stack alignment, ignore it. If the size is greater than or equal to 3183 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3184 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3185 if (Align <= StackAlign) 3186 Align = 0; 3187 3188 // Round the size of the allocation up to the stack alignment size 3189 // by add SA-1 to the size. 3190 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3191 AllocSize.getValueType(), AllocSize, 3192 DAG.getIntPtrConstant(StackAlign-1)); 3193 3194 // Mask out the low bits for alignment purposes. 3195 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3196 AllocSize.getValueType(), AllocSize, 3197 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3198 3199 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3200 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3201 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3202 VTs, Ops, 3); 3203 setValue(&I, DSA); 3204 DAG.setRoot(DSA.getValue(1)); 3205 3206 // Inform the Frame Information that we have just allocated a variable-sized 3207 // object. 3208 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3209 } 3210 3211 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3212 if (I.isAtomic()) 3213 return visitAtomicLoad(I); 3214 3215 const Value *SV = I.getOperand(0); 3216 SDValue Ptr = getValue(SV); 3217 3218 Type *Ty = I.getType(); 3219 3220 bool isVolatile = I.isVolatile(); 3221 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3222 bool isInvariant = I.getMetadata("invariant.load") != 0; 3223 unsigned Alignment = I.getAlignment(); 3224 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3225 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3226 3227 SmallVector<EVT, 4> ValueVTs; 3228 SmallVector<uint64_t, 4> Offsets; 3229 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3230 unsigned NumValues = ValueVTs.size(); 3231 if (NumValues == 0) 3232 return; 3233 3234 SDValue Root; 3235 bool ConstantMemory = false; 3236 if (I.isVolatile() || NumValues > MaxParallelChains) 3237 // Serialize volatile loads with other side effects. 3238 Root = getRoot(); 3239 else if (AA->pointsToConstantMemory( 3240 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3241 // Do not serialize (non-volatile) loads of constant memory with anything. 3242 Root = DAG.getEntryNode(); 3243 ConstantMemory = true; 3244 } else { 3245 // Do not serialize non-volatile loads against each other. 3246 Root = DAG.getRoot(); 3247 } 3248 3249 SmallVector<SDValue, 4> Values(NumValues); 3250 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3251 NumValues)); 3252 EVT PtrVT = Ptr.getValueType(); 3253 unsigned ChainI = 0; 3254 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3255 // Serializing loads here may result in excessive register pressure, and 3256 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3257 // could recover a bit by hoisting nodes upward in the chain by recognizing 3258 // they are side-effect free or do not alias. The optimizer should really 3259 // avoid this case by converting large object/array copies to llvm.memcpy 3260 // (MaxParallelChains should always remain as failsafe). 3261 if (ChainI == MaxParallelChains) { 3262 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3263 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3264 MVT::Other, &Chains[0], ChainI); 3265 Root = Chain; 3266 ChainI = 0; 3267 } 3268 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3269 PtrVT, Ptr, 3270 DAG.getConstant(Offsets[i], PtrVT)); 3271 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3272 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3273 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3274 Ranges); 3275 3276 Values[i] = L; 3277 Chains[ChainI] = L.getValue(1); 3278 } 3279 3280 if (!ConstantMemory) { 3281 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3282 MVT::Other, &Chains[0], ChainI); 3283 if (isVolatile) 3284 DAG.setRoot(Chain); 3285 else 3286 PendingLoads.push_back(Chain); 3287 } 3288 3289 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3290 DAG.getVTList(&ValueVTs[0], NumValues), 3291 &Values[0], NumValues)); 3292 } 3293 3294 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3295 if (I.isAtomic()) 3296 return visitAtomicStore(I); 3297 3298 const Value *SrcV = I.getOperand(0); 3299 const Value *PtrV = I.getOperand(1); 3300 3301 SmallVector<EVT, 4> ValueVTs; 3302 SmallVector<uint64_t, 4> Offsets; 3303 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3304 unsigned NumValues = ValueVTs.size(); 3305 if (NumValues == 0) 3306 return; 3307 3308 // Get the lowered operands. Note that we do this after 3309 // checking if NumResults is zero, because with zero results 3310 // the operands won't have values in the map. 3311 SDValue Src = getValue(SrcV); 3312 SDValue Ptr = getValue(PtrV); 3313 3314 SDValue Root = getRoot(); 3315 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3316 NumValues)); 3317 EVT PtrVT = Ptr.getValueType(); 3318 bool isVolatile = I.isVolatile(); 3319 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3320 unsigned Alignment = I.getAlignment(); 3321 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3322 3323 unsigned ChainI = 0; 3324 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3325 // See visitLoad comments. 3326 if (ChainI == MaxParallelChains) { 3327 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3328 MVT::Other, &Chains[0], ChainI); 3329 Root = Chain; 3330 ChainI = 0; 3331 } 3332 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3333 DAG.getConstant(Offsets[i], PtrVT)); 3334 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3335 SDValue(Src.getNode(), Src.getResNo() + i), 3336 Add, MachinePointerInfo(PtrV, Offsets[i]), 3337 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3338 Chains[ChainI] = St; 3339 } 3340 3341 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3342 MVT::Other, &Chains[0], ChainI); 3343 ++SDNodeOrder; 3344 AssignOrderingToNode(StoreNode.getNode()); 3345 DAG.setRoot(StoreNode); 3346 } 3347 3348 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3349 SynchronizationScope Scope, 3350 bool Before, DebugLoc dl, 3351 SelectionDAG &DAG, 3352 const TargetLowering &TLI) { 3353 // Fence, if necessary 3354 if (Before) { 3355 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3356 Order = Release; 3357 else if (Order == Acquire || Order == Monotonic) 3358 return Chain; 3359 } else { 3360 if (Order == AcquireRelease) 3361 Order = Acquire; 3362 else if (Order == Release || Order == Monotonic) 3363 return Chain; 3364 } 3365 SDValue Ops[3]; 3366 Ops[0] = Chain; 3367 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3368 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3369 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3370 } 3371 3372 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3373 DebugLoc dl = getCurDebugLoc(); 3374 AtomicOrdering Order = I.getOrdering(); 3375 SynchronizationScope Scope = I.getSynchScope(); 3376 3377 SDValue InChain = getRoot(); 3378 3379 if (TLI.getInsertFencesForAtomic()) 3380 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3381 DAG, TLI); 3382 3383 SDValue L = 3384 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3385 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3386 InChain, 3387 getValue(I.getPointerOperand()), 3388 getValue(I.getCompareOperand()), 3389 getValue(I.getNewValOperand()), 3390 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3391 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3392 Scope); 3393 3394 SDValue OutChain = L.getValue(1); 3395 3396 if (TLI.getInsertFencesForAtomic()) 3397 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3398 DAG, TLI); 3399 3400 setValue(&I, L); 3401 DAG.setRoot(OutChain); 3402 } 3403 3404 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3405 DebugLoc dl = getCurDebugLoc(); 3406 ISD::NodeType NT; 3407 switch (I.getOperation()) { 3408 default: llvm_unreachable("Unknown atomicrmw operation"); 3409 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3410 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3411 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3412 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3413 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3414 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3415 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3416 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3417 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3418 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3419 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3420 } 3421 AtomicOrdering Order = I.getOrdering(); 3422 SynchronizationScope Scope = I.getSynchScope(); 3423 3424 SDValue InChain = getRoot(); 3425 3426 if (TLI.getInsertFencesForAtomic()) 3427 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3428 DAG, TLI); 3429 3430 SDValue L = 3431 DAG.getAtomic(NT, dl, 3432 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3433 InChain, 3434 getValue(I.getPointerOperand()), 3435 getValue(I.getValOperand()), 3436 I.getPointerOperand(), 0 /* Alignment */, 3437 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3438 Scope); 3439 3440 SDValue OutChain = L.getValue(1); 3441 3442 if (TLI.getInsertFencesForAtomic()) 3443 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3444 DAG, TLI); 3445 3446 setValue(&I, L); 3447 DAG.setRoot(OutChain); 3448 } 3449 3450 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3451 DebugLoc dl = getCurDebugLoc(); 3452 SDValue Ops[3]; 3453 Ops[0] = getRoot(); 3454 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3455 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3456 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3457 } 3458 3459 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3460 DebugLoc dl = getCurDebugLoc(); 3461 AtomicOrdering Order = I.getOrdering(); 3462 SynchronizationScope Scope = I.getSynchScope(); 3463 3464 SDValue InChain = getRoot(); 3465 3466 EVT VT = TLI.getValueType(I.getType()); 3467 3468 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3469 report_fatal_error("Cannot generate unaligned atomic load"); 3470 3471 SDValue L = 3472 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3473 getValue(I.getPointerOperand()), 3474 I.getPointerOperand(), I.getAlignment(), 3475 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3476 Scope); 3477 3478 SDValue OutChain = L.getValue(1); 3479 3480 if (TLI.getInsertFencesForAtomic()) 3481 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3482 DAG, TLI); 3483 3484 setValue(&I, L); 3485 DAG.setRoot(OutChain); 3486 } 3487 3488 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3489 DebugLoc dl = getCurDebugLoc(); 3490 3491 AtomicOrdering Order = I.getOrdering(); 3492 SynchronizationScope Scope = I.getSynchScope(); 3493 3494 SDValue InChain = getRoot(); 3495 3496 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3497 3498 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3499 report_fatal_error("Cannot generate unaligned atomic store"); 3500 3501 if (TLI.getInsertFencesForAtomic()) 3502 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3503 DAG, TLI); 3504 3505 SDValue OutChain = 3506 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3507 InChain, 3508 getValue(I.getPointerOperand()), 3509 getValue(I.getValueOperand()), 3510 I.getPointerOperand(), I.getAlignment(), 3511 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3512 Scope); 3513 3514 if (TLI.getInsertFencesForAtomic()) 3515 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3516 DAG, TLI); 3517 3518 DAG.setRoot(OutChain); 3519 } 3520 3521 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3522 /// node. 3523 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3524 unsigned Intrinsic) { 3525 bool HasChain = !I.doesNotAccessMemory(); 3526 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3527 3528 // Build the operand list. 3529 SmallVector<SDValue, 8> Ops; 3530 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3531 if (OnlyLoad) { 3532 // We don't need to serialize loads against other loads. 3533 Ops.push_back(DAG.getRoot()); 3534 } else { 3535 Ops.push_back(getRoot()); 3536 } 3537 } 3538 3539 // Info is set by getTgtMemInstrinsic 3540 TargetLowering::IntrinsicInfo Info; 3541 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3542 3543 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3544 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3545 Info.opc == ISD::INTRINSIC_W_CHAIN) 3546 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3547 3548 // Add all operands of the call to the operand list. 3549 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3550 SDValue Op = getValue(I.getArgOperand(i)); 3551 Ops.push_back(Op); 3552 } 3553 3554 SmallVector<EVT, 4> ValueVTs; 3555 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3556 3557 if (HasChain) 3558 ValueVTs.push_back(MVT::Other); 3559 3560 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3561 3562 // Create the node. 3563 SDValue Result; 3564 if (IsTgtIntrinsic) { 3565 // This is target intrinsic that touches memory 3566 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3567 VTs, &Ops[0], Ops.size(), 3568 Info.memVT, 3569 MachinePointerInfo(Info.ptrVal, Info.offset), 3570 Info.align, Info.vol, 3571 Info.readMem, Info.writeMem); 3572 } else if (!HasChain) { 3573 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3574 VTs, &Ops[0], Ops.size()); 3575 } else if (!I.getType()->isVoidTy()) { 3576 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3577 VTs, &Ops[0], Ops.size()); 3578 } else { 3579 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3580 VTs, &Ops[0], Ops.size()); 3581 } 3582 3583 if (HasChain) { 3584 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3585 if (OnlyLoad) 3586 PendingLoads.push_back(Chain); 3587 else 3588 DAG.setRoot(Chain); 3589 } 3590 3591 if (!I.getType()->isVoidTy()) { 3592 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3593 EVT VT = TLI.getValueType(PTy); 3594 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3595 } 3596 3597 setValue(&I, Result); 3598 } else { 3599 // Assign order to result here. If the intrinsic does not produce a result, 3600 // it won't be mapped to a SDNode and visit() will not assign it an order 3601 // number. 3602 ++SDNodeOrder; 3603 AssignOrderingToNode(Result.getNode()); 3604 } 3605 } 3606 3607 /// GetSignificand - Get the significand and build it into a floating-point 3608 /// number with exponent of 1: 3609 /// 3610 /// Op = (Op & 0x007fffff) | 0x3f800000; 3611 /// 3612 /// where Op is the hexidecimal representation of floating point value. 3613 static SDValue 3614 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3615 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3616 DAG.getConstant(0x007fffff, MVT::i32)); 3617 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3618 DAG.getConstant(0x3f800000, MVT::i32)); 3619 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3620 } 3621 3622 /// GetExponent - Get the exponent: 3623 /// 3624 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3625 /// 3626 /// where Op is the hexidecimal representation of floating point value. 3627 static SDValue 3628 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3629 DebugLoc dl) { 3630 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3631 DAG.getConstant(0x7f800000, MVT::i32)); 3632 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3633 DAG.getConstant(23, TLI.getPointerTy())); 3634 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3635 DAG.getConstant(127, MVT::i32)); 3636 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3637 } 3638 3639 /// getF32Constant - Get 32-bit floating point constant. 3640 static SDValue 3641 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3642 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3643 } 3644 3645 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3646 /// limited-precision mode. 3647 void 3648 SelectionDAGBuilder::visitExp(const CallInst &I) { 3649 SDValue result; 3650 DebugLoc dl = getCurDebugLoc(); 3651 3652 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3653 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3654 SDValue Op = getValue(I.getArgOperand(0)); 3655 3656 // Put the exponent in the right bit position for later addition to the 3657 // final result: 3658 // 3659 // #define LOG2OFe 1.4426950f 3660 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3661 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3662 getF32Constant(DAG, 0x3fb8aa3b)); 3663 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3664 3665 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3666 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3667 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3668 3669 // IntegerPartOfX <<= 23; 3670 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3671 DAG.getConstant(23, TLI.getPointerTy())); 3672 3673 if (LimitFloatPrecision <= 6) { 3674 // For floating-point precision of 6: 3675 // 3676 // TwoToFractionalPartOfX = 3677 // 0.997535578f + 3678 // (0.735607626f + 0.252464424f * x) * x; 3679 // 3680 // error 0.0144103317, which is 6 bits 3681 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3682 getF32Constant(DAG, 0x3e814304)); 3683 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3684 getF32Constant(DAG, 0x3f3c50c8)); 3685 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3686 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3687 getF32Constant(DAG, 0x3f7f5e7e)); 3688 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3689 3690 // Add the exponent into the result in integer domain. 3691 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3692 TwoToFracPartOfX, IntegerPartOfX); 3693 3694 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3695 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3696 // For floating-point precision of 12: 3697 // 3698 // TwoToFractionalPartOfX = 3699 // 0.999892986f + 3700 // (0.696457318f + 3701 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3702 // 3703 // 0.000107046256 error, which is 13 to 14 bits 3704 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3705 getF32Constant(DAG, 0x3da235e3)); 3706 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3707 getF32Constant(DAG, 0x3e65b8f3)); 3708 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3709 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3710 getF32Constant(DAG, 0x3f324b07)); 3711 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3712 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3713 getF32Constant(DAG, 0x3f7ff8fd)); 3714 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3715 3716 // Add the exponent into the result in integer domain. 3717 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3718 TwoToFracPartOfX, IntegerPartOfX); 3719 3720 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3721 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3722 // For floating-point precision of 18: 3723 // 3724 // TwoToFractionalPartOfX = 3725 // 0.999999982f + 3726 // (0.693148872f + 3727 // (0.240227044f + 3728 // (0.554906021e-1f + 3729 // (0.961591928e-2f + 3730 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3731 // 3732 // error 2.47208000*10^(-7), which is better than 18 bits 3733 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3734 getF32Constant(DAG, 0x3924b03e)); 3735 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3736 getF32Constant(DAG, 0x3ab24b87)); 3737 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3738 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3739 getF32Constant(DAG, 0x3c1d8c17)); 3740 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3741 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3742 getF32Constant(DAG, 0x3d634a1d)); 3743 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3744 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3745 getF32Constant(DAG, 0x3e75fe14)); 3746 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3747 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3748 getF32Constant(DAG, 0x3f317234)); 3749 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3750 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3751 getF32Constant(DAG, 0x3f800000)); 3752 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3753 MVT::i32, t13); 3754 3755 // Add the exponent into the result in integer domain. 3756 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3757 TwoToFracPartOfX, IntegerPartOfX); 3758 3759 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3760 } 3761 } else { 3762 // No special expansion. 3763 result = DAG.getNode(ISD::FEXP, dl, 3764 getValue(I.getArgOperand(0)).getValueType(), 3765 getValue(I.getArgOperand(0))); 3766 } 3767 3768 setValue(&I, result); 3769 } 3770 3771 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3772 /// limited-precision mode. 3773 void 3774 SelectionDAGBuilder::visitLog(const CallInst &I) { 3775 SDValue result; 3776 DebugLoc dl = getCurDebugLoc(); 3777 3778 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3779 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3780 SDValue Op = getValue(I.getArgOperand(0)); 3781 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3782 3783 // Scale the exponent by log(2) [0.69314718f]. 3784 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3785 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3786 getF32Constant(DAG, 0x3f317218)); 3787 3788 // Get the significand and build it into a floating-point number with 3789 // exponent of 1. 3790 SDValue X = GetSignificand(DAG, Op1, dl); 3791 3792 if (LimitFloatPrecision <= 6) { 3793 // For floating-point precision of 6: 3794 // 3795 // LogofMantissa = 3796 // -1.1609546f + 3797 // (1.4034025f - 0.23903021f * x) * x; 3798 // 3799 // error 0.0034276066, which is better than 8 bits 3800 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3801 getF32Constant(DAG, 0xbe74c456)); 3802 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3803 getF32Constant(DAG, 0x3fb3a2b1)); 3804 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3805 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3806 getF32Constant(DAG, 0x3f949a29)); 3807 3808 result = DAG.getNode(ISD::FADD, dl, 3809 MVT::f32, LogOfExponent, LogOfMantissa); 3810 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3811 // For floating-point precision of 12: 3812 // 3813 // LogOfMantissa = 3814 // -1.7417939f + 3815 // (2.8212026f + 3816 // (-1.4699568f + 3817 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3818 // 3819 // error 0.000061011436, which is 14 bits 3820 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3821 getF32Constant(DAG, 0xbd67b6d6)); 3822 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3823 getF32Constant(DAG, 0x3ee4f4b8)); 3824 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3825 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3826 getF32Constant(DAG, 0x3fbc278b)); 3827 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3828 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3829 getF32Constant(DAG, 0x40348e95)); 3830 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3831 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3832 getF32Constant(DAG, 0x3fdef31a)); 3833 3834 result = DAG.getNode(ISD::FADD, dl, 3835 MVT::f32, LogOfExponent, LogOfMantissa); 3836 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3837 // For floating-point precision of 18: 3838 // 3839 // LogOfMantissa = 3840 // -2.1072184f + 3841 // (4.2372794f + 3842 // (-3.7029485f + 3843 // (2.2781945f + 3844 // (-0.87823314f + 3845 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3846 // 3847 // error 0.0000023660568, which is better than 18 bits 3848 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3849 getF32Constant(DAG, 0xbc91e5ac)); 3850 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3851 getF32Constant(DAG, 0x3e4350aa)); 3852 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3853 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3854 getF32Constant(DAG, 0x3f60d3e3)); 3855 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3856 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3857 getF32Constant(DAG, 0x4011cdf0)); 3858 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3859 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3860 getF32Constant(DAG, 0x406cfd1c)); 3861 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3862 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3863 getF32Constant(DAG, 0x408797cb)); 3864 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3865 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3866 getF32Constant(DAG, 0x4006dcab)); 3867 3868 result = DAG.getNode(ISD::FADD, dl, 3869 MVT::f32, LogOfExponent, LogOfMantissa); 3870 } 3871 } else { 3872 // No special expansion. 3873 result = DAG.getNode(ISD::FLOG, dl, 3874 getValue(I.getArgOperand(0)).getValueType(), 3875 getValue(I.getArgOperand(0))); 3876 } 3877 3878 setValue(&I, result); 3879 } 3880 3881 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3882 /// limited-precision mode. 3883 void 3884 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3885 SDValue result; 3886 DebugLoc dl = getCurDebugLoc(); 3887 3888 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3889 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3890 SDValue Op = getValue(I.getArgOperand(0)); 3891 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3892 3893 // Get the exponent. 3894 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3895 3896 // Get the significand and build it into a floating-point number with 3897 // exponent of 1. 3898 SDValue X = GetSignificand(DAG, Op1, dl); 3899 3900 // Different possible minimax approximations of significand in 3901 // floating-point for various degrees of accuracy over [1,2]. 3902 if (LimitFloatPrecision <= 6) { 3903 // For floating-point precision of 6: 3904 // 3905 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3906 // 3907 // error 0.0049451742, which is more than 7 bits 3908 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3909 getF32Constant(DAG, 0xbeb08fe0)); 3910 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3911 getF32Constant(DAG, 0x40019463)); 3912 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3913 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3914 getF32Constant(DAG, 0x3fd6633d)); 3915 3916 result = DAG.getNode(ISD::FADD, dl, 3917 MVT::f32, LogOfExponent, Log2ofMantissa); 3918 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3919 // For floating-point precision of 12: 3920 // 3921 // Log2ofMantissa = 3922 // -2.51285454f + 3923 // (4.07009056f + 3924 // (-2.12067489f + 3925 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3926 // 3927 // error 0.0000876136000, which is better than 13 bits 3928 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3929 getF32Constant(DAG, 0xbda7262e)); 3930 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3931 getF32Constant(DAG, 0x3f25280b)); 3932 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3933 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3934 getF32Constant(DAG, 0x4007b923)); 3935 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3936 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3937 getF32Constant(DAG, 0x40823e2f)); 3938 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3939 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3940 getF32Constant(DAG, 0x4020d29c)); 3941 3942 result = DAG.getNode(ISD::FADD, dl, 3943 MVT::f32, LogOfExponent, Log2ofMantissa); 3944 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3945 // For floating-point precision of 18: 3946 // 3947 // Log2ofMantissa = 3948 // -3.0400495f + 3949 // (6.1129976f + 3950 // (-5.3420409f + 3951 // (3.2865683f + 3952 // (-1.2669343f + 3953 // (0.27515199f - 3954 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3955 // 3956 // error 0.0000018516, which is better than 18 bits 3957 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3958 getF32Constant(DAG, 0xbcd2769e)); 3959 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3960 getF32Constant(DAG, 0x3e8ce0b9)); 3961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3962 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3963 getF32Constant(DAG, 0x3fa22ae7)); 3964 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3965 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3966 getF32Constant(DAG, 0x40525723)); 3967 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3968 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3969 getF32Constant(DAG, 0x40aaf200)); 3970 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3971 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3972 getF32Constant(DAG, 0x40c39dad)); 3973 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3974 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3975 getF32Constant(DAG, 0x4042902c)); 3976 3977 result = DAG.getNode(ISD::FADD, dl, 3978 MVT::f32, LogOfExponent, Log2ofMantissa); 3979 } 3980 } else { 3981 // No special expansion. 3982 result = DAG.getNode(ISD::FLOG2, dl, 3983 getValue(I.getArgOperand(0)).getValueType(), 3984 getValue(I.getArgOperand(0))); 3985 } 3986 3987 setValue(&I, result); 3988 } 3989 3990 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3991 /// limited-precision mode. 3992 void 3993 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3994 SDValue result; 3995 DebugLoc dl = getCurDebugLoc(); 3996 3997 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3998 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3999 SDValue Op = getValue(I.getArgOperand(0)); 4000 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4001 4002 // Scale the exponent by log10(2) [0.30102999f]. 4003 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4004 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4005 getF32Constant(DAG, 0x3e9a209a)); 4006 4007 // Get the significand and build it into a floating-point number with 4008 // exponent of 1. 4009 SDValue X = GetSignificand(DAG, Op1, dl); 4010 4011 if (LimitFloatPrecision <= 6) { 4012 // For floating-point precision of 6: 4013 // 4014 // Log10ofMantissa = 4015 // -0.50419619f + 4016 // (0.60948995f - 0.10380950f * x) * x; 4017 // 4018 // error 0.0014886165, which is 6 bits 4019 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4020 getF32Constant(DAG, 0xbdd49a13)); 4021 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4022 getF32Constant(DAG, 0x3f1c0789)); 4023 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4024 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4025 getF32Constant(DAG, 0x3f011300)); 4026 4027 result = DAG.getNode(ISD::FADD, dl, 4028 MVT::f32, LogOfExponent, Log10ofMantissa); 4029 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4030 // For floating-point precision of 12: 4031 // 4032 // Log10ofMantissa = 4033 // -0.64831180f + 4034 // (0.91751397f + 4035 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4036 // 4037 // error 0.00019228036, which is better than 12 bits 4038 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4039 getF32Constant(DAG, 0x3d431f31)); 4040 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4041 getF32Constant(DAG, 0x3ea21fb2)); 4042 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4043 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4044 getF32Constant(DAG, 0x3f6ae232)); 4045 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4046 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4047 getF32Constant(DAG, 0x3f25f7c3)); 4048 4049 result = DAG.getNode(ISD::FADD, dl, 4050 MVT::f32, LogOfExponent, Log10ofMantissa); 4051 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4052 // For floating-point precision of 18: 4053 // 4054 // Log10ofMantissa = 4055 // -0.84299375f + 4056 // (1.5327582f + 4057 // (-1.0688956f + 4058 // (0.49102474f + 4059 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4060 // 4061 // error 0.0000037995730, which is better than 18 bits 4062 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4063 getF32Constant(DAG, 0x3c5d51ce)); 4064 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4065 getF32Constant(DAG, 0x3e00685a)); 4066 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4067 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4068 getF32Constant(DAG, 0x3efb6798)); 4069 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4070 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4071 getF32Constant(DAG, 0x3f88d192)); 4072 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4073 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4074 getF32Constant(DAG, 0x3fc4316c)); 4075 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4076 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4077 getF32Constant(DAG, 0x3f57ce70)); 4078 4079 result = DAG.getNode(ISD::FADD, dl, 4080 MVT::f32, LogOfExponent, Log10ofMantissa); 4081 } 4082 } else { 4083 // No special expansion. 4084 result = DAG.getNode(ISD::FLOG10, dl, 4085 getValue(I.getArgOperand(0)).getValueType(), 4086 getValue(I.getArgOperand(0))); 4087 } 4088 4089 setValue(&I, result); 4090 } 4091 4092 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4093 /// limited-precision mode. 4094 void 4095 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4096 SDValue result; 4097 DebugLoc dl = getCurDebugLoc(); 4098 4099 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4100 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4101 SDValue Op = getValue(I.getArgOperand(0)); 4102 4103 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4104 4105 // FractionalPartOfX = x - (float)IntegerPartOfX; 4106 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4107 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4108 4109 // IntegerPartOfX <<= 23; 4110 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4111 DAG.getConstant(23, TLI.getPointerTy())); 4112 4113 if (LimitFloatPrecision <= 6) { 4114 // For floating-point precision of 6: 4115 // 4116 // TwoToFractionalPartOfX = 4117 // 0.997535578f + 4118 // (0.735607626f + 0.252464424f * x) * x; 4119 // 4120 // error 0.0144103317, which is 6 bits 4121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4122 getF32Constant(DAG, 0x3e814304)); 4123 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4124 getF32Constant(DAG, 0x3f3c50c8)); 4125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4126 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4127 getF32Constant(DAG, 0x3f7f5e7e)); 4128 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4129 SDValue TwoToFractionalPartOfX = 4130 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4131 4132 result = DAG.getNode(ISD::BITCAST, dl, 4133 MVT::f32, TwoToFractionalPartOfX); 4134 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4135 // For floating-point precision of 12: 4136 // 4137 // TwoToFractionalPartOfX = 4138 // 0.999892986f + 4139 // (0.696457318f + 4140 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4141 // 4142 // error 0.000107046256, which is 13 to 14 bits 4143 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4144 getF32Constant(DAG, 0x3da235e3)); 4145 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4146 getF32Constant(DAG, 0x3e65b8f3)); 4147 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4148 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4149 getF32Constant(DAG, 0x3f324b07)); 4150 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4151 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4152 getF32Constant(DAG, 0x3f7ff8fd)); 4153 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4154 SDValue TwoToFractionalPartOfX = 4155 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4156 4157 result = DAG.getNode(ISD::BITCAST, dl, 4158 MVT::f32, TwoToFractionalPartOfX); 4159 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4160 // For floating-point precision of 18: 4161 // 4162 // TwoToFractionalPartOfX = 4163 // 0.999999982f + 4164 // (0.693148872f + 4165 // (0.240227044f + 4166 // (0.554906021e-1f + 4167 // (0.961591928e-2f + 4168 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4169 // error 2.47208000*10^(-7), which is better than 18 bits 4170 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4171 getF32Constant(DAG, 0x3924b03e)); 4172 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4173 getF32Constant(DAG, 0x3ab24b87)); 4174 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4175 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4176 getF32Constant(DAG, 0x3c1d8c17)); 4177 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4178 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4179 getF32Constant(DAG, 0x3d634a1d)); 4180 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4181 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4182 getF32Constant(DAG, 0x3e75fe14)); 4183 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4184 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4185 getF32Constant(DAG, 0x3f317234)); 4186 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4187 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4188 getF32Constant(DAG, 0x3f800000)); 4189 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4190 SDValue TwoToFractionalPartOfX = 4191 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4192 4193 result = DAG.getNode(ISD::BITCAST, dl, 4194 MVT::f32, TwoToFractionalPartOfX); 4195 } 4196 } else { 4197 // No special expansion. 4198 result = DAG.getNode(ISD::FEXP2, dl, 4199 getValue(I.getArgOperand(0)).getValueType(), 4200 getValue(I.getArgOperand(0))); 4201 } 4202 4203 setValue(&I, result); 4204 } 4205 4206 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4207 /// limited-precision mode with x == 10.0f. 4208 void 4209 SelectionDAGBuilder::visitPow(const CallInst &I) { 4210 SDValue result; 4211 const Value *Val = I.getArgOperand(0); 4212 DebugLoc dl = getCurDebugLoc(); 4213 bool IsExp10 = false; 4214 4215 if (getValue(Val).getValueType() == MVT::f32 && 4216 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4217 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4218 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4219 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4220 APFloat Ten(10.0f); 4221 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4222 } 4223 } 4224 } 4225 4226 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4227 SDValue Op = getValue(I.getArgOperand(1)); 4228 4229 // Put the exponent in the right bit position for later addition to the 4230 // final result: 4231 // 4232 // #define LOG2OF10 3.3219281f 4233 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4234 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4235 getF32Constant(DAG, 0x40549a78)); 4236 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4237 4238 // FractionalPartOfX = x - (float)IntegerPartOfX; 4239 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4240 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4241 4242 // IntegerPartOfX <<= 23; 4243 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4244 DAG.getConstant(23, TLI.getPointerTy())); 4245 4246 if (LimitFloatPrecision <= 6) { 4247 // For floating-point precision of 6: 4248 // 4249 // twoToFractionalPartOfX = 4250 // 0.997535578f + 4251 // (0.735607626f + 0.252464424f * x) * x; 4252 // 4253 // error 0.0144103317, which is 6 bits 4254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4255 getF32Constant(DAG, 0x3e814304)); 4256 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4257 getF32Constant(DAG, 0x3f3c50c8)); 4258 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4259 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4260 getF32Constant(DAG, 0x3f7f5e7e)); 4261 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4262 SDValue TwoToFractionalPartOfX = 4263 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4264 4265 result = DAG.getNode(ISD::BITCAST, dl, 4266 MVT::f32, TwoToFractionalPartOfX); 4267 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4268 // For floating-point precision of 12: 4269 // 4270 // TwoToFractionalPartOfX = 4271 // 0.999892986f + 4272 // (0.696457318f + 4273 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4274 // 4275 // error 0.000107046256, which is 13 to 14 bits 4276 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4277 getF32Constant(DAG, 0x3da235e3)); 4278 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4279 getF32Constant(DAG, 0x3e65b8f3)); 4280 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4281 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4282 getF32Constant(DAG, 0x3f324b07)); 4283 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4284 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4285 getF32Constant(DAG, 0x3f7ff8fd)); 4286 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4287 SDValue TwoToFractionalPartOfX = 4288 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4289 4290 result = DAG.getNode(ISD::BITCAST, dl, 4291 MVT::f32, TwoToFractionalPartOfX); 4292 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4293 // For floating-point precision of 18: 4294 // 4295 // TwoToFractionalPartOfX = 4296 // 0.999999982f + 4297 // (0.693148872f + 4298 // (0.240227044f + 4299 // (0.554906021e-1f + 4300 // (0.961591928e-2f + 4301 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4302 // error 2.47208000*10^(-7), which is better than 18 bits 4303 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4304 getF32Constant(DAG, 0x3924b03e)); 4305 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4306 getF32Constant(DAG, 0x3ab24b87)); 4307 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4308 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4309 getF32Constant(DAG, 0x3c1d8c17)); 4310 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4311 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4312 getF32Constant(DAG, 0x3d634a1d)); 4313 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4314 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4315 getF32Constant(DAG, 0x3e75fe14)); 4316 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4317 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4318 getF32Constant(DAG, 0x3f317234)); 4319 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4320 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4321 getF32Constant(DAG, 0x3f800000)); 4322 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4323 SDValue TwoToFractionalPartOfX = 4324 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4325 4326 result = DAG.getNode(ISD::BITCAST, dl, 4327 MVT::f32, TwoToFractionalPartOfX); 4328 } 4329 } else { 4330 // No special expansion. 4331 result = DAG.getNode(ISD::FPOW, dl, 4332 getValue(I.getArgOperand(0)).getValueType(), 4333 getValue(I.getArgOperand(0)), 4334 getValue(I.getArgOperand(1))); 4335 } 4336 4337 setValue(&I, result); 4338 } 4339 4340 4341 /// ExpandPowI - Expand a llvm.powi intrinsic. 4342 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4343 SelectionDAG &DAG) { 4344 // If RHS is a constant, we can expand this out to a multiplication tree, 4345 // otherwise we end up lowering to a call to __powidf2 (for example). When 4346 // optimizing for size, we only want to do this if the expansion would produce 4347 // a small number of multiplies, otherwise we do the full expansion. 4348 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4349 // Get the exponent as a positive value. 4350 unsigned Val = RHSC->getSExtValue(); 4351 if ((int)Val < 0) Val = -Val; 4352 4353 // powi(x, 0) -> 1.0 4354 if (Val == 0) 4355 return DAG.getConstantFP(1.0, LHS.getValueType()); 4356 4357 const Function *F = DAG.getMachineFunction().getFunction(); 4358 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4359 // If optimizing for size, don't insert too many multiplies. This 4360 // inserts up to 5 multiplies. 4361 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4362 // We use the simple binary decomposition method to generate the multiply 4363 // sequence. There are more optimal ways to do this (for example, 4364 // powi(x,15) generates one more multiply than it should), but this has 4365 // the benefit of being both really simple and much better than a libcall. 4366 SDValue Res; // Logically starts equal to 1.0 4367 SDValue CurSquare = LHS; 4368 while (Val) { 4369 if (Val & 1) { 4370 if (Res.getNode()) 4371 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4372 else 4373 Res = CurSquare; // 1.0*CurSquare. 4374 } 4375 4376 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4377 CurSquare, CurSquare); 4378 Val >>= 1; 4379 } 4380 4381 // If the original was negative, invert the result, producing 1/(x*x*x). 4382 if (RHSC->getSExtValue() < 0) 4383 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4384 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4385 return Res; 4386 } 4387 } 4388 4389 // Otherwise, expand to a libcall. 4390 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4391 } 4392 4393 // getTruncatedArgReg - Find underlying register used for an truncated 4394 // argument. 4395 static unsigned getTruncatedArgReg(const SDValue &N) { 4396 if (N.getOpcode() != ISD::TRUNCATE) 4397 return 0; 4398 4399 const SDValue &Ext = N.getOperand(0); 4400 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4401 const SDValue &CFR = Ext.getOperand(0); 4402 if (CFR.getOpcode() == ISD::CopyFromReg) 4403 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4404 if (CFR.getOpcode() == ISD::TRUNCATE) 4405 return getTruncatedArgReg(CFR); 4406 } 4407 return 0; 4408 } 4409 4410 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4411 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4412 /// At the end of instruction selection, they will be inserted to the entry BB. 4413 bool 4414 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4415 int64_t Offset, 4416 const SDValue &N) { 4417 const Argument *Arg = dyn_cast<Argument>(V); 4418 if (!Arg) 4419 return false; 4420 4421 MachineFunction &MF = DAG.getMachineFunction(); 4422 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4423 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4424 4425 // Ignore inlined function arguments here. 4426 DIVariable DV(Variable); 4427 if (DV.isInlinedFnArgument(MF.getFunction())) 4428 return false; 4429 4430 unsigned Reg = 0; 4431 // Some arguments' frame index is recorded during argument lowering. 4432 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4433 if (Offset) 4434 Reg = TRI->getFrameRegister(MF); 4435 4436 if (!Reg && N.getNode()) { 4437 if (N.getOpcode() == ISD::CopyFromReg) 4438 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4439 else 4440 Reg = getTruncatedArgReg(N); 4441 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4442 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4443 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4444 if (PR) 4445 Reg = PR; 4446 } 4447 } 4448 4449 if (!Reg) { 4450 // Check if ValueMap has reg number. 4451 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4452 if (VMI != FuncInfo.ValueMap.end()) 4453 Reg = VMI->second; 4454 } 4455 4456 if (!Reg && N.getNode()) { 4457 // Check if frame index is available. 4458 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4459 if (FrameIndexSDNode *FINode = 4460 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4461 Reg = TRI->getFrameRegister(MF); 4462 Offset = FINode->getIndex(); 4463 } 4464 } 4465 4466 if (!Reg) 4467 return false; 4468 4469 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4470 TII->get(TargetOpcode::DBG_VALUE)) 4471 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4472 FuncInfo.ArgDbgValues.push_back(&*MIB); 4473 return true; 4474 } 4475 4476 // VisualStudio defines setjmp as _setjmp 4477 #if defined(_MSC_VER) && defined(setjmp) && \ 4478 !defined(setjmp_undefined_for_msvc) 4479 # pragma push_macro("setjmp") 4480 # undef setjmp 4481 # define setjmp_undefined_for_msvc 4482 #endif 4483 4484 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4485 /// we want to emit this as a call to a named external function, return the name 4486 /// otherwise lower it and return null. 4487 const char * 4488 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4489 DebugLoc dl = getCurDebugLoc(); 4490 SDValue Res; 4491 4492 switch (Intrinsic) { 4493 default: 4494 // By default, turn this into a target intrinsic node. 4495 visitTargetIntrinsic(I, Intrinsic); 4496 return 0; 4497 case Intrinsic::vastart: visitVAStart(I); return 0; 4498 case Intrinsic::vaend: visitVAEnd(I); return 0; 4499 case Intrinsic::vacopy: visitVACopy(I); return 0; 4500 case Intrinsic::returnaddress: 4501 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4502 getValue(I.getArgOperand(0)))); 4503 return 0; 4504 case Intrinsic::frameaddress: 4505 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4506 getValue(I.getArgOperand(0)))); 4507 return 0; 4508 case Intrinsic::setjmp: 4509 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4510 case Intrinsic::longjmp: 4511 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4512 case Intrinsic::memcpy: { 4513 // Assert for address < 256 since we support only user defined address 4514 // spaces. 4515 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4516 < 256 && 4517 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4518 < 256 && 4519 "Unknown address space"); 4520 SDValue Op1 = getValue(I.getArgOperand(0)); 4521 SDValue Op2 = getValue(I.getArgOperand(1)); 4522 SDValue Op3 = getValue(I.getArgOperand(2)); 4523 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4524 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4525 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4526 MachinePointerInfo(I.getArgOperand(0)), 4527 MachinePointerInfo(I.getArgOperand(1)))); 4528 return 0; 4529 } 4530 case Intrinsic::memset: { 4531 // Assert for address < 256 since we support only user defined address 4532 // spaces. 4533 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4534 < 256 && 4535 "Unknown address space"); 4536 SDValue Op1 = getValue(I.getArgOperand(0)); 4537 SDValue Op2 = getValue(I.getArgOperand(1)); 4538 SDValue Op3 = getValue(I.getArgOperand(2)); 4539 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4540 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4541 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4542 MachinePointerInfo(I.getArgOperand(0)))); 4543 return 0; 4544 } 4545 case Intrinsic::memmove: { 4546 // Assert for address < 256 since we support only user defined address 4547 // spaces. 4548 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4549 < 256 && 4550 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4551 < 256 && 4552 "Unknown address space"); 4553 SDValue Op1 = getValue(I.getArgOperand(0)); 4554 SDValue Op2 = getValue(I.getArgOperand(1)); 4555 SDValue Op3 = getValue(I.getArgOperand(2)); 4556 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4557 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4558 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4559 MachinePointerInfo(I.getArgOperand(0)), 4560 MachinePointerInfo(I.getArgOperand(1)))); 4561 return 0; 4562 } 4563 case Intrinsic::dbg_declare: { 4564 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4565 MDNode *Variable = DI.getVariable(); 4566 const Value *Address = DI.getAddress(); 4567 if (!Address || !DIVariable(Variable).Verify()) { 4568 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4569 return 0; 4570 } 4571 4572 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4573 // but do not always have a corresponding SDNode built. The SDNodeOrder 4574 // absolute, but not relative, values are different depending on whether 4575 // debug info exists. 4576 ++SDNodeOrder; 4577 4578 // Check if address has undef value. 4579 if (isa<UndefValue>(Address) || 4580 (Address->use_empty() && !isa<Argument>(Address))) { 4581 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4582 return 0; 4583 } 4584 4585 SDValue &N = NodeMap[Address]; 4586 if (!N.getNode() && isa<Argument>(Address)) 4587 // Check unused arguments map. 4588 N = UnusedArgNodeMap[Address]; 4589 SDDbgValue *SDV; 4590 if (N.getNode()) { 4591 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4592 Address = BCI->getOperand(0); 4593 // Parameters are handled specially. 4594 bool isParameter = 4595 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4596 isa<Argument>(Address)); 4597 4598 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4599 4600 if (isParameter && !AI) { 4601 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4602 if (FINode) 4603 // Byval parameter. We have a frame index at this point. 4604 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4605 0, dl, SDNodeOrder); 4606 else { 4607 // Address is an argument, so try to emit its dbg value using 4608 // virtual register info from the FuncInfo.ValueMap. 4609 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4610 return 0; 4611 } 4612 } else if (AI) 4613 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4614 0, dl, SDNodeOrder); 4615 else { 4616 // Can't do anything with other non-AI cases yet. 4617 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4618 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4619 DEBUG(Address->dump()); 4620 return 0; 4621 } 4622 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4623 } else { 4624 // If Address is an argument then try to emit its dbg value using 4625 // virtual register info from the FuncInfo.ValueMap. 4626 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4627 // If variable is pinned by a alloca in dominating bb then 4628 // use StaticAllocaMap. 4629 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4630 if (AI->getParent() != DI.getParent()) { 4631 DenseMap<const AllocaInst*, int>::iterator SI = 4632 FuncInfo.StaticAllocaMap.find(AI); 4633 if (SI != FuncInfo.StaticAllocaMap.end()) { 4634 SDV = DAG.getDbgValue(Variable, SI->second, 4635 0, dl, SDNodeOrder); 4636 DAG.AddDbgValue(SDV, 0, false); 4637 return 0; 4638 } 4639 } 4640 } 4641 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4642 } 4643 } 4644 return 0; 4645 } 4646 case Intrinsic::dbg_value: { 4647 const DbgValueInst &DI = cast<DbgValueInst>(I); 4648 if (!DIVariable(DI.getVariable()).Verify()) 4649 return 0; 4650 4651 MDNode *Variable = DI.getVariable(); 4652 uint64_t Offset = DI.getOffset(); 4653 const Value *V = DI.getValue(); 4654 if (!V) 4655 return 0; 4656 4657 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4658 // but do not always have a corresponding SDNode built. The SDNodeOrder 4659 // absolute, but not relative, values are different depending on whether 4660 // debug info exists. 4661 ++SDNodeOrder; 4662 SDDbgValue *SDV; 4663 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4664 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4665 DAG.AddDbgValue(SDV, 0, false); 4666 } else { 4667 // Do not use getValue() in here; we don't want to generate code at 4668 // this point if it hasn't been done yet. 4669 SDValue N = NodeMap[V]; 4670 if (!N.getNode() && isa<Argument>(V)) 4671 // Check unused arguments map. 4672 N = UnusedArgNodeMap[V]; 4673 if (N.getNode()) { 4674 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4675 SDV = DAG.getDbgValue(Variable, N.getNode(), 4676 N.getResNo(), Offset, dl, SDNodeOrder); 4677 DAG.AddDbgValue(SDV, N.getNode(), false); 4678 } 4679 } else if (!V->use_empty() ) { 4680 // Do not call getValue(V) yet, as we don't want to generate code. 4681 // Remember it for later. 4682 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4683 DanglingDebugInfoMap[V] = DDI; 4684 } else { 4685 // We may expand this to cover more cases. One case where we have no 4686 // data available is an unreferenced parameter. 4687 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4688 } 4689 } 4690 4691 // Build a debug info table entry. 4692 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4693 V = BCI->getOperand(0); 4694 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4695 // Don't handle byval struct arguments or VLAs, for example. 4696 if (!AI) { 4697 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4698 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4699 return 0; 4700 } 4701 DenseMap<const AllocaInst*, int>::iterator SI = 4702 FuncInfo.StaticAllocaMap.find(AI); 4703 if (SI == FuncInfo.StaticAllocaMap.end()) 4704 return 0; // VLAs. 4705 int FI = SI->second; 4706 4707 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4708 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4709 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4710 return 0; 4711 } 4712 4713 case Intrinsic::eh_typeid_for: { 4714 // Find the type id for the given typeinfo. 4715 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4716 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4717 Res = DAG.getConstant(TypeID, MVT::i32); 4718 setValue(&I, Res); 4719 return 0; 4720 } 4721 4722 case Intrinsic::eh_return_i32: 4723 case Intrinsic::eh_return_i64: 4724 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4725 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4726 MVT::Other, 4727 getControlRoot(), 4728 getValue(I.getArgOperand(0)), 4729 getValue(I.getArgOperand(1)))); 4730 return 0; 4731 case Intrinsic::eh_unwind_init: 4732 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4733 return 0; 4734 case Intrinsic::eh_dwarf_cfa: { 4735 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4736 TLI.getPointerTy()); 4737 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4738 TLI.getPointerTy(), 4739 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4740 TLI.getPointerTy()), 4741 CfaArg); 4742 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4743 TLI.getPointerTy(), 4744 DAG.getConstant(0, TLI.getPointerTy())); 4745 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4746 FA, Offset)); 4747 return 0; 4748 } 4749 case Intrinsic::eh_sjlj_callsite: { 4750 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4751 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4752 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4753 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4754 4755 MMI.setCurrentCallSite(CI->getZExtValue()); 4756 return 0; 4757 } 4758 case Intrinsic::eh_sjlj_functioncontext: { 4759 // Get and store the index of the function context. 4760 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4761 AllocaInst *FnCtx = 4762 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4763 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4764 MFI->setFunctionContextIndex(FI); 4765 return 0; 4766 } 4767 case Intrinsic::eh_sjlj_setjmp: { 4768 SDValue Ops[2]; 4769 Ops[0] = getRoot(); 4770 Ops[1] = getValue(I.getArgOperand(0)); 4771 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4772 DAG.getVTList(MVT::i32, MVT::Other), 4773 Ops, 2); 4774 setValue(&I, Op.getValue(0)); 4775 DAG.setRoot(Op.getValue(1)); 4776 return 0; 4777 } 4778 case Intrinsic::eh_sjlj_longjmp: { 4779 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4780 getRoot(), getValue(I.getArgOperand(0)))); 4781 return 0; 4782 } 4783 4784 case Intrinsic::x86_mmx_pslli_w: 4785 case Intrinsic::x86_mmx_pslli_d: 4786 case Intrinsic::x86_mmx_pslli_q: 4787 case Intrinsic::x86_mmx_psrli_w: 4788 case Intrinsic::x86_mmx_psrli_d: 4789 case Intrinsic::x86_mmx_psrli_q: 4790 case Intrinsic::x86_mmx_psrai_w: 4791 case Intrinsic::x86_mmx_psrai_d: { 4792 SDValue ShAmt = getValue(I.getArgOperand(1)); 4793 if (isa<ConstantSDNode>(ShAmt)) { 4794 visitTargetIntrinsic(I, Intrinsic); 4795 return 0; 4796 } 4797 unsigned NewIntrinsic = 0; 4798 EVT ShAmtVT = MVT::v2i32; 4799 switch (Intrinsic) { 4800 case Intrinsic::x86_mmx_pslli_w: 4801 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4802 break; 4803 case Intrinsic::x86_mmx_pslli_d: 4804 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4805 break; 4806 case Intrinsic::x86_mmx_pslli_q: 4807 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4808 break; 4809 case Intrinsic::x86_mmx_psrli_w: 4810 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4811 break; 4812 case Intrinsic::x86_mmx_psrli_d: 4813 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4814 break; 4815 case Intrinsic::x86_mmx_psrli_q: 4816 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4817 break; 4818 case Intrinsic::x86_mmx_psrai_w: 4819 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4820 break; 4821 case Intrinsic::x86_mmx_psrai_d: 4822 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4823 break; 4824 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4825 } 4826 4827 // The vector shift intrinsics with scalars uses 32b shift amounts but 4828 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4829 // to be zero. 4830 // We must do this early because v2i32 is not a legal type. 4831 DebugLoc dl = getCurDebugLoc(); 4832 SDValue ShOps[2]; 4833 ShOps[0] = ShAmt; 4834 ShOps[1] = DAG.getConstant(0, MVT::i32); 4835 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4836 EVT DestVT = TLI.getValueType(I.getType()); 4837 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4838 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4839 DAG.getConstant(NewIntrinsic, MVT::i32), 4840 getValue(I.getArgOperand(0)), ShAmt); 4841 setValue(&I, Res); 4842 return 0; 4843 } 4844 case Intrinsic::x86_avx_vinsertf128_pd_256: 4845 case Intrinsic::x86_avx_vinsertf128_ps_256: 4846 case Intrinsic::x86_avx_vinsertf128_si_256: 4847 case Intrinsic::x86_avx2_vinserti128: { 4848 DebugLoc dl = getCurDebugLoc(); 4849 EVT DestVT = TLI.getValueType(I.getType()); 4850 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4851 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4852 ElVT.getVectorNumElements(); 4853 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4854 getValue(I.getArgOperand(0)), 4855 getValue(I.getArgOperand(1)), 4856 DAG.getConstant(Idx, MVT::i32)); 4857 setValue(&I, Res); 4858 return 0; 4859 } 4860 case Intrinsic::convertff: 4861 case Intrinsic::convertfsi: 4862 case Intrinsic::convertfui: 4863 case Intrinsic::convertsif: 4864 case Intrinsic::convertuif: 4865 case Intrinsic::convertss: 4866 case Intrinsic::convertsu: 4867 case Intrinsic::convertus: 4868 case Intrinsic::convertuu: { 4869 ISD::CvtCode Code = ISD::CVT_INVALID; 4870 switch (Intrinsic) { 4871 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4872 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4873 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4874 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4875 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4876 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4877 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4878 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4879 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4880 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4881 } 4882 EVT DestVT = TLI.getValueType(I.getType()); 4883 const Value *Op1 = I.getArgOperand(0); 4884 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4885 DAG.getValueType(DestVT), 4886 DAG.getValueType(getValue(Op1).getValueType()), 4887 getValue(I.getArgOperand(1)), 4888 getValue(I.getArgOperand(2)), 4889 Code); 4890 setValue(&I, Res); 4891 return 0; 4892 } 4893 case Intrinsic::sqrt: 4894 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4895 getValue(I.getArgOperand(0)).getValueType(), 4896 getValue(I.getArgOperand(0)))); 4897 return 0; 4898 case Intrinsic::powi: 4899 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4900 getValue(I.getArgOperand(1)), DAG)); 4901 return 0; 4902 case Intrinsic::sin: 4903 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4904 getValue(I.getArgOperand(0)).getValueType(), 4905 getValue(I.getArgOperand(0)))); 4906 return 0; 4907 case Intrinsic::cos: 4908 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4909 getValue(I.getArgOperand(0)).getValueType(), 4910 getValue(I.getArgOperand(0)))); 4911 return 0; 4912 case Intrinsic::log: 4913 visitLog(I); 4914 return 0; 4915 case Intrinsic::log2: 4916 visitLog2(I); 4917 return 0; 4918 case Intrinsic::log10: 4919 visitLog10(I); 4920 return 0; 4921 case Intrinsic::exp: 4922 visitExp(I); 4923 return 0; 4924 case Intrinsic::exp2: 4925 visitExp2(I); 4926 return 0; 4927 case Intrinsic::pow: 4928 visitPow(I); 4929 return 0; 4930 case Intrinsic::fabs: 4931 setValue(&I, DAG.getNode(ISD::FABS, dl, 4932 getValue(I.getArgOperand(0)).getValueType(), 4933 getValue(I.getArgOperand(0)))); 4934 return 0; 4935 case Intrinsic::floor: 4936 setValue(&I, DAG.getNode(ISD::FFLOOR, dl, 4937 getValue(I.getArgOperand(0)).getValueType(), 4938 getValue(I.getArgOperand(0)))); 4939 return 0; 4940 case Intrinsic::fma: 4941 setValue(&I, DAG.getNode(ISD::FMA, dl, 4942 getValue(I.getArgOperand(0)).getValueType(), 4943 getValue(I.getArgOperand(0)), 4944 getValue(I.getArgOperand(1)), 4945 getValue(I.getArgOperand(2)))); 4946 return 0; 4947 case Intrinsic::fmuladd: { 4948 EVT VT = TLI.getValueType(I.getType()); 4949 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4950 TLI.isOperationLegal(ISD::FMA, VT) && 4951 TLI.isFMAFasterThanMulAndAdd(VT)){ 4952 setValue(&I, DAG.getNode(ISD::FMA, dl, 4953 getValue(I.getArgOperand(0)).getValueType(), 4954 getValue(I.getArgOperand(0)), 4955 getValue(I.getArgOperand(1)), 4956 getValue(I.getArgOperand(2)))); 4957 } else { 4958 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 4959 getValue(I.getArgOperand(0)).getValueType(), 4960 getValue(I.getArgOperand(0)), 4961 getValue(I.getArgOperand(1))); 4962 SDValue Add = DAG.getNode(ISD::FADD, dl, 4963 getValue(I.getArgOperand(0)).getValueType(), 4964 Mul, 4965 getValue(I.getArgOperand(2))); 4966 setValue(&I, Add); 4967 } 4968 return 0; 4969 } 4970 case Intrinsic::convert_to_fp16: 4971 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4972 MVT::i16, getValue(I.getArgOperand(0)))); 4973 return 0; 4974 case Intrinsic::convert_from_fp16: 4975 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4976 MVT::f32, getValue(I.getArgOperand(0)))); 4977 return 0; 4978 case Intrinsic::pcmarker: { 4979 SDValue Tmp = getValue(I.getArgOperand(0)); 4980 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4981 return 0; 4982 } 4983 case Intrinsic::readcyclecounter: { 4984 SDValue Op = getRoot(); 4985 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4986 DAG.getVTList(MVT::i64, MVT::Other), 4987 &Op, 1); 4988 setValue(&I, Res); 4989 DAG.setRoot(Res.getValue(1)); 4990 return 0; 4991 } 4992 case Intrinsic::bswap: 4993 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4994 getValue(I.getArgOperand(0)).getValueType(), 4995 getValue(I.getArgOperand(0)))); 4996 return 0; 4997 case Intrinsic::cttz: { 4998 SDValue Arg = getValue(I.getArgOperand(0)); 4999 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5000 EVT Ty = Arg.getValueType(); 5001 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5002 dl, Ty, Arg)); 5003 return 0; 5004 } 5005 case Intrinsic::ctlz: { 5006 SDValue Arg = getValue(I.getArgOperand(0)); 5007 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5008 EVT Ty = Arg.getValueType(); 5009 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5010 dl, Ty, Arg)); 5011 return 0; 5012 } 5013 case Intrinsic::ctpop: { 5014 SDValue Arg = getValue(I.getArgOperand(0)); 5015 EVT Ty = Arg.getValueType(); 5016 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 5017 return 0; 5018 } 5019 case Intrinsic::stacksave: { 5020 SDValue Op = getRoot(); 5021 Res = DAG.getNode(ISD::STACKSAVE, dl, 5022 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 5023 setValue(&I, Res); 5024 DAG.setRoot(Res.getValue(1)); 5025 return 0; 5026 } 5027 case Intrinsic::stackrestore: { 5028 Res = getValue(I.getArgOperand(0)); 5029 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 5030 return 0; 5031 } 5032 case Intrinsic::stackprotector: { 5033 // Emit code into the DAG to store the stack guard onto the stack. 5034 MachineFunction &MF = DAG.getMachineFunction(); 5035 MachineFrameInfo *MFI = MF.getFrameInfo(); 5036 EVT PtrTy = TLI.getPointerTy(); 5037 5038 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5039 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5040 5041 int FI = FuncInfo.StaticAllocaMap[Slot]; 5042 MFI->setStackProtectorIndex(FI); 5043 5044 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5045 5046 // Store the stack protector onto the stack. 5047 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5048 MachinePointerInfo::getFixedStack(FI), 5049 true, false, 0); 5050 setValue(&I, Res); 5051 DAG.setRoot(Res); 5052 return 0; 5053 } 5054 case Intrinsic::objectsize: { 5055 // If we don't know by now, we're never going to know. 5056 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5057 5058 assert(CI && "Non-constant type in __builtin_object_size?"); 5059 5060 SDValue Arg = getValue(I.getCalledValue()); 5061 EVT Ty = Arg.getValueType(); 5062 5063 if (CI->isZero()) 5064 Res = DAG.getConstant(-1ULL, Ty); 5065 else 5066 Res = DAG.getConstant(0, Ty); 5067 5068 setValue(&I, Res); 5069 return 0; 5070 } 5071 case Intrinsic::var_annotation: 5072 // Discard annotate attributes 5073 return 0; 5074 5075 case Intrinsic::init_trampoline: { 5076 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5077 5078 SDValue Ops[6]; 5079 Ops[0] = getRoot(); 5080 Ops[1] = getValue(I.getArgOperand(0)); 5081 Ops[2] = getValue(I.getArgOperand(1)); 5082 Ops[3] = getValue(I.getArgOperand(2)); 5083 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5084 Ops[5] = DAG.getSrcValue(F); 5085 5086 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5087 5088 DAG.setRoot(Res); 5089 return 0; 5090 } 5091 case Intrinsic::adjust_trampoline: { 5092 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5093 TLI.getPointerTy(), 5094 getValue(I.getArgOperand(0)))); 5095 return 0; 5096 } 5097 case Intrinsic::gcroot: 5098 if (GFI) { 5099 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5100 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5101 5102 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5103 GFI->addStackRoot(FI->getIndex(), TypeMap); 5104 } 5105 return 0; 5106 case Intrinsic::gcread: 5107 case Intrinsic::gcwrite: 5108 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5109 case Intrinsic::flt_rounds: 5110 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5111 return 0; 5112 5113 case Intrinsic::expect: { 5114 // Just replace __builtin_expect(exp, c) with EXP. 5115 setValue(&I, getValue(I.getArgOperand(0))); 5116 return 0; 5117 } 5118 5119 case Intrinsic::trap: { 5120 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5121 if (TrapFuncName.empty()) { 5122 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5123 return 0; 5124 } 5125 TargetLowering::ArgListTy Args; 5126 TargetLowering:: 5127 CallLoweringInfo CLI(getRoot(), I.getType(), 5128 false, false, false, false, 0, CallingConv::C, 5129 /*isTailCall=*/false, 5130 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5131 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5132 Args, DAG, getCurDebugLoc()); 5133 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5134 DAG.setRoot(Result.second); 5135 return 0; 5136 } 5137 case Intrinsic::debugtrap: { 5138 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot())); 5139 return 0; 5140 } 5141 case Intrinsic::uadd_with_overflow: 5142 case Intrinsic::sadd_with_overflow: 5143 case Intrinsic::usub_with_overflow: 5144 case Intrinsic::ssub_with_overflow: 5145 case Intrinsic::umul_with_overflow: 5146 case Intrinsic::smul_with_overflow: { 5147 ISD::NodeType Op; 5148 switch (Intrinsic) { 5149 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5150 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5151 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5152 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5153 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5154 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5155 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5156 } 5157 SDValue Op1 = getValue(I.getArgOperand(0)); 5158 SDValue Op2 = getValue(I.getArgOperand(1)); 5159 5160 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5161 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5162 return 0; 5163 } 5164 case Intrinsic::prefetch: { 5165 SDValue Ops[5]; 5166 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5167 Ops[0] = getRoot(); 5168 Ops[1] = getValue(I.getArgOperand(0)); 5169 Ops[2] = getValue(I.getArgOperand(1)); 5170 Ops[3] = getValue(I.getArgOperand(2)); 5171 Ops[4] = getValue(I.getArgOperand(3)); 5172 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5173 DAG.getVTList(MVT::Other), 5174 &Ops[0], 5, 5175 EVT::getIntegerVT(*Context, 8), 5176 MachinePointerInfo(I.getArgOperand(0)), 5177 0, /* align */ 5178 false, /* volatile */ 5179 rw==0, /* read */ 5180 rw==1)); /* write */ 5181 return 0; 5182 } 5183 5184 case Intrinsic::invariant_start: 5185 case Intrinsic::lifetime_start: 5186 // Discard region information. 5187 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5188 return 0; 5189 case Intrinsic::invariant_end: 5190 case Intrinsic::lifetime_end: 5191 // Discard region information. 5192 return 0; 5193 case Intrinsic::donothing: 5194 // ignore 5195 return 0; 5196 } 5197 } 5198 5199 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5200 bool isTailCall, 5201 MachineBasicBlock *LandingPad) { 5202 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5203 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5204 Type *RetTy = FTy->getReturnType(); 5205 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5206 MCSymbol *BeginLabel = 0; 5207 5208 TargetLowering::ArgListTy Args; 5209 TargetLowering::ArgListEntry Entry; 5210 Args.reserve(CS.arg_size()); 5211 5212 // Check whether the function can return without sret-demotion. 5213 SmallVector<ISD::OutputArg, 4> Outs; 5214 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5215 Outs, TLI); 5216 5217 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5218 DAG.getMachineFunction(), 5219 FTy->isVarArg(), Outs, 5220 FTy->getContext()); 5221 5222 SDValue DemoteStackSlot; 5223 int DemoteStackIdx = -100; 5224 5225 if (!CanLowerReturn) { 5226 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5227 FTy->getReturnType()); 5228 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5229 FTy->getReturnType()); 5230 MachineFunction &MF = DAG.getMachineFunction(); 5231 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5232 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5233 5234 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5235 Entry.Node = DemoteStackSlot; 5236 Entry.Ty = StackSlotPtrType; 5237 Entry.isSExt = false; 5238 Entry.isZExt = false; 5239 Entry.isInReg = false; 5240 Entry.isSRet = true; 5241 Entry.isNest = false; 5242 Entry.isByVal = false; 5243 Entry.Alignment = Align; 5244 Args.push_back(Entry); 5245 RetTy = Type::getVoidTy(FTy->getContext()); 5246 } 5247 5248 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5249 i != e; ++i) { 5250 const Value *V = *i; 5251 5252 // Skip empty types 5253 if (V->getType()->isEmptyTy()) 5254 continue; 5255 5256 SDValue ArgNode = getValue(V); 5257 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5258 5259 unsigned attrInd = i - CS.arg_begin() + 1; 5260 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5261 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5262 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5263 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5264 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5265 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5266 Entry.Alignment = CS.getParamAlignment(attrInd); 5267 Args.push_back(Entry); 5268 } 5269 5270 if (LandingPad) { 5271 // Insert a label before the invoke call to mark the try range. This can be 5272 // used to detect deletion of the invoke via the MachineModuleInfo. 5273 BeginLabel = MMI.getContext().CreateTempSymbol(); 5274 5275 // For SjLj, keep track of which landing pads go with which invokes 5276 // so as to maintain the ordering of pads in the LSDA. 5277 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5278 if (CallSiteIndex) { 5279 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5280 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5281 5282 // Now that the call site is handled, stop tracking it. 5283 MMI.setCurrentCallSite(0); 5284 } 5285 5286 // Both PendingLoads and PendingExports must be flushed here; 5287 // this call might not return. 5288 (void)getRoot(); 5289 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5290 } 5291 5292 // Check if target-independent constraints permit a tail call here. 5293 // Target-dependent constraints are checked within TLI.LowerCallTo. 5294 if (isTailCall && 5295 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5296 isTailCall = false; 5297 5298 // If there's a possibility that fast-isel has already selected some amount 5299 // of the current basic block, don't emit a tail call. 5300 if (isTailCall && TM.Options.EnableFastISel) 5301 isTailCall = false; 5302 5303 TargetLowering:: 5304 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5305 getCurDebugLoc(), CS); 5306 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5307 assert((isTailCall || Result.second.getNode()) && 5308 "Non-null chain expected with non-tail call!"); 5309 assert((Result.second.getNode() || !Result.first.getNode()) && 5310 "Null value expected with tail call!"); 5311 if (Result.first.getNode()) { 5312 setValue(CS.getInstruction(), Result.first); 5313 } else if (!CanLowerReturn && Result.second.getNode()) { 5314 // The instruction result is the result of loading from the 5315 // hidden sret parameter. 5316 SmallVector<EVT, 1> PVTs; 5317 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5318 5319 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5320 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5321 EVT PtrVT = PVTs[0]; 5322 5323 SmallVector<EVT, 4> RetTys; 5324 SmallVector<uint64_t, 4> Offsets; 5325 RetTy = FTy->getReturnType(); 5326 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5327 5328 unsigned NumValues = RetTys.size(); 5329 SmallVector<SDValue, 4> Values(NumValues); 5330 SmallVector<SDValue, 4> Chains(NumValues); 5331 5332 for (unsigned i = 0; i < NumValues; ++i) { 5333 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5334 DemoteStackSlot, 5335 DAG.getConstant(Offsets[i], PtrVT)); 5336 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5337 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5338 false, false, false, 1); 5339 Values[i] = L; 5340 Chains[i] = L.getValue(1); 5341 } 5342 5343 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5344 MVT::Other, &Chains[0], NumValues); 5345 PendingLoads.push_back(Chain); 5346 5347 setValue(CS.getInstruction(), 5348 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5349 DAG.getVTList(&RetTys[0], RetTys.size()), 5350 &Values[0], Values.size())); 5351 } 5352 5353 // Assign order to nodes here. If the call does not produce a result, it won't 5354 // be mapped to a SDNode and visit() will not assign it an order number. 5355 if (!Result.second.getNode()) { 5356 // As a special case, a null chain means that a tail call has been emitted and 5357 // the DAG root is already updated. 5358 HasTailCall = true; 5359 ++SDNodeOrder; 5360 AssignOrderingToNode(DAG.getRoot().getNode()); 5361 } else { 5362 DAG.setRoot(Result.second); 5363 ++SDNodeOrder; 5364 AssignOrderingToNode(Result.second.getNode()); 5365 } 5366 5367 if (LandingPad) { 5368 // Insert a label at the end of the invoke call to mark the try range. This 5369 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5370 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5371 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5372 5373 // Inform MachineModuleInfo of range. 5374 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5375 } 5376 } 5377 5378 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5379 /// value is equal or not-equal to zero. 5380 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5381 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5382 UI != E; ++UI) { 5383 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5384 if (IC->isEquality()) 5385 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5386 if (C->isNullValue()) 5387 continue; 5388 // Unknown instruction. 5389 return false; 5390 } 5391 return true; 5392 } 5393 5394 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5395 Type *LoadTy, 5396 SelectionDAGBuilder &Builder) { 5397 5398 // Check to see if this load can be trivially constant folded, e.g. if the 5399 // input is from a string literal. 5400 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5401 // Cast pointer to the type we really want to load. 5402 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5403 PointerType::getUnqual(LoadTy)); 5404 5405 if (const Constant *LoadCst = 5406 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5407 Builder.TD)) 5408 return Builder.getValue(LoadCst); 5409 } 5410 5411 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5412 // still constant memory, the input chain can be the entry node. 5413 SDValue Root; 5414 bool ConstantMemory = false; 5415 5416 // Do not serialize (non-volatile) loads of constant memory with anything. 5417 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5418 Root = Builder.DAG.getEntryNode(); 5419 ConstantMemory = true; 5420 } else { 5421 // Do not serialize non-volatile loads against each other. 5422 Root = Builder.DAG.getRoot(); 5423 } 5424 5425 SDValue Ptr = Builder.getValue(PtrVal); 5426 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5427 Ptr, MachinePointerInfo(PtrVal), 5428 false /*volatile*/, 5429 false /*nontemporal*/, 5430 false /*isinvariant*/, 1 /* align=1 */); 5431 5432 if (!ConstantMemory) 5433 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5434 return LoadVal; 5435 } 5436 5437 5438 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5439 /// If so, return true and lower it, otherwise return false and it will be 5440 /// lowered like a normal call. 5441 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5442 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5443 if (I.getNumArgOperands() != 3) 5444 return false; 5445 5446 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5447 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5448 !I.getArgOperand(2)->getType()->isIntegerTy() || 5449 !I.getType()->isIntegerTy()) 5450 return false; 5451 5452 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5453 5454 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5455 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5456 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5457 bool ActuallyDoIt = true; 5458 MVT LoadVT; 5459 Type *LoadTy; 5460 switch (Size->getZExtValue()) { 5461 default: 5462 LoadVT = MVT::Other; 5463 LoadTy = 0; 5464 ActuallyDoIt = false; 5465 break; 5466 case 2: 5467 LoadVT = MVT::i16; 5468 LoadTy = Type::getInt16Ty(Size->getContext()); 5469 break; 5470 case 4: 5471 LoadVT = MVT::i32; 5472 LoadTy = Type::getInt32Ty(Size->getContext()); 5473 break; 5474 case 8: 5475 LoadVT = MVT::i64; 5476 LoadTy = Type::getInt64Ty(Size->getContext()); 5477 break; 5478 /* 5479 case 16: 5480 LoadVT = MVT::v4i32; 5481 LoadTy = Type::getInt32Ty(Size->getContext()); 5482 LoadTy = VectorType::get(LoadTy, 4); 5483 break; 5484 */ 5485 } 5486 5487 // This turns into unaligned loads. We only do this if the target natively 5488 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5489 // we'll only produce a small number of byte loads. 5490 5491 // Require that we can find a legal MVT, and only do this if the target 5492 // supports unaligned loads of that type. Expanding into byte loads would 5493 // bloat the code. 5494 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5495 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5496 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5497 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5498 ActuallyDoIt = false; 5499 } 5500 5501 if (ActuallyDoIt) { 5502 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5503 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5504 5505 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5506 ISD::SETNE); 5507 EVT CallVT = TLI.getValueType(I.getType(), true); 5508 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5509 return true; 5510 } 5511 } 5512 5513 5514 return false; 5515 } 5516 5517 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5518 /// operation (as expected), translate it to an SDNode with the specified opcode 5519 /// and return true. 5520 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5521 unsigned Opcode) { 5522 // Sanity check that it really is a unary floating-point call. 5523 if (I.getNumArgOperands() != 1 || 5524 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5525 I.getType() != I.getArgOperand(0)->getType() || 5526 !I.onlyReadsMemory()) 5527 return false; 5528 5529 SDValue Tmp = getValue(I.getArgOperand(0)); 5530 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); 5531 return true; 5532 } 5533 5534 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5535 // Handle inline assembly differently. 5536 if (isa<InlineAsm>(I.getCalledValue())) { 5537 visitInlineAsm(&I); 5538 return; 5539 } 5540 5541 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5542 ComputeUsesVAFloatArgument(I, &MMI); 5543 5544 const char *RenameFn = 0; 5545 if (Function *F = I.getCalledFunction()) { 5546 if (F->isDeclaration()) { 5547 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5548 if (unsigned IID = II->getIntrinsicID(F)) { 5549 RenameFn = visitIntrinsicCall(I, IID); 5550 if (!RenameFn) 5551 return; 5552 } 5553 } 5554 if (unsigned IID = F->getIntrinsicID()) { 5555 RenameFn = visitIntrinsicCall(I, IID); 5556 if (!RenameFn) 5557 return; 5558 } 5559 } 5560 5561 // Check for well-known libc/libm calls. If the function is internal, it 5562 // can't be a library call. 5563 LibFunc::Func Func; 5564 if (!F->hasLocalLinkage() && F->hasName() && 5565 LibInfo->getLibFunc(F->getName(), Func) && 5566 LibInfo->hasOptimizedCodeGen(Func)) { 5567 switch (Func) { 5568 default: break; 5569 case LibFunc::copysign: 5570 case LibFunc::copysignf: 5571 case LibFunc::copysignl: 5572 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5573 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5574 I.getType() == I.getArgOperand(0)->getType() && 5575 I.getType() == I.getArgOperand(1)->getType() && 5576 I.onlyReadsMemory()) { 5577 SDValue LHS = getValue(I.getArgOperand(0)); 5578 SDValue RHS = getValue(I.getArgOperand(1)); 5579 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5580 LHS.getValueType(), LHS, RHS)); 5581 return; 5582 } 5583 break; 5584 case LibFunc::fabs: 5585 case LibFunc::fabsf: 5586 case LibFunc::fabsl: 5587 if (visitUnaryFloatCall(I, ISD::FABS)) 5588 return; 5589 break; 5590 case LibFunc::sin: 5591 case LibFunc::sinf: 5592 case LibFunc::sinl: 5593 if (visitUnaryFloatCall(I, ISD::FSIN)) 5594 return; 5595 break; 5596 case LibFunc::cos: 5597 case LibFunc::cosf: 5598 case LibFunc::cosl: 5599 if (visitUnaryFloatCall(I, ISD::FCOS)) 5600 return; 5601 break; 5602 case LibFunc::sqrt: 5603 case LibFunc::sqrtf: 5604 case LibFunc::sqrtl: 5605 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5606 return; 5607 break; 5608 case LibFunc::floor: 5609 case LibFunc::floorf: 5610 case LibFunc::floorl: 5611 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5612 return; 5613 break; 5614 case LibFunc::nearbyint: 5615 case LibFunc::nearbyintf: 5616 case LibFunc::nearbyintl: 5617 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5618 return; 5619 break; 5620 case LibFunc::ceil: 5621 case LibFunc::ceilf: 5622 case LibFunc::ceill: 5623 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5624 return; 5625 break; 5626 case LibFunc::rint: 5627 case LibFunc::rintf: 5628 case LibFunc::rintl: 5629 if (visitUnaryFloatCall(I, ISD::FRINT)) 5630 return; 5631 break; 5632 case LibFunc::trunc: 5633 case LibFunc::truncf: 5634 case LibFunc::truncl: 5635 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5636 return; 5637 break; 5638 case LibFunc::log2: 5639 case LibFunc::log2f: 5640 case LibFunc::log2l: 5641 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5642 return; 5643 break; 5644 case LibFunc::exp2: 5645 case LibFunc::exp2f: 5646 case LibFunc::exp2l: 5647 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5648 return; 5649 break; 5650 case LibFunc::memcmp: 5651 if (visitMemCmpCall(I)) 5652 return; 5653 break; 5654 } 5655 } 5656 } 5657 5658 SDValue Callee; 5659 if (!RenameFn) 5660 Callee = getValue(I.getCalledValue()); 5661 else 5662 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5663 5664 // Check if we can potentially perform a tail call. More detailed checking is 5665 // be done within LowerCallTo, after more information about the call is known. 5666 LowerCallTo(&I, Callee, I.isTailCall()); 5667 } 5668 5669 namespace { 5670 5671 /// AsmOperandInfo - This contains information for each constraint that we are 5672 /// lowering. 5673 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5674 public: 5675 /// CallOperand - If this is the result output operand or a clobber 5676 /// this is null, otherwise it is the incoming operand to the CallInst. 5677 /// This gets modified as the asm is processed. 5678 SDValue CallOperand; 5679 5680 /// AssignedRegs - If this is a register or register class operand, this 5681 /// contains the set of register corresponding to the operand. 5682 RegsForValue AssignedRegs; 5683 5684 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5685 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5686 } 5687 5688 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5689 /// corresponds to. If there is no Value* for this operand, it returns 5690 /// MVT::Other. 5691 EVT getCallOperandValEVT(LLVMContext &Context, 5692 const TargetLowering &TLI, 5693 const TargetData *TD) const { 5694 if (CallOperandVal == 0) return MVT::Other; 5695 5696 if (isa<BasicBlock>(CallOperandVal)) 5697 return TLI.getPointerTy(); 5698 5699 llvm::Type *OpTy = CallOperandVal->getType(); 5700 5701 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5702 // If this is an indirect operand, the operand is a pointer to the 5703 // accessed type. 5704 if (isIndirect) { 5705 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5706 if (!PtrTy) 5707 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5708 OpTy = PtrTy->getElementType(); 5709 } 5710 5711 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5712 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5713 if (STy->getNumElements() == 1) 5714 OpTy = STy->getElementType(0); 5715 5716 // If OpTy is not a single value, it may be a struct/union that we 5717 // can tile with integers. 5718 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5719 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5720 switch (BitSize) { 5721 default: break; 5722 case 1: 5723 case 8: 5724 case 16: 5725 case 32: 5726 case 64: 5727 case 128: 5728 OpTy = IntegerType::get(Context, BitSize); 5729 break; 5730 } 5731 } 5732 5733 return TLI.getValueType(OpTy, true); 5734 } 5735 }; 5736 5737 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5738 5739 } // end anonymous namespace 5740 5741 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5742 /// specified operand. We prefer to assign virtual registers, to allow the 5743 /// register allocator to handle the assignment process. However, if the asm 5744 /// uses features that we can't model on machineinstrs, we have SDISel do the 5745 /// allocation. This produces generally horrible, but correct, code. 5746 /// 5747 /// OpInfo describes the operand. 5748 /// 5749 static void GetRegistersForValue(SelectionDAG &DAG, 5750 const TargetLowering &TLI, 5751 DebugLoc DL, 5752 SDISelAsmOperandInfo &OpInfo) { 5753 LLVMContext &Context = *DAG.getContext(); 5754 5755 MachineFunction &MF = DAG.getMachineFunction(); 5756 SmallVector<unsigned, 4> Regs; 5757 5758 // If this is a constraint for a single physreg, or a constraint for a 5759 // register class, find it. 5760 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5761 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5762 OpInfo.ConstraintVT); 5763 5764 unsigned NumRegs = 1; 5765 if (OpInfo.ConstraintVT != MVT::Other) { 5766 // If this is a FP input in an integer register (or visa versa) insert a bit 5767 // cast of the input value. More generally, handle any case where the input 5768 // value disagrees with the register class we plan to stick this in. 5769 if (OpInfo.Type == InlineAsm::isInput && 5770 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5771 // Try to convert to the first EVT that the reg class contains. If the 5772 // types are identical size, use a bitcast to convert (e.g. two differing 5773 // vector types). 5774 EVT RegVT = *PhysReg.second->vt_begin(); 5775 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5776 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5777 RegVT, OpInfo.CallOperand); 5778 OpInfo.ConstraintVT = RegVT; 5779 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5780 // If the input is a FP value and we want it in FP registers, do a 5781 // bitcast to the corresponding integer type. This turns an f64 value 5782 // into i64, which can be passed with two i32 values on a 32-bit 5783 // machine. 5784 RegVT = EVT::getIntegerVT(Context, 5785 OpInfo.ConstraintVT.getSizeInBits()); 5786 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5787 RegVT, OpInfo.CallOperand); 5788 OpInfo.ConstraintVT = RegVT; 5789 } 5790 } 5791 5792 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5793 } 5794 5795 EVT RegVT; 5796 EVT ValueVT = OpInfo.ConstraintVT; 5797 5798 // If this is a constraint for a specific physical register, like {r17}, 5799 // assign it now. 5800 if (unsigned AssignedReg = PhysReg.first) { 5801 const TargetRegisterClass *RC = PhysReg.second; 5802 if (OpInfo.ConstraintVT == MVT::Other) 5803 ValueVT = *RC->vt_begin(); 5804 5805 // Get the actual register value type. This is important, because the user 5806 // may have asked for (e.g.) the AX register in i32 type. We need to 5807 // remember that AX is actually i16 to get the right extension. 5808 RegVT = *RC->vt_begin(); 5809 5810 // This is a explicit reference to a physical register. 5811 Regs.push_back(AssignedReg); 5812 5813 // If this is an expanded reference, add the rest of the regs to Regs. 5814 if (NumRegs != 1) { 5815 TargetRegisterClass::iterator I = RC->begin(); 5816 for (; *I != AssignedReg; ++I) 5817 assert(I != RC->end() && "Didn't find reg!"); 5818 5819 // Already added the first reg. 5820 --NumRegs; ++I; 5821 for (; NumRegs; --NumRegs, ++I) { 5822 assert(I != RC->end() && "Ran out of registers to allocate!"); 5823 Regs.push_back(*I); 5824 } 5825 } 5826 5827 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5828 return; 5829 } 5830 5831 // Otherwise, if this was a reference to an LLVM register class, create vregs 5832 // for this reference. 5833 if (const TargetRegisterClass *RC = PhysReg.second) { 5834 RegVT = *RC->vt_begin(); 5835 if (OpInfo.ConstraintVT == MVT::Other) 5836 ValueVT = RegVT; 5837 5838 // Create the appropriate number of virtual registers. 5839 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5840 for (; NumRegs; --NumRegs) 5841 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5842 5843 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5844 return; 5845 } 5846 5847 // Otherwise, we couldn't allocate enough registers for this. 5848 } 5849 5850 /// visitInlineAsm - Handle a call to an InlineAsm object. 5851 /// 5852 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5853 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5854 5855 /// ConstraintOperands - Information about all of the constraints. 5856 SDISelAsmOperandInfoVector ConstraintOperands; 5857 5858 TargetLowering::AsmOperandInfoVector 5859 TargetConstraints = TLI.ParseConstraints(CS); 5860 5861 bool hasMemory = false; 5862 5863 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5864 unsigned ResNo = 0; // ResNo - The result number of the next output. 5865 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5866 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5867 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5868 5869 EVT OpVT = MVT::Other; 5870 5871 // Compute the value type for each operand. 5872 switch (OpInfo.Type) { 5873 case InlineAsm::isOutput: 5874 // Indirect outputs just consume an argument. 5875 if (OpInfo.isIndirect) { 5876 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5877 break; 5878 } 5879 5880 // The return value of the call is this value. As such, there is no 5881 // corresponding argument. 5882 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5883 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5884 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5885 } else { 5886 assert(ResNo == 0 && "Asm only has one result!"); 5887 OpVT = TLI.getValueType(CS.getType()); 5888 } 5889 ++ResNo; 5890 break; 5891 case InlineAsm::isInput: 5892 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5893 break; 5894 case InlineAsm::isClobber: 5895 // Nothing to do. 5896 break; 5897 } 5898 5899 // If this is an input or an indirect output, process the call argument. 5900 // BasicBlocks are labels, currently appearing only in asm's. 5901 if (OpInfo.CallOperandVal) { 5902 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5903 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5904 } else { 5905 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5906 } 5907 5908 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5909 } 5910 5911 OpInfo.ConstraintVT = OpVT; 5912 5913 // Indirect operand accesses access memory. 5914 if (OpInfo.isIndirect) 5915 hasMemory = true; 5916 else { 5917 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5918 TargetLowering::ConstraintType 5919 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5920 if (CType == TargetLowering::C_Memory) { 5921 hasMemory = true; 5922 break; 5923 } 5924 } 5925 } 5926 } 5927 5928 SDValue Chain, Flag; 5929 5930 // We won't need to flush pending loads if this asm doesn't touch 5931 // memory and is nonvolatile. 5932 if (hasMemory || IA->hasSideEffects()) 5933 Chain = getRoot(); 5934 else 5935 Chain = DAG.getRoot(); 5936 5937 // Second pass over the constraints: compute which constraint option to use 5938 // and assign registers to constraints that want a specific physreg. 5939 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5940 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5941 5942 // If this is an output operand with a matching input operand, look up the 5943 // matching input. If their types mismatch, e.g. one is an integer, the 5944 // other is floating point, or their sizes are different, flag it as an 5945 // error. 5946 if (OpInfo.hasMatchingInput()) { 5947 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5948 5949 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5950 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5951 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5952 OpInfo.ConstraintVT); 5953 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5954 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5955 Input.ConstraintVT); 5956 if ((OpInfo.ConstraintVT.isInteger() != 5957 Input.ConstraintVT.isInteger()) || 5958 (MatchRC.second != InputRC.second)) { 5959 report_fatal_error("Unsupported asm: input constraint" 5960 " with a matching output constraint of" 5961 " incompatible type!"); 5962 } 5963 Input.ConstraintVT = OpInfo.ConstraintVT; 5964 } 5965 } 5966 5967 // Compute the constraint code and ConstraintType to use. 5968 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5969 5970 // If this is a memory input, and if the operand is not indirect, do what we 5971 // need to to provide an address for the memory input. 5972 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5973 !OpInfo.isIndirect) { 5974 assert((OpInfo.isMultipleAlternative || 5975 (OpInfo.Type == InlineAsm::isInput)) && 5976 "Can only indirectify direct input operands!"); 5977 5978 // Memory operands really want the address of the value. If we don't have 5979 // an indirect input, put it in the constpool if we can, otherwise spill 5980 // it to a stack slot. 5981 // TODO: This isn't quite right. We need to handle these according to 5982 // the addressing mode that the constraint wants. Also, this may take 5983 // an additional register for the computation and we don't want that 5984 // either. 5985 5986 // If the operand is a float, integer, or vector constant, spill to a 5987 // constant pool entry to get its address. 5988 const Value *OpVal = OpInfo.CallOperandVal; 5989 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5990 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5991 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5992 TLI.getPointerTy()); 5993 } else { 5994 // Otherwise, create a stack slot and emit a store to it before the 5995 // asm. 5996 Type *Ty = OpVal->getType(); 5997 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5998 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5999 MachineFunction &MF = DAG.getMachineFunction(); 6000 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6001 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6002 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6003 OpInfo.CallOperand, StackSlot, 6004 MachinePointerInfo::getFixedStack(SSFI), 6005 false, false, 0); 6006 OpInfo.CallOperand = StackSlot; 6007 } 6008 6009 // There is no longer a Value* corresponding to this operand. 6010 OpInfo.CallOperandVal = 0; 6011 6012 // It is now an indirect operand. 6013 OpInfo.isIndirect = true; 6014 } 6015 6016 // If this constraint is for a specific register, allocate it before 6017 // anything else. 6018 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6019 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6020 } 6021 6022 // Second pass - Loop over all of the operands, assigning virtual or physregs 6023 // to register class operands. 6024 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6025 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6026 6027 // C_Register operands have already been allocated, Other/Memory don't need 6028 // to be. 6029 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6030 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6031 } 6032 6033 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6034 std::vector<SDValue> AsmNodeOperands; 6035 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6036 AsmNodeOperands.push_back( 6037 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6038 TLI.getPointerTy())); 6039 6040 // If we have a !srcloc metadata node associated with it, we want to attach 6041 // this to the ultimately generated inline asm machineinstr. To do this, we 6042 // pass in the third operand as this (potentially null) inline asm MDNode. 6043 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6044 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6045 6046 // Remember the HasSideEffect and AlignStack bits as operand 3. 6047 unsigned ExtraInfo = 0; 6048 if (IA->hasSideEffects()) 6049 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6050 if (IA->isAlignStack()) 6051 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6052 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6053 TLI.getPointerTy())); 6054 6055 // Loop over all of the inputs, copying the operand values into the 6056 // appropriate registers and processing the output regs. 6057 RegsForValue RetValRegs; 6058 6059 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6060 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6061 6062 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6063 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6064 6065 switch (OpInfo.Type) { 6066 case InlineAsm::isOutput: { 6067 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6068 OpInfo.ConstraintType != TargetLowering::C_Register) { 6069 // Memory output, or 'other' output (e.g. 'X' constraint). 6070 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6071 6072 // Add information to the INLINEASM node to know about this output. 6073 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6074 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6075 TLI.getPointerTy())); 6076 AsmNodeOperands.push_back(OpInfo.CallOperand); 6077 break; 6078 } 6079 6080 // Otherwise, this is a register or register class output. 6081 6082 // Copy the output from the appropriate register. Find a register that 6083 // we can use. 6084 if (OpInfo.AssignedRegs.Regs.empty()) { 6085 LLVMContext &Ctx = *DAG.getContext(); 6086 Ctx.emitError(CS.getInstruction(), 6087 "couldn't allocate output register for constraint '" + 6088 Twine(OpInfo.ConstraintCode) + "'"); 6089 break; 6090 } 6091 6092 // If this is an indirect operand, store through the pointer after the 6093 // asm. 6094 if (OpInfo.isIndirect) { 6095 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6096 OpInfo.CallOperandVal)); 6097 } else { 6098 // This is the result value of the call. 6099 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6100 // Concatenate this output onto the outputs list. 6101 RetValRegs.append(OpInfo.AssignedRegs); 6102 } 6103 6104 // Add information to the INLINEASM node to know that this register is 6105 // set. 6106 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6107 InlineAsm::Kind_RegDefEarlyClobber : 6108 InlineAsm::Kind_RegDef, 6109 false, 6110 0, 6111 DAG, 6112 AsmNodeOperands); 6113 break; 6114 } 6115 case InlineAsm::isInput: { 6116 SDValue InOperandVal = OpInfo.CallOperand; 6117 6118 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6119 // If this is required to match an output register we have already set, 6120 // just use its register. 6121 unsigned OperandNo = OpInfo.getMatchedOperand(); 6122 6123 // Scan until we find the definition we already emitted of this operand. 6124 // When we find it, create a RegsForValue operand. 6125 unsigned CurOp = InlineAsm::Op_FirstOperand; 6126 for (; OperandNo; --OperandNo) { 6127 // Advance to the next operand. 6128 unsigned OpFlag = 6129 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6130 assert((InlineAsm::isRegDefKind(OpFlag) || 6131 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6132 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6133 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6134 } 6135 6136 unsigned OpFlag = 6137 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6138 if (InlineAsm::isRegDefKind(OpFlag) || 6139 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6140 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6141 if (OpInfo.isIndirect) { 6142 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6143 LLVMContext &Ctx = *DAG.getContext(); 6144 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6145 " don't know how to handle tied " 6146 "indirect register inputs"); 6147 } 6148 6149 RegsForValue MatchedRegs; 6150 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6151 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6152 MatchedRegs.RegVTs.push_back(RegVT); 6153 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6154 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6155 i != e; ++i) 6156 MatchedRegs.Regs.push_back 6157 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6158 6159 // Use the produced MatchedRegs object to 6160 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6161 Chain, &Flag); 6162 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6163 true, OpInfo.getMatchedOperand(), 6164 DAG, AsmNodeOperands); 6165 break; 6166 } 6167 6168 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6169 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6170 "Unexpected number of operands"); 6171 // Add information to the INLINEASM node to know about this input. 6172 // See InlineAsm.h isUseOperandTiedToDef. 6173 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6174 OpInfo.getMatchedOperand()); 6175 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6176 TLI.getPointerTy())); 6177 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6178 break; 6179 } 6180 6181 // Treat indirect 'X' constraint as memory. 6182 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6183 OpInfo.isIndirect) 6184 OpInfo.ConstraintType = TargetLowering::C_Memory; 6185 6186 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6187 std::vector<SDValue> Ops; 6188 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6189 Ops, DAG); 6190 if (Ops.empty()) { 6191 LLVMContext &Ctx = *DAG.getContext(); 6192 Ctx.emitError(CS.getInstruction(), 6193 "invalid operand for inline asm constraint '" + 6194 Twine(OpInfo.ConstraintCode) + "'"); 6195 break; 6196 } 6197 6198 // Add information to the INLINEASM node to know about this input. 6199 unsigned ResOpType = 6200 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6201 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6202 TLI.getPointerTy())); 6203 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6204 break; 6205 } 6206 6207 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6208 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6209 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6210 "Memory operands expect pointer values"); 6211 6212 // Add information to the INLINEASM node to know about this input. 6213 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6214 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6215 TLI.getPointerTy())); 6216 AsmNodeOperands.push_back(InOperandVal); 6217 break; 6218 } 6219 6220 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6221 OpInfo.ConstraintType == TargetLowering::C_Register) && 6222 "Unknown constraint type!"); 6223 6224 // TODO: Support this. 6225 if (OpInfo.isIndirect) { 6226 LLVMContext &Ctx = *DAG.getContext(); 6227 Ctx.emitError(CS.getInstruction(), 6228 "Don't know how to handle indirect register inputs yet " 6229 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6230 break; 6231 } 6232 6233 // Copy the input into the appropriate registers. 6234 if (OpInfo.AssignedRegs.Regs.empty()) { 6235 LLVMContext &Ctx = *DAG.getContext(); 6236 Ctx.emitError(CS.getInstruction(), 6237 "couldn't allocate input reg for constraint '" + 6238 Twine(OpInfo.ConstraintCode) + "'"); 6239 break; 6240 } 6241 6242 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6243 Chain, &Flag); 6244 6245 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6246 DAG, AsmNodeOperands); 6247 break; 6248 } 6249 case InlineAsm::isClobber: { 6250 // Add the clobbered value to the operand list, so that the register 6251 // allocator is aware that the physreg got clobbered. 6252 if (!OpInfo.AssignedRegs.Regs.empty()) 6253 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6254 false, 0, DAG, 6255 AsmNodeOperands); 6256 break; 6257 } 6258 } 6259 } 6260 6261 // Finish up input operands. Set the input chain and add the flag last. 6262 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6263 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6264 6265 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6266 DAG.getVTList(MVT::Other, MVT::Glue), 6267 &AsmNodeOperands[0], AsmNodeOperands.size()); 6268 Flag = Chain.getValue(1); 6269 6270 // If this asm returns a register value, copy the result from that register 6271 // and set it as the value of the call. 6272 if (!RetValRegs.Regs.empty()) { 6273 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6274 Chain, &Flag); 6275 6276 // FIXME: Why don't we do this for inline asms with MRVs? 6277 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6278 EVT ResultType = TLI.getValueType(CS.getType()); 6279 6280 // If any of the results of the inline asm is a vector, it may have the 6281 // wrong width/num elts. This can happen for register classes that can 6282 // contain multiple different value types. The preg or vreg allocated may 6283 // not have the same VT as was expected. Convert it to the right type 6284 // with bit_convert. 6285 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6286 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6287 ResultType, Val); 6288 6289 } else if (ResultType != Val.getValueType() && 6290 ResultType.isInteger() && Val.getValueType().isInteger()) { 6291 // If a result value was tied to an input value, the computed result may 6292 // have a wider width than the expected result. Extract the relevant 6293 // portion. 6294 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6295 } 6296 6297 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6298 } 6299 6300 setValue(CS.getInstruction(), Val); 6301 // Don't need to use this as a chain in this case. 6302 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6303 return; 6304 } 6305 6306 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6307 6308 // Process indirect outputs, first output all of the flagged copies out of 6309 // physregs. 6310 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6311 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6312 const Value *Ptr = IndirectStoresToEmit[i].second; 6313 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6314 Chain, &Flag); 6315 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6316 } 6317 6318 // Emit the non-flagged stores from the physregs. 6319 SmallVector<SDValue, 8> OutChains; 6320 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6321 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6322 StoresToEmit[i].first, 6323 getValue(StoresToEmit[i].second), 6324 MachinePointerInfo(StoresToEmit[i].second), 6325 false, false, 0); 6326 OutChains.push_back(Val); 6327 } 6328 6329 if (!OutChains.empty()) 6330 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6331 &OutChains[0], OutChains.size()); 6332 6333 DAG.setRoot(Chain); 6334 } 6335 6336 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6337 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6338 MVT::Other, getRoot(), 6339 getValue(I.getArgOperand(0)), 6340 DAG.getSrcValue(I.getArgOperand(0)))); 6341 } 6342 6343 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6344 const TargetData &TD = *TLI.getTargetData(); 6345 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6346 getRoot(), getValue(I.getOperand(0)), 6347 DAG.getSrcValue(I.getOperand(0)), 6348 TD.getABITypeAlignment(I.getType())); 6349 setValue(&I, V); 6350 DAG.setRoot(V.getValue(1)); 6351 } 6352 6353 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6354 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6355 MVT::Other, getRoot(), 6356 getValue(I.getArgOperand(0)), 6357 DAG.getSrcValue(I.getArgOperand(0)))); 6358 } 6359 6360 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6361 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6362 MVT::Other, getRoot(), 6363 getValue(I.getArgOperand(0)), 6364 getValue(I.getArgOperand(1)), 6365 DAG.getSrcValue(I.getArgOperand(0)), 6366 DAG.getSrcValue(I.getArgOperand(1)))); 6367 } 6368 6369 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6370 /// implementation, which just calls LowerCall. 6371 /// FIXME: When all targets are 6372 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6373 std::pair<SDValue, SDValue> 6374 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6375 // Handle all of the outgoing arguments. 6376 CLI.Outs.clear(); 6377 CLI.OutVals.clear(); 6378 ArgListTy &Args = CLI.Args; 6379 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6380 SmallVector<EVT, 4> ValueVTs; 6381 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6382 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6383 Value != NumValues; ++Value) { 6384 EVT VT = ValueVTs[Value]; 6385 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6386 SDValue Op = SDValue(Args[i].Node.getNode(), 6387 Args[i].Node.getResNo() + Value); 6388 ISD::ArgFlagsTy Flags; 6389 unsigned OriginalAlignment = 6390 getTargetData()->getABITypeAlignment(ArgTy); 6391 6392 if (Args[i].isZExt) 6393 Flags.setZExt(); 6394 if (Args[i].isSExt) 6395 Flags.setSExt(); 6396 if (Args[i].isInReg) 6397 Flags.setInReg(); 6398 if (Args[i].isSRet) 6399 Flags.setSRet(); 6400 if (Args[i].isByVal) { 6401 Flags.setByVal(); 6402 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6403 Type *ElementTy = Ty->getElementType(); 6404 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6405 // For ByVal, alignment should come from FE. BE will guess if this 6406 // info is not there but there are cases it cannot get right. 6407 unsigned FrameAlign; 6408 if (Args[i].Alignment) 6409 FrameAlign = Args[i].Alignment; 6410 else 6411 FrameAlign = getByValTypeAlignment(ElementTy); 6412 Flags.setByValAlign(FrameAlign); 6413 } 6414 if (Args[i].isNest) 6415 Flags.setNest(); 6416 Flags.setOrigAlign(OriginalAlignment); 6417 6418 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6419 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6420 SmallVector<SDValue, 4> Parts(NumParts); 6421 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6422 6423 if (Args[i].isSExt) 6424 ExtendKind = ISD::SIGN_EXTEND; 6425 else if (Args[i].isZExt) 6426 ExtendKind = ISD::ZERO_EXTEND; 6427 6428 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6429 PartVT, ExtendKind); 6430 6431 for (unsigned j = 0; j != NumParts; ++j) { 6432 // if it isn't first piece, alignment must be 1 6433 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6434 i < CLI.NumFixedArgs); 6435 if (NumParts > 1 && j == 0) 6436 MyFlags.Flags.setSplit(); 6437 else if (j != 0) 6438 MyFlags.Flags.setOrigAlign(1); 6439 6440 CLI.Outs.push_back(MyFlags); 6441 CLI.OutVals.push_back(Parts[j]); 6442 } 6443 } 6444 } 6445 6446 // Handle the incoming return values from the call. 6447 CLI.Ins.clear(); 6448 SmallVector<EVT, 4> RetTys; 6449 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6450 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6451 EVT VT = RetTys[I]; 6452 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6453 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6454 for (unsigned i = 0; i != NumRegs; ++i) { 6455 ISD::InputArg MyFlags; 6456 MyFlags.VT = RegisterVT.getSimpleVT(); 6457 MyFlags.Used = CLI.IsReturnValueUsed; 6458 if (CLI.RetSExt) 6459 MyFlags.Flags.setSExt(); 6460 if (CLI.RetZExt) 6461 MyFlags.Flags.setZExt(); 6462 if (CLI.IsInReg) 6463 MyFlags.Flags.setInReg(); 6464 CLI.Ins.push_back(MyFlags); 6465 } 6466 } 6467 6468 SmallVector<SDValue, 4> InVals; 6469 CLI.Chain = LowerCall(CLI, InVals); 6470 6471 // Verify that the target's LowerCall behaved as expected. 6472 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6473 "LowerCall didn't return a valid chain!"); 6474 assert((!CLI.IsTailCall || InVals.empty()) && 6475 "LowerCall emitted a return value for a tail call!"); 6476 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6477 "LowerCall didn't emit the correct number of values!"); 6478 6479 // For a tail call, the return value is merely live-out and there aren't 6480 // any nodes in the DAG representing it. Return a special value to 6481 // indicate that a tail call has been emitted and no more Instructions 6482 // should be processed in the current block. 6483 if (CLI.IsTailCall) { 6484 CLI.DAG.setRoot(CLI.Chain); 6485 return std::make_pair(SDValue(), SDValue()); 6486 } 6487 6488 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6489 assert(InVals[i].getNode() && 6490 "LowerCall emitted a null value!"); 6491 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6492 "LowerCall emitted a value with the wrong type!"); 6493 }); 6494 6495 // Collect the legal value parts into potentially illegal values 6496 // that correspond to the original function's return values. 6497 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6498 if (CLI.RetSExt) 6499 AssertOp = ISD::AssertSext; 6500 else if (CLI.RetZExt) 6501 AssertOp = ISD::AssertZext; 6502 SmallVector<SDValue, 4> ReturnValues; 6503 unsigned CurReg = 0; 6504 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6505 EVT VT = RetTys[I]; 6506 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6507 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6508 6509 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6510 NumRegs, RegisterVT, VT, 6511 AssertOp)); 6512 CurReg += NumRegs; 6513 } 6514 6515 // For a function returning void, there is no return value. We can't create 6516 // such a node, so we just return a null return value in that case. In 6517 // that case, nothing will actually look at the value. 6518 if (ReturnValues.empty()) 6519 return std::make_pair(SDValue(), CLI.Chain); 6520 6521 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6522 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6523 &ReturnValues[0], ReturnValues.size()); 6524 return std::make_pair(Res, CLI.Chain); 6525 } 6526 6527 void TargetLowering::LowerOperationWrapper(SDNode *N, 6528 SmallVectorImpl<SDValue> &Results, 6529 SelectionDAG &DAG) const { 6530 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6531 if (Res.getNode()) 6532 Results.push_back(Res); 6533 } 6534 6535 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6536 llvm_unreachable("LowerOperation not implemented for this target!"); 6537 } 6538 6539 void 6540 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6541 SDValue Op = getNonRegisterValue(V); 6542 assert((Op.getOpcode() != ISD::CopyFromReg || 6543 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6544 "Copy from a reg to the same reg!"); 6545 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6546 6547 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6548 SDValue Chain = DAG.getEntryNode(); 6549 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6550 PendingExports.push_back(Chain); 6551 } 6552 6553 #include "llvm/CodeGen/SelectionDAGISel.h" 6554 6555 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6556 /// entry block, return true. This includes arguments used by switches, since 6557 /// the switch may expand into multiple basic blocks. 6558 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6559 // With FastISel active, we may be splitting blocks, so force creation 6560 // of virtual registers for all non-dead arguments. 6561 if (FastISel) 6562 return A->use_empty(); 6563 6564 const BasicBlock *Entry = A->getParent()->begin(); 6565 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6566 UI != E; ++UI) { 6567 const User *U = *UI; 6568 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6569 return false; // Use not in entry block. 6570 } 6571 return true; 6572 } 6573 6574 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6575 // If this is the entry block, emit arguments. 6576 const Function &F = *LLVMBB->getParent(); 6577 SelectionDAG &DAG = SDB->DAG; 6578 DebugLoc dl = SDB->getCurDebugLoc(); 6579 const TargetData *TD = TLI.getTargetData(); 6580 SmallVector<ISD::InputArg, 16> Ins; 6581 6582 // Check whether the function can return without sret-demotion. 6583 SmallVector<ISD::OutputArg, 4> Outs; 6584 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6585 Outs, TLI); 6586 6587 if (!FuncInfo->CanLowerReturn) { 6588 // Put in an sret pointer parameter before all the other parameters. 6589 SmallVector<EVT, 1> ValueVTs; 6590 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6591 6592 // NOTE: Assuming that a pointer will never break down to more than one VT 6593 // or one register. 6594 ISD::ArgFlagsTy Flags; 6595 Flags.setSRet(); 6596 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6597 ISD::InputArg RetArg(Flags, RegisterVT, true); 6598 Ins.push_back(RetArg); 6599 } 6600 6601 // Set up the incoming argument description vector. 6602 unsigned Idx = 1; 6603 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6604 I != E; ++I, ++Idx) { 6605 SmallVector<EVT, 4> ValueVTs; 6606 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6607 bool isArgValueUsed = !I->use_empty(); 6608 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6609 Value != NumValues; ++Value) { 6610 EVT VT = ValueVTs[Value]; 6611 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6612 ISD::ArgFlagsTy Flags; 6613 unsigned OriginalAlignment = 6614 TD->getABITypeAlignment(ArgTy); 6615 6616 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6617 Flags.setZExt(); 6618 if (F.paramHasAttr(Idx, Attribute::SExt)) 6619 Flags.setSExt(); 6620 if (F.paramHasAttr(Idx, Attribute::InReg)) 6621 Flags.setInReg(); 6622 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6623 Flags.setSRet(); 6624 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6625 Flags.setByVal(); 6626 PointerType *Ty = cast<PointerType>(I->getType()); 6627 Type *ElementTy = Ty->getElementType(); 6628 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6629 // For ByVal, alignment should be passed from FE. BE will guess if 6630 // this info is not there but there are cases it cannot get right. 6631 unsigned FrameAlign; 6632 if (F.getParamAlignment(Idx)) 6633 FrameAlign = F.getParamAlignment(Idx); 6634 else 6635 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6636 Flags.setByValAlign(FrameAlign); 6637 } 6638 if (F.paramHasAttr(Idx, Attribute::Nest)) 6639 Flags.setNest(); 6640 Flags.setOrigAlign(OriginalAlignment); 6641 6642 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6643 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6644 for (unsigned i = 0; i != NumRegs; ++i) { 6645 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6646 if (NumRegs > 1 && i == 0) 6647 MyFlags.Flags.setSplit(); 6648 // if it isn't first piece, alignment must be 1 6649 else if (i > 0) 6650 MyFlags.Flags.setOrigAlign(1); 6651 Ins.push_back(MyFlags); 6652 } 6653 } 6654 } 6655 6656 // Call the target to set up the argument values. 6657 SmallVector<SDValue, 8> InVals; 6658 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6659 F.isVarArg(), Ins, 6660 dl, DAG, InVals); 6661 6662 // Verify that the target's LowerFormalArguments behaved as expected. 6663 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6664 "LowerFormalArguments didn't return a valid chain!"); 6665 assert(InVals.size() == Ins.size() && 6666 "LowerFormalArguments didn't emit the correct number of values!"); 6667 DEBUG({ 6668 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6669 assert(InVals[i].getNode() && 6670 "LowerFormalArguments emitted a null value!"); 6671 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6672 "LowerFormalArguments emitted a value with the wrong type!"); 6673 } 6674 }); 6675 6676 // Update the DAG with the new chain value resulting from argument lowering. 6677 DAG.setRoot(NewRoot); 6678 6679 // Set up the argument values. 6680 unsigned i = 0; 6681 Idx = 1; 6682 if (!FuncInfo->CanLowerReturn) { 6683 // Create a virtual register for the sret pointer, and put in a copy 6684 // from the sret argument into it. 6685 SmallVector<EVT, 1> ValueVTs; 6686 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6687 EVT VT = ValueVTs[0]; 6688 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6689 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6690 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6691 RegVT, VT, AssertOp); 6692 6693 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6694 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6695 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6696 FuncInfo->DemoteRegister = SRetReg; 6697 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6698 SRetReg, ArgValue); 6699 DAG.setRoot(NewRoot); 6700 6701 // i indexes lowered arguments. Bump it past the hidden sret argument. 6702 // Idx indexes LLVM arguments. Don't touch it. 6703 ++i; 6704 } 6705 6706 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6707 ++I, ++Idx) { 6708 SmallVector<SDValue, 4> ArgValues; 6709 SmallVector<EVT, 4> ValueVTs; 6710 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6711 unsigned NumValues = ValueVTs.size(); 6712 6713 // If this argument is unused then remember its value. It is used to generate 6714 // debugging information. 6715 if (I->use_empty() && NumValues) 6716 SDB->setUnusedArgValue(I, InVals[i]); 6717 6718 for (unsigned Val = 0; Val != NumValues; ++Val) { 6719 EVT VT = ValueVTs[Val]; 6720 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6721 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6722 6723 if (!I->use_empty()) { 6724 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6725 if (F.paramHasAttr(Idx, Attribute::SExt)) 6726 AssertOp = ISD::AssertSext; 6727 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6728 AssertOp = ISD::AssertZext; 6729 6730 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6731 NumParts, PartVT, VT, 6732 AssertOp)); 6733 } 6734 6735 i += NumParts; 6736 } 6737 6738 // We don't need to do anything else for unused arguments. 6739 if (ArgValues.empty()) 6740 continue; 6741 6742 // Note down frame index. 6743 if (FrameIndexSDNode *FI = 6744 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6745 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6746 6747 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6748 SDB->getCurDebugLoc()); 6749 6750 SDB->setValue(I, Res); 6751 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6752 if (LoadSDNode *LNode = 6753 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6754 if (FrameIndexSDNode *FI = 6755 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6756 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6757 } 6758 6759 // If this argument is live outside of the entry block, insert a copy from 6760 // wherever we got it to the vreg that other BB's will reference it as. 6761 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6762 // If we can, though, try to skip creating an unnecessary vreg. 6763 // FIXME: This isn't very clean... it would be nice to make this more 6764 // general. It's also subtly incompatible with the hacks FastISel 6765 // uses with vregs. 6766 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6767 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6768 FuncInfo->ValueMap[I] = Reg; 6769 continue; 6770 } 6771 } 6772 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6773 FuncInfo->InitializeRegForValue(I); 6774 SDB->CopyToExportRegsIfNeeded(I); 6775 } 6776 } 6777 6778 assert(i == InVals.size() && "Argument register count mismatch!"); 6779 6780 // Finally, if the target has anything special to do, allow it to do so. 6781 // FIXME: this should insert code into the DAG! 6782 EmitFunctionEntryCode(); 6783 } 6784 6785 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6786 /// ensure constants are generated when needed. Remember the virtual registers 6787 /// that need to be added to the Machine PHI nodes as input. We cannot just 6788 /// directly add them, because expansion might result in multiple MBB's for one 6789 /// BB. As such, the start of the BB might correspond to a different MBB than 6790 /// the end. 6791 /// 6792 void 6793 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6794 const TerminatorInst *TI = LLVMBB->getTerminator(); 6795 6796 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6797 6798 // Check successor nodes' PHI nodes that expect a constant to be available 6799 // from this block. 6800 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6801 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6802 if (!isa<PHINode>(SuccBB->begin())) continue; 6803 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6804 6805 // If this terminator has multiple identical successors (common for 6806 // switches), only handle each succ once. 6807 if (!SuccsHandled.insert(SuccMBB)) continue; 6808 6809 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6810 6811 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6812 // nodes and Machine PHI nodes, but the incoming operands have not been 6813 // emitted yet. 6814 for (BasicBlock::const_iterator I = SuccBB->begin(); 6815 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6816 // Ignore dead phi's. 6817 if (PN->use_empty()) continue; 6818 6819 // Skip empty types 6820 if (PN->getType()->isEmptyTy()) 6821 continue; 6822 6823 unsigned Reg; 6824 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6825 6826 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6827 unsigned &RegOut = ConstantsOut[C]; 6828 if (RegOut == 0) { 6829 RegOut = FuncInfo.CreateRegs(C->getType()); 6830 CopyValueToVirtualRegister(C, RegOut); 6831 } 6832 Reg = RegOut; 6833 } else { 6834 DenseMap<const Value *, unsigned>::iterator I = 6835 FuncInfo.ValueMap.find(PHIOp); 6836 if (I != FuncInfo.ValueMap.end()) 6837 Reg = I->second; 6838 else { 6839 assert(isa<AllocaInst>(PHIOp) && 6840 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6841 "Didn't codegen value into a register!??"); 6842 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6843 CopyValueToVirtualRegister(PHIOp, Reg); 6844 } 6845 } 6846 6847 // Remember that this register needs to added to the machine PHI node as 6848 // the input for this MBB. 6849 SmallVector<EVT, 4> ValueVTs; 6850 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6851 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6852 EVT VT = ValueVTs[vti]; 6853 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6854 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6855 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6856 Reg += NumRegisters; 6857 } 6858 } 6859 } 6860 ConstantsOut.clear(); 6861 } 6862