1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 // Limit the width of DAG chains. This is important in general to prevent 83 // prevent DAG-based analysis from blowing up. For example, alias analysis and 84 // load clustering may not complete in reasonable time. It is difficult to 85 // recognize and avoid this situation within each individual analysis, and 86 // future analyses are likely to have the same behavior. Limiting DAG width is 87 // the safe approach, and will be especially important with global DAGs. 88 // 89 // MaxParallelChains default is arbitrarily high to avoid affecting 90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 91 // sequence over this should have been converted to llvm.memcpy by the 92 // frontend. It easy to induce this behavior with .ll code such as: 93 // %buffer = alloca [4096 x i8] 94 // %data = load [4096 x i8]* %argPtr 95 // store [4096 x i8] %data, [4096 x i8]* %buffer 96 static const unsigned MaxParallelChains = 64; 97 98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 99 const SDValue *Parts, unsigned NumParts, 100 MVT PartVT, EVT ValueVT, const Value *V); 101 102 /// getCopyFromParts - Create a value that contains the specified legal parts 103 /// combined into the value they represent. If the parts combine to a type 104 /// larger then ValueVT then AssertOp can be used to specify whether the extra 105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 106 /// (ISD::AssertSext). 107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 108 const SDValue *Parts, 109 unsigned NumParts, MVT PartVT, EVT ValueVT, 110 const Value *V, 111 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 112 if (ValueVT.isVector()) 113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 114 PartVT, ValueVT, V); 115 116 assert(NumParts > 0 && "No parts to assemble!"); 117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 118 SDValue Val = Parts[0]; 119 120 if (NumParts > 1) { 121 // Assemble the value from multiple parts. 122 if (ValueVT.isInteger()) { 123 unsigned PartBits = PartVT.getSizeInBits(); 124 unsigned ValueBits = ValueVT.getSizeInBits(); 125 126 // Assemble the power of 2 part. 127 unsigned RoundParts = NumParts & (NumParts - 1) ? 128 1 << Log2_32(NumParts) : NumParts; 129 unsigned RoundBits = PartBits * RoundParts; 130 EVT RoundVT = RoundBits == ValueBits ? 131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 132 SDValue Lo, Hi; 133 134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 135 136 if (RoundParts > 2) { 137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 138 PartVT, HalfVT, V); 139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 140 RoundParts / 2, PartVT, HalfVT, V); 141 } else { 142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 144 } 145 146 if (TLI.isBigEndian()) 147 std::swap(Lo, Hi); 148 149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 150 151 if (RoundParts < NumParts) { 152 // Assemble the trailing non-power-of-2 part. 153 unsigned OddParts = NumParts - RoundParts; 154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 155 Hi = getCopyFromParts(DAG, DL, 156 Parts + RoundParts, OddParts, PartVT, OddVT, V); 157 158 // Combine the round and odd parts. 159 Lo = Val; 160 if (TLI.isBigEndian()) 161 std::swap(Lo, Hi); 162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 165 DAG.getConstant(Lo.getValueType().getSizeInBits(), 166 TLI.getPointerTy())); 167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 169 } 170 } else if (PartVT.isFloatingPoint()) { 171 // FP split into multiple FP parts (for ppcf128) 172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 173 "Unexpected split"); 174 SDValue Lo, Hi; 175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 177 if (TLI.hasBigEndianPartOrdering(ValueVT)) 178 std::swap(Lo, Hi); 179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 180 } else { 181 // FP split into integer parts (soft fp) 182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 183 !PartVT.isVector() && "Unexpected split"); 184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 186 } 187 } 188 189 // There is now one part, held in Val. Correct it to match ValueVT. 190 EVT PartEVT = Val.getValueType(); 191 192 if (PartEVT == ValueVT) 193 return Val; 194 195 if (PartEVT.isInteger() && ValueVT.isInteger()) { 196 if (ValueVT.bitsLT(PartEVT)) { 197 // For a truncate, see if we have any information to 198 // indicate whether the truncated bits will always be 199 // zero or sign-extension. 200 if (AssertOp != ISD::DELETED_NODE) 201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 202 DAG.getValueType(ValueVT)); 203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 204 } 205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 206 } 207 208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 209 // FP_ROUND's are always exact here. 210 if (ValueVT.bitsLT(Val.getValueType())) 211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 212 DAG.getTargetConstant(1, TLI.getPointerTy())); 213 214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 215 } 216 217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 219 220 llvm_unreachable("Unknown mismatch!"); 221 } 222 223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 224 const Twine &ErrMsg) { 225 const Instruction *I = dyn_cast_or_null<Instruction>(V); 226 if (!V) 227 return Ctx.emitError(ErrMsg); 228 229 const char *AsmError = ", possible invalid constraint for vector type"; 230 if (const CallInst *CI = dyn_cast<CallInst>(I)) 231 if (isa<InlineAsm>(CI->getCalledValue())) 232 return Ctx.emitError(I, ErrMsg + AsmError); 233 234 return Ctx.emitError(I, ErrMsg); 235 } 236 237 /// getCopyFromPartsVector - Create a value that contains the specified legal 238 /// parts combined into the value they represent. If the parts combine to a 239 /// type larger then ValueVT then AssertOp can be used to specify whether the 240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 241 /// ValueVT (ISD::AssertSext). 242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 243 const SDValue *Parts, unsigned NumParts, 244 MVT PartVT, EVT ValueVT, const Value *V) { 245 assert(ValueVT.isVector() && "Not a vector value"); 246 assert(NumParts > 0 && "No parts to assemble!"); 247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 248 SDValue Val = Parts[0]; 249 250 // Handle a multi-element vector. 251 if (NumParts > 1) { 252 EVT IntermediateVT; 253 MVT RegisterVT; 254 unsigned NumIntermediates; 255 unsigned NumRegs = 256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 257 NumIntermediates, RegisterVT); 258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 259 NumParts = NumRegs; // Silence a compiler warning. 260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 261 assert(RegisterVT == Parts[0].getSimpleValueType() && 262 "Part type doesn't match part!"); 263 264 // Assemble the parts into intermediate operands. 265 SmallVector<SDValue, 8> Ops(NumIntermediates); 266 if (NumIntermediates == NumParts) { 267 // If the register was not expanded, truncate or copy the value, 268 // as appropriate. 269 for (unsigned i = 0; i != NumParts; ++i) 270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 271 PartVT, IntermediateVT, V); 272 } else if (NumParts > 0) { 273 // If the intermediate type was expanded, build the intermediate 274 // operands from the parts. 275 assert(NumParts % NumIntermediates == 0 && 276 "Must expand into a divisible number of parts!"); 277 unsigned Factor = NumParts / NumIntermediates; 278 for (unsigned i = 0; i != NumIntermediates; ++i) 279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 280 PartVT, IntermediateVT, V); 281 } 282 283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 284 // intermediate operands. 285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 286 : ISD::BUILD_VECTOR, 287 DL, ValueVT, Ops); 288 } 289 290 // There is now one part, held in Val. Correct it to match ValueVT. 291 EVT PartEVT = Val.getValueType(); 292 293 if (PartEVT == ValueVT) 294 return Val; 295 296 if (PartEVT.isVector()) { 297 // If the element type of the source/dest vectors are the same, but the 298 // parts vector has more elements than the value vector, then we have a 299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 300 // elements we want. 301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 303 "Cannot narrow, it would be a lossy transformation"); 304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 305 DAG.getConstant(0, TLI.getVectorIdxTy())); 306 } 307 308 // Vector/Vector bitcast. 309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 311 312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 313 "Cannot handle this kind of promotion"); 314 // Promoted vector extract 315 bool Smaller = ValueVT.bitsLE(PartEVT); 316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 317 DL, ValueVT, Val); 318 319 } 320 321 // Trivial bitcast if the types are the same size and the destination 322 // vector type is legal. 323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 324 TLI.isTypeLegal(ValueVT)) 325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 326 327 // Handle cases such as i8 -> <1 x i1> 328 if (ValueVT.getVectorNumElements() != 1) { 329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 330 "non-trivial scalar-to-vector conversion"); 331 return DAG.getUNDEF(ValueVT); 332 } 333 334 if (ValueVT.getVectorNumElements() == 1 && 335 ValueVT.getVectorElementType() != PartEVT) { 336 bool Smaller = ValueVT.bitsLE(PartEVT); 337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 338 DL, ValueVT.getScalarType(), Val); 339 } 340 341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 342 } 343 344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 345 SDValue Val, SDValue *Parts, unsigned NumParts, 346 MVT PartVT, const Value *V); 347 348 /// getCopyToParts - Create a series of nodes that contain the specified value 349 /// split into legal parts. If the parts contain more bits than Val, then, for 350 /// integers, ExtendKind can be used to specify how to generate the extra bits. 351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V, 354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 355 EVT ValueVT = Val.getValueType(); 356 357 // Handle the vector case separately. 358 if (ValueVT.isVector()) 359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 360 361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 362 unsigned PartBits = PartVT.getSizeInBits(); 363 unsigned OrigNumParts = NumParts; 364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 365 366 if (NumParts == 0) 367 return; 368 369 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 370 EVT PartEVT = PartVT; 371 if (PartEVT == ValueVT) { 372 assert(NumParts == 1 && "No-op copy with multiple parts!"); 373 Parts[0] = Val; 374 return; 375 } 376 377 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 378 // If the parts cover more bits than the value has, promote the value. 379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 380 assert(NumParts == 1 && "Do not know what to promote to!"); 381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 382 } else { 383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 384 ValueVT.isInteger() && 385 "Unknown mismatch!"); 386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 388 if (PartVT == MVT::x86mmx) 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } 391 } else if (PartBits == ValueVT.getSizeInBits()) { 392 // Different types of the same size. 393 assert(NumParts == 1 && PartEVT != ValueVT); 394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 396 // If the parts cover less bits than value has, truncate the value. 397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 398 ValueVT.isInteger() && 399 "Unknown mismatch!"); 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 if (PartVT == MVT::x86mmx) 403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 404 } 405 406 // The value may have changed - recompute ValueVT. 407 ValueVT = Val.getValueType(); 408 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 409 "Failed to tile the value with PartVT!"); 410 411 if (NumParts == 1) { 412 if (PartEVT != ValueVT) 413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 414 "scalar-to-vector conversion failed"); 415 416 Parts[0] = Val; 417 return; 418 } 419 420 // Expand the value into multiple parts. 421 if (NumParts & (NumParts - 1)) { 422 // The number of parts is not a power of 2. Split off and copy the tail. 423 assert(PartVT.isInteger() && ValueVT.isInteger() && 424 "Do not know what to expand to!"); 425 unsigned RoundParts = 1 << Log2_32(NumParts); 426 unsigned RoundBits = RoundParts * PartBits; 427 unsigned OddParts = NumParts - RoundParts; 428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 429 DAG.getIntPtrConstant(RoundBits)); 430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 431 432 if (TLI.isBigEndian()) 433 // The odd parts were reversed by getCopyToParts - unreverse them. 434 std::reverse(Parts + RoundParts, Parts + NumParts); 435 436 NumParts = RoundParts; 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 } 440 441 // The number of parts is a power of 2. Repeatedly bisect the value using 442 // EXTRACT_ELEMENT. 443 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 444 EVT::getIntegerVT(*DAG.getContext(), 445 ValueVT.getSizeInBits()), 446 Val); 447 448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 449 for (unsigned i = 0; i < NumParts; i += StepSize) { 450 unsigned ThisBits = StepSize * PartBits / 2; 451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 452 SDValue &Part0 = Parts[i]; 453 SDValue &Part1 = Parts[i+StepSize/2]; 454 455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(1)); 457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(0)); 459 460 if (ThisBits == PartBits && ThisVT != PartVT) { 461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 463 } 464 } 465 } 466 467 if (TLI.isBigEndian()) 468 std::reverse(Parts, Parts + OrigNumParts); 469 } 470 471 472 /// getCopyToPartsVector - Create a series of nodes that contain the specified 473 /// value split into legal parts. 474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 475 SDValue Val, SDValue *Parts, unsigned NumParts, 476 MVT PartVT, const Value *V) { 477 EVT ValueVT = Val.getValueType(); 478 assert(ValueVT.isVector() && "Not a vector"); 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 481 if (NumParts == 1) { 482 EVT PartEVT = PartVT; 483 if (PartEVT == ValueVT) { 484 // Nothing to do. 485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 486 // Bitconvert vector->vector case. 487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 488 } else if (PartVT.isVector() && 489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 491 EVT ElementVT = PartVT.getVectorElementType(); 492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 493 // undef elements. 494 SmallVector<SDValue, 16> Ops; 495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 497 ElementVT, Val, DAG.getConstant(i, 498 TLI.getVectorIdxTy()))); 499 500 for (unsigned i = ValueVT.getVectorNumElements(), 501 e = PartVT.getVectorNumElements(); i != e; ++i) 502 Ops.push_back(DAG.getUNDEF(ElementVT)); 503 504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 505 506 // FIXME: Use CONCAT for 2x -> 4x. 507 508 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 510 } else if (PartVT.isVector() && 511 PartEVT.getVectorElementType().bitsGE( 512 ValueVT.getVectorElementType()) && 513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 514 515 // Promoted vector extract 516 bool Smaller = PartEVT.bitsLE(ValueVT); 517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 518 DL, PartVT, Val); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 namespace { 581 /// RegsForValue - This struct represents the registers (physical or virtual) 582 /// that a particular set of values is assigned, and the type information 583 /// about the value. The most common situation is to represent one value at a 584 /// time, but struct or array values are handled element-wise as multiple 585 /// values. The splitting of aggregates is performed recursively, so that we 586 /// never have aggregate-typed registers. The values at this point do not 587 /// necessarily have legal types, so each value may require one or more 588 /// registers of some legal type. 589 /// 590 struct RegsForValue { 591 /// ValueVTs - The value types of the values, which may not be legal, and 592 /// may need be promoted or synthesized from one or more registers. 593 /// 594 SmallVector<EVT, 4> ValueVTs; 595 596 /// RegVTs - The value types of the registers. This is the same size as 597 /// ValueVTs and it records, for each value, what the type of the assigned 598 /// register or registers are. (Individual values are never synthesized 599 /// from more than one type of register.) 600 /// 601 /// With virtual registers, the contents of RegVTs is redundant with TLI's 602 /// getRegisterType member function, however when with physical registers 603 /// it is necessary to have a separate record of the types. 604 /// 605 SmallVector<MVT, 4> RegVTs; 606 607 /// Regs - This list holds the registers assigned to the values. 608 /// Each legal or promoted value requires one register, and each 609 /// expanded value requires multiple registers. 610 /// 611 SmallVector<unsigned, 4> Regs; 612 613 RegsForValue() {} 614 615 RegsForValue(const SmallVector<unsigned, 4> ®s, 616 MVT regvt, EVT valuevt) 617 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 618 619 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 620 unsigned Reg, Type *Ty) { 621 ComputeValueVTs(tli, Ty, ValueVTs); 622 623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 EVT ValueVT = ValueVTs[Value]; 625 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// append - Add the specified values to this one. 635 void append(const RegsForValue &RHS) { 636 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 637 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 638 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 639 } 640 641 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 642 /// this value and returns the result as a ValueVTs value. This uses 643 /// Chain/Flag as the input and updates them for the output Chain/Flag. 644 /// If the Flag pointer is NULL, no flag is used. 645 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 646 SDLoc dl, 647 SDValue &Chain, SDValue *Flag, 648 const Value *V = nullptr) const; 649 650 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 651 /// specified value into the registers specified by this object. This uses 652 /// Chain/Flag as the input and updates them for the output Chain/Flag. 653 /// If the Flag pointer is NULL, no flag is used. 654 void 655 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 656 SDValue *Flag, const Value *V, 657 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 658 659 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 660 /// operand list. This adds the code marker, matching input operand index 661 /// (if applicable), and includes the number of values added into it. 662 void AddInlineAsmOperands(unsigned Kind, 663 bool HasMatching, unsigned MatchingIdx, 664 SelectionDAG &DAG, 665 std::vector<SDValue> &Ops) const; 666 }; 667 } 668 669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 670 /// this value and returns the result as a ValueVT value. This uses 671 /// Chain/Flag as the input and updates them for the output Chain/Flag. 672 /// If the Flag pointer is NULL, no flag is used. 673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 674 FunctionLoweringInfo &FuncInfo, 675 SDLoc dl, 676 SDValue &Chain, SDValue *Flag, 677 const Value *V) const { 678 // A Value with type {} or [0 x %t] needs no registers. 679 if (ValueVTs.empty()) 680 return SDValue(); 681 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Assemble the legal parts into the final values. 685 SmallVector<SDValue, 4> Values(ValueVTs.size()); 686 SmallVector<SDValue, 8> Parts; 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 // Copy the legal parts from the registers. 689 EVT ValueVT = ValueVTs[Value]; 690 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 691 MVT RegisterVT = RegVTs[Value]; 692 693 Parts.resize(NumRegs); 694 for (unsigned i = 0; i != NumRegs; ++i) { 695 SDValue P; 696 if (!Flag) { 697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 698 } else { 699 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 700 *Flag = P.getValue(2); 701 } 702 703 Chain = P.getValue(1); 704 Parts[i] = P; 705 706 // If the source register was virtual and if we know something about it, 707 // add an assert node. 708 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 709 !RegisterVT.isInteger() || RegisterVT.isVector()) 710 continue; 711 712 const FunctionLoweringInfo::LiveOutInfo *LOI = 713 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 714 if (!LOI) 715 continue; 716 717 unsigned RegSize = RegisterVT.getSizeInBits(); 718 unsigned NumSignBits = LOI->NumSignBits; 719 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 720 721 if (NumZeroBits == RegSize) { 722 // The current value is a zero. 723 // Explicitly express that as it would be easier for 724 // optimizations to kick in. 725 Parts[i] = DAG.getConstant(0, RegisterVT); 726 continue; 727 } 728 729 // FIXME: We capture more information than the dag can represent. For 730 // now, just use the tightest assertzext/assertsext possible. 731 bool isSExt = true; 732 EVT FromVT(MVT::Other); 733 if (NumSignBits == RegSize) 734 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 735 else if (NumZeroBits >= RegSize-1) 736 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 737 else if (NumSignBits > RegSize-8) 738 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 739 else if (NumZeroBits >= RegSize-8) 740 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 741 else if (NumSignBits > RegSize-16) 742 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 743 else if (NumZeroBits >= RegSize-16) 744 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 745 else if (NumSignBits > RegSize-32) 746 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 747 else if (NumZeroBits >= RegSize-32) 748 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 749 else 750 continue; 751 752 // Add an assertion node. 753 assert(FromVT != MVT::Other); 754 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 755 RegisterVT, P, DAG.getValueType(FromVT)); 756 } 757 758 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 759 NumRegs, RegisterVT, ValueVT, V); 760 Part += NumRegs; 761 Parts.clear(); 762 } 763 764 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 765 } 766 767 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 768 /// specified value into the registers specified by this object. This uses 769 /// Chain/Flag as the input and updates them for the output Chain/Flag. 770 /// If the Flag pointer is NULL, no flag is used. 771 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 772 SDValue &Chain, SDValue *Flag, const Value *V, 773 ISD::NodeType PreferredExtendType) const { 774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 775 ISD::NodeType ExtendKind = PreferredExtendType; 776 777 // Get the list of the values's legal parts. 778 unsigned NumRegs = Regs.size(); 779 SmallVector<SDValue, 8> Parts(NumRegs); 780 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 781 EVT ValueVT = ValueVTs[Value]; 782 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 783 MVT RegisterVT = RegVTs[Value]; 784 785 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 786 ExtendKind = ISD::ZERO_EXTEND; 787 788 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 789 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 790 Part += NumParts; 791 } 792 793 // Copy the parts into the registers. 794 SmallVector<SDValue, 8> Chains(NumRegs); 795 for (unsigned i = 0; i != NumRegs; ++i) { 796 SDValue Part; 797 if (!Flag) { 798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 799 } else { 800 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 801 *Flag = Part.getValue(1); 802 } 803 804 Chains[i] = Part.getValue(0); 805 } 806 807 if (NumRegs == 1 || Flag) 808 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 809 // flagged to it. That is the CopyToReg nodes and the user are considered 810 // a single scheduling unit. If we create a TokenFactor and return it as 811 // chain, then the TokenFactor is both a predecessor (operand) of the 812 // user as well as a successor (the TF operands are flagged to the user). 813 // c1, f1 = CopyToReg 814 // c2, f2 = CopyToReg 815 // c3 = TokenFactor c1, c2 816 // ... 817 // = op c3, ..., f2 818 Chain = Chains[NumRegs-1]; 819 else 820 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 821 } 822 823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 824 /// operand list. This adds the code marker and includes the number of 825 /// values added into it. 826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 827 unsigned MatchingIdx, 828 SelectionDAG &DAG, 829 std::vector<SDValue> &Ops) const { 830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 831 832 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 833 if (HasMatching) 834 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 835 else if (!Regs.empty() && 836 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 837 // Put the register class of the virtual registers in the flag word. That 838 // way, later passes can recompute register class constraints for inline 839 // assembly as well as normal instructions. 840 // Don't do this for tied operands that can use the regclass information 841 // from the def. 842 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 843 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 844 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 845 } 846 847 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 848 Ops.push_back(Res); 849 850 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 851 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 852 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 853 MVT RegisterVT = RegVTs[Value]; 854 for (unsigned i = 0; i != NumRegs; ++i) { 855 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 856 unsigned TheReg = Regs[Reg++]; 857 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 858 859 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 860 // If we clobbered the stack pointer, MFI should know about it. 861 assert(DAG.getMachineFunction().getFrameInfo()-> 862 hasInlineAsmWithSPAdjust()); 863 } 864 } 865 } 866 } 867 868 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 869 const TargetLibraryInfo *li) { 870 AA = &aa; 871 GFI = gfi; 872 LibInfo = li; 873 DL = DAG.getTarget().getDataLayout(); 874 Context = DAG.getContext(); 875 LPadToCallSiteMap.clear(); 876 } 877 878 /// clear - Clear out the current SelectionDAG and the associated 879 /// state and prepare this SelectionDAGBuilder object to be used 880 /// for a new block. This doesn't clear out information about 881 /// additional blocks that are needed to complete switch lowering 882 /// or PHI node updating; that information is cleared out as it is 883 /// consumed. 884 void SelectionDAGBuilder::clear() { 885 NodeMap.clear(); 886 UnusedArgNodeMap.clear(); 887 PendingLoads.clear(); 888 PendingExports.clear(); 889 CurInst = nullptr; 890 HasTailCall = false; 891 SDNodeOrder = LowestSDNodeOrder; 892 StatepointLowering.clear(); 893 } 894 895 /// clearDanglingDebugInfo - Clear the dangling debug information 896 /// map. This function is separated from the clear so that debug 897 /// information that is dangling in a basic block can be properly 898 /// resolved in a different basic block. This allows the 899 /// SelectionDAG to resolve dangling debug information attached 900 /// to PHI nodes. 901 void SelectionDAGBuilder::clearDanglingDebugInfo() { 902 DanglingDebugInfoMap.clear(); 903 } 904 905 /// getRoot - Return the current virtual root of the Selection DAG, 906 /// flushing any PendingLoad items. This must be done before emitting 907 /// a store or any other node that may need to be ordered after any 908 /// prior load instructions. 909 /// 910 SDValue SelectionDAGBuilder::getRoot() { 911 if (PendingLoads.empty()) 912 return DAG.getRoot(); 913 914 if (PendingLoads.size() == 1) { 915 SDValue Root = PendingLoads[0]; 916 DAG.setRoot(Root); 917 PendingLoads.clear(); 918 return Root; 919 } 920 921 // Otherwise, we have to make a token factor node. 922 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 923 PendingLoads); 924 PendingLoads.clear(); 925 DAG.setRoot(Root); 926 return Root; 927 } 928 929 /// getControlRoot - Similar to getRoot, but instead of flushing all the 930 /// PendingLoad items, flush all the PendingExports items. It is necessary 931 /// to do this before emitting a terminator instruction. 932 /// 933 SDValue SelectionDAGBuilder::getControlRoot() { 934 SDValue Root = DAG.getRoot(); 935 936 if (PendingExports.empty()) 937 return Root; 938 939 // Turn all of the CopyToReg chains into one factored node. 940 if (Root.getOpcode() != ISD::EntryToken) { 941 unsigned i = 0, e = PendingExports.size(); 942 for (; i != e; ++i) { 943 assert(PendingExports[i].getNode()->getNumOperands() > 1); 944 if (PendingExports[i].getNode()->getOperand(0) == Root) 945 break; // Don't add the root if we already indirectly depend on it. 946 } 947 948 if (i == e) 949 PendingExports.push_back(Root); 950 } 951 952 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 953 PendingExports); 954 PendingExports.clear(); 955 DAG.setRoot(Root); 956 return Root; 957 } 958 959 void SelectionDAGBuilder::visit(const Instruction &I) { 960 // Set up outgoing PHI node register values before emitting the terminator. 961 if (isa<TerminatorInst>(&I)) 962 HandlePHINodesInSuccessorBlocks(I.getParent()); 963 964 ++SDNodeOrder; 965 966 CurInst = &I; 967 968 visit(I.getOpcode(), I); 969 970 if (!isa<TerminatorInst>(&I) && !HasTailCall) 971 CopyToExportRegsIfNeeded(&I); 972 973 CurInst = nullptr; 974 } 975 976 void SelectionDAGBuilder::visitPHI(const PHINode &) { 977 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 978 } 979 980 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 981 // Note: this doesn't use InstVisitor, because it has to work with 982 // ConstantExpr's in addition to instructions. 983 switch (Opcode) { 984 default: llvm_unreachable("Unknown instruction type encountered!"); 985 // Build the switch statement using the Instruction.def file. 986 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 987 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 988 #include "llvm/IR/Instruction.def" 989 } 990 } 991 992 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 993 // generate the debug data structures now that we've seen its definition. 994 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 995 SDValue Val) { 996 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 997 if (DDI.getDI()) { 998 const DbgValueInst *DI = DDI.getDI(); 999 DebugLoc dl = DDI.getdl(); 1000 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1001 MDLocalVariable *Variable = DI->getVariable(); 1002 MDExpression *Expr = DI->getExpression(); 1003 assert(Variable->isValidLocationForIntrinsic(dl) && 1004 "Expected inlined-at fields to agree"); 1005 uint64_t Offset = DI->getOffset(); 1006 // A dbg.value for an alloca is always indirect. 1007 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1008 SDDbgValue *SDV; 1009 if (Val.getNode()) { 1010 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 1011 Val)) { 1012 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1013 IsIndirect, Offset, dl, DbgSDNodeOrder); 1014 DAG.AddDbgValue(SDV, Val.getNode(), false); 1015 } 1016 } else 1017 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1018 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1019 } 1020 } 1021 1022 /// getCopyFromRegs - If there was virtual register allocated for the value V 1023 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1024 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1025 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1026 SDValue res; 1027 1028 if (It != FuncInfo.ValueMap.end()) { 1029 unsigned InReg = It->second; 1030 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1031 Ty); 1032 SDValue Chain = DAG.getEntryNode(); 1033 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1034 resolveDanglingDebugInfo(V, res); 1035 } 1036 1037 return res; 1038 } 1039 1040 /// getValue - Return an SDValue for the given Value. 1041 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1042 // If we already have an SDValue for this value, use it. It's important 1043 // to do this first, so that we don't create a CopyFromReg if we already 1044 // have a regular SDValue. 1045 SDValue &N = NodeMap[V]; 1046 if (N.getNode()) return N; 1047 1048 // If there's a virtual register allocated and initialized for this 1049 // value, use it. 1050 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1051 if (copyFromReg.getNode()) { 1052 return copyFromReg; 1053 } 1054 1055 // Otherwise create a new SDValue and remember it. 1056 SDValue Val = getValueImpl(V); 1057 NodeMap[V] = Val; 1058 resolveDanglingDebugInfo(V, Val); 1059 return Val; 1060 } 1061 1062 /// getNonRegisterValue - Return an SDValue for the given Value, but 1063 /// don't look in FuncInfo.ValueMap for a virtual register. 1064 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1065 // If we already have an SDValue for this value, use it. 1066 SDValue &N = NodeMap[V]; 1067 if (N.getNode()) return N; 1068 1069 // Otherwise create a new SDValue and remember it. 1070 SDValue Val = getValueImpl(V); 1071 NodeMap[V] = Val; 1072 resolveDanglingDebugInfo(V, Val); 1073 return Val; 1074 } 1075 1076 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1077 /// Create an SDValue for the given value. 1078 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1080 1081 if (const Constant *C = dyn_cast<Constant>(V)) { 1082 EVT VT = TLI.getValueType(V->getType(), true); 1083 1084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1085 return DAG.getConstant(*CI, VT); 1086 1087 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1088 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1089 1090 if (isa<ConstantPointerNull>(C)) { 1091 unsigned AS = V->getType()->getPointerAddressSpace(); 1092 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1093 } 1094 1095 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1096 return DAG.getConstantFP(*CFP, VT); 1097 1098 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1099 return DAG.getUNDEF(VT); 1100 1101 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1102 visit(CE->getOpcode(), *CE); 1103 SDValue N1 = NodeMap[V]; 1104 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1105 return N1; 1106 } 1107 1108 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1109 SmallVector<SDValue, 4> Constants; 1110 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1111 OI != OE; ++OI) { 1112 SDNode *Val = getValue(*OI).getNode(); 1113 // If the operand is an empty aggregate, there are no values. 1114 if (!Val) continue; 1115 // Add each leaf value from the operand to the Constants list 1116 // to form a flattened list of all the values. 1117 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1118 Constants.push_back(SDValue(Val, i)); 1119 } 1120 1121 return DAG.getMergeValues(Constants, getCurSDLoc()); 1122 } 1123 1124 if (const ConstantDataSequential *CDS = 1125 dyn_cast<ConstantDataSequential>(C)) { 1126 SmallVector<SDValue, 4> Ops; 1127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1128 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1129 // Add each leaf value from the operand to the Constants list 1130 // to form a flattened list of all the values. 1131 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1132 Ops.push_back(SDValue(Val, i)); 1133 } 1134 1135 if (isa<ArrayType>(CDS->getType())) 1136 return DAG.getMergeValues(Ops, getCurSDLoc()); 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1138 VT, Ops); 1139 } 1140 1141 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1142 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1143 "Unknown struct or array constant!"); 1144 1145 SmallVector<EVT, 4> ValueVTs; 1146 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1147 unsigned NumElts = ValueVTs.size(); 1148 if (NumElts == 0) 1149 return SDValue(); // empty struct 1150 SmallVector<SDValue, 4> Constants(NumElts); 1151 for (unsigned i = 0; i != NumElts; ++i) { 1152 EVT EltVT = ValueVTs[i]; 1153 if (isa<UndefValue>(C)) 1154 Constants[i] = DAG.getUNDEF(EltVT); 1155 else if (EltVT.isFloatingPoint()) 1156 Constants[i] = DAG.getConstantFP(0, EltVT); 1157 else 1158 Constants[i] = DAG.getConstant(0, EltVT); 1159 } 1160 1161 return DAG.getMergeValues(Constants, getCurSDLoc()); 1162 } 1163 1164 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1165 return DAG.getBlockAddress(BA, VT); 1166 1167 VectorType *VecTy = cast<VectorType>(V->getType()); 1168 unsigned NumElements = VecTy->getNumElements(); 1169 1170 // Now that we know the number and type of the elements, get that number of 1171 // elements into the Ops array based on what kind of constant it is. 1172 SmallVector<SDValue, 16> Ops; 1173 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1174 for (unsigned i = 0; i != NumElements; ++i) 1175 Ops.push_back(getValue(CV->getOperand(i))); 1176 } else { 1177 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1178 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1179 1180 SDValue Op; 1181 if (EltVT.isFloatingPoint()) 1182 Op = DAG.getConstantFP(0, EltVT); 1183 else 1184 Op = DAG.getConstant(0, EltVT); 1185 Ops.assign(NumElements, Op); 1186 } 1187 1188 // Create a BUILD_VECTOR node. 1189 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1190 } 1191 1192 // If this is a static alloca, generate it as the frameindex instead of 1193 // computation. 1194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1195 DenseMap<const AllocaInst*, int>::iterator SI = 1196 FuncInfo.StaticAllocaMap.find(AI); 1197 if (SI != FuncInfo.StaticAllocaMap.end()) 1198 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1199 } 1200 1201 // If this is an instruction which fast-isel has deferred, select it now. 1202 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1203 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1204 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1205 SDValue Chain = DAG.getEntryNode(); 1206 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1207 } 1208 1209 llvm_unreachable("Can't get register for value!"); 1210 } 1211 1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1214 SDValue Chain = getControlRoot(); 1215 SmallVector<ISD::OutputArg, 8> Outs; 1216 SmallVector<SDValue, 8> OutVals; 1217 1218 if (!FuncInfo.CanLowerReturn) { 1219 unsigned DemoteReg = FuncInfo.DemoteRegister; 1220 const Function *F = I.getParent()->getParent(); 1221 1222 // Emit a store of the return value through the virtual register. 1223 // Leave Outs empty so that LowerReturn won't try to load return 1224 // registers the usual way. 1225 SmallVector<EVT, 1> PtrValueVTs; 1226 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1227 PtrValueVTs); 1228 1229 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 1232 SmallVector<EVT, 4> ValueVTs; 1233 SmallVector<uint64_t, 4> Offsets; 1234 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1235 unsigned NumValues = ValueVTs.size(); 1236 1237 SmallVector<SDValue, 4> Chains(NumValues); 1238 for (unsigned i = 0; i != NumValues; ++i) { 1239 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1240 RetPtr.getValueType(), RetPtr, 1241 DAG.getIntPtrConstant(Offsets[i])); 1242 Chains[i] = 1243 DAG.getStore(Chain, getCurSDLoc(), 1244 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1245 // FIXME: better loc info would be nice. 1246 Add, MachinePointerInfo(), false, false, 0); 1247 } 1248 1249 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1250 MVT::Other, Chains); 1251 } else if (I.getNumOperands() != 0) { 1252 SmallVector<EVT, 4> ValueVTs; 1253 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1254 unsigned NumValues = ValueVTs.size(); 1255 if (NumValues) { 1256 SDValue RetOp = getValue(I.getOperand(0)); 1257 1258 const Function *F = I.getParent()->getParent(); 1259 1260 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1261 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::SExt)) 1263 ExtendKind = ISD::SIGN_EXTEND; 1264 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1265 Attribute::ZExt)) 1266 ExtendKind = ISD::ZERO_EXTEND; 1267 1268 LLVMContext &Context = F->getContext(); 1269 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1270 Attribute::InReg); 1271 1272 for (unsigned j = 0; j != NumValues; ++j) { 1273 EVT VT = ValueVTs[j]; 1274 1275 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1276 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1277 1278 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1279 MVT PartVT = TLI.getRegisterType(Context, VT); 1280 SmallVector<SDValue, 4> Parts(NumParts); 1281 getCopyToParts(DAG, getCurSDLoc(), 1282 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1283 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1284 1285 // 'inreg' on function refers to return value 1286 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1287 if (RetInReg) 1288 Flags.setInReg(); 1289 1290 // Propagate extension type if any 1291 if (ExtendKind == ISD::SIGN_EXTEND) 1292 Flags.setSExt(); 1293 else if (ExtendKind == ISD::ZERO_EXTEND) 1294 Flags.setZExt(); 1295 1296 for (unsigned i = 0; i < NumParts; ++i) { 1297 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1298 VT, /*isfixed=*/true, 0, 0)); 1299 OutVals.push_back(Parts[i]); 1300 } 1301 } 1302 } 1303 } 1304 1305 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1306 CallingConv::ID CallConv = 1307 DAG.getMachineFunction().getFunction()->getCallingConv(); 1308 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1309 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1310 1311 // Verify that the target's LowerReturn behaved as expected. 1312 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1313 "LowerReturn didn't return a valid chain!"); 1314 1315 // Update the DAG with the new chain value resulting from return lowering. 1316 DAG.setRoot(Chain); 1317 } 1318 1319 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1320 /// created for it, emit nodes to copy the value into the virtual 1321 /// registers. 1322 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1323 // Skip empty types 1324 if (V->getType()->isEmptyTy()) 1325 return; 1326 1327 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1328 if (VMI != FuncInfo.ValueMap.end()) { 1329 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1330 CopyValueToVirtualRegister(V, VMI->second); 1331 } 1332 } 1333 1334 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1335 /// the current basic block, add it to ValueMap now so that we'll get a 1336 /// CopyTo/FromReg. 1337 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1338 // No need to export constants. 1339 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1340 1341 // Already exported? 1342 if (FuncInfo.isExportedInst(V)) return; 1343 1344 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1345 CopyValueToVirtualRegister(V, Reg); 1346 } 1347 1348 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1349 const BasicBlock *FromBB) { 1350 // The operands of the setcc have to be in this block. We don't know 1351 // how to export them from some other block. 1352 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1353 // Can export from current BB. 1354 if (VI->getParent() == FromBB) 1355 return true; 1356 1357 // Is already exported, noop. 1358 return FuncInfo.isExportedInst(V); 1359 } 1360 1361 // If this is an argument, we can export it if the BB is the entry block or 1362 // if it is already exported. 1363 if (isa<Argument>(V)) { 1364 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1365 return true; 1366 1367 // Otherwise, can only export this if it is already exported. 1368 return FuncInfo.isExportedInst(V); 1369 } 1370 1371 // Otherwise, constants can always be exported. 1372 return true; 1373 } 1374 1375 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1376 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1377 const MachineBasicBlock *Dst) const { 1378 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1379 if (!BPI) 1380 return 0; 1381 const BasicBlock *SrcBB = Src->getBasicBlock(); 1382 const BasicBlock *DstBB = Dst->getBasicBlock(); 1383 return BPI->getEdgeWeight(SrcBB, DstBB); 1384 } 1385 1386 void SelectionDAGBuilder:: 1387 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1388 uint32_t Weight /* = 0 */) { 1389 if (!Weight) 1390 Weight = getEdgeWeight(Src, Dst); 1391 Src->addSuccessor(Dst, Weight); 1392 } 1393 1394 1395 static bool InBlock(const Value *V, const BasicBlock *BB) { 1396 if (const Instruction *I = dyn_cast<Instruction>(V)) 1397 return I->getParent() == BB; 1398 return true; 1399 } 1400 1401 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1402 /// This function emits a branch and is used at the leaves of an OR or an 1403 /// AND operator tree. 1404 /// 1405 void 1406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1407 MachineBasicBlock *TBB, 1408 MachineBasicBlock *FBB, 1409 MachineBasicBlock *CurBB, 1410 MachineBasicBlock *SwitchBB, 1411 uint32_t TWeight, 1412 uint32_t FWeight) { 1413 const BasicBlock *BB = CurBB->getBasicBlock(); 1414 1415 // If the leaf of the tree is a comparison, merge the condition into 1416 // the caseblock. 1417 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1418 // The operands of the cmp have to be in this block. We don't know 1419 // how to export them from some other block. If this is the first block 1420 // of the sequence, no exporting is needed. 1421 if (CurBB == SwitchBB || 1422 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1423 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1424 ISD::CondCode Condition; 1425 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1426 Condition = getICmpCondCode(IC->getPredicate()); 1427 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1428 Condition = getFCmpCondCode(FC->getPredicate()); 1429 if (TM.Options.NoNaNsFPMath) 1430 Condition = getFCmpCodeWithoutNaN(Condition); 1431 } else { 1432 (void)Condition; // silence warning. 1433 llvm_unreachable("Unknown compare instruction"); 1434 } 1435 1436 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1437 TBB, FBB, CurBB, TWeight, FWeight); 1438 SwitchCases.push_back(CB); 1439 return; 1440 } 1441 } 1442 1443 // Create a CaseBlock record representing this branch. 1444 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1445 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 } 1448 1449 /// Scale down both weights to fit into uint32_t. 1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1451 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1452 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1453 NewTrue = NewTrue / Scale; 1454 NewFalse = NewFalse / Scale; 1455 } 1456 1457 /// FindMergedConditions - If Cond is an expression like 1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1459 MachineBasicBlock *TBB, 1460 MachineBasicBlock *FBB, 1461 MachineBasicBlock *CurBB, 1462 MachineBasicBlock *SwitchBB, 1463 unsigned Opc, uint32_t TWeight, 1464 uint32_t FWeight) { 1465 // If this node is not part of the or/and tree, emit it as a branch. 1466 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1467 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1468 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1469 BOp->getParent() != CurBB->getBasicBlock() || 1470 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1471 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1472 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1473 TWeight, FWeight); 1474 return; 1475 } 1476 1477 // Create TmpBB after CurBB. 1478 MachineFunction::iterator BBI = CurBB; 1479 MachineFunction &MF = DAG.getMachineFunction(); 1480 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1481 CurBB->getParent()->insert(++BBI, TmpBB); 1482 1483 if (Opc == Instruction::Or) { 1484 // Codegen X | Y as: 1485 // BB1: 1486 // jmp_if_X TBB 1487 // jmp TmpBB 1488 // TmpBB: 1489 // jmp_if_Y TBB 1490 // jmp FBB 1491 // 1492 1493 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1494 // The requirement is that 1495 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1496 // = TrueProb for orignal BB. 1497 // Assuming the orignal weights are A and B, one choice is to set BB1's 1498 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1499 // assumes that 1500 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1501 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1502 // TmpBB, but the math is more complicated. 1503 1504 uint64_t NewTrueWeight = TWeight; 1505 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1506 ScaleWeights(NewTrueWeight, NewFalseWeight); 1507 // Emit the LHS condition. 1508 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1509 NewTrueWeight, NewFalseWeight); 1510 1511 NewTrueWeight = TWeight; 1512 NewFalseWeight = 2 * (uint64_t)FWeight; 1513 ScaleWeights(NewTrueWeight, NewFalseWeight); 1514 // Emit the RHS condition into TmpBB. 1515 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1516 NewTrueWeight, NewFalseWeight); 1517 } else { 1518 assert(Opc == Instruction::And && "Unknown merge op!"); 1519 // Codegen X & Y as: 1520 // BB1: 1521 // jmp_if_X TmpBB 1522 // jmp FBB 1523 // TmpBB: 1524 // jmp_if_Y TBB 1525 // jmp FBB 1526 // 1527 // This requires creation of TmpBB after CurBB. 1528 1529 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1530 // The requirement is that 1531 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1532 // = FalseProb for orignal BB. 1533 // Assuming the orignal weights are A and B, one choice is to set BB1's 1534 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1535 // assumes that 1536 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1537 1538 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1539 uint64_t NewFalseWeight = FWeight; 1540 ScaleWeights(NewTrueWeight, NewFalseWeight); 1541 // Emit the LHS condition. 1542 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1543 NewTrueWeight, NewFalseWeight); 1544 1545 NewTrueWeight = 2 * (uint64_t)TWeight; 1546 NewFalseWeight = FWeight; 1547 ScaleWeights(NewTrueWeight, NewFalseWeight); 1548 // Emit the RHS condition into TmpBB. 1549 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1550 NewTrueWeight, NewFalseWeight); 1551 } 1552 } 1553 1554 /// If the set of cases should be emitted as a series of branches, return true. 1555 /// If we should emit this as a bunch of and/or'd together conditions, return 1556 /// false. 1557 bool 1558 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1559 if (Cases.size() != 2) return true; 1560 1561 // If this is two comparisons of the same values or'd or and'd together, they 1562 // will get folded into a single comparison, so don't emit two blocks. 1563 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1564 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1565 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1566 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1567 return false; 1568 } 1569 1570 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1571 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1572 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1573 Cases[0].CC == Cases[1].CC && 1574 isa<Constant>(Cases[0].CmpRHS) && 1575 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1576 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1577 return false; 1578 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1579 return false; 1580 } 1581 1582 return true; 1583 } 1584 1585 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1586 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1587 1588 // Update machine-CFG edges. 1589 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1590 1591 if (I.isUnconditional()) { 1592 // Update machine-CFG edges. 1593 BrMBB->addSuccessor(Succ0MBB); 1594 1595 // If this is not a fall-through branch or optimizations are switched off, 1596 // emit the branch. 1597 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1599 MVT::Other, getControlRoot(), 1600 DAG.getBasicBlock(Succ0MBB))); 1601 1602 return; 1603 } 1604 1605 // If this condition is one of the special cases we handle, do special stuff 1606 // now. 1607 const Value *CondVal = I.getCondition(); 1608 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1609 1610 // If this is a series of conditions that are or'd or and'd together, emit 1611 // this as a sequence of branches instead of setcc's with and/or operations. 1612 // As long as jumps are not expensive, this should improve performance. 1613 // For example, instead of something like: 1614 // cmp A, B 1615 // C = seteq 1616 // cmp D, E 1617 // F = setle 1618 // or C, F 1619 // jnz foo 1620 // Emit: 1621 // cmp A, B 1622 // je foo 1623 // cmp D, E 1624 // jle foo 1625 // 1626 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1627 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1628 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1629 BOp->getOpcode() == Instruction::Or)) { 1630 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1631 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1632 getEdgeWeight(BrMBB, Succ1MBB)); 1633 // If the compares in later blocks need to use values not currently 1634 // exported from this block, export them now. This block should always 1635 // be the first entry. 1636 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1637 1638 // Allow some cases to be rejected. 1639 if (ShouldEmitAsBranches(SwitchCases)) { 1640 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1641 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1642 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1643 } 1644 1645 // Emit the branch for this block. 1646 visitSwitchCase(SwitchCases[0], BrMBB); 1647 SwitchCases.erase(SwitchCases.begin()); 1648 return; 1649 } 1650 1651 // Okay, we decided not to do this, remove any inserted MBB's and clear 1652 // SwitchCases. 1653 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1654 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1655 1656 SwitchCases.clear(); 1657 } 1658 } 1659 1660 // Create a CaseBlock record representing this branch. 1661 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1662 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1663 1664 // Use visitSwitchCase to actually insert the fast branch sequence for this 1665 // cond branch. 1666 visitSwitchCase(CB, BrMBB); 1667 } 1668 1669 /// visitSwitchCase - Emits the necessary code to represent a single node in 1670 /// the binary search tree resulting from lowering a switch instruction. 1671 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1672 MachineBasicBlock *SwitchBB) { 1673 SDValue Cond; 1674 SDValue CondLHS = getValue(CB.CmpLHS); 1675 SDLoc dl = getCurSDLoc(); 1676 1677 // Build the setcc now. 1678 if (!CB.CmpMHS) { 1679 // Fold "(X == true)" to X and "(X == false)" to !X to 1680 // handle common cases produced by branch lowering. 1681 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1682 CB.CC == ISD::SETEQ) 1683 Cond = CondLHS; 1684 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1685 CB.CC == ISD::SETEQ) { 1686 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1687 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1688 } else 1689 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1690 } else { 1691 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1692 1693 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1694 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1695 1696 SDValue CmpOp = getValue(CB.CmpMHS); 1697 EVT VT = CmpOp.getValueType(); 1698 1699 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1700 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1701 ISD::SETLE); 1702 } else { 1703 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1704 VT, CmpOp, DAG.getConstant(Low, VT)); 1705 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1706 DAG.getConstant(High-Low, VT), ISD::SETULE); 1707 } 1708 } 1709 1710 // Update successor info 1711 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1712 // TrueBB and FalseBB are always different unless the incoming IR is 1713 // degenerate. This only happens when running llc on weird IR. 1714 if (CB.TrueBB != CB.FalseBB) 1715 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1716 1717 // If the lhs block is the next block, invert the condition so that we can 1718 // fall through to the lhs instead of the rhs block. 1719 if (CB.TrueBB == NextBlock(SwitchBB)) { 1720 std::swap(CB.TrueBB, CB.FalseBB); 1721 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1722 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1723 } 1724 1725 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1726 MVT::Other, getControlRoot(), Cond, 1727 DAG.getBasicBlock(CB.TrueBB)); 1728 1729 // Insert the false branch. Do this even if it's a fall through branch, 1730 // this makes it easier to do DAG optimizations which require inverting 1731 // the branch condition. 1732 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1733 DAG.getBasicBlock(CB.FalseBB)); 1734 1735 DAG.setRoot(BrCond); 1736 } 1737 1738 /// visitJumpTable - Emit JumpTable node in the current MBB 1739 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1740 // Emit the code for the jump table 1741 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1742 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1743 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1744 JT.Reg, PTy); 1745 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1746 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1747 MVT::Other, Index.getValue(1), 1748 Table, Index); 1749 DAG.setRoot(BrJumpTable); 1750 } 1751 1752 /// visitJumpTableHeader - This function emits necessary code to produce index 1753 /// in the JumpTable from switch case. 1754 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1755 JumpTableHeader &JTH, 1756 MachineBasicBlock *SwitchBB) { 1757 // Subtract the lowest switch case value from the value being switched on and 1758 // conditional branch to default mbb if the result is greater than the 1759 // difference between smallest and largest cases. 1760 SDValue SwitchOp = getValue(JTH.SValue); 1761 EVT VT = SwitchOp.getValueType(); 1762 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1763 DAG.getConstant(JTH.First, VT)); 1764 1765 // The SDNode we just created, which holds the value being switched on minus 1766 // the smallest case value, needs to be copied to a virtual register so it 1767 // can be used as an index into the jump table in a subsequent basic block. 1768 // This value may be smaller or larger than the target's pointer type, and 1769 // therefore require extension or truncating. 1770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1771 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1772 1773 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1774 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1775 JumpTableReg, SwitchOp); 1776 JT.Reg = JumpTableReg; 1777 1778 // Emit the range check for the jump table, and branch to the default block 1779 // for the switch statement if the value being switched on exceeds the largest 1780 // case in the switch. 1781 SDValue CMP = 1782 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1783 Sub.getValueType()), 1784 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1785 1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1787 MVT::Other, CopyTo, CMP, 1788 DAG.getBasicBlock(JT.Default)); 1789 1790 // Avoid emitting unnecessary branches to the next block. 1791 if (JT.MBB != NextBlock(SwitchBB)) 1792 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1793 DAG.getBasicBlock(JT.MBB)); 1794 1795 DAG.setRoot(BrCond); 1796 } 1797 1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1799 /// tail spliced into a stack protector check success bb. 1800 /// 1801 /// For a high level explanation of how this fits into the stack protector 1802 /// generation see the comment on the declaration of class 1803 /// StackProtectorDescriptor. 1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1805 MachineBasicBlock *ParentBB) { 1806 1807 // First create the loads to the guard/stack slot for the comparison. 1808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1809 EVT PtrTy = TLI.getPointerTy(); 1810 1811 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1812 int FI = MFI->getStackProtectorIndex(); 1813 1814 const Value *IRGuard = SPD.getGuard(); 1815 SDValue GuardPtr = getValue(IRGuard); 1816 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1817 1818 unsigned Align = 1819 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1820 1821 SDValue Guard; 1822 1823 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1824 // guard value from the virtual register holding the value. Otherwise, emit a 1825 // volatile load to retrieve the stack guard value. 1826 unsigned GuardReg = SPD.getGuardReg(); 1827 1828 if (GuardReg && TLI.useLoadStackGuardNode()) 1829 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1830 PtrTy); 1831 else 1832 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 GuardPtr, MachinePointerInfo(IRGuard, 0), 1834 true, false, false, Align); 1835 1836 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1837 StackSlotPtr, 1838 MachinePointerInfo::getFixedStack(FI), 1839 true, false, false, Align); 1840 1841 // Perform the comparison via a subtract/getsetcc. 1842 EVT VT = Guard.getValueType(); 1843 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1844 1845 SDValue Cmp = 1846 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1847 Sub.getValueType()), 1848 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1849 1850 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1851 // branch to failure MBB. 1852 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1853 MVT::Other, StackSlot.getOperand(0), 1854 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1855 // Otherwise branch to success MBB. 1856 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1857 MVT::Other, BrCond, 1858 DAG.getBasicBlock(SPD.getSuccessMBB())); 1859 1860 DAG.setRoot(Br); 1861 } 1862 1863 /// Codegen the failure basic block for a stack protector check. 1864 /// 1865 /// A failure stack protector machine basic block consists simply of a call to 1866 /// __stack_chk_fail(). 1867 /// 1868 /// For a high level explanation of how this fits into the stack protector 1869 /// generation see the comment on the declaration of class 1870 /// StackProtectorDescriptor. 1871 void 1872 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1874 SDValue Chain = 1875 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1876 nullptr, 0, false, getCurSDLoc(), false, false).second; 1877 DAG.setRoot(Chain); 1878 } 1879 1880 /// visitBitTestHeader - This function emits necessary code to produce value 1881 /// suitable for "bit tests" 1882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1883 MachineBasicBlock *SwitchBB) { 1884 // Subtract the minimum value 1885 SDValue SwitchOp = getValue(B.SValue); 1886 EVT VT = SwitchOp.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1888 DAG.getConstant(B.First, VT)); 1889 1890 // Check range 1891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1892 SDValue RangeCmp = 1893 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1896 1897 // Determine the type of the test operands. 1898 bool UsePtrType = false; 1899 if (!TLI.isTypeLegal(VT)) 1900 UsePtrType = true; 1901 else { 1902 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1903 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1904 // Switch table case range are encoded into series of masks. 1905 // Just use pointer type, it's guaranteed to fit. 1906 UsePtrType = true; 1907 break; 1908 } 1909 } 1910 if (UsePtrType) { 1911 VT = TLI.getPointerTy(); 1912 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1913 } 1914 1915 B.RegVT = VT.getSimpleVT(); 1916 B.Reg = FuncInfo.CreateReg(B.RegVT); 1917 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1918 B.Reg, Sub); 1919 1920 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1921 1922 addSuccessorWithWeight(SwitchBB, B.Default); 1923 addSuccessorWithWeight(SwitchBB, MBB); 1924 1925 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1926 MVT::Other, CopyTo, RangeCmp, 1927 DAG.getBasicBlock(B.Default)); 1928 1929 // Avoid emitting unnecessary branches to the next block. 1930 if (MBB != NextBlock(SwitchBB)) 1931 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrRange, 1932 DAG.getBasicBlock(MBB)); 1933 1934 DAG.setRoot(BrRange); 1935 } 1936 1937 /// visitBitTestCase - this function produces one "bit test" 1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1939 MachineBasicBlock* NextMBB, 1940 uint32_t BranchWeightToNext, 1941 unsigned Reg, 1942 BitTestCase &B, 1943 MachineBasicBlock *SwitchBB) { 1944 MVT VT = BB.RegVT; 1945 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1946 Reg, VT); 1947 SDValue Cmp; 1948 unsigned PopCount = countPopulation(B.Mask); 1949 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1950 if (PopCount == 1) { 1951 // Testing for a single bit; just compare the shift count with what it 1952 // would need to be to shift a 1 bit in that position. 1953 Cmp = DAG.getSetCC( 1954 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1955 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1956 } else if (PopCount == BB.Range) { 1957 // There is only one zero bit in the range, test for it directly. 1958 Cmp = DAG.getSetCC( 1959 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1960 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1961 } else { 1962 // Make desired shift 1963 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1964 DAG.getConstant(1, VT), ShiftOp); 1965 1966 // Emit bit tests and jumps 1967 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1968 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1969 Cmp = DAG.getSetCC(getCurSDLoc(), 1970 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1971 DAG.getConstant(0, VT), ISD::SETNE); 1972 } 1973 1974 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1975 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1976 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1977 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1978 1979 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1980 MVT::Other, getControlRoot(), 1981 Cmp, DAG.getBasicBlock(B.TargetBB)); 1982 1983 // Avoid emitting unnecessary branches to the next block. 1984 if (NextMBB != NextBlock(SwitchBB)) 1985 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1986 DAG.getBasicBlock(NextMBB)); 1987 1988 DAG.setRoot(BrAnd); 1989 } 1990 1991 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1992 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1993 1994 // Retrieve successors. 1995 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1996 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1997 1998 const Value *Callee(I.getCalledValue()); 1999 const Function *Fn = dyn_cast<Function>(Callee); 2000 if (isa<InlineAsm>(Callee)) 2001 visitInlineAsm(&I); 2002 else if (Fn && Fn->isIntrinsic()) { 2003 switch (Fn->getIntrinsicID()) { 2004 default: 2005 llvm_unreachable("Cannot invoke this intrinsic"); 2006 case Intrinsic::donothing: 2007 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2008 break; 2009 case Intrinsic::experimental_patchpoint_void: 2010 case Intrinsic::experimental_patchpoint_i64: 2011 visitPatchpoint(&I, LandingPad); 2012 break; 2013 case Intrinsic::experimental_gc_statepoint: 2014 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2015 break; 2016 } 2017 } else 2018 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2019 2020 // If the value of the invoke is used outside of its defining block, make it 2021 // available as a virtual register. 2022 // We already took care of the exported value for the statepoint instruction 2023 // during call to the LowerStatepoint. 2024 if (!isStatepoint(I)) { 2025 CopyToExportRegsIfNeeded(&I); 2026 } 2027 2028 // Update successor info 2029 addSuccessorWithWeight(InvokeMBB, Return); 2030 addSuccessorWithWeight(InvokeMBB, LandingPad); 2031 2032 // Drop into normal successor. 2033 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2034 MVT::Other, getControlRoot(), 2035 DAG.getBasicBlock(Return))); 2036 } 2037 2038 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2039 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2040 } 2041 2042 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2043 assert(FuncInfo.MBB->isLandingPad() && 2044 "Call to landingpad not in landing pad!"); 2045 2046 MachineBasicBlock *MBB = FuncInfo.MBB; 2047 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2048 AddLandingPadInfo(LP, MMI, MBB); 2049 2050 // If there aren't registers to copy the values into (e.g., during SjLj 2051 // exceptions), then don't bother to create these DAG nodes. 2052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2053 if (TLI.getExceptionPointerRegister() == 0 && 2054 TLI.getExceptionSelectorRegister() == 0) 2055 return; 2056 2057 SmallVector<EVT, 2> ValueVTs; 2058 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2059 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2060 2061 // Get the two live-in registers as SDValues. The physregs have already been 2062 // copied into virtual registers. 2063 SDValue Ops[2]; 2064 if (FuncInfo.ExceptionPointerVirtReg) { 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 } else { 2070 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2071 } 2072 Ops[1] = DAG.getZExtOrTrunc( 2073 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2074 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2075 getCurSDLoc(), ValueVTs[1]); 2076 2077 // Merge into one. 2078 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2079 DAG.getVTList(ValueVTs), Ops); 2080 setValue(&LP, Res); 2081 } 2082 2083 unsigned 2084 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2085 MachineBasicBlock *LPadBB) { 2086 SDValue Chain = getControlRoot(); 2087 2088 // Get the typeid that we will dispatch on later. 2089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2090 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2091 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2092 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2093 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2094 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2095 2096 // Branch to the main landing pad block. 2097 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2098 ClauseMBB->addSuccessor(LPadBB); 2099 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2100 DAG.getBasicBlock(LPadBB))); 2101 return VReg; 2102 } 2103 2104 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2105 #ifndef NDEBUG 2106 for (const CaseCluster &CC : Clusters) 2107 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2108 #endif 2109 2110 std::sort(Clusters.begin(), Clusters.end(), 2111 [](const CaseCluster &a, const CaseCluster &b) { 2112 return a.Low->getValue().slt(b.Low->getValue()); 2113 }); 2114 2115 // Merge adjacent clusters with the same destination. 2116 const unsigned N = Clusters.size(); 2117 unsigned DstIndex = 0; 2118 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2119 CaseCluster &CC = Clusters[SrcIndex]; 2120 const ConstantInt *CaseVal = CC.Low; 2121 MachineBasicBlock *Succ = CC.MBB; 2122 2123 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2124 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2125 // If this case has the same successor and is a neighbour, merge it into 2126 // the previous cluster. 2127 Clusters[DstIndex - 1].High = CaseVal; 2128 Clusters[DstIndex - 1].Weight += CC.Weight; 2129 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2130 } else { 2131 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2132 sizeof(Clusters[SrcIndex])); 2133 } 2134 } 2135 Clusters.resize(DstIndex); 2136 } 2137 2138 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2139 MachineBasicBlock *Last) { 2140 // Update JTCases. 2141 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2142 if (JTCases[i].first.HeaderBB == First) 2143 JTCases[i].first.HeaderBB = Last; 2144 2145 // Update BitTestCases. 2146 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2147 if (BitTestCases[i].Parent == First) 2148 BitTestCases[i].Parent = Last; 2149 } 2150 2151 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2152 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2153 2154 // Update machine-CFG edges with unique successors. 2155 SmallSet<BasicBlock*, 32> Done; 2156 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2157 BasicBlock *BB = I.getSuccessor(i); 2158 bool Inserted = Done.insert(BB).second; 2159 if (!Inserted) 2160 continue; 2161 2162 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2163 addSuccessorWithWeight(IndirectBrMBB, Succ); 2164 } 2165 2166 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2167 MVT::Other, getControlRoot(), 2168 getValue(I.getAddress()))); 2169 } 2170 2171 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2172 if (DAG.getTarget().Options.TrapUnreachable) 2173 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2174 } 2175 2176 void SelectionDAGBuilder::visitFSub(const User &I) { 2177 // -0.0 - X --> fneg 2178 Type *Ty = I.getType(); 2179 if (isa<Constant>(I.getOperand(0)) && 2180 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2181 SDValue Op2 = getValue(I.getOperand(1)); 2182 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2183 Op2.getValueType(), Op2)); 2184 return; 2185 } 2186 2187 visitBinary(I, ISD::FSUB); 2188 } 2189 2190 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2191 SDValue Op1 = getValue(I.getOperand(0)); 2192 SDValue Op2 = getValue(I.getOperand(1)); 2193 2194 bool nuw = false; 2195 bool nsw = false; 2196 bool exact = false; 2197 if (const OverflowingBinaryOperator *OFBinOp = 2198 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2199 nuw = OFBinOp->hasNoUnsignedWrap(); 2200 nsw = OFBinOp->hasNoSignedWrap(); 2201 } 2202 if (const PossiblyExactOperator *ExactOp = 2203 dyn_cast<const PossiblyExactOperator>(&I)) 2204 exact = ExactOp->isExact(); 2205 2206 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2207 Op1, Op2, nuw, nsw, exact); 2208 setValue(&I, BinNodeValue); 2209 } 2210 2211 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2212 SDValue Op1 = getValue(I.getOperand(0)); 2213 SDValue Op2 = getValue(I.getOperand(1)); 2214 2215 EVT ShiftTy = 2216 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2217 2218 // Coerce the shift amount to the right type if we can. 2219 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2220 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2221 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2222 SDLoc DL = getCurSDLoc(); 2223 2224 // If the operand is smaller than the shift count type, promote it. 2225 if (ShiftSize > Op2Size) 2226 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2227 2228 // If the operand is larger than the shift count type but the shift 2229 // count type has enough bits to represent any shift value, truncate 2230 // it now. This is a common case and it exposes the truncate to 2231 // optimization early. 2232 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2233 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2234 // Otherwise we'll need to temporarily settle for some other convenient 2235 // type. Type legalization will make adjustments once the shiftee is split. 2236 else 2237 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2238 } 2239 2240 bool nuw = false; 2241 bool nsw = false; 2242 bool exact = false; 2243 2244 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2245 2246 if (const OverflowingBinaryOperator *OFBinOp = 2247 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2248 nuw = OFBinOp->hasNoUnsignedWrap(); 2249 nsw = OFBinOp->hasNoSignedWrap(); 2250 } 2251 if (const PossiblyExactOperator *ExactOp = 2252 dyn_cast<const PossiblyExactOperator>(&I)) 2253 exact = ExactOp->isExact(); 2254 } 2255 2256 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2257 nuw, nsw, exact); 2258 setValue(&I, Res); 2259 } 2260 2261 void SelectionDAGBuilder::visitSDiv(const User &I) { 2262 SDValue Op1 = getValue(I.getOperand(0)); 2263 SDValue Op2 = getValue(I.getOperand(1)); 2264 2265 // Turn exact SDivs into multiplications. 2266 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2267 // exact bit. 2268 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2269 !isa<ConstantSDNode>(Op1) && 2270 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2271 setValue(&I, DAG.getTargetLoweringInfo() 2272 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2273 else 2274 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2275 Op1, Op2)); 2276 } 2277 2278 void SelectionDAGBuilder::visitICmp(const User &I) { 2279 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2280 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2281 predicate = IC->getPredicate(); 2282 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2283 predicate = ICmpInst::Predicate(IC->getPredicate()); 2284 SDValue Op1 = getValue(I.getOperand(0)); 2285 SDValue Op2 = getValue(I.getOperand(1)); 2286 ISD::CondCode Opcode = getICmpCondCode(predicate); 2287 2288 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2289 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2290 } 2291 2292 void SelectionDAGBuilder::visitFCmp(const User &I) { 2293 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2294 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2295 predicate = FC->getPredicate(); 2296 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2297 predicate = FCmpInst::Predicate(FC->getPredicate()); 2298 SDValue Op1 = getValue(I.getOperand(0)); 2299 SDValue Op2 = getValue(I.getOperand(1)); 2300 ISD::CondCode Condition = getFCmpCondCode(predicate); 2301 if (TM.Options.NoNaNsFPMath) 2302 Condition = getFCmpCodeWithoutNaN(Condition); 2303 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2304 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2305 } 2306 2307 void SelectionDAGBuilder::visitSelect(const User &I) { 2308 SmallVector<EVT, 4> ValueVTs; 2309 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2310 unsigned NumValues = ValueVTs.size(); 2311 if (NumValues == 0) return; 2312 2313 SmallVector<SDValue, 4> Values(NumValues); 2314 SDValue Cond = getValue(I.getOperand(0)); 2315 SDValue TrueVal = getValue(I.getOperand(1)); 2316 SDValue FalseVal = getValue(I.getOperand(2)); 2317 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2318 ISD::VSELECT : ISD::SELECT; 2319 2320 for (unsigned i = 0; i != NumValues; ++i) 2321 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2322 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2323 Cond, 2324 SDValue(TrueVal.getNode(), 2325 TrueVal.getResNo() + i), 2326 SDValue(FalseVal.getNode(), 2327 FalseVal.getResNo() + i)); 2328 2329 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2330 DAG.getVTList(ValueVTs), Values)); 2331 } 2332 2333 void SelectionDAGBuilder::visitTrunc(const User &I) { 2334 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2335 SDValue N = getValue(I.getOperand(0)); 2336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2337 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2338 } 2339 2340 void SelectionDAGBuilder::visitZExt(const User &I) { 2341 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2342 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2343 SDValue N = getValue(I.getOperand(0)); 2344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2345 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2346 } 2347 2348 void SelectionDAGBuilder::visitSExt(const User &I) { 2349 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2350 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2351 SDValue N = getValue(I.getOperand(0)); 2352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2353 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2354 } 2355 2356 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2357 // FPTrunc is never a no-op cast, no need to check 2358 SDValue N = getValue(I.getOperand(0)); 2359 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2360 EVT DestVT = TLI.getValueType(I.getType()); 2361 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2362 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2363 } 2364 2365 void SelectionDAGBuilder::visitFPExt(const User &I) { 2366 // FPExt is never a no-op cast, no need to check 2367 SDValue N = getValue(I.getOperand(0)); 2368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2369 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2370 } 2371 2372 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2373 // FPToUI is never a no-op cast, no need to check 2374 SDValue N = getValue(I.getOperand(0)); 2375 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2376 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2377 } 2378 2379 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2380 // FPToSI is never a no-op cast, no need to check 2381 SDValue N = getValue(I.getOperand(0)); 2382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2383 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2384 } 2385 2386 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2387 // UIToFP is never a no-op cast, no need to check 2388 SDValue N = getValue(I.getOperand(0)); 2389 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2390 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2391 } 2392 2393 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2394 // SIToFP is never a no-op cast, no need to check 2395 SDValue N = getValue(I.getOperand(0)); 2396 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2397 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2398 } 2399 2400 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2401 // What to do depends on the size of the integer and the size of the pointer. 2402 // We can either truncate, zero extend, or no-op, accordingly. 2403 SDValue N = getValue(I.getOperand(0)); 2404 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2405 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2406 } 2407 2408 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2409 // What to do depends on the size of the integer and the size of the pointer. 2410 // We can either truncate, zero extend, or no-op, accordingly. 2411 SDValue N = getValue(I.getOperand(0)); 2412 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2413 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2414 } 2415 2416 void SelectionDAGBuilder::visitBitCast(const User &I) { 2417 SDValue N = getValue(I.getOperand(0)); 2418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2419 2420 // BitCast assures us that source and destination are the same size so this is 2421 // either a BITCAST or a no-op. 2422 if (DestVT != N.getValueType()) 2423 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2424 DestVT, N)); // convert types. 2425 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2426 // might fold any kind of constant expression to an integer constant and that 2427 // is not what we are looking for. Only regcognize a bitcast of a genuine 2428 // constant integer as an opaque constant. 2429 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2430 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2431 /*isOpaque*/true)); 2432 else 2433 setValue(&I, N); // noop cast. 2434 } 2435 2436 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2438 const Value *SV = I.getOperand(0); 2439 SDValue N = getValue(SV); 2440 EVT DestVT = TLI.getValueType(I.getType()); 2441 2442 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2443 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2444 2445 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2446 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2447 2448 setValue(&I, N); 2449 } 2450 2451 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2453 SDValue InVec = getValue(I.getOperand(0)); 2454 SDValue InVal = getValue(I.getOperand(1)); 2455 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2456 getCurSDLoc(), TLI.getVectorIdxTy()); 2457 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2458 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2459 } 2460 2461 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2463 SDValue InVec = getValue(I.getOperand(0)); 2464 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2465 getCurSDLoc(), TLI.getVectorIdxTy()); 2466 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2467 TLI.getValueType(I.getType()), InVec, InIdx)); 2468 } 2469 2470 // Utility for visitShuffleVector - Return true if every element in Mask, 2471 // beginning from position Pos and ending in Pos+Size, falls within the 2472 // specified sequential range [L, L+Pos). or is undef. 2473 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2474 unsigned Pos, unsigned Size, int Low) { 2475 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2476 if (Mask[i] >= 0 && Mask[i] != Low) 2477 return false; 2478 return true; 2479 } 2480 2481 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2482 SDValue Src1 = getValue(I.getOperand(0)); 2483 SDValue Src2 = getValue(I.getOperand(1)); 2484 2485 SmallVector<int, 8> Mask; 2486 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2487 unsigned MaskNumElts = Mask.size(); 2488 2489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2490 EVT VT = TLI.getValueType(I.getType()); 2491 EVT SrcVT = Src1.getValueType(); 2492 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2493 2494 if (SrcNumElts == MaskNumElts) { 2495 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2496 &Mask[0])); 2497 return; 2498 } 2499 2500 // Normalize the shuffle vector since mask and vector length don't match. 2501 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2502 // Mask is longer than the source vectors and is a multiple of the source 2503 // vectors. We can use concatenate vector to make the mask and vectors 2504 // lengths match. 2505 if (SrcNumElts*2 == MaskNumElts) { 2506 // First check for Src1 in low and Src2 in high 2507 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2508 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2509 // The shuffle is concatenating two vectors together. 2510 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2511 VT, Src1, Src2)); 2512 return; 2513 } 2514 // Then check for Src2 in low and Src1 in high 2515 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2516 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2517 // The shuffle is concatenating two vectors together. 2518 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2519 VT, Src2, Src1)); 2520 return; 2521 } 2522 } 2523 2524 // Pad both vectors with undefs to make them the same length as the mask. 2525 unsigned NumConcat = MaskNumElts / SrcNumElts; 2526 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2527 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2528 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2529 2530 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2531 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2532 MOps1[0] = Src1; 2533 MOps2[0] = Src2; 2534 2535 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2536 getCurSDLoc(), VT, MOps1); 2537 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2538 getCurSDLoc(), VT, MOps2); 2539 2540 // Readjust mask for new input vector length. 2541 SmallVector<int, 8> MappedOps; 2542 for (unsigned i = 0; i != MaskNumElts; ++i) { 2543 int Idx = Mask[i]; 2544 if (Idx >= (int)SrcNumElts) 2545 Idx -= SrcNumElts - MaskNumElts; 2546 MappedOps.push_back(Idx); 2547 } 2548 2549 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2550 &MappedOps[0])); 2551 return; 2552 } 2553 2554 if (SrcNumElts > MaskNumElts) { 2555 // Analyze the access pattern of the vector to see if we can extract 2556 // two subvectors and do the shuffle. The analysis is done by calculating 2557 // the range of elements the mask access on both vectors. 2558 int MinRange[2] = { static_cast<int>(SrcNumElts), 2559 static_cast<int>(SrcNumElts)}; 2560 int MaxRange[2] = {-1, -1}; 2561 2562 for (unsigned i = 0; i != MaskNumElts; ++i) { 2563 int Idx = Mask[i]; 2564 unsigned Input = 0; 2565 if (Idx < 0) 2566 continue; 2567 2568 if (Idx >= (int)SrcNumElts) { 2569 Input = 1; 2570 Idx -= SrcNumElts; 2571 } 2572 if (Idx > MaxRange[Input]) 2573 MaxRange[Input] = Idx; 2574 if (Idx < MinRange[Input]) 2575 MinRange[Input] = Idx; 2576 } 2577 2578 // Check if the access is smaller than the vector size and can we find 2579 // a reasonable extract index. 2580 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2581 // Extract. 2582 int StartIdx[2]; // StartIdx to extract from 2583 for (unsigned Input = 0; Input < 2; ++Input) { 2584 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2585 RangeUse[Input] = 0; // Unused 2586 StartIdx[Input] = 0; 2587 continue; 2588 } 2589 2590 // Find a good start index that is a multiple of the mask length. Then 2591 // see if the rest of the elements are in range. 2592 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2593 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2594 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2595 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2596 } 2597 2598 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2599 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2600 return; 2601 } 2602 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2603 // Extract appropriate subvector and generate a vector shuffle 2604 for (unsigned Input = 0; Input < 2; ++Input) { 2605 SDValue &Src = Input == 0 ? Src1 : Src2; 2606 if (RangeUse[Input] == 0) 2607 Src = DAG.getUNDEF(VT); 2608 else 2609 Src = DAG.getNode( 2610 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 2611 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 2612 } 2613 2614 // Calculate new mask. 2615 SmallVector<int, 8> MappedOps; 2616 for (unsigned i = 0; i != MaskNumElts; ++i) { 2617 int Idx = Mask[i]; 2618 if (Idx >= 0) { 2619 if (Idx < (int)SrcNumElts) 2620 Idx -= StartIdx[0]; 2621 else 2622 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2623 } 2624 MappedOps.push_back(Idx); 2625 } 2626 2627 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2628 &MappedOps[0])); 2629 return; 2630 } 2631 } 2632 2633 // We can't use either concat vectors or extract subvectors so fall back to 2634 // replacing the shuffle with extract and build vector. 2635 // to insert and build vector. 2636 EVT EltVT = VT.getVectorElementType(); 2637 EVT IdxVT = TLI.getVectorIdxTy(); 2638 SmallVector<SDValue,8> Ops; 2639 for (unsigned i = 0; i != MaskNumElts; ++i) { 2640 int Idx = Mask[i]; 2641 SDValue Res; 2642 2643 if (Idx < 0) { 2644 Res = DAG.getUNDEF(EltVT); 2645 } else { 2646 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2647 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2648 2649 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2650 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 2651 } 2652 2653 Ops.push_back(Res); 2654 } 2655 2656 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 2657 } 2658 2659 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2660 const Value *Op0 = I.getOperand(0); 2661 const Value *Op1 = I.getOperand(1); 2662 Type *AggTy = I.getType(); 2663 Type *ValTy = Op1->getType(); 2664 bool IntoUndef = isa<UndefValue>(Op0); 2665 bool FromUndef = isa<UndefValue>(Op1); 2666 2667 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2668 2669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2670 SmallVector<EVT, 4> AggValueVTs; 2671 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2672 SmallVector<EVT, 4> ValValueVTs; 2673 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2674 2675 unsigned NumAggValues = AggValueVTs.size(); 2676 unsigned NumValValues = ValValueVTs.size(); 2677 SmallVector<SDValue, 4> Values(NumAggValues); 2678 2679 // Ignore an insertvalue that produces an empty object 2680 if (!NumAggValues) { 2681 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2682 return; 2683 } 2684 2685 SDValue Agg = getValue(Op0); 2686 unsigned i = 0; 2687 // Copy the beginning value(s) from the original aggregate. 2688 for (; i != LinearIndex; ++i) 2689 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2690 SDValue(Agg.getNode(), Agg.getResNo() + i); 2691 // Copy values from the inserted value(s). 2692 if (NumValValues) { 2693 SDValue Val = getValue(Op1); 2694 for (; i != LinearIndex + NumValValues; ++i) 2695 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2696 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2697 } 2698 // Copy remaining value(s) from the original aggregate. 2699 for (; i != NumAggValues; ++i) 2700 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2701 SDValue(Agg.getNode(), Agg.getResNo() + i); 2702 2703 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2704 DAG.getVTList(AggValueVTs), Values)); 2705 } 2706 2707 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2708 const Value *Op0 = I.getOperand(0); 2709 Type *AggTy = Op0->getType(); 2710 Type *ValTy = I.getType(); 2711 bool OutOfUndef = isa<UndefValue>(Op0); 2712 2713 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2714 2715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2716 SmallVector<EVT, 4> ValValueVTs; 2717 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2718 2719 unsigned NumValValues = ValValueVTs.size(); 2720 2721 // Ignore a extractvalue that produces an empty object 2722 if (!NumValValues) { 2723 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2724 return; 2725 } 2726 2727 SmallVector<SDValue, 4> Values(NumValValues); 2728 2729 SDValue Agg = getValue(Op0); 2730 // Copy out the selected value(s). 2731 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2732 Values[i - LinearIndex] = 2733 OutOfUndef ? 2734 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2735 SDValue(Agg.getNode(), Agg.getResNo() + i); 2736 2737 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2738 DAG.getVTList(ValValueVTs), Values)); 2739 } 2740 2741 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2742 Value *Op0 = I.getOperand(0); 2743 // Note that the pointer operand may be a vector of pointers. Take the scalar 2744 // element which holds a pointer. 2745 Type *Ty = Op0->getType()->getScalarType(); 2746 unsigned AS = Ty->getPointerAddressSpace(); 2747 SDValue N = getValue(Op0); 2748 2749 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2750 OI != E; ++OI) { 2751 const Value *Idx = *OI; 2752 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2753 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2754 if (Field) { 2755 // N = N + Offset 2756 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2757 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 2758 DAG.getConstant(Offset, N.getValueType())); 2759 } 2760 2761 Ty = StTy->getElementType(Field); 2762 } else { 2763 Ty = cast<SequentialType>(Ty)->getElementType(); 2764 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2765 unsigned PtrSize = PtrTy.getSizeInBits(); 2766 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2767 2768 // If this is a constant subscript, handle it quickly. 2769 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2770 if (CI->isZero()) 2771 continue; 2772 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2773 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 2774 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 2775 continue; 2776 } 2777 2778 // N = N + Idx * ElementSize; 2779 SDValue IdxN = getValue(Idx); 2780 2781 // If the index is smaller or larger than intptr_t, truncate or extend 2782 // it. 2783 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 2784 2785 // If this is a multiply by a power of two, turn it into a shl 2786 // immediately. This is a very common case. 2787 if (ElementSize != 1) { 2788 if (ElementSize.isPowerOf2()) { 2789 unsigned Amt = ElementSize.logBase2(); 2790 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 2791 N.getValueType(), IdxN, 2792 DAG.getConstant(Amt, IdxN.getValueType())); 2793 } else { 2794 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 2795 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 2796 N.getValueType(), IdxN, Scale); 2797 } 2798 } 2799 2800 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 2801 N.getValueType(), N, IdxN); 2802 } 2803 } 2804 2805 setValue(&I, N); 2806 } 2807 2808 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2809 // If this is a fixed sized alloca in the entry block of the function, 2810 // allocate it statically on the stack. 2811 if (FuncInfo.StaticAllocaMap.count(&I)) 2812 return; // getValue will auto-populate this. 2813 2814 Type *Ty = I.getAllocatedType(); 2815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2816 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2817 unsigned Align = 2818 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2819 I.getAlignment()); 2820 2821 SDValue AllocSize = getValue(I.getArraySize()); 2822 2823 EVT IntPtr = TLI.getPointerTy(); 2824 if (AllocSize.getValueType() != IntPtr) 2825 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 2826 2827 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 2828 AllocSize, 2829 DAG.getConstant(TySize, IntPtr)); 2830 2831 // Handle alignment. If the requested alignment is less than or equal to 2832 // the stack alignment, ignore it. If the size is greater than or equal to 2833 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2834 unsigned StackAlign = 2835 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2836 if (Align <= StackAlign) 2837 Align = 0; 2838 2839 // Round the size of the allocation up to the stack alignment size 2840 // by add SA-1 to the size. 2841 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 2842 AllocSize.getValueType(), AllocSize, 2843 DAG.getIntPtrConstant(StackAlign-1)); 2844 2845 // Mask out the low bits for alignment purposes. 2846 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 2847 AllocSize.getValueType(), AllocSize, 2848 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2849 2850 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2851 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2852 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 2853 setValue(&I, DSA); 2854 DAG.setRoot(DSA.getValue(1)); 2855 2856 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2857 } 2858 2859 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2860 if (I.isAtomic()) 2861 return visitAtomicLoad(I); 2862 2863 const Value *SV = I.getOperand(0); 2864 SDValue Ptr = getValue(SV); 2865 2866 Type *Ty = I.getType(); 2867 2868 bool isVolatile = I.isVolatile(); 2869 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2870 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2871 unsigned Alignment = I.getAlignment(); 2872 2873 AAMDNodes AAInfo; 2874 I.getAAMetadata(AAInfo); 2875 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2876 2877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2878 SmallVector<EVT, 4> ValueVTs; 2879 SmallVector<uint64_t, 4> Offsets; 2880 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2881 unsigned NumValues = ValueVTs.size(); 2882 if (NumValues == 0) 2883 return; 2884 2885 SDValue Root; 2886 bool ConstantMemory = false; 2887 if (isVolatile || NumValues > MaxParallelChains) 2888 // Serialize volatile loads with other side effects. 2889 Root = getRoot(); 2890 else if (AA->pointsToConstantMemory( 2891 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2892 // Do not serialize (non-volatile) loads of constant memory with anything. 2893 Root = DAG.getEntryNode(); 2894 ConstantMemory = true; 2895 } else { 2896 // Do not serialize non-volatile loads against each other. 2897 Root = DAG.getRoot(); 2898 } 2899 2900 if (isVolatile) 2901 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 2902 2903 SmallVector<SDValue, 4> Values(NumValues); 2904 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2905 NumValues)); 2906 EVT PtrVT = Ptr.getValueType(); 2907 unsigned ChainI = 0; 2908 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2909 // Serializing loads here may result in excessive register pressure, and 2910 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2911 // could recover a bit by hoisting nodes upward in the chain by recognizing 2912 // they are side-effect free or do not alias. The optimizer should really 2913 // avoid this case by converting large object/array copies to llvm.memcpy 2914 // (MaxParallelChains should always remain as failsafe). 2915 if (ChainI == MaxParallelChains) { 2916 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2917 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2918 makeArrayRef(Chains.data(), ChainI)); 2919 Root = Chain; 2920 ChainI = 0; 2921 } 2922 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 2923 PtrVT, Ptr, 2924 DAG.getConstant(Offsets[i], PtrVT)); 2925 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 2926 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2927 isNonTemporal, isInvariant, Alignment, AAInfo, 2928 Ranges); 2929 2930 Values[i] = L; 2931 Chains[ChainI] = L.getValue(1); 2932 } 2933 2934 if (!ConstantMemory) { 2935 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2936 makeArrayRef(Chains.data(), ChainI)); 2937 if (isVolatile) 2938 DAG.setRoot(Chain); 2939 else 2940 PendingLoads.push_back(Chain); 2941 } 2942 2943 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2944 DAG.getVTList(ValueVTs), Values)); 2945 } 2946 2947 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2948 if (I.isAtomic()) 2949 return visitAtomicStore(I); 2950 2951 const Value *SrcV = I.getOperand(0); 2952 const Value *PtrV = I.getOperand(1); 2953 2954 SmallVector<EVT, 4> ValueVTs; 2955 SmallVector<uint64_t, 4> Offsets; 2956 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2957 ValueVTs, &Offsets); 2958 unsigned NumValues = ValueVTs.size(); 2959 if (NumValues == 0) 2960 return; 2961 2962 // Get the lowered operands. Note that we do this after 2963 // checking if NumResults is zero, because with zero results 2964 // the operands won't have values in the map. 2965 SDValue Src = getValue(SrcV); 2966 SDValue Ptr = getValue(PtrV); 2967 2968 SDValue Root = getRoot(); 2969 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2970 NumValues)); 2971 EVT PtrVT = Ptr.getValueType(); 2972 bool isVolatile = I.isVolatile(); 2973 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2974 unsigned Alignment = I.getAlignment(); 2975 2976 AAMDNodes AAInfo; 2977 I.getAAMetadata(AAInfo); 2978 2979 unsigned ChainI = 0; 2980 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2981 // See visitLoad comments. 2982 if (ChainI == MaxParallelChains) { 2983 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2984 makeArrayRef(Chains.data(), ChainI)); 2985 Root = Chain; 2986 ChainI = 0; 2987 } 2988 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 2989 DAG.getConstant(Offsets[i], PtrVT)); 2990 SDValue St = DAG.getStore(Root, getCurSDLoc(), 2991 SDValue(Src.getNode(), Src.getResNo() + i), 2992 Add, MachinePointerInfo(PtrV, Offsets[i]), 2993 isVolatile, isNonTemporal, Alignment, AAInfo); 2994 Chains[ChainI] = St; 2995 } 2996 2997 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2998 makeArrayRef(Chains.data(), ChainI)); 2999 DAG.setRoot(StoreNode); 3000 } 3001 3002 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3003 SDLoc sdl = getCurSDLoc(); 3004 3005 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3006 Value *PtrOperand = I.getArgOperand(1); 3007 SDValue Ptr = getValue(PtrOperand); 3008 SDValue Src0 = getValue(I.getArgOperand(0)); 3009 SDValue Mask = getValue(I.getArgOperand(3)); 3010 EVT VT = Src0.getValueType(); 3011 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3012 if (!Alignment) 3013 Alignment = DAG.getEVTAlignment(VT); 3014 3015 AAMDNodes AAInfo; 3016 I.getAAMetadata(AAInfo); 3017 3018 MachineMemOperand *MMO = 3019 DAG.getMachineFunction(). 3020 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3021 MachineMemOperand::MOStore, VT.getStoreSize(), 3022 Alignment, AAInfo); 3023 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3024 MMO, false); 3025 DAG.setRoot(StoreNode); 3026 setValue(&I, StoreNode); 3027 } 3028 3029 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3030 SDLoc sdl = getCurSDLoc(); 3031 3032 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3033 Value *PtrOperand = I.getArgOperand(0); 3034 SDValue Ptr = getValue(PtrOperand); 3035 SDValue Src0 = getValue(I.getArgOperand(3)); 3036 SDValue Mask = getValue(I.getArgOperand(2)); 3037 3038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3039 EVT VT = TLI.getValueType(I.getType()); 3040 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3041 if (!Alignment) 3042 Alignment = DAG.getEVTAlignment(VT); 3043 3044 AAMDNodes AAInfo; 3045 I.getAAMetadata(AAInfo); 3046 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3047 3048 SDValue InChain = DAG.getRoot(); 3049 if (AA->pointsToConstantMemory( 3050 AliasAnalysis::Location(PtrOperand, 3051 AA->getTypeStoreSize(I.getType()), 3052 AAInfo))) { 3053 // Do not serialize (non-volatile) loads of constant memory with anything. 3054 InChain = DAG.getEntryNode(); 3055 } 3056 3057 MachineMemOperand *MMO = 3058 DAG.getMachineFunction(). 3059 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3060 MachineMemOperand::MOLoad, VT.getStoreSize(), 3061 Alignment, AAInfo, Ranges); 3062 3063 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3064 ISD::NON_EXTLOAD); 3065 SDValue OutChain = Load.getValue(1); 3066 DAG.setRoot(OutChain); 3067 setValue(&I, Load); 3068 } 3069 3070 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3071 SDLoc dl = getCurSDLoc(); 3072 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3073 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3074 SynchronizationScope Scope = I.getSynchScope(); 3075 3076 SDValue InChain = getRoot(); 3077 3078 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3079 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3080 SDValue L = DAG.getAtomicCmpSwap( 3081 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3082 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3083 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3084 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3085 3086 SDValue OutChain = L.getValue(2); 3087 3088 setValue(&I, L); 3089 DAG.setRoot(OutChain); 3090 } 3091 3092 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3093 SDLoc dl = getCurSDLoc(); 3094 ISD::NodeType NT; 3095 switch (I.getOperation()) { 3096 default: llvm_unreachable("Unknown atomicrmw operation"); 3097 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3098 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3099 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3100 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3101 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3102 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3103 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3104 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3105 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3106 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3107 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3108 } 3109 AtomicOrdering Order = I.getOrdering(); 3110 SynchronizationScope Scope = I.getSynchScope(); 3111 3112 SDValue InChain = getRoot(); 3113 3114 SDValue L = 3115 DAG.getAtomic(NT, dl, 3116 getValue(I.getValOperand()).getSimpleValueType(), 3117 InChain, 3118 getValue(I.getPointerOperand()), 3119 getValue(I.getValOperand()), 3120 I.getPointerOperand(), 3121 /* Alignment=*/ 0, Order, Scope); 3122 3123 SDValue OutChain = L.getValue(1); 3124 3125 setValue(&I, L); 3126 DAG.setRoot(OutChain); 3127 } 3128 3129 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3130 SDLoc dl = getCurSDLoc(); 3131 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3132 SDValue Ops[3]; 3133 Ops[0] = getRoot(); 3134 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3135 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3136 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3137 } 3138 3139 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3140 SDLoc dl = getCurSDLoc(); 3141 AtomicOrdering Order = I.getOrdering(); 3142 SynchronizationScope Scope = I.getSynchScope(); 3143 3144 SDValue InChain = getRoot(); 3145 3146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3147 EVT VT = TLI.getValueType(I.getType()); 3148 3149 if (I.getAlignment() < VT.getSizeInBits() / 8) 3150 report_fatal_error("Cannot generate unaligned atomic load"); 3151 3152 MachineMemOperand *MMO = 3153 DAG.getMachineFunction(). 3154 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3155 MachineMemOperand::MOVolatile | 3156 MachineMemOperand::MOLoad, 3157 VT.getStoreSize(), 3158 I.getAlignment() ? I.getAlignment() : 3159 DAG.getEVTAlignment(VT)); 3160 3161 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3162 SDValue L = 3163 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3164 getValue(I.getPointerOperand()), MMO, 3165 Order, Scope); 3166 3167 SDValue OutChain = L.getValue(1); 3168 3169 setValue(&I, L); 3170 DAG.setRoot(OutChain); 3171 } 3172 3173 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3174 SDLoc dl = getCurSDLoc(); 3175 3176 AtomicOrdering Order = I.getOrdering(); 3177 SynchronizationScope Scope = I.getSynchScope(); 3178 3179 SDValue InChain = getRoot(); 3180 3181 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3182 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3183 3184 if (I.getAlignment() < VT.getSizeInBits() / 8) 3185 report_fatal_error("Cannot generate unaligned atomic store"); 3186 3187 SDValue OutChain = 3188 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3189 InChain, 3190 getValue(I.getPointerOperand()), 3191 getValue(I.getValueOperand()), 3192 I.getPointerOperand(), I.getAlignment(), 3193 Order, Scope); 3194 3195 DAG.setRoot(OutChain); 3196 } 3197 3198 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3199 /// node. 3200 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3201 unsigned Intrinsic) { 3202 bool HasChain = !I.doesNotAccessMemory(); 3203 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3204 3205 // Build the operand list. 3206 SmallVector<SDValue, 8> Ops; 3207 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3208 if (OnlyLoad) { 3209 // We don't need to serialize loads against other loads. 3210 Ops.push_back(DAG.getRoot()); 3211 } else { 3212 Ops.push_back(getRoot()); 3213 } 3214 } 3215 3216 // Info is set by getTgtMemInstrinsic 3217 TargetLowering::IntrinsicInfo Info; 3218 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3219 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3220 3221 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3222 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3223 Info.opc == ISD::INTRINSIC_W_CHAIN) 3224 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3225 3226 // Add all operands of the call to the operand list. 3227 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3228 SDValue Op = getValue(I.getArgOperand(i)); 3229 Ops.push_back(Op); 3230 } 3231 3232 SmallVector<EVT, 4> ValueVTs; 3233 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3234 3235 if (HasChain) 3236 ValueVTs.push_back(MVT::Other); 3237 3238 SDVTList VTs = DAG.getVTList(ValueVTs); 3239 3240 // Create the node. 3241 SDValue Result; 3242 if (IsTgtIntrinsic) { 3243 // This is target intrinsic that touches memory 3244 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3245 VTs, Ops, Info.memVT, 3246 MachinePointerInfo(Info.ptrVal, Info.offset), 3247 Info.align, Info.vol, 3248 Info.readMem, Info.writeMem, Info.size); 3249 } else if (!HasChain) { 3250 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3251 } else if (!I.getType()->isVoidTy()) { 3252 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3253 } else { 3254 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3255 } 3256 3257 if (HasChain) { 3258 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3259 if (OnlyLoad) 3260 PendingLoads.push_back(Chain); 3261 else 3262 DAG.setRoot(Chain); 3263 } 3264 3265 if (!I.getType()->isVoidTy()) { 3266 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3267 EVT VT = TLI.getValueType(PTy); 3268 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3269 } 3270 3271 setValue(&I, Result); 3272 } 3273 } 3274 3275 /// GetSignificand - Get the significand and build it into a floating-point 3276 /// number with exponent of 1: 3277 /// 3278 /// Op = (Op & 0x007fffff) | 0x3f800000; 3279 /// 3280 /// where Op is the hexadecimal representation of floating point value. 3281 static SDValue 3282 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3283 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3284 DAG.getConstant(0x007fffff, MVT::i32)); 3285 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3286 DAG.getConstant(0x3f800000, MVT::i32)); 3287 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3288 } 3289 3290 /// GetExponent - Get the exponent: 3291 /// 3292 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3293 /// 3294 /// where Op is the hexadecimal representation of floating point value. 3295 static SDValue 3296 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3297 SDLoc dl) { 3298 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3299 DAG.getConstant(0x7f800000, MVT::i32)); 3300 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3301 DAG.getConstant(23, TLI.getPointerTy())); 3302 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3303 DAG.getConstant(127, MVT::i32)); 3304 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3305 } 3306 3307 /// getF32Constant - Get 32-bit floating point constant. 3308 static SDValue 3309 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3310 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3311 MVT::f32); 3312 } 3313 3314 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3315 SelectionDAG &DAG) { 3316 // IntegerPartOfX = ((int32_t)(t0); 3317 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3318 3319 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3320 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3321 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3322 3323 // IntegerPartOfX <<= 23; 3324 IntegerPartOfX = DAG.getNode( 3325 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3326 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 3327 3328 SDValue TwoToFractionalPartOfX; 3329 if (LimitFloatPrecision <= 6) { 3330 // For floating-point precision of 6: 3331 // 3332 // TwoToFractionalPartOfX = 3333 // 0.997535578f + 3334 // (0.735607626f + 0.252464424f * x) * x; 3335 // 3336 // error 0.0144103317, which is 6 bits 3337 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3338 getF32Constant(DAG, 0x3e814304)); 3339 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3340 getF32Constant(DAG, 0x3f3c50c8)); 3341 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3342 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3343 getF32Constant(DAG, 0x3f7f5e7e)); 3344 } else if (LimitFloatPrecision <= 12) { 3345 // For floating-point precision of 12: 3346 // 3347 // TwoToFractionalPartOfX = 3348 // 0.999892986f + 3349 // (0.696457318f + 3350 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3351 // 3352 // error 0.000107046256, which is 13 to 14 bits 3353 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3354 getF32Constant(DAG, 0x3da235e3)); 3355 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3356 getF32Constant(DAG, 0x3e65b8f3)); 3357 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3358 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3359 getF32Constant(DAG, 0x3f324b07)); 3360 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3361 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3362 getF32Constant(DAG, 0x3f7ff8fd)); 3363 } else { // LimitFloatPrecision <= 18 3364 // For floating-point precision of 18: 3365 // 3366 // TwoToFractionalPartOfX = 3367 // 0.999999982f + 3368 // (0.693148872f + 3369 // (0.240227044f + 3370 // (0.554906021e-1f + 3371 // (0.961591928e-2f + 3372 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3373 // error 2.47208000*10^(-7), which is better than 18 bits 3374 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3375 getF32Constant(DAG, 0x3924b03e)); 3376 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3377 getF32Constant(DAG, 0x3ab24b87)); 3378 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3379 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3380 getF32Constant(DAG, 0x3c1d8c17)); 3381 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3382 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3383 getF32Constant(DAG, 0x3d634a1d)); 3384 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3385 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3386 getF32Constant(DAG, 0x3e75fe14)); 3387 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3388 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3389 getF32Constant(DAG, 0x3f317234)); 3390 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3391 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3392 getF32Constant(DAG, 0x3f800000)); 3393 } 3394 3395 // Add the exponent into the result in integer domain. 3396 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3397 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3398 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3399 } 3400 3401 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3402 /// limited-precision mode. 3403 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3404 const TargetLowering &TLI) { 3405 if (Op.getValueType() == MVT::f32 && 3406 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3407 3408 // Put the exponent in the right bit position for later addition to the 3409 // final result: 3410 // 3411 // #define LOG2OFe 1.4426950f 3412 // t0 = Op * LOG2OFe 3413 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3414 getF32Constant(DAG, 0x3fb8aa3b)); 3415 return getLimitedPrecisionExp2(t0, dl, DAG); 3416 } 3417 3418 // No special expansion. 3419 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3420 } 3421 3422 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3423 /// limited-precision mode. 3424 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3425 const TargetLowering &TLI) { 3426 if (Op.getValueType() == MVT::f32 && 3427 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3428 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3429 3430 // Scale the exponent by log(2) [0.69314718f]. 3431 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3432 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3433 getF32Constant(DAG, 0x3f317218)); 3434 3435 // Get the significand and build it into a floating-point number with 3436 // exponent of 1. 3437 SDValue X = GetSignificand(DAG, Op1, dl); 3438 3439 SDValue LogOfMantissa; 3440 if (LimitFloatPrecision <= 6) { 3441 // For floating-point precision of 6: 3442 // 3443 // LogofMantissa = 3444 // -1.1609546f + 3445 // (1.4034025f - 0.23903021f * x) * x; 3446 // 3447 // error 0.0034276066, which is better than 8 bits 3448 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3449 getF32Constant(DAG, 0xbe74c456)); 3450 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3451 getF32Constant(DAG, 0x3fb3a2b1)); 3452 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3453 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3454 getF32Constant(DAG, 0x3f949a29)); 3455 } else if (LimitFloatPrecision <= 12) { 3456 // For floating-point precision of 12: 3457 // 3458 // LogOfMantissa = 3459 // -1.7417939f + 3460 // (2.8212026f + 3461 // (-1.4699568f + 3462 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3463 // 3464 // error 0.000061011436, which is 14 bits 3465 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3466 getF32Constant(DAG, 0xbd67b6d6)); 3467 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3468 getF32Constant(DAG, 0x3ee4f4b8)); 3469 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3470 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3471 getF32Constant(DAG, 0x3fbc278b)); 3472 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3473 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3474 getF32Constant(DAG, 0x40348e95)); 3475 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3476 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3477 getF32Constant(DAG, 0x3fdef31a)); 3478 } else { // LimitFloatPrecision <= 18 3479 // For floating-point precision of 18: 3480 // 3481 // LogOfMantissa = 3482 // -2.1072184f + 3483 // (4.2372794f + 3484 // (-3.7029485f + 3485 // (2.2781945f + 3486 // (-0.87823314f + 3487 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3488 // 3489 // error 0.0000023660568, which is better than 18 bits 3490 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3491 getF32Constant(DAG, 0xbc91e5ac)); 3492 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3493 getF32Constant(DAG, 0x3e4350aa)); 3494 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3495 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3496 getF32Constant(DAG, 0x3f60d3e3)); 3497 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3498 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3499 getF32Constant(DAG, 0x4011cdf0)); 3500 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3501 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3502 getF32Constant(DAG, 0x406cfd1c)); 3503 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3504 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3505 getF32Constant(DAG, 0x408797cb)); 3506 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3507 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3508 getF32Constant(DAG, 0x4006dcab)); 3509 } 3510 3511 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3512 } 3513 3514 // No special expansion. 3515 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3516 } 3517 3518 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3519 /// limited-precision mode. 3520 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3521 const TargetLowering &TLI) { 3522 if (Op.getValueType() == MVT::f32 && 3523 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3524 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3525 3526 // Get the exponent. 3527 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3528 3529 // Get the significand and build it into a floating-point number with 3530 // exponent of 1. 3531 SDValue X = GetSignificand(DAG, Op1, dl); 3532 3533 // Different possible minimax approximations of significand in 3534 // floating-point for various degrees of accuracy over [1,2]. 3535 SDValue Log2ofMantissa; 3536 if (LimitFloatPrecision <= 6) { 3537 // For floating-point precision of 6: 3538 // 3539 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3540 // 3541 // error 0.0049451742, which is more than 7 bits 3542 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3543 getF32Constant(DAG, 0xbeb08fe0)); 3544 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3545 getF32Constant(DAG, 0x40019463)); 3546 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3547 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3548 getF32Constant(DAG, 0x3fd6633d)); 3549 } else if (LimitFloatPrecision <= 12) { 3550 // For floating-point precision of 12: 3551 // 3552 // Log2ofMantissa = 3553 // -2.51285454f + 3554 // (4.07009056f + 3555 // (-2.12067489f + 3556 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3557 // 3558 // error 0.0000876136000, which is better than 13 bits 3559 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3560 getF32Constant(DAG, 0xbda7262e)); 3561 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3562 getF32Constant(DAG, 0x3f25280b)); 3563 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3564 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3565 getF32Constant(DAG, 0x4007b923)); 3566 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3567 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3568 getF32Constant(DAG, 0x40823e2f)); 3569 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3570 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3571 getF32Constant(DAG, 0x4020d29c)); 3572 } else { // LimitFloatPrecision <= 18 3573 // For floating-point precision of 18: 3574 // 3575 // Log2ofMantissa = 3576 // -3.0400495f + 3577 // (6.1129976f + 3578 // (-5.3420409f + 3579 // (3.2865683f + 3580 // (-1.2669343f + 3581 // (0.27515199f - 3582 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3583 // 3584 // error 0.0000018516, which is better than 18 bits 3585 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3586 getF32Constant(DAG, 0xbcd2769e)); 3587 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3588 getF32Constant(DAG, 0x3e8ce0b9)); 3589 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3590 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3591 getF32Constant(DAG, 0x3fa22ae7)); 3592 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3593 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3594 getF32Constant(DAG, 0x40525723)); 3595 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3596 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3597 getF32Constant(DAG, 0x40aaf200)); 3598 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3599 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3600 getF32Constant(DAG, 0x40c39dad)); 3601 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3602 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3603 getF32Constant(DAG, 0x4042902c)); 3604 } 3605 3606 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3607 } 3608 3609 // No special expansion. 3610 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3611 } 3612 3613 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3614 /// limited-precision mode. 3615 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3616 const TargetLowering &TLI) { 3617 if (Op.getValueType() == MVT::f32 && 3618 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3619 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3620 3621 // Scale the exponent by log10(2) [0.30102999f]. 3622 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3623 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3624 getF32Constant(DAG, 0x3e9a209a)); 3625 3626 // Get the significand and build it into a floating-point number with 3627 // exponent of 1. 3628 SDValue X = GetSignificand(DAG, Op1, dl); 3629 3630 SDValue Log10ofMantissa; 3631 if (LimitFloatPrecision <= 6) { 3632 // For floating-point precision of 6: 3633 // 3634 // Log10ofMantissa = 3635 // -0.50419619f + 3636 // (0.60948995f - 0.10380950f * x) * x; 3637 // 3638 // error 0.0014886165, which is 6 bits 3639 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3640 getF32Constant(DAG, 0xbdd49a13)); 3641 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3642 getF32Constant(DAG, 0x3f1c0789)); 3643 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3644 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3645 getF32Constant(DAG, 0x3f011300)); 3646 } else if (LimitFloatPrecision <= 12) { 3647 // For floating-point precision of 12: 3648 // 3649 // Log10ofMantissa = 3650 // -0.64831180f + 3651 // (0.91751397f + 3652 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3653 // 3654 // error 0.00019228036, which is better than 12 bits 3655 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3656 getF32Constant(DAG, 0x3d431f31)); 3657 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3658 getF32Constant(DAG, 0x3ea21fb2)); 3659 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3660 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3661 getF32Constant(DAG, 0x3f6ae232)); 3662 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3663 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3664 getF32Constant(DAG, 0x3f25f7c3)); 3665 } else { // LimitFloatPrecision <= 18 3666 // For floating-point precision of 18: 3667 // 3668 // Log10ofMantissa = 3669 // -0.84299375f + 3670 // (1.5327582f + 3671 // (-1.0688956f + 3672 // (0.49102474f + 3673 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3674 // 3675 // error 0.0000037995730, which is better than 18 bits 3676 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3677 getF32Constant(DAG, 0x3c5d51ce)); 3678 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3679 getF32Constant(DAG, 0x3e00685a)); 3680 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3681 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3682 getF32Constant(DAG, 0x3efb6798)); 3683 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3684 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3685 getF32Constant(DAG, 0x3f88d192)); 3686 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3687 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3688 getF32Constant(DAG, 0x3fc4316c)); 3689 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3690 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3691 getF32Constant(DAG, 0x3f57ce70)); 3692 } 3693 3694 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3695 } 3696 3697 // No special expansion. 3698 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3699 } 3700 3701 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3702 /// limited-precision mode. 3703 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3704 const TargetLowering &TLI) { 3705 if (Op.getValueType() == MVT::f32 && 3706 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3707 return getLimitedPrecisionExp2(Op, dl, DAG); 3708 3709 // No special expansion. 3710 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3711 } 3712 3713 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3714 /// limited-precision mode with x == 10.0f. 3715 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3716 SelectionDAG &DAG, const TargetLowering &TLI) { 3717 bool IsExp10 = false; 3718 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3719 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3720 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3721 APFloat Ten(10.0f); 3722 IsExp10 = LHSC->isExactlyValue(Ten); 3723 } 3724 } 3725 3726 if (IsExp10) { 3727 // Put the exponent in the right bit position for later addition to the 3728 // final result: 3729 // 3730 // #define LOG2OF10 3.3219281f 3731 // t0 = Op * LOG2OF10; 3732 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3733 getF32Constant(DAG, 0x40549a78)); 3734 return getLimitedPrecisionExp2(t0, dl, DAG); 3735 } 3736 3737 // No special expansion. 3738 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3739 } 3740 3741 3742 /// ExpandPowI - Expand a llvm.powi intrinsic. 3743 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3744 SelectionDAG &DAG) { 3745 // If RHS is a constant, we can expand this out to a multiplication tree, 3746 // otherwise we end up lowering to a call to __powidf2 (for example). When 3747 // optimizing for size, we only want to do this if the expansion would produce 3748 // a small number of multiplies, otherwise we do the full expansion. 3749 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3750 // Get the exponent as a positive value. 3751 unsigned Val = RHSC->getSExtValue(); 3752 if ((int)Val < 0) Val = -Val; 3753 3754 // powi(x, 0) -> 1.0 3755 if (Val == 0) 3756 return DAG.getConstantFP(1.0, LHS.getValueType()); 3757 3758 const Function *F = DAG.getMachineFunction().getFunction(); 3759 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3760 // If optimizing for size, don't insert too many multiplies. This 3761 // inserts up to 5 multiplies. 3762 countPopulation(Val) + Log2_32(Val) < 7) { 3763 // We use the simple binary decomposition method to generate the multiply 3764 // sequence. There are more optimal ways to do this (for example, 3765 // powi(x,15) generates one more multiply than it should), but this has 3766 // the benefit of being both really simple and much better than a libcall. 3767 SDValue Res; // Logically starts equal to 1.0 3768 SDValue CurSquare = LHS; 3769 while (Val) { 3770 if (Val & 1) { 3771 if (Res.getNode()) 3772 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3773 else 3774 Res = CurSquare; // 1.0*CurSquare. 3775 } 3776 3777 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3778 CurSquare, CurSquare); 3779 Val >>= 1; 3780 } 3781 3782 // If the original was negative, invert the result, producing 1/(x*x*x). 3783 if (RHSC->getSExtValue() < 0) 3784 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3785 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3786 return Res; 3787 } 3788 } 3789 3790 // Otherwise, expand to a libcall. 3791 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3792 } 3793 3794 // getTruncatedArgReg - Find underlying register used for an truncated 3795 // argument. 3796 static unsigned getTruncatedArgReg(const SDValue &N) { 3797 if (N.getOpcode() != ISD::TRUNCATE) 3798 return 0; 3799 3800 const SDValue &Ext = N.getOperand(0); 3801 if (Ext.getOpcode() == ISD::AssertZext || 3802 Ext.getOpcode() == ISD::AssertSext) { 3803 const SDValue &CFR = Ext.getOperand(0); 3804 if (CFR.getOpcode() == ISD::CopyFromReg) 3805 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3806 if (CFR.getOpcode() == ISD::TRUNCATE) 3807 return getTruncatedArgReg(CFR); 3808 } 3809 return 0; 3810 } 3811 3812 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3813 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3814 /// At the end of instruction selection, they will be inserted to the entry BB. 3815 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3816 const Value *V, MDLocalVariable *Variable, MDExpression *Expr, 3817 MDLocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3818 const Argument *Arg = dyn_cast<Argument>(V); 3819 if (!Arg) 3820 return false; 3821 3822 MachineFunction &MF = DAG.getMachineFunction(); 3823 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3824 3825 // Ignore inlined function arguments here. 3826 // 3827 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3828 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3829 return false; 3830 3831 Optional<MachineOperand> Op; 3832 // Some arguments' frame index is recorded during argument lowering. 3833 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3834 Op = MachineOperand::CreateFI(FI); 3835 3836 if (!Op && N.getNode()) { 3837 unsigned Reg; 3838 if (N.getOpcode() == ISD::CopyFromReg) 3839 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3840 else 3841 Reg = getTruncatedArgReg(N); 3842 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3843 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3844 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3845 if (PR) 3846 Reg = PR; 3847 } 3848 if (Reg) 3849 Op = MachineOperand::CreateReg(Reg, false); 3850 } 3851 3852 if (!Op) { 3853 // Check if ValueMap has reg number. 3854 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3855 if (VMI != FuncInfo.ValueMap.end()) 3856 Op = MachineOperand::CreateReg(VMI->second, false); 3857 } 3858 3859 if (!Op && N.getNode()) 3860 // Check if frame index is available. 3861 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 3862 if (FrameIndexSDNode *FINode = 3863 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 3864 Op = MachineOperand::CreateFI(FINode->getIndex()); 3865 3866 if (!Op) 3867 return false; 3868 3869 assert(Variable->isValidLocationForIntrinsic(DL) && 3870 "Expected inlined-at fields to agree"); 3871 if (Op->isReg()) 3872 FuncInfo.ArgDbgValues.push_back( 3873 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 3874 Op->getReg(), Offset, Variable, Expr)); 3875 else 3876 FuncInfo.ArgDbgValues.push_back( 3877 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 3878 .addOperand(*Op) 3879 .addImm(Offset) 3880 .addMetadata(Variable) 3881 .addMetadata(Expr)); 3882 3883 return true; 3884 } 3885 3886 // VisualStudio defines setjmp as _setjmp 3887 #if defined(_MSC_VER) && defined(setjmp) && \ 3888 !defined(setjmp_undefined_for_msvc) 3889 # pragma push_macro("setjmp") 3890 # undef setjmp 3891 # define setjmp_undefined_for_msvc 3892 #endif 3893 3894 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3895 /// we want to emit this as a call to a named external function, return the name 3896 /// otherwise lower it and return null. 3897 const char * 3898 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3900 SDLoc sdl = getCurSDLoc(); 3901 DebugLoc dl = getCurDebugLoc(); 3902 SDValue Res; 3903 3904 switch (Intrinsic) { 3905 default: 3906 // By default, turn this into a target intrinsic node. 3907 visitTargetIntrinsic(I, Intrinsic); 3908 return nullptr; 3909 case Intrinsic::vastart: visitVAStart(I); return nullptr; 3910 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 3911 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 3912 case Intrinsic::returnaddress: 3913 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 3914 getValue(I.getArgOperand(0)))); 3915 return nullptr; 3916 case Intrinsic::frameaddress: 3917 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 3918 getValue(I.getArgOperand(0)))); 3919 return nullptr; 3920 case Intrinsic::read_register: { 3921 Value *Reg = I.getArgOperand(0); 3922 SDValue RegName = 3923 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 3924 EVT VT = TLI.getValueType(I.getType()); 3925 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 3926 return nullptr; 3927 } 3928 case Intrinsic::write_register: { 3929 Value *Reg = I.getArgOperand(0); 3930 Value *RegValue = I.getArgOperand(1); 3931 SDValue Chain = getValue(RegValue).getOperand(0); 3932 SDValue RegName = 3933 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 3934 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 3935 RegName, getValue(RegValue))); 3936 return nullptr; 3937 } 3938 case Intrinsic::setjmp: 3939 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 3940 case Intrinsic::longjmp: 3941 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 3942 case Intrinsic::memcpy: { 3943 // FIXME: this definition of "user defined address space" is x86-specific 3944 // Assert for address < 256 since we support only user defined address 3945 // spaces. 3946 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3947 < 256 && 3948 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 3949 < 256 && 3950 "Unknown address space"); 3951 SDValue Op1 = getValue(I.getArgOperand(0)); 3952 SDValue Op2 = getValue(I.getArgOperand(1)); 3953 SDValue Op3 = getValue(I.getArgOperand(2)); 3954 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3955 if (!Align) 3956 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 3957 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3958 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 3959 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 3960 false, isTC, 3961 MachinePointerInfo(I.getArgOperand(0)), 3962 MachinePointerInfo(I.getArgOperand(1))); 3963 updateDAGForMaybeTailCall(MC); 3964 return nullptr; 3965 } 3966 case Intrinsic::memset: { 3967 // FIXME: this definition of "user defined address space" is x86-specific 3968 // Assert for address < 256 since we support only user defined address 3969 // spaces. 3970 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3971 < 256 && 3972 "Unknown address space"); 3973 SDValue Op1 = getValue(I.getArgOperand(0)); 3974 SDValue Op2 = getValue(I.getArgOperand(1)); 3975 SDValue Op3 = getValue(I.getArgOperand(2)); 3976 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3977 if (!Align) 3978 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 3979 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3980 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 3981 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 3982 isTC, MachinePointerInfo(I.getArgOperand(0))); 3983 updateDAGForMaybeTailCall(MS); 3984 return nullptr; 3985 } 3986 case Intrinsic::memmove: { 3987 // FIXME: this definition of "user defined address space" is x86-specific 3988 // Assert for address < 256 since we support only user defined address 3989 // spaces. 3990 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3991 < 256 && 3992 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 3993 < 256 && 3994 "Unknown address space"); 3995 SDValue Op1 = getValue(I.getArgOperand(0)); 3996 SDValue Op2 = getValue(I.getArgOperand(1)); 3997 SDValue Op3 = getValue(I.getArgOperand(2)); 3998 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3999 if (!Align) 4000 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4001 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4002 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4003 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4004 isTC, MachinePointerInfo(I.getArgOperand(0)), 4005 MachinePointerInfo(I.getArgOperand(1))); 4006 updateDAGForMaybeTailCall(MM); 4007 return nullptr; 4008 } 4009 case Intrinsic::dbg_declare: { 4010 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4011 MDLocalVariable *Variable = DI.getVariable(); 4012 MDExpression *Expression = DI.getExpression(); 4013 const Value *Address = DI.getAddress(); 4014 assert(Variable && "Missing variable"); 4015 if (!Address) { 4016 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4017 return nullptr; 4018 } 4019 4020 // Check if address has undef value. 4021 if (isa<UndefValue>(Address) || 4022 (Address->use_empty() && !isa<Argument>(Address))) { 4023 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4024 return nullptr; 4025 } 4026 4027 SDValue &N = NodeMap[Address]; 4028 if (!N.getNode() && isa<Argument>(Address)) 4029 // Check unused arguments map. 4030 N = UnusedArgNodeMap[Address]; 4031 SDDbgValue *SDV; 4032 if (N.getNode()) { 4033 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4034 Address = BCI->getOperand(0); 4035 // Parameters are handled specially. 4036 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4037 isa<Argument>(Address); 4038 4039 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4040 4041 if (isParameter && !AI) { 4042 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4043 if (FINode) 4044 // Byval parameter. We have a frame index at this point. 4045 SDV = DAG.getFrameIndexDbgValue( 4046 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4047 else { 4048 // Address is an argument, so try to emit its dbg value using 4049 // virtual register info from the FuncInfo.ValueMap. 4050 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4051 N); 4052 return nullptr; 4053 } 4054 } else if (AI) 4055 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4056 true, 0, dl, SDNodeOrder); 4057 else { 4058 // Can't do anything with other non-AI cases yet. 4059 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4060 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4061 DEBUG(Address->dump()); 4062 return nullptr; 4063 } 4064 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4065 } else { 4066 // If Address is an argument then try to emit its dbg value using 4067 // virtual register info from the FuncInfo.ValueMap. 4068 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4069 N)) { 4070 // If variable is pinned by a alloca in dominating bb then 4071 // use StaticAllocaMap. 4072 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4073 if (AI->getParent() != DI.getParent()) { 4074 DenseMap<const AllocaInst*, int>::iterator SI = 4075 FuncInfo.StaticAllocaMap.find(AI); 4076 if (SI != FuncInfo.StaticAllocaMap.end()) { 4077 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4078 0, dl, SDNodeOrder); 4079 DAG.AddDbgValue(SDV, nullptr, false); 4080 return nullptr; 4081 } 4082 } 4083 } 4084 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4085 } 4086 } 4087 return nullptr; 4088 } 4089 case Intrinsic::dbg_value: { 4090 const DbgValueInst &DI = cast<DbgValueInst>(I); 4091 assert(DI.getVariable() && "Missing variable"); 4092 4093 MDLocalVariable *Variable = DI.getVariable(); 4094 MDExpression *Expression = DI.getExpression(); 4095 uint64_t Offset = DI.getOffset(); 4096 const Value *V = DI.getValue(); 4097 if (!V) 4098 return nullptr; 4099 4100 SDDbgValue *SDV; 4101 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4102 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4103 SDNodeOrder); 4104 DAG.AddDbgValue(SDV, nullptr, false); 4105 } else { 4106 // Do not use getValue() in here; we don't want to generate code at 4107 // this point if it hasn't been done yet. 4108 SDValue N = NodeMap[V]; 4109 if (!N.getNode() && isa<Argument>(V)) 4110 // Check unused arguments map. 4111 N = UnusedArgNodeMap[V]; 4112 if (N.getNode()) { 4113 // A dbg.value for an alloca is always indirect. 4114 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4115 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4116 IsIndirect, N)) { 4117 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4118 IsIndirect, Offset, dl, SDNodeOrder); 4119 DAG.AddDbgValue(SDV, N.getNode(), false); 4120 } 4121 } else if (!V->use_empty() ) { 4122 // Do not call getValue(V) yet, as we don't want to generate code. 4123 // Remember it for later. 4124 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4125 DanglingDebugInfoMap[V] = DDI; 4126 } else { 4127 // We may expand this to cover more cases. One case where we have no 4128 // data available is an unreferenced parameter. 4129 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4130 } 4131 } 4132 4133 // Build a debug info table entry. 4134 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4135 V = BCI->getOperand(0); 4136 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4137 // Don't handle byval struct arguments or VLAs, for example. 4138 if (!AI) { 4139 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4140 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4141 return nullptr; 4142 } 4143 DenseMap<const AllocaInst*, int>::iterator SI = 4144 FuncInfo.StaticAllocaMap.find(AI); 4145 if (SI == FuncInfo.StaticAllocaMap.end()) 4146 return nullptr; // VLAs. 4147 return nullptr; 4148 } 4149 4150 case Intrinsic::eh_typeid_for: { 4151 // Find the type id for the given typeinfo. 4152 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4153 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4154 Res = DAG.getConstant(TypeID, MVT::i32); 4155 setValue(&I, Res); 4156 return nullptr; 4157 } 4158 4159 case Intrinsic::eh_return_i32: 4160 case Intrinsic::eh_return_i64: 4161 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4162 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4163 MVT::Other, 4164 getControlRoot(), 4165 getValue(I.getArgOperand(0)), 4166 getValue(I.getArgOperand(1)))); 4167 return nullptr; 4168 case Intrinsic::eh_unwind_init: 4169 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4170 return nullptr; 4171 case Intrinsic::eh_dwarf_cfa: { 4172 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4173 TLI.getPointerTy()); 4174 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4175 CfaArg.getValueType(), 4176 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4177 CfaArg.getValueType()), 4178 CfaArg); 4179 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4180 DAG.getConstant(0, TLI.getPointerTy())); 4181 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4182 FA, Offset)); 4183 return nullptr; 4184 } 4185 case Intrinsic::eh_sjlj_callsite: { 4186 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4187 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4188 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4189 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4190 4191 MMI.setCurrentCallSite(CI->getZExtValue()); 4192 return nullptr; 4193 } 4194 case Intrinsic::eh_sjlj_functioncontext: { 4195 // Get and store the index of the function context. 4196 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4197 AllocaInst *FnCtx = 4198 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4199 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4200 MFI->setFunctionContextIndex(FI); 4201 return nullptr; 4202 } 4203 case Intrinsic::eh_sjlj_setjmp: { 4204 SDValue Ops[2]; 4205 Ops[0] = getRoot(); 4206 Ops[1] = getValue(I.getArgOperand(0)); 4207 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4208 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4209 setValue(&I, Op.getValue(0)); 4210 DAG.setRoot(Op.getValue(1)); 4211 return nullptr; 4212 } 4213 case Intrinsic::eh_sjlj_longjmp: { 4214 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4215 getRoot(), getValue(I.getArgOperand(0)))); 4216 return nullptr; 4217 } 4218 4219 case Intrinsic::masked_load: 4220 visitMaskedLoad(I); 4221 return nullptr; 4222 case Intrinsic::masked_store: 4223 visitMaskedStore(I); 4224 return nullptr; 4225 case Intrinsic::x86_mmx_pslli_w: 4226 case Intrinsic::x86_mmx_pslli_d: 4227 case Intrinsic::x86_mmx_pslli_q: 4228 case Intrinsic::x86_mmx_psrli_w: 4229 case Intrinsic::x86_mmx_psrli_d: 4230 case Intrinsic::x86_mmx_psrli_q: 4231 case Intrinsic::x86_mmx_psrai_w: 4232 case Intrinsic::x86_mmx_psrai_d: { 4233 SDValue ShAmt = getValue(I.getArgOperand(1)); 4234 if (isa<ConstantSDNode>(ShAmt)) { 4235 visitTargetIntrinsic(I, Intrinsic); 4236 return nullptr; 4237 } 4238 unsigned NewIntrinsic = 0; 4239 EVT ShAmtVT = MVT::v2i32; 4240 switch (Intrinsic) { 4241 case Intrinsic::x86_mmx_pslli_w: 4242 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4243 break; 4244 case Intrinsic::x86_mmx_pslli_d: 4245 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4246 break; 4247 case Intrinsic::x86_mmx_pslli_q: 4248 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4249 break; 4250 case Intrinsic::x86_mmx_psrli_w: 4251 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4252 break; 4253 case Intrinsic::x86_mmx_psrli_d: 4254 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4255 break; 4256 case Intrinsic::x86_mmx_psrli_q: 4257 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4258 break; 4259 case Intrinsic::x86_mmx_psrai_w: 4260 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4261 break; 4262 case Intrinsic::x86_mmx_psrai_d: 4263 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4264 break; 4265 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4266 } 4267 4268 // The vector shift intrinsics with scalars uses 32b shift amounts but 4269 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4270 // to be zero. 4271 // We must do this early because v2i32 is not a legal type. 4272 SDValue ShOps[2]; 4273 ShOps[0] = ShAmt; 4274 ShOps[1] = DAG.getConstant(0, MVT::i32); 4275 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4276 EVT DestVT = TLI.getValueType(I.getType()); 4277 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4278 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4279 DAG.getConstant(NewIntrinsic, MVT::i32), 4280 getValue(I.getArgOperand(0)), ShAmt); 4281 setValue(&I, Res); 4282 return nullptr; 4283 } 4284 case Intrinsic::convertff: 4285 case Intrinsic::convertfsi: 4286 case Intrinsic::convertfui: 4287 case Intrinsic::convertsif: 4288 case Intrinsic::convertuif: 4289 case Intrinsic::convertss: 4290 case Intrinsic::convertsu: 4291 case Intrinsic::convertus: 4292 case Intrinsic::convertuu: { 4293 ISD::CvtCode Code = ISD::CVT_INVALID; 4294 switch (Intrinsic) { 4295 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4296 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4297 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4298 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4299 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4300 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4301 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4302 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4303 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4304 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4305 } 4306 EVT DestVT = TLI.getValueType(I.getType()); 4307 const Value *Op1 = I.getArgOperand(0); 4308 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4309 DAG.getValueType(DestVT), 4310 DAG.getValueType(getValue(Op1).getValueType()), 4311 getValue(I.getArgOperand(1)), 4312 getValue(I.getArgOperand(2)), 4313 Code); 4314 setValue(&I, Res); 4315 return nullptr; 4316 } 4317 case Intrinsic::powi: 4318 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4319 getValue(I.getArgOperand(1)), DAG)); 4320 return nullptr; 4321 case Intrinsic::log: 4322 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4323 return nullptr; 4324 case Intrinsic::log2: 4325 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4326 return nullptr; 4327 case Intrinsic::log10: 4328 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4329 return nullptr; 4330 case Intrinsic::exp: 4331 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4332 return nullptr; 4333 case Intrinsic::exp2: 4334 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4335 return nullptr; 4336 case Intrinsic::pow: 4337 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4338 getValue(I.getArgOperand(1)), DAG, TLI)); 4339 return nullptr; 4340 case Intrinsic::sqrt: 4341 case Intrinsic::fabs: 4342 case Intrinsic::sin: 4343 case Intrinsic::cos: 4344 case Intrinsic::floor: 4345 case Intrinsic::ceil: 4346 case Intrinsic::trunc: 4347 case Intrinsic::rint: 4348 case Intrinsic::nearbyint: 4349 case Intrinsic::round: { 4350 unsigned Opcode; 4351 switch (Intrinsic) { 4352 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4353 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4354 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4355 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4356 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4357 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4358 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4359 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4360 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4361 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4362 case Intrinsic::round: Opcode = ISD::FROUND; break; 4363 } 4364 4365 setValue(&I, DAG.getNode(Opcode, sdl, 4366 getValue(I.getArgOperand(0)).getValueType(), 4367 getValue(I.getArgOperand(0)))); 4368 return nullptr; 4369 } 4370 case Intrinsic::minnum: 4371 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4372 getValue(I.getArgOperand(0)).getValueType(), 4373 getValue(I.getArgOperand(0)), 4374 getValue(I.getArgOperand(1)))); 4375 return nullptr; 4376 case Intrinsic::maxnum: 4377 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4378 getValue(I.getArgOperand(0)).getValueType(), 4379 getValue(I.getArgOperand(0)), 4380 getValue(I.getArgOperand(1)))); 4381 return nullptr; 4382 case Intrinsic::copysign: 4383 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4384 getValue(I.getArgOperand(0)).getValueType(), 4385 getValue(I.getArgOperand(0)), 4386 getValue(I.getArgOperand(1)))); 4387 return nullptr; 4388 case Intrinsic::fma: 4389 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4390 getValue(I.getArgOperand(0)).getValueType(), 4391 getValue(I.getArgOperand(0)), 4392 getValue(I.getArgOperand(1)), 4393 getValue(I.getArgOperand(2)))); 4394 return nullptr; 4395 case Intrinsic::fmuladd: { 4396 EVT VT = TLI.getValueType(I.getType()); 4397 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4398 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4399 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4400 getValue(I.getArgOperand(0)).getValueType(), 4401 getValue(I.getArgOperand(0)), 4402 getValue(I.getArgOperand(1)), 4403 getValue(I.getArgOperand(2)))); 4404 } else { 4405 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4406 getValue(I.getArgOperand(0)).getValueType(), 4407 getValue(I.getArgOperand(0)), 4408 getValue(I.getArgOperand(1))); 4409 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4410 getValue(I.getArgOperand(0)).getValueType(), 4411 Mul, 4412 getValue(I.getArgOperand(2))); 4413 setValue(&I, Add); 4414 } 4415 return nullptr; 4416 } 4417 case Intrinsic::convert_to_fp16: 4418 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4419 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4420 getValue(I.getArgOperand(0)), 4421 DAG.getTargetConstant(0, MVT::i32)))); 4422 return nullptr; 4423 case Intrinsic::convert_from_fp16: 4424 setValue(&I, 4425 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4426 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4427 getValue(I.getArgOperand(0))))); 4428 return nullptr; 4429 case Intrinsic::pcmarker: { 4430 SDValue Tmp = getValue(I.getArgOperand(0)); 4431 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4432 return nullptr; 4433 } 4434 case Intrinsic::readcyclecounter: { 4435 SDValue Op = getRoot(); 4436 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4437 DAG.getVTList(MVT::i64, MVT::Other), Op); 4438 setValue(&I, Res); 4439 DAG.setRoot(Res.getValue(1)); 4440 return nullptr; 4441 } 4442 case Intrinsic::bswap: 4443 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4444 getValue(I.getArgOperand(0)).getValueType(), 4445 getValue(I.getArgOperand(0)))); 4446 return nullptr; 4447 case Intrinsic::cttz: { 4448 SDValue Arg = getValue(I.getArgOperand(0)); 4449 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4450 EVT Ty = Arg.getValueType(); 4451 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4452 sdl, Ty, Arg)); 4453 return nullptr; 4454 } 4455 case Intrinsic::ctlz: { 4456 SDValue Arg = getValue(I.getArgOperand(0)); 4457 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4458 EVT Ty = Arg.getValueType(); 4459 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4460 sdl, Ty, Arg)); 4461 return nullptr; 4462 } 4463 case Intrinsic::ctpop: { 4464 SDValue Arg = getValue(I.getArgOperand(0)); 4465 EVT Ty = Arg.getValueType(); 4466 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4467 return nullptr; 4468 } 4469 case Intrinsic::stacksave: { 4470 SDValue Op = getRoot(); 4471 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4472 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4473 setValue(&I, Res); 4474 DAG.setRoot(Res.getValue(1)); 4475 return nullptr; 4476 } 4477 case Intrinsic::stackrestore: { 4478 Res = getValue(I.getArgOperand(0)); 4479 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4480 return nullptr; 4481 } 4482 case Intrinsic::stackprotector: { 4483 // Emit code into the DAG to store the stack guard onto the stack. 4484 MachineFunction &MF = DAG.getMachineFunction(); 4485 MachineFrameInfo *MFI = MF.getFrameInfo(); 4486 EVT PtrTy = TLI.getPointerTy(); 4487 SDValue Src, Chain = getRoot(); 4488 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4489 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4490 4491 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4492 // global variable __stack_chk_guard. 4493 if (!GV) 4494 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4495 if (BC->getOpcode() == Instruction::BitCast) 4496 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4497 4498 if (GV && TLI.useLoadStackGuardNode()) { 4499 // Emit a LOAD_STACK_GUARD node. 4500 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4501 sdl, PtrTy, Chain); 4502 MachinePointerInfo MPInfo(GV); 4503 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4504 unsigned Flags = MachineMemOperand::MOLoad | 4505 MachineMemOperand::MOInvariant; 4506 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4507 PtrTy.getSizeInBits() / 8, 4508 DAG.getEVTAlignment(PtrTy)); 4509 Node->setMemRefs(MemRefs, MemRefs + 1); 4510 4511 // Copy the guard value to a virtual register so that it can be 4512 // retrieved in the epilogue. 4513 Src = SDValue(Node, 0); 4514 const TargetRegisterClass *RC = 4515 TLI.getRegClassFor(Src.getSimpleValueType()); 4516 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4517 4518 SPDescriptor.setGuardReg(Reg); 4519 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4520 } else { 4521 Src = getValue(I.getArgOperand(0)); // The guard's value. 4522 } 4523 4524 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4525 4526 int FI = FuncInfo.StaticAllocaMap[Slot]; 4527 MFI->setStackProtectorIndex(FI); 4528 4529 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4530 4531 // Store the stack protector onto the stack. 4532 Res = DAG.getStore(Chain, sdl, Src, FIN, 4533 MachinePointerInfo::getFixedStack(FI), 4534 true, false, 0); 4535 setValue(&I, Res); 4536 DAG.setRoot(Res); 4537 return nullptr; 4538 } 4539 case Intrinsic::objectsize: { 4540 // If we don't know by now, we're never going to know. 4541 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4542 4543 assert(CI && "Non-constant type in __builtin_object_size?"); 4544 4545 SDValue Arg = getValue(I.getCalledValue()); 4546 EVT Ty = Arg.getValueType(); 4547 4548 if (CI->isZero()) 4549 Res = DAG.getConstant(-1ULL, Ty); 4550 else 4551 Res = DAG.getConstant(0, Ty); 4552 4553 setValue(&I, Res); 4554 return nullptr; 4555 } 4556 case Intrinsic::annotation: 4557 case Intrinsic::ptr_annotation: 4558 // Drop the intrinsic, but forward the value 4559 setValue(&I, getValue(I.getOperand(0))); 4560 return nullptr; 4561 case Intrinsic::assume: 4562 case Intrinsic::var_annotation: 4563 // Discard annotate attributes and assumptions 4564 return nullptr; 4565 4566 case Intrinsic::init_trampoline: { 4567 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4568 4569 SDValue Ops[6]; 4570 Ops[0] = getRoot(); 4571 Ops[1] = getValue(I.getArgOperand(0)); 4572 Ops[2] = getValue(I.getArgOperand(1)); 4573 Ops[3] = getValue(I.getArgOperand(2)); 4574 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4575 Ops[5] = DAG.getSrcValue(F); 4576 4577 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4578 4579 DAG.setRoot(Res); 4580 return nullptr; 4581 } 4582 case Intrinsic::adjust_trampoline: { 4583 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4584 TLI.getPointerTy(), 4585 getValue(I.getArgOperand(0)))); 4586 return nullptr; 4587 } 4588 case Intrinsic::gcroot: 4589 if (GFI) { 4590 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4591 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4592 4593 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4594 GFI->addStackRoot(FI->getIndex(), TypeMap); 4595 } 4596 return nullptr; 4597 case Intrinsic::gcread: 4598 case Intrinsic::gcwrite: 4599 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4600 case Intrinsic::flt_rounds: 4601 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4602 return nullptr; 4603 4604 case Intrinsic::expect: { 4605 // Just replace __builtin_expect(exp, c) with EXP. 4606 setValue(&I, getValue(I.getArgOperand(0))); 4607 return nullptr; 4608 } 4609 4610 case Intrinsic::debugtrap: 4611 case Intrinsic::trap: { 4612 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4613 if (TrapFuncName.empty()) { 4614 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4615 ISD::TRAP : ISD::DEBUGTRAP; 4616 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4617 return nullptr; 4618 } 4619 TargetLowering::ArgListTy Args; 4620 4621 TargetLowering::CallLoweringInfo CLI(DAG); 4622 CLI.setDebugLoc(sdl).setChain(getRoot()) 4623 .setCallee(CallingConv::C, I.getType(), 4624 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4625 std::move(Args), 0); 4626 4627 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4628 DAG.setRoot(Result.second); 4629 return nullptr; 4630 } 4631 4632 case Intrinsic::uadd_with_overflow: 4633 case Intrinsic::sadd_with_overflow: 4634 case Intrinsic::usub_with_overflow: 4635 case Intrinsic::ssub_with_overflow: 4636 case Intrinsic::umul_with_overflow: 4637 case Intrinsic::smul_with_overflow: { 4638 ISD::NodeType Op; 4639 switch (Intrinsic) { 4640 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4641 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4642 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4643 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4644 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4645 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4646 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4647 } 4648 SDValue Op1 = getValue(I.getArgOperand(0)); 4649 SDValue Op2 = getValue(I.getArgOperand(1)); 4650 4651 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4652 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4653 return nullptr; 4654 } 4655 case Intrinsic::prefetch: { 4656 SDValue Ops[5]; 4657 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4658 Ops[0] = getRoot(); 4659 Ops[1] = getValue(I.getArgOperand(0)); 4660 Ops[2] = getValue(I.getArgOperand(1)); 4661 Ops[3] = getValue(I.getArgOperand(2)); 4662 Ops[4] = getValue(I.getArgOperand(3)); 4663 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4664 DAG.getVTList(MVT::Other), Ops, 4665 EVT::getIntegerVT(*Context, 8), 4666 MachinePointerInfo(I.getArgOperand(0)), 4667 0, /* align */ 4668 false, /* volatile */ 4669 rw==0, /* read */ 4670 rw==1)); /* write */ 4671 return nullptr; 4672 } 4673 case Intrinsic::lifetime_start: 4674 case Intrinsic::lifetime_end: { 4675 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4676 // Stack coloring is not enabled in O0, discard region information. 4677 if (TM.getOptLevel() == CodeGenOpt::None) 4678 return nullptr; 4679 4680 SmallVector<Value *, 4> Allocas; 4681 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4682 4683 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4684 E = Allocas.end(); Object != E; ++Object) { 4685 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4686 4687 // Could not find an Alloca. 4688 if (!LifetimeObject) 4689 continue; 4690 4691 // First check that the Alloca is static, otherwise it won't have a 4692 // valid frame index. 4693 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4694 if (SI == FuncInfo.StaticAllocaMap.end()) 4695 return nullptr; 4696 4697 int FI = SI->second; 4698 4699 SDValue Ops[2]; 4700 Ops[0] = getRoot(); 4701 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4702 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4703 4704 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4705 DAG.setRoot(Res); 4706 } 4707 return nullptr; 4708 } 4709 case Intrinsic::invariant_start: 4710 // Discard region information. 4711 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4712 return nullptr; 4713 case Intrinsic::invariant_end: 4714 // Discard region information. 4715 return nullptr; 4716 case Intrinsic::stackprotectorcheck: { 4717 // Do not actually emit anything for this basic block. Instead we initialize 4718 // the stack protector descriptor and export the guard variable so we can 4719 // access it in FinishBasicBlock. 4720 const BasicBlock *BB = I.getParent(); 4721 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4722 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4723 4724 // Flush our exports since we are going to process a terminator. 4725 (void)getControlRoot(); 4726 return nullptr; 4727 } 4728 case Intrinsic::clear_cache: 4729 return TLI.getClearCacheBuiltinName(); 4730 case Intrinsic::eh_actions: 4731 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4732 return nullptr; 4733 case Intrinsic::donothing: 4734 // ignore 4735 return nullptr; 4736 case Intrinsic::experimental_stackmap: { 4737 visitStackmap(I); 4738 return nullptr; 4739 } 4740 case Intrinsic::experimental_patchpoint_void: 4741 case Intrinsic::experimental_patchpoint_i64: { 4742 visitPatchpoint(&I); 4743 return nullptr; 4744 } 4745 case Intrinsic::experimental_gc_statepoint: { 4746 visitStatepoint(I); 4747 return nullptr; 4748 } 4749 case Intrinsic::experimental_gc_result_int: 4750 case Intrinsic::experimental_gc_result_float: 4751 case Intrinsic::experimental_gc_result_ptr: 4752 case Intrinsic::experimental_gc_result: { 4753 visitGCResult(I); 4754 return nullptr; 4755 } 4756 case Intrinsic::experimental_gc_relocate: { 4757 visitGCRelocate(I); 4758 return nullptr; 4759 } 4760 case Intrinsic::instrprof_increment: 4761 llvm_unreachable("instrprof failed to lower an increment"); 4762 4763 case Intrinsic::frameescape: { 4764 MachineFunction &MF = DAG.getMachineFunction(); 4765 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4766 4767 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4768 // is the same on all targets. 4769 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4770 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4771 if (isa<ConstantPointerNull>(Arg)) 4772 continue; // Skip null pointers. They represent a hole in index space. 4773 AllocaInst *Slot = cast<AllocaInst>(Arg); 4774 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4775 "can only escape static allocas"); 4776 int FI = FuncInfo.StaticAllocaMap[Slot]; 4777 MCSymbol *FrameAllocSym = 4778 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4779 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4780 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4781 TII->get(TargetOpcode::FRAME_ALLOC)) 4782 .addSym(FrameAllocSym) 4783 .addFrameIndex(FI); 4784 } 4785 4786 return nullptr; 4787 } 4788 4789 case Intrinsic::framerecover: { 4790 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4791 MachineFunction &MF = DAG.getMachineFunction(); 4792 MVT PtrVT = TLI.getPointerTy(0); 4793 4794 // Get the symbol that defines the frame offset. 4795 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4796 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4797 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4798 MCSymbol *FrameAllocSym = 4799 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4800 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4801 4802 // Create a TargetExternalSymbol for the label to avoid any target lowering 4803 // that would make this PC relative. 4804 StringRef Name = FrameAllocSym->getName(); 4805 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4806 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4807 SDValue OffsetVal = 4808 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4809 4810 // Add the offset to the FP. 4811 Value *FP = I.getArgOperand(1); 4812 SDValue FPVal = getValue(FP); 4813 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4814 setValue(&I, Add); 4815 4816 return nullptr; 4817 } 4818 case Intrinsic::eh_begincatch: 4819 case Intrinsic::eh_endcatch: 4820 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4821 case Intrinsic::eh_exceptioncode: { 4822 unsigned Reg = TLI.getExceptionPointerRegister(); 4823 assert(Reg && "cannot get exception code on this platform"); 4824 MVT PtrVT = TLI.getPointerTy(); 4825 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4826 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4827 SDValue N = 4828 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4829 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4830 setValue(&I, N); 4831 return nullptr; 4832 } 4833 } 4834 } 4835 4836 std::pair<SDValue, SDValue> 4837 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4838 MachineBasicBlock *LandingPad) { 4839 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4840 MCSymbol *BeginLabel = nullptr; 4841 4842 if (LandingPad) { 4843 // Insert a label before the invoke call to mark the try range. This can be 4844 // used to detect deletion of the invoke via the MachineModuleInfo. 4845 BeginLabel = MMI.getContext().CreateTempSymbol(); 4846 4847 // For SjLj, keep track of which landing pads go with which invokes 4848 // so as to maintain the ordering of pads in the LSDA. 4849 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4850 if (CallSiteIndex) { 4851 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4852 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 4853 4854 // Now that the call site is handled, stop tracking it. 4855 MMI.setCurrentCallSite(0); 4856 } 4857 4858 // Both PendingLoads and PendingExports must be flushed here; 4859 // this call might not return. 4860 (void)getRoot(); 4861 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 4862 4863 CLI.setChain(getRoot()); 4864 } 4865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4866 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4867 4868 assert((CLI.IsTailCall || Result.second.getNode()) && 4869 "Non-null chain expected with non-tail call!"); 4870 assert((Result.second.getNode() || !Result.first.getNode()) && 4871 "Null value expected with tail call!"); 4872 4873 if (!Result.second.getNode()) { 4874 // As a special case, a null chain means that a tail call has been emitted 4875 // and the DAG root is already updated. 4876 HasTailCall = true; 4877 4878 // Since there's no actual continuation from this block, nothing can be 4879 // relying on us setting vregs for them. 4880 PendingExports.clear(); 4881 } else { 4882 DAG.setRoot(Result.second); 4883 } 4884 4885 if (LandingPad) { 4886 // Insert a label at the end of the invoke call to mark the try range. This 4887 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4888 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4889 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 4890 4891 // Inform MachineModuleInfo of range. 4892 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4893 } 4894 4895 return Result; 4896 } 4897 4898 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4899 bool isTailCall, 4900 MachineBasicBlock *LandingPad) { 4901 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4902 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4903 Type *RetTy = FTy->getReturnType(); 4904 4905 TargetLowering::ArgListTy Args; 4906 TargetLowering::ArgListEntry Entry; 4907 Args.reserve(CS.arg_size()); 4908 4909 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4910 i != e; ++i) { 4911 const Value *V = *i; 4912 4913 // Skip empty types 4914 if (V->getType()->isEmptyTy()) 4915 continue; 4916 4917 SDValue ArgNode = getValue(V); 4918 Entry.Node = ArgNode; Entry.Ty = V->getType(); 4919 4920 // Skip the first return-type Attribute to get to params. 4921 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 4922 Args.push_back(Entry); 4923 4924 // If we have an explicit sret argument that is an Instruction, (i.e., it 4925 // might point to function-local memory), we can't meaningfully tail-call. 4926 if (Entry.isSRet && isa<Instruction>(V)) 4927 isTailCall = false; 4928 } 4929 4930 // Check if target-independent constraints permit a tail call here. 4931 // Target-dependent constraints are checked within TLI->LowerCallTo. 4932 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 4933 isTailCall = false; 4934 4935 TargetLowering::CallLoweringInfo CLI(DAG); 4936 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 4937 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 4938 .setTailCall(isTailCall); 4939 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 4940 4941 if (Result.first.getNode()) 4942 setValue(CS.getInstruction(), Result.first); 4943 } 4944 4945 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4946 /// value is equal or not-equal to zero. 4947 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4948 for (const User *U : V->users()) { 4949 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 4950 if (IC->isEquality()) 4951 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4952 if (C->isNullValue()) 4953 continue; 4954 // Unknown instruction. 4955 return false; 4956 } 4957 return true; 4958 } 4959 4960 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4961 Type *LoadTy, 4962 SelectionDAGBuilder &Builder) { 4963 4964 // Check to see if this load can be trivially constant folded, e.g. if the 4965 // input is from a string literal. 4966 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4967 // Cast pointer to the type we really want to load. 4968 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4969 PointerType::getUnqual(LoadTy)); 4970 4971 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 4972 const_cast<Constant *>(LoadInput), *Builder.DL)) 4973 return Builder.getValue(LoadCst); 4974 } 4975 4976 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4977 // still constant memory, the input chain can be the entry node. 4978 SDValue Root; 4979 bool ConstantMemory = false; 4980 4981 // Do not serialize (non-volatile) loads of constant memory with anything. 4982 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4983 Root = Builder.DAG.getEntryNode(); 4984 ConstantMemory = true; 4985 } else { 4986 // Do not serialize non-volatile loads against each other. 4987 Root = Builder.DAG.getRoot(); 4988 } 4989 4990 SDValue Ptr = Builder.getValue(PtrVal); 4991 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 4992 Ptr, MachinePointerInfo(PtrVal), 4993 false /*volatile*/, 4994 false /*nontemporal*/, 4995 false /*isinvariant*/, 1 /* align=1 */); 4996 4997 if (!ConstantMemory) 4998 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4999 return LoadVal; 5000 } 5001 5002 /// processIntegerCallValue - Record the value for an instruction that 5003 /// produces an integer result, converting the type where necessary. 5004 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5005 SDValue Value, 5006 bool IsSigned) { 5007 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5008 if (IsSigned) 5009 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5010 else 5011 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5012 setValue(&I, Value); 5013 } 5014 5015 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5016 /// If so, return true and lower it, otherwise return false and it will be 5017 /// lowered like a normal call. 5018 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5019 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5020 if (I.getNumArgOperands() != 3) 5021 return false; 5022 5023 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5024 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5025 !I.getArgOperand(2)->getType()->isIntegerTy() || 5026 !I.getType()->isIntegerTy()) 5027 return false; 5028 5029 const Value *Size = I.getArgOperand(2); 5030 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5031 if (CSize && CSize->getZExtValue() == 0) { 5032 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5033 setValue(&I, DAG.getConstant(0, CallVT)); 5034 return true; 5035 } 5036 5037 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5038 std::pair<SDValue, SDValue> Res = 5039 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5040 getValue(LHS), getValue(RHS), getValue(Size), 5041 MachinePointerInfo(LHS), 5042 MachinePointerInfo(RHS)); 5043 if (Res.first.getNode()) { 5044 processIntegerCallValue(I, Res.first, true); 5045 PendingLoads.push_back(Res.second); 5046 return true; 5047 } 5048 5049 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5050 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5051 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5052 bool ActuallyDoIt = true; 5053 MVT LoadVT; 5054 Type *LoadTy; 5055 switch (CSize->getZExtValue()) { 5056 default: 5057 LoadVT = MVT::Other; 5058 LoadTy = nullptr; 5059 ActuallyDoIt = false; 5060 break; 5061 case 2: 5062 LoadVT = MVT::i16; 5063 LoadTy = Type::getInt16Ty(CSize->getContext()); 5064 break; 5065 case 4: 5066 LoadVT = MVT::i32; 5067 LoadTy = Type::getInt32Ty(CSize->getContext()); 5068 break; 5069 case 8: 5070 LoadVT = MVT::i64; 5071 LoadTy = Type::getInt64Ty(CSize->getContext()); 5072 break; 5073 /* 5074 case 16: 5075 LoadVT = MVT::v4i32; 5076 LoadTy = Type::getInt32Ty(CSize->getContext()); 5077 LoadTy = VectorType::get(LoadTy, 4); 5078 break; 5079 */ 5080 } 5081 5082 // This turns into unaligned loads. We only do this if the target natively 5083 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5084 // we'll only produce a small number of byte loads. 5085 5086 // Require that we can find a legal MVT, and only do this if the target 5087 // supports unaligned loads of that type. Expanding into byte loads would 5088 // bloat the code. 5089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5090 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5091 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5092 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5093 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5094 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5095 // TODO: Check alignment of src and dest ptrs. 5096 if (!TLI.isTypeLegal(LoadVT) || 5097 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5098 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5099 ActuallyDoIt = false; 5100 } 5101 5102 if (ActuallyDoIt) { 5103 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5104 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5105 5106 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5107 ISD::SETNE); 5108 processIntegerCallValue(I, Res, false); 5109 return true; 5110 } 5111 } 5112 5113 5114 return false; 5115 } 5116 5117 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5118 /// form. If so, return true and lower it, otherwise return false and it 5119 /// will be lowered like a normal call. 5120 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5121 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5122 if (I.getNumArgOperands() != 3) 5123 return false; 5124 5125 const Value *Src = I.getArgOperand(0); 5126 const Value *Char = I.getArgOperand(1); 5127 const Value *Length = I.getArgOperand(2); 5128 if (!Src->getType()->isPointerTy() || 5129 !Char->getType()->isIntegerTy() || 5130 !Length->getType()->isIntegerTy() || 5131 !I.getType()->isPointerTy()) 5132 return false; 5133 5134 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5135 std::pair<SDValue, SDValue> Res = 5136 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5137 getValue(Src), getValue(Char), getValue(Length), 5138 MachinePointerInfo(Src)); 5139 if (Res.first.getNode()) { 5140 setValue(&I, Res.first); 5141 PendingLoads.push_back(Res.second); 5142 return true; 5143 } 5144 5145 return false; 5146 } 5147 5148 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5149 /// optimized form. If so, return true and lower it, otherwise return false 5150 /// and it will be lowered like a normal call. 5151 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5152 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5153 if (I.getNumArgOperands() != 2) 5154 return false; 5155 5156 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5157 if (!Arg0->getType()->isPointerTy() || 5158 !Arg1->getType()->isPointerTy() || 5159 !I.getType()->isPointerTy()) 5160 return false; 5161 5162 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5163 std::pair<SDValue, SDValue> Res = 5164 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5165 getValue(Arg0), getValue(Arg1), 5166 MachinePointerInfo(Arg0), 5167 MachinePointerInfo(Arg1), isStpcpy); 5168 if (Res.first.getNode()) { 5169 setValue(&I, Res.first); 5170 DAG.setRoot(Res.second); 5171 return true; 5172 } 5173 5174 return false; 5175 } 5176 5177 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5178 /// If so, return true and lower it, otherwise return false and it will be 5179 /// lowered like a normal call. 5180 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5181 // Verify that the prototype makes sense. int strcmp(void*,void*) 5182 if (I.getNumArgOperands() != 2) 5183 return false; 5184 5185 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5186 if (!Arg0->getType()->isPointerTy() || 5187 !Arg1->getType()->isPointerTy() || 5188 !I.getType()->isIntegerTy()) 5189 return false; 5190 5191 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5192 std::pair<SDValue, SDValue> Res = 5193 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5194 getValue(Arg0), getValue(Arg1), 5195 MachinePointerInfo(Arg0), 5196 MachinePointerInfo(Arg1)); 5197 if (Res.first.getNode()) { 5198 processIntegerCallValue(I, Res.first, true); 5199 PendingLoads.push_back(Res.second); 5200 return true; 5201 } 5202 5203 return false; 5204 } 5205 5206 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5207 /// form. If so, return true and lower it, otherwise return false and it 5208 /// will be lowered like a normal call. 5209 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5210 // Verify that the prototype makes sense. size_t strlen(char *) 5211 if (I.getNumArgOperands() != 1) 5212 return false; 5213 5214 const Value *Arg0 = I.getArgOperand(0); 5215 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5216 return false; 5217 5218 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5219 std::pair<SDValue, SDValue> Res = 5220 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5221 getValue(Arg0), MachinePointerInfo(Arg0)); 5222 if (Res.first.getNode()) { 5223 processIntegerCallValue(I, Res.first, false); 5224 PendingLoads.push_back(Res.second); 5225 return true; 5226 } 5227 5228 return false; 5229 } 5230 5231 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5232 /// form. If so, return true and lower it, otherwise return false and it 5233 /// will be lowered like a normal call. 5234 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5235 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5236 if (I.getNumArgOperands() != 2) 5237 return false; 5238 5239 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5240 if (!Arg0->getType()->isPointerTy() || 5241 !Arg1->getType()->isIntegerTy() || 5242 !I.getType()->isIntegerTy()) 5243 return false; 5244 5245 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5246 std::pair<SDValue, SDValue> Res = 5247 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5248 getValue(Arg0), getValue(Arg1), 5249 MachinePointerInfo(Arg0)); 5250 if (Res.first.getNode()) { 5251 processIntegerCallValue(I, Res.first, false); 5252 PendingLoads.push_back(Res.second); 5253 return true; 5254 } 5255 5256 return false; 5257 } 5258 5259 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5260 /// operation (as expected), translate it to an SDNode with the specified opcode 5261 /// and return true. 5262 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5263 unsigned Opcode) { 5264 // Sanity check that it really is a unary floating-point call. 5265 if (I.getNumArgOperands() != 1 || 5266 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5267 I.getType() != I.getArgOperand(0)->getType() || 5268 !I.onlyReadsMemory()) 5269 return false; 5270 5271 SDValue Tmp = getValue(I.getArgOperand(0)); 5272 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5273 return true; 5274 } 5275 5276 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5277 /// operation (as expected), translate it to an SDNode with the specified opcode 5278 /// and return true. 5279 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5280 unsigned Opcode) { 5281 // Sanity check that it really is a binary floating-point call. 5282 if (I.getNumArgOperands() != 2 || 5283 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5284 I.getType() != I.getArgOperand(0)->getType() || 5285 I.getType() != I.getArgOperand(1)->getType() || 5286 !I.onlyReadsMemory()) 5287 return false; 5288 5289 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5290 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5291 EVT VT = Tmp0.getValueType(); 5292 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5293 return true; 5294 } 5295 5296 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5297 // Handle inline assembly differently. 5298 if (isa<InlineAsm>(I.getCalledValue())) { 5299 visitInlineAsm(&I); 5300 return; 5301 } 5302 5303 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5304 ComputeUsesVAFloatArgument(I, &MMI); 5305 5306 const char *RenameFn = nullptr; 5307 if (Function *F = I.getCalledFunction()) { 5308 if (F->isDeclaration()) { 5309 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5310 if (unsigned IID = II->getIntrinsicID(F)) { 5311 RenameFn = visitIntrinsicCall(I, IID); 5312 if (!RenameFn) 5313 return; 5314 } 5315 } 5316 if (unsigned IID = F->getIntrinsicID()) { 5317 RenameFn = visitIntrinsicCall(I, IID); 5318 if (!RenameFn) 5319 return; 5320 } 5321 } 5322 5323 // Check for well-known libc/libm calls. If the function is internal, it 5324 // can't be a library call. 5325 LibFunc::Func Func; 5326 if (!F->hasLocalLinkage() && F->hasName() && 5327 LibInfo->getLibFunc(F->getName(), Func) && 5328 LibInfo->hasOptimizedCodeGen(Func)) { 5329 switch (Func) { 5330 default: break; 5331 case LibFunc::copysign: 5332 case LibFunc::copysignf: 5333 case LibFunc::copysignl: 5334 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5335 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5336 I.getType() == I.getArgOperand(0)->getType() && 5337 I.getType() == I.getArgOperand(1)->getType() && 5338 I.onlyReadsMemory()) { 5339 SDValue LHS = getValue(I.getArgOperand(0)); 5340 SDValue RHS = getValue(I.getArgOperand(1)); 5341 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5342 LHS.getValueType(), LHS, RHS)); 5343 return; 5344 } 5345 break; 5346 case LibFunc::fabs: 5347 case LibFunc::fabsf: 5348 case LibFunc::fabsl: 5349 if (visitUnaryFloatCall(I, ISD::FABS)) 5350 return; 5351 break; 5352 case LibFunc::fmin: 5353 case LibFunc::fminf: 5354 case LibFunc::fminl: 5355 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5356 return; 5357 break; 5358 case LibFunc::fmax: 5359 case LibFunc::fmaxf: 5360 case LibFunc::fmaxl: 5361 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5362 return; 5363 break; 5364 case LibFunc::sin: 5365 case LibFunc::sinf: 5366 case LibFunc::sinl: 5367 if (visitUnaryFloatCall(I, ISD::FSIN)) 5368 return; 5369 break; 5370 case LibFunc::cos: 5371 case LibFunc::cosf: 5372 case LibFunc::cosl: 5373 if (visitUnaryFloatCall(I, ISD::FCOS)) 5374 return; 5375 break; 5376 case LibFunc::sqrt: 5377 case LibFunc::sqrtf: 5378 case LibFunc::sqrtl: 5379 case LibFunc::sqrt_finite: 5380 case LibFunc::sqrtf_finite: 5381 case LibFunc::sqrtl_finite: 5382 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5383 return; 5384 break; 5385 case LibFunc::floor: 5386 case LibFunc::floorf: 5387 case LibFunc::floorl: 5388 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5389 return; 5390 break; 5391 case LibFunc::nearbyint: 5392 case LibFunc::nearbyintf: 5393 case LibFunc::nearbyintl: 5394 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5395 return; 5396 break; 5397 case LibFunc::ceil: 5398 case LibFunc::ceilf: 5399 case LibFunc::ceill: 5400 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5401 return; 5402 break; 5403 case LibFunc::rint: 5404 case LibFunc::rintf: 5405 case LibFunc::rintl: 5406 if (visitUnaryFloatCall(I, ISD::FRINT)) 5407 return; 5408 break; 5409 case LibFunc::round: 5410 case LibFunc::roundf: 5411 case LibFunc::roundl: 5412 if (visitUnaryFloatCall(I, ISD::FROUND)) 5413 return; 5414 break; 5415 case LibFunc::trunc: 5416 case LibFunc::truncf: 5417 case LibFunc::truncl: 5418 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5419 return; 5420 break; 5421 case LibFunc::log2: 5422 case LibFunc::log2f: 5423 case LibFunc::log2l: 5424 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5425 return; 5426 break; 5427 case LibFunc::exp2: 5428 case LibFunc::exp2f: 5429 case LibFunc::exp2l: 5430 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5431 return; 5432 break; 5433 case LibFunc::memcmp: 5434 if (visitMemCmpCall(I)) 5435 return; 5436 break; 5437 case LibFunc::memchr: 5438 if (visitMemChrCall(I)) 5439 return; 5440 break; 5441 case LibFunc::strcpy: 5442 if (visitStrCpyCall(I, false)) 5443 return; 5444 break; 5445 case LibFunc::stpcpy: 5446 if (visitStrCpyCall(I, true)) 5447 return; 5448 break; 5449 case LibFunc::strcmp: 5450 if (visitStrCmpCall(I)) 5451 return; 5452 break; 5453 case LibFunc::strlen: 5454 if (visitStrLenCall(I)) 5455 return; 5456 break; 5457 case LibFunc::strnlen: 5458 if (visitStrNLenCall(I)) 5459 return; 5460 break; 5461 } 5462 } 5463 } 5464 5465 SDValue Callee; 5466 if (!RenameFn) 5467 Callee = getValue(I.getCalledValue()); 5468 else 5469 Callee = DAG.getExternalSymbol(RenameFn, 5470 DAG.getTargetLoweringInfo().getPointerTy()); 5471 5472 // Check if we can potentially perform a tail call. More detailed checking is 5473 // be done within LowerCallTo, after more information about the call is known. 5474 LowerCallTo(&I, Callee, I.isTailCall()); 5475 } 5476 5477 namespace { 5478 5479 /// AsmOperandInfo - This contains information for each constraint that we are 5480 /// lowering. 5481 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5482 public: 5483 /// CallOperand - If this is the result output operand or a clobber 5484 /// this is null, otherwise it is the incoming operand to the CallInst. 5485 /// This gets modified as the asm is processed. 5486 SDValue CallOperand; 5487 5488 /// AssignedRegs - If this is a register or register class operand, this 5489 /// contains the set of register corresponding to the operand. 5490 RegsForValue AssignedRegs; 5491 5492 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5493 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5494 } 5495 5496 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5497 /// corresponds to. If there is no Value* for this operand, it returns 5498 /// MVT::Other. 5499 EVT getCallOperandValEVT(LLVMContext &Context, 5500 const TargetLowering &TLI, 5501 const DataLayout *DL) const { 5502 if (!CallOperandVal) return MVT::Other; 5503 5504 if (isa<BasicBlock>(CallOperandVal)) 5505 return TLI.getPointerTy(); 5506 5507 llvm::Type *OpTy = CallOperandVal->getType(); 5508 5509 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5510 // If this is an indirect operand, the operand is a pointer to the 5511 // accessed type. 5512 if (isIndirect) { 5513 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5514 if (!PtrTy) 5515 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5516 OpTy = PtrTy->getElementType(); 5517 } 5518 5519 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5520 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5521 if (STy->getNumElements() == 1) 5522 OpTy = STy->getElementType(0); 5523 5524 // If OpTy is not a single value, it may be a struct/union that we 5525 // can tile with integers. 5526 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5527 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5528 switch (BitSize) { 5529 default: break; 5530 case 1: 5531 case 8: 5532 case 16: 5533 case 32: 5534 case 64: 5535 case 128: 5536 OpTy = IntegerType::get(Context, BitSize); 5537 break; 5538 } 5539 } 5540 5541 return TLI.getValueType(OpTy, true); 5542 } 5543 }; 5544 5545 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5546 5547 } // end anonymous namespace 5548 5549 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5550 /// specified operand. We prefer to assign virtual registers, to allow the 5551 /// register allocator to handle the assignment process. However, if the asm 5552 /// uses features that we can't model on machineinstrs, we have SDISel do the 5553 /// allocation. This produces generally horrible, but correct, code. 5554 /// 5555 /// OpInfo describes the operand. 5556 /// 5557 static void GetRegistersForValue(SelectionDAG &DAG, 5558 const TargetLowering &TLI, 5559 SDLoc DL, 5560 SDISelAsmOperandInfo &OpInfo) { 5561 LLVMContext &Context = *DAG.getContext(); 5562 5563 MachineFunction &MF = DAG.getMachineFunction(); 5564 SmallVector<unsigned, 4> Regs; 5565 5566 // If this is a constraint for a single physreg, or a constraint for a 5567 // register class, find it. 5568 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5569 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5570 OpInfo.ConstraintCode, 5571 OpInfo.ConstraintVT); 5572 5573 unsigned NumRegs = 1; 5574 if (OpInfo.ConstraintVT != MVT::Other) { 5575 // If this is a FP input in an integer register (or visa versa) insert a bit 5576 // cast of the input value. More generally, handle any case where the input 5577 // value disagrees with the register class we plan to stick this in. 5578 if (OpInfo.Type == InlineAsm::isInput && 5579 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5580 // Try to convert to the first EVT that the reg class contains. If the 5581 // types are identical size, use a bitcast to convert (e.g. two differing 5582 // vector types). 5583 MVT RegVT = *PhysReg.second->vt_begin(); 5584 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5585 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5586 RegVT, OpInfo.CallOperand); 5587 OpInfo.ConstraintVT = RegVT; 5588 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5589 // If the input is a FP value and we want it in FP registers, do a 5590 // bitcast to the corresponding integer type. This turns an f64 value 5591 // into i64, which can be passed with two i32 values on a 32-bit 5592 // machine. 5593 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5594 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5595 RegVT, OpInfo.CallOperand); 5596 OpInfo.ConstraintVT = RegVT; 5597 } 5598 } 5599 5600 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5601 } 5602 5603 MVT RegVT; 5604 EVT ValueVT = OpInfo.ConstraintVT; 5605 5606 // If this is a constraint for a specific physical register, like {r17}, 5607 // assign it now. 5608 if (unsigned AssignedReg = PhysReg.first) { 5609 const TargetRegisterClass *RC = PhysReg.second; 5610 if (OpInfo.ConstraintVT == MVT::Other) 5611 ValueVT = *RC->vt_begin(); 5612 5613 // Get the actual register value type. This is important, because the user 5614 // may have asked for (e.g.) the AX register in i32 type. We need to 5615 // remember that AX is actually i16 to get the right extension. 5616 RegVT = *RC->vt_begin(); 5617 5618 // This is a explicit reference to a physical register. 5619 Regs.push_back(AssignedReg); 5620 5621 // If this is an expanded reference, add the rest of the regs to Regs. 5622 if (NumRegs != 1) { 5623 TargetRegisterClass::iterator I = RC->begin(); 5624 for (; *I != AssignedReg; ++I) 5625 assert(I != RC->end() && "Didn't find reg!"); 5626 5627 // Already added the first reg. 5628 --NumRegs; ++I; 5629 for (; NumRegs; --NumRegs, ++I) { 5630 assert(I != RC->end() && "Ran out of registers to allocate!"); 5631 Regs.push_back(*I); 5632 } 5633 } 5634 5635 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5636 return; 5637 } 5638 5639 // Otherwise, if this was a reference to an LLVM register class, create vregs 5640 // for this reference. 5641 if (const TargetRegisterClass *RC = PhysReg.second) { 5642 RegVT = *RC->vt_begin(); 5643 if (OpInfo.ConstraintVT == MVT::Other) 5644 ValueVT = RegVT; 5645 5646 // Create the appropriate number of virtual registers. 5647 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5648 for (; NumRegs; --NumRegs) 5649 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5650 5651 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5652 return; 5653 } 5654 5655 // Otherwise, we couldn't allocate enough registers for this. 5656 } 5657 5658 /// visitInlineAsm - Handle a call to an InlineAsm object. 5659 /// 5660 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5661 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5662 5663 /// ConstraintOperands - Information about all of the constraints. 5664 SDISelAsmOperandInfoVector ConstraintOperands; 5665 5666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5667 TargetLowering::AsmOperandInfoVector TargetConstraints = 5668 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5669 5670 bool hasMemory = false; 5671 5672 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5673 unsigned ResNo = 0; // ResNo - The result number of the next output. 5674 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5675 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5676 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5677 5678 MVT OpVT = MVT::Other; 5679 5680 // Compute the value type for each operand. 5681 switch (OpInfo.Type) { 5682 case InlineAsm::isOutput: 5683 // Indirect outputs just consume an argument. 5684 if (OpInfo.isIndirect) { 5685 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5686 break; 5687 } 5688 5689 // The return value of the call is this value. As such, there is no 5690 // corresponding argument. 5691 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5692 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5693 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5694 } else { 5695 assert(ResNo == 0 && "Asm only has one result!"); 5696 OpVT = TLI.getSimpleValueType(CS.getType()); 5697 } 5698 ++ResNo; 5699 break; 5700 case InlineAsm::isInput: 5701 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5702 break; 5703 case InlineAsm::isClobber: 5704 // Nothing to do. 5705 break; 5706 } 5707 5708 // If this is an input or an indirect output, process the call argument. 5709 // BasicBlocks are labels, currently appearing only in asm's. 5710 if (OpInfo.CallOperandVal) { 5711 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5712 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5713 } else { 5714 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5715 } 5716 5717 OpVT = 5718 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5719 } 5720 5721 OpInfo.ConstraintVT = OpVT; 5722 5723 // Indirect operand accesses access memory. 5724 if (OpInfo.isIndirect) 5725 hasMemory = true; 5726 else { 5727 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5728 TargetLowering::ConstraintType 5729 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5730 if (CType == TargetLowering::C_Memory) { 5731 hasMemory = true; 5732 break; 5733 } 5734 } 5735 } 5736 } 5737 5738 SDValue Chain, Flag; 5739 5740 // We won't need to flush pending loads if this asm doesn't touch 5741 // memory and is nonvolatile. 5742 if (hasMemory || IA->hasSideEffects()) 5743 Chain = getRoot(); 5744 else 5745 Chain = DAG.getRoot(); 5746 5747 // Second pass over the constraints: compute which constraint option to use 5748 // and assign registers to constraints that want a specific physreg. 5749 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5750 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5751 5752 // If this is an output operand with a matching input operand, look up the 5753 // matching input. If their types mismatch, e.g. one is an integer, the 5754 // other is floating point, or their sizes are different, flag it as an 5755 // error. 5756 if (OpInfo.hasMatchingInput()) { 5757 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5758 5759 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5760 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5761 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5762 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5763 OpInfo.ConstraintVT); 5764 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5765 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5766 Input.ConstraintVT); 5767 if ((OpInfo.ConstraintVT.isInteger() != 5768 Input.ConstraintVT.isInteger()) || 5769 (MatchRC.second != InputRC.second)) { 5770 report_fatal_error("Unsupported asm: input constraint" 5771 " with a matching output constraint of" 5772 " incompatible type!"); 5773 } 5774 Input.ConstraintVT = OpInfo.ConstraintVT; 5775 } 5776 } 5777 5778 // Compute the constraint code and ConstraintType to use. 5779 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5780 5781 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5782 OpInfo.Type == InlineAsm::isClobber) 5783 continue; 5784 5785 // If this is a memory input, and if the operand is not indirect, do what we 5786 // need to to provide an address for the memory input. 5787 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5788 !OpInfo.isIndirect) { 5789 assert((OpInfo.isMultipleAlternative || 5790 (OpInfo.Type == InlineAsm::isInput)) && 5791 "Can only indirectify direct input operands!"); 5792 5793 // Memory operands really want the address of the value. If we don't have 5794 // an indirect input, put it in the constpool if we can, otherwise spill 5795 // it to a stack slot. 5796 // TODO: This isn't quite right. We need to handle these according to 5797 // the addressing mode that the constraint wants. Also, this may take 5798 // an additional register for the computation and we don't want that 5799 // either. 5800 5801 // If the operand is a float, integer, or vector constant, spill to a 5802 // constant pool entry to get its address. 5803 const Value *OpVal = OpInfo.CallOperandVal; 5804 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5805 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5806 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5807 TLI.getPointerTy()); 5808 } else { 5809 // Otherwise, create a stack slot and emit a store to it before the 5810 // asm. 5811 Type *Ty = OpVal->getType(); 5812 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5813 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5814 MachineFunction &MF = DAG.getMachineFunction(); 5815 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5816 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5817 Chain = DAG.getStore(Chain, getCurSDLoc(), 5818 OpInfo.CallOperand, StackSlot, 5819 MachinePointerInfo::getFixedStack(SSFI), 5820 false, false, 0); 5821 OpInfo.CallOperand = StackSlot; 5822 } 5823 5824 // There is no longer a Value* corresponding to this operand. 5825 OpInfo.CallOperandVal = nullptr; 5826 5827 // It is now an indirect operand. 5828 OpInfo.isIndirect = true; 5829 } 5830 5831 // If this constraint is for a specific register, allocate it before 5832 // anything else. 5833 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5834 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5835 } 5836 5837 // Second pass - Loop over all of the operands, assigning virtual or physregs 5838 // to register class operands. 5839 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5840 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5841 5842 // C_Register operands have already been allocated, Other/Memory don't need 5843 // to be. 5844 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5845 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5846 } 5847 5848 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5849 std::vector<SDValue> AsmNodeOperands; 5850 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5851 AsmNodeOperands.push_back( 5852 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5853 TLI.getPointerTy())); 5854 5855 // If we have a !srcloc metadata node associated with it, we want to attach 5856 // this to the ultimately generated inline asm machineinstr. To do this, we 5857 // pass in the third operand as this (potentially null) inline asm MDNode. 5858 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5859 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5860 5861 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 5862 // bits as operand 3. 5863 unsigned ExtraInfo = 0; 5864 if (IA->hasSideEffects()) 5865 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5866 if (IA->isAlignStack()) 5867 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5868 // Set the asm dialect. 5869 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 5870 5871 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 5872 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5873 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5874 5875 // Compute the constraint code and ConstraintType to use. 5876 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5877 5878 // Ideally, we would only check against memory constraints. However, the 5879 // meaning of an other constraint can be target-specific and we can't easily 5880 // reason about it. Therefore, be conservative and set MayLoad/MayStore 5881 // for other constriants as well. 5882 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 5883 OpInfo.ConstraintType == TargetLowering::C_Other) { 5884 if (OpInfo.Type == InlineAsm::isInput) 5885 ExtraInfo |= InlineAsm::Extra_MayLoad; 5886 else if (OpInfo.Type == InlineAsm::isOutput) 5887 ExtraInfo |= InlineAsm::Extra_MayStore; 5888 else if (OpInfo.Type == InlineAsm::isClobber) 5889 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 5890 } 5891 } 5892 5893 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5894 TLI.getPointerTy())); 5895 5896 // Loop over all of the inputs, copying the operand values into the 5897 // appropriate registers and processing the output regs. 5898 RegsForValue RetValRegs; 5899 5900 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5901 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5902 5903 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5904 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5905 5906 switch (OpInfo.Type) { 5907 case InlineAsm::isOutput: { 5908 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5909 OpInfo.ConstraintType != TargetLowering::C_Register) { 5910 // Memory output, or 'other' output (e.g. 'X' constraint). 5911 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5912 5913 unsigned ConstraintID = 5914 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 5915 assert(ConstraintID != InlineAsm::Constraint_Unknown && 5916 "Failed to convert memory constraint code to constraint id."); 5917 5918 // Add information to the INLINEASM node to know about this output. 5919 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5920 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 5921 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 5922 AsmNodeOperands.push_back(OpInfo.CallOperand); 5923 break; 5924 } 5925 5926 // Otherwise, this is a register or register class output. 5927 5928 // Copy the output from the appropriate register. Find a register that 5929 // we can use. 5930 if (OpInfo.AssignedRegs.Regs.empty()) { 5931 LLVMContext &Ctx = *DAG.getContext(); 5932 Ctx.emitError(CS.getInstruction(), 5933 "couldn't allocate output register for constraint '" + 5934 Twine(OpInfo.ConstraintCode) + "'"); 5935 return; 5936 } 5937 5938 // If this is an indirect operand, store through the pointer after the 5939 // asm. 5940 if (OpInfo.isIndirect) { 5941 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5942 OpInfo.CallOperandVal)); 5943 } else { 5944 // This is the result value of the call. 5945 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5946 // Concatenate this output onto the outputs list. 5947 RetValRegs.append(OpInfo.AssignedRegs); 5948 } 5949 5950 // Add information to the INLINEASM node to know that this register is 5951 // set. 5952 OpInfo.AssignedRegs 5953 .AddInlineAsmOperands(OpInfo.isEarlyClobber 5954 ? InlineAsm::Kind_RegDefEarlyClobber 5955 : InlineAsm::Kind_RegDef, 5956 false, 0, DAG, AsmNodeOperands); 5957 break; 5958 } 5959 case InlineAsm::isInput: { 5960 SDValue InOperandVal = OpInfo.CallOperand; 5961 5962 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5963 // If this is required to match an output register we have already set, 5964 // just use its register. 5965 unsigned OperandNo = OpInfo.getMatchedOperand(); 5966 5967 // Scan until we find the definition we already emitted of this operand. 5968 // When we find it, create a RegsForValue operand. 5969 unsigned CurOp = InlineAsm::Op_FirstOperand; 5970 for (; OperandNo; --OperandNo) { 5971 // Advance to the next operand. 5972 unsigned OpFlag = 5973 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5974 assert((InlineAsm::isRegDefKind(OpFlag) || 5975 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5976 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5977 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5978 } 5979 5980 unsigned OpFlag = 5981 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5982 if (InlineAsm::isRegDefKind(OpFlag) || 5983 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5984 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5985 if (OpInfo.isIndirect) { 5986 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5987 LLVMContext &Ctx = *DAG.getContext(); 5988 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5989 " don't know how to handle tied " 5990 "indirect register inputs"); 5991 return; 5992 } 5993 5994 RegsForValue MatchedRegs; 5995 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5996 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 5997 MatchedRegs.RegVTs.push_back(RegVT); 5998 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5999 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6000 i != e; ++i) { 6001 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6002 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6003 else { 6004 LLVMContext &Ctx = *DAG.getContext(); 6005 Ctx.emitError(CS.getInstruction(), 6006 "inline asm error: This value" 6007 " type register class is not natively supported!"); 6008 return; 6009 } 6010 } 6011 // Use the produced MatchedRegs object to 6012 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6013 Chain, &Flag, CS.getInstruction()); 6014 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6015 true, OpInfo.getMatchedOperand(), 6016 DAG, AsmNodeOperands); 6017 break; 6018 } 6019 6020 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6021 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6022 "Unexpected number of operands"); 6023 // Add information to the INLINEASM node to know about this input. 6024 // See InlineAsm.h isUseOperandTiedToDef. 6025 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6026 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6027 OpInfo.getMatchedOperand()); 6028 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6029 TLI.getPointerTy())); 6030 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6031 break; 6032 } 6033 6034 // Treat indirect 'X' constraint as memory. 6035 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6036 OpInfo.isIndirect) 6037 OpInfo.ConstraintType = TargetLowering::C_Memory; 6038 6039 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6040 std::vector<SDValue> Ops; 6041 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6042 Ops, DAG); 6043 if (Ops.empty()) { 6044 LLVMContext &Ctx = *DAG.getContext(); 6045 Ctx.emitError(CS.getInstruction(), 6046 "invalid operand for inline asm constraint '" + 6047 Twine(OpInfo.ConstraintCode) + "'"); 6048 return; 6049 } 6050 6051 // Add information to the INLINEASM node to know about this input. 6052 unsigned ResOpType = 6053 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6054 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6055 TLI.getPointerTy())); 6056 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6057 break; 6058 } 6059 6060 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6061 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6062 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6063 "Memory operands expect pointer values"); 6064 6065 unsigned ConstraintID = 6066 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6067 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6068 "Failed to convert memory constraint code to constraint id."); 6069 6070 // Add information to the INLINEASM node to know about this input. 6071 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6072 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6073 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6074 AsmNodeOperands.push_back(InOperandVal); 6075 break; 6076 } 6077 6078 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6079 OpInfo.ConstraintType == TargetLowering::C_Register) && 6080 "Unknown constraint type!"); 6081 6082 // TODO: Support this. 6083 if (OpInfo.isIndirect) { 6084 LLVMContext &Ctx = *DAG.getContext(); 6085 Ctx.emitError(CS.getInstruction(), 6086 "Don't know how to handle indirect register inputs yet " 6087 "for constraint '" + 6088 Twine(OpInfo.ConstraintCode) + "'"); 6089 return; 6090 } 6091 6092 // Copy the input into the appropriate registers. 6093 if (OpInfo.AssignedRegs.Regs.empty()) { 6094 LLVMContext &Ctx = *DAG.getContext(); 6095 Ctx.emitError(CS.getInstruction(), 6096 "couldn't allocate input reg for constraint '" + 6097 Twine(OpInfo.ConstraintCode) + "'"); 6098 return; 6099 } 6100 6101 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6102 Chain, &Flag, CS.getInstruction()); 6103 6104 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6105 DAG, AsmNodeOperands); 6106 break; 6107 } 6108 case InlineAsm::isClobber: { 6109 // Add the clobbered value to the operand list, so that the register 6110 // allocator is aware that the physreg got clobbered. 6111 if (!OpInfo.AssignedRegs.Regs.empty()) 6112 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6113 false, 0, DAG, 6114 AsmNodeOperands); 6115 break; 6116 } 6117 } 6118 } 6119 6120 // Finish up input operands. Set the input chain and add the flag last. 6121 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6122 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6123 6124 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6125 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6126 Flag = Chain.getValue(1); 6127 6128 // If this asm returns a register value, copy the result from that register 6129 // and set it as the value of the call. 6130 if (!RetValRegs.Regs.empty()) { 6131 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6132 Chain, &Flag, CS.getInstruction()); 6133 6134 // FIXME: Why don't we do this for inline asms with MRVs? 6135 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6136 EVT ResultType = TLI.getValueType(CS.getType()); 6137 6138 // If any of the results of the inline asm is a vector, it may have the 6139 // wrong width/num elts. This can happen for register classes that can 6140 // contain multiple different value types. The preg or vreg allocated may 6141 // not have the same VT as was expected. Convert it to the right type 6142 // with bit_convert. 6143 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6144 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6145 ResultType, Val); 6146 6147 } else if (ResultType != Val.getValueType() && 6148 ResultType.isInteger() && Val.getValueType().isInteger()) { 6149 // If a result value was tied to an input value, the computed result may 6150 // have a wider width than the expected result. Extract the relevant 6151 // portion. 6152 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6153 } 6154 6155 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6156 } 6157 6158 setValue(CS.getInstruction(), Val); 6159 // Don't need to use this as a chain in this case. 6160 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6161 return; 6162 } 6163 6164 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6165 6166 // Process indirect outputs, first output all of the flagged copies out of 6167 // physregs. 6168 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6169 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6170 const Value *Ptr = IndirectStoresToEmit[i].second; 6171 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6172 Chain, &Flag, IA); 6173 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6174 } 6175 6176 // Emit the non-flagged stores from the physregs. 6177 SmallVector<SDValue, 8> OutChains; 6178 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6179 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6180 StoresToEmit[i].first, 6181 getValue(StoresToEmit[i].second), 6182 MachinePointerInfo(StoresToEmit[i].second), 6183 false, false, 0); 6184 OutChains.push_back(Val); 6185 } 6186 6187 if (!OutChains.empty()) 6188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6189 6190 DAG.setRoot(Chain); 6191 } 6192 6193 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6194 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6195 MVT::Other, getRoot(), 6196 getValue(I.getArgOperand(0)), 6197 DAG.getSrcValue(I.getArgOperand(0)))); 6198 } 6199 6200 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6202 const DataLayout &DL = *TLI.getDataLayout(); 6203 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6204 getRoot(), getValue(I.getOperand(0)), 6205 DAG.getSrcValue(I.getOperand(0)), 6206 DL.getABITypeAlignment(I.getType())); 6207 setValue(&I, V); 6208 DAG.setRoot(V.getValue(1)); 6209 } 6210 6211 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6212 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6213 MVT::Other, getRoot(), 6214 getValue(I.getArgOperand(0)), 6215 DAG.getSrcValue(I.getArgOperand(0)))); 6216 } 6217 6218 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6219 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6220 MVT::Other, getRoot(), 6221 getValue(I.getArgOperand(0)), 6222 getValue(I.getArgOperand(1)), 6223 DAG.getSrcValue(I.getArgOperand(0)), 6224 DAG.getSrcValue(I.getArgOperand(1)))); 6225 } 6226 6227 /// \brief Lower an argument list according to the target calling convention. 6228 /// 6229 /// \return A tuple of <return-value, token-chain> 6230 /// 6231 /// This is a helper for lowering intrinsics that follow a target calling 6232 /// convention or require stack pointer adjustment. Only a subset of the 6233 /// intrinsic's operands need to participate in the calling convention. 6234 std::pair<SDValue, SDValue> 6235 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6236 unsigned NumArgs, SDValue Callee, 6237 bool UseVoidTy, 6238 MachineBasicBlock *LandingPad, 6239 bool IsPatchPoint) { 6240 TargetLowering::ArgListTy Args; 6241 Args.reserve(NumArgs); 6242 6243 // Populate the argument list. 6244 // Attributes for args start at offset 1, after the return attribute. 6245 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6246 ArgI != ArgE; ++ArgI) { 6247 const Value *V = CS->getOperand(ArgI); 6248 6249 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6250 6251 TargetLowering::ArgListEntry Entry; 6252 Entry.Node = getValue(V); 6253 Entry.Ty = V->getType(); 6254 Entry.setAttributes(&CS, AttrI); 6255 Args.push_back(Entry); 6256 } 6257 6258 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6259 TargetLowering::CallLoweringInfo CLI(DAG); 6260 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6261 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6262 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6263 6264 return lowerInvokable(CLI, LandingPad); 6265 } 6266 6267 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6268 /// or patchpoint target node's operand list. 6269 /// 6270 /// Constants are converted to TargetConstants purely as an optimization to 6271 /// avoid constant materialization and register allocation. 6272 /// 6273 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6274 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6275 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6276 /// address materialization and register allocation, but may also be required 6277 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6278 /// alloca in the entry block, then the runtime may assume that the alloca's 6279 /// StackMap location can be read immediately after compilation and that the 6280 /// location is valid at any point during execution (this is similar to the 6281 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6282 /// only available in a register, then the runtime would need to trap when 6283 /// execution reaches the StackMap in order to read the alloca's location. 6284 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6285 SmallVectorImpl<SDValue> &Ops, 6286 SelectionDAGBuilder &Builder) { 6287 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6288 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6289 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6290 Ops.push_back( 6291 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6292 Ops.push_back( 6293 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6294 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6295 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6296 Ops.push_back( 6297 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6298 } else 6299 Ops.push_back(OpVal); 6300 } 6301 } 6302 6303 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6304 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6305 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6306 // [live variables...]) 6307 6308 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6309 6310 SDValue Chain, InFlag, Callee, NullPtr; 6311 SmallVector<SDValue, 32> Ops; 6312 6313 SDLoc DL = getCurSDLoc(); 6314 Callee = getValue(CI.getCalledValue()); 6315 NullPtr = DAG.getIntPtrConstant(0, true); 6316 6317 // The stackmap intrinsic only records the live variables (the arguemnts 6318 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6319 // intrinsic, this won't be lowered to a function call. This means we don't 6320 // have to worry about calling conventions and target specific lowering code. 6321 // Instead we perform the call lowering right here. 6322 // 6323 // chain, flag = CALLSEQ_START(chain, 0) 6324 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6325 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6326 // 6327 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6328 InFlag = Chain.getValue(1); 6329 6330 // Add the <id> and <numBytes> constants. 6331 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6332 Ops.push_back(DAG.getTargetConstant( 6333 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6334 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6335 Ops.push_back(DAG.getTargetConstant( 6336 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6337 6338 // Push live variables for the stack map. 6339 addStackMapLiveVars(&CI, 2, Ops, *this); 6340 6341 // We are not pushing any register mask info here on the operands list, 6342 // because the stackmap doesn't clobber anything. 6343 6344 // Push the chain and the glue flag. 6345 Ops.push_back(Chain); 6346 Ops.push_back(InFlag); 6347 6348 // Create the STACKMAP node. 6349 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6350 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6351 Chain = SDValue(SM, 0); 6352 InFlag = Chain.getValue(1); 6353 6354 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6355 6356 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6357 6358 // Set the root to the target-lowered call chain. 6359 DAG.setRoot(Chain); 6360 6361 // Inform the Frame Information that we have a stackmap in this function. 6362 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6363 } 6364 6365 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6366 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6367 MachineBasicBlock *LandingPad) { 6368 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6369 // i32 <numBytes>, 6370 // i8* <target>, 6371 // i32 <numArgs>, 6372 // [Args...], 6373 // [live variables...]) 6374 6375 CallingConv::ID CC = CS.getCallingConv(); 6376 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6377 bool HasDef = !CS->getType()->isVoidTy(); 6378 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6379 6380 // Handle immediate and symbolic callees. 6381 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6382 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), 6383 /*isTarget=*/true); 6384 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6385 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6386 SDLoc(SymbolicCallee), 6387 SymbolicCallee->getValueType(0)); 6388 6389 // Get the real number of arguments participating in the call <numArgs> 6390 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6391 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6392 6393 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6394 // Intrinsics include all meta-operands up to but not including CC. 6395 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6396 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6397 "Not enough arguments provided to the patchpoint intrinsic"); 6398 6399 // For AnyRegCC the arguments are lowered later on manually. 6400 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6401 std::pair<SDValue, SDValue> Result = 6402 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 6403 LandingPad, true); 6404 6405 SDNode *CallEnd = Result.second.getNode(); 6406 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6407 CallEnd = CallEnd->getOperand(0).getNode(); 6408 6409 /// Get a call instruction from the call sequence chain. 6410 /// Tail calls are not allowed. 6411 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6412 "Expected a callseq node."); 6413 SDNode *Call = CallEnd->getOperand(0).getNode(); 6414 bool HasGlue = Call->getGluedNode(); 6415 6416 // Replace the target specific call node with the patchable intrinsic. 6417 SmallVector<SDValue, 8> Ops; 6418 6419 // Add the <id> and <numBytes> constants. 6420 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6421 Ops.push_back(DAG.getTargetConstant( 6422 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6423 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6424 Ops.push_back(DAG.getTargetConstant( 6425 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6426 6427 // Add the callee. 6428 Ops.push_back(Callee); 6429 6430 // Adjust <numArgs> to account for any arguments that have been passed on the 6431 // stack instead. 6432 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6433 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6434 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6435 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6436 6437 // Add the calling convention 6438 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6439 6440 // Add the arguments we omitted previously. The register allocator should 6441 // place these in any free register. 6442 if (IsAnyRegCC) 6443 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6444 Ops.push_back(getValue(CS.getArgument(i))); 6445 6446 // Push the arguments from the call instruction up to the register mask. 6447 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6448 Ops.append(Call->op_begin() + 2, e); 6449 6450 // Push live variables for the stack map. 6451 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 6452 6453 // Push the register mask info. 6454 if (HasGlue) 6455 Ops.push_back(*(Call->op_end()-2)); 6456 else 6457 Ops.push_back(*(Call->op_end()-1)); 6458 6459 // Push the chain (this is originally the first operand of the call, but 6460 // becomes now the last or second to last operand). 6461 Ops.push_back(*(Call->op_begin())); 6462 6463 // Push the glue flag (last operand). 6464 if (HasGlue) 6465 Ops.push_back(*(Call->op_end()-1)); 6466 6467 SDVTList NodeTys; 6468 if (IsAnyRegCC && HasDef) { 6469 // Create the return types based on the intrinsic definition 6470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6471 SmallVector<EVT, 3> ValueVTs; 6472 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6473 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6474 6475 // There is always a chain and a glue type at the end 6476 ValueVTs.push_back(MVT::Other); 6477 ValueVTs.push_back(MVT::Glue); 6478 NodeTys = DAG.getVTList(ValueVTs); 6479 } else 6480 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6481 6482 // Replace the target specific call node with a PATCHPOINT node. 6483 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6484 getCurSDLoc(), NodeTys, Ops); 6485 6486 // Update the NodeMap. 6487 if (HasDef) { 6488 if (IsAnyRegCC) 6489 setValue(CS.getInstruction(), SDValue(MN, 0)); 6490 else 6491 setValue(CS.getInstruction(), Result.first); 6492 } 6493 6494 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6495 // call sequence. Furthermore the location of the chain and glue can change 6496 // when the AnyReg calling convention is used and the intrinsic returns a 6497 // value. 6498 if (IsAnyRegCC && HasDef) { 6499 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6500 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6501 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6502 } else 6503 DAG.ReplaceAllUsesWith(Call, MN); 6504 DAG.DeleteNode(Call); 6505 6506 // Inform the Frame Information that we have a patchpoint in this function. 6507 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6508 } 6509 6510 /// Returns an AttributeSet representing the attributes applied to the return 6511 /// value of the given call. 6512 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6513 SmallVector<Attribute::AttrKind, 2> Attrs; 6514 if (CLI.RetSExt) 6515 Attrs.push_back(Attribute::SExt); 6516 if (CLI.RetZExt) 6517 Attrs.push_back(Attribute::ZExt); 6518 if (CLI.IsInReg) 6519 Attrs.push_back(Attribute::InReg); 6520 6521 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6522 Attrs); 6523 } 6524 6525 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6526 /// implementation, which just calls LowerCall. 6527 /// FIXME: When all targets are 6528 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6529 std::pair<SDValue, SDValue> 6530 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6531 // Handle the incoming return values from the call. 6532 CLI.Ins.clear(); 6533 Type *OrigRetTy = CLI.RetTy; 6534 SmallVector<EVT, 4> RetTys; 6535 SmallVector<uint64_t, 4> Offsets; 6536 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6537 6538 SmallVector<ISD::OutputArg, 4> Outs; 6539 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6540 6541 bool CanLowerReturn = 6542 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6543 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6544 6545 SDValue DemoteStackSlot; 6546 int DemoteStackIdx = -100; 6547 if (!CanLowerReturn) { 6548 // FIXME: equivalent assert? 6549 // assert(!CS.hasInAllocaArgument() && 6550 // "sret demotion is incompatible with inalloca"); 6551 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6552 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6553 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6554 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6555 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6556 6557 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6558 ArgListEntry Entry; 6559 Entry.Node = DemoteStackSlot; 6560 Entry.Ty = StackSlotPtrType; 6561 Entry.isSExt = false; 6562 Entry.isZExt = false; 6563 Entry.isInReg = false; 6564 Entry.isSRet = true; 6565 Entry.isNest = false; 6566 Entry.isByVal = false; 6567 Entry.isReturned = false; 6568 Entry.Alignment = Align; 6569 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6570 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6571 6572 // sret demotion isn't compatible with tail-calls, since the sret argument 6573 // points into the callers stack frame. 6574 CLI.IsTailCall = false; 6575 } else { 6576 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6577 EVT VT = RetTys[I]; 6578 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6579 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6580 for (unsigned i = 0; i != NumRegs; ++i) { 6581 ISD::InputArg MyFlags; 6582 MyFlags.VT = RegisterVT; 6583 MyFlags.ArgVT = VT; 6584 MyFlags.Used = CLI.IsReturnValueUsed; 6585 if (CLI.RetSExt) 6586 MyFlags.Flags.setSExt(); 6587 if (CLI.RetZExt) 6588 MyFlags.Flags.setZExt(); 6589 if (CLI.IsInReg) 6590 MyFlags.Flags.setInReg(); 6591 CLI.Ins.push_back(MyFlags); 6592 } 6593 } 6594 } 6595 6596 // Handle all of the outgoing arguments. 6597 CLI.Outs.clear(); 6598 CLI.OutVals.clear(); 6599 ArgListTy &Args = CLI.getArgs(); 6600 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6601 SmallVector<EVT, 4> ValueVTs; 6602 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6603 Type *FinalType = Args[i].Ty; 6604 if (Args[i].isByVal) 6605 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6606 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6607 FinalType, CLI.CallConv, CLI.IsVarArg); 6608 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6609 ++Value) { 6610 EVT VT = ValueVTs[Value]; 6611 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6612 SDValue Op = SDValue(Args[i].Node.getNode(), 6613 Args[i].Node.getResNo() + Value); 6614 ISD::ArgFlagsTy Flags; 6615 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6616 6617 if (Args[i].isZExt) 6618 Flags.setZExt(); 6619 if (Args[i].isSExt) 6620 Flags.setSExt(); 6621 if (Args[i].isInReg) 6622 Flags.setInReg(); 6623 if (Args[i].isSRet) 6624 Flags.setSRet(); 6625 if (Args[i].isByVal) 6626 Flags.setByVal(); 6627 if (Args[i].isInAlloca) { 6628 Flags.setInAlloca(); 6629 // Set the byval flag for CCAssignFn callbacks that don't know about 6630 // inalloca. This way we can know how many bytes we should've allocated 6631 // and how many bytes a callee cleanup function will pop. If we port 6632 // inalloca to more targets, we'll have to add custom inalloca handling 6633 // in the various CC lowering callbacks. 6634 Flags.setByVal(); 6635 } 6636 if (Args[i].isByVal || Args[i].isInAlloca) { 6637 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6638 Type *ElementTy = Ty->getElementType(); 6639 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6640 // For ByVal, alignment should come from FE. BE will guess if this 6641 // info is not there but there are cases it cannot get right. 6642 unsigned FrameAlign; 6643 if (Args[i].Alignment) 6644 FrameAlign = Args[i].Alignment; 6645 else 6646 FrameAlign = getByValTypeAlignment(ElementTy); 6647 Flags.setByValAlign(FrameAlign); 6648 } 6649 if (Args[i].isNest) 6650 Flags.setNest(); 6651 if (NeedsRegBlock) 6652 Flags.setInConsecutiveRegs(); 6653 Flags.setOrigAlign(OriginalAlignment); 6654 6655 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6656 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6657 SmallVector<SDValue, 4> Parts(NumParts); 6658 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6659 6660 if (Args[i].isSExt) 6661 ExtendKind = ISD::SIGN_EXTEND; 6662 else if (Args[i].isZExt) 6663 ExtendKind = ISD::ZERO_EXTEND; 6664 6665 // Conservatively only handle 'returned' on non-vectors for now 6666 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6667 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6668 "unexpected use of 'returned'"); 6669 // Before passing 'returned' to the target lowering code, ensure that 6670 // either the register MVT and the actual EVT are the same size or that 6671 // the return value and argument are extended in the same way; in these 6672 // cases it's safe to pass the argument register value unchanged as the 6673 // return register value (although it's at the target's option whether 6674 // to do so) 6675 // TODO: allow code generation to take advantage of partially preserved 6676 // registers rather than clobbering the entire register when the 6677 // parameter extension method is not compatible with the return 6678 // extension method 6679 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6680 (ExtendKind != ISD::ANY_EXTEND && 6681 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6682 Flags.setReturned(); 6683 } 6684 6685 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6686 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6687 6688 for (unsigned j = 0; j != NumParts; ++j) { 6689 // if it isn't first piece, alignment must be 1 6690 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6691 i < CLI.NumFixedArgs, 6692 i, j*Parts[j].getValueType().getStoreSize()); 6693 if (NumParts > 1 && j == 0) 6694 MyFlags.Flags.setSplit(); 6695 else if (j != 0) 6696 MyFlags.Flags.setOrigAlign(1); 6697 6698 CLI.Outs.push_back(MyFlags); 6699 CLI.OutVals.push_back(Parts[j]); 6700 } 6701 6702 if (NeedsRegBlock && Value == NumValues - 1) 6703 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6704 } 6705 } 6706 6707 SmallVector<SDValue, 4> InVals; 6708 CLI.Chain = LowerCall(CLI, InVals); 6709 6710 // Verify that the target's LowerCall behaved as expected. 6711 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6712 "LowerCall didn't return a valid chain!"); 6713 assert((!CLI.IsTailCall || InVals.empty()) && 6714 "LowerCall emitted a return value for a tail call!"); 6715 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6716 "LowerCall didn't emit the correct number of values!"); 6717 6718 // For a tail call, the return value is merely live-out and there aren't 6719 // any nodes in the DAG representing it. Return a special value to 6720 // indicate that a tail call has been emitted and no more Instructions 6721 // should be processed in the current block. 6722 if (CLI.IsTailCall) { 6723 CLI.DAG.setRoot(CLI.Chain); 6724 return std::make_pair(SDValue(), SDValue()); 6725 } 6726 6727 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6728 assert(InVals[i].getNode() && 6729 "LowerCall emitted a null value!"); 6730 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6731 "LowerCall emitted a value with the wrong type!"); 6732 }); 6733 6734 SmallVector<SDValue, 4> ReturnValues; 6735 if (!CanLowerReturn) { 6736 // The instruction result is the result of loading from the 6737 // hidden sret parameter. 6738 SmallVector<EVT, 1> PVTs; 6739 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6740 6741 ComputeValueVTs(*this, PtrRetTy, PVTs); 6742 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6743 EVT PtrVT = PVTs[0]; 6744 6745 unsigned NumValues = RetTys.size(); 6746 ReturnValues.resize(NumValues); 6747 SmallVector<SDValue, 4> Chains(NumValues); 6748 6749 for (unsigned i = 0; i < NumValues; ++i) { 6750 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6751 CLI.DAG.getConstant(Offsets[i], PtrVT)); 6752 SDValue L = CLI.DAG.getLoad( 6753 RetTys[i], CLI.DL, CLI.Chain, Add, 6754 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6755 false, false, 1); 6756 ReturnValues[i] = L; 6757 Chains[i] = L.getValue(1); 6758 } 6759 6760 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6761 } else { 6762 // Collect the legal value parts into potentially illegal values 6763 // that correspond to the original function's return values. 6764 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6765 if (CLI.RetSExt) 6766 AssertOp = ISD::AssertSext; 6767 else if (CLI.RetZExt) 6768 AssertOp = ISD::AssertZext; 6769 unsigned CurReg = 0; 6770 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6771 EVT VT = RetTys[I]; 6772 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6773 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6774 6775 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6776 NumRegs, RegisterVT, VT, nullptr, 6777 AssertOp)); 6778 CurReg += NumRegs; 6779 } 6780 6781 // For a function returning void, there is no return value. We can't create 6782 // such a node, so we just return a null return value in that case. In 6783 // that case, nothing will actually look at the value. 6784 if (ReturnValues.empty()) 6785 return std::make_pair(SDValue(), CLI.Chain); 6786 } 6787 6788 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6789 CLI.DAG.getVTList(RetTys), ReturnValues); 6790 return std::make_pair(Res, CLI.Chain); 6791 } 6792 6793 void TargetLowering::LowerOperationWrapper(SDNode *N, 6794 SmallVectorImpl<SDValue> &Results, 6795 SelectionDAG &DAG) const { 6796 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6797 if (Res.getNode()) 6798 Results.push_back(Res); 6799 } 6800 6801 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6802 llvm_unreachable("LowerOperation not implemented for this target!"); 6803 } 6804 6805 void 6806 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6807 SDValue Op = getNonRegisterValue(V); 6808 assert((Op.getOpcode() != ISD::CopyFromReg || 6809 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6810 "Copy from a reg to the same reg!"); 6811 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6812 6813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6814 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6815 SDValue Chain = DAG.getEntryNode(); 6816 6817 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6818 FuncInfo.PreferredExtendType.end()) 6819 ? ISD::ANY_EXTEND 6820 : FuncInfo.PreferredExtendType[V]; 6821 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6822 PendingExports.push_back(Chain); 6823 } 6824 6825 #include "llvm/CodeGen/SelectionDAGISel.h" 6826 6827 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6828 /// entry block, return true. This includes arguments used by switches, since 6829 /// the switch may expand into multiple basic blocks. 6830 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6831 // With FastISel active, we may be splitting blocks, so force creation 6832 // of virtual registers for all non-dead arguments. 6833 if (FastISel) 6834 return A->use_empty(); 6835 6836 const BasicBlock *Entry = A->getParent()->begin(); 6837 for (const User *U : A->users()) 6838 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6839 return false; // Use not in entry block. 6840 6841 return true; 6842 } 6843 6844 void SelectionDAGISel::LowerArguments(const Function &F) { 6845 SelectionDAG &DAG = SDB->DAG; 6846 SDLoc dl = SDB->getCurSDLoc(); 6847 const DataLayout *DL = TLI->getDataLayout(); 6848 SmallVector<ISD::InputArg, 16> Ins; 6849 6850 if (!FuncInfo->CanLowerReturn) { 6851 // Put in an sret pointer parameter before all the other parameters. 6852 SmallVector<EVT, 1> ValueVTs; 6853 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6854 6855 // NOTE: Assuming that a pointer will never break down to more than one VT 6856 // or one register. 6857 ISD::ArgFlagsTy Flags; 6858 Flags.setSRet(); 6859 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6860 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 6861 ISD::InputArg::NoArgIndex, 0); 6862 Ins.push_back(RetArg); 6863 } 6864 6865 // Set up the incoming argument description vector. 6866 unsigned Idx = 1; 6867 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6868 I != E; ++I, ++Idx) { 6869 SmallVector<EVT, 4> ValueVTs; 6870 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6871 bool isArgValueUsed = !I->use_empty(); 6872 unsigned PartBase = 0; 6873 Type *FinalType = I->getType(); 6874 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 6875 FinalType = cast<PointerType>(FinalType)->getElementType(); 6876 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 6877 FinalType, F.getCallingConv(), F.isVarArg()); 6878 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6879 Value != NumValues; ++Value) { 6880 EVT VT = ValueVTs[Value]; 6881 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6882 ISD::ArgFlagsTy Flags; 6883 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 6884 6885 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6886 Flags.setZExt(); 6887 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6888 Flags.setSExt(); 6889 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 6890 Flags.setInReg(); 6891 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 6892 Flags.setSRet(); 6893 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 6894 Flags.setByVal(); 6895 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 6896 Flags.setInAlloca(); 6897 // Set the byval flag for CCAssignFn callbacks that don't know about 6898 // inalloca. This way we can know how many bytes we should've allocated 6899 // and how many bytes a callee cleanup function will pop. If we port 6900 // inalloca to more targets, we'll have to add custom inalloca handling 6901 // in the various CC lowering callbacks. 6902 Flags.setByVal(); 6903 } 6904 if (Flags.isByVal() || Flags.isInAlloca()) { 6905 PointerType *Ty = cast<PointerType>(I->getType()); 6906 Type *ElementTy = Ty->getElementType(); 6907 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 6908 // For ByVal, alignment should be passed from FE. BE will guess if 6909 // this info is not there but there are cases it cannot get right. 6910 unsigned FrameAlign; 6911 if (F.getParamAlignment(Idx)) 6912 FrameAlign = F.getParamAlignment(Idx); 6913 else 6914 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 6915 Flags.setByValAlign(FrameAlign); 6916 } 6917 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 6918 Flags.setNest(); 6919 if (NeedsRegBlock) 6920 Flags.setInConsecutiveRegs(); 6921 Flags.setOrigAlign(OriginalAlignment); 6922 6923 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6924 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6925 for (unsigned i = 0; i != NumRegs; ++i) { 6926 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 6927 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 6928 if (NumRegs > 1 && i == 0) 6929 MyFlags.Flags.setSplit(); 6930 // if it isn't first piece, alignment must be 1 6931 else if (i > 0) 6932 MyFlags.Flags.setOrigAlign(1); 6933 Ins.push_back(MyFlags); 6934 } 6935 if (NeedsRegBlock && Value == NumValues - 1) 6936 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 6937 PartBase += VT.getStoreSize(); 6938 } 6939 } 6940 6941 // Call the target to set up the argument values. 6942 SmallVector<SDValue, 8> InVals; 6943 SDValue NewRoot = TLI->LowerFormalArguments( 6944 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 6945 6946 // Verify that the target's LowerFormalArguments behaved as expected. 6947 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6948 "LowerFormalArguments didn't return a valid chain!"); 6949 assert(InVals.size() == Ins.size() && 6950 "LowerFormalArguments didn't emit the correct number of values!"); 6951 DEBUG({ 6952 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6953 assert(InVals[i].getNode() && 6954 "LowerFormalArguments emitted a null value!"); 6955 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6956 "LowerFormalArguments emitted a value with the wrong type!"); 6957 } 6958 }); 6959 6960 // Update the DAG with the new chain value resulting from argument lowering. 6961 DAG.setRoot(NewRoot); 6962 6963 // Set up the argument values. 6964 unsigned i = 0; 6965 Idx = 1; 6966 if (!FuncInfo->CanLowerReturn) { 6967 // Create a virtual register for the sret pointer, and put in a copy 6968 // from the sret argument into it. 6969 SmallVector<EVT, 1> ValueVTs; 6970 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6971 MVT VT = ValueVTs[0].getSimpleVT(); 6972 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6973 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6974 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6975 RegVT, VT, nullptr, AssertOp); 6976 6977 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6978 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6979 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 6980 FuncInfo->DemoteRegister = SRetReg; 6981 NewRoot = 6982 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 6983 DAG.setRoot(NewRoot); 6984 6985 // i indexes lowered arguments. Bump it past the hidden sret argument. 6986 // Idx indexes LLVM arguments. Don't touch it. 6987 ++i; 6988 } 6989 6990 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6991 ++I, ++Idx) { 6992 SmallVector<SDValue, 4> ArgValues; 6993 SmallVector<EVT, 4> ValueVTs; 6994 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6995 unsigned NumValues = ValueVTs.size(); 6996 6997 // If this argument is unused then remember its value. It is used to generate 6998 // debugging information. 6999 if (I->use_empty() && NumValues) { 7000 SDB->setUnusedArgValue(I, InVals[i]); 7001 7002 // Also remember any frame index for use in FastISel. 7003 if (FrameIndexSDNode *FI = 7004 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7005 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7006 } 7007 7008 for (unsigned Val = 0; Val != NumValues; ++Val) { 7009 EVT VT = ValueVTs[Val]; 7010 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7011 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7012 7013 if (!I->use_empty()) { 7014 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7015 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7016 AssertOp = ISD::AssertSext; 7017 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7018 AssertOp = ISD::AssertZext; 7019 7020 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7021 NumParts, PartVT, VT, 7022 nullptr, AssertOp)); 7023 } 7024 7025 i += NumParts; 7026 } 7027 7028 // We don't need to do anything else for unused arguments. 7029 if (ArgValues.empty()) 7030 continue; 7031 7032 // Note down frame index. 7033 if (FrameIndexSDNode *FI = 7034 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7035 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7036 7037 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7038 SDB->getCurSDLoc()); 7039 7040 SDB->setValue(I, Res); 7041 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7042 if (LoadSDNode *LNode = 7043 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7044 if (FrameIndexSDNode *FI = 7045 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7046 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7047 } 7048 7049 // If this argument is live outside of the entry block, insert a copy from 7050 // wherever we got it to the vreg that other BB's will reference it as. 7051 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7052 // If we can, though, try to skip creating an unnecessary vreg. 7053 // FIXME: This isn't very clean... it would be nice to make this more 7054 // general. It's also subtly incompatible with the hacks FastISel 7055 // uses with vregs. 7056 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7057 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7058 FuncInfo->ValueMap[I] = Reg; 7059 continue; 7060 } 7061 } 7062 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7063 FuncInfo->InitializeRegForValue(I); 7064 SDB->CopyToExportRegsIfNeeded(I); 7065 } 7066 } 7067 7068 assert(i == InVals.size() && "Argument register count mismatch!"); 7069 7070 // Finally, if the target has anything special to do, allow it to do so. 7071 EmitFunctionEntryCode(); 7072 } 7073 7074 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7075 /// ensure constants are generated when needed. Remember the virtual registers 7076 /// that need to be added to the Machine PHI nodes as input. We cannot just 7077 /// directly add them, because expansion might result in multiple MBB's for one 7078 /// BB. As such, the start of the BB might correspond to a different MBB than 7079 /// the end. 7080 /// 7081 void 7082 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7083 const TerminatorInst *TI = LLVMBB->getTerminator(); 7084 7085 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7086 7087 // Check PHI nodes in successors that expect a value to be available from this 7088 // block. 7089 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7090 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7091 if (!isa<PHINode>(SuccBB->begin())) continue; 7092 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7093 7094 // If this terminator has multiple identical successors (common for 7095 // switches), only handle each succ once. 7096 if (!SuccsHandled.insert(SuccMBB).second) 7097 continue; 7098 7099 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7100 7101 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7102 // nodes and Machine PHI nodes, but the incoming operands have not been 7103 // emitted yet. 7104 for (BasicBlock::const_iterator I = SuccBB->begin(); 7105 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7106 // Ignore dead phi's. 7107 if (PN->use_empty()) continue; 7108 7109 // Skip empty types 7110 if (PN->getType()->isEmptyTy()) 7111 continue; 7112 7113 unsigned Reg; 7114 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7115 7116 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7117 unsigned &RegOut = ConstantsOut[C]; 7118 if (RegOut == 0) { 7119 RegOut = FuncInfo.CreateRegs(C->getType()); 7120 CopyValueToVirtualRegister(C, RegOut); 7121 } 7122 Reg = RegOut; 7123 } else { 7124 DenseMap<const Value *, unsigned>::iterator I = 7125 FuncInfo.ValueMap.find(PHIOp); 7126 if (I != FuncInfo.ValueMap.end()) 7127 Reg = I->second; 7128 else { 7129 assert(isa<AllocaInst>(PHIOp) && 7130 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7131 "Didn't codegen value into a register!??"); 7132 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7133 CopyValueToVirtualRegister(PHIOp, Reg); 7134 } 7135 } 7136 7137 // Remember that this register needs to added to the machine PHI node as 7138 // the input for this MBB. 7139 SmallVector<EVT, 4> ValueVTs; 7140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7141 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7142 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7143 EVT VT = ValueVTs[vti]; 7144 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7145 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7146 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7147 Reg += NumRegisters; 7148 } 7149 } 7150 } 7151 7152 ConstantsOut.clear(); 7153 } 7154 7155 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7156 /// is 0. 7157 MachineBasicBlock * 7158 SelectionDAGBuilder::StackProtectorDescriptor:: 7159 AddSuccessorMBB(const BasicBlock *BB, 7160 MachineBasicBlock *ParentMBB, 7161 bool IsLikely, 7162 MachineBasicBlock *SuccMBB) { 7163 // If SuccBB has not been created yet, create it. 7164 if (!SuccMBB) { 7165 MachineFunction *MF = ParentMBB->getParent(); 7166 MachineFunction::iterator BBI = ParentMBB; 7167 SuccMBB = MF->CreateMachineBasicBlock(BB); 7168 MF->insert(++BBI, SuccMBB); 7169 } 7170 // Add it as a successor of ParentMBB. 7171 ParentMBB->addSuccessor( 7172 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7173 return SuccMBB; 7174 } 7175 7176 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7177 MachineFunction::iterator I = MBB; 7178 if (++I == FuncInfo.MF->end()) 7179 return nullptr; 7180 return I; 7181 } 7182 7183 /// During lowering new call nodes can be created (such as memset, etc.). 7184 /// Those will become new roots of the current DAG, but complications arise 7185 /// when they are tail calls. In such cases, the call lowering will update 7186 /// the root, but the builder still needs to know that a tail call has been 7187 /// lowered in order to avoid generating an additional return. 7188 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7189 // If the node is null, we do have a tail call. 7190 if (MaybeTC.getNode() != nullptr) 7191 DAG.setRoot(MaybeTC); 7192 else 7193 HasTailCall = true; 7194 } 7195 7196 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7197 unsigned *TotalCases, unsigned First, 7198 unsigned Last) { 7199 assert(Last >= First); 7200 assert(TotalCases[Last] >= TotalCases[First]); 7201 7202 APInt LowCase = Clusters[First].Low->getValue(); 7203 APInt HighCase = Clusters[Last].High->getValue(); 7204 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7205 7206 // FIXME: A range of consecutive cases has 100% density, but only requires one 7207 // comparison to lower. We should discriminate against such consecutive ranges 7208 // in jump tables. 7209 7210 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7211 uint64_t Range = Diff + 1; 7212 7213 uint64_t NumCases = 7214 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7215 7216 assert(NumCases < UINT64_MAX / 100); 7217 assert(Range >= NumCases); 7218 7219 return NumCases * 100 >= Range * MinJumpTableDensity; 7220 } 7221 7222 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7223 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7224 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7225 } 7226 7227 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7228 unsigned First, unsigned Last, 7229 const SwitchInst *SI, 7230 MachineBasicBlock *DefaultMBB, 7231 CaseCluster &JTCluster) { 7232 assert(First <= Last); 7233 7234 uint32_t Weight = 0; 7235 unsigned NumCmps = 0; 7236 std::vector<MachineBasicBlock*> Table; 7237 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7238 for (unsigned I = First; I <= Last; ++I) { 7239 assert(Clusters[I].Kind == CC_Range); 7240 Weight += Clusters[I].Weight; 7241 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7242 APInt Low = Clusters[I].Low->getValue(); 7243 APInt High = Clusters[I].High->getValue(); 7244 NumCmps += (Low == High) ? 1 : 2; 7245 if (I != First) { 7246 // Fill the gap between this and the previous cluster. 7247 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7248 assert(PreviousHigh.slt(Low)); 7249 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7250 for (uint64_t J = 0; J < Gap; J++) 7251 Table.push_back(DefaultMBB); 7252 } 7253 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7254 for (uint64_t J = 0; J < ClusterSize; ++J) 7255 Table.push_back(Clusters[I].MBB); 7256 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7257 } 7258 7259 unsigned NumDests = JTWeights.size(); 7260 if (isSuitableForBitTests(NumDests, NumCmps, 7261 Clusters[First].Low->getValue(), 7262 Clusters[Last].High->getValue())) { 7263 // Clusters[First..Last] should be lowered as bit tests instead. 7264 return false; 7265 } 7266 7267 // Create the MBB that will load from and jump through the table. 7268 // Note: We create it here, but it's not inserted into the function yet. 7269 MachineFunction *CurMF = FuncInfo.MF; 7270 MachineBasicBlock *JumpTableMBB = 7271 CurMF->CreateMachineBasicBlock(SI->getParent()); 7272 7273 // Add successors. Note: use table order for determinism. 7274 SmallPtrSet<MachineBasicBlock *, 8> Done; 7275 for (MachineBasicBlock *Succ : Table) { 7276 if (Done.count(Succ)) 7277 continue; 7278 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7279 Done.insert(Succ); 7280 } 7281 7282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7283 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7284 ->createJumpTableIndex(Table); 7285 7286 // Set up the jump table info. 7287 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7288 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7289 Clusters[Last].High->getValue(), SI->getCondition(), 7290 nullptr, false); 7291 JTCases.push_back(JumpTableBlock(JTH, JT)); 7292 7293 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7294 JTCases.size() - 1, Weight); 7295 return true; 7296 } 7297 7298 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7299 const SwitchInst *SI, 7300 MachineBasicBlock *DefaultMBB) { 7301 #ifndef NDEBUG 7302 // Clusters must be non-empty, sorted, and only contain Range clusters. 7303 assert(!Clusters.empty()); 7304 for (CaseCluster &C : Clusters) 7305 assert(C.Kind == CC_Range); 7306 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7307 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7308 #endif 7309 7310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7311 if (!areJTsAllowed(TLI)) 7312 return; 7313 7314 const int64_t N = Clusters.size(); 7315 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7316 7317 // Split Clusters into minimum number of dense partitions. The algorithm uses 7318 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7319 // for the Case Statement'" (1994), but builds the MinPartitions array in 7320 // reverse order to make it easier to reconstruct the partitions in ascending 7321 // order. In the choice between two optimal partitionings, it picks the one 7322 // which yields more jump tables. 7323 7324 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7325 SmallVector<unsigned, 8> MinPartitions(N); 7326 // LastElement[i] is the last element of the partition starting at i. 7327 SmallVector<unsigned, 8> LastElement(N); 7328 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7329 SmallVector<unsigned, 8> NumTables(N); 7330 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7331 SmallVector<unsigned, 8> TotalCases(N); 7332 7333 for (unsigned i = 0; i < N; ++i) { 7334 APInt Hi = Clusters[i].High->getValue(); 7335 APInt Lo = Clusters[i].Low->getValue(); 7336 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7337 if (i != 0) 7338 TotalCases[i] += TotalCases[i - 1]; 7339 } 7340 7341 // Base case: There is only one way to partition Clusters[N-1]. 7342 MinPartitions[N - 1] = 1; 7343 LastElement[N - 1] = N - 1; 7344 assert(MinJumpTableSize > 1); 7345 NumTables[N - 1] = 0; 7346 7347 // Note: loop indexes are signed to avoid underflow. 7348 for (int64_t i = N - 2; i >= 0; i--) { 7349 // Find optimal partitioning of Clusters[i..N-1]. 7350 // Baseline: Put Clusters[i] into a partition on its own. 7351 MinPartitions[i] = MinPartitions[i + 1] + 1; 7352 LastElement[i] = i; 7353 NumTables[i] = NumTables[i + 1]; 7354 7355 // Search for a solution that results in fewer partitions. 7356 for (int64_t j = N - 1; j > i; j--) { 7357 // Try building a partition from Clusters[i..j]. 7358 if (isDense(Clusters, &TotalCases[0], i, j)) { 7359 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7360 bool IsTable = j - i + 1 >= MinJumpTableSize; 7361 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7362 7363 // If this j leads to fewer partitions, or same number of partitions 7364 // with more lookup tables, it is a better partitioning. 7365 if (NumPartitions < MinPartitions[i] || 7366 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7367 MinPartitions[i] = NumPartitions; 7368 LastElement[i] = j; 7369 NumTables[i] = Tables; 7370 } 7371 } 7372 } 7373 } 7374 7375 // Iterate over the partitions, replacing some with jump tables in-place. 7376 unsigned DstIndex = 0; 7377 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7378 Last = LastElement[First]; 7379 assert(Last >= First); 7380 assert(DstIndex <= First); 7381 unsigned NumClusters = Last - First + 1; 7382 7383 CaseCluster JTCluster; 7384 if (NumClusters >= MinJumpTableSize && 7385 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7386 Clusters[DstIndex++] = JTCluster; 7387 } else { 7388 for (unsigned I = First; I <= Last; ++I) 7389 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7390 } 7391 } 7392 Clusters.resize(DstIndex); 7393 } 7394 7395 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7396 // FIXME: Using the pointer type doesn't seem ideal. 7397 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7398 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7399 return Range <= BW; 7400 } 7401 7402 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7403 unsigned NumCmps, 7404 const APInt &Low, 7405 const APInt &High) { 7406 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7407 // range of cases both require only one branch to lower. Just looking at the 7408 // number of clusters and destinations should be enough to decide whether to 7409 // build bit tests. 7410 7411 // To lower a range with bit tests, the range must fit the bitwidth of a 7412 // machine word. 7413 if (!rangeFitsInWord(Low, High)) 7414 return false; 7415 7416 // Decide whether it's profitable to lower this range with bit tests. Each 7417 // destination requires a bit test and branch, and there is an overall range 7418 // check branch. For a small number of clusters, separate comparisons might be 7419 // cheaper, and for many destinations, splitting the range might be better. 7420 return (NumDests == 1 && NumCmps >= 3) || 7421 (NumDests == 2 && NumCmps >= 5) || 7422 (NumDests == 3 && NumCmps >= 6); 7423 } 7424 7425 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7426 unsigned First, unsigned Last, 7427 const SwitchInst *SI, 7428 CaseCluster &BTCluster) { 7429 assert(First <= Last); 7430 if (First == Last) 7431 return false; 7432 7433 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7434 unsigned NumCmps = 0; 7435 for (int64_t I = First; I <= Last; ++I) { 7436 assert(Clusters[I].Kind == CC_Range); 7437 Dests.set(Clusters[I].MBB->getNumber()); 7438 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7439 } 7440 unsigned NumDests = Dests.count(); 7441 7442 APInt Low = Clusters[First].Low->getValue(); 7443 APInt High = Clusters[Last].High->getValue(); 7444 assert(Low.slt(High)); 7445 7446 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7447 return false; 7448 7449 APInt LowBound; 7450 APInt CmpRange; 7451 7452 const int BitWidth = 7453 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7454 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7455 7456 if (Low.isNonNegative() && High.slt(BitWidth)) { 7457 // Optimize the case where all the case values fit in a 7458 // word without having to subtract minValue. In this case, 7459 // we can optimize away the subtraction. 7460 LowBound = APInt::getNullValue(Low.getBitWidth()); 7461 CmpRange = High; 7462 } else { 7463 LowBound = Low; 7464 CmpRange = High - Low; 7465 } 7466 7467 CaseBitsVector CBV; 7468 uint32_t TotalWeight = 0; 7469 for (unsigned i = First; i <= Last; ++i) { 7470 // Find the CaseBits for this destination. 7471 unsigned j; 7472 for (j = 0; j < CBV.size(); ++j) 7473 if (CBV[j].BB == Clusters[i].MBB) 7474 break; 7475 if (j == CBV.size()) 7476 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7477 CaseBits *CB = &CBV[j]; 7478 7479 // Update Mask, Bits and ExtraWeight. 7480 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7481 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7482 for (uint64_t j = Lo; j <= Hi; ++j) { 7483 CB->Mask |= 1ULL << j; 7484 CB->Bits++; 7485 } 7486 CB->ExtraWeight += Clusters[i].Weight; 7487 TotalWeight += Clusters[i].Weight; 7488 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7489 } 7490 7491 BitTestInfo BTI; 7492 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7493 // Sort by weight first, number of bits second. 7494 if (a.ExtraWeight != b.ExtraWeight) 7495 return a.ExtraWeight > b.ExtraWeight; 7496 return a.Bits > b.Bits; 7497 }); 7498 7499 for (auto &CB : CBV) { 7500 MachineBasicBlock *BitTestBB = 7501 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7502 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7503 } 7504 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7505 -1U, MVT::Other, false, nullptr, 7506 nullptr, std::move(BTI))); 7507 7508 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7509 BitTestCases.size() - 1, TotalWeight); 7510 return true; 7511 } 7512 7513 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7514 const SwitchInst *SI) { 7515 // Partition Clusters into as few subsets as possible, where each subset has a 7516 // range that fits in a machine word and has <= 3 unique destinations. 7517 7518 #ifndef NDEBUG 7519 // Clusters must be sorted and contain Range or JumpTable clusters. 7520 assert(!Clusters.empty()); 7521 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7522 for (const CaseCluster &C : Clusters) 7523 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7524 for (unsigned i = 1; i < Clusters.size(); ++i) 7525 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7526 #endif 7527 7528 // If target does not have legal shift left, do not emit bit tests at all. 7529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7530 EVT PTy = TLI.getPointerTy(); 7531 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7532 return; 7533 7534 int BitWidth = PTy.getSizeInBits(); 7535 const int64_t N = Clusters.size(); 7536 7537 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7538 SmallVector<unsigned, 8> MinPartitions(N); 7539 // LastElement[i] is the last element of the partition starting at i. 7540 SmallVector<unsigned, 8> LastElement(N); 7541 7542 // FIXME: This might not be the best algorithm for finding bit test clusters. 7543 7544 // Base case: There is only one way to partition Clusters[N-1]. 7545 MinPartitions[N - 1] = 1; 7546 LastElement[N - 1] = N - 1; 7547 7548 // Note: loop indexes are signed to avoid underflow. 7549 for (int64_t i = N - 2; i >= 0; --i) { 7550 // Find optimal partitioning of Clusters[i..N-1]. 7551 // Baseline: Put Clusters[i] into a partition on its own. 7552 MinPartitions[i] = MinPartitions[i + 1] + 1; 7553 LastElement[i] = i; 7554 7555 // Search for a solution that results in fewer partitions. 7556 // Note: the search is limited by BitWidth, reducing time complexity. 7557 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7558 // Try building a partition from Clusters[i..j]. 7559 7560 // Check the range. 7561 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7562 Clusters[j].High->getValue())) 7563 continue; 7564 7565 // Check nbr of destinations and cluster types. 7566 // FIXME: This works, but doesn't seem very efficient. 7567 bool RangesOnly = true; 7568 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7569 for (int64_t k = i; k <= j; k++) { 7570 if (Clusters[k].Kind != CC_Range) { 7571 RangesOnly = false; 7572 break; 7573 } 7574 Dests.set(Clusters[k].MBB->getNumber()); 7575 } 7576 if (!RangesOnly || Dests.count() > 3) 7577 break; 7578 7579 // Check if it's a better partition. 7580 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7581 if (NumPartitions < MinPartitions[i]) { 7582 // Found a better partition. 7583 MinPartitions[i] = NumPartitions; 7584 LastElement[i] = j; 7585 } 7586 } 7587 } 7588 7589 // Iterate over the partitions, replacing with bit-test clusters in-place. 7590 unsigned DstIndex = 0; 7591 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7592 Last = LastElement[First]; 7593 assert(First <= Last); 7594 assert(DstIndex <= First); 7595 7596 CaseCluster BitTestCluster; 7597 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7598 Clusters[DstIndex++] = BitTestCluster; 7599 } else { 7600 for (unsigned I = First; I <= Last; ++I) 7601 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7602 } 7603 } 7604 Clusters.resize(DstIndex); 7605 } 7606 7607 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7608 MachineBasicBlock *SwitchMBB, 7609 MachineBasicBlock *DefaultMBB) { 7610 MachineFunction *CurMF = FuncInfo.MF; 7611 MachineBasicBlock *NextMBB = nullptr; 7612 MachineFunction::iterator BBI = W.MBB; 7613 if (++BBI != FuncInfo.MF->end()) 7614 NextMBB = BBI; 7615 7616 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7617 7618 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7619 7620 if (Size == 2 && W.MBB == SwitchMBB) { 7621 // If any two of the cases has the same destination, and if one value 7622 // is the same as the other, but has one bit unset that the other has set, 7623 // use bit manipulation to do two compares at once. For example: 7624 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7625 // TODO: This could be extended to merge any 2 cases in switches with 3 7626 // cases. 7627 // TODO: Handle cases where W.CaseBB != SwitchBB. 7628 CaseCluster &Small = *W.FirstCluster; 7629 CaseCluster &Big = *W.LastCluster; 7630 7631 if (Small.Low == Small.High && Big.Low == Big.High && 7632 Small.MBB == Big.MBB) { 7633 const APInt &SmallValue = Small.Low->getValue(); 7634 const APInt &BigValue = Big.Low->getValue(); 7635 7636 // Check that there is only one bit different. 7637 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7638 (SmallValue | BigValue) == BigValue) { 7639 // Isolate the common bit. 7640 APInt CommonBit = BigValue & ~SmallValue; 7641 assert((SmallValue | CommonBit) == BigValue && 7642 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7643 7644 SDValue CondLHS = getValue(Cond); 7645 EVT VT = CondLHS.getValueType(); 7646 SDLoc DL = getCurSDLoc(); 7647 7648 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7649 DAG.getConstant(CommonBit, VT)); 7650 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7651 DAG.getConstant(BigValue, VT), ISD::SETEQ); 7652 7653 // Update successor info. 7654 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7655 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7656 addSuccessorWithWeight( 7657 SwitchMBB, DefaultMBB, 7658 // The default destination is the first successor in IR. 7659 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7660 : 0); 7661 7662 // Insert the true branch. 7663 SDValue BrCond = 7664 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7665 DAG.getBasicBlock(Small.MBB)); 7666 // Insert the false branch. 7667 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7668 DAG.getBasicBlock(DefaultMBB)); 7669 7670 DAG.setRoot(BrCond); 7671 return; 7672 } 7673 } 7674 } 7675 7676 if (TM.getOptLevel() != CodeGenOpt::None) { 7677 // Order cases by weight so the most likely case will be checked first. 7678 std::sort(W.FirstCluster, W.LastCluster + 1, 7679 [](const CaseCluster &a, const CaseCluster &b) { 7680 return a.Weight > b.Weight; 7681 }); 7682 7683 // Rearrange the case blocks so that the last one falls through if possible 7684 // without without changing the order of weights. 7685 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7686 --I; 7687 if (I->Weight > W.LastCluster->Weight) 7688 break; 7689 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7690 std::swap(*I, *W.LastCluster); 7691 break; 7692 } 7693 } 7694 } 7695 7696 // Compute total weight. 7697 uint32_t UnhandledWeights = 0; 7698 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7699 UnhandledWeights += I->Weight; 7700 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7701 } 7702 7703 MachineBasicBlock *CurMBB = W.MBB; 7704 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7705 MachineBasicBlock *Fallthrough; 7706 if (I == W.LastCluster) { 7707 // For the last cluster, fall through to the default destination. 7708 Fallthrough = DefaultMBB; 7709 } else { 7710 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7711 CurMF->insert(BBI, Fallthrough); 7712 // Put Cond in a virtual register to make it available from the new blocks. 7713 ExportFromCurrentBlock(Cond); 7714 } 7715 7716 switch (I->Kind) { 7717 case CC_JumpTable: { 7718 // FIXME: Optimize away range check based on pivot comparisons. 7719 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7720 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7721 7722 // The jump block hasn't been inserted yet; insert it here. 7723 MachineBasicBlock *JumpMBB = JT->MBB; 7724 CurMF->insert(BBI, JumpMBB); 7725 addSuccessorWithWeight(CurMBB, Fallthrough); 7726 addSuccessorWithWeight(CurMBB, JumpMBB); 7727 7728 // The jump table header will be inserted in our current block, do the 7729 // range check, and fall through to our fallthrough block. 7730 JTH->HeaderBB = CurMBB; 7731 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7732 7733 // If we're in the right place, emit the jump table header right now. 7734 if (CurMBB == SwitchMBB) { 7735 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7736 JTH->Emitted = true; 7737 } 7738 break; 7739 } 7740 case CC_BitTests: { 7741 // FIXME: Optimize away range check based on pivot comparisons. 7742 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7743 7744 // The bit test blocks haven't been inserted yet; insert them here. 7745 for (BitTestCase &BTC : BTB->Cases) 7746 CurMF->insert(BBI, BTC.ThisBB); 7747 7748 // Fill in fields of the BitTestBlock. 7749 BTB->Parent = CurMBB; 7750 BTB->Default = Fallthrough; 7751 7752 // If we're in the right place, emit the bit test header header right now. 7753 if (CurMBB ==SwitchMBB) { 7754 visitBitTestHeader(*BTB, SwitchMBB); 7755 BTB->Emitted = true; 7756 } 7757 break; 7758 } 7759 case CC_Range: { 7760 const Value *RHS, *LHS, *MHS; 7761 ISD::CondCode CC; 7762 if (I->Low == I->High) { 7763 // Check Cond == I->Low. 7764 CC = ISD::SETEQ; 7765 LHS = Cond; 7766 RHS=I->Low; 7767 MHS = nullptr; 7768 } else { 7769 // Check I->Low <= Cond <= I->High. 7770 CC = ISD::SETLE; 7771 LHS = I->Low; 7772 MHS = Cond; 7773 RHS = I->High; 7774 } 7775 7776 // The false weight is the sum of all unhandled cases. 7777 UnhandledWeights -= I->Weight; 7778 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7779 UnhandledWeights); 7780 7781 if (CurMBB == SwitchMBB) 7782 visitSwitchCase(CB, SwitchMBB); 7783 else 7784 SwitchCases.push_back(CB); 7785 7786 break; 7787 } 7788 } 7789 CurMBB = Fallthrough; 7790 } 7791 } 7792 7793 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7794 const SwitchWorkListItem &W, 7795 Value *Cond, 7796 MachineBasicBlock *SwitchMBB) { 7797 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7798 "Clusters not sorted?"); 7799 7800 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 7801 assert(NumClusters >= 2 && "Too small to split!"); 7802 7803 // FIXME: When we have profile info, we might want to balance the tree based 7804 // on weights instead of node count. 7805 7806 CaseClusterIt PivotCluster = W.FirstCluster + NumClusters / 2; 7807 CaseClusterIt FirstLeft = W.FirstCluster; 7808 CaseClusterIt LastLeft = PivotCluster - 1; 7809 CaseClusterIt FirstRight = PivotCluster; 7810 CaseClusterIt LastRight = W.LastCluster; 7811 const ConstantInt *Pivot = PivotCluster->Low; 7812 7813 // New blocks will be inserted immediately after the current one. 7814 MachineFunction::iterator BBI = W.MBB; 7815 ++BBI; 7816 7817 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 7818 // we can branch to its destination directly if it's squeezed exactly in 7819 // between the known lower bound and Pivot - 1. 7820 MachineBasicBlock *LeftMBB; 7821 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 7822 FirstLeft->Low == W.GE && 7823 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 7824 LeftMBB = FirstLeft->MBB; 7825 } else { 7826 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7827 FuncInfo.MF->insert(BBI, LeftMBB); 7828 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 7829 // Put Cond in a virtual register to make it available from the new blocks. 7830 ExportFromCurrentBlock(Cond); 7831 } 7832 7833 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 7834 // single cluster, RHS.Low == Pivot, and we can branch to its destination 7835 // directly if RHS.High equals the current upper bound. 7836 MachineBasicBlock *RightMBB; 7837 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 7838 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 7839 RightMBB = FirstRight->MBB; 7840 } else { 7841 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7842 FuncInfo.MF->insert(BBI, RightMBB); 7843 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 7844 // Put Cond in a virtual register to make it available from the new blocks. 7845 ExportFromCurrentBlock(Cond); 7846 } 7847 7848 // Create the CaseBlock record that will be used to lower the branch. 7849 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB); 7850 7851 if (W.MBB == SwitchMBB) 7852 visitSwitchCase(CB, SwitchMBB); 7853 else 7854 SwitchCases.push_back(CB); 7855 } 7856 7857 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 7858 // Extract cases from the switch. 7859 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7860 CaseClusterVector Clusters; 7861 Clusters.reserve(SI.getNumCases()); 7862 for (auto I : SI.cases()) { 7863 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 7864 const ConstantInt *CaseVal = I.getCaseValue(); 7865 uint32_t Weight = 0; // FIXME: Use 1 instead? 7866 if (BPI) { 7867 Weight = BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()); 7868 assert(Weight <= UINT32_MAX / SI.getNumSuccessors()); 7869 } 7870 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 7871 } 7872 7873 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 7874 7875 if (TM.getOptLevel() != CodeGenOpt::None) { 7876 // Cluster adjacent cases with the same destination. 7877 sortAndRangeify(Clusters); 7878 7879 // Replace an unreachable default with the most popular destination. 7880 // FIXME: Exploit unreachable default more aggressively. 7881 bool UnreachableDefault = 7882 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 7883 if (UnreachableDefault && !Clusters.empty()) { 7884 DenseMap<const BasicBlock *, unsigned> Popularity; 7885 unsigned MaxPop = 0; 7886 const BasicBlock *MaxBB = nullptr; 7887 for (auto I : SI.cases()) { 7888 const BasicBlock *BB = I.getCaseSuccessor(); 7889 if (++Popularity[BB] > MaxPop) { 7890 MaxPop = Popularity[BB]; 7891 MaxBB = BB; 7892 } 7893 } 7894 // Set new default. 7895 assert(MaxPop > 0 && MaxBB); 7896 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 7897 7898 // Remove cases that were pointing to the destination that is now the 7899 // default. 7900 CaseClusterVector New; 7901 New.reserve(Clusters.size()); 7902 for (CaseCluster &CC : Clusters) { 7903 if (CC.MBB != DefaultMBB) 7904 New.push_back(CC); 7905 } 7906 Clusters = std::move(New); 7907 } 7908 } 7909 7910 // If there is only the default destination, jump there directly. 7911 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 7912 if (Clusters.empty()) { 7913 SwitchMBB->addSuccessor(DefaultMBB); 7914 if (DefaultMBB != NextBlock(SwitchMBB)) { 7915 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 7916 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 7917 } 7918 return; 7919 } 7920 7921 if (TM.getOptLevel() != CodeGenOpt::None) { 7922 findJumpTables(Clusters, &SI, DefaultMBB); 7923 findBitTestClusters(Clusters, &SI); 7924 } 7925 7926 7927 DEBUG({ 7928 dbgs() << "Case clusters: "; 7929 for (const CaseCluster &C : Clusters) { 7930 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 7931 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 7932 7933 C.Low->getValue().print(dbgs(), true); 7934 if (C.Low != C.High) { 7935 dbgs() << '-'; 7936 C.High->getValue().print(dbgs(), true); 7937 } 7938 dbgs() << ' '; 7939 } 7940 dbgs() << '\n'; 7941 }); 7942 7943 assert(!Clusters.empty()); 7944 SwitchWorkList WorkList; 7945 CaseClusterIt First = Clusters.begin(); 7946 CaseClusterIt Last = Clusters.end() - 1; 7947 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 7948 7949 while (!WorkList.empty()) { 7950 SwitchWorkListItem W = WorkList.back(); 7951 WorkList.pop_back(); 7952 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 7953 7954 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 7955 // For optimized builds, lower large range as a balanced binary tree. 7956 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 7957 continue; 7958 } 7959 7960 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 7961 } 7962 } 7963