1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "FunctionLoweringInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/GCStrategy.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineJumpTableInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/PseudoSourceValue.h" 43 #include "llvm/CodeGen/SelectionDAG.h" 44 #include "llvm/Analysis/DebugInfo.h" 45 #include "llvm/Target/TargetRegisterInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameInfo.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 namespace { 73 /// RegsForValue - This struct represents the registers (physical or virtual) 74 /// that a particular set of values is assigned, and the type information 75 /// about the value. The most common situation is to represent one value at a 76 /// time, but struct or array values are handled element-wise as multiple 77 /// values. The splitting of aggregates is performed recursively, so that we 78 /// never have aggregate-typed registers. The values at this point do not 79 /// necessarily have legal types, so each value may require one or more 80 /// registers of some legal type. 81 /// 82 struct RegsForValue { 83 /// TLI - The TargetLowering object. 84 /// 85 const TargetLowering *TLI; 86 87 /// ValueVTs - The value types of the values, which may not be legal, and 88 /// may need be promoted or synthesized from one or more registers. 89 /// 90 SmallVector<EVT, 4> ValueVTs; 91 92 /// RegVTs - The value types of the registers. This is the same size as 93 /// ValueVTs and it records, for each value, what the type of the assigned 94 /// register or registers are. (Individual values are never synthesized 95 /// from more than one type of register.) 96 /// 97 /// With virtual registers, the contents of RegVTs is redundant with TLI's 98 /// getRegisterType member function, however when with physical registers 99 /// it is necessary to have a separate record of the types. 100 /// 101 SmallVector<EVT, 4> RegVTs; 102 103 /// Regs - This list holds the registers assigned to the values. 104 /// Each legal or promoted value requires one register, and each 105 /// expanded value requires multiple registers. 106 /// 107 SmallVector<unsigned, 4> Regs; 108 109 RegsForValue() : TLI(0) {} 110 111 RegsForValue(const TargetLowering &tli, 112 const SmallVector<unsigned, 4> ®s, 113 EVT regvt, EVT valuevt) 114 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 115 RegsForValue(const TargetLowering &tli, 116 const SmallVector<unsigned, 4> ®s, 117 const SmallVector<EVT, 4> ®vts, 118 const SmallVector<EVT, 4> &valuevts) 119 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 120 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 121 unsigned Reg, const Type *Ty) : TLI(&tli) { 122 ComputeValueVTs(tli, Ty, ValueVTs); 123 124 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 125 EVT ValueVT = ValueVTs[Value]; 126 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 127 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 128 for (unsigned i = 0; i != NumRegs; ++i) 129 Regs.push_back(Reg + i); 130 RegVTs.push_back(RegisterVT); 131 Reg += NumRegs; 132 } 133 } 134 135 /// areValueTypesLegal - Return true if types of all the values are legal. 136 bool areValueTypesLegal() { 137 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 138 EVT RegisterVT = RegVTs[Value]; 139 if (!TLI->isTypeLegal(RegisterVT)) 140 return false; 141 } 142 return true; 143 } 144 145 146 /// append - Add the specified values to this one. 147 void append(const RegsForValue &RHS) { 148 TLI = RHS.TLI; 149 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 150 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 151 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 152 } 153 154 155 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 156 /// this value and returns the result as a ValueVTs value. This uses 157 /// Chain/Flag as the input and updates them for the output Chain/Flag. 158 /// If the Flag pointer is NULL, no flag is used. 159 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 160 SDValue &Chain, SDValue *Flag) const; 161 162 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 163 /// specified value into the registers specified by this object. This uses 164 /// Chain/Flag as the input and updates them for the output Chain/Flag. 165 /// If the Flag pointer is NULL, no flag is used. 166 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 167 SDValue &Chain, SDValue *Flag) const; 168 169 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 170 /// operand list. This adds the code marker, matching input operand index 171 /// (if applicable), and includes the number of values added into it. 172 void AddInlineAsmOperands(unsigned Kind, 173 bool HasMatching, unsigned MatchingIdx, 174 SelectionDAG &DAG, 175 std::vector<SDValue> &Ops) const; 176 }; 177 } 178 179 /// getCopyFromParts - Create a value that contains the specified legal parts 180 /// combined into the value they represent. If the parts combine to a type 181 /// larger then ValueVT then AssertOp can be used to specify whether the extra 182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 183 /// (ISD::AssertSext). 184 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 185 const SDValue *Parts, 186 unsigned NumParts, EVT PartVT, EVT ValueVT, 187 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 188 assert(NumParts > 0 && "No parts to assemble!"); 189 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 190 SDValue Val = Parts[0]; 191 192 if (NumParts > 1) { 193 // Assemble the value from multiple parts. 194 if (!ValueVT.isVector() && ValueVT.isInteger()) { 195 unsigned PartBits = PartVT.getSizeInBits(); 196 unsigned ValueBits = ValueVT.getSizeInBits(); 197 198 // Assemble the power of 2 part. 199 unsigned RoundParts = NumParts & (NumParts - 1) ? 200 1 << Log2_32(NumParts) : NumParts; 201 unsigned RoundBits = PartBits * RoundParts; 202 EVT RoundVT = RoundBits == ValueBits ? 203 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 204 SDValue Lo, Hi; 205 206 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 207 208 if (RoundParts > 2) { 209 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2, 210 PartVT, HalfVT); 211 Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2, 212 RoundParts / 2, PartVT, HalfVT); 213 } else { 214 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 215 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 216 } 217 218 if (TLI.isBigEndian()) 219 std::swap(Lo, Hi); 220 221 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 222 223 if (RoundParts < NumParts) { 224 // Assemble the trailing non-power-of-2 part. 225 unsigned OddParts = NumParts - RoundParts; 226 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 227 Hi = getCopyFromParts(DAG, dl, 228 Parts + RoundParts, OddParts, PartVT, OddVT); 229 230 // Combine the round and odd parts. 231 Lo = Val; 232 if (TLI.isBigEndian()) 233 std::swap(Lo, Hi); 234 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 235 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 236 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 237 DAG.getConstant(Lo.getValueType().getSizeInBits(), 238 TLI.getPointerTy())); 239 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 240 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 241 } 242 } else if (ValueVT.isVector()) { 243 // Handle a multi-element vector. 244 EVT IntermediateVT, RegisterVT; 245 unsigned NumIntermediates; 246 unsigned NumRegs = 247 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 248 NumIntermediates, RegisterVT); 249 assert(NumRegs == NumParts 250 && "Part count doesn't match vector breakdown!"); 251 NumParts = NumRegs; // Silence a compiler warning. 252 assert(RegisterVT == PartVT 253 && "Part type doesn't match vector breakdown!"); 254 assert(RegisterVT == Parts[0].getValueType() && 255 "Part type doesn't match part!"); 256 257 // Assemble the parts into intermediate operands. 258 SmallVector<SDValue, 8> Ops(NumIntermediates); 259 if (NumIntermediates == NumParts) { 260 // If the register was not expanded, truncate or copy the value, 261 // as appropriate. 262 for (unsigned i = 0; i != NumParts; ++i) 263 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 264 PartVT, IntermediateVT); 265 } else if (NumParts > 0) { 266 // If the intermediate type was expanded, build the intermediate 267 // operands from the parts. 268 assert(NumParts % NumIntermediates == 0 && 269 "Must expand into a divisible number of parts!"); 270 unsigned Factor = NumParts / NumIntermediates; 271 for (unsigned i = 0; i != NumIntermediates; ++i) 272 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 273 PartVT, IntermediateVT); 274 } 275 276 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 277 // intermediate operands. 278 Val = DAG.getNode(IntermediateVT.isVector() ? 279 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 280 ValueVT, &Ops[0], NumIntermediates); 281 } else if (PartVT.isFloatingPoint()) { 282 // FP split into multiple FP parts (for ppcf128) 283 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 284 "Unexpected split"); 285 SDValue Lo, Hi; 286 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 287 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 288 if (TLI.isBigEndian()) 289 std::swap(Lo, Hi); 290 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 291 } else { 292 // FP split into integer parts (soft fp) 293 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 294 !PartVT.isVector() && "Unexpected split"); 295 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 297 } 298 } 299 300 // There is now one part, held in Val. Correct it to match ValueVT. 301 PartVT = Val.getValueType(); 302 303 if (PartVT == ValueVT) 304 return Val; 305 306 if (PartVT.isVector()) { 307 assert(ValueVT.isVector() && "Unknown vector conversion!"); 308 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 309 } 310 311 if (ValueVT.isVector()) { 312 assert(ValueVT.getVectorElementType() == PartVT && 313 ValueVT.getVectorNumElements() == 1 && 314 "Only trivial scalar-to-vector conversions should get here!"); 315 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 316 } 317 318 if (PartVT.isInteger() && 319 ValueVT.isInteger()) { 320 if (ValueVT.bitsLT(PartVT)) { 321 // For a truncate, see if we have any information to 322 // indicate whether the truncated bits will always be 323 // zero or sign-extension. 324 if (AssertOp != ISD::DELETED_NODE) 325 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 326 DAG.getValueType(ValueVT)); 327 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 328 } else { 329 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 330 } 331 } 332 333 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 334 if (ValueVT.bitsLT(Val.getValueType())) { 335 // FP_ROUND's are always exact here. 336 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 337 DAG.getIntPtrConstant(1)); 338 } 339 340 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 341 } 342 343 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 344 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 345 346 llvm_unreachable("Unknown mismatch!"); 347 return SDValue(); 348 } 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 EVT PartVT, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 EVT PtrVT = TLI.getPointerTy(); 359 EVT ValueVT = Val.getValueType(); 360 unsigned PartBits = PartVT.getSizeInBits(); 361 unsigned OrigNumParts = NumParts; 362 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 363 364 if (!NumParts) 365 return; 366 367 if (!ValueVT.isVector()) { 368 if (PartVT == ValueVT) { 369 assert(NumParts == 1 && "No-op copy with multiple parts!"); 370 Parts[0] = Val; 371 return; 372 } 373 374 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 375 // If the parts cover more bits than the value has, promote the value. 376 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 377 assert(NumParts == 1 && "Do not know what to promote to!"); 378 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 379 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 380 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 381 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 382 } else { 383 llvm_unreachable("Unknown mismatch!"); 384 } 385 } else if (PartBits == ValueVT.getSizeInBits()) { 386 // Different types of the same size. 387 assert(NumParts == 1 && PartVT != ValueVT); 388 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 389 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 390 // If the parts cover less bits than value has, truncate the value. 391 if (PartVT.isInteger() && ValueVT.isInteger()) { 392 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 393 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 394 } else { 395 llvm_unreachable("Unknown mismatch!"); 396 } 397 } 398 399 // The value may have changed - recompute ValueVT. 400 ValueVT = Val.getValueType(); 401 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 402 "Failed to tile the value with PartVT!"); 403 404 if (NumParts == 1) { 405 assert(PartVT == ValueVT && "Type conversion failed!"); 406 Parts[0] = Val; 407 return; 408 } 409 410 // Expand the value into multiple parts. 411 if (NumParts & (NumParts - 1)) { 412 // The number of parts is not a power of 2. Split off and copy the tail. 413 assert(PartVT.isInteger() && ValueVT.isInteger() && 414 "Do not know what to expand to!"); 415 unsigned RoundParts = 1 << Log2_32(NumParts); 416 unsigned RoundBits = RoundParts * PartBits; 417 unsigned OddParts = NumParts - RoundParts; 418 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 419 DAG.getConstant(RoundBits, 420 TLI.getPointerTy())); 421 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, 422 OddParts, PartVT); 423 424 if (TLI.isBigEndian()) 425 // The odd parts were reversed by getCopyToParts - unreverse them. 426 std::reverse(Parts + RoundParts, Parts + NumParts); 427 428 NumParts = RoundParts; 429 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 430 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 431 } 432 433 // The number of parts is a power of 2. Repeatedly bisect the value using 434 // EXTRACT_ELEMENT. 435 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 436 EVT::getIntegerVT(*DAG.getContext(), 437 ValueVT.getSizeInBits()), 438 Val); 439 440 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 441 for (unsigned i = 0; i < NumParts; i += StepSize) { 442 unsigned ThisBits = StepSize * PartBits / 2; 443 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 444 SDValue &Part0 = Parts[i]; 445 SDValue &Part1 = Parts[i+StepSize/2]; 446 447 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 448 ThisVT, Part0, 449 DAG.getConstant(1, PtrVT)); 450 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 451 ThisVT, Part0, 452 DAG.getConstant(0, PtrVT)); 453 454 if (ThisBits == PartBits && ThisVT != PartVT) { 455 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 456 PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 458 PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 466 return; 467 } 468 469 // Vector ValueVT. 470 if (NumParts == 1) { 471 if (PartVT != ValueVT) { 472 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 473 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 474 } else { 475 assert(ValueVT.getVectorElementType() == PartVT && 476 ValueVT.getVectorNumElements() == 1 && 477 "Only trivial vector-to-scalar conversions should get here!"); 478 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 479 PartVT, Val, 480 DAG.getConstant(0, PtrVT)); 481 } 482 } 483 484 Parts[0] = Val; 485 return; 486 } 487 488 // Handle a multi-element vector. 489 EVT IntermediateVT, RegisterVT; 490 unsigned NumIntermediates; 491 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 492 IntermediateVT, NumIntermediates, RegisterVT); 493 unsigned NumElements = ValueVT.getVectorNumElements(); 494 495 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 496 NumParts = NumRegs; // Silence a compiler warning. 497 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 498 499 // Split the vector into intermediate operands. 500 SmallVector<SDValue, 8> Ops(NumIntermediates); 501 for (unsigned i = 0; i != NumIntermediates; ++i) { 502 if (IntermediateVT.isVector()) 503 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 504 IntermediateVT, Val, 505 DAG.getConstant(i * (NumElements / NumIntermediates), 506 PtrVT)); 507 else 508 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 509 IntermediateVT, Val, 510 DAG.getConstant(i, PtrVT)); 511 } 512 513 // Split the intermediate operands into legal parts. 514 if (NumParts == NumIntermediates) { 515 // If the register was not expanded, promote or copy the value, 516 // as appropriate. 517 for (unsigned i = 0; i != NumParts; ++i) 518 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 519 } else if (NumParts > 0) { 520 // If the intermediate type was expanded, split each the value into 521 // legal parts. 522 assert(NumParts % NumIntermediates == 0 && 523 "Must expand into a divisible number of parts!"); 524 unsigned Factor = NumParts / NumIntermediates; 525 for (unsigned i = 0; i != NumIntermediates; ++i) 526 getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT); 527 } 528 } 529 530 531 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 532 AA = &aa; 533 GFI = gfi; 534 TD = DAG.getTarget().getTargetData(); 535 } 536 537 /// clear - Clear out the current SelectionDAG and the associated 538 /// state and prepare this SelectionDAGBuilder object to be used 539 /// for a new block. This doesn't clear out information about 540 /// additional blocks that are needed to complete switch lowering 541 /// or PHI node updating; that information is cleared out as it is 542 /// consumed. 543 void SelectionDAGBuilder::clear() { 544 NodeMap.clear(); 545 PendingLoads.clear(); 546 PendingExports.clear(); 547 EdgeMapping.clear(); 548 DAG.clear(); 549 CurDebugLoc = DebugLoc(); 550 HasTailCall = false; 551 } 552 553 /// getRoot - Return the current virtual root of the Selection DAG, 554 /// flushing any PendingLoad items. This must be done before emitting 555 /// a store or any other node that may need to be ordered after any 556 /// prior load instructions. 557 /// 558 SDValue SelectionDAGBuilder::getRoot() { 559 if (PendingLoads.empty()) 560 return DAG.getRoot(); 561 562 if (PendingLoads.size() == 1) { 563 SDValue Root = PendingLoads[0]; 564 DAG.setRoot(Root); 565 PendingLoads.clear(); 566 return Root; 567 } 568 569 // Otherwise, we have to make a token factor node. 570 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 571 &PendingLoads[0], PendingLoads.size()); 572 PendingLoads.clear(); 573 DAG.setRoot(Root); 574 return Root; 575 } 576 577 /// getControlRoot - Similar to getRoot, but instead of flushing all the 578 /// PendingLoad items, flush all the PendingExports items. It is necessary 579 /// to do this before emitting a terminator instruction. 580 /// 581 SDValue SelectionDAGBuilder::getControlRoot() { 582 SDValue Root = DAG.getRoot(); 583 584 if (PendingExports.empty()) 585 return Root; 586 587 // Turn all of the CopyToReg chains into one factored node. 588 if (Root.getOpcode() != ISD::EntryToken) { 589 unsigned i = 0, e = PendingExports.size(); 590 for (; i != e; ++i) { 591 assert(PendingExports[i].getNode()->getNumOperands() > 1); 592 if (PendingExports[i].getNode()->getOperand(0) == Root) 593 break; // Don't add the root if we already indirectly depend on it. 594 } 595 596 if (i == e) 597 PendingExports.push_back(Root); 598 } 599 600 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 601 &PendingExports[0], 602 PendingExports.size()); 603 PendingExports.clear(); 604 DAG.setRoot(Root); 605 return Root; 606 } 607 608 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 609 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 610 DAG.AssignOrdering(Node, SDNodeOrder); 611 612 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 613 AssignOrderingToNode(Node->getOperand(I).getNode()); 614 } 615 616 void SelectionDAGBuilder::visit(const Instruction &I) { 617 visit(I.getOpcode(), I); 618 } 619 620 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 621 // Note: this doesn't use InstVisitor, because it has to work with 622 // ConstantExpr's in addition to instructions. 623 switch (Opcode) { 624 default: llvm_unreachable("Unknown instruction type encountered!"); 625 // Build the switch statement using the Instruction.def file. 626 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 627 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 628 #include "llvm/Instruction.def" 629 } 630 631 // Assign the ordering to the freshly created DAG nodes. 632 if (NodeMap.count(&I)) { 633 ++SDNodeOrder; 634 AssignOrderingToNode(getValue(&I).getNode()); 635 } 636 } 637 638 SDValue SelectionDAGBuilder::getValue(const Value *V) { 639 SDValue &N = NodeMap[V]; 640 if (N.getNode()) return N; 641 642 if (const Constant *C = dyn_cast<Constant>(V)) { 643 EVT VT = TLI.getValueType(V->getType(), true); 644 645 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 646 return N = DAG.getConstant(*CI, VT); 647 648 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 649 return N = DAG.getGlobalAddress(GV, VT); 650 651 if (isa<ConstantPointerNull>(C)) 652 return N = DAG.getConstant(0, TLI.getPointerTy()); 653 654 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 655 return N = DAG.getConstantFP(*CFP, VT); 656 657 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 658 return N = DAG.getUNDEF(VT); 659 660 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 661 visit(CE->getOpcode(), *CE); 662 SDValue N1 = NodeMap[V]; 663 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 664 return N1; 665 } 666 667 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 668 SmallVector<SDValue, 4> Constants; 669 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 670 OI != OE; ++OI) { 671 SDNode *Val = getValue(*OI).getNode(); 672 // If the operand is an empty aggregate, there are no values. 673 if (!Val) continue; 674 // Add each leaf value from the operand to the Constants list 675 // to form a flattened list of all the values. 676 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 677 Constants.push_back(SDValue(Val, i)); 678 } 679 680 return DAG.getMergeValues(&Constants[0], Constants.size(), 681 getCurDebugLoc()); 682 } 683 684 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 685 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 686 "Unknown struct or array constant!"); 687 688 SmallVector<EVT, 4> ValueVTs; 689 ComputeValueVTs(TLI, C->getType(), ValueVTs); 690 unsigned NumElts = ValueVTs.size(); 691 if (NumElts == 0) 692 return SDValue(); // empty struct 693 SmallVector<SDValue, 4> Constants(NumElts); 694 for (unsigned i = 0; i != NumElts; ++i) { 695 EVT EltVT = ValueVTs[i]; 696 if (isa<UndefValue>(C)) 697 Constants[i] = DAG.getUNDEF(EltVT); 698 else if (EltVT.isFloatingPoint()) 699 Constants[i] = DAG.getConstantFP(0, EltVT); 700 else 701 Constants[i] = DAG.getConstant(0, EltVT); 702 } 703 704 return DAG.getMergeValues(&Constants[0], NumElts, 705 getCurDebugLoc()); 706 } 707 708 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 709 return DAG.getBlockAddress(BA, VT); 710 711 const VectorType *VecTy = cast<VectorType>(V->getType()); 712 unsigned NumElements = VecTy->getNumElements(); 713 714 // Now that we know the number and type of the elements, get that number of 715 // elements into the Ops array based on what kind of constant it is. 716 SmallVector<SDValue, 16> Ops; 717 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 718 for (unsigned i = 0; i != NumElements; ++i) 719 Ops.push_back(getValue(CP->getOperand(i))); 720 } else { 721 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 722 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 723 724 SDValue Op; 725 if (EltVT.isFloatingPoint()) 726 Op = DAG.getConstantFP(0, EltVT); 727 else 728 Op = DAG.getConstant(0, EltVT); 729 Ops.assign(NumElements, Op); 730 } 731 732 // Create a BUILD_VECTOR node. 733 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 734 VT, &Ops[0], Ops.size()); 735 } 736 737 // If this is a static alloca, generate it as the frameindex instead of 738 // computation. 739 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 740 DenseMap<const AllocaInst*, int>::iterator SI = 741 FuncInfo.StaticAllocaMap.find(AI); 742 if (SI != FuncInfo.StaticAllocaMap.end()) 743 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 744 } 745 746 unsigned InReg = FuncInfo.ValueMap[V]; 747 assert(InReg && "Value not in map!"); 748 749 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 750 SDValue Chain = DAG.getEntryNode(); 751 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 752 } 753 754 /// Get the EVTs and ArgFlags collections that represent the legalized return 755 /// type of the given function. This does not require a DAG or a return value, 756 /// and is suitable for use before any DAGs for the function are constructed. 757 static void getReturnInfo(const Type* ReturnType, 758 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 759 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 760 const TargetLowering &TLI, 761 SmallVectorImpl<uint64_t> *Offsets = 0) { 762 SmallVector<EVT, 4> ValueVTs; 763 ComputeValueVTs(TLI, ReturnType, ValueVTs); 764 unsigned NumValues = ValueVTs.size(); 765 if (NumValues == 0) return; 766 unsigned Offset = 0; 767 768 for (unsigned j = 0, f = NumValues; j != f; ++j) { 769 EVT VT = ValueVTs[j]; 770 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 771 772 if (attr & Attribute::SExt) 773 ExtendKind = ISD::SIGN_EXTEND; 774 else if (attr & Attribute::ZExt) 775 ExtendKind = ISD::ZERO_EXTEND; 776 777 // FIXME: C calling convention requires the return type to be promoted to 778 // at least 32-bit. But this is not necessary for non-C calling 779 // conventions. The frontend should mark functions whose return values 780 // require promoting with signext or zeroext attributes. 781 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 782 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 783 if (VT.bitsLT(MinVT)) 784 VT = MinVT; 785 } 786 787 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 788 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 789 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 790 PartVT.getTypeForEVT(ReturnType->getContext())); 791 792 // 'inreg' on function refers to return value 793 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 794 if (attr & Attribute::InReg) 795 Flags.setInReg(); 796 797 // Propagate extension type if any 798 if (attr & Attribute::SExt) 799 Flags.setSExt(); 800 else if (attr & Attribute::ZExt) 801 Flags.setZExt(); 802 803 for (unsigned i = 0; i < NumParts; ++i) { 804 OutVTs.push_back(PartVT); 805 OutFlags.push_back(Flags); 806 if (Offsets) 807 { 808 Offsets->push_back(Offset); 809 Offset += PartSize; 810 } 811 } 812 } 813 } 814 815 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 816 SDValue Chain = getControlRoot(); 817 SmallVector<ISD::OutputArg, 8> Outs; 818 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 819 820 if (!FLI.CanLowerReturn) { 821 unsigned DemoteReg = FLI.DemoteRegister; 822 const Function *F = I.getParent()->getParent(); 823 824 // Emit a store of the return value through the virtual register. 825 // Leave Outs empty so that LowerReturn won't try to load return 826 // registers the usual way. 827 SmallVector<EVT, 1> PtrValueVTs; 828 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 829 PtrValueVTs); 830 831 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 832 SDValue RetOp = getValue(I.getOperand(0)); 833 834 SmallVector<EVT, 4> ValueVTs; 835 SmallVector<uint64_t, 4> Offsets; 836 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 837 unsigned NumValues = ValueVTs.size(); 838 839 SmallVector<SDValue, 4> Chains(NumValues); 840 EVT PtrVT = PtrValueVTs[0]; 841 for (unsigned i = 0; i != NumValues; ++i) { 842 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 843 DAG.getConstant(Offsets[i], PtrVT)); 844 Chains[i] = 845 DAG.getStore(Chain, getCurDebugLoc(), 846 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 847 Add, NULL, Offsets[i], false, false, 0); 848 } 849 850 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 851 MVT::Other, &Chains[0], NumValues); 852 } else if (I.getNumOperands() != 0) { 853 SmallVector<EVT, 4> ValueVTs; 854 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 855 unsigned NumValues = ValueVTs.size(); 856 if (NumValues) { 857 SDValue RetOp = getValue(I.getOperand(0)); 858 for (unsigned j = 0, f = NumValues; j != f; ++j) { 859 EVT VT = ValueVTs[j]; 860 861 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 862 863 const Function *F = I.getParent()->getParent(); 864 if (F->paramHasAttr(0, Attribute::SExt)) 865 ExtendKind = ISD::SIGN_EXTEND; 866 else if (F->paramHasAttr(0, Attribute::ZExt)) 867 ExtendKind = ISD::ZERO_EXTEND; 868 869 // FIXME: C calling convention requires the return type to be promoted 870 // to at least 32-bit. But this is not necessary for non-C calling 871 // conventions. The frontend should mark functions whose return values 872 // require promoting with signext or zeroext attributes. 873 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 874 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 875 if (VT.bitsLT(MinVT)) 876 VT = MinVT; 877 } 878 879 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 880 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 881 SmallVector<SDValue, 4> Parts(NumParts); 882 getCopyToParts(DAG, getCurDebugLoc(), 883 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 884 &Parts[0], NumParts, PartVT, ExtendKind); 885 886 // 'inreg' on function refers to return value 887 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 888 if (F->paramHasAttr(0, Attribute::InReg)) 889 Flags.setInReg(); 890 891 // Propagate extension type if any 892 if (F->paramHasAttr(0, Attribute::SExt)) 893 Flags.setSExt(); 894 else if (F->paramHasAttr(0, Attribute::ZExt)) 895 Flags.setZExt(); 896 897 for (unsigned i = 0; i < NumParts; ++i) 898 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 899 } 900 } 901 } 902 903 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 904 CallingConv::ID CallConv = 905 DAG.getMachineFunction().getFunction()->getCallingConv(); 906 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 907 Outs, getCurDebugLoc(), DAG); 908 909 // Verify that the target's LowerReturn behaved as expected. 910 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 911 "LowerReturn didn't return a valid chain!"); 912 913 // Update the DAG with the new chain value resulting from return lowering. 914 DAG.setRoot(Chain); 915 } 916 917 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 918 /// created for it, emit nodes to copy the value into the virtual 919 /// registers. 920 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 921 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 922 if (VMI != FuncInfo.ValueMap.end()) { 923 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 924 CopyValueToVirtualRegister(V, VMI->second); 925 } 926 } 927 928 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 929 /// the current basic block, add it to ValueMap now so that we'll get a 930 /// CopyTo/FromReg. 931 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 932 // No need to export constants. 933 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 934 935 // Already exported? 936 if (FuncInfo.isExportedInst(V)) return; 937 938 unsigned Reg = FuncInfo.InitializeRegForValue(V); 939 CopyValueToVirtualRegister(V, Reg); 940 } 941 942 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 943 const BasicBlock *FromBB) { 944 // The operands of the setcc have to be in this block. We don't know 945 // how to export them from some other block. 946 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 947 // Can export from current BB. 948 if (VI->getParent() == FromBB) 949 return true; 950 951 // Is already exported, noop. 952 return FuncInfo.isExportedInst(V); 953 } 954 955 // If this is an argument, we can export it if the BB is the entry block or 956 // if it is already exported. 957 if (isa<Argument>(V)) { 958 if (FromBB == &FromBB->getParent()->getEntryBlock()) 959 return true; 960 961 // Otherwise, can only export this if it is already exported. 962 return FuncInfo.isExportedInst(V); 963 } 964 965 // Otherwise, constants can always be exported. 966 return true; 967 } 968 969 static bool InBlock(const Value *V, const BasicBlock *BB) { 970 if (const Instruction *I = dyn_cast<Instruction>(V)) 971 return I->getParent() == BB; 972 return true; 973 } 974 975 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 976 /// This function emits a branch and is used at the leaves of an OR or an 977 /// AND operator tree. 978 /// 979 void 980 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 981 MachineBasicBlock *TBB, 982 MachineBasicBlock *FBB, 983 MachineBasicBlock *CurBB, 984 MachineBasicBlock *SwitchBB) { 985 const BasicBlock *BB = CurBB->getBasicBlock(); 986 987 // If the leaf of the tree is a comparison, merge the condition into 988 // the caseblock. 989 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 990 // The operands of the cmp have to be in this block. We don't know 991 // how to export them from some other block. If this is the first block 992 // of the sequence, no exporting is needed. 993 if (CurBB == SwitchBB || 994 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 995 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 996 ISD::CondCode Condition; 997 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 998 Condition = getICmpCondCode(IC->getPredicate()); 999 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1000 Condition = getFCmpCondCode(FC->getPredicate()); 1001 } else { 1002 Condition = ISD::SETEQ; // silence warning. 1003 llvm_unreachable("Unknown compare instruction"); 1004 } 1005 1006 CaseBlock CB(Condition, BOp->getOperand(0), 1007 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1008 SwitchCases.push_back(CB); 1009 return; 1010 } 1011 } 1012 1013 // Create a CaseBlock record representing this branch. 1014 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1015 NULL, TBB, FBB, CurBB); 1016 SwitchCases.push_back(CB); 1017 } 1018 1019 /// FindMergedConditions - If Cond is an expression like 1020 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1021 MachineBasicBlock *TBB, 1022 MachineBasicBlock *FBB, 1023 MachineBasicBlock *CurBB, 1024 MachineBasicBlock *SwitchBB, 1025 unsigned Opc) { 1026 // If this node is not part of the or/and tree, emit it as a branch. 1027 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1028 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1029 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1030 BOp->getParent() != CurBB->getBasicBlock() || 1031 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1032 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1033 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1034 return; 1035 } 1036 1037 // Create TmpBB after CurBB. 1038 MachineFunction::iterator BBI = CurBB; 1039 MachineFunction &MF = DAG.getMachineFunction(); 1040 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1041 CurBB->getParent()->insert(++BBI, TmpBB); 1042 1043 if (Opc == Instruction::Or) { 1044 // Codegen X | Y as: 1045 // jmp_if_X TBB 1046 // jmp TmpBB 1047 // TmpBB: 1048 // jmp_if_Y TBB 1049 // jmp FBB 1050 // 1051 1052 // Emit the LHS condition. 1053 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1054 1055 // Emit the RHS condition into TmpBB. 1056 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1057 } else { 1058 assert(Opc == Instruction::And && "Unknown merge op!"); 1059 // Codegen X & Y as: 1060 // jmp_if_X TmpBB 1061 // jmp FBB 1062 // TmpBB: 1063 // jmp_if_Y TBB 1064 // jmp FBB 1065 // 1066 // This requires creation of TmpBB after CurBB. 1067 1068 // Emit the LHS condition. 1069 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1070 1071 // Emit the RHS condition into TmpBB. 1072 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1073 } 1074 } 1075 1076 /// If the set of cases should be emitted as a series of branches, return true. 1077 /// If we should emit this as a bunch of and/or'd together conditions, return 1078 /// false. 1079 bool 1080 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1081 if (Cases.size() != 2) return true; 1082 1083 // If this is two comparisons of the same values or'd or and'd together, they 1084 // will get folded into a single comparison, so don't emit two blocks. 1085 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1086 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1087 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1088 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1089 return false; 1090 } 1091 1092 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1093 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1094 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1095 Cases[0].CC == Cases[1].CC && 1096 isa<Constant>(Cases[0].CmpRHS) && 1097 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1098 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1099 return false; 1100 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1101 return false; 1102 } 1103 1104 return true; 1105 } 1106 1107 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1108 MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()]; 1109 1110 // Update machine-CFG edges. 1111 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1112 1113 // Figure out which block is immediately after the current one. 1114 MachineBasicBlock *NextBlock = 0; 1115 MachineFunction::iterator BBI = BrMBB; 1116 if (++BBI != FuncInfo.MF->end()) 1117 NextBlock = BBI; 1118 1119 if (I.isUnconditional()) { 1120 // Update machine-CFG edges. 1121 BrMBB->addSuccessor(Succ0MBB); 1122 1123 // If this is not a fall-through branch, emit the branch. 1124 if (Succ0MBB != NextBlock) 1125 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1126 MVT::Other, getControlRoot(), 1127 DAG.getBasicBlock(Succ0MBB))); 1128 1129 return; 1130 } 1131 1132 // If this condition is one of the special cases we handle, do special stuff 1133 // now. 1134 const Value *CondVal = I.getCondition(); 1135 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1136 1137 // If this is a series of conditions that are or'd or and'd together, emit 1138 // this as a sequence of branches instead of setcc's with and/or operations. 1139 // For example, instead of something like: 1140 // cmp A, B 1141 // C = seteq 1142 // cmp D, E 1143 // F = setle 1144 // or C, F 1145 // jnz foo 1146 // Emit: 1147 // cmp A, B 1148 // je foo 1149 // cmp D, E 1150 // jle foo 1151 // 1152 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1153 if (BOp->hasOneUse() && 1154 (BOp->getOpcode() == Instruction::And || 1155 BOp->getOpcode() == Instruction::Or)) { 1156 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1157 BOp->getOpcode()); 1158 // If the compares in later blocks need to use values not currently 1159 // exported from this block, export them now. This block should always 1160 // be the first entry. 1161 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1162 1163 // Allow some cases to be rejected. 1164 if (ShouldEmitAsBranches(SwitchCases)) { 1165 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1166 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1167 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1168 } 1169 1170 // Emit the branch for this block. 1171 visitSwitchCase(SwitchCases[0], BrMBB); 1172 SwitchCases.erase(SwitchCases.begin()); 1173 return; 1174 } 1175 1176 // Okay, we decided not to do this, remove any inserted MBB's and clear 1177 // SwitchCases. 1178 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1179 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1180 1181 SwitchCases.clear(); 1182 } 1183 } 1184 1185 // Create a CaseBlock record representing this branch. 1186 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1187 NULL, Succ0MBB, Succ1MBB, BrMBB); 1188 1189 // Use visitSwitchCase to actually insert the fast branch sequence for this 1190 // cond branch. 1191 visitSwitchCase(CB, BrMBB); 1192 } 1193 1194 /// visitSwitchCase - Emits the necessary code to represent a single node in 1195 /// the binary search tree resulting from lowering a switch instruction. 1196 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1197 MachineBasicBlock *SwitchBB) { 1198 SDValue Cond; 1199 SDValue CondLHS = getValue(CB.CmpLHS); 1200 DebugLoc dl = getCurDebugLoc(); 1201 1202 // Build the setcc now. 1203 if (CB.CmpMHS == NULL) { 1204 // Fold "(X == true)" to X and "(X == false)" to !X to 1205 // handle common cases produced by branch lowering. 1206 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1207 CB.CC == ISD::SETEQ) 1208 Cond = CondLHS; 1209 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1210 CB.CC == ISD::SETEQ) { 1211 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1212 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1213 } else 1214 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1215 } else { 1216 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1217 1218 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1219 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1220 1221 SDValue CmpOp = getValue(CB.CmpMHS); 1222 EVT VT = CmpOp.getValueType(); 1223 1224 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1225 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1226 ISD::SETLE); 1227 } else { 1228 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1229 VT, CmpOp, DAG.getConstant(Low, VT)); 1230 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1231 DAG.getConstant(High-Low, VT), ISD::SETULE); 1232 } 1233 } 1234 1235 // Update successor info 1236 SwitchBB->addSuccessor(CB.TrueBB); 1237 SwitchBB->addSuccessor(CB.FalseBB); 1238 1239 // Set NextBlock to be the MBB immediately after the current one, if any. 1240 // This is used to avoid emitting unnecessary branches to the next block. 1241 MachineBasicBlock *NextBlock = 0; 1242 MachineFunction::iterator BBI = SwitchBB; 1243 if (++BBI != FuncInfo.MF->end()) 1244 NextBlock = BBI; 1245 1246 // If the lhs block is the next block, invert the condition so that we can 1247 // fall through to the lhs instead of the rhs block. 1248 if (CB.TrueBB == NextBlock) { 1249 std::swap(CB.TrueBB, CB.FalseBB); 1250 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1251 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1252 } 1253 1254 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1255 MVT::Other, getControlRoot(), Cond, 1256 DAG.getBasicBlock(CB.TrueBB)); 1257 1258 // If the branch was constant folded, fix up the CFG. 1259 if (BrCond.getOpcode() == ISD::BR) { 1260 SwitchBB->removeSuccessor(CB.FalseBB); 1261 } else { 1262 // Otherwise, go ahead and insert the false branch. 1263 if (BrCond == getControlRoot()) 1264 SwitchBB->removeSuccessor(CB.TrueBB); 1265 1266 if (CB.FalseBB != NextBlock) 1267 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1268 DAG.getBasicBlock(CB.FalseBB)); 1269 } 1270 1271 DAG.setRoot(BrCond); 1272 } 1273 1274 /// visitJumpTable - Emit JumpTable node in the current MBB 1275 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1276 // Emit the code for the jump table 1277 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1278 EVT PTy = TLI.getPointerTy(); 1279 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1280 JT.Reg, PTy); 1281 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1282 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1283 MVT::Other, Index.getValue(1), 1284 Table, Index); 1285 DAG.setRoot(BrJumpTable); 1286 } 1287 1288 /// visitJumpTableHeader - This function emits necessary code to produce index 1289 /// in the JumpTable from switch case. 1290 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1291 JumpTableHeader &JTH, 1292 MachineBasicBlock *SwitchBB) { 1293 // Subtract the lowest switch case value from the value being switched on and 1294 // conditional branch to default mbb if the result is greater than the 1295 // difference between smallest and largest cases. 1296 SDValue SwitchOp = getValue(JTH.SValue); 1297 EVT VT = SwitchOp.getValueType(); 1298 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1299 DAG.getConstant(JTH.First, VT)); 1300 1301 // The SDNode we just created, which holds the value being switched on minus 1302 // the smallest case value, needs to be copied to a virtual register so it 1303 // can be used as an index into the jump table in a subsequent basic block. 1304 // This value may be smaller or larger than the target's pointer type, and 1305 // therefore require extension or truncating. 1306 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1307 1308 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1309 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1310 JumpTableReg, SwitchOp); 1311 JT.Reg = JumpTableReg; 1312 1313 // Emit the range check for the jump table, and branch to the default block 1314 // for the switch statement if the value being switched on exceeds the largest 1315 // case in the switch. 1316 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1317 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1318 DAG.getConstant(JTH.Last-JTH.First,VT), 1319 ISD::SETUGT); 1320 1321 // Set NextBlock to be the MBB immediately after the current one, if any. 1322 // This is used to avoid emitting unnecessary branches to the next block. 1323 MachineBasicBlock *NextBlock = 0; 1324 MachineFunction::iterator BBI = SwitchBB; 1325 1326 if (++BBI != FuncInfo.MF->end()) 1327 NextBlock = BBI; 1328 1329 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1330 MVT::Other, CopyTo, CMP, 1331 DAG.getBasicBlock(JT.Default)); 1332 1333 if (JT.MBB != NextBlock) 1334 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1335 DAG.getBasicBlock(JT.MBB)); 1336 1337 DAG.setRoot(BrCond); 1338 } 1339 1340 /// visitBitTestHeader - This function emits necessary code to produce value 1341 /// suitable for "bit tests" 1342 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1343 MachineBasicBlock *SwitchBB) { 1344 // Subtract the minimum value 1345 SDValue SwitchOp = getValue(B.SValue); 1346 EVT VT = SwitchOp.getValueType(); 1347 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1348 DAG.getConstant(B.First, VT)); 1349 1350 // Check range 1351 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1352 TLI.getSetCCResultType(Sub.getValueType()), 1353 Sub, DAG.getConstant(B.Range, VT), 1354 ISD::SETUGT); 1355 1356 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1357 TLI.getPointerTy()); 1358 1359 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1360 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1361 B.Reg, ShiftOp); 1362 1363 // Set NextBlock to be the MBB immediately after the current one, if any. 1364 // This is used to avoid emitting unnecessary branches to the next block. 1365 MachineBasicBlock *NextBlock = 0; 1366 MachineFunction::iterator BBI = SwitchBB; 1367 if (++BBI != FuncInfo.MF->end()) 1368 NextBlock = BBI; 1369 1370 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1371 1372 SwitchBB->addSuccessor(B.Default); 1373 SwitchBB->addSuccessor(MBB); 1374 1375 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1376 MVT::Other, CopyTo, RangeCmp, 1377 DAG.getBasicBlock(B.Default)); 1378 1379 if (MBB != NextBlock) 1380 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1381 DAG.getBasicBlock(MBB)); 1382 1383 DAG.setRoot(BrRange); 1384 } 1385 1386 /// visitBitTestCase - this function produces one "bit test" 1387 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1388 unsigned Reg, 1389 BitTestCase &B, 1390 MachineBasicBlock *SwitchBB) { 1391 // Make desired shift 1392 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1393 TLI.getPointerTy()); 1394 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1395 TLI.getPointerTy(), 1396 DAG.getConstant(1, TLI.getPointerTy()), 1397 ShiftOp); 1398 1399 // Emit bit tests and jumps 1400 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1401 TLI.getPointerTy(), SwitchVal, 1402 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1403 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1404 TLI.getSetCCResultType(AndOp.getValueType()), 1405 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1406 ISD::SETNE); 1407 1408 SwitchBB->addSuccessor(B.TargetBB); 1409 SwitchBB->addSuccessor(NextMBB); 1410 1411 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1412 MVT::Other, getControlRoot(), 1413 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1414 1415 // Set NextBlock to be the MBB immediately after the current one, if any. 1416 // This is used to avoid emitting unnecessary branches to the next block. 1417 MachineBasicBlock *NextBlock = 0; 1418 MachineFunction::iterator BBI = SwitchBB; 1419 if (++BBI != FuncInfo.MF->end()) 1420 NextBlock = BBI; 1421 1422 if (NextMBB != NextBlock) 1423 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1424 DAG.getBasicBlock(NextMBB)); 1425 1426 DAG.setRoot(BrAnd); 1427 } 1428 1429 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1430 MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()]; 1431 1432 // Retrieve successors. 1433 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1434 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1435 1436 const Value *Callee(I.getCalledValue()); 1437 if (isa<InlineAsm>(Callee)) 1438 visitInlineAsm(&I); 1439 else 1440 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1441 1442 // If the value of the invoke is used outside of its defining block, make it 1443 // available as a virtual register. 1444 CopyToExportRegsIfNeeded(&I); 1445 1446 // Update successor info 1447 InvokeMBB->addSuccessor(Return); 1448 InvokeMBB->addSuccessor(LandingPad); 1449 1450 // Drop into normal successor. 1451 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1452 MVT::Other, getControlRoot(), 1453 DAG.getBasicBlock(Return))); 1454 } 1455 1456 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1457 } 1458 1459 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1460 /// small case ranges). 1461 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1462 CaseRecVector& WorkList, 1463 const Value* SV, 1464 MachineBasicBlock *Default, 1465 MachineBasicBlock *SwitchBB) { 1466 Case& BackCase = *(CR.Range.second-1); 1467 1468 // Size is the number of Cases represented by this range. 1469 size_t Size = CR.Range.second - CR.Range.first; 1470 if (Size > 3) 1471 return false; 1472 1473 // Get the MachineFunction which holds the current MBB. This is used when 1474 // inserting any additional MBBs necessary to represent the switch. 1475 MachineFunction *CurMF = FuncInfo.MF; 1476 1477 // Figure out which block is immediately after the current one. 1478 MachineBasicBlock *NextBlock = 0; 1479 MachineFunction::iterator BBI = CR.CaseBB; 1480 1481 if (++BBI != FuncInfo.MF->end()) 1482 NextBlock = BBI; 1483 1484 // TODO: If any two of the cases has the same destination, and if one value 1485 // is the same as the other, but has one bit unset that the other has set, 1486 // use bit manipulation to do two compares at once. For example: 1487 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1488 1489 // Rearrange the case blocks so that the last one falls through if possible. 1490 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1491 // The last case block won't fall through into 'NextBlock' if we emit the 1492 // branches in this order. See if rearranging a case value would help. 1493 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1494 if (I->BB == NextBlock) { 1495 std::swap(*I, BackCase); 1496 break; 1497 } 1498 } 1499 } 1500 1501 // Create a CaseBlock record representing a conditional branch to 1502 // the Case's target mbb if the value being switched on SV is equal 1503 // to C. 1504 MachineBasicBlock *CurBlock = CR.CaseBB; 1505 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1506 MachineBasicBlock *FallThrough; 1507 if (I != E-1) { 1508 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1509 CurMF->insert(BBI, FallThrough); 1510 1511 // Put SV in a virtual register to make it available from the new blocks. 1512 ExportFromCurrentBlock(SV); 1513 } else { 1514 // If the last case doesn't match, go to the default block. 1515 FallThrough = Default; 1516 } 1517 1518 const Value *RHS, *LHS, *MHS; 1519 ISD::CondCode CC; 1520 if (I->High == I->Low) { 1521 // This is just small small case range :) containing exactly 1 case 1522 CC = ISD::SETEQ; 1523 LHS = SV; RHS = I->High; MHS = NULL; 1524 } else { 1525 CC = ISD::SETLE; 1526 LHS = I->Low; MHS = SV; RHS = I->High; 1527 } 1528 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1529 1530 // If emitting the first comparison, just call visitSwitchCase to emit the 1531 // code into the current block. Otherwise, push the CaseBlock onto the 1532 // vector to be later processed by SDISel, and insert the node's MBB 1533 // before the next MBB. 1534 if (CurBlock == SwitchBB) 1535 visitSwitchCase(CB, SwitchBB); 1536 else 1537 SwitchCases.push_back(CB); 1538 1539 CurBlock = FallThrough; 1540 } 1541 1542 return true; 1543 } 1544 1545 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1546 return !DisableJumpTables && 1547 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1548 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1549 } 1550 1551 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1552 APInt LastExt(Last), FirstExt(First); 1553 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1554 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1555 return (LastExt - FirstExt + 1ULL); 1556 } 1557 1558 /// handleJTSwitchCase - Emit jumptable for current switch case range 1559 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1560 CaseRecVector& WorkList, 1561 const Value* SV, 1562 MachineBasicBlock* Default, 1563 MachineBasicBlock *SwitchBB) { 1564 Case& FrontCase = *CR.Range.first; 1565 Case& BackCase = *(CR.Range.second-1); 1566 1567 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1568 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1569 1570 APInt TSize(First.getBitWidth(), 0); 1571 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1572 I!=E; ++I) 1573 TSize += I->size(); 1574 1575 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1576 return false; 1577 1578 APInt Range = ComputeRange(First, Last); 1579 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1580 if (Density < 0.4) 1581 return false; 1582 1583 DEBUG(dbgs() << "Lowering jump table\n" 1584 << "First entry: " << First << ". Last entry: " << Last << '\n' 1585 << "Range: " << Range 1586 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1587 1588 // Get the MachineFunction which holds the current MBB. This is used when 1589 // inserting any additional MBBs necessary to represent the switch. 1590 MachineFunction *CurMF = FuncInfo.MF; 1591 1592 // Figure out which block is immediately after the current one. 1593 MachineFunction::iterator BBI = CR.CaseBB; 1594 ++BBI; 1595 1596 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1597 1598 // Create a new basic block to hold the code for loading the address 1599 // of the jump table, and jumping to it. Update successor information; 1600 // we will either branch to the default case for the switch, or the jump 1601 // table. 1602 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1603 CurMF->insert(BBI, JumpTableBB); 1604 CR.CaseBB->addSuccessor(Default); 1605 CR.CaseBB->addSuccessor(JumpTableBB); 1606 1607 // Build a vector of destination BBs, corresponding to each target 1608 // of the jump table. If the value of the jump table slot corresponds to 1609 // a case statement, push the case's BB onto the vector, otherwise, push 1610 // the default BB. 1611 std::vector<MachineBasicBlock*> DestBBs; 1612 APInt TEI = First; 1613 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1614 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1615 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1616 1617 if (Low.sle(TEI) && TEI.sle(High)) { 1618 DestBBs.push_back(I->BB); 1619 if (TEI==High) 1620 ++I; 1621 } else { 1622 DestBBs.push_back(Default); 1623 } 1624 } 1625 1626 // Update successor info. Add one edge to each unique successor. 1627 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1628 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1629 E = DestBBs.end(); I != E; ++I) { 1630 if (!SuccsHandled[(*I)->getNumber()]) { 1631 SuccsHandled[(*I)->getNumber()] = true; 1632 JumpTableBB->addSuccessor(*I); 1633 } 1634 } 1635 1636 // Create a jump table index for this jump table. 1637 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1638 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1639 ->createJumpTableIndex(DestBBs); 1640 1641 // Set the jump table information so that we can codegen it as a second 1642 // MachineBasicBlock 1643 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1644 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1645 if (CR.CaseBB == SwitchBB) 1646 visitJumpTableHeader(JT, JTH, SwitchBB); 1647 1648 JTCases.push_back(JumpTableBlock(JTH, JT)); 1649 1650 return true; 1651 } 1652 1653 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1654 /// 2 subtrees. 1655 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1656 CaseRecVector& WorkList, 1657 const Value* SV, 1658 MachineBasicBlock *Default, 1659 MachineBasicBlock *SwitchBB) { 1660 // Get the MachineFunction which holds the current MBB. This is used when 1661 // inserting any additional MBBs necessary to represent the switch. 1662 MachineFunction *CurMF = FuncInfo.MF; 1663 1664 // Figure out which block is immediately after the current one. 1665 MachineFunction::iterator BBI = CR.CaseBB; 1666 ++BBI; 1667 1668 Case& FrontCase = *CR.Range.first; 1669 Case& BackCase = *(CR.Range.second-1); 1670 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1671 1672 // Size is the number of Cases represented by this range. 1673 unsigned Size = CR.Range.second - CR.Range.first; 1674 1675 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1676 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1677 double FMetric = 0; 1678 CaseItr Pivot = CR.Range.first + Size/2; 1679 1680 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1681 // (heuristically) allow us to emit JumpTable's later. 1682 APInt TSize(First.getBitWidth(), 0); 1683 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1684 I!=E; ++I) 1685 TSize += I->size(); 1686 1687 APInt LSize = FrontCase.size(); 1688 APInt RSize = TSize-LSize; 1689 DEBUG(dbgs() << "Selecting best pivot: \n" 1690 << "First: " << First << ", Last: " << Last <<'\n' 1691 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1692 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1693 J!=E; ++I, ++J) { 1694 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1695 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1696 APInt Range = ComputeRange(LEnd, RBegin); 1697 assert((Range - 2ULL).isNonNegative() && 1698 "Invalid case distance"); 1699 double LDensity = (double)LSize.roundToDouble() / 1700 (LEnd - First + 1ULL).roundToDouble(); 1701 double RDensity = (double)RSize.roundToDouble() / 1702 (Last - RBegin + 1ULL).roundToDouble(); 1703 double Metric = Range.logBase2()*(LDensity+RDensity); 1704 // Should always split in some non-trivial place 1705 DEBUG(dbgs() <<"=>Step\n" 1706 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1707 << "LDensity: " << LDensity 1708 << ", RDensity: " << RDensity << '\n' 1709 << "Metric: " << Metric << '\n'); 1710 if (FMetric < Metric) { 1711 Pivot = J; 1712 FMetric = Metric; 1713 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1714 } 1715 1716 LSize += J->size(); 1717 RSize -= J->size(); 1718 } 1719 if (areJTsAllowed(TLI)) { 1720 // If our case is dense we *really* should handle it earlier! 1721 assert((FMetric > 0) && "Should handle dense range earlier!"); 1722 } else { 1723 Pivot = CR.Range.first + Size/2; 1724 } 1725 1726 CaseRange LHSR(CR.Range.first, Pivot); 1727 CaseRange RHSR(Pivot, CR.Range.second); 1728 Constant *C = Pivot->Low; 1729 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1730 1731 // We know that we branch to the LHS if the Value being switched on is 1732 // less than the Pivot value, C. We use this to optimize our binary 1733 // tree a bit, by recognizing that if SV is greater than or equal to the 1734 // LHS's Case Value, and that Case Value is exactly one less than the 1735 // Pivot's Value, then we can branch directly to the LHS's Target, 1736 // rather than creating a leaf node for it. 1737 if ((LHSR.second - LHSR.first) == 1 && 1738 LHSR.first->High == CR.GE && 1739 cast<ConstantInt>(C)->getValue() == 1740 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1741 TrueBB = LHSR.first->BB; 1742 } else { 1743 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1744 CurMF->insert(BBI, TrueBB); 1745 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1746 1747 // Put SV in a virtual register to make it available from the new blocks. 1748 ExportFromCurrentBlock(SV); 1749 } 1750 1751 // Similar to the optimization above, if the Value being switched on is 1752 // known to be less than the Constant CR.LT, and the current Case Value 1753 // is CR.LT - 1, then we can branch directly to the target block for 1754 // the current Case Value, rather than emitting a RHS leaf node for it. 1755 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1756 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1757 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1758 FalseBB = RHSR.first->BB; 1759 } else { 1760 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1761 CurMF->insert(BBI, FalseBB); 1762 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1763 1764 // Put SV in a virtual register to make it available from the new blocks. 1765 ExportFromCurrentBlock(SV); 1766 } 1767 1768 // Create a CaseBlock record representing a conditional branch to 1769 // the LHS node if the value being switched on SV is less than C. 1770 // Otherwise, branch to LHS. 1771 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1772 1773 if (CR.CaseBB == SwitchBB) 1774 visitSwitchCase(CB, SwitchBB); 1775 else 1776 SwitchCases.push_back(CB); 1777 1778 return true; 1779 } 1780 1781 /// handleBitTestsSwitchCase - if current case range has few destination and 1782 /// range span less, than machine word bitwidth, encode case range into series 1783 /// of masks and emit bit tests with these masks. 1784 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1785 CaseRecVector& WorkList, 1786 const Value* SV, 1787 MachineBasicBlock* Default, 1788 MachineBasicBlock *SwitchBB){ 1789 EVT PTy = TLI.getPointerTy(); 1790 unsigned IntPtrBits = PTy.getSizeInBits(); 1791 1792 Case& FrontCase = *CR.Range.first; 1793 Case& BackCase = *(CR.Range.second-1); 1794 1795 // Get the MachineFunction which holds the current MBB. This is used when 1796 // inserting any additional MBBs necessary to represent the switch. 1797 MachineFunction *CurMF = FuncInfo.MF; 1798 1799 // If target does not have legal shift left, do not emit bit tests at all. 1800 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1801 return false; 1802 1803 size_t numCmps = 0; 1804 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1805 I!=E; ++I) { 1806 // Single case counts one, case range - two. 1807 numCmps += (I->Low == I->High ? 1 : 2); 1808 } 1809 1810 // Count unique destinations 1811 SmallSet<MachineBasicBlock*, 4> Dests; 1812 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1813 Dests.insert(I->BB); 1814 if (Dests.size() > 3) 1815 // Don't bother the code below, if there are too much unique destinations 1816 return false; 1817 } 1818 DEBUG(dbgs() << "Total number of unique destinations: " 1819 << Dests.size() << '\n' 1820 << "Total number of comparisons: " << numCmps << '\n'); 1821 1822 // Compute span of values. 1823 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1824 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1825 APInt cmpRange = maxValue - minValue; 1826 1827 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 1828 << "Low bound: " << minValue << '\n' 1829 << "High bound: " << maxValue << '\n'); 1830 1831 if (cmpRange.uge(IntPtrBits) || 1832 (!(Dests.size() == 1 && numCmps >= 3) && 1833 !(Dests.size() == 2 && numCmps >= 5) && 1834 !(Dests.size() >= 3 && numCmps >= 6))) 1835 return false; 1836 1837 DEBUG(dbgs() << "Emitting bit tests\n"); 1838 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1839 1840 // Optimize the case where all the case values fit in a 1841 // word without having to subtract minValue. In this case, 1842 // we can optimize away the subtraction. 1843 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 1844 cmpRange = maxValue; 1845 } else { 1846 lowBound = minValue; 1847 } 1848 1849 CaseBitsVector CasesBits; 1850 unsigned i, count = 0; 1851 1852 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1853 MachineBasicBlock* Dest = I->BB; 1854 for (i = 0; i < count; ++i) 1855 if (Dest == CasesBits[i].BB) 1856 break; 1857 1858 if (i == count) { 1859 assert((count < 3) && "Too much destinations to test!"); 1860 CasesBits.push_back(CaseBits(0, Dest, 0)); 1861 count++; 1862 } 1863 1864 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1865 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1866 1867 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1868 uint64_t hi = (highValue - lowBound).getZExtValue(); 1869 1870 for (uint64_t j = lo; j <= hi; j++) { 1871 CasesBits[i].Mask |= 1ULL << j; 1872 CasesBits[i].Bits++; 1873 } 1874 1875 } 1876 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1877 1878 BitTestInfo BTC; 1879 1880 // Figure out which block is immediately after the current one. 1881 MachineFunction::iterator BBI = CR.CaseBB; 1882 ++BBI; 1883 1884 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1885 1886 DEBUG(dbgs() << "Cases:\n"); 1887 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1888 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 1889 << ", Bits: " << CasesBits[i].Bits 1890 << ", BB: " << CasesBits[i].BB << '\n'); 1891 1892 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1893 CurMF->insert(BBI, CaseBB); 1894 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1895 CaseBB, 1896 CasesBits[i].BB)); 1897 1898 // Put SV in a virtual register to make it available from the new blocks. 1899 ExportFromCurrentBlock(SV); 1900 } 1901 1902 BitTestBlock BTB(lowBound, cmpRange, SV, 1903 -1U, (CR.CaseBB == SwitchBB), 1904 CR.CaseBB, Default, BTC); 1905 1906 if (CR.CaseBB == SwitchBB) 1907 visitBitTestHeader(BTB, SwitchBB); 1908 1909 BitTestCases.push_back(BTB); 1910 1911 return true; 1912 } 1913 1914 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1915 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1916 const SwitchInst& SI) { 1917 size_t numCmps = 0; 1918 1919 // Start with "simple" cases 1920 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1921 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1922 Cases.push_back(Case(SI.getSuccessorValue(i), 1923 SI.getSuccessorValue(i), 1924 SMBB)); 1925 } 1926 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1927 1928 // Merge case into clusters 1929 if (Cases.size() >= 2) 1930 // Must recompute end() each iteration because it may be 1931 // invalidated by erase if we hold on to it 1932 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1933 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1934 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1935 MachineBasicBlock* nextBB = J->BB; 1936 MachineBasicBlock* currentBB = I->BB; 1937 1938 // If the two neighboring cases go to the same destination, merge them 1939 // into a single case. 1940 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1941 I->High = J->High; 1942 J = Cases.erase(J); 1943 } else { 1944 I = J++; 1945 } 1946 } 1947 1948 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1949 if (I->Low != I->High) 1950 // A range counts double, since it requires two compares. 1951 ++numCmps; 1952 } 1953 1954 return numCmps; 1955 } 1956 1957 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 1958 MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()]; 1959 1960 // Figure out which block is immediately after the current one. 1961 MachineBasicBlock *NextBlock = 0; 1962 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 1963 1964 // If there is only the default destination, branch to it if it is not the 1965 // next basic block. Otherwise, just fall through. 1966 if (SI.getNumOperands() == 2) { 1967 // Update machine-CFG edges. 1968 1969 // If this is not a fall-through branch, emit the branch. 1970 SwitchMBB->addSuccessor(Default); 1971 if (Default != NextBlock) 1972 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1973 MVT::Other, getControlRoot(), 1974 DAG.getBasicBlock(Default))); 1975 1976 return; 1977 } 1978 1979 // If there are any non-default case statements, create a vector of Cases 1980 // representing each one, and sort the vector so that we can efficiently 1981 // create a binary search tree from them. 1982 CaseVector Cases; 1983 size_t numCmps = Clusterify(Cases, SI); 1984 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 1985 << ". Total compares: " << numCmps << '\n'); 1986 numCmps = 0; 1987 1988 // Get the Value to be switched on and default basic blocks, which will be 1989 // inserted into CaseBlock records, representing basic blocks in the binary 1990 // search tree. 1991 const Value *SV = SI.getOperand(0); 1992 1993 // Push the initial CaseRec onto the worklist 1994 CaseRecVector WorkList; 1995 WorkList.push_back(CaseRec(SwitchMBB,0,0, 1996 CaseRange(Cases.begin(),Cases.end()))); 1997 1998 while (!WorkList.empty()) { 1999 // Grab a record representing a case range to process off the worklist 2000 CaseRec CR = WorkList.back(); 2001 WorkList.pop_back(); 2002 2003 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2004 continue; 2005 2006 // If the range has few cases (two or less) emit a series of specific 2007 // tests. 2008 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2009 continue; 2010 2011 // If the switch has more than 5 blocks, and at least 40% dense, and the 2012 // target supports indirect branches, then emit a jump table rather than 2013 // lowering the switch to a binary tree of conditional branches. 2014 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2015 continue; 2016 2017 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2018 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2019 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2020 } 2021 } 2022 2023 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2024 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()]; 2025 2026 // Update machine-CFG edges with unique successors. 2027 SmallVector<BasicBlock*, 32> succs; 2028 succs.reserve(I.getNumSuccessors()); 2029 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2030 succs.push_back(I.getSuccessor(i)); 2031 array_pod_sort(succs.begin(), succs.end()); 2032 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2033 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2034 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2035 2036 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2037 MVT::Other, getControlRoot(), 2038 getValue(I.getAddress()))); 2039 } 2040 2041 void SelectionDAGBuilder::visitFSub(const User &I) { 2042 // -0.0 - X --> fneg 2043 const Type *Ty = I.getType(); 2044 if (Ty->isVectorTy()) { 2045 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2046 const VectorType *DestTy = cast<VectorType>(I.getType()); 2047 const Type *ElTy = DestTy->getElementType(); 2048 unsigned VL = DestTy->getNumElements(); 2049 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2050 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2051 if (CV == CNZ) { 2052 SDValue Op2 = getValue(I.getOperand(1)); 2053 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2054 Op2.getValueType(), Op2)); 2055 return; 2056 } 2057 } 2058 } 2059 2060 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2061 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2062 SDValue Op2 = getValue(I.getOperand(1)); 2063 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2064 Op2.getValueType(), Op2)); 2065 return; 2066 } 2067 2068 visitBinary(I, ISD::FSUB); 2069 } 2070 2071 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2072 SDValue Op1 = getValue(I.getOperand(0)); 2073 SDValue Op2 = getValue(I.getOperand(1)); 2074 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2075 Op1.getValueType(), Op1, Op2)); 2076 } 2077 2078 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2079 SDValue Op1 = getValue(I.getOperand(0)); 2080 SDValue Op2 = getValue(I.getOperand(1)); 2081 if (!I.getType()->isVectorTy() && 2082 Op2.getValueType() != TLI.getShiftAmountTy()) { 2083 // If the operand is smaller than the shift count type, promote it. 2084 EVT PTy = TLI.getPointerTy(); 2085 EVT STy = TLI.getShiftAmountTy(); 2086 if (STy.bitsGT(Op2.getValueType())) 2087 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2088 TLI.getShiftAmountTy(), Op2); 2089 // If the operand is larger than the shift count type but the shift 2090 // count type has enough bits to represent any shift value, truncate 2091 // it now. This is a common case and it exposes the truncate to 2092 // optimization early. 2093 else if (STy.getSizeInBits() >= 2094 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2095 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2096 TLI.getShiftAmountTy(), Op2); 2097 // Otherwise we'll need to temporarily settle for some other 2098 // convenient type; type legalization will make adjustments as 2099 // needed. 2100 else if (PTy.bitsLT(Op2.getValueType())) 2101 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2102 TLI.getPointerTy(), Op2); 2103 else if (PTy.bitsGT(Op2.getValueType())) 2104 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2105 TLI.getPointerTy(), Op2); 2106 } 2107 2108 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2109 Op1.getValueType(), Op1, Op2)); 2110 } 2111 2112 void SelectionDAGBuilder::visitICmp(const User &I) { 2113 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2114 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2115 predicate = IC->getPredicate(); 2116 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2117 predicate = ICmpInst::Predicate(IC->getPredicate()); 2118 SDValue Op1 = getValue(I.getOperand(0)); 2119 SDValue Op2 = getValue(I.getOperand(1)); 2120 ISD::CondCode Opcode = getICmpCondCode(predicate); 2121 2122 EVT DestVT = TLI.getValueType(I.getType()); 2123 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2124 } 2125 2126 void SelectionDAGBuilder::visitFCmp(const User &I) { 2127 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2128 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2129 predicate = FC->getPredicate(); 2130 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2131 predicate = FCmpInst::Predicate(FC->getPredicate()); 2132 SDValue Op1 = getValue(I.getOperand(0)); 2133 SDValue Op2 = getValue(I.getOperand(1)); 2134 ISD::CondCode Condition = getFCmpCondCode(predicate); 2135 EVT DestVT = TLI.getValueType(I.getType()); 2136 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2137 } 2138 2139 void SelectionDAGBuilder::visitSelect(const User &I) { 2140 SmallVector<EVT, 4> ValueVTs; 2141 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2142 unsigned NumValues = ValueVTs.size(); 2143 if (NumValues == 0) return; 2144 2145 SmallVector<SDValue, 4> Values(NumValues); 2146 SDValue Cond = getValue(I.getOperand(0)); 2147 SDValue TrueVal = getValue(I.getOperand(1)); 2148 SDValue FalseVal = getValue(I.getOperand(2)); 2149 2150 for (unsigned i = 0; i != NumValues; ++i) 2151 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2152 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2153 Cond, 2154 SDValue(TrueVal.getNode(), 2155 TrueVal.getResNo() + i), 2156 SDValue(FalseVal.getNode(), 2157 FalseVal.getResNo() + i)); 2158 2159 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2160 DAG.getVTList(&ValueVTs[0], NumValues), 2161 &Values[0], NumValues)); 2162 } 2163 2164 void SelectionDAGBuilder::visitTrunc(const User &I) { 2165 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2166 SDValue N = getValue(I.getOperand(0)); 2167 EVT DestVT = TLI.getValueType(I.getType()); 2168 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2169 } 2170 2171 void SelectionDAGBuilder::visitZExt(const User &I) { 2172 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2173 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2174 SDValue N = getValue(I.getOperand(0)); 2175 EVT DestVT = TLI.getValueType(I.getType()); 2176 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2177 } 2178 2179 void SelectionDAGBuilder::visitSExt(const User &I) { 2180 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2181 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2182 SDValue N = getValue(I.getOperand(0)); 2183 EVT DestVT = TLI.getValueType(I.getType()); 2184 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2185 } 2186 2187 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2188 // FPTrunc is never a no-op cast, no need to check 2189 SDValue N = getValue(I.getOperand(0)); 2190 EVT DestVT = TLI.getValueType(I.getType()); 2191 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2192 DestVT, N, DAG.getIntPtrConstant(0))); 2193 } 2194 2195 void SelectionDAGBuilder::visitFPExt(const User &I){ 2196 // FPTrunc is never a no-op cast, no need to check 2197 SDValue N = getValue(I.getOperand(0)); 2198 EVT DestVT = TLI.getValueType(I.getType()); 2199 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2200 } 2201 2202 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2203 // FPToUI is never a no-op cast, no need to check 2204 SDValue N = getValue(I.getOperand(0)); 2205 EVT DestVT = TLI.getValueType(I.getType()); 2206 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2207 } 2208 2209 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2210 // FPToSI is never a no-op cast, no need to check 2211 SDValue N = getValue(I.getOperand(0)); 2212 EVT DestVT = TLI.getValueType(I.getType()); 2213 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2214 } 2215 2216 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2217 // UIToFP is never a no-op cast, no need to check 2218 SDValue N = getValue(I.getOperand(0)); 2219 EVT DestVT = TLI.getValueType(I.getType()); 2220 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2221 } 2222 2223 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2224 // SIToFP is never a no-op cast, no need to check 2225 SDValue N = getValue(I.getOperand(0)); 2226 EVT DestVT = TLI.getValueType(I.getType()); 2227 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2228 } 2229 2230 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2231 // What to do depends on the size of the integer and the size of the pointer. 2232 // We can either truncate, zero extend, or no-op, accordingly. 2233 SDValue N = getValue(I.getOperand(0)); 2234 EVT SrcVT = N.getValueType(); 2235 EVT DestVT = TLI.getValueType(I.getType()); 2236 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2237 } 2238 2239 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2240 // What to do depends on the size of the integer and the size of the pointer. 2241 // We can either truncate, zero extend, or no-op, accordingly. 2242 SDValue N = getValue(I.getOperand(0)); 2243 EVT SrcVT = N.getValueType(); 2244 EVT DestVT = TLI.getValueType(I.getType()); 2245 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2246 } 2247 2248 void SelectionDAGBuilder::visitBitCast(const User &I) { 2249 SDValue N = getValue(I.getOperand(0)); 2250 EVT DestVT = TLI.getValueType(I.getType()); 2251 2252 // BitCast assures us that source and destination are the same size so this is 2253 // either a BIT_CONVERT or a no-op. 2254 if (DestVT != N.getValueType()) 2255 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2256 DestVT, N)); // convert types. 2257 else 2258 setValue(&I, N); // noop cast. 2259 } 2260 2261 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2262 SDValue InVec = getValue(I.getOperand(0)); 2263 SDValue InVal = getValue(I.getOperand(1)); 2264 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2265 TLI.getPointerTy(), 2266 getValue(I.getOperand(2))); 2267 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2268 TLI.getValueType(I.getType()), 2269 InVec, InVal, InIdx)); 2270 } 2271 2272 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2273 SDValue InVec = getValue(I.getOperand(0)); 2274 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2275 TLI.getPointerTy(), 2276 getValue(I.getOperand(1))); 2277 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2278 TLI.getValueType(I.getType()), InVec, InIdx)); 2279 } 2280 2281 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2282 // from SIndx and increasing to the element length (undefs are allowed). 2283 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2284 unsigned MaskNumElts = Mask.size(); 2285 for (unsigned i = 0; i != MaskNumElts; ++i) 2286 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2287 return false; 2288 return true; 2289 } 2290 2291 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2292 SmallVector<int, 8> Mask; 2293 SDValue Src1 = getValue(I.getOperand(0)); 2294 SDValue Src2 = getValue(I.getOperand(1)); 2295 2296 // Convert the ConstantVector mask operand into an array of ints, with -1 2297 // representing undef values. 2298 SmallVector<Constant*, 8> MaskElts; 2299 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2300 unsigned MaskNumElts = MaskElts.size(); 2301 for (unsigned i = 0; i != MaskNumElts; ++i) { 2302 if (isa<UndefValue>(MaskElts[i])) 2303 Mask.push_back(-1); 2304 else 2305 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2306 } 2307 2308 EVT VT = TLI.getValueType(I.getType()); 2309 EVT SrcVT = Src1.getValueType(); 2310 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2311 2312 if (SrcNumElts == MaskNumElts) { 2313 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2314 &Mask[0])); 2315 return; 2316 } 2317 2318 // Normalize the shuffle vector since mask and vector length don't match. 2319 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2320 // Mask is longer than the source vectors and is a multiple of the source 2321 // vectors. We can use concatenate vector to make the mask and vectors 2322 // lengths match. 2323 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2324 // The shuffle is concatenating two vectors together. 2325 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2326 VT, Src1, Src2)); 2327 return; 2328 } 2329 2330 // Pad both vectors with undefs to make them the same length as the mask. 2331 unsigned NumConcat = MaskNumElts / SrcNumElts; 2332 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2333 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2334 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2335 2336 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2337 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2338 MOps1[0] = Src1; 2339 MOps2[0] = Src2; 2340 2341 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2342 getCurDebugLoc(), VT, 2343 &MOps1[0], NumConcat); 2344 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2345 getCurDebugLoc(), VT, 2346 &MOps2[0], NumConcat); 2347 2348 // Readjust mask for new input vector length. 2349 SmallVector<int, 8> MappedOps; 2350 for (unsigned i = 0; i != MaskNumElts; ++i) { 2351 int Idx = Mask[i]; 2352 if (Idx < (int)SrcNumElts) 2353 MappedOps.push_back(Idx); 2354 else 2355 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2356 } 2357 2358 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2359 &MappedOps[0])); 2360 return; 2361 } 2362 2363 if (SrcNumElts > MaskNumElts) { 2364 // Analyze the access pattern of the vector to see if we can extract 2365 // two subvectors and do the shuffle. The analysis is done by calculating 2366 // the range of elements the mask access on both vectors. 2367 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2368 int MaxRange[2] = {-1, -1}; 2369 2370 for (unsigned i = 0; i != MaskNumElts; ++i) { 2371 int Idx = Mask[i]; 2372 int Input = 0; 2373 if (Idx < 0) 2374 continue; 2375 2376 if (Idx >= (int)SrcNumElts) { 2377 Input = 1; 2378 Idx -= SrcNumElts; 2379 } 2380 if (Idx > MaxRange[Input]) 2381 MaxRange[Input] = Idx; 2382 if (Idx < MinRange[Input]) 2383 MinRange[Input] = Idx; 2384 } 2385 2386 // Check if the access is smaller than the vector size and can we find 2387 // a reasonable extract index. 2388 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2389 // Extract. 2390 int StartIdx[2]; // StartIdx to extract from 2391 for (int Input=0; Input < 2; ++Input) { 2392 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2393 RangeUse[Input] = 0; // Unused 2394 StartIdx[Input] = 0; 2395 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2396 // Fits within range but we should see if we can find a good 2397 // start index that is a multiple of the mask length. 2398 if (MaxRange[Input] < (int)MaskNumElts) { 2399 RangeUse[Input] = 1; // Extract from beginning of the vector 2400 StartIdx[Input] = 0; 2401 } else { 2402 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2403 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2404 StartIdx[Input] + MaskNumElts < SrcNumElts) 2405 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2406 } 2407 } 2408 } 2409 2410 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2411 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2412 return; 2413 } 2414 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2415 // Extract appropriate subvector and generate a vector shuffle 2416 for (int Input=0; Input < 2; ++Input) { 2417 SDValue &Src = Input == 0 ? Src1 : Src2; 2418 if (RangeUse[Input] == 0) 2419 Src = DAG.getUNDEF(VT); 2420 else 2421 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2422 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2423 } 2424 2425 // Calculate new mask. 2426 SmallVector<int, 8> MappedOps; 2427 for (unsigned i = 0; i != MaskNumElts; ++i) { 2428 int Idx = Mask[i]; 2429 if (Idx < 0) 2430 MappedOps.push_back(Idx); 2431 else if (Idx < (int)SrcNumElts) 2432 MappedOps.push_back(Idx - StartIdx[0]); 2433 else 2434 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2435 } 2436 2437 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2438 &MappedOps[0])); 2439 return; 2440 } 2441 } 2442 2443 // We can't use either concat vectors or extract subvectors so fall back to 2444 // replacing the shuffle with extract and build vector. 2445 // to insert and build vector. 2446 EVT EltVT = VT.getVectorElementType(); 2447 EVT PtrVT = TLI.getPointerTy(); 2448 SmallVector<SDValue,8> Ops; 2449 for (unsigned i = 0; i != MaskNumElts; ++i) { 2450 if (Mask[i] < 0) { 2451 Ops.push_back(DAG.getUNDEF(EltVT)); 2452 } else { 2453 int Idx = Mask[i]; 2454 SDValue Res; 2455 2456 if (Idx < (int)SrcNumElts) 2457 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2458 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2459 else 2460 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2461 EltVT, Src2, 2462 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2463 2464 Ops.push_back(Res); 2465 } 2466 } 2467 2468 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2469 VT, &Ops[0], Ops.size())); 2470 } 2471 2472 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2473 const Value *Op0 = I.getOperand(0); 2474 const Value *Op1 = I.getOperand(1); 2475 const Type *AggTy = I.getType(); 2476 const Type *ValTy = Op1->getType(); 2477 bool IntoUndef = isa<UndefValue>(Op0); 2478 bool FromUndef = isa<UndefValue>(Op1); 2479 2480 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2481 I.idx_begin(), I.idx_end()); 2482 2483 SmallVector<EVT, 4> AggValueVTs; 2484 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2485 SmallVector<EVT, 4> ValValueVTs; 2486 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2487 2488 unsigned NumAggValues = AggValueVTs.size(); 2489 unsigned NumValValues = ValValueVTs.size(); 2490 SmallVector<SDValue, 4> Values(NumAggValues); 2491 2492 SDValue Agg = getValue(Op0); 2493 SDValue Val = getValue(Op1); 2494 unsigned i = 0; 2495 // Copy the beginning value(s) from the original aggregate. 2496 for (; i != LinearIndex; ++i) 2497 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2498 SDValue(Agg.getNode(), Agg.getResNo() + i); 2499 // Copy values from the inserted value(s). 2500 for (; i != LinearIndex + NumValValues; ++i) 2501 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2502 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2503 // Copy remaining value(s) from the original aggregate. 2504 for (; i != NumAggValues; ++i) 2505 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2506 SDValue(Agg.getNode(), Agg.getResNo() + i); 2507 2508 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2509 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2510 &Values[0], NumAggValues)); 2511 } 2512 2513 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2514 const Value *Op0 = I.getOperand(0); 2515 const Type *AggTy = Op0->getType(); 2516 const Type *ValTy = I.getType(); 2517 bool OutOfUndef = isa<UndefValue>(Op0); 2518 2519 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2520 I.idx_begin(), I.idx_end()); 2521 2522 SmallVector<EVT, 4> ValValueVTs; 2523 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2524 2525 unsigned NumValValues = ValValueVTs.size(); 2526 SmallVector<SDValue, 4> Values(NumValValues); 2527 2528 SDValue Agg = getValue(Op0); 2529 // Copy out the selected value(s). 2530 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2531 Values[i - LinearIndex] = 2532 OutOfUndef ? 2533 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2534 SDValue(Agg.getNode(), Agg.getResNo() + i); 2535 2536 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2537 DAG.getVTList(&ValValueVTs[0], NumValValues), 2538 &Values[0], NumValValues)); 2539 } 2540 2541 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2542 SDValue N = getValue(I.getOperand(0)); 2543 const Type *Ty = I.getOperand(0)->getType(); 2544 2545 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2546 OI != E; ++OI) { 2547 const Value *Idx = *OI; 2548 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2549 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2550 if (Field) { 2551 // N = N + Offset 2552 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2553 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2554 DAG.getIntPtrConstant(Offset)); 2555 } 2556 2557 Ty = StTy->getElementType(Field); 2558 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2559 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2560 2561 // Offset canonically 0 for unions, but type changes 2562 Ty = UnTy->getElementType(Field); 2563 } else { 2564 Ty = cast<SequentialType>(Ty)->getElementType(); 2565 2566 // If this is a constant subscript, handle it quickly. 2567 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2568 if (CI->getZExtValue() == 0) continue; 2569 uint64_t Offs = 2570 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2571 SDValue OffsVal; 2572 EVT PTy = TLI.getPointerTy(); 2573 unsigned PtrBits = PTy.getSizeInBits(); 2574 if (PtrBits < 64) 2575 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2576 TLI.getPointerTy(), 2577 DAG.getConstant(Offs, MVT::i64)); 2578 else 2579 OffsVal = DAG.getIntPtrConstant(Offs); 2580 2581 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2582 OffsVal); 2583 continue; 2584 } 2585 2586 // N = N + Idx * ElementSize; 2587 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2588 TD->getTypeAllocSize(Ty)); 2589 SDValue IdxN = getValue(Idx); 2590 2591 // If the index is smaller or larger than intptr_t, truncate or extend 2592 // it. 2593 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2594 2595 // If this is a multiply by a power of two, turn it into a shl 2596 // immediately. This is a very common case. 2597 if (ElementSize != 1) { 2598 if (ElementSize.isPowerOf2()) { 2599 unsigned Amt = ElementSize.logBase2(); 2600 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2601 N.getValueType(), IdxN, 2602 DAG.getConstant(Amt, TLI.getPointerTy())); 2603 } else { 2604 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2605 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2606 N.getValueType(), IdxN, Scale); 2607 } 2608 } 2609 2610 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2611 N.getValueType(), N, IdxN); 2612 } 2613 } 2614 2615 setValue(&I, N); 2616 } 2617 2618 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2619 // If this is a fixed sized alloca in the entry block of the function, 2620 // allocate it statically on the stack. 2621 if (FuncInfo.StaticAllocaMap.count(&I)) 2622 return; // getValue will auto-populate this. 2623 2624 const Type *Ty = I.getAllocatedType(); 2625 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2626 unsigned Align = 2627 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2628 I.getAlignment()); 2629 2630 SDValue AllocSize = getValue(I.getArraySize()); 2631 2632 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2633 AllocSize, 2634 DAG.getConstant(TySize, AllocSize.getValueType())); 2635 2636 EVT IntPtr = TLI.getPointerTy(); 2637 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2638 2639 // Handle alignment. If the requested alignment is less than or equal to 2640 // the stack alignment, ignore it. If the size is greater than or equal to 2641 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2642 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2643 if (Align <= StackAlign) 2644 Align = 0; 2645 2646 // Round the size of the allocation up to the stack alignment size 2647 // by add SA-1 to the size. 2648 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2649 AllocSize.getValueType(), AllocSize, 2650 DAG.getIntPtrConstant(StackAlign-1)); 2651 2652 // Mask out the low bits for alignment purposes. 2653 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2654 AllocSize.getValueType(), AllocSize, 2655 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2656 2657 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2658 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2659 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2660 VTs, Ops, 3); 2661 setValue(&I, DSA); 2662 DAG.setRoot(DSA.getValue(1)); 2663 2664 // Inform the Frame Information that we have just allocated a variable-sized 2665 // object. 2666 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2667 } 2668 2669 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2670 const Value *SV = I.getOperand(0); 2671 SDValue Ptr = getValue(SV); 2672 2673 const Type *Ty = I.getType(); 2674 2675 bool isVolatile = I.isVolatile(); 2676 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2677 unsigned Alignment = I.getAlignment(); 2678 2679 SmallVector<EVT, 4> ValueVTs; 2680 SmallVector<uint64_t, 4> Offsets; 2681 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2682 unsigned NumValues = ValueVTs.size(); 2683 if (NumValues == 0) 2684 return; 2685 2686 SDValue Root; 2687 bool ConstantMemory = false; 2688 if (I.isVolatile()) 2689 // Serialize volatile loads with other side effects. 2690 Root = getRoot(); 2691 else if (AA->pointsToConstantMemory(SV)) { 2692 // Do not serialize (non-volatile) loads of constant memory with anything. 2693 Root = DAG.getEntryNode(); 2694 ConstantMemory = true; 2695 } else { 2696 // Do not serialize non-volatile loads against each other. 2697 Root = DAG.getRoot(); 2698 } 2699 2700 SmallVector<SDValue, 4> Values(NumValues); 2701 SmallVector<SDValue, 4> Chains(NumValues); 2702 EVT PtrVT = Ptr.getValueType(); 2703 for (unsigned i = 0; i != NumValues; ++i) { 2704 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2705 PtrVT, Ptr, 2706 DAG.getConstant(Offsets[i], PtrVT)); 2707 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2708 A, SV, Offsets[i], isVolatile, 2709 isNonTemporal, Alignment); 2710 2711 Values[i] = L; 2712 Chains[i] = L.getValue(1); 2713 } 2714 2715 if (!ConstantMemory) { 2716 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2717 MVT::Other, &Chains[0], NumValues); 2718 if (isVolatile) 2719 DAG.setRoot(Chain); 2720 else 2721 PendingLoads.push_back(Chain); 2722 } 2723 2724 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2725 DAG.getVTList(&ValueVTs[0], NumValues), 2726 &Values[0], NumValues)); 2727 } 2728 2729 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2730 const Value *SrcV = I.getOperand(0); 2731 const Value *PtrV = I.getOperand(1); 2732 2733 SmallVector<EVT, 4> ValueVTs; 2734 SmallVector<uint64_t, 4> Offsets; 2735 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2736 unsigned NumValues = ValueVTs.size(); 2737 if (NumValues == 0) 2738 return; 2739 2740 // Get the lowered operands. Note that we do this after 2741 // checking if NumResults is zero, because with zero results 2742 // the operands won't have values in the map. 2743 SDValue Src = getValue(SrcV); 2744 SDValue Ptr = getValue(PtrV); 2745 2746 SDValue Root = getRoot(); 2747 SmallVector<SDValue, 4> Chains(NumValues); 2748 EVT PtrVT = Ptr.getValueType(); 2749 bool isVolatile = I.isVolatile(); 2750 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2751 unsigned Alignment = I.getAlignment(); 2752 2753 for (unsigned i = 0; i != NumValues; ++i) { 2754 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2755 DAG.getConstant(Offsets[i], PtrVT)); 2756 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2757 SDValue(Src.getNode(), Src.getResNo() + i), 2758 Add, PtrV, Offsets[i], isVolatile, 2759 isNonTemporal, Alignment); 2760 } 2761 2762 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2763 MVT::Other, &Chains[0], NumValues)); 2764 } 2765 2766 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2767 /// node. 2768 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 2769 unsigned Intrinsic) { 2770 bool HasChain = !I.doesNotAccessMemory(); 2771 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2772 2773 // Build the operand list. 2774 SmallVector<SDValue, 8> Ops; 2775 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2776 if (OnlyLoad) { 2777 // We don't need to serialize loads against other loads. 2778 Ops.push_back(DAG.getRoot()); 2779 } else { 2780 Ops.push_back(getRoot()); 2781 } 2782 } 2783 2784 // Info is set by getTgtMemInstrinsic 2785 TargetLowering::IntrinsicInfo Info; 2786 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2787 2788 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2789 if (!IsTgtIntrinsic) 2790 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2791 2792 // Add all operands of the call to the operand list. 2793 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2794 SDValue Op = getValue(I.getOperand(i)); 2795 assert(TLI.isTypeLegal(Op.getValueType()) && 2796 "Intrinsic uses a non-legal type?"); 2797 Ops.push_back(Op); 2798 } 2799 2800 SmallVector<EVT, 4> ValueVTs; 2801 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2802 #ifndef NDEBUG 2803 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2804 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2805 "Intrinsic uses a non-legal type?"); 2806 } 2807 #endif // NDEBUG 2808 2809 if (HasChain) 2810 ValueVTs.push_back(MVT::Other); 2811 2812 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2813 2814 // Create the node. 2815 SDValue Result; 2816 if (IsTgtIntrinsic) { 2817 // This is target intrinsic that touches memory 2818 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2819 VTs, &Ops[0], Ops.size(), 2820 Info.memVT, Info.ptrVal, Info.offset, 2821 Info.align, Info.vol, 2822 Info.readMem, Info.writeMem); 2823 } else if (!HasChain) { 2824 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2825 VTs, &Ops[0], Ops.size()); 2826 } else if (!I.getType()->isVoidTy()) { 2827 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2828 VTs, &Ops[0], Ops.size()); 2829 } else { 2830 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2831 VTs, &Ops[0], Ops.size()); 2832 } 2833 2834 if (HasChain) { 2835 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2836 if (OnlyLoad) 2837 PendingLoads.push_back(Chain); 2838 else 2839 DAG.setRoot(Chain); 2840 } 2841 2842 if (!I.getType()->isVoidTy()) { 2843 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2844 EVT VT = TLI.getValueType(PTy); 2845 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2846 } 2847 2848 setValue(&I, Result); 2849 } 2850 } 2851 2852 /// GetSignificand - Get the significand and build it into a floating-point 2853 /// number with exponent of 1: 2854 /// 2855 /// Op = (Op & 0x007fffff) | 0x3f800000; 2856 /// 2857 /// where Op is the hexidecimal representation of floating point value. 2858 static SDValue 2859 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2860 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2861 DAG.getConstant(0x007fffff, MVT::i32)); 2862 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2863 DAG.getConstant(0x3f800000, MVT::i32)); 2864 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2865 } 2866 2867 /// GetExponent - Get the exponent: 2868 /// 2869 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2870 /// 2871 /// where Op is the hexidecimal representation of floating point value. 2872 static SDValue 2873 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2874 DebugLoc dl) { 2875 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2876 DAG.getConstant(0x7f800000, MVT::i32)); 2877 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2878 DAG.getConstant(23, TLI.getPointerTy())); 2879 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2880 DAG.getConstant(127, MVT::i32)); 2881 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2882 } 2883 2884 /// getF32Constant - Get 32-bit floating point constant. 2885 static SDValue 2886 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2887 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2888 } 2889 2890 /// Inlined utility function to implement binary input atomic intrinsics for 2891 /// visitIntrinsicCall: I is a call instruction 2892 /// Op is the associated NodeType for I 2893 const char * 2894 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 2895 ISD::NodeType Op) { 2896 SDValue Root = getRoot(); 2897 SDValue L = 2898 DAG.getAtomic(Op, getCurDebugLoc(), 2899 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2900 Root, 2901 getValue(I.getOperand(1)), 2902 getValue(I.getOperand(2)), 2903 I.getOperand(1)); 2904 setValue(&I, L); 2905 DAG.setRoot(L.getValue(1)); 2906 return 0; 2907 } 2908 2909 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2910 const char * 2911 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 2912 SDValue Op1 = getValue(I.getOperand(1)); 2913 SDValue Op2 = getValue(I.getOperand(2)); 2914 2915 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2916 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 2917 return 0; 2918 } 2919 2920 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2921 /// limited-precision mode. 2922 void 2923 SelectionDAGBuilder::visitExp(const CallInst &I) { 2924 SDValue result; 2925 DebugLoc dl = getCurDebugLoc(); 2926 2927 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2928 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2929 SDValue Op = getValue(I.getOperand(1)); 2930 2931 // Put the exponent in the right bit position for later addition to the 2932 // final result: 2933 // 2934 // #define LOG2OFe 1.4426950f 2935 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2936 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2937 getF32Constant(DAG, 0x3fb8aa3b)); 2938 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2939 2940 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2941 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2942 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2943 2944 // IntegerPartOfX <<= 23; 2945 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2946 DAG.getConstant(23, TLI.getPointerTy())); 2947 2948 if (LimitFloatPrecision <= 6) { 2949 // For floating-point precision of 6: 2950 // 2951 // TwoToFractionalPartOfX = 2952 // 0.997535578f + 2953 // (0.735607626f + 0.252464424f * x) * x; 2954 // 2955 // error 0.0144103317, which is 6 bits 2956 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2957 getF32Constant(DAG, 0x3e814304)); 2958 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2959 getF32Constant(DAG, 0x3f3c50c8)); 2960 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2961 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2962 getF32Constant(DAG, 0x3f7f5e7e)); 2963 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 2964 2965 // Add the exponent into the result in integer domain. 2966 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2967 TwoToFracPartOfX, IntegerPartOfX); 2968 2969 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 2970 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 2971 // For floating-point precision of 12: 2972 // 2973 // TwoToFractionalPartOfX = 2974 // 0.999892986f + 2975 // (0.696457318f + 2976 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 2977 // 2978 // 0.000107046256 error, which is 13 to 14 bits 2979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2980 getF32Constant(DAG, 0x3da235e3)); 2981 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2982 getF32Constant(DAG, 0x3e65b8f3)); 2983 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2984 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2985 getF32Constant(DAG, 0x3f324b07)); 2986 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 2987 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 2988 getF32Constant(DAG, 0x3f7ff8fd)); 2989 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 2990 2991 // Add the exponent into the result in integer domain. 2992 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2993 TwoToFracPartOfX, IntegerPartOfX); 2994 2995 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 2996 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 2997 // For floating-point precision of 18: 2998 // 2999 // TwoToFractionalPartOfX = 3000 // 0.999999982f + 3001 // (0.693148872f + 3002 // (0.240227044f + 3003 // (0.554906021e-1f + 3004 // (0.961591928e-2f + 3005 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3006 // 3007 // error 2.47208000*10^(-7), which is better than 18 bits 3008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3009 getF32Constant(DAG, 0x3924b03e)); 3010 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3011 getF32Constant(DAG, 0x3ab24b87)); 3012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3013 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3014 getF32Constant(DAG, 0x3c1d8c17)); 3015 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3016 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3017 getF32Constant(DAG, 0x3d634a1d)); 3018 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3019 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3020 getF32Constant(DAG, 0x3e75fe14)); 3021 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3022 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3023 getF32Constant(DAG, 0x3f317234)); 3024 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3025 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3026 getF32Constant(DAG, 0x3f800000)); 3027 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3028 MVT::i32, t13); 3029 3030 // Add the exponent into the result in integer domain. 3031 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3032 TwoToFracPartOfX, IntegerPartOfX); 3033 3034 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3035 } 3036 } else { 3037 // No special expansion. 3038 result = DAG.getNode(ISD::FEXP, dl, 3039 getValue(I.getOperand(1)).getValueType(), 3040 getValue(I.getOperand(1))); 3041 } 3042 3043 setValue(&I, result); 3044 } 3045 3046 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3047 /// limited-precision mode. 3048 void 3049 SelectionDAGBuilder::visitLog(const CallInst &I) { 3050 SDValue result; 3051 DebugLoc dl = getCurDebugLoc(); 3052 3053 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3054 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3055 SDValue Op = getValue(I.getOperand(1)); 3056 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3057 3058 // Scale the exponent by log(2) [0.69314718f]. 3059 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3060 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3061 getF32Constant(DAG, 0x3f317218)); 3062 3063 // Get the significand and build it into a floating-point number with 3064 // exponent of 1. 3065 SDValue X = GetSignificand(DAG, Op1, dl); 3066 3067 if (LimitFloatPrecision <= 6) { 3068 // For floating-point precision of 6: 3069 // 3070 // LogofMantissa = 3071 // -1.1609546f + 3072 // (1.4034025f - 0.23903021f * x) * x; 3073 // 3074 // error 0.0034276066, which is better than 8 bits 3075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3076 getF32Constant(DAG, 0xbe74c456)); 3077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3078 getF32Constant(DAG, 0x3fb3a2b1)); 3079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3080 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3081 getF32Constant(DAG, 0x3f949a29)); 3082 3083 result = DAG.getNode(ISD::FADD, dl, 3084 MVT::f32, LogOfExponent, LogOfMantissa); 3085 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3086 // For floating-point precision of 12: 3087 // 3088 // LogOfMantissa = 3089 // -1.7417939f + 3090 // (2.8212026f + 3091 // (-1.4699568f + 3092 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3093 // 3094 // error 0.000061011436, which is 14 bits 3095 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3096 getF32Constant(DAG, 0xbd67b6d6)); 3097 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3098 getF32Constant(DAG, 0x3ee4f4b8)); 3099 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3100 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3101 getF32Constant(DAG, 0x3fbc278b)); 3102 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3103 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3104 getF32Constant(DAG, 0x40348e95)); 3105 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3106 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3107 getF32Constant(DAG, 0x3fdef31a)); 3108 3109 result = DAG.getNode(ISD::FADD, dl, 3110 MVT::f32, LogOfExponent, LogOfMantissa); 3111 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3112 // For floating-point precision of 18: 3113 // 3114 // LogOfMantissa = 3115 // -2.1072184f + 3116 // (4.2372794f + 3117 // (-3.7029485f + 3118 // (2.2781945f + 3119 // (-0.87823314f + 3120 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3121 // 3122 // error 0.0000023660568, which is better than 18 bits 3123 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3124 getF32Constant(DAG, 0xbc91e5ac)); 3125 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3126 getF32Constant(DAG, 0x3e4350aa)); 3127 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3128 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3129 getF32Constant(DAG, 0x3f60d3e3)); 3130 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3131 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3132 getF32Constant(DAG, 0x4011cdf0)); 3133 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3134 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3135 getF32Constant(DAG, 0x406cfd1c)); 3136 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3137 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3138 getF32Constant(DAG, 0x408797cb)); 3139 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3140 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3141 getF32Constant(DAG, 0x4006dcab)); 3142 3143 result = DAG.getNode(ISD::FADD, dl, 3144 MVT::f32, LogOfExponent, LogOfMantissa); 3145 } 3146 } else { 3147 // No special expansion. 3148 result = DAG.getNode(ISD::FLOG, dl, 3149 getValue(I.getOperand(1)).getValueType(), 3150 getValue(I.getOperand(1))); 3151 } 3152 3153 setValue(&I, result); 3154 } 3155 3156 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3157 /// limited-precision mode. 3158 void 3159 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3160 SDValue result; 3161 DebugLoc dl = getCurDebugLoc(); 3162 3163 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3164 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3165 SDValue Op = getValue(I.getOperand(1)); 3166 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3167 3168 // Get the exponent. 3169 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3170 3171 // Get the significand and build it into a floating-point number with 3172 // exponent of 1. 3173 SDValue X = GetSignificand(DAG, Op1, dl); 3174 3175 // Different possible minimax approximations of significand in 3176 // floating-point for various degrees of accuracy over [1,2]. 3177 if (LimitFloatPrecision <= 6) { 3178 // For floating-point precision of 6: 3179 // 3180 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3181 // 3182 // error 0.0049451742, which is more than 7 bits 3183 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3184 getF32Constant(DAG, 0xbeb08fe0)); 3185 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3186 getF32Constant(DAG, 0x40019463)); 3187 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3188 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3189 getF32Constant(DAG, 0x3fd6633d)); 3190 3191 result = DAG.getNode(ISD::FADD, dl, 3192 MVT::f32, LogOfExponent, Log2ofMantissa); 3193 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3194 // For floating-point precision of 12: 3195 // 3196 // Log2ofMantissa = 3197 // -2.51285454f + 3198 // (4.07009056f + 3199 // (-2.12067489f + 3200 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3201 // 3202 // error 0.0000876136000, which is better than 13 bits 3203 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3204 getF32Constant(DAG, 0xbda7262e)); 3205 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3206 getF32Constant(DAG, 0x3f25280b)); 3207 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3208 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3209 getF32Constant(DAG, 0x4007b923)); 3210 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3211 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3212 getF32Constant(DAG, 0x40823e2f)); 3213 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3214 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3215 getF32Constant(DAG, 0x4020d29c)); 3216 3217 result = DAG.getNode(ISD::FADD, dl, 3218 MVT::f32, LogOfExponent, Log2ofMantissa); 3219 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3220 // For floating-point precision of 18: 3221 // 3222 // Log2ofMantissa = 3223 // -3.0400495f + 3224 // (6.1129976f + 3225 // (-5.3420409f + 3226 // (3.2865683f + 3227 // (-1.2669343f + 3228 // (0.27515199f - 3229 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3230 // 3231 // error 0.0000018516, which is better than 18 bits 3232 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3233 getF32Constant(DAG, 0xbcd2769e)); 3234 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3235 getF32Constant(DAG, 0x3e8ce0b9)); 3236 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3237 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3238 getF32Constant(DAG, 0x3fa22ae7)); 3239 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3240 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3241 getF32Constant(DAG, 0x40525723)); 3242 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3243 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3244 getF32Constant(DAG, 0x40aaf200)); 3245 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3246 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3247 getF32Constant(DAG, 0x40c39dad)); 3248 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3249 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3250 getF32Constant(DAG, 0x4042902c)); 3251 3252 result = DAG.getNode(ISD::FADD, dl, 3253 MVT::f32, LogOfExponent, Log2ofMantissa); 3254 } 3255 } else { 3256 // No special expansion. 3257 result = DAG.getNode(ISD::FLOG2, dl, 3258 getValue(I.getOperand(1)).getValueType(), 3259 getValue(I.getOperand(1))); 3260 } 3261 3262 setValue(&I, result); 3263 } 3264 3265 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3266 /// limited-precision mode. 3267 void 3268 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3269 SDValue result; 3270 DebugLoc dl = getCurDebugLoc(); 3271 3272 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3273 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3274 SDValue Op = getValue(I.getOperand(1)); 3275 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3276 3277 // Scale the exponent by log10(2) [0.30102999f]. 3278 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3279 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3280 getF32Constant(DAG, 0x3e9a209a)); 3281 3282 // Get the significand and build it into a floating-point number with 3283 // exponent of 1. 3284 SDValue X = GetSignificand(DAG, Op1, dl); 3285 3286 if (LimitFloatPrecision <= 6) { 3287 // For floating-point precision of 6: 3288 // 3289 // Log10ofMantissa = 3290 // -0.50419619f + 3291 // (0.60948995f - 0.10380950f * x) * x; 3292 // 3293 // error 0.0014886165, which is 6 bits 3294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3295 getF32Constant(DAG, 0xbdd49a13)); 3296 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3297 getF32Constant(DAG, 0x3f1c0789)); 3298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3299 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3300 getF32Constant(DAG, 0x3f011300)); 3301 3302 result = DAG.getNode(ISD::FADD, dl, 3303 MVT::f32, LogOfExponent, Log10ofMantissa); 3304 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3305 // For floating-point precision of 12: 3306 // 3307 // Log10ofMantissa = 3308 // -0.64831180f + 3309 // (0.91751397f + 3310 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3311 // 3312 // error 0.00019228036, which is better than 12 bits 3313 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3314 getF32Constant(DAG, 0x3d431f31)); 3315 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3316 getF32Constant(DAG, 0x3ea21fb2)); 3317 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3318 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3319 getF32Constant(DAG, 0x3f6ae232)); 3320 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3321 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3322 getF32Constant(DAG, 0x3f25f7c3)); 3323 3324 result = DAG.getNode(ISD::FADD, dl, 3325 MVT::f32, LogOfExponent, Log10ofMantissa); 3326 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3327 // For floating-point precision of 18: 3328 // 3329 // Log10ofMantissa = 3330 // -0.84299375f + 3331 // (1.5327582f + 3332 // (-1.0688956f + 3333 // (0.49102474f + 3334 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3335 // 3336 // error 0.0000037995730, which is better than 18 bits 3337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3338 getF32Constant(DAG, 0x3c5d51ce)); 3339 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3340 getF32Constant(DAG, 0x3e00685a)); 3341 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3342 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3343 getF32Constant(DAG, 0x3efb6798)); 3344 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3345 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3346 getF32Constant(DAG, 0x3f88d192)); 3347 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3348 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3349 getF32Constant(DAG, 0x3fc4316c)); 3350 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3351 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3352 getF32Constant(DAG, 0x3f57ce70)); 3353 3354 result = DAG.getNode(ISD::FADD, dl, 3355 MVT::f32, LogOfExponent, Log10ofMantissa); 3356 } 3357 } else { 3358 // No special expansion. 3359 result = DAG.getNode(ISD::FLOG10, dl, 3360 getValue(I.getOperand(1)).getValueType(), 3361 getValue(I.getOperand(1))); 3362 } 3363 3364 setValue(&I, result); 3365 } 3366 3367 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3368 /// limited-precision mode. 3369 void 3370 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3371 SDValue result; 3372 DebugLoc dl = getCurDebugLoc(); 3373 3374 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3375 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3376 SDValue Op = getValue(I.getOperand(1)); 3377 3378 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3379 3380 // FractionalPartOfX = x - (float)IntegerPartOfX; 3381 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3382 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3383 3384 // IntegerPartOfX <<= 23; 3385 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3386 DAG.getConstant(23, TLI.getPointerTy())); 3387 3388 if (LimitFloatPrecision <= 6) { 3389 // For floating-point precision of 6: 3390 // 3391 // TwoToFractionalPartOfX = 3392 // 0.997535578f + 3393 // (0.735607626f + 0.252464424f * x) * x; 3394 // 3395 // error 0.0144103317, which is 6 bits 3396 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3397 getF32Constant(DAG, 0x3e814304)); 3398 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3399 getF32Constant(DAG, 0x3f3c50c8)); 3400 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3401 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3402 getF32Constant(DAG, 0x3f7f5e7e)); 3403 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3404 SDValue TwoToFractionalPartOfX = 3405 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3406 3407 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3408 MVT::f32, TwoToFractionalPartOfX); 3409 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3410 // For floating-point precision of 12: 3411 // 3412 // TwoToFractionalPartOfX = 3413 // 0.999892986f + 3414 // (0.696457318f + 3415 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3416 // 3417 // error 0.000107046256, which is 13 to 14 bits 3418 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3419 getF32Constant(DAG, 0x3da235e3)); 3420 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3421 getF32Constant(DAG, 0x3e65b8f3)); 3422 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3423 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3424 getF32Constant(DAG, 0x3f324b07)); 3425 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3426 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3427 getF32Constant(DAG, 0x3f7ff8fd)); 3428 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3429 SDValue TwoToFractionalPartOfX = 3430 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3431 3432 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3433 MVT::f32, TwoToFractionalPartOfX); 3434 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3435 // For floating-point precision of 18: 3436 // 3437 // TwoToFractionalPartOfX = 3438 // 0.999999982f + 3439 // (0.693148872f + 3440 // (0.240227044f + 3441 // (0.554906021e-1f + 3442 // (0.961591928e-2f + 3443 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3444 // error 2.47208000*10^(-7), which is better than 18 bits 3445 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3446 getF32Constant(DAG, 0x3924b03e)); 3447 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3448 getF32Constant(DAG, 0x3ab24b87)); 3449 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3450 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3451 getF32Constant(DAG, 0x3c1d8c17)); 3452 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3453 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3454 getF32Constant(DAG, 0x3d634a1d)); 3455 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3456 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3457 getF32Constant(DAG, 0x3e75fe14)); 3458 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3459 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3460 getF32Constant(DAG, 0x3f317234)); 3461 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3462 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3463 getF32Constant(DAG, 0x3f800000)); 3464 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3465 SDValue TwoToFractionalPartOfX = 3466 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3467 3468 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3469 MVT::f32, TwoToFractionalPartOfX); 3470 } 3471 } else { 3472 // No special expansion. 3473 result = DAG.getNode(ISD::FEXP2, dl, 3474 getValue(I.getOperand(1)).getValueType(), 3475 getValue(I.getOperand(1))); 3476 } 3477 3478 setValue(&I, result); 3479 } 3480 3481 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3482 /// limited-precision mode with x == 10.0f. 3483 void 3484 SelectionDAGBuilder::visitPow(const CallInst &I) { 3485 SDValue result; 3486 const Value *Val = I.getOperand(1); 3487 DebugLoc dl = getCurDebugLoc(); 3488 bool IsExp10 = false; 3489 3490 if (getValue(Val).getValueType() == MVT::f32 && 3491 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3492 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3493 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3494 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3495 APFloat Ten(10.0f); 3496 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3497 } 3498 } 3499 } 3500 3501 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3502 SDValue Op = getValue(I.getOperand(2)); 3503 3504 // Put the exponent in the right bit position for later addition to the 3505 // final result: 3506 // 3507 // #define LOG2OF10 3.3219281f 3508 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3509 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3510 getF32Constant(DAG, 0x40549a78)); 3511 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3512 3513 // FractionalPartOfX = x - (float)IntegerPartOfX; 3514 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3515 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3516 3517 // IntegerPartOfX <<= 23; 3518 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3519 DAG.getConstant(23, TLI.getPointerTy())); 3520 3521 if (LimitFloatPrecision <= 6) { 3522 // For floating-point precision of 6: 3523 // 3524 // twoToFractionalPartOfX = 3525 // 0.997535578f + 3526 // (0.735607626f + 0.252464424f * x) * x; 3527 // 3528 // error 0.0144103317, which is 6 bits 3529 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3530 getF32Constant(DAG, 0x3e814304)); 3531 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3532 getF32Constant(DAG, 0x3f3c50c8)); 3533 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3534 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3535 getF32Constant(DAG, 0x3f7f5e7e)); 3536 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3537 SDValue TwoToFractionalPartOfX = 3538 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3539 3540 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3541 MVT::f32, TwoToFractionalPartOfX); 3542 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3543 // For floating-point precision of 12: 3544 // 3545 // TwoToFractionalPartOfX = 3546 // 0.999892986f + 3547 // (0.696457318f + 3548 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3549 // 3550 // error 0.000107046256, which is 13 to 14 bits 3551 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3552 getF32Constant(DAG, 0x3da235e3)); 3553 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3554 getF32Constant(DAG, 0x3e65b8f3)); 3555 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3556 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3557 getF32Constant(DAG, 0x3f324b07)); 3558 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3559 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3560 getF32Constant(DAG, 0x3f7ff8fd)); 3561 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3562 SDValue TwoToFractionalPartOfX = 3563 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3564 3565 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3566 MVT::f32, TwoToFractionalPartOfX); 3567 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3568 // For floating-point precision of 18: 3569 // 3570 // TwoToFractionalPartOfX = 3571 // 0.999999982f + 3572 // (0.693148872f + 3573 // (0.240227044f + 3574 // (0.554906021e-1f + 3575 // (0.961591928e-2f + 3576 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3577 // error 2.47208000*10^(-7), which is better than 18 bits 3578 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3579 getF32Constant(DAG, 0x3924b03e)); 3580 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3581 getF32Constant(DAG, 0x3ab24b87)); 3582 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3583 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3584 getF32Constant(DAG, 0x3c1d8c17)); 3585 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3586 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3587 getF32Constant(DAG, 0x3d634a1d)); 3588 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3589 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3590 getF32Constant(DAG, 0x3e75fe14)); 3591 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3592 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3593 getF32Constant(DAG, 0x3f317234)); 3594 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3595 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3596 getF32Constant(DAG, 0x3f800000)); 3597 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3598 SDValue TwoToFractionalPartOfX = 3599 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3600 3601 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3602 MVT::f32, TwoToFractionalPartOfX); 3603 } 3604 } else { 3605 // No special expansion. 3606 result = DAG.getNode(ISD::FPOW, dl, 3607 getValue(I.getOperand(1)).getValueType(), 3608 getValue(I.getOperand(1)), 3609 getValue(I.getOperand(2))); 3610 } 3611 3612 setValue(&I, result); 3613 } 3614 3615 3616 /// ExpandPowI - Expand a llvm.powi intrinsic. 3617 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3618 SelectionDAG &DAG) { 3619 // If RHS is a constant, we can expand this out to a multiplication tree, 3620 // otherwise we end up lowering to a call to __powidf2 (for example). When 3621 // optimizing for size, we only want to do this if the expansion would produce 3622 // a small number of multiplies, otherwise we do the full expansion. 3623 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3624 // Get the exponent as a positive value. 3625 unsigned Val = RHSC->getSExtValue(); 3626 if ((int)Val < 0) Val = -Val; 3627 3628 // powi(x, 0) -> 1.0 3629 if (Val == 0) 3630 return DAG.getConstantFP(1.0, LHS.getValueType()); 3631 3632 const Function *F = DAG.getMachineFunction().getFunction(); 3633 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3634 // If optimizing for size, don't insert too many multiplies. This 3635 // inserts up to 5 multiplies. 3636 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3637 // We use the simple binary decomposition method to generate the multiply 3638 // sequence. There are more optimal ways to do this (for example, 3639 // powi(x,15) generates one more multiply than it should), but this has 3640 // the benefit of being both really simple and much better than a libcall. 3641 SDValue Res; // Logically starts equal to 1.0 3642 SDValue CurSquare = LHS; 3643 while (Val) { 3644 if (Val & 1) { 3645 if (Res.getNode()) 3646 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3647 else 3648 Res = CurSquare; // 1.0*CurSquare. 3649 } 3650 3651 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3652 CurSquare, CurSquare); 3653 Val >>= 1; 3654 } 3655 3656 // If the original was negative, invert the result, producing 1/(x*x*x). 3657 if (RHSC->getSExtValue() < 0) 3658 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3659 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3660 return Res; 3661 } 3662 } 3663 3664 // Otherwise, expand to a libcall. 3665 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3666 } 3667 3668 3669 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3670 /// we want to emit this as a call to a named external function, return the name 3671 /// otherwise lower it and return null. 3672 const char * 3673 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3674 DebugLoc dl = getCurDebugLoc(); 3675 SDValue Res; 3676 3677 switch (Intrinsic) { 3678 default: 3679 // By default, turn this into a target intrinsic node. 3680 visitTargetIntrinsic(I, Intrinsic); 3681 return 0; 3682 case Intrinsic::vastart: visitVAStart(I); return 0; 3683 case Intrinsic::vaend: visitVAEnd(I); return 0; 3684 case Intrinsic::vacopy: visitVACopy(I); return 0; 3685 case Intrinsic::returnaddress: 3686 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3687 getValue(I.getOperand(1)))); 3688 return 0; 3689 case Intrinsic::frameaddress: 3690 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3691 getValue(I.getOperand(1)))); 3692 return 0; 3693 case Intrinsic::setjmp: 3694 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3695 case Intrinsic::longjmp: 3696 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3697 case Intrinsic::memcpy: { 3698 // Assert for address < 256 since we support only user defined address 3699 // spaces. 3700 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3701 < 256 && 3702 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3703 < 256 && 3704 "Unknown address space"); 3705 SDValue Op1 = getValue(I.getOperand(1)); 3706 SDValue Op2 = getValue(I.getOperand(2)); 3707 SDValue Op3 = getValue(I.getOperand(3)); 3708 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3709 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3710 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 3711 I.getOperand(1), 0, I.getOperand(2), 0)); 3712 return 0; 3713 } 3714 case Intrinsic::memset: { 3715 // Assert for address < 256 since we support only user defined address 3716 // spaces. 3717 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3718 < 256 && 3719 "Unknown address space"); 3720 SDValue Op1 = getValue(I.getOperand(1)); 3721 SDValue Op2 = getValue(I.getOperand(2)); 3722 SDValue Op3 = getValue(I.getOperand(3)); 3723 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3724 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3725 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3726 I.getOperand(1), 0)); 3727 return 0; 3728 } 3729 case Intrinsic::memmove: { 3730 // Assert for address < 256 since we support only user defined address 3731 // spaces. 3732 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3733 < 256 && 3734 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3735 < 256 && 3736 "Unknown address space"); 3737 SDValue Op1 = getValue(I.getOperand(1)); 3738 SDValue Op2 = getValue(I.getOperand(2)); 3739 SDValue Op3 = getValue(I.getOperand(3)); 3740 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3741 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3742 3743 // If the source and destination are known to not be aliases, we can 3744 // lower memmove as memcpy. 3745 uint64_t Size = -1ULL; 3746 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3747 Size = C->getZExtValue(); 3748 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3749 AliasAnalysis::NoAlias) { 3750 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3751 false, I.getOperand(1), 0, I.getOperand(2), 0)); 3752 return 0; 3753 } 3754 3755 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3756 I.getOperand(1), 0, I.getOperand(2), 0)); 3757 return 0; 3758 } 3759 case Intrinsic::dbg_declare: { 3760 // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None. 3761 // The real handling of this intrinsic is in FastISel. 3762 if (OptLevel != CodeGenOpt::None) 3763 // FIXME: Variable debug info is not supported here. 3764 return 0; 3765 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3766 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3767 return 0; 3768 3769 MDNode *Variable = DI.getVariable(); 3770 const Value *Address = DI.getAddress(); 3771 if (!Address) 3772 return 0; 3773 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3774 Address = BCI->getOperand(0); 3775 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3776 // Don't handle byval struct arguments or VLAs, for example. 3777 if (!AI) 3778 return 0; 3779 DenseMap<const AllocaInst*, int>::iterator SI = 3780 FuncInfo.StaticAllocaMap.find(AI); 3781 if (SI == FuncInfo.StaticAllocaMap.end()) 3782 return 0; // VLAs. 3783 int FI = SI->second; 3784 3785 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3786 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3787 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3788 return 0; 3789 } 3790 case Intrinsic::dbg_value: { 3791 const DbgValueInst &DI = cast<DbgValueInst>(I); 3792 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3793 return 0; 3794 3795 MDNode *Variable = DI.getVariable(); 3796 uint64_t Offset = DI.getOffset(); 3797 const Value *V = DI.getValue(); 3798 if (!V) 3799 return 0; 3800 3801 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 3802 // but do not always have a corresponding SDNode built. The SDNodeOrder 3803 // absolute, but not relative, values are different depending on whether 3804 // debug info exists. 3805 ++SDNodeOrder; 3806 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 3807 DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder)); 3808 } else { 3809 SDValue &N = NodeMap[V]; 3810 if (N.getNode()) 3811 DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(), 3812 N.getResNo(), Offset, dl, SDNodeOrder), 3813 N.getNode()); 3814 else 3815 // We may expand this to cover more cases. One case where we have no 3816 // data available is an unreferenced parameter; we need this fallback. 3817 DAG.AddDbgValue(DAG.getDbgValue(Variable, 3818 UndefValue::get(V->getType()), 3819 Offset, dl, SDNodeOrder)); 3820 } 3821 3822 // Build a debug info table entry. 3823 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 3824 V = BCI->getOperand(0); 3825 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 3826 // Don't handle byval struct arguments or VLAs, for example. 3827 if (!AI) 3828 return 0; 3829 DenseMap<const AllocaInst*, int>::iterator SI = 3830 FuncInfo.StaticAllocaMap.find(AI); 3831 if (SI == FuncInfo.StaticAllocaMap.end()) 3832 return 0; // VLAs. 3833 int FI = SI->second; 3834 3835 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3836 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3837 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3838 return 0; 3839 } 3840 case Intrinsic::eh_exception: { 3841 // Insert the EXCEPTIONADDR instruction. 3842 assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() && 3843 "Call to eh.exception not in landing pad!"); 3844 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3845 SDValue Ops[1]; 3846 Ops[0] = DAG.getRoot(); 3847 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3848 setValue(&I, Op); 3849 DAG.setRoot(Op.getValue(1)); 3850 return 0; 3851 } 3852 3853 case Intrinsic::eh_selector: { 3854 MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()]; 3855 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3856 if (CallMBB->isLandingPad()) 3857 AddCatchInfo(I, &MMI, CallMBB); 3858 else { 3859 #ifndef NDEBUG 3860 FuncInfo.CatchInfoLost.insert(&I); 3861 #endif 3862 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3863 unsigned Reg = TLI.getExceptionSelectorRegister(); 3864 if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg); 3865 } 3866 3867 // Insert the EHSELECTION instruction. 3868 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3869 SDValue Ops[2]; 3870 Ops[0] = getValue(I.getOperand(1)); 3871 Ops[1] = getRoot(); 3872 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3873 DAG.setRoot(Op.getValue(1)); 3874 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3875 return 0; 3876 } 3877 3878 case Intrinsic::eh_typeid_for: { 3879 // Find the type id for the given typeinfo. 3880 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3881 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 3882 Res = DAG.getConstant(TypeID, MVT::i32); 3883 setValue(&I, Res); 3884 return 0; 3885 } 3886 3887 case Intrinsic::eh_return_i32: 3888 case Intrinsic::eh_return_i64: 3889 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 3890 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3891 MVT::Other, 3892 getControlRoot(), 3893 getValue(I.getOperand(1)), 3894 getValue(I.getOperand(2)))); 3895 return 0; 3896 case Intrinsic::eh_unwind_init: 3897 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 3898 return 0; 3899 case Intrinsic::eh_dwarf_cfa: { 3900 EVT VT = getValue(I.getOperand(1)).getValueType(); 3901 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3902 TLI.getPointerTy()); 3903 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3904 TLI.getPointerTy(), 3905 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3906 TLI.getPointerTy()), 3907 CfaArg); 3908 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 3909 TLI.getPointerTy(), 3910 DAG.getConstant(0, TLI.getPointerTy())); 3911 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 3912 FA, Offset)); 3913 return 0; 3914 } 3915 case Intrinsic::eh_sjlj_callsite: { 3916 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3917 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 3918 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 3919 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 3920 3921 MMI.setCurrentCallSite(CI->getZExtValue()); 3922 return 0; 3923 } 3924 3925 case Intrinsic::convertff: 3926 case Intrinsic::convertfsi: 3927 case Intrinsic::convertfui: 3928 case Intrinsic::convertsif: 3929 case Intrinsic::convertuif: 3930 case Intrinsic::convertss: 3931 case Intrinsic::convertsu: 3932 case Intrinsic::convertus: 3933 case Intrinsic::convertuu: { 3934 ISD::CvtCode Code = ISD::CVT_INVALID; 3935 switch (Intrinsic) { 3936 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3937 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3938 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3939 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3940 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3941 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3942 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3943 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3944 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 3945 } 3946 EVT DestVT = TLI.getValueType(I.getType()); 3947 const Value *Op1 = I.getOperand(1); 3948 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 3949 DAG.getValueType(DestVT), 3950 DAG.getValueType(getValue(Op1).getValueType()), 3951 getValue(I.getOperand(2)), 3952 getValue(I.getOperand(3)), 3953 Code); 3954 setValue(&I, Res); 3955 return 0; 3956 } 3957 case Intrinsic::sqrt: 3958 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 3959 getValue(I.getOperand(1)).getValueType(), 3960 getValue(I.getOperand(1)))); 3961 return 0; 3962 case Intrinsic::powi: 3963 setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)), 3964 getValue(I.getOperand(2)), DAG)); 3965 return 0; 3966 case Intrinsic::sin: 3967 setValue(&I, DAG.getNode(ISD::FSIN, dl, 3968 getValue(I.getOperand(1)).getValueType(), 3969 getValue(I.getOperand(1)))); 3970 return 0; 3971 case Intrinsic::cos: 3972 setValue(&I, DAG.getNode(ISD::FCOS, dl, 3973 getValue(I.getOperand(1)).getValueType(), 3974 getValue(I.getOperand(1)))); 3975 return 0; 3976 case Intrinsic::log: 3977 visitLog(I); 3978 return 0; 3979 case Intrinsic::log2: 3980 visitLog2(I); 3981 return 0; 3982 case Intrinsic::log10: 3983 visitLog10(I); 3984 return 0; 3985 case Intrinsic::exp: 3986 visitExp(I); 3987 return 0; 3988 case Intrinsic::exp2: 3989 visitExp2(I); 3990 return 0; 3991 case Intrinsic::pow: 3992 visitPow(I); 3993 return 0; 3994 case Intrinsic::convert_to_fp16: 3995 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 3996 MVT::i16, getValue(I.getOperand(1)))); 3997 return 0; 3998 case Intrinsic::convert_from_fp16: 3999 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4000 MVT::f32, getValue(I.getOperand(1)))); 4001 return 0; 4002 case Intrinsic::pcmarker: { 4003 SDValue Tmp = getValue(I.getOperand(1)); 4004 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4005 return 0; 4006 } 4007 case Intrinsic::readcyclecounter: { 4008 SDValue Op = getRoot(); 4009 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4010 DAG.getVTList(MVT::i64, MVT::Other), 4011 &Op, 1); 4012 setValue(&I, Res); 4013 DAG.setRoot(Res.getValue(1)); 4014 return 0; 4015 } 4016 case Intrinsic::bswap: 4017 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4018 getValue(I.getOperand(1)).getValueType(), 4019 getValue(I.getOperand(1)))); 4020 return 0; 4021 case Intrinsic::cttz: { 4022 SDValue Arg = getValue(I.getOperand(1)); 4023 EVT Ty = Arg.getValueType(); 4024 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4025 return 0; 4026 } 4027 case Intrinsic::ctlz: { 4028 SDValue Arg = getValue(I.getOperand(1)); 4029 EVT Ty = Arg.getValueType(); 4030 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4031 return 0; 4032 } 4033 case Intrinsic::ctpop: { 4034 SDValue Arg = getValue(I.getOperand(1)); 4035 EVT Ty = Arg.getValueType(); 4036 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4037 return 0; 4038 } 4039 case Intrinsic::stacksave: { 4040 SDValue Op = getRoot(); 4041 Res = DAG.getNode(ISD::STACKSAVE, dl, 4042 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4043 setValue(&I, Res); 4044 DAG.setRoot(Res.getValue(1)); 4045 return 0; 4046 } 4047 case Intrinsic::stackrestore: { 4048 Res = getValue(I.getOperand(1)); 4049 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4050 return 0; 4051 } 4052 case Intrinsic::stackprotector: { 4053 // Emit code into the DAG to store the stack guard onto the stack. 4054 MachineFunction &MF = DAG.getMachineFunction(); 4055 MachineFrameInfo *MFI = MF.getFrameInfo(); 4056 EVT PtrTy = TLI.getPointerTy(); 4057 4058 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4059 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4060 4061 int FI = FuncInfo.StaticAllocaMap[Slot]; 4062 MFI->setStackProtectorIndex(FI); 4063 4064 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4065 4066 // Store the stack protector onto the stack. 4067 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4068 PseudoSourceValue::getFixedStack(FI), 4069 0, true, false, 0); 4070 setValue(&I, Res); 4071 DAG.setRoot(Res); 4072 return 0; 4073 } 4074 case Intrinsic::objectsize: { 4075 // If we don't know by now, we're never going to know. 4076 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4077 4078 assert(CI && "Non-constant type in __builtin_object_size?"); 4079 4080 SDValue Arg = getValue(I.getOperand(0)); 4081 EVT Ty = Arg.getValueType(); 4082 4083 if (CI->getZExtValue() == 0) 4084 Res = DAG.getConstant(-1ULL, Ty); 4085 else 4086 Res = DAG.getConstant(0, Ty); 4087 4088 setValue(&I, Res); 4089 return 0; 4090 } 4091 case Intrinsic::var_annotation: 4092 // Discard annotate attributes 4093 return 0; 4094 4095 case Intrinsic::init_trampoline: { 4096 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4097 4098 SDValue Ops[6]; 4099 Ops[0] = getRoot(); 4100 Ops[1] = getValue(I.getOperand(1)); 4101 Ops[2] = getValue(I.getOperand(2)); 4102 Ops[3] = getValue(I.getOperand(3)); 4103 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4104 Ops[5] = DAG.getSrcValue(F); 4105 4106 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4107 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4108 Ops, 6); 4109 4110 setValue(&I, Res); 4111 DAG.setRoot(Res.getValue(1)); 4112 return 0; 4113 } 4114 case Intrinsic::gcroot: 4115 if (GFI) { 4116 const Value *Alloca = I.getOperand(1); 4117 const Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4118 4119 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4120 GFI->addStackRoot(FI->getIndex(), TypeMap); 4121 } 4122 return 0; 4123 case Intrinsic::gcread: 4124 case Intrinsic::gcwrite: 4125 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4126 return 0; 4127 case Intrinsic::flt_rounds: 4128 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4129 return 0; 4130 case Intrinsic::trap: 4131 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4132 return 0; 4133 case Intrinsic::uadd_with_overflow: 4134 return implVisitAluOverflow(I, ISD::UADDO); 4135 case Intrinsic::sadd_with_overflow: 4136 return implVisitAluOverflow(I, ISD::SADDO); 4137 case Intrinsic::usub_with_overflow: 4138 return implVisitAluOverflow(I, ISD::USUBO); 4139 case Intrinsic::ssub_with_overflow: 4140 return implVisitAluOverflow(I, ISD::SSUBO); 4141 case Intrinsic::umul_with_overflow: 4142 return implVisitAluOverflow(I, ISD::UMULO); 4143 case Intrinsic::smul_with_overflow: 4144 return implVisitAluOverflow(I, ISD::SMULO); 4145 4146 case Intrinsic::prefetch: { 4147 SDValue Ops[4]; 4148 Ops[0] = getRoot(); 4149 Ops[1] = getValue(I.getOperand(1)); 4150 Ops[2] = getValue(I.getOperand(2)); 4151 Ops[3] = getValue(I.getOperand(3)); 4152 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4153 return 0; 4154 } 4155 4156 case Intrinsic::memory_barrier: { 4157 SDValue Ops[6]; 4158 Ops[0] = getRoot(); 4159 for (int x = 1; x < 6; ++x) 4160 Ops[x] = getValue(I.getOperand(x)); 4161 4162 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4163 return 0; 4164 } 4165 case Intrinsic::atomic_cmp_swap: { 4166 SDValue Root = getRoot(); 4167 SDValue L = 4168 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4169 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4170 Root, 4171 getValue(I.getOperand(1)), 4172 getValue(I.getOperand(2)), 4173 getValue(I.getOperand(3)), 4174 I.getOperand(1)); 4175 setValue(&I, L); 4176 DAG.setRoot(L.getValue(1)); 4177 return 0; 4178 } 4179 case Intrinsic::atomic_load_add: 4180 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4181 case Intrinsic::atomic_load_sub: 4182 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4183 case Intrinsic::atomic_load_or: 4184 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4185 case Intrinsic::atomic_load_xor: 4186 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4187 case Intrinsic::atomic_load_and: 4188 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4189 case Intrinsic::atomic_load_nand: 4190 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4191 case Intrinsic::atomic_load_max: 4192 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4193 case Intrinsic::atomic_load_min: 4194 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4195 case Intrinsic::atomic_load_umin: 4196 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4197 case Intrinsic::atomic_load_umax: 4198 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4199 case Intrinsic::atomic_swap: 4200 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4201 4202 case Intrinsic::invariant_start: 4203 case Intrinsic::lifetime_start: 4204 // Discard region information. 4205 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4206 return 0; 4207 case Intrinsic::invariant_end: 4208 case Intrinsic::lifetime_end: 4209 // Discard region information. 4210 return 0; 4211 } 4212 } 4213 4214 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4215 bool isTailCall, 4216 MachineBasicBlock *LandingPad) { 4217 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4218 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4219 const Type *RetTy = FTy->getReturnType(); 4220 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4221 MCSymbol *BeginLabel = 0; 4222 4223 TargetLowering::ArgListTy Args; 4224 TargetLowering::ArgListEntry Entry; 4225 Args.reserve(CS.arg_size()); 4226 4227 // Check whether the function can return without sret-demotion. 4228 SmallVector<EVT, 4> OutVTs; 4229 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4230 SmallVector<uint64_t, 4> Offsets; 4231 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4232 OutVTs, OutsFlags, TLI, &Offsets); 4233 4234 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4235 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4236 4237 SDValue DemoteStackSlot; 4238 4239 if (!CanLowerReturn) { 4240 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4241 FTy->getReturnType()); 4242 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4243 FTy->getReturnType()); 4244 MachineFunction &MF = DAG.getMachineFunction(); 4245 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4246 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4247 4248 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4249 Entry.Node = DemoteStackSlot; 4250 Entry.Ty = StackSlotPtrType; 4251 Entry.isSExt = false; 4252 Entry.isZExt = false; 4253 Entry.isInReg = false; 4254 Entry.isSRet = true; 4255 Entry.isNest = false; 4256 Entry.isByVal = false; 4257 Entry.Alignment = Align; 4258 Args.push_back(Entry); 4259 RetTy = Type::getVoidTy(FTy->getContext()); 4260 } 4261 4262 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4263 i != e; ++i) { 4264 SDValue ArgNode = getValue(*i); 4265 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4266 4267 unsigned attrInd = i - CS.arg_begin() + 1; 4268 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4269 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4270 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4271 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4272 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4273 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4274 Entry.Alignment = CS.getParamAlignment(attrInd); 4275 Args.push_back(Entry); 4276 } 4277 4278 if (LandingPad) { 4279 // Insert a label before the invoke call to mark the try range. This can be 4280 // used to detect deletion of the invoke via the MachineModuleInfo. 4281 BeginLabel = MMI.getContext().CreateTempSymbol(); 4282 4283 // For SjLj, keep track of which landing pads go with which invokes 4284 // so as to maintain the ordering of pads in the LSDA. 4285 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4286 if (CallSiteIndex) { 4287 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4288 // Now that the call site is handled, stop tracking it. 4289 MMI.setCurrentCallSite(0); 4290 } 4291 4292 // Both PendingLoads and PendingExports must be flushed here; 4293 // this call might not return. 4294 (void)getRoot(); 4295 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4296 } 4297 4298 // Check if target-independent constraints permit a tail call here. 4299 // Target-dependent constraints are checked within TLI.LowerCallTo. 4300 if (isTailCall && 4301 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4302 isTailCall = false; 4303 4304 std::pair<SDValue,SDValue> Result = 4305 TLI.LowerCallTo(getRoot(), RetTy, 4306 CS.paramHasAttr(0, Attribute::SExt), 4307 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4308 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4309 CS.getCallingConv(), 4310 isTailCall, 4311 !CS.getInstruction()->use_empty(), 4312 Callee, Args, DAG, getCurDebugLoc()); 4313 assert((isTailCall || Result.second.getNode()) && 4314 "Non-null chain expected with non-tail call!"); 4315 assert((Result.second.getNode() || !Result.first.getNode()) && 4316 "Null value expected with tail call!"); 4317 if (Result.first.getNode()) { 4318 setValue(CS.getInstruction(), Result.first); 4319 } else if (!CanLowerReturn && Result.second.getNode()) { 4320 // The instruction result is the result of loading from the 4321 // hidden sret parameter. 4322 SmallVector<EVT, 1> PVTs; 4323 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4324 4325 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4326 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4327 EVT PtrVT = PVTs[0]; 4328 unsigned NumValues = OutVTs.size(); 4329 SmallVector<SDValue, 4> Values(NumValues); 4330 SmallVector<SDValue, 4> Chains(NumValues); 4331 4332 for (unsigned i = 0; i < NumValues; ++i) { 4333 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4334 DemoteStackSlot, 4335 DAG.getConstant(Offsets[i], PtrVT)); 4336 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4337 Add, NULL, Offsets[i], false, false, 1); 4338 Values[i] = L; 4339 Chains[i] = L.getValue(1); 4340 } 4341 4342 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4343 MVT::Other, &Chains[0], NumValues); 4344 PendingLoads.push_back(Chain); 4345 4346 // Collect the legal value parts into potentially illegal values 4347 // that correspond to the original function's return values. 4348 SmallVector<EVT, 4> RetTys; 4349 RetTy = FTy->getReturnType(); 4350 ComputeValueVTs(TLI, RetTy, RetTys); 4351 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4352 SmallVector<SDValue, 4> ReturnValues; 4353 unsigned CurReg = 0; 4354 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4355 EVT VT = RetTys[I]; 4356 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4357 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4358 4359 SDValue ReturnValue = 4360 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4361 RegisterVT, VT, AssertOp); 4362 ReturnValues.push_back(ReturnValue); 4363 CurReg += NumRegs; 4364 } 4365 4366 setValue(CS.getInstruction(), 4367 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4368 DAG.getVTList(&RetTys[0], RetTys.size()), 4369 &ReturnValues[0], ReturnValues.size())); 4370 4371 } 4372 4373 // As a special case, a null chain means that a tail call has been emitted and 4374 // the DAG root is already updated. 4375 if (Result.second.getNode()) 4376 DAG.setRoot(Result.second); 4377 else 4378 HasTailCall = true; 4379 4380 if (LandingPad) { 4381 // Insert a label at the end of the invoke call to mark the try range. This 4382 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4383 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4384 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4385 4386 // Inform MachineModuleInfo of range. 4387 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4388 } 4389 } 4390 4391 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4392 /// value is equal or not-equal to zero. 4393 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4394 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4395 UI != E; ++UI) { 4396 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4397 if (IC->isEquality()) 4398 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4399 if (C->isNullValue()) 4400 continue; 4401 // Unknown instruction. 4402 return false; 4403 } 4404 return true; 4405 } 4406 4407 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4408 const Type *LoadTy, 4409 SelectionDAGBuilder &Builder) { 4410 4411 // Check to see if this load can be trivially constant folded, e.g. if the 4412 // input is from a string literal. 4413 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4414 // Cast pointer to the type we really want to load. 4415 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4416 PointerType::getUnqual(LoadTy)); 4417 4418 if (const Constant *LoadCst = 4419 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4420 Builder.TD)) 4421 return Builder.getValue(LoadCst); 4422 } 4423 4424 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4425 // still constant memory, the input chain can be the entry node. 4426 SDValue Root; 4427 bool ConstantMemory = false; 4428 4429 // Do not serialize (non-volatile) loads of constant memory with anything. 4430 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4431 Root = Builder.DAG.getEntryNode(); 4432 ConstantMemory = true; 4433 } else { 4434 // Do not serialize non-volatile loads against each other. 4435 Root = Builder.DAG.getRoot(); 4436 } 4437 4438 SDValue Ptr = Builder.getValue(PtrVal); 4439 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4440 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4441 false /*volatile*/, 4442 false /*nontemporal*/, 1 /* align=1 */); 4443 4444 if (!ConstantMemory) 4445 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4446 return LoadVal; 4447 } 4448 4449 4450 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4451 /// If so, return true and lower it, otherwise return false and it will be 4452 /// lowered like a normal call. 4453 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4454 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4455 if (I.getNumOperands() != 4) 4456 return false; 4457 4458 const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2); 4459 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4460 !I.getOperand(3)->getType()->isIntegerTy() || 4461 !I.getType()->isIntegerTy()) 4462 return false; 4463 4464 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3)); 4465 4466 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4467 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4468 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4469 bool ActuallyDoIt = true; 4470 MVT LoadVT; 4471 const Type *LoadTy; 4472 switch (Size->getZExtValue()) { 4473 default: 4474 LoadVT = MVT::Other; 4475 LoadTy = 0; 4476 ActuallyDoIt = false; 4477 break; 4478 case 2: 4479 LoadVT = MVT::i16; 4480 LoadTy = Type::getInt16Ty(Size->getContext()); 4481 break; 4482 case 4: 4483 LoadVT = MVT::i32; 4484 LoadTy = Type::getInt32Ty(Size->getContext()); 4485 break; 4486 case 8: 4487 LoadVT = MVT::i64; 4488 LoadTy = Type::getInt64Ty(Size->getContext()); 4489 break; 4490 /* 4491 case 16: 4492 LoadVT = MVT::v4i32; 4493 LoadTy = Type::getInt32Ty(Size->getContext()); 4494 LoadTy = VectorType::get(LoadTy, 4); 4495 break; 4496 */ 4497 } 4498 4499 // This turns into unaligned loads. We only do this if the target natively 4500 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4501 // we'll only produce a small number of byte loads. 4502 4503 // Require that we can find a legal MVT, and only do this if the target 4504 // supports unaligned loads of that type. Expanding into byte loads would 4505 // bloat the code. 4506 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4507 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4508 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4509 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4510 ActuallyDoIt = false; 4511 } 4512 4513 if (ActuallyDoIt) { 4514 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4515 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4516 4517 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4518 ISD::SETNE); 4519 EVT CallVT = TLI.getValueType(I.getType(), true); 4520 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4521 return true; 4522 } 4523 } 4524 4525 4526 return false; 4527 } 4528 4529 4530 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4531 const char *RenameFn = 0; 4532 if (Function *F = I.getCalledFunction()) { 4533 if (F->isDeclaration()) { 4534 const TargetIntrinsicInfo *II = TM.getIntrinsicInfo(); 4535 if (II) { 4536 if (unsigned IID = II->getIntrinsicID(F)) { 4537 RenameFn = visitIntrinsicCall(I, IID); 4538 if (!RenameFn) 4539 return; 4540 } 4541 } 4542 if (unsigned IID = F->getIntrinsicID()) { 4543 RenameFn = visitIntrinsicCall(I, IID); 4544 if (!RenameFn) 4545 return; 4546 } 4547 } 4548 4549 // Check for well-known libc/libm calls. If the function is internal, it 4550 // can't be a library call. 4551 if (!F->hasLocalLinkage() && F->hasName()) { 4552 StringRef Name = F->getName(); 4553 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4554 if (I.getNumOperands() == 3 && // Basic sanity checks. 4555 I.getOperand(1)->getType()->isFloatingPointTy() && 4556 I.getType() == I.getOperand(1)->getType() && 4557 I.getType() == I.getOperand(2)->getType()) { 4558 SDValue LHS = getValue(I.getOperand(1)); 4559 SDValue RHS = getValue(I.getOperand(2)); 4560 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4561 LHS.getValueType(), LHS, RHS)); 4562 return; 4563 } 4564 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4565 if (I.getNumOperands() == 2 && // Basic sanity checks. 4566 I.getOperand(1)->getType()->isFloatingPointTy() && 4567 I.getType() == I.getOperand(1)->getType()) { 4568 SDValue Tmp = getValue(I.getOperand(1)); 4569 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4570 Tmp.getValueType(), Tmp)); 4571 return; 4572 } 4573 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4574 if (I.getNumOperands() == 2 && // Basic sanity checks. 4575 I.getOperand(1)->getType()->isFloatingPointTy() && 4576 I.getType() == I.getOperand(1)->getType() && 4577 I.onlyReadsMemory()) { 4578 SDValue Tmp = getValue(I.getOperand(1)); 4579 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4580 Tmp.getValueType(), Tmp)); 4581 return; 4582 } 4583 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4584 if (I.getNumOperands() == 2 && // Basic sanity checks. 4585 I.getOperand(1)->getType()->isFloatingPointTy() && 4586 I.getType() == I.getOperand(1)->getType() && 4587 I.onlyReadsMemory()) { 4588 SDValue Tmp = getValue(I.getOperand(1)); 4589 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4590 Tmp.getValueType(), Tmp)); 4591 return; 4592 } 4593 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4594 if (I.getNumOperands() == 2 && // Basic sanity checks. 4595 I.getOperand(1)->getType()->isFloatingPointTy() && 4596 I.getType() == I.getOperand(1)->getType() && 4597 I.onlyReadsMemory()) { 4598 SDValue Tmp = getValue(I.getOperand(1)); 4599 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4600 Tmp.getValueType(), Tmp)); 4601 return; 4602 } 4603 } else if (Name == "memcmp") { 4604 if (visitMemCmpCall(I)) 4605 return; 4606 } 4607 } 4608 } else if (isa<InlineAsm>(I.getOperand(0))) { 4609 visitInlineAsm(&I); 4610 return; 4611 } 4612 4613 SDValue Callee; 4614 if (!RenameFn) 4615 Callee = getValue(I.getOperand(0)); 4616 else 4617 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4618 4619 // Check if we can potentially perform a tail call. More detailed checking is 4620 // be done within LowerCallTo, after more information about the call is known. 4621 LowerCallTo(&I, Callee, I.isTailCall()); 4622 } 4623 4624 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4625 /// this value and returns the result as a ValueVT value. This uses 4626 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4627 /// If the Flag pointer is NULL, no flag is used. 4628 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4629 SDValue &Chain, SDValue *Flag) const { 4630 // Assemble the legal parts into the final values. 4631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4632 SmallVector<SDValue, 8> Parts; 4633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4634 // Copy the legal parts from the registers. 4635 EVT ValueVT = ValueVTs[Value]; 4636 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4637 EVT RegisterVT = RegVTs[Value]; 4638 4639 Parts.resize(NumRegs); 4640 for (unsigned i = 0; i != NumRegs; ++i) { 4641 SDValue P; 4642 if (Flag == 0) { 4643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4644 } else { 4645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4646 *Flag = P.getValue(2); 4647 } 4648 4649 Chain = P.getValue(1); 4650 4651 // If the source register was virtual and if we know something about it, 4652 // add an assert node. 4653 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4654 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4655 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4656 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4657 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4658 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4659 4660 unsigned RegSize = RegisterVT.getSizeInBits(); 4661 unsigned NumSignBits = LOI.NumSignBits; 4662 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4663 4664 // FIXME: We capture more information than the dag can represent. For 4665 // now, just use the tightest assertzext/assertsext possible. 4666 bool isSExt = true; 4667 EVT FromVT(MVT::Other); 4668 if (NumSignBits == RegSize) 4669 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4670 else if (NumZeroBits >= RegSize-1) 4671 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4672 else if (NumSignBits > RegSize-8) 4673 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4674 else if (NumZeroBits >= RegSize-8) 4675 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4676 else if (NumSignBits > RegSize-16) 4677 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4678 else if (NumZeroBits >= RegSize-16) 4679 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4680 else if (NumSignBits > RegSize-32) 4681 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4682 else if (NumZeroBits >= RegSize-32) 4683 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4684 4685 if (FromVT != MVT::Other) 4686 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4687 RegisterVT, P, DAG.getValueType(FromVT)); 4688 } 4689 } 4690 4691 Parts[i] = P; 4692 } 4693 4694 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4695 NumRegs, RegisterVT, ValueVT); 4696 Part += NumRegs; 4697 Parts.clear(); 4698 } 4699 4700 return DAG.getNode(ISD::MERGE_VALUES, dl, 4701 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4702 &Values[0], ValueVTs.size()); 4703 } 4704 4705 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4706 /// specified value into the registers specified by this object. This uses 4707 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4708 /// If the Flag pointer is NULL, no flag is used. 4709 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4710 SDValue &Chain, SDValue *Flag) const { 4711 // Get the list of the values's legal parts. 4712 unsigned NumRegs = Regs.size(); 4713 SmallVector<SDValue, 8> Parts(NumRegs); 4714 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4715 EVT ValueVT = ValueVTs[Value]; 4716 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4717 EVT RegisterVT = RegVTs[Value]; 4718 4719 getCopyToParts(DAG, dl, 4720 Val.getValue(Val.getResNo() + Value), 4721 &Parts[Part], NumParts, RegisterVT); 4722 Part += NumParts; 4723 } 4724 4725 // Copy the parts into the registers. 4726 SmallVector<SDValue, 8> Chains(NumRegs); 4727 for (unsigned i = 0; i != NumRegs; ++i) { 4728 SDValue Part; 4729 if (Flag == 0) { 4730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4731 } else { 4732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4733 *Flag = Part.getValue(1); 4734 } 4735 4736 Chains[i] = Part.getValue(0); 4737 } 4738 4739 if (NumRegs == 1 || Flag) 4740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4741 // flagged to it. That is the CopyToReg nodes and the user are considered 4742 // a single scheduling unit. If we create a TokenFactor and return it as 4743 // chain, then the TokenFactor is both a predecessor (operand) of the 4744 // user as well as a successor (the TF operands are flagged to the user). 4745 // c1, f1 = CopyToReg 4746 // c2, f2 = CopyToReg 4747 // c3 = TokenFactor c1, c2 4748 // ... 4749 // = op c3, ..., f2 4750 Chain = Chains[NumRegs-1]; 4751 else 4752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4753 } 4754 4755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4756 /// operand list. This adds the code marker and includes the number of 4757 /// values added into it. 4758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 4759 unsigned MatchingIdx, 4760 SelectionDAG &DAG, 4761 std::vector<SDValue> &Ops) const { 4762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 4763 if (HasMatching) 4764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 4765 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 4766 Ops.push_back(Res); 4767 4768 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4769 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4770 EVT RegisterVT = RegVTs[Value]; 4771 for (unsigned i = 0; i != NumRegs; ++i) { 4772 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4773 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4774 } 4775 } 4776 } 4777 4778 /// isAllocatableRegister - If the specified register is safe to allocate, 4779 /// i.e. it isn't a stack pointer or some other special register, return the 4780 /// register class for the register. Otherwise, return null. 4781 static const TargetRegisterClass * 4782 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4783 const TargetLowering &TLI, 4784 const TargetRegisterInfo *TRI) { 4785 EVT FoundVT = MVT::Other; 4786 const TargetRegisterClass *FoundRC = 0; 4787 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4788 E = TRI->regclass_end(); RCI != E; ++RCI) { 4789 EVT ThisVT = MVT::Other; 4790 4791 const TargetRegisterClass *RC = *RCI; 4792 // If none of the value types for this register class are valid, we 4793 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4794 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4795 I != E; ++I) { 4796 if (TLI.isTypeLegal(*I)) { 4797 // If we have already found this register in a different register class, 4798 // choose the one with the largest VT specified. For example, on 4799 // PowerPC, we favor f64 register classes over f32. 4800 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4801 ThisVT = *I; 4802 break; 4803 } 4804 } 4805 } 4806 4807 if (ThisVT == MVT::Other) continue; 4808 4809 // NOTE: This isn't ideal. In particular, this might allocate the 4810 // frame pointer in functions that need it (due to them not being taken 4811 // out of allocation, because a variable sized allocation hasn't been seen 4812 // yet). This is a slight code pessimization, but should still work. 4813 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4814 E = RC->allocation_order_end(MF); I != E; ++I) 4815 if (*I == Reg) { 4816 // We found a matching register class. Keep looking at others in case 4817 // we find one with larger registers that this physreg is also in. 4818 FoundRC = RC; 4819 FoundVT = ThisVT; 4820 break; 4821 } 4822 } 4823 return FoundRC; 4824 } 4825 4826 4827 namespace llvm { 4828 /// AsmOperandInfo - This contains information for each constraint that we are 4829 /// lowering. 4830 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4831 public TargetLowering::AsmOperandInfo { 4832 public: 4833 /// CallOperand - If this is the result output operand or a clobber 4834 /// this is null, otherwise it is the incoming operand to the CallInst. 4835 /// This gets modified as the asm is processed. 4836 SDValue CallOperand; 4837 4838 /// AssignedRegs - If this is a register or register class operand, this 4839 /// contains the set of register corresponding to the operand. 4840 RegsForValue AssignedRegs; 4841 4842 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4843 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4844 } 4845 4846 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4847 /// busy in OutputRegs/InputRegs. 4848 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4849 std::set<unsigned> &OutputRegs, 4850 std::set<unsigned> &InputRegs, 4851 const TargetRegisterInfo &TRI) const { 4852 if (isOutReg) { 4853 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4854 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4855 } 4856 if (isInReg) { 4857 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4858 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4859 } 4860 } 4861 4862 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4863 /// corresponds to. If there is no Value* for this operand, it returns 4864 /// MVT::Other. 4865 EVT getCallOperandValEVT(LLVMContext &Context, 4866 const TargetLowering &TLI, 4867 const TargetData *TD) const { 4868 if (CallOperandVal == 0) return MVT::Other; 4869 4870 if (isa<BasicBlock>(CallOperandVal)) 4871 return TLI.getPointerTy(); 4872 4873 const llvm::Type *OpTy = CallOperandVal->getType(); 4874 4875 // If this is an indirect operand, the operand is a pointer to the 4876 // accessed type. 4877 if (isIndirect) { 4878 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4879 if (!PtrTy) 4880 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4881 OpTy = PtrTy->getElementType(); 4882 } 4883 4884 // If OpTy is not a single value, it may be a struct/union that we 4885 // can tile with integers. 4886 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4887 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4888 switch (BitSize) { 4889 default: break; 4890 case 1: 4891 case 8: 4892 case 16: 4893 case 32: 4894 case 64: 4895 case 128: 4896 OpTy = IntegerType::get(Context, BitSize); 4897 break; 4898 } 4899 } 4900 4901 return TLI.getValueType(OpTy, true); 4902 } 4903 4904 private: 4905 /// MarkRegAndAliases - Mark the specified register and all aliases in the 4906 /// specified set. 4907 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 4908 const TargetRegisterInfo &TRI) { 4909 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 4910 Regs.insert(Reg); 4911 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 4912 for (; *Aliases; ++Aliases) 4913 Regs.insert(*Aliases); 4914 } 4915 }; 4916 } // end llvm namespace. 4917 4918 4919 /// GetRegistersForValue - Assign registers (virtual or physical) for the 4920 /// specified operand. We prefer to assign virtual registers, to allow the 4921 /// register allocator to handle the assignment process. However, if the asm 4922 /// uses features that we can't model on machineinstrs, we have SDISel do the 4923 /// allocation. This produces generally horrible, but correct, code. 4924 /// 4925 /// OpInfo describes the operand. 4926 /// Input and OutputRegs are the set of already allocated physical registers. 4927 /// 4928 void SelectionDAGBuilder:: 4929 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 4930 std::set<unsigned> &OutputRegs, 4931 std::set<unsigned> &InputRegs) { 4932 LLVMContext &Context = FuncInfo.Fn->getContext(); 4933 4934 // Compute whether this value requires an input register, an output register, 4935 // or both. 4936 bool isOutReg = false; 4937 bool isInReg = false; 4938 switch (OpInfo.Type) { 4939 case InlineAsm::isOutput: 4940 isOutReg = true; 4941 4942 // If there is an input constraint that matches this, we need to reserve 4943 // the input register so no other inputs allocate to it. 4944 isInReg = OpInfo.hasMatchingInput(); 4945 break; 4946 case InlineAsm::isInput: 4947 isInReg = true; 4948 isOutReg = false; 4949 break; 4950 case InlineAsm::isClobber: 4951 isOutReg = true; 4952 isInReg = true; 4953 break; 4954 } 4955 4956 4957 MachineFunction &MF = DAG.getMachineFunction(); 4958 SmallVector<unsigned, 4> Regs; 4959 4960 // If this is a constraint for a single physreg, or a constraint for a 4961 // register class, find it. 4962 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 4963 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4964 OpInfo.ConstraintVT); 4965 4966 unsigned NumRegs = 1; 4967 if (OpInfo.ConstraintVT != MVT::Other) { 4968 // If this is a FP input in an integer register (or visa versa) insert a bit 4969 // cast of the input value. More generally, handle any case where the input 4970 // value disagrees with the register class we plan to stick this in. 4971 if (OpInfo.Type == InlineAsm::isInput && 4972 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 4973 // Try to convert to the first EVT that the reg class contains. If the 4974 // types are identical size, use a bitcast to convert (e.g. two differing 4975 // vector types). 4976 EVT RegVT = *PhysReg.second->vt_begin(); 4977 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 4978 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4979 RegVT, OpInfo.CallOperand); 4980 OpInfo.ConstraintVT = RegVT; 4981 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 4982 // If the input is a FP value and we want it in FP registers, do a 4983 // bitcast to the corresponding integer type. This turns an f64 value 4984 // into i64, which can be passed with two i32 values on a 32-bit 4985 // machine. 4986 RegVT = EVT::getIntegerVT(Context, 4987 OpInfo.ConstraintVT.getSizeInBits()); 4988 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4989 RegVT, OpInfo.CallOperand); 4990 OpInfo.ConstraintVT = RegVT; 4991 } 4992 } 4993 4994 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 4995 } 4996 4997 EVT RegVT; 4998 EVT ValueVT = OpInfo.ConstraintVT; 4999 5000 // If this is a constraint for a specific physical register, like {r17}, 5001 // assign it now. 5002 if (unsigned AssignedReg = PhysReg.first) { 5003 const TargetRegisterClass *RC = PhysReg.second; 5004 if (OpInfo.ConstraintVT == MVT::Other) 5005 ValueVT = *RC->vt_begin(); 5006 5007 // Get the actual register value type. This is important, because the user 5008 // may have asked for (e.g.) the AX register in i32 type. We need to 5009 // remember that AX is actually i16 to get the right extension. 5010 RegVT = *RC->vt_begin(); 5011 5012 // This is a explicit reference to a physical register. 5013 Regs.push_back(AssignedReg); 5014 5015 // If this is an expanded reference, add the rest of the regs to Regs. 5016 if (NumRegs != 1) { 5017 TargetRegisterClass::iterator I = RC->begin(); 5018 for (; *I != AssignedReg; ++I) 5019 assert(I != RC->end() && "Didn't find reg!"); 5020 5021 // Already added the first reg. 5022 --NumRegs; ++I; 5023 for (; NumRegs; --NumRegs, ++I) { 5024 assert(I != RC->end() && "Ran out of registers to allocate!"); 5025 Regs.push_back(*I); 5026 } 5027 } 5028 5029 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5030 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5031 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5032 return; 5033 } 5034 5035 // Otherwise, if this was a reference to an LLVM register class, create vregs 5036 // for this reference. 5037 if (const TargetRegisterClass *RC = PhysReg.second) { 5038 RegVT = *RC->vt_begin(); 5039 if (OpInfo.ConstraintVT == MVT::Other) 5040 ValueVT = RegVT; 5041 5042 // Create the appropriate number of virtual registers. 5043 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5044 for (; NumRegs; --NumRegs) 5045 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5046 5047 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5048 return; 5049 } 5050 5051 // This is a reference to a register class that doesn't directly correspond 5052 // to an LLVM register class. Allocate NumRegs consecutive, available, 5053 // registers from the class. 5054 std::vector<unsigned> RegClassRegs 5055 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5056 OpInfo.ConstraintVT); 5057 5058 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5059 unsigned NumAllocated = 0; 5060 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5061 unsigned Reg = RegClassRegs[i]; 5062 // See if this register is available. 5063 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5064 (isInReg && InputRegs.count(Reg))) { // Already used. 5065 // Make sure we find consecutive registers. 5066 NumAllocated = 0; 5067 continue; 5068 } 5069 5070 // Check to see if this register is allocatable (i.e. don't give out the 5071 // stack pointer). 5072 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5073 if (!RC) { // Couldn't allocate this register. 5074 // Reset NumAllocated to make sure we return consecutive registers. 5075 NumAllocated = 0; 5076 continue; 5077 } 5078 5079 // Okay, this register is good, we can use it. 5080 ++NumAllocated; 5081 5082 // If we allocated enough consecutive registers, succeed. 5083 if (NumAllocated == NumRegs) { 5084 unsigned RegStart = (i-NumAllocated)+1; 5085 unsigned RegEnd = i+1; 5086 // Mark all of the allocated registers used. 5087 for (unsigned i = RegStart; i != RegEnd; ++i) 5088 Regs.push_back(RegClassRegs[i]); 5089 5090 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5091 OpInfo.ConstraintVT); 5092 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5093 return; 5094 } 5095 } 5096 5097 // Otherwise, we couldn't allocate enough registers for this. 5098 } 5099 5100 /// visitInlineAsm - Handle a call to an InlineAsm object. 5101 /// 5102 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5103 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5104 5105 /// ConstraintOperands - Information about all of the constraints. 5106 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5107 5108 std::set<unsigned> OutputRegs, InputRegs; 5109 5110 // Do a prepass over the constraints, canonicalizing them, and building up the 5111 // ConstraintOperands list. 5112 std::vector<InlineAsm::ConstraintInfo> 5113 ConstraintInfos = IA->ParseConstraints(); 5114 5115 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5116 5117 SDValue Chain, Flag; 5118 5119 // We won't need to flush pending loads if this asm doesn't touch 5120 // memory and is nonvolatile. 5121 if (hasMemory || IA->hasSideEffects()) 5122 Chain = getRoot(); 5123 else 5124 Chain = DAG.getRoot(); 5125 5126 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5127 unsigned ResNo = 0; // ResNo - The result number of the next output. 5128 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5129 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5130 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5131 5132 EVT OpVT = MVT::Other; 5133 5134 // Compute the value type for each operand. 5135 switch (OpInfo.Type) { 5136 case InlineAsm::isOutput: 5137 // Indirect outputs just consume an argument. 5138 if (OpInfo.isIndirect) { 5139 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5140 break; 5141 } 5142 5143 // The return value of the call is this value. As such, there is no 5144 // corresponding argument. 5145 assert(!CS.getType()->isVoidTy() && 5146 "Bad inline asm!"); 5147 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5148 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5149 } else { 5150 assert(ResNo == 0 && "Asm only has one result!"); 5151 OpVT = TLI.getValueType(CS.getType()); 5152 } 5153 ++ResNo; 5154 break; 5155 case InlineAsm::isInput: 5156 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5157 break; 5158 case InlineAsm::isClobber: 5159 // Nothing to do. 5160 break; 5161 } 5162 5163 // If this is an input or an indirect output, process the call argument. 5164 // BasicBlocks are labels, currently appearing only in asm's. 5165 if (OpInfo.CallOperandVal) { 5166 // Strip bitcasts, if any. This mostly comes up for functions. 5167 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5168 5169 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5170 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5171 } else { 5172 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5173 } 5174 5175 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5176 } 5177 5178 OpInfo.ConstraintVT = OpVT; 5179 } 5180 5181 // Second pass over the constraints: compute which constraint option to use 5182 // and assign registers to constraints that want a specific physreg. 5183 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5184 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5185 5186 // If this is an output operand with a matching input operand, look up the 5187 // matching input. If their types mismatch, e.g. one is an integer, the 5188 // other is floating point, or their sizes are different, flag it as an 5189 // error. 5190 if (OpInfo.hasMatchingInput()) { 5191 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5192 5193 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5194 if ((OpInfo.ConstraintVT.isInteger() != 5195 Input.ConstraintVT.isInteger()) || 5196 (OpInfo.ConstraintVT.getSizeInBits() != 5197 Input.ConstraintVT.getSizeInBits())) { 5198 report_fatal_error("Unsupported asm: input constraint" 5199 " with a matching output constraint of" 5200 " incompatible type!"); 5201 } 5202 Input.ConstraintVT = OpInfo.ConstraintVT; 5203 } 5204 } 5205 5206 // Compute the constraint code and ConstraintType to use. 5207 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5208 5209 // If this is a memory input, and if the operand is not indirect, do what we 5210 // need to to provide an address for the memory input. 5211 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5212 !OpInfo.isIndirect) { 5213 assert(OpInfo.Type == InlineAsm::isInput && 5214 "Can only indirectify direct input operands!"); 5215 5216 // Memory operands really want the address of the value. If we don't have 5217 // an indirect input, put it in the constpool if we can, otherwise spill 5218 // it to a stack slot. 5219 5220 // If the operand is a float, integer, or vector constant, spill to a 5221 // constant pool entry to get its address. 5222 const Value *OpVal = OpInfo.CallOperandVal; 5223 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5224 isa<ConstantVector>(OpVal)) { 5225 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5226 TLI.getPointerTy()); 5227 } else { 5228 // Otherwise, create a stack slot and emit a store to it before the 5229 // asm. 5230 const Type *Ty = OpVal->getType(); 5231 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5232 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5233 MachineFunction &MF = DAG.getMachineFunction(); 5234 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5235 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5236 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5237 OpInfo.CallOperand, StackSlot, NULL, 0, 5238 false, false, 0); 5239 OpInfo.CallOperand = StackSlot; 5240 } 5241 5242 // There is no longer a Value* corresponding to this operand. 5243 OpInfo.CallOperandVal = 0; 5244 5245 // It is now an indirect operand. 5246 OpInfo.isIndirect = true; 5247 } 5248 5249 // If this constraint is for a specific register, allocate it before 5250 // anything else. 5251 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5252 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5253 } 5254 5255 ConstraintInfos.clear(); 5256 5257 // Second pass - Loop over all of the operands, assigning virtual or physregs 5258 // to register class operands. 5259 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5260 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5261 5262 // C_Register operands have already been allocated, Other/Memory don't need 5263 // to be. 5264 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5265 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5266 } 5267 5268 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5269 std::vector<SDValue> AsmNodeOperands; 5270 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5271 AsmNodeOperands.push_back( 5272 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5273 TLI.getPointerTy())); 5274 5275 // If we have a !srcloc metadata node associated with it, we want to attach 5276 // this to the ultimately generated inline asm machineinstr. To do this, we 5277 // pass in the third operand as this (potentially null) inline asm MDNode. 5278 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5279 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5280 5281 // Loop over all of the inputs, copying the operand values into the 5282 // appropriate registers and processing the output regs. 5283 RegsForValue RetValRegs; 5284 5285 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5286 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5287 5288 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5289 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5290 5291 switch (OpInfo.Type) { 5292 case InlineAsm::isOutput: { 5293 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5294 OpInfo.ConstraintType != TargetLowering::C_Register) { 5295 // Memory output, or 'other' output (e.g. 'X' constraint). 5296 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5297 5298 // Add information to the INLINEASM node to know about this output. 5299 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5300 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5301 TLI.getPointerTy())); 5302 AsmNodeOperands.push_back(OpInfo.CallOperand); 5303 break; 5304 } 5305 5306 // Otherwise, this is a register or register class output. 5307 5308 // Copy the output from the appropriate register. Find a register that 5309 // we can use. 5310 if (OpInfo.AssignedRegs.Regs.empty()) 5311 report_fatal_error("Couldn't allocate output reg for constraint '" + 5312 Twine(OpInfo.ConstraintCode) + "'!"); 5313 5314 // If this is an indirect operand, store through the pointer after the 5315 // asm. 5316 if (OpInfo.isIndirect) { 5317 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5318 OpInfo.CallOperandVal)); 5319 } else { 5320 // This is the result value of the call. 5321 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5322 // Concatenate this output onto the outputs list. 5323 RetValRegs.append(OpInfo.AssignedRegs); 5324 } 5325 5326 // Add information to the INLINEASM node to know that this register is 5327 // set. 5328 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5329 InlineAsm::Kind_RegDefEarlyClobber : 5330 InlineAsm::Kind_RegDef, 5331 false, 5332 0, 5333 DAG, 5334 AsmNodeOperands); 5335 break; 5336 } 5337 case InlineAsm::isInput: { 5338 SDValue InOperandVal = OpInfo.CallOperand; 5339 5340 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5341 // If this is required to match an output register we have already set, 5342 // just use its register. 5343 unsigned OperandNo = OpInfo.getMatchedOperand(); 5344 5345 // Scan until we find the definition we already emitted of this operand. 5346 // When we find it, create a RegsForValue operand. 5347 unsigned CurOp = InlineAsm::Op_FirstOperand; 5348 for (; OperandNo; --OperandNo) { 5349 // Advance to the next operand. 5350 unsigned OpFlag = 5351 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5352 assert((InlineAsm::isRegDefKind(OpFlag) || 5353 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5354 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5355 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5356 } 5357 5358 unsigned OpFlag = 5359 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5360 if (InlineAsm::isRegDefKind(OpFlag) || 5361 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5362 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5363 if (OpInfo.isIndirect) { 5364 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5365 LLVMContext &Ctx = *DAG.getContext(); 5366 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5367 " don't know how to handle tied " 5368 "indirect register inputs"); 5369 } 5370 5371 RegsForValue MatchedRegs; 5372 MatchedRegs.TLI = &TLI; 5373 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5374 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5375 MatchedRegs.RegVTs.push_back(RegVT); 5376 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5377 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5378 i != e; ++i) 5379 MatchedRegs.Regs.push_back 5380 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5381 5382 // Use the produced MatchedRegs object to 5383 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5384 Chain, &Flag); 5385 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5386 true, OpInfo.getMatchedOperand(), 5387 DAG, AsmNodeOperands); 5388 break; 5389 } 5390 5391 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5392 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5393 "Unexpected number of operands"); 5394 // Add information to the INLINEASM node to know about this input. 5395 // See InlineAsm.h isUseOperandTiedToDef. 5396 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5397 OpInfo.getMatchedOperand()); 5398 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5399 TLI.getPointerTy())); 5400 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5401 break; 5402 } 5403 5404 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5405 assert(!OpInfo.isIndirect && 5406 "Don't know how to handle indirect other inputs yet!"); 5407 5408 std::vector<SDValue> Ops; 5409 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5410 hasMemory, Ops, DAG); 5411 if (Ops.empty()) 5412 report_fatal_error("Invalid operand for inline asm constraint '" + 5413 Twine(OpInfo.ConstraintCode) + "'!"); 5414 5415 // Add information to the INLINEASM node to know about this input. 5416 unsigned ResOpType = 5417 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5418 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5419 TLI.getPointerTy())); 5420 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5421 break; 5422 } 5423 5424 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5425 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5426 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5427 "Memory operands expect pointer values"); 5428 5429 // Add information to the INLINEASM node to know about this input. 5430 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5431 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5432 TLI.getPointerTy())); 5433 AsmNodeOperands.push_back(InOperandVal); 5434 break; 5435 } 5436 5437 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5438 OpInfo.ConstraintType == TargetLowering::C_Register) && 5439 "Unknown constraint type!"); 5440 assert(!OpInfo.isIndirect && 5441 "Don't know how to handle indirect register inputs yet!"); 5442 5443 // Copy the input into the appropriate registers. 5444 if (OpInfo.AssignedRegs.Regs.empty() || 5445 !OpInfo.AssignedRegs.areValueTypesLegal()) 5446 report_fatal_error("Couldn't allocate input reg for constraint '" + 5447 Twine(OpInfo.ConstraintCode) + "'!"); 5448 5449 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5450 Chain, &Flag); 5451 5452 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5453 DAG, AsmNodeOperands); 5454 break; 5455 } 5456 case InlineAsm::isClobber: { 5457 // Add the clobbered value to the operand list, so that the register 5458 // allocator is aware that the physreg got clobbered. 5459 if (!OpInfo.AssignedRegs.Regs.empty()) 5460 OpInfo.AssignedRegs.AddInlineAsmOperands( 5461 InlineAsm::Kind_RegDefEarlyClobber, 5462 false, 0, DAG, 5463 AsmNodeOperands); 5464 break; 5465 } 5466 } 5467 } 5468 5469 // Finish up input operands. Set the input chain and add the flag last. 5470 AsmNodeOperands[0] = Chain; 5471 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5472 5473 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5474 DAG.getVTList(MVT::Other, MVT::Flag), 5475 &AsmNodeOperands[0], AsmNodeOperands.size()); 5476 Flag = Chain.getValue(1); 5477 5478 // If this asm returns a register value, copy the result from that register 5479 // and set it as the value of the call. 5480 if (!RetValRegs.Regs.empty()) { 5481 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5482 Chain, &Flag); 5483 5484 // FIXME: Why don't we do this for inline asms with MRVs? 5485 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5486 EVT ResultType = TLI.getValueType(CS.getType()); 5487 5488 // If any of the results of the inline asm is a vector, it may have the 5489 // wrong width/num elts. This can happen for register classes that can 5490 // contain multiple different value types. The preg or vreg allocated may 5491 // not have the same VT as was expected. Convert it to the right type 5492 // with bit_convert. 5493 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5494 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5495 ResultType, Val); 5496 5497 } else if (ResultType != Val.getValueType() && 5498 ResultType.isInteger() && Val.getValueType().isInteger()) { 5499 // If a result value was tied to an input value, the computed result may 5500 // have a wider width than the expected result. Extract the relevant 5501 // portion. 5502 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5503 } 5504 5505 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5506 } 5507 5508 setValue(CS.getInstruction(), Val); 5509 // Don't need to use this as a chain in this case. 5510 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5511 return; 5512 } 5513 5514 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5515 5516 // Process indirect outputs, first output all of the flagged copies out of 5517 // physregs. 5518 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5519 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5520 const Value *Ptr = IndirectStoresToEmit[i].second; 5521 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5522 Chain, &Flag); 5523 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5524 } 5525 5526 // Emit the non-flagged stores from the physregs. 5527 SmallVector<SDValue, 8> OutChains; 5528 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5529 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5530 StoresToEmit[i].first, 5531 getValue(StoresToEmit[i].second), 5532 StoresToEmit[i].second, 0, 5533 false, false, 0); 5534 OutChains.push_back(Val); 5535 } 5536 5537 if (!OutChains.empty()) 5538 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5539 &OutChains[0], OutChains.size()); 5540 5541 DAG.setRoot(Chain); 5542 } 5543 5544 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5545 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5546 MVT::Other, getRoot(), 5547 getValue(I.getOperand(1)), 5548 DAG.getSrcValue(I.getOperand(1)))); 5549 } 5550 5551 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5552 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5553 getRoot(), getValue(I.getOperand(0)), 5554 DAG.getSrcValue(I.getOperand(0))); 5555 setValue(&I, V); 5556 DAG.setRoot(V.getValue(1)); 5557 } 5558 5559 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5560 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5561 MVT::Other, getRoot(), 5562 getValue(I.getOperand(1)), 5563 DAG.getSrcValue(I.getOperand(1)))); 5564 } 5565 5566 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5567 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5568 MVT::Other, getRoot(), 5569 getValue(I.getOperand(1)), 5570 getValue(I.getOperand(2)), 5571 DAG.getSrcValue(I.getOperand(1)), 5572 DAG.getSrcValue(I.getOperand(2)))); 5573 } 5574 5575 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5576 /// implementation, which just calls LowerCall. 5577 /// FIXME: When all targets are 5578 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5579 std::pair<SDValue, SDValue> 5580 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5581 bool RetSExt, bool RetZExt, bool isVarArg, 5582 bool isInreg, unsigned NumFixedArgs, 5583 CallingConv::ID CallConv, bool isTailCall, 5584 bool isReturnValueUsed, 5585 SDValue Callee, 5586 ArgListTy &Args, SelectionDAG &DAG, 5587 DebugLoc dl) const { 5588 // Handle all of the outgoing arguments. 5589 SmallVector<ISD::OutputArg, 32> Outs; 5590 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5591 SmallVector<EVT, 4> ValueVTs; 5592 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5593 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5594 Value != NumValues; ++Value) { 5595 EVT VT = ValueVTs[Value]; 5596 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5597 SDValue Op = SDValue(Args[i].Node.getNode(), 5598 Args[i].Node.getResNo() + Value); 5599 ISD::ArgFlagsTy Flags; 5600 unsigned OriginalAlignment = 5601 getTargetData()->getABITypeAlignment(ArgTy); 5602 5603 if (Args[i].isZExt) 5604 Flags.setZExt(); 5605 if (Args[i].isSExt) 5606 Flags.setSExt(); 5607 if (Args[i].isInReg) 5608 Flags.setInReg(); 5609 if (Args[i].isSRet) 5610 Flags.setSRet(); 5611 if (Args[i].isByVal) { 5612 Flags.setByVal(); 5613 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5614 const Type *ElementTy = Ty->getElementType(); 5615 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5616 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5617 // For ByVal, alignment should come from FE. BE will guess if this 5618 // info is not there but there are cases it cannot get right. 5619 if (Args[i].Alignment) 5620 FrameAlign = Args[i].Alignment; 5621 Flags.setByValAlign(FrameAlign); 5622 Flags.setByValSize(FrameSize); 5623 } 5624 if (Args[i].isNest) 5625 Flags.setNest(); 5626 Flags.setOrigAlign(OriginalAlignment); 5627 5628 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5629 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5630 SmallVector<SDValue, 4> Parts(NumParts); 5631 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5632 5633 if (Args[i].isSExt) 5634 ExtendKind = ISD::SIGN_EXTEND; 5635 else if (Args[i].isZExt) 5636 ExtendKind = ISD::ZERO_EXTEND; 5637 5638 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5639 PartVT, ExtendKind); 5640 5641 for (unsigned j = 0; j != NumParts; ++j) { 5642 // if it isn't first piece, alignment must be 1 5643 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5644 if (NumParts > 1 && j == 0) 5645 MyFlags.Flags.setSplit(); 5646 else if (j != 0) 5647 MyFlags.Flags.setOrigAlign(1); 5648 5649 Outs.push_back(MyFlags); 5650 } 5651 } 5652 } 5653 5654 // Handle the incoming return values from the call. 5655 SmallVector<ISD::InputArg, 32> Ins; 5656 SmallVector<EVT, 4> RetTys; 5657 ComputeValueVTs(*this, RetTy, RetTys); 5658 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5659 EVT VT = RetTys[I]; 5660 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5661 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5662 for (unsigned i = 0; i != NumRegs; ++i) { 5663 ISD::InputArg MyFlags; 5664 MyFlags.VT = RegisterVT; 5665 MyFlags.Used = isReturnValueUsed; 5666 if (RetSExt) 5667 MyFlags.Flags.setSExt(); 5668 if (RetZExt) 5669 MyFlags.Flags.setZExt(); 5670 if (isInreg) 5671 MyFlags.Flags.setInReg(); 5672 Ins.push_back(MyFlags); 5673 } 5674 } 5675 5676 SmallVector<SDValue, 4> InVals; 5677 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5678 Outs, Ins, dl, DAG, InVals); 5679 5680 // Verify that the target's LowerCall behaved as expected. 5681 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5682 "LowerCall didn't return a valid chain!"); 5683 assert((!isTailCall || InVals.empty()) && 5684 "LowerCall emitted a return value for a tail call!"); 5685 assert((isTailCall || InVals.size() == Ins.size()) && 5686 "LowerCall didn't emit the correct number of values!"); 5687 5688 // For a tail call, the return value is merely live-out and there aren't 5689 // any nodes in the DAG representing it. Return a special value to 5690 // indicate that a tail call has been emitted and no more Instructions 5691 // should be processed in the current block. 5692 if (isTailCall) { 5693 DAG.setRoot(Chain); 5694 return std::make_pair(SDValue(), SDValue()); 5695 } 5696 5697 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5698 assert(InVals[i].getNode() && 5699 "LowerCall emitted a null value!"); 5700 assert(Ins[i].VT == InVals[i].getValueType() && 5701 "LowerCall emitted a value with the wrong type!"); 5702 }); 5703 5704 // Collect the legal value parts into potentially illegal values 5705 // that correspond to the original function's return values. 5706 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5707 if (RetSExt) 5708 AssertOp = ISD::AssertSext; 5709 else if (RetZExt) 5710 AssertOp = ISD::AssertZext; 5711 SmallVector<SDValue, 4> ReturnValues; 5712 unsigned CurReg = 0; 5713 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5714 EVT VT = RetTys[I]; 5715 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5716 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5717 5718 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5719 NumRegs, RegisterVT, VT, 5720 AssertOp)); 5721 CurReg += NumRegs; 5722 } 5723 5724 // For a function returning void, there is no return value. We can't create 5725 // such a node, so we just return a null return value in that case. In 5726 // that case, nothing will actualy look at the value. 5727 if (ReturnValues.empty()) 5728 return std::make_pair(SDValue(), Chain); 5729 5730 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5731 DAG.getVTList(&RetTys[0], RetTys.size()), 5732 &ReturnValues[0], ReturnValues.size()); 5733 return std::make_pair(Res, Chain); 5734 } 5735 5736 void TargetLowering::LowerOperationWrapper(SDNode *N, 5737 SmallVectorImpl<SDValue> &Results, 5738 SelectionDAG &DAG) const { 5739 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5740 if (Res.getNode()) 5741 Results.push_back(Res); 5742 } 5743 5744 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5745 llvm_unreachable("LowerOperation not implemented for this target!"); 5746 return SDValue(); 5747 } 5748 5749 void 5750 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5751 SDValue Op = getValue(V); 5752 assert((Op.getOpcode() != ISD::CopyFromReg || 5753 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5754 "Copy from a reg to the same reg!"); 5755 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5756 5757 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5758 SDValue Chain = DAG.getEntryNode(); 5759 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5760 PendingExports.push_back(Chain); 5761 } 5762 5763 #include "llvm/CodeGen/SelectionDAGISel.h" 5764 5765 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5766 // If this is the entry block, emit arguments. 5767 const Function &F = *LLVMBB->getParent(); 5768 SelectionDAG &DAG = SDB->DAG; 5769 SDValue OldRoot = DAG.getRoot(); 5770 DebugLoc dl = SDB->getCurDebugLoc(); 5771 const TargetData *TD = TLI.getTargetData(); 5772 SmallVector<ISD::InputArg, 16> Ins; 5773 5774 // Check whether the function can return without sret-demotion. 5775 SmallVector<EVT, 4> OutVTs; 5776 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5777 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5778 OutVTs, OutsFlags, TLI); 5779 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5780 5781 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5782 OutVTs, OutsFlags, DAG); 5783 if (!FLI.CanLowerReturn) { 5784 // Put in an sret pointer parameter before all the other parameters. 5785 SmallVector<EVT, 1> ValueVTs; 5786 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5787 5788 // NOTE: Assuming that a pointer will never break down to more than one VT 5789 // or one register. 5790 ISD::ArgFlagsTy Flags; 5791 Flags.setSRet(); 5792 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 5793 ISD::InputArg RetArg(Flags, RegisterVT, true); 5794 Ins.push_back(RetArg); 5795 } 5796 5797 // Set up the incoming argument description vector. 5798 unsigned Idx = 1; 5799 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 5800 I != E; ++I, ++Idx) { 5801 SmallVector<EVT, 4> ValueVTs; 5802 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5803 bool isArgValueUsed = !I->use_empty(); 5804 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5805 Value != NumValues; ++Value) { 5806 EVT VT = ValueVTs[Value]; 5807 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5808 ISD::ArgFlagsTy Flags; 5809 unsigned OriginalAlignment = 5810 TD->getABITypeAlignment(ArgTy); 5811 5812 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5813 Flags.setZExt(); 5814 if (F.paramHasAttr(Idx, Attribute::SExt)) 5815 Flags.setSExt(); 5816 if (F.paramHasAttr(Idx, Attribute::InReg)) 5817 Flags.setInReg(); 5818 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5819 Flags.setSRet(); 5820 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5821 Flags.setByVal(); 5822 const PointerType *Ty = cast<PointerType>(I->getType()); 5823 const Type *ElementTy = Ty->getElementType(); 5824 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5825 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5826 // For ByVal, alignment should be passed from FE. BE will guess if 5827 // this info is not there but there are cases it cannot get right. 5828 if (F.getParamAlignment(Idx)) 5829 FrameAlign = F.getParamAlignment(Idx); 5830 Flags.setByValAlign(FrameAlign); 5831 Flags.setByValSize(FrameSize); 5832 } 5833 if (F.paramHasAttr(Idx, Attribute::Nest)) 5834 Flags.setNest(); 5835 Flags.setOrigAlign(OriginalAlignment); 5836 5837 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5838 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5839 for (unsigned i = 0; i != NumRegs; ++i) { 5840 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5841 if (NumRegs > 1 && i == 0) 5842 MyFlags.Flags.setSplit(); 5843 // if it isn't first piece, alignment must be 1 5844 else if (i > 0) 5845 MyFlags.Flags.setOrigAlign(1); 5846 Ins.push_back(MyFlags); 5847 } 5848 } 5849 } 5850 5851 // Call the target to set up the argument values. 5852 SmallVector<SDValue, 8> InVals; 5853 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5854 F.isVarArg(), Ins, 5855 dl, DAG, InVals); 5856 5857 // Verify that the target's LowerFormalArguments behaved as expected. 5858 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5859 "LowerFormalArguments didn't return a valid chain!"); 5860 assert(InVals.size() == Ins.size() && 5861 "LowerFormalArguments didn't emit the correct number of values!"); 5862 DEBUG({ 5863 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5864 assert(InVals[i].getNode() && 5865 "LowerFormalArguments emitted a null value!"); 5866 assert(Ins[i].VT == InVals[i].getValueType() && 5867 "LowerFormalArguments emitted a value with the wrong type!"); 5868 } 5869 }); 5870 5871 // Update the DAG with the new chain value resulting from argument lowering. 5872 DAG.setRoot(NewRoot); 5873 5874 // Set up the argument values. 5875 unsigned i = 0; 5876 Idx = 1; 5877 if (!FLI.CanLowerReturn) { 5878 // Create a virtual register for the sret pointer, and put in a copy 5879 // from the sret argument into it. 5880 SmallVector<EVT, 1> ValueVTs; 5881 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5882 EVT VT = ValueVTs[0]; 5883 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5884 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5885 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 5886 RegVT, VT, AssertOp); 5887 5888 MachineFunction& MF = SDB->DAG.getMachineFunction(); 5889 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 5890 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 5891 FLI.DemoteRegister = SRetReg; 5892 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 5893 SRetReg, ArgValue); 5894 DAG.setRoot(NewRoot); 5895 5896 // i indexes lowered arguments. Bump it past the hidden sret argument. 5897 // Idx indexes LLVM arguments. Don't touch it. 5898 ++i; 5899 } 5900 5901 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 5902 ++I, ++Idx) { 5903 SmallVector<SDValue, 4> ArgValues; 5904 SmallVector<EVT, 4> ValueVTs; 5905 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5906 unsigned NumValues = ValueVTs.size(); 5907 for (unsigned Value = 0; Value != NumValues; ++Value) { 5908 EVT VT = ValueVTs[Value]; 5909 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5910 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5911 5912 if (!I->use_empty()) { 5913 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5914 if (F.paramHasAttr(Idx, Attribute::SExt)) 5915 AssertOp = ISD::AssertSext; 5916 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 5917 AssertOp = ISD::AssertZext; 5918 5919 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 5920 NumParts, PartVT, VT, 5921 AssertOp)); 5922 } 5923 5924 i += NumParts; 5925 } 5926 5927 if (!I->use_empty()) { 5928 SDValue Res; 5929 if (!ArgValues.empty()) 5930 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 5931 SDB->getCurDebugLoc()); 5932 SDB->setValue(I, Res); 5933 5934 // If this argument is live outside of the entry block, insert a copy from 5935 // whereever we got it to the vreg that other BB's will reference it as. 5936 SDB->CopyToExportRegsIfNeeded(I); 5937 } 5938 } 5939 5940 assert(i == InVals.size() && "Argument register count mismatch!"); 5941 5942 // Finally, if the target has anything special to do, allow it to do so. 5943 // FIXME: this should insert code into the DAG! 5944 EmitFunctionEntryCode(); 5945 } 5946 5947 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 5948 /// ensure constants are generated when needed. Remember the virtual registers 5949 /// that need to be added to the Machine PHI nodes as input. We cannot just 5950 /// directly add them, because expansion might result in multiple MBB's for one 5951 /// BB. As such, the start of the BB might correspond to a different MBB than 5952 /// the end. 5953 /// 5954 void 5955 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 5956 const TerminatorInst *TI = LLVMBB->getTerminator(); 5957 5958 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5959 5960 // Check successor nodes' PHI nodes that expect a constant to be available 5961 // from this block. 5962 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5963 const BasicBlock *SuccBB = TI->getSuccessor(succ); 5964 if (!isa<PHINode>(SuccBB->begin())) continue; 5965 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5966 5967 // If this terminator has multiple identical successors (common for 5968 // switches), only handle each succ once. 5969 if (!SuccsHandled.insert(SuccMBB)) continue; 5970 5971 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5972 5973 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5974 // nodes and Machine PHI nodes, but the incoming operands have not been 5975 // emitted yet. 5976 for (BasicBlock::const_iterator I = SuccBB->begin(); 5977 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 5978 // Ignore dead phi's. 5979 if (PN->use_empty()) continue; 5980 5981 unsigned Reg; 5982 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5983 5984 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 5985 unsigned &RegOut = SDB->ConstantsOut[C]; 5986 if (RegOut == 0) { 5987 RegOut = FuncInfo->CreateRegForValue(C); 5988 SDB->CopyValueToVirtualRegister(C, RegOut); 5989 } 5990 Reg = RegOut; 5991 } else { 5992 Reg = FuncInfo->ValueMap[PHIOp]; 5993 if (Reg == 0) { 5994 assert(isa<AllocaInst>(PHIOp) && 5995 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 5996 "Didn't codegen value into a register!??"); 5997 Reg = FuncInfo->CreateRegForValue(PHIOp); 5998 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 5999 } 6000 } 6001 6002 // Remember that this register needs to added to the machine PHI node as 6003 // the input for this MBB. 6004 SmallVector<EVT, 4> ValueVTs; 6005 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6006 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6007 EVT VT = ValueVTs[vti]; 6008 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6009 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6010 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6011 Reg += NumRegisters; 6012 } 6013 } 6014 } 6015 SDB->ConstantsOut.clear(); 6016 } 6017 6018 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 6019 /// supports legal types, and it emits MachineInstrs directly instead of 6020 /// creating SelectionDAG nodes. 6021 /// 6022 bool 6023 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(const BasicBlock *LLVMBB, 6024 FastISel *F) { 6025 const TerminatorInst *TI = LLVMBB->getTerminator(); 6026 6027 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6028 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 6029 6030 // Check successor nodes' PHI nodes that expect a constant to be available 6031 // from this block. 6032 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6033 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6034 if (!isa<PHINode>(SuccBB->begin())) continue; 6035 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6036 6037 // If this terminator has multiple identical successors (common for 6038 // switches), only handle each succ once. 6039 if (!SuccsHandled.insert(SuccMBB)) continue; 6040 6041 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6042 6043 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6044 // nodes and Machine PHI nodes, but the incoming operands have not been 6045 // emitted yet. 6046 for (BasicBlock::const_iterator I = SuccBB->begin(); 6047 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6048 // Ignore dead phi's. 6049 if (PN->use_empty()) continue; 6050 6051 // Only handle legal types. Two interesting things to note here. First, 6052 // by bailing out early, we may leave behind some dead instructions, 6053 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 6054 // own moves. Second, this check is necessary becuase FastISel doesn't 6055 // use CreateRegForValue to create registers, so it always creates 6056 // exactly one register for each non-void instruction. 6057 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 6058 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 6059 // Promote MVT::i1. 6060 if (VT == MVT::i1) 6061 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 6062 else { 6063 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6064 return false; 6065 } 6066 } 6067 6068 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6069 6070 unsigned Reg = F->getRegForValue(PHIOp); 6071 if (Reg == 0) { 6072 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6073 return false; 6074 } 6075 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 6076 } 6077 } 6078 6079 return true; 6080 } 6081