xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7afb51e035709e7f2532452054a39fe968444504)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/IR/Statepoint.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/User.h"
91 #include "llvm/IR/Value.h"
92 #include "llvm/MC/MCContext.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/InstructionCost.h"
99 #include "llvm/Support/MathExtras.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetIntrinsicInfo.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include "llvm/TargetParser/Triple.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include <cstddef>
107 #include <deque>
108 #include <iterator>
109 #include <limits>
110 #include <optional>
111 #include <tuple>
112 
113 using namespace llvm;
114 using namespace PatternMatch;
115 using namespace SwitchCG;
116 
117 #define DEBUG_TYPE "isel"
118 
119 /// LimitFloatPrecision - Generate low-precision inline sequences for
120 /// some float libcalls (6, 8 or 12 bits).
121 static unsigned LimitFloatPrecision;
122 
123 static cl::opt<bool>
124     InsertAssertAlign("insert-assert-align", cl::init(true),
125                       cl::desc("Insert the experimental `assertalign` node."),
126                       cl::ReallyHidden);
127 
128 static cl::opt<unsigned, true>
129     LimitFPPrecision("limit-float-precision",
130                      cl::desc("Generate low-precision inline sequences "
131                               "for some float libcalls"),
132                      cl::location(LimitFloatPrecision), cl::Hidden,
133                      cl::init(0));
134 
135 static cl::opt<unsigned> SwitchPeelThreshold(
136     "switch-peel-threshold", cl::Hidden, cl::init(66),
137     cl::desc("Set the case probability threshold for peeling the case from a "
138              "switch statement. A value greater than 100 will void this "
139              "optimization"));
140 
141 // Limit the width of DAG chains. This is important in general to prevent
142 // DAG-based analysis from blowing up. For example, alias analysis and
143 // load clustering may not complete in reasonable time. It is difficult to
144 // recognize and avoid this situation within each individual analysis, and
145 // future analyses are likely to have the same behavior. Limiting DAG width is
146 // the safe approach and will be especially important with global DAGs.
147 //
148 // MaxParallelChains default is arbitrarily high to avoid affecting
149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
150 // sequence over this should have been converted to llvm.memcpy by the
151 // frontend. It is easy to induce this behavior with .ll code such as:
152 // %buffer = alloca [4096 x i8]
153 // %data = load [4096 x i8]* %argPtr
154 // store [4096 x i8] %data, [4096 x i8]* %buffer
155 static const unsigned MaxParallelChains = 64;
156 
157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
158                                       const SDValue *Parts, unsigned NumParts,
159                                       MVT PartVT, EVT ValueVT, const Value *V,
160                                       SDValue InChain,
161                                       std::optional<CallingConv::ID> CC);
162 
163 /// getCopyFromParts - Create a value that contains the specified legal parts
164 /// combined into the value they represent.  If the parts combine to a type
165 /// larger than ValueVT then AssertOp can be used to specify whether the extra
166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
167 /// (ISD::AssertSext).
168 static SDValue
169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
170                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
171                  SDValue InChain,
172                  std::optional<CallingConv::ID> CC = std::nullopt,
173                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174   // Let the target assemble the parts if it wants to
175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
176   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
177                                                    PartVT, ValueVT, CC))
178     return Val;
179 
180   if (ValueVT.isVector())
181     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
182                                   InChain, CC);
183 
184   assert(NumParts > 0 && "No parts to assemble!");
185   SDValue Val = Parts[0];
186 
187   if (NumParts > 1) {
188     // Assemble the value from multiple parts.
189     if (ValueVT.isInteger()) {
190       unsigned PartBits = PartVT.getSizeInBits();
191       unsigned ValueBits = ValueVT.getSizeInBits();
192 
193       // Assemble the power of 2 part.
194       unsigned RoundParts = llvm::bit_floor(NumParts);
195       unsigned RoundBits = PartBits * RoundParts;
196       EVT RoundVT = RoundBits == ValueBits ?
197         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
198       SDValue Lo, Hi;
199 
200       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
201 
202       if (RoundParts > 2) {
203         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
204                               InChain);
205         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
206                               PartVT, HalfVT, V, InChain);
207       } else {
208         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
209         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
210       }
211 
212       if (DAG.getDataLayout().isBigEndian())
213         std::swap(Lo, Hi);
214 
215       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
216 
217       if (RoundParts < NumParts) {
218         // Assemble the trailing non-power-of-2 part.
219         unsigned OddParts = NumParts - RoundParts;
220         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
221         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
222                               OddVT, V, InChain, CC);
223 
224         // Combine the round and odd parts.
225         Lo = Val;
226         if (DAG.getDataLayout().isBigEndian())
227           std::swap(Lo, Hi);
228         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
229         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
230         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
231                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
232                                          TLI.getShiftAmountTy(
233                                              TotalVT, DAG.getDataLayout())));
234         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
235         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
236       }
237     } else if (PartVT.isFloatingPoint()) {
238       // FP split into multiple FP parts (for ppcf128)
239       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
240              "Unexpected split");
241       SDValue Lo, Hi;
242       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
243       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
244       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
245         std::swap(Lo, Hi);
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
247     } else {
248       // FP split into integer parts (soft fp)
249       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
250              !PartVT.isVector() && "Unexpected split");
251       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
252       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
253                              InChain, CC);
254     }
255   }
256 
257   // There is now one part, held in Val.  Correct it to match ValueVT.
258   // PartEVT is the type of the register class that holds the value.
259   // ValueVT is the type of the inline asm operation.
260   EVT PartEVT = Val.getValueType();
261 
262   if (PartEVT == ValueVT)
263     return Val;
264 
265   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
266       ValueVT.bitsLT(PartEVT)) {
267     // For an FP value in an integer part, we need to truncate to the right
268     // width first.
269     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
270     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
271   }
272 
273   // Handle types that have the same size.
274   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
275     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
276 
277   // Handle types with different sizes.
278   if (PartEVT.isInteger() && ValueVT.isInteger()) {
279     if (ValueVT.bitsLT(PartEVT)) {
280       // For a truncate, see if we have any information to
281       // indicate whether the truncated bits will always be
282       // zero or sign-extension.
283       if (AssertOp)
284         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
285                           DAG.getValueType(ValueVT));
286       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
287     }
288     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
289   }
290 
291   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
292     // FP_ROUND's are always exact here.
293     if (ValueVT.bitsLT(Val.getValueType())) {
294 
295       SDValue NoChange =
296           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
297 
298       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
299               llvm::Attribute::StrictFP)) {
300         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
301                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
302                            NoChange);
303       }
304 
305       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
306     }
307 
308     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
309   }
310 
311   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
312   // then truncating.
313   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
314       ValueVT.bitsLT(PartEVT)) {
315     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
316     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317   }
318 
319   report_fatal_error("Unknown mismatch in getCopyFromParts!");
320 }
321 
322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
323                                               const Twine &ErrMsg) {
324   const Instruction *I = dyn_cast_or_null<Instruction>(V);
325   if (!V)
326     return Ctx.emitError(ErrMsg);
327 
328   const char *AsmError = ", possible invalid constraint for vector type";
329   if (const CallInst *CI = dyn_cast<CallInst>(I))
330     if (CI->isInlineAsm())
331       return Ctx.emitError(I, ErrMsg + AsmError);
332 
333   return Ctx.emitError(I, ErrMsg);
334 }
335 
336 /// getCopyFromPartsVector - Create a value that contains the specified legal
337 /// parts combined into the value they represent.  If the parts combine to a
338 /// type larger than ValueVT then AssertOp can be used to specify whether the
339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
340 /// ValueVT (ISD::AssertSext).
341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
342                                       const SDValue *Parts, unsigned NumParts,
343                                       MVT PartVT, EVT ValueVT, const Value *V,
344                                       SDValue InChain,
345                                       std::optional<CallingConv::ID> CallConv) {
346   assert(ValueVT.isVector() && "Not a vector value");
347   assert(NumParts > 0 && "No parts to assemble!");
348   const bool IsABIRegCopy = CallConv.has_value();
349 
350   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
351   SDValue Val = Parts[0];
352 
353   // Handle a multi-element vector.
354   if (NumParts > 1) {
355     EVT IntermediateVT;
356     MVT RegisterVT;
357     unsigned NumIntermediates;
358     unsigned NumRegs;
359 
360     if (IsABIRegCopy) {
361       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
362           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
363           NumIntermediates, RegisterVT);
364     } else {
365       NumRegs =
366           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
367                                      NumIntermediates, RegisterVT);
368     }
369 
370     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
371     NumParts = NumRegs; // Silence a compiler warning.
372     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
373     assert(RegisterVT.getSizeInBits() ==
374            Parts[0].getSimpleValueType().getSizeInBits() &&
375            "Part type sizes don't match!");
376 
377     // Assemble the parts into intermediate operands.
378     SmallVector<SDValue, 8> Ops(NumIntermediates);
379     if (NumIntermediates == NumParts) {
380       // If the register was not expanded, truncate or copy the value,
381       // as appropriate.
382       for (unsigned i = 0; i != NumParts; ++i)
383         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
384                                   V, InChain, CallConv);
385     } else if (NumParts > 0) {
386       // If the intermediate type was expanded, build the intermediate
387       // operands from the parts.
388       assert(NumParts % NumIntermediates == 0 &&
389              "Must expand into a divisible number of parts!");
390       unsigned Factor = NumParts / NumIntermediates;
391       for (unsigned i = 0; i != NumIntermediates; ++i)
392         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
393                                   IntermediateVT, V, InChain, CallConv);
394     }
395 
396     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
397     // intermediate operands.
398     EVT BuiltVectorTy =
399         IntermediateVT.isVector()
400             ? EVT::getVectorVT(
401                   *DAG.getContext(), IntermediateVT.getScalarType(),
402                   IntermediateVT.getVectorElementCount() * NumParts)
403             : EVT::getVectorVT(*DAG.getContext(),
404                                IntermediateVT.getScalarType(),
405                                NumIntermediates);
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // Vector/Vector bitcast.
419     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
420       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422     // If the parts vector has more elements than the value vector, then we
423     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
424     // Extract the elements we want.
425     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
426       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
427               ValueVT.getVectorElementCount().getKnownMinValue()) &&
428              (PartEVT.getVectorElementCount().isScalable() ==
429               ValueVT.getVectorElementCount().isScalable()) &&
430              "Cannot narrow, it would be a lossy transformation");
431       PartEVT =
432           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
433                            ValueVT.getVectorElementCount());
434       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
435                         DAG.getVectorIdxConstant(0, DL));
436       if (PartEVT == ValueVT)
437         return Val;
438       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
439         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440 
441       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
442       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
443         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444     }
445 
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448   }
449 
450   // Trivial bitcast if the types are the same size and the destination
451   // vector type is legal.
452   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
453       TLI.isTypeLegal(ValueVT))
454     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
455 
456   if (ValueVT.getVectorNumElements() != 1) {
457      // Certain ABIs require that vectors are passed as integers. For vectors
458      // are the same size, this is an obvious bitcast.
459      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
460        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461      } else if (ValueVT.bitsLT(PartEVT)) {
462        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
463        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
464        // Drop the extra bits.
465        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
466        return DAG.getBitcast(ValueVT, Val);
467      }
468 
469      diagnosePossiblyInvalidConstraint(
470          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
471      return DAG.getUNDEF(ValueVT);
472   }
473 
474   // Handle cases such as i8 -> <1 x i1>
475   EVT ValueSVT = ValueVT.getVectorElementType();
476   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
477     unsigned ValueSize = ValueSVT.getSizeInBits();
478     if (ValueSize == PartEVT.getSizeInBits()) {
479       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
480     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
481       // It's possible a scalar floating point type gets softened to integer and
482       // then promoted to a larger integer. If PartEVT is the larger integer
483       // we need to truncate it and then bitcast to the FP type.
484       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
485       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
486       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
487       Val = DAG.getBitcast(ValueSVT, Val);
488     } else {
489       Val = ValueVT.isFloatingPoint()
490                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
491                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
492     }
493   }
494 
495   return DAG.getBuildVector(ValueVT, DL, Val);
496 }
497 
498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
499                                  SDValue Val, SDValue *Parts, unsigned NumParts,
500                                  MVT PartVT, const Value *V,
501                                  std::optional<CallingConv::ID> CallConv);
502 
503 /// getCopyToParts - Create a series of nodes that contain the specified value
504 /// split into legal parts.  If the parts contain more bits than Val, then, for
505 /// integers, ExtendKind can be used to specify how to generate the extra bits.
506 static void
507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
508                unsigned NumParts, MVT PartVT, const Value *V,
509                std::optional<CallingConv::ID> CallConv = std::nullopt,
510                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
511   // Let the target split the parts if it wants to
512   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
513   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
514                                       CallConv))
515     return;
516   EVT ValueVT = Val.getValueType();
517 
518   // Handle the vector case separately.
519   if (ValueVT.isVector())
520     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
521                                 CallConv);
522 
523   unsigned OrigNumParts = NumParts;
524   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
525          "Copying to an illegal type!");
526 
527   if (NumParts == 0)
528     return;
529 
530   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
531   EVT PartEVT = PartVT;
532   if (PartEVT == ValueVT) {
533     assert(NumParts == 1 && "No-op copy with multiple parts!");
534     Parts[0] = Val;
535     return;
536   }
537 
538   unsigned PartBits = PartVT.getSizeInBits();
539   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540     // If the parts cover more bits than the value has, promote the value.
541     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542       assert(NumParts == 1 && "Do not know what to promote to!");
543       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
544     } else {
545       if (ValueVT.isFloatingPoint()) {
546         // FP values need to be bitcast, then extended if they are being put
547         // into a larger container.
548         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
549         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
550       }
551       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
552              ValueVT.isInteger() &&
553              "Unknown mismatch!");
554       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
555       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
556       if (PartVT == MVT::x86mmx)
557         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
558     }
559   } else if (PartBits == ValueVT.getSizeInBits()) {
560     // Different types of the same size.
561     assert(NumParts == 1 && PartEVT != ValueVT);
562     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
564     // If the parts cover less bits than value has, truncate the value.
565     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
566            ValueVT.isInteger() &&
567            "Unknown mismatch!");
568     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
569     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
570     if (PartVT == MVT::x86mmx)
571       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572   }
573 
574   // The value may have changed - recompute ValueVT.
575   ValueVT = Val.getValueType();
576   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
577          "Failed to tile the value with PartVT!");
578 
579   if (NumParts == 1) {
580     if (PartEVT != ValueVT) {
581       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
582                                         "scalar-to-vector conversion failed");
583       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
584     }
585 
586     Parts[0] = Val;
587     return;
588   }
589 
590   // Expand the value into multiple parts.
591   if (NumParts & (NumParts - 1)) {
592     // The number of parts is not a power of 2.  Split off and copy the tail.
593     assert(PartVT.isInteger() && ValueVT.isInteger() &&
594            "Do not know what to expand to!");
595     unsigned RoundParts = llvm::bit_floor(NumParts);
596     unsigned RoundBits = RoundParts * PartBits;
597     unsigned OddParts = NumParts - RoundParts;
598     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
599       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
600 
601     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
602                    CallConv);
603 
604     if (DAG.getDataLayout().isBigEndian())
605       // The odd parts were reversed by getCopyToParts - unreverse them.
606       std::reverse(Parts + RoundParts, Parts + NumParts);
607 
608     NumParts = RoundParts;
609     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
610     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
611   }
612 
613   // The number of parts is a power of 2.  Repeatedly bisect the value using
614   // EXTRACT_ELEMENT.
615   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
616                          EVT::getIntegerVT(*DAG.getContext(),
617                                            ValueVT.getSizeInBits()),
618                          Val);
619 
620   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
621     for (unsigned i = 0; i < NumParts; i += StepSize) {
622       unsigned ThisBits = StepSize * PartBits / 2;
623       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
624       SDValue &Part0 = Parts[i];
625       SDValue &Part1 = Parts[i+StepSize/2];
626 
627       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
629       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
630                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
631 
632       if (ThisBits == PartBits && ThisVT != PartVT) {
633         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
634         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
635       }
636     }
637   }
638 
639   if (DAG.getDataLayout().isBigEndian())
640     std::reverse(Parts, Parts + OrigNumParts);
641 }
642 
643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
644                                      const SDLoc &DL, EVT PartVT) {
645   if (!PartVT.isVector())
646     return SDValue();
647 
648   EVT ValueVT = Val.getValueType();
649   EVT PartEVT = PartVT.getVectorElementType();
650   EVT ValueEVT = ValueVT.getVectorElementType();
651   ElementCount PartNumElts = PartVT.getVectorElementCount();
652   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
653 
654   // We only support widening vectors with equivalent element types and
655   // fixed/scalable properties. If a target needs to widen a fixed-length type
656   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
657   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
658       PartNumElts.isScalable() != ValueNumElts.isScalable())
659     return SDValue();
660 
661   // Have a try for bf16 because some targets share its ABI with fp16.
662   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
663     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
664            "Cannot widen to illegal type");
665     Val = DAG.getNode(ISD::BITCAST, DL,
666                       ValueVT.changeVectorElementType(MVT::f16), Val);
667   } else if (PartEVT != ValueEVT) {
668     return SDValue();
669   }
670 
671   // Widening a scalable vector to another scalable vector is done by inserting
672   // the vector into a larger undef one.
673   if (PartNumElts.isScalable())
674     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
675                        Val, DAG.getVectorIdxConstant(0, DL));
676 
677   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
678   // undef elements.
679   SmallVector<SDValue, 16> Ops;
680   DAG.ExtractVectorElements(Val, Ops);
681   SDValue EltUndef = DAG.getUNDEF(PartEVT);
682   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
683 
684   // FIXME: Use CONCAT for 2x -> 4x.
685   return DAG.getBuildVector(PartVT, DL, Ops);
686 }
687 
688 /// getCopyToPartsVector - Create a series of nodes that contain the specified
689 /// value split into legal parts.
690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
691                                  SDValue Val, SDValue *Parts, unsigned NumParts,
692                                  MVT PartVT, const Value *V,
693                                  std::optional<CallingConv::ID> CallConv) {
694   EVT ValueVT = Val.getValueType();
695   assert(ValueVT.isVector() && "Not a vector");
696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
697   const bool IsABIRegCopy = CallConv.has_value();
698 
699   if (NumParts == 1) {
700     EVT PartEVT = PartVT;
701     if (PartEVT == ValueVT) {
702       // Nothing to do.
703     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
704       // Bitconvert vector->vector case.
705       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
706     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
707       Val = Widened;
708     } else if (PartVT.isVector() &&
709                PartEVT.getVectorElementType().bitsGE(
710                    ValueVT.getVectorElementType()) &&
711                PartEVT.getVectorElementCount() ==
712                    ValueVT.getVectorElementCount()) {
713 
714       // Promoted vector extract
715       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
716     } else if (PartEVT.isVector() &&
717                PartEVT.getVectorElementType() !=
718                    ValueVT.getVectorElementType() &&
719                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
720                    TargetLowering::TypeWidenVector) {
721       // Combination of widening and promotion.
722       EVT WidenVT =
723           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
724                            PartVT.getVectorElementCount());
725       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
726       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
727     } else {
728       // Don't extract an integer from a float vector. This can happen if the
729       // FP type gets softened to integer and then promoted. The promotion
730       // prevents it from being picked up by the earlier bitcast case.
731       if (ValueVT.getVectorElementCount().isScalar() &&
732           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
733         // If we reach this condition and PartVT is FP, this means that
734         // ValueVT is also FP and both have a different size, otherwise we
735         // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
736         // would be invalid since that would mean the smaller FP type has to
737         // be extended to the larger one.
738         if (PartVT.isFloatingPoint()) {
739           Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
740           Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
741         } else
742           Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
743                             DAG.getVectorIdxConstant(0, DL));
744       } else {
745         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
746         assert(PartVT.getFixedSizeInBits() > ValueSize &&
747                "lossy conversion of vector to scalar type");
748         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
749         Val = DAG.getBitcast(IntermediateType, Val);
750         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
751       }
752     }
753 
754     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
755     Parts[0] = Val;
756     return;
757   }
758 
759   // Handle a multi-element vector.
760   EVT IntermediateVT;
761   MVT RegisterVT;
762   unsigned NumIntermediates;
763   unsigned NumRegs;
764   if (IsABIRegCopy) {
765     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
766         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
767         RegisterVT);
768   } else {
769     NumRegs =
770         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
771                                    NumIntermediates, RegisterVT);
772   }
773 
774   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
775   NumParts = NumRegs; // Silence a compiler warning.
776   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
777 
778   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
779          "Mixing scalable and fixed vectors when copying in parts");
780 
781   std::optional<ElementCount> DestEltCnt;
782 
783   if (IntermediateVT.isVector())
784     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
785   else
786     DestEltCnt = ElementCount::getFixed(NumIntermediates);
787 
788   EVT BuiltVectorTy = EVT::getVectorVT(
789       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
790 
791   if (ValueVT == BuiltVectorTy) {
792     // Nothing to do.
793   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
794     // Bitconvert vector->vector case.
795     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
796   } else {
797     if (BuiltVectorTy.getVectorElementType().bitsGT(
798             ValueVT.getVectorElementType())) {
799       // Integer promotion.
800       ValueVT = EVT::getVectorVT(*DAG.getContext(),
801                                  BuiltVectorTy.getVectorElementType(),
802                                  ValueVT.getVectorElementCount());
803       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
804     }
805 
806     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
807       Val = Widened;
808     }
809   }
810 
811   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
812 
813   // Split the vector into intermediate operands.
814   SmallVector<SDValue, 8> Ops(NumIntermediates);
815   for (unsigned i = 0; i != NumIntermediates; ++i) {
816     if (IntermediateVT.isVector()) {
817       // This does something sensible for scalable vectors - see the
818       // definition of EXTRACT_SUBVECTOR for further details.
819       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
820       Ops[i] =
821           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
822                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
823     } else {
824       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
825                            DAG.getVectorIdxConstant(i, DL));
826     }
827   }
828 
829   // Split the intermediate operands into legal parts.
830   if (NumParts == NumIntermediates) {
831     // If the register was not expanded, promote or copy the value,
832     // as appropriate.
833     for (unsigned i = 0; i != NumParts; ++i)
834       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
835   } else if (NumParts > 0) {
836     // If the intermediate type was expanded, split each the value into
837     // legal parts.
838     assert(NumIntermediates != 0 && "division by zero");
839     assert(NumParts % NumIntermediates == 0 &&
840            "Must expand into a divisible number of parts!");
841     unsigned Factor = NumParts / NumIntermediates;
842     for (unsigned i = 0; i != NumIntermediates; ++i)
843       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
844                      CallConv);
845   }
846 }
847 
848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
849                            EVT valuevt, std::optional<CallingConv::ID> CC)
850     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
851       RegCount(1, regs.size()), CallConv(CC) {}
852 
853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
854                            const DataLayout &DL, unsigned Reg, Type *Ty,
855                            std::optional<CallingConv::ID> CC) {
856   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
857 
858   CallConv = CC;
859 
860   for (EVT ValueVT : ValueVTs) {
861     unsigned NumRegs =
862         isABIMangled()
863             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
864             : TLI.getNumRegisters(Context, ValueVT);
865     MVT RegisterVT =
866         isABIMangled()
867             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
868             : TLI.getRegisterType(Context, ValueVT);
869     for (unsigned i = 0; i != NumRegs; ++i)
870       Regs.push_back(Reg + i);
871     RegVTs.push_back(RegisterVT);
872     RegCount.push_back(NumRegs);
873     Reg += NumRegs;
874   }
875 }
876 
877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
878                                       FunctionLoweringInfo &FuncInfo,
879                                       const SDLoc &dl, SDValue &Chain,
880                                       SDValue *Glue, const Value *V) const {
881   // A Value with type {} or [0 x %t] needs no registers.
882   if (ValueVTs.empty())
883     return SDValue();
884 
885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
886 
887   // Assemble the legal parts into the final values.
888   SmallVector<SDValue, 4> Values(ValueVTs.size());
889   SmallVector<SDValue, 8> Parts;
890   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
891     // Copy the legal parts from the registers.
892     EVT ValueVT = ValueVTs[Value];
893     unsigned NumRegs = RegCount[Value];
894     MVT RegisterVT = isABIMangled()
895                          ? TLI.getRegisterTypeForCallingConv(
896                                *DAG.getContext(), *CallConv, RegVTs[Value])
897                          : RegVTs[Value];
898 
899     Parts.resize(NumRegs);
900     for (unsigned i = 0; i != NumRegs; ++i) {
901       SDValue P;
902       if (!Glue) {
903         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
904       } else {
905         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
906         *Glue = P.getValue(2);
907       }
908 
909       Chain = P.getValue(1);
910       Parts[i] = P;
911 
912       // If the source register was virtual and if we know something about it,
913       // add an assert node.
914       if (!Register::isVirtualRegister(Regs[Part + i]) ||
915           !RegisterVT.isInteger())
916         continue;
917 
918       const FunctionLoweringInfo::LiveOutInfo *LOI =
919         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
920       if (!LOI)
921         continue;
922 
923       unsigned RegSize = RegisterVT.getScalarSizeInBits();
924       unsigned NumSignBits = LOI->NumSignBits;
925       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
926 
927       if (NumZeroBits == RegSize) {
928         // The current value is a zero.
929         // Explicitly express that as it would be easier for
930         // optimizations to kick in.
931         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
932         continue;
933       }
934 
935       // FIXME: We capture more information than the dag can represent.  For
936       // now, just use the tightest assertzext/assertsext possible.
937       bool isSExt;
938       EVT FromVT(MVT::Other);
939       if (NumZeroBits) {
940         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
941         isSExt = false;
942       } else if (NumSignBits > 1) {
943         FromVT =
944             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
945         isSExt = true;
946       } else {
947         continue;
948       }
949       // Add an assertion node.
950       assert(FromVT != MVT::Other);
951       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
952                              RegisterVT, P, DAG.getValueType(FromVT));
953     }
954 
955     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
956                                      RegisterVT, ValueVT, V, Chain, CallConv);
957     Part += NumRegs;
958     Parts.clear();
959   }
960 
961   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
962 }
963 
964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
965                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
966                                  const Value *V,
967                                  ISD::NodeType PreferredExtendType) const {
968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
969   ISD::NodeType ExtendKind = PreferredExtendType;
970 
971   // Get the list of the values's legal parts.
972   unsigned NumRegs = Regs.size();
973   SmallVector<SDValue, 8> Parts(NumRegs);
974   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumParts = RegCount[Value];
976 
977     MVT RegisterVT = isABIMangled()
978                          ? TLI.getRegisterTypeForCallingConv(
979                                *DAG.getContext(), *CallConv, RegVTs[Value])
980                          : RegVTs[Value];
981 
982     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
983       ExtendKind = ISD::ZERO_EXTEND;
984 
985     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
986                    NumParts, RegisterVT, V, CallConv, ExtendKind);
987     Part += NumParts;
988   }
989 
990   // Copy the parts into the registers.
991   SmallVector<SDValue, 8> Chains(NumRegs);
992   for (unsigned i = 0; i != NumRegs; ++i) {
993     SDValue Part;
994     if (!Glue) {
995       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
996     } else {
997       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
998       *Glue = Part.getValue(1);
999     }
1000 
1001     Chains[i] = Part.getValue(0);
1002   }
1003 
1004   if (NumRegs == 1 || Glue)
1005     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1006     // flagged to it. That is the CopyToReg nodes and the user are considered
1007     // a single scheduling unit. If we create a TokenFactor and return it as
1008     // chain, then the TokenFactor is both a predecessor (operand) of the
1009     // user as well as a successor (the TF operands are flagged to the user).
1010     // c1, f1 = CopyToReg
1011     // c2, f2 = CopyToReg
1012     // c3     = TokenFactor c1, c2
1013     // ...
1014     //        = op c3, ..., f2
1015     Chain = Chains[NumRegs-1];
1016   else
1017     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1018 }
1019 
1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1021                                         unsigned MatchingIdx, const SDLoc &dl,
1022                                         SelectionDAG &DAG,
1023                                         std::vector<SDValue> &Ops) const {
1024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1025 
1026   InlineAsm::Flag Flag(Code, Regs.size());
1027   if (HasMatching)
1028     Flag.setMatchingOp(MatchingIdx);
1029   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1030     // Put the register class of the virtual registers in the flag word.  That
1031     // way, later passes can recompute register class constraints for inline
1032     // assembly as well as normal instructions.
1033     // Don't do this for tied operands that can use the regclass information
1034     // from the def.
1035     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1036     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1037     Flag.setRegClass(RC->getID());
1038   }
1039 
1040   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1041   Ops.push_back(Res);
1042 
1043   if (Code == InlineAsm::Kind::Clobber) {
1044     // Clobbers should always have a 1:1 mapping with registers, and may
1045     // reference registers that have illegal (e.g. vector) types. Hence, we
1046     // shouldn't try to apply any sort of splitting logic to them.
1047     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1048            "No 1:1 mapping from clobbers to regs?");
1049     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1050     (void)SP;
1051     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1052       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1053       assert(
1054           (Regs[I] != SP ||
1055            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1056           "If we clobbered the stack pointer, MFI should know about it.");
1057     }
1058     return;
1059   }
1060 
1061   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1062     MVT RegisterVT = RegVTs[Value];
1063     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1064                                            RegisterVT);
1065     for (unsigned i = 0; i != NumRegs; ++i) {
1066       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1067       unsigned TheReg = Regs[Reg++];
1068       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1069     }
1070   }
1071 }
1072 
1073 SmallVector<std::pair<unsigned, TypeSize>, 4>
1074 RegsForValue::getRegsAndSizes() const {
1075   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1076   unsigned I = 0;
1077   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1078     unsigned RegCount = std::get<0>(CountAndVT);
1079     MVT RegisterVT = std::get<1>(CountAndVT);
1080     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1081     for (unsigned E = I + RegCount; I != E; ++I)
1082       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1083   }
1084   return OutVec;
1085 }
1086 
1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1088                                AssumptionCache *ac,
1089                                const TargetLibraryInfo *li) {
1090   AA = aa;
1091   AC = ac;
1092   GFI = gfi;
1093   LibInfo = li;
1094   Context = DAG.getContext();
1095   LPadToCallSiteMap.clear();
1096   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1097   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1098       *DAG.getMachineFunction().getFunction().getParent());
1099 }
1100 
1101 void SelectionDAGBuilder::clear() {
1102   NodeMap.clear();
1103   UnusedArgNodeMap.clear();
1104   PendingLoads.clear();
1105   PendingExports.clear();
1106   PendingConstrainedFP.clear();
1107   PendingConstrainedFPStrict.clear();
1108   CurInst = nullptr;
1109   HasTailCall = false;
1110   SDNodeOrder = LowestSDNodeOrder;
1111   StatepointLowering.clear();
1112 }
1113 
1114 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1115   DanglingDebugInfoMap.clear();
1116 }
1117 
1118 // Update DAG root to include dependencies on Pending chains.
1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1120   SDValue Root = DAG.getRoot();
1121 
1122   if (Pending.empty())
1123     return Root;
1124 
1125   // Add current root to PendingChains, unless we already indirectly
1126   // depend on it.
1127   if (Root.getOpcode() != ISD::EntryToken) {
1128     unsigned i = 0, e = Pending.size();
1129     for (; i != e; ++i) {
1130       assert(Pending[i].getNode()->getNumOperands() > 1);
1131       if (Pending[i].getNode()->getOperand(0) == Root)
1132         break;  // Don't add the root if we already indirectly depend on it.
1133     }
1134 
1135     if (i == e)
1136       Pending.push_back(Root);
1137   }
1138 
1139   if (Pending.size() == 1)
1140     Root = Pending[0];
1141   else
1142     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1143 
1144   DAG.setRoot(Root);
1145   Pending.clear();
1146   return Root;
1147 }
1148 
1149 SDValue SelectionDAGBuilder::getMemoryRoot() {
1150   return updateRoot(PendingLoads);
1151 }
1152 
1153 SDValue SelectionDAGBuilder::getRoot() {
1154   // Chain up all pending constrained intrinsics together with all
1155   // pending loads, by simply appending them to PendingLoads and
1156   // then calling getMemoryRoot().
1157   PendingLoads.reserve(PendingLoads.size() +
1158                        PendingConstrainedFP.size() +
1159                        PendingConstrainedFPStrict.size());
1160   PendingLoads.append(PendingConstrainedFP.begin(),
1161                       PendingConstrainedFP.end());
1162   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1163                       PendingConstrainedFPStrict.end());
1164   PendingConstrainedFP.clear();
1165   PendingConstrainedFPStrict.clear();
1166   return getMemoryRoot();
1167 }
1168 
1169 SDValue SelectionDAGBuilder::getControlRoot() {
1170   // We need to emit pending fpexcept.strict constrained intrinsics,
1171   // so append them to the PendingExports list.
1172   PendingExports.append(PendingConstrainedFPStrict.begin(),
1173                         PendingConstrainedFPStrict.end());
1174   PendingConstrainedFPStrict.clear();
1175   return updateRoot(PendingExports);
1176 }
1177 
1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1179                                              DILocalVariable *Variable,
1180                                              DIExpression *Expression,
1181                                              DebugLoc DL) {
1182   assert(Variable && "Missing variable");
1183 
1184   // Check if address has undef value.
1185   if (!Address || isa<UndefValue>(Address) ||
1186       (Address->use_empty() && !isa<Argument>(Address))) {
1187     LLVM_DEBUG(
1188         dbgs()
1189         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1190     return;
1191   }
1192 
1193   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1194 
1195   SDValue &N = NodeMap[Address];
1196   if (!N.getNode() && isa<Argument>(Address))
1197     // Check unused arguments map.
1198     N = UnusedArgNodeMap[Address];
1199   SDDbgValue *SDV;
1200   if (N.getNode()) {
1201     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1202       Address = BCI->getOperand(0);
1203     // Parameters are handled specially.
1204     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1205     if (IsParameter && FINode) {
1206       // Byval parameter. We have a frame index at this point.
1207       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1208                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1209     } else if (isa<Argument>(Address)) {
1210       // Address is an argument, so try to emit its dbg value using
1211       // virtual register info from the FuncInfo.ValueMap.
1212       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                FuncArgumentDbgValueKind::Declare, N);
1214       return;
1215     } else {
1216       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1217                             true, DL, SDNodeOrder);
1218     }
1219     DAG.AddDbgValue(SDV, IsParameter);
1220   } else {
1221     // If Address is an argument then try to emit its dbg value using
1222     // virtual register info from the FuncInfo.ValueMap.
1223     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1224                                   FuncArgumentDbgValueKind::Declare, N)) {
1225       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1226                         << " (could not emit func-arg dbg_value)\n");
1227     }
1228   }
1229   return;
1230 }
1231 
1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1233   // Add SDDbgValue nodes for any var locs here. Do so before updating
1234   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1235   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1236     // Add SDDbgValue nodes for any var locs here. Do so before updating
1237     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1238     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1239          It != End; ++It) {
1240       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1241       dropDanglingDebugInfo(Var, It->Expr);
1242       if (It->Values.isKillLocation(It->Expr)) {
1243         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1244         continue;
1245       }
1246       SmallVector<Value *> Values(It->Values.location_ops());
1247       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1248                             It->Values.hasArgList())) {
1249         SmallVector<Value *, 4> Vals(It->Values.location_ops());
1250         addDanglingDebugInfo(Vals,
1251                              FnVarLocs->getDILocalVariable(It->VariableID),
1252                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1253       }
1254     }
1255   }
1256 
1257   // We must skip DbgVariableRecords if they've already been processed above as
1258   // we have just emitted the debug values resulting from assignment tracking
1259   // analysis, making any existing DbgVariableRecords redundant (and probably
1260   // less correct). We still need to process DbgLabelRecords. This does sink
1261   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1262   // be important as it does so deterministcally and ordering between
1263   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1264   // printing).
1265   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1266   // Is there is any debug-info attached to this instruction, in the form of
1267   // DbgRecord non-instruction debug-info records.
1268   for (DbgRecord &DR : I.getDbgRecordRange()) {
1269     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1270       assert(DLR->getLabel() && "Missing label");
1271       SDDbgLabel *SDV =
1272           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1273       DAG.AddDbgLabel(SDV);
1274       continue;
1275     }
1276 
1277     if (SkipDbgVariableRecords)
1278       continue;
1279     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1280     DILocalVariable *Variable = DVR.getVariable();
1281     DIExpression *Expression = DVR.getExpression();
1282     dropDanglingDebugInfo(Variable, Expression);
1283 
1284     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1285       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1286         continue;
1287       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1288                         << "\n");
1289       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1290                          DVR.getDebugLoc());
1291       continue;
1292     }
1293 
1294     // A DbgVariableRecord with no locations is a kill location.
1295     SmallVector<Value *, 4> Values(DVR.location_ops());
1296     if (Values.empty()) {
1297       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1298                            SDNodeOrder);
1299       continue;
1300     }
1301 
1302     // A DbgVariableRecord with an undef or absent location is also a kill
1303     // location.
1304     if (llvm::any_of(Values,
1305                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1306       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1307                            SDNodeOrder);
1308       continue;
1309     }
1310 
1311     bool IsVariadic = DVR.hasArgList();
1312     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1313                           SDNodeOrder, IsVariadic)) {
1314       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1315                            DVR.getDebugLoc(), SDNodeOrder);
1316     }
1317   }
1318 }
1319 
1320 void SelectionDAGBuilder::visit(const Instruction &I) {
1321   visitDbgInfo(I);
1322 
1323   // Set up outgoing PHI node register values before emitting the terminator.
1324   if (I.isTerminator()) {
1325     HandlePHINodesInSuccessorBlocks(I.getParent());
1326   }
1327 
1328   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1329   if (!isa<DbgInfoIntrinsic>(I))
1330     ++SDNodeOrder;
1331 
1332   CurInst = &I;
1333 
1334   // Set inserted listener only if required.
1335   bool NodeInserted = false;
1336   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1337   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1338   MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1339   if (PCSectionsMD || MMRA) {
1340     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1341         DAG, [&](SDNode *) { NodeInserted = true; });
1342   }
1343 
1344   visit(I.getOpcode(), I);
1345 
1346   if (!I.isTerminator() && !HasTailCall &&
1347       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1348     CopyToExportRegsIfNeeded(&I);
1349 
1350   // Handle metadata.
1351   if (PCSectionsMD || MMRA) {
1352     auto It = NodeMap.find(&I);
1353     if (It != NodeMap.end()) {
1354       if (PCSectionsMD)
1355         DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1356       if (MMRA)
1357         DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1358     } else if (NodeInserted) {
1359       // This should not happen; if it does, don't let it go unnoticed so we can
1360       // fix it. Relevant visit*() function is probably missing a setValue().
1361       errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1362              << I.getModule()->getName() << "]\n";
1363       LLVM_DEBUG(I.dump());
1364       assert(false);
1365     }
1366   }
1367 
1368   CurInst = nullptr;
1369 }
1370 
1371 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1372   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1373 }
1374 
1375 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1376   // Note: this doesn't use InstVisitor, because it has to work with
1377   // ConstantExpr's in addition to instructions.
1378   switch (Opcode) {
1379   default: llvm_unreachable("Unknown instruction type encountered!");
1380     // Build the switch statement using the Instruction.def file.
1381 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1382     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1383 #include "llvm/IR/Instruction.def"
1384   }
1385 }
1386 
1387 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1388                                             DILocalVariable *Variable,
1389                                             DebugLoc DL, unsigned Order,
1390                                             SmallVectorImpl<Value *> &Values,
1391                                             DIExpression *Expression) {
1392   // For variadic dbg_values we will now insert an undef.
1393   // FIXME: We can potentially recover these!
1394   SmallVector<SDDbgOperand, 2> Locs;
1395   for (const Value *V : Values) {
1396     auto *Undef = UndefValue::get(V->getType());
1397     Locs.push_back(SDDbgOperand::fromConst(Undef));
1398   }
1399   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1400                                         /*IsIndirect=*/false, DL, Order,
1401                                         /*IsVariadic=*/true);
1402   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1403   return true;
1404 }
1405 
1406 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1407                                                DILocalVariable *Var,
1408                                                DIExpression *Expr,
1409                                                bool IsVariadic, DebugLoc DL,
1410                                                unsigned Order) {
1411   if (IsVariadic) {
1412     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1413     return;
1414   }
1415   // TODO: Dangling debug info will eventually either be resolved or produce
1416   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1417   // between the original dbg.value location and its resolved DBG_VALUE,
1418   // which we should ideally fill with an extra Undef DBG_VALUE.
1419   assert(Values.size() == 1);
1420   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1421 }
1422 
1423 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1424                                                 const DIExpression *Expr) {
1425   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1426     DIVariable *DanglingVariable = DDI.getVariable();
1427     DIExpression *DanglingExpr = DDI.getExpression();
1428     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1429       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1430                         << printDDI(nullptr, DDI) << "\n");
1431       return true;
1432     }
1433     return false;
1434   };
1435 
1436   for (auto &DDIMI : DanglingDebugInfoMap) {
1437     DanglingDebugInfoVector &DDIV = DDIMI.second;
1438 
1439     // If debug info is to be dropped, run it through final checks to see
1440     // whether it can be salvaged.
1441     for (auto &DDI : DDIV)
1442       if (isMatchingDbgValue(DDI))
1443         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1444 
1445     erase_if(DDIV, isMatchingDbgValue);
1446   }
1447 }
1448 
1449 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1450 // generate the debug data structures now that we've seen its definition.
1451 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1452                                                    SDValue Val) {
1453   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1454   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1455     return;
1456 
1457   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1458   for (auto &DDI : DDIV) {
1459     DebugLoc DL = DDI.getDebugLoc();
1460     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1461     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1462     DILocalVariable *Variable = DDI.getVariable();
1463     DIExpression *Expr = DDI.getExpression();
1464     assert(Variable->isValidLocationForIntrinsic(DL) &&
1465            "Expected inlined-at fields to agree");
1466     SDDbgValue *SDV;
1467     if (Val.getNode()) {
1468       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1469       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1470       // we couldn't resolve it directly when examining the DbgValue intrinsic
1471       // in the first place we should not be more successful here). Unless we
1472       // have some test case that prove this to be correct we should avoid
1473       // calling EmitFuncArgumentDbgValue here.
1474       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1475                                     FuncArgumentDbgValueKind::Value, Val)) {
1476         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1477                           << printDDI(V, DDI) << "\n");
1478         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1479         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1480         // inserted after the definition of Val when emitting the instructions
1481         // after ISel. An alternative could be to teach
1482         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1483         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1484                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1485                    << ValSDNodeOrder << "\n");
1486         SDV = getDbgValue(Val, Variable, Expr, DL,
1487                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1488         DAG.AddDbgValue(SDV, false);
1489       } else
1490         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1491                           << printDDI(V, DDI)
1492                           << " in EmitFuncArgumentDbgValue\n");
1493     } else {
1494       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1495                         << "\n");
1496       auto Undef = UndefValue::get(V->getType());
1497       auto SDV =
1498           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1499       DAG.AddDbgValue(SDV, false);
1500     }
1501   }
1502   DDIV.clear();
1503 }
1504 
1505 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1506                                                     DanglingDebugInfo &DDI) {
1507   // TODO: For the variadic implementation, instead of only checking the fail
1508   // state of `handleDebugValue`, we need know specifically which values were
1509   // invalid, so that we attempt to salvage only those values when processing
1510   // a DIArgList.
1511   const Value *OrigV = V;
1512   DILocalVariable *Var = DDI.getVariable();
1513   DIExpression *Expr = DDI.getExpression();
1514   DebugLoc DL = DDI.getDebugLoc();
1515   unsigned SDOrder = DDI.getSDNodeOrder();
1516 
1517   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1518   // that DW_OP_stack_value is desired.
1519   bool StackValue = true;
1520 
1521   // Can this Value can be encoded without any further work?
1522   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1523     return;
1524 
1525   // Attempt to salvage back through as many instructions as possible. Bail if
1526   // a non-instruction is seen, such as a constant expression or global
1527   // variable. FIXME: Further work could recover those too.
1528   while (isa<Instruction>(V)) {
1529     const Instruction &VAsInst = *cast<const Instruction>(V);
1530     // Temporary "0", awaiting real implementation.
1531     SmallVector<uint64_t, 16> Ops;
1532     SmallVector<Value *, 4> AdditionalValues;
1533     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1534                              Expr->getNumLocationOperands(), Ops,
1535                              AdditionalValues);
1536     // If we cannot salvage any further, and haven't yet found a suitable debug
1537     // expression, bail out.
1538     if (!V)
1539       break;
1540 
1541     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1542     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1543     // here for variadic dbg_values, remove that condition.
1544     if (!AdditionalValues.empty())
1545       break;
1546 
1547     // New value and expr now represent this debuginfo.
1548     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1549 
1550     // Some kind of simplification occurred: check whether the operand of the
1551     // salvaged debug expression can be encoded in this DAG.
1552     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1553       LLVM_DEBUG(
1554           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1555                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1556       return;
1557     }
1558   }
1559 
1560   // This was the final opportunity to salvage this debug information, and it
1561   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1562   // any earlier variable location.
1563   assert(OrigV && "V shouldn't be null");
1564   auto *Undef = UndefValue::get(OrigV->getType());
1565   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1566   DAG.AddDbgValue(SDV, false);
1567   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1568                     << printDDI(OrigV, DDI) << "\n");
1569 }
1570 
1571 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1572                                                DIExpression *Expr,
1573                                                DebugLoc DbgLoc,
1574                                                unsigned Order) {
1575   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1576   DIExpression *NewExpr =
1577       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1578   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1579                    /*IsVariadic*/ false);
1580 }
1581 
1582 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1583                                            DILocalVariable *Var,
1584                                            DIExpression *Expr, DebugLoc DbgLoc,
1585                                            unsigned Order, bool IsVariadic) {
1586   if (Values.empty())
1587     return true;
1588 
1589   // Filter EntryValue locations out early.
1590   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1591     return true;
1592 
1593   SmallVector<SDDbgOperand> LocationOps;
1594   SmallVector<SDNode *> Dependencies;
1595   for (const Value *V : Values) {
1596     // Constant value.
1597     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1598         isa<ConstantPointerNull>(V)) {
1599       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1600       continue;
1601     }
1602 
1603     // Look through IntToPtr constants.
1604     if (auto *CE = dyn_cast<ConstantExpr>(V))
1605       if (CE->getOpcode() == Instruction::IntToPtr) {
1606         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1607         continue;
1608       }
1609 
1610     // If the Value is a frame index, we can create a FrameIndex debug value
1611     // without relying on the DAG at all.
1612     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1613       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1614       if (SI != FuncInfo.StaticAllocaMap.end()) {
1615         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1616         continue;
1617       }
1618     }
1619 
1620     // Do not use getValue() in here; we don't want to generate code at
1621     // this point if it hasn't been done yet.
1622     SDValue N = NodeMap[V];
1623     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1624       N = UnusedArgNodeMap[V];
1625     if (N.getNode()) {
1626       // Only emit func arg dbg value for non-variadic dbg.values for now.
1627       if (!IsVariadic &&
1628           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1629                                    FuncArgumentDbgValueKind::Value, N))
1630         return true;
1631       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1632         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1633         // describe stack slot locations.
1634         //
1635         // Consider "int x = 0; int *px = &x;". There are two kinds of
1636         // interesting debug values here after optimization:
1637         //
1638         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1639         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1640         //
1641         // Both describe the direct values of their associated variables.
1642         Dependencies.push_back(N.getNode());
1643         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1644         continue;
1645       }
1646       LocationOps.emplace_back(
1647           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1648       continue;
1649     }
1650 
1651     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1652     // Special rules apply for the first dbg.values of parameter variables in a
1653     // function. Identify them by the fact they reference Argument Values, that
1654     // they're parameters, and they are parameters of the current function. We
1655     // need to let them dangle until they get an SDNode.
1656     bool IsParamOfFunc =
1657         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1658     if (IsParamOfFunc)
1659       return false;
1660 
1661     // The value is not used in this block yet (or it would have an SDNode).
1662     // We still want the value to appear for the user if possible -- if it has
1663     // an associated VReg, we can refer to that instead.
1664     auto VMI = FuncInfo.ValueMap.find(V);
1665     if (VMI != FuncInfo.ValueMap.end()) {
1666       unsigned Reg = VMI->second;
1667       // If this is a PHI node, it may be split up into several MI PHI nodes
1668       // (in FunctionLoweringInfo::set).
1669       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1670                        V->getType(), std::nullopt);
1671       if (RFV.occupiesMultipleRegs()) {
1672         // FIXME: We could potentially support variadic dbg_values here.
1673         if (IsVariadic)
1674           return false;
1675         unsigned Offset = 0;
1676         unsigned BitsToDescribe = 0;
1677         if (auto VarSize = Var->getSizeInBits())
1678           BitsToDescribe = *VarSize;
1679         if (auto Fragment = Expr->getFragmentInfo())
1680           BitsToDescribe = Fragment->SizeInBits;
1681         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1682           // Bail out if all bits are described already.
1683           if (Offset >= BitsToDescribe)
1684             break;
1685           // TODO: handle scalable vectors.
1686           unsigned RegisterSize = RegAndSize.second;
1687           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1688                                       ? BitsToDescribe - Offset
1689                                       : RegisterSize;
1690           auto FragmentExpr = DIExpression::createFragmentExpression(
1691               Expr, Offset, FragmentSize);
1692           if (!FragmentExpr)
1693             continue;
1694           SDDbgValue *SDV = DAG.getVRegDbgValue(
1695               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1696           DAG.AddDbgValue(SDV, false);
1697           Offset += RegisterSize;
1698         }
1699         return true;
1700       }
1701       // We can use simple vreg locations for variadic dbg_values as well.
1702       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1703       continue;
1704     }
1705     // We failed to create a SDDbgOperand for V.
1706     return false;
1707   }
1708 
1709   // We have created a SDDbgOperand for each Value in Values.
1710   assert(!LocationOps.empty());
1711   SDDbgValue *SDV =
1712       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1713                           /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1714   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1715   return true;
1716 }
1717 
1718 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1719   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1720   for (auto &Pair : DanglingDebugInfoMap)
1721     for (auto &DDI : Pair.second)
1722       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1723   clearDanglingDebugInfo();
1724 }
1725 
1726 /// getCopyFromRegs - If there was virtual register allocated for the value V
1727 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1728 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1729   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1730   SDValue Result;
1731 
1732   if (It != FuncInfo.ValueMap.end()) {
1733     Register InReg = It->second;
1734 
1735     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1736                      DAG.getDataLayout(), InReg, Ty,
1737                      std::nullopt); // This is not an ABI copy.
1738     SDValue Chain = DAG.getEntryNode();
1739     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1740                                  V);
1741     resolveDanglingDebugInfo(V, Result);
1742   }
1743 
1744   return Result;
1745 }
1746 
1747 /// getValue - Return an SDValue for the given Value.
1748 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1749   // If we already have an SDValue for this value, use it. It's important
1750   // to do this first, so that we don't create a CopyFromReg if we already
1751   // have a regular SDValue.
1752   SDValue &N = NodeMap[V];
1753   if (N.getNode()) return N;
1754 
1755   // If there's a virtual register allocated and initialized for this
1756   // value, use it.
1757   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1758     return copyFromReg;
1759 
1760   // Otherwise create a new SDValue and remember it.
1761   SDValue Val = getValueImpl(V);
1762   NodeMap[V] = Val;
1763   resolveDanglingDebugInfo(V, Val);
1764   return Val;
1765 }
1766 
1767 /// getNonRegisterValue - Return an SDValue for the given Value, but
1768 /// don't look in FuncInfo.ValueMap for a virtual register.
1769 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1770   // If we already have an SDValue for this value, use it.
1771   SDValue &N = NodeMap[V];
1772   if (N.getNode()) {
1773     if (isIntOrFPConstant(N)) {
1774       // Remove the debug location from the node as the node is about to be used
1775       // in a location which may differ from the original debug location.  This
1776       // is relevant to Constant and ConstantFP nodes because they can appear
1777       // as constant expressions inside PHI nodes.
1778       N->setDebugLoc(DebugLoc());
1779     }
1780     return N;
1781   }
1782 
1783   // Otherwise create a new SDValue and remember it.
1784   SDValue Val = getValueImpl(V);
1785   NodeMap[V] = Val;
1786   resolveDanglingDebugInfo(V, Val);
1787   return Val;
1788 }
1789 
1790 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1791 /// Create an SDValue for the given value.
1792 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1794 
1795   if (const Constant *C = dyn_cast<Constant>(V)) {
1796     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1797 
1798     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1799       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1800 
1801     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1802       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1803 
1804     if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1805       return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1806                          getValue(CPA->getPointer()), getValue(CPA->getKey()),
1807                          getValue(CPA->getAddrDiscriminator()),
1808                          getValue(CPA->getDiscriminator()));
1809     }
1810 
1811     if (isa<ConstantPointerNull>(C)) {
1812       unsigned AS = V->getType()->getPointerAddressSpace();
1813       return DAG.getConstant(0, getCurSDLoc(),
1814                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1815     }
1816 
1817     if (match(C, m_VScale()))
1818       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1819 
1820     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1821       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1822 
1823     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1824       return DAG.getUNDEF(VT);
1825 
1826     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1827       visit(CE->getOpcode(), *CE);
1828       SDValue N1 = NodeMap[V];
1829       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1830       return N1;
1831     }
1832 
1833     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1834       SmallVector<SDValue, 4> Constants;
1835       for (const Use &U : C->operands()) {
1836         SDNode *Val = getValue(U).getNode();
1837         // If the operand is an empty aggregate, there are no values.
1838         if (!Val) continue;
1839         // Add each leaf value from the operand to the Constants list
1840         // to form a flattened list of all the values.
1841         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1842           Constants.push_back(SDValue(Val, i));
1843       }
1844 
1845       return DAG.getMergeValues(Constants, getCurSDLoc());
1846     }
1847 
1848     if (const ConstantDataSequential *CDS =
1849           dyn_cast<ConstantDataSequential>(C)) {
1850       SmallVector<SDValue, 4> Ops;
1851       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1852         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1853         // Add each leaf value from the operand to the Constants list
1854         // to form a flattened list of all the values.
1855         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1856           Ops.push_back(SDValue(Val, i));
1857       }
1858 
1859       if (isa<ArrayType>(CDS->getType()))
1860         return DAG.getMergeValues(Ops, getCurSDLoc());
1861       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1862     }
1863 
1864     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1865       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1866              "Unknown struct or array constant!");
1867 
1868       SmallVector<EVT, 4> ValueVTs;
1869       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1870       unsigned NumElts = ValueVTs.size();
1871       if (NumElts == 0)
1872         return SDValue(); // empty struct
1873       SmallVector<SDValue, 4> Constants(NumElts);
1874       for (unsigned i = 0; i != NumElts; ++i) {
1875         EVT EltVT = ValueVTs[i];
1876         if (isa<UndefValue>(C))
1877           Constants[i] = DAG.getUNDEF(EltVT);
1878         else if (EltVT.isFloatingPoint())
1879           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1880         else
1881           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1882       }
1883 
1884       return DAG.getMergeValues(Constants, getCurSDLoc());
1885     }
1886 
1887     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1888       return DAG.getBlockAddress(BA, VT);
1889 
1890     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1891       return getValue(Equiv->getGlobalValue());
1892 
1893     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1894       return getValue(NC->getGlobalValue());
1895 
1896     if (VT == MVT::aarch64svcount) {
1897       assert(C->isNullValue() && "Can only zero this target type!");
1898       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1899                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1900     }
1901 
1902     VectorType *VecTy = cast<VectorType>(V->getType());
1903 
1904     // Now that we know the number and type of the elements, get that number of
1905     // elements into the Ops array based on what kind of constant it is.
1906     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1907       SmallVector<SDValue, 16> Ops;
1908       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1909       for (unsigned i = 0; i != NumElements; ++i)
1910         Ops.push_back(getValue(CV->getOperand(i)));
1911 
1912       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1913     }
1914 
1915     if (isa<ConstantAggregateZero>(C)) {
1916       EVT EltVT =
1917           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1918 
1919       SDValue Op;
1920       if (EltVT.isFloatingPoint())
1921         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1922       else
1923         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1924 
1925       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1926     }
1927 
1928     llvm_unreachable("Unknown vector constant");
1929   }
1930 
1931   // If this is a static alloca, generate it as the frameindex instead of
1932   // computation.
1933   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1934     DenseMap<const AllocaInst*, int>::iterator SI =
1935       FuncInfo.StaticAllocaMap.find(AI);
1936     if (SI != FuncInfo.StaticAllocaMap.end())
1937       return DAG.getFrameIndex(
1938           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1939   }
1940 
1941   // If this is an instruction which fast-isel has deferred, select it now.
1942   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1943     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1944 
1945     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1946                      Inst->getType(), std::nullopt);
1947     SDValue Chain = DAG.getEntryNode();
1948     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1949   }
1950 
1951   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1952     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1953 
1954   if (const auto *BB = dyn_cast<BasicBlock>(V))
1955     return DAG.getBasicBlock(FuncInfo.getMBB(BB));
1956 
1957   llvm_unreachable("Can't get register for value!");
1958 }
1959 
1960 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1961   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1962   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1963   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1964   bool IsSEH = isAsynchronousEHPersonality(Pers);
1965   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1966   if (!IsSEH)
1967     CatchPadMBB->setIsEHScopeEntry();
1968   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1969   if (IsMSVCCXX || IsCoreCLR)
1970     CatchPadMBB->setIsEHFuncletEntry();
1971 }
1972 
1973 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1974   // Update machine-CFG edge.
1975   MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
1976   FuncInfo.MBB->addSuccessor(TargetMBB);
1977   TargetMBB->setIsEHCatchretTarget(true);
1978   DAG.getMachineFunction().setHasEHCatchret(true);
1979 
1980   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1981   bool IsSEH = isAsynchronousEHPersonality(Pers);
1982   if (IsSEH) {
1983     // If this is not a fall-through branch or optimizations are switched off,
1984     // emit the branch.
1985     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1986         TM.getOptLevel() == CodeGenOptLevel::None)
1987       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1988                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1989     return;
1990   }
1991 
1992   // Figure out the funclet membership for the catchret's successor.
1993   // This will be used by the FuncletLayout pass to determine how to order the
1994   // BB's.
1995   // A 'catchret' returns to the outer scope's color.
1996   Value *ParentPad = I.getCatchSwitchParentPad();
1997   const BasicBlock *SuccessorColor;
1998   if (isa<ConstantTokenNone>(ParentPad))
1999     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2000   else
2001     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2002   assert(SuccessorColor && "No parent funclet for catchret!");
2003   MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2004   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2005 
2006   // Create the terminator node.
2007   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2008                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
2009                             DAG.getBasicBlock(SuccessorColorMBB));
2010   DAG.setRoot(Ret);
2011 }
2012 
2013 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2014   // Don't emit any special code for the cleanuppad instruction. It just marks
2015   // the start of an EH scope/funclet.
2016   FuncInfo.MBB->setIsEHScopeEntry();
2017   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2018   if (Pers != EHPersonality::Wasm_CXX) {
2019     FuncInfo.MBB->setIsEHFuncletEntry();
2020     FuncInfo.MBB->setIsCleanupFuncletEntry();
2021   }
2022 }
2023 
2024 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2025 // not match, it is OK to add only the first unwind destination catchpad to the
2026 // successors, because there will be at least one invoke instruction within the
2027 // catch scope that points to the next unwind destination, if one exists, so
2028 // CFGSort cannot mess up with BB sorting order.
2029 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2030 // call within them, and catchpads only consisting of 'catch (...)' have a
2031 // '__cxa_end_catch' call within them, both of which generate invokes in case
2032 // the next unwind destination exists, i.e., the next unwind destination is not
2033 // the caller.)
2034 //
2035 // Having at most one EH pad successor is also simpler and helps later
2036 // transformations.
2037 //
2038 // For example,
2039 // current:
2040 //   invoke void @foo to ... unwind label %catch.dispatch
2041 // catch.dispatch:
2042 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2043 // catch.start:
2044 //   ...
2045 //   ... in this BB or some other child BB dominated by this BB there will be an
2046 //   invoke that points to 'next' BB as an unwind destination
2047 //
2048 // next: ; We don't need to add this to 'current' BB's successor
2049 //   ...
2050 static void findWasmUnwindDestinations(
2051     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2052     BranchProbability Prob,
2053     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2054         &UnwindDests) {
2055   while (EHPadBB) {
2056     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2057     if (isa<CleanupPadInst>(Pad)) {
2058       // Stop on cleanup pads.
2059       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2060       UnwindDests.back().first->setIsEHScopeEntry();
2061       break;
2062     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2063       // Add the catchpad handlers to the possible destinations. We don't
2064       // continue to the unwind destination of the catchswitch for wasm.
2065       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2066         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2067         UnwindDests.back().first->setIsEHScopeEntry();
2068       }
2069       break;
2070     } else {
2071       continue;
2072     }
2073   }
2074 }
2075 
2076 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2077 /// many places it could ultimately go. In the IR, we have a single unwind
2078 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2079 /// This function skips over imaginary basic blocks that hold catchswitch
2080 /// instructions, and finds all the "real" machine
2081 /// basic block destinations. As those destinations may not be successors of
2082 /// EHPadBB, here we also calculate the edge probability to those destinations.
2083 /// The passed-in Prob is the edge probability to EHPadBB.
2084 static void findUnwindDestinations(
2085     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2086     BranchProbability Prob,
2087     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2088         &UnwindDests) {
2089   EHPersonality Personality =
2090     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2091   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2092   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2093   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2094   bool IsSEH = isAsynchronousEHPersonality(Personality);
2095 
2096   if (IsWasmCXX) {
2097     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2098     assert(UnwindDests.size() <= 1 &&
2099            "There should be at most one unwind destination for wasm");
2100     return;
2101   }
2102 
2103   while (EHPadBB) {
2104     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2105     BasicBlock *NewEHPadBB = nullptr;
2106     if (isa<LandingPadInst>(Pad)) {
2107       // Stop on landingpads. They are not funclets.
2108       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2109       break;
2110     } else if (isa<CleanupPadInst>(Pad)) {
2111       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2112       // personalities.
2113       UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2114       UnwindDests.back().first->setIsEHScopeEntry();
2115       UnwindDests.back().first->setIsEHFuncletEntry();
2116       break;
2117     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2118       // Add the catchpad handlers to the possible destinations.
2119       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2120         UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2121         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2122         if (IsMSVCCXX || IsCoreCLR)
2123           UnwindDests.back().first->setIsEHFuncletEntry();
2124         if (!IsSEH)
2125           UnwindDests.back().first->setIsEHScopeEntry();
2126       }
2127       NewEHPadBB = CatchSwitch->getUnwindDest();
2128     } else {
2129       continue;
2130     }
2131 
2132     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2133     if (BPI && NewEHPadBB)
2134       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2135     EHPadBB = NewEHPadBB;
2136   }
2137 }
2138 
2139 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2140   // Update successor info.
2141   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2142   auto UnwindDest = I.getUnwindDest();
2143   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2144   BranchProbability UnwindDestProb =
2145       (BPI && UnwindDest)
2146           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2147           : BranchProbability::getZero();
2148   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2149   for (auto &UnwindDest : UnwindDests) {
2150     UnwindDest.first->setIsEHPad();
2151     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2152   }
2153   FuncInfo.MBB->normalizeSuccProbs();
2154 
2155   // Create the terminator node.
2156   SDValue Ret =
2157       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2158   DAG.setRoot(Ret);
2159 }
2160 
2161 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2162   report_fatal_error("visitCatchSwitch not yet implemented!");
2163 }
2164 
2165 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2167   auto &DL = DAG.getDataLayout();
2168   SDValue Chain = getControlRoot();
2169   SmallVector<ISD::OutputArg, 8> Outs;
2170   SmallVector<SDValue, 8> OutVals;
2171 
2172   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2173   // lower
2174   //
2175   //   %val = call <ty> @llvm.experimental.deoptimize()
2176   //   ret <ty> %val
2177   //
2178   // differently.
2179   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2180     LowerDeoptimizingReturn();
2181     return;
2182   }
2183 
2184   if (!FuncInfo.CanLowerReturn) {
2185     unsigned DemoteReg = FuncInfo.DemoteRegister;
2186     const Function *F = I.getParent()->getParent();
2187 
2188     // Emit a store of the return value through the virtual register.
2189     // Leave Outs empty so that LowerReturn won't try to load return
2190     // registers the usual way.
2191     SmallVector<EVT, 1> PtrValueVTs;
2192     ComputeValueVTs(TLI, DL,
2193                     PointerType::get(F->getContext(),
2194                                      DAG.getDataLayout().getAllocaAddrSpace()),
2195                     PtrValueVTs);
2196 
2197     SDValue RetPtr =
2198         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2199     SDValue RetOp = getValue(I.getOperand(0));
2200 
2201     SmallVector<EVT, 4> ValueVTs, MemVTs;
2202     SmallVector<uint64_t, 4> Offsets;
2203     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2204                     &Offsets, 0);
2205     unsigned NumValues = ValueVTs.size();
2206 
2207     SmallVector<SDValue, 4> Chains(NumValues);
2208     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2209     for (unsigned i = 0; i != NumValues; ++i) {
2210       // An aggregate return value cannot wrap around the address space, so
2211       // offsets to its parts don't wrap either.
2212       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2213                                            TypeSize::getFixed(Offsets[i]));
2214 
2215       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2216       if (MemVTs[i] != ValueVTs[i])
2217         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2218       Chains[i] = DAG.getStore(
2219           Chain, getCurSDLoc(), Val,
2220           // FIXME: better loc info would be nice.
2221           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2222           commonAlignment(BaseAlign, Offsets[i]));
2223     }
2224 
2225     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2226                         MVT::Other, Chains);
2227   } else if (I.getNumOperands() != 0) {
2228     SmallVector<EVT, 4> ValueVTs;
2229     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2230     unsigned NumValues = ValueVTs.size();
2231     if (NumValues) {
2232       SDValue RetOp = getValue(I.getOperand(0));
2233 
2234       const Function *F = I.getParent()->getParent();
2235 
2236       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2237           I.getOperand(0)->getType(), F->getCallingConv(),
2238           /*IsVarArg*/ false, DL);
2239 
2240       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2241       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2242         ExtendKind = ISD::SIGN_EXTEND;
2243       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2244         ExtendKind = ISD::ZERO_EXTEND;
2245 
2246       LLVMContext &Context = F->getContext();
2247       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2248 
2249       for (unsigned j = 0; j != NumValues; ++j) {
2250         EVT VT = ValueVTs[j];
2251 
2252         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2253           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2254 
2255         CallingConv::ID CC = F->getCallingConv();
2256 
2257         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2258         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2259         SmallVector<SDValue, 4> Parts(NumParts);
2260         getCopyToParts(DAG, getCurSDLoc(),
2261                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2262                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2263 
2264         // 'inreg' on function refers to return value
2265         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2266         if (RetInReg)
2267           Flags.setInReg();
2268 
2269         if (I.getOperand(0)->getType()->isPointerTy()) {
2270           Flags.setPointer();
2271           Flags.setPointerAddrSpace(
2272               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2273         }
2274 
2275         if (NeedsRegBlock) {
2276           Flags.setInConsecutiveRegs();
2277           if (j == NumValues - 1)
2278             Flags.setInConsecutiveRegsLast();
2279         }
2280 
2281         // Propagate extension type if any
2282         if (ExtendKind == ISD::SIGN_EXTEND)
2283           Flags.setSExt();
2284         else if (ExtendKind == ISD::ZERO_EXTEND)
2285           Flags.setZExt();
2286 
2287         for (unsigned i = 0; i < NumParts; ++i) {
2288           Outs.push_back(ISD::OutputArg(Flags,
2289                                         Parts[i].getValueType().getSimpleVT(),
2290                                         VT, /*isfixed=*/true, 0, 0));
2291           OutVals.push_back(Parts[i]);
2292         }
2293       }
2294     }
2295   }
2296 
2297   // Push in swifterror virtual register as the last element of Outs. This makes
2298   // sure swifterror virtual register will be returned in the swifterror
2299   // physical register.
2300   const Function *F = I.getParent()->getParent();
2301   if (TLI.supportSwiftError() &&
2302       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2303     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2304     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2305     Flags.setSwiftError();
2306     Outs.push_back(ISD::OutputArg(
2307         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2308         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2309     // Create SDNode for the swifterror virtual register.
2310     OutVals.push_back(
2311         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2312                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2313                         EVT(TLI.getPointerTy(DL))));
2314   }
2315 
2316   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2317   CallingConv::ID CallConv =
2318     DAG.getMachineFunction().getFunction().getCallingConv();
2319   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2320       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2321 
2322   // Verify that the target's LowerReturn behaved as expected.
2323   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2324          "LowerReturn didn't return a valid chain!");
2325 
2326   // Update the DAG with the new chain value resulting from return lowering.
2327   DAG.setRoot(Chain);
2328 }
2329 
2330 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2331 /// created for it, emit nodes to copy the value into the virtual
2332 /// registers.
2333 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2334   // Skip empty types
2335   if (V->getType()->isEmptyTy())
2336     return;
2337 
2338   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2339   if (VMI != FuncInfo.ValueMap.end()) {
2340     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2341            "Unused value assigned virtual registers!");
2342     CopyValueToVirtualRegister(V, VMI->second);
2343   }
2344 }
2345 
2346 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2347 /// the current basic block, add it to ValueMap now so that we'll get a
2348 /// CopyTo/FromReg.
2349 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2350   // No need to export constants.
2351   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2352 
2353   // Already exported?
2354   if (FuncInfo.isExportedInst(V)) return;
2355 
2356   Register Reg = FuncInfo.InitializeRegForValue(V);
2357   CopyValueToVirtualRegister(V, Reg);
2358 }
2359 
2360 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2361                                                      const BasicBlock *FromBB) {
2362   // The operands of the setcc have to be in this block.  We don't know
2363   // how to export them from some other block.
2364   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2365     // Can export from current BB.
2366     if (VI->getParent() == FromBB)
2367       return true;
2368 
2369     // Is already exported, noop.
2370     return FuncInfo.isExportedInst(V);
2371   }
2372 
2373   // If this is an argument, we can export it if the BB is the entry block or
2374   // if it is already exported.
2375   if (isa<Argument>(V)) {
2376     if (FromBB->isEntryBlock())
2377       return true;
2378 
2379     // Otherwise, can only export this if it is already exported.
2380     return FuncInfo.isExportedInst(V);
2381   }
2382 
2383   // Otherwise, constants can always be exported.
2384   return true;
2385 }
2386 
2387 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2388 BranchProbability
2389 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2390                                         const MachineBasicBlock *Dst) const {
2391   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2392   const BasicBlock *SrcBB = Src->getBasicBlock();
2393   const BasicBlock *DstBB = Dst->getBasicBlock();
2394   if (!BPI) {
2395     // If BPI is not available, set the default probability as 1 / N, where N is
2396     // the number of successors.
2397     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2398     return BranchProbability(1, SuccSize);
2399   }
2400   return BPI->getEdgeProbability(SrcBB, DstBB);
2401 }
2402 
2403 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2404                                                MachineBasicBlock *Dst,
2405                                                BranchProbability Prob) {
2406   if (!FuncInfo.BPI)
2407     Src->addSuccessorWithoutProb(Dst);
2408   else {
2409     if (Prob.isUnknown())
2410       Prob = getEdgeProbability(Src, Dst);
2411     Src->addSuccessor(Dst, Prob);
2412   }
2413 }
2414 
2415 static bool InBlock(const Value *V, const BasicBlock *BB) {
2416   if (const Instruction *I = dyn_cast<Instruction>(V))
2417     return I->getParent() == BB;
2418   return true;
2419 }
2420 
2421 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2422 /// This function emits a branch and is used at the leaves of an OR or an
2423 /// AND operator tree.
2424 void
2425 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2426                                                   MachineBasicBlock *TBB,
2427                                                   MachineBasicBlock *FBB,
2428                                                   MachineBasicBlock *CurBB,
2429                                                   MachineBasicBlock *SwitchBB,
2430                                                   BranchProbability TProb,
2431                                                   BranchProbability FProb,
2432                                                   bool InvertCond) {
2433   const BasicBlock *BB = CurBB->getBasicBlock();
2434 
2435   // If the leaf of the tree is a comparison, merge the condition into
2436   // the caseblock.
2437   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2438     // The operands of the cmp have to be in this block.  We don't know
2439     // how to export them from some other block.  If this is the first block
2440     // of the sequence, no exporting is needed.
2441     if (CurBB == SwitchBB ||
2442         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2443          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2444       ISD::CondCode Condition;
2445       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2446         ICmpInst::Predicate Pred =
2447             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2448         Condition = getICmpCondCode(Pred);
2449       } else {
2450         const FCmpInst *FC = cast<FCmpInst>(Cond);
2451         FCmpInst::Predicate Pred =
2452             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2453         Condition = getFCmpCondCode(Pred);
2454         if (TM.Options.NoNaNsFPMath)
2455           Condition = getFCmpCodeWithoutNaN(Condition);
2456       }
2457 
2458       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2459                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2460       SL->SwitchCases.push_back(CB);
2461       return;
2462     }
2463   }
2464 
2465   // Create a CaseBlock record representing this branch.
2466   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2467   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2468                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2469   SL->SwitchCases.push_back(CB);
2470 }
2471 
2472 // Collect dependencies on V recursively. This is used for the cost analysis in
2473 // `shouldKeepJumpConditionsTogether`.
2474 static bool collectInstructionDeps(
2475     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2476     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2477     unsigned Depth = 0) {
2478   // Return false if we have an incomplete count.
2479   if (Depth >= SelectionDAG::MaxRecursionDepth)
2480     return false;
2481 
2482   auto *I = dyn_cast<Instruction>(V);
2483   if (I == nullptr)
2484     return true;
2485 
2486   if (Necessary != nullptr) {
2487     // This instruction is necessary for the other side of the condition so
2488     // don't count it.
2489     if (Necessary->contains(I))
2490       return true;
2491   }
2492 
2493   // Already added this dep.
2494   if (!Deps->try_emplace(I, false).second)
2495     return true;
2496 
2497   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2498     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2499                                 Depth + 1))
2500       return false;
2501   return true;
2502 }
2503 
2504 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2505     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2506     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2507     TargetLoweringBase::CondMergingParams Params) const {
2508   if (I.getNumSuccessors() != 2)
2509     return false;
2510 
2511   if (!I.isConditional())
2512     return false;
2513 
2514   if (Params.BaseCost < 0)
2515     return false;
2516 
2517   // Baseline cost.
2518   InstructionCost CostThresh = Params.BaseCost;
2519 
2520   BranchProbabilityInfo *BPI = nullptr;
2521   if (Params.LikelyBias || Params.UnlikelyBias)
2522     BPI = FuncInfo.BPI;
2523   if (BPI != nullptr) {
2524     // See if we are either likely to get an early out or compute both lhs/rhs
2525     // of the condition.
2526     BasicBlock *IfFalse = I.getSuccessor(0);
2527     BasicBlock *IfTrue = I.getSuccessor(1);
2528 
2529     std::optional<bool> Likely;
2530     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2531       Likely = true;
2532     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2533       Likely = false;
2534 
2535     if (Likely) {
2536       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2537         // Its likely we will have to compute both lhs and rhs of condition
2538         CostThresh += Params.LikelyBias;
2539       else {
2540         if (Params.UnlikelyBias < 0)
2541           return false;
2542         // Its likely we will get an early out.
2543         CostThresh -= Params.UnlikelyBias;
2544       }
2545     }
2546   }
2547 
2548   if (CostThresh <= 0)
2549     return false;
2550 
2551   // Collect "all" instructions that lhs condition is dependent on.
2552   // Use map for stable iteration (to avoid non-determanism of iteration of
2553   // SmallPtrSet). The `bool` value is just a dummy.
2554   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2555   collectInstructionDeps(&LhsDeps, Lhs);
2556   // Collect "all" instructions that rhs condition is dependent on AND are
2557   // dependencies of lhs. This gives us an estimate on which instructions we
2558   // stand to save by splitting the condition.
2559   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2560     return false;
2561   // Add the compare instruction itself unless its a dependency on the LHS.
2562   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2563     if (!LhsDeps.contains(RhsI))
2564       RhsDeps.try_emplace(RhsI, false);
2565 
2566   const auto &TLI = DAG.getTargetLoweringInfo();
2567   const auto &TTI =
2568       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2569 
2570   InstructionCost CostOfIncluding = 0;
2571   // See if this instruction will need to computed independently of whether RHS
2572   // is.
2573   Value *BrCond = I.getCondition();
2574   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2575     for (const auto *U : Ins->users()) {
2576       // If user is independent of RHS calculation we don't need to count it.
2577       if (auto *UIns = dyn_cast<Instruction>(U))
2578         if (UIns != BrCond && !RhsDeps.contains(UIns))
2579           return false;
2580     }
2581     return true;
2582   };
2583 
2584   // Prune instructions from RHS Deps that are dependencies of unrelated
2585   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2586   // arbitrary and just meant to cap the how much time we spend in the pruning
2587   // loop. Its highly unlikely to come into affect.
2588   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2589   // Stop after a certain point. No incorrectness from including too many
2590   // instructions.
2591   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2592     const Instruction *ToDrop = nullptr;
2593     for (const auto &InsPair : RhsDeps) {
2594       if (!ShouldCountInsn(InsPair.first)) {
2595         ToDrop = InsPair.first;
2596         break;
2597       }
2598     }
2599     if (ToDrop == nullptr)
2600       break;
2601     RhsDeps.erase(ToDrop);
2602   }
2603 
2604   for (const auto &InsPair : RhsDeps) {
2605     // Finally accumulate latency that we can only attribute to computing the
2606     // RHS condition. Use latency because we are essentially trying to calculate
2607     // the cost of the dependency chain.
2608     // Possible TODO: We could try to estimate ILP and make this more precise.
2609     CostOfIncluding +=
2610         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2611 
2612     if (CostOfIncluding > CostThresh)
2613       return false;
2614   }
2615   return true;
2616 }
2617 
2618 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2619                                                MachineBasicBlock *TBB,
2620                                                MachineBasicBlock *FBB,
2621                                                MachineBasicBlock *CurBB,
2622                                                MachineBasicBlock *SwitchBB,
2623                                                Instruction::BinaryOps Opc,
2624                                                BranchProbability TProb,
2625                                                BranchProbability FProb,
2626                                                bool InvertCond) {
2627   // Skip over not part of the tree and remember to invert op and operands at
2628   // next level.
2629   Value *NotCond;
2630   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2631       InBlock(NotCond, CurBB->getBasicBlock())) {
2632     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2633                          !InvertCond);
2634     return;
2635   }
2636 
2637   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2638   const Value *BOpOp0, *BOpOp1;
2639   // Compute the effective opcode for Cond, taking into account whether it needs
2640   // to be inverted, e.g.
2641   //   and (not (or A, B)), C
2642   // gets lowered as
2643   //   and (and (not A, not B), C)
2644   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2645   if (BOp) {
2646     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2647                ? Instruction::And
2648                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2649                       ? Instruction::Or
2650                       : (Instruction::BinaryOps)0);
2651     if (InvertCond) {
2652       if (BOpc == Instruction::And)
2653         BOpc = Instruction::Or;
2654       else if (BOpc == Instruction::Or)
2655         BOpc = Instruction::And;
2656     }
2657   }
2658 
2659   // If this node is not part of the or/and tree, emit it as a branch.
2660   // Note that all nodes in the tree should have same opcode.
2661   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2662   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2663       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2664       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2665     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2666                                  TProb, FProb, InvertCond);
2667     return;
2668   }
2669 
2670   //  Create TmpBB after CurBB.
2671   MachineFunction::iterator BBI(CurBB);
2672   MachineFunction &MF = DAG.getMachineFunction();
2673   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2674   CurBB->getParent()->insert(++BBI, TmpBB);
2675 
2676   if (Opc == Instruction::Or) {
2677     // Codegen X | Y as:
2678     // BB1:
2679     //   jmp_if_X TBB
2680     //   jmp TmpBB
2681     // TmpBB:
2682     //   jmp_if_Y TBB
2683     //   jmp FBB
2684     //
2685 
2686     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2687     // The requirement is that
2688     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2689     //     = TrueProb for original BB.
2690     // Assuming the original probabilities are A and B, one choice is to set
2691     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2692     // A/(1+B) and 2B/(1+B). This choice assumes that
2693     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2694     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2695     // TmpBB, but the math is more complicated.
2696 
2697     auto NewTrueProb = TProb / 2;
2698     auto NewFalseProb = TProb / 2 + FProb;
2699     // Emit the LHS condition.
2700     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2701                          NewFalseProb, InvertCond);
2702 
2703     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2704     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2705     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2706     // Emit the RHS condition into TmpBB.
2707     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2708                          Probs[1], InvertCond);
2709   } else {
2710     assert(Opc == Instruction::And && "Unknown merge op!");
2711     // Codegen X & Y as:
2712     // BB1:
2713     //   jmp_if_X TmpBB
2714     //   jmp FBB
2715     // TmpBB:
2716     //   jmp_if_Y TBB
2717     //   jmp FBB
2718     //
2719     //  This requires creation of TmpBB after CurBB.
2720 
2721     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2722     // The requirement is that
2723     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2724     //     = FalseProb for original BB.
2725     // Assuming the original probabilities are A and B, one choice is to set
2726     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2727     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2728     // TrueProb for BB1 * FalseProb for TmpBB.
2729 
2730     auto NewTrueProb = TProb + FProb / 2;
2731     auto NewFalseProb = FProb / 2;
2732     // Emit the LHS condition.
2733     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2734                          NewFalseProb, InvertCond);
2735 
2736     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2737     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2738     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2739     // Emit the RHS condition into TmpBB.
2740     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2741                          Probs[1], InvertCond);
2742   }
2743 }
2744 
2745 /// If the set of cases should be emitted as a series of branches, return true.
2746 /// If we should emit this as a bunch of and/or'd together conditions, return
2747 /// false.
2748 bool
2749 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2750   if (Cases.size() != 2) return true;
2751 
2752   // If this is two comparisons of the same values or'd or and'd together, they
2753   // will get folded into a single comparison, so don't emit two blocks.
2754   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2755        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2756       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2757        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2758     return false;
2759   }
2760 
2761   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2762   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2763   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2764       Cases[0].CC == Cases[1].CC &&
2765       isa<Constant>(Cases[0].CmpRHS) &&
2766       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2767     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2768       return false;
2769     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2770       return false;
2771   }
2772 
2773   return true;
2774 }
2775 
2776 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2777   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2778 
2779   // Update machine-CFG edges.
2780   MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2781 
2782   if (I.isUnconditional()) {
2783     // Update machine-CFG edges.
2784     BrMBB->addSuccessor(Succ0MBB);
2785 
2786     // If this is not a fall-through branch or optimizations are switched off,
2787     // emit the branch.
2788     if (Succ0MBB != NextBlock(BrMBB) ||
2789         TM.getOptLevel() == CodeGenOptLevel::None) {
2790       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2791                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2792       setValue(&I, Br);
2793       DAG.setRoot(Br);
2794     }
2795 
2796     return;
2797   }
2798 
2799   // If this condition is one of the special cases we handle, do special stuff
2800   // now.
2801   const Value *CondVal = I.getCondition();
2802   MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2803 
2804   // If this is a series of conditions that are or'd or and'd together, emit
2805   // this as a sequence of branches instead of setcc's with and/or operations.
2806   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2807   // unpredictable branches, and vector extracts because those jumps are likely
2808   // expensive for any target), this should improve performance.
2809   // For example, instead of something like:
2810   //     cmp A, B
2811   //     C = seteq
2812   //     cmp D, E
2813   //     F = setle
2814   //     or C, F
2815   //     jnz foo
2816   // Emit:
2817   //     cmp A, B
2818   //     je foo
2819   //     cmp D, E
2820   //     jle foo
2821   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2822   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2823       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2824     Value *Vec;
2825     const Value *BOp0, *BOp1;
2826     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2827     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2828       Opcode = Instruction::And;
2829     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2830       Opcode = Instruction::Or;
2831 
2832     if (Opcode &&
2833         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2834           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2835         !shouldKeepJumpConditionsTogether(
2836             FuncInfo, I, Opcode, BOp0, BOp1,
2837             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2838                 Opcode, BOp0, BOp1))) {
2839       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2840                            getEdgeProbability(BrMBB, Succ0MBB),
2841                            getEdgeProbability(BrMBB, Succ1MBB),
2842                            /*InvertCond=*/false);
2843       // If the compares in later blocks need to use values not currently
2844       // exported from this block, export them now.  This block should always
2845       // be the first entry.
2846       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2847 
2848       // Allow some cases to be rejected.
2849       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2850         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2851           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2852           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2853         }
2854 
2855         // Emit the branch for this block.
2856         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2857         SL->SwitchCases.erase(SL->SwitchCases.begin());
2858         return;
2859       }
2860 
2861       // Okay, we decided not to do this, remove any inserted MBB's and clear
2862       // SwitchCases.
2863       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2864         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2865 
2866       SL->SwitchCases.clear();
2867     }
2868   }
2869 
2870   // Create a CaseBlock record representing this branch.
2871   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2872                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2873 
2874   // Use visitSwitchCase to actually insert the fast branch sequence for this
2875   // cond branch.
2876   visitSwitchCase(CB, BrMBB);
2877 }
2878 
2879 /// visitSwitchCase - Emits the necessary code to represent a single node in
2880 /// the binary search tree resulting from lowering a switch instruction.
2881 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2882                                           MachineBasicBlock *SwitchBB) {
2883   SDValue Cond;
2884   SDValue CondLHS = getValue(CB.CmpLHS);
2885   SDLoc dl = CB.DL;
2886 
2887   if (CB.CC == ISD::SETTRUE) {
2888     // Branch or fall through to TrueBB.
2889     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2890     SwitchBB->normalizeSuccProbs();
2891     if (CB.TrueBB != NextBlock(SwitchBB)) {
2892       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2893                               DAG.getBasicBlock(CB.TrueBB)));
2894     }
2895     return;
2896   }
2897 
2898   auto &TLI = DAG.getTargetLoweringInfo();
2899   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2900 
2901   // Build the setcc now.
2902   if (!CB.CmpMHS) {
2903     // Fold "(X == true)" to X and "(X == false)" to !X to
2904     // handle common cases produced by branch lowering.
2905     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2906         CB.CC == ISD::SETEQ)
2907       Cond = CondLHS;
2908     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2909              CB.CC == ISD::SETEQ) {
2910       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2911       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2912     } else {
2913       SDValue CondRHS = getValue(CB.CmpRHS);
2914 
2915       // If a pointer's DAG type is larger than its memory type then the DAG
2916       // values are zero-extended. This breaks signed comparisons so truncate
2917       // back to the underlying type before doing the compare.
2918       if (CondLHS.getValueType() != MemVT) {
2919         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2920         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2921       }
2922       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2923     }
2924   } else {
2925     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2926 
2927     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2928     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2929 
2930     SDValue CmpOp = getValue(CB.CmpMHS);
2931     EVT VT = CmpOp.getValueType();
2932 
2933     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2934       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2935                           ISD::SETLE);
2936     } else {
2937       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2938                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2939       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2940                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2941     }
2942   }
2943 
2944   // Update successor info
2945   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2946   // TrueBB and FalseBB are always different unless the incoming IR is
2947   // degenerate. This only happens when running llc on weird IR.
2948   if (CB.TrueBB != CB.FalseBB)
2949     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2950   SwitchBB->normalizeSuccProbs();
2951 
2952   // If the lhs block is the next block, invert the condition so that we can
2953   // fall through to the lhs instead of the rhs block.
2954   if (CB.TrueBB == NextBlock(SwitchBB)) {
2955     std::swap(CB.TrueBB, CB.FalseBB);
2956     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2957     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2958   }
2959 
2960   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2961                                MVT::Other, getControlRoot(), Cond,
2962                                DAG.getBasicBlock(CB.TrueBB));
2963 
2964   setValue(CurInst, BrCond);
2965 
2966   // Insert the false branch. Do this even if it's a fall through branch,
2967   // this makes it easier to do DAG optimizations which require inverting
2968   // the branch condition.
2969   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2970                        DAG.getBasicBlock(CB.FalseBB));
2971 
2972   DAG.setRoot(BrCond);
2973 }
2974 
2975 /// visitJumpTable - Emit JumpTable node in the current MBB
2976 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2977   // Emit the code for the jump table
2978   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2979   assert(JT.Reg != -1U && "Should lower JT Header first!");
2980   EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
2981   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2982   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2983   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2984                                     Index.getValue(1), Table, Index);
2985   DAG.setRoot(BrJumpTable);
2986 }
2987 
2988 /// visitJumpTableHeader - This function emits necessary code to produce index
2989 /// in the JumpTable from switch case.
2990 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2991                                                JumpTableHeader &JTH,
2992                                                MachineBasicBlock *SwitchBB) {
2993   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2994   const SDLoc &dl = *JT.SL;
2995 
2996   // Subtract the lowest switch case value from the value being switched on.
2997   SDValue SwitchOp = getValue(JTH.SValue);
2998   EVT VT = SwitchOp.getValueType();
2999   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3000                             DAG.getConstant(JTH.First, dl, VT));
3001 
3002   // The SDNode we just created, which holds the value being switched on minus
3003   // the smallest case value, needs to be copied to a virtual register so it
3004   // can be used as an index into the jump table in a subsequent basic block.
3005   // This value may be smaller or larger than the target's pointer type, and
3006   // therefore require extension or truncating.
3007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3008   SwitchOp =
3009       DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3010 
3011   unsigned JumpTableReg =
3012       FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3013   SDValue CopyTo =
3014       DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3015   JT.Reg = JumpTableReg;
3016 
3017   if (!JTH.FallthroughUnreachable) {
3018     // Emit the range check for the jump table, and branch to the default block
3019     // for the switch statement if the value being switched on exceeds the
3020     // largest case in the switch.
3021     SDValue CMP = DAG.getSetCC(
3022         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3023                                    Sub.getValueType()),
3024         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3025 
3026     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3027                                  MVT::Other, CopyTo, CMP,
3028                                  DAG.getBasicBlock(JT.Default));
3029 
3030     // Avoid emitting unnecessary branches to the next block.
3031     if (JT.MBB != NextBlock(SwitchBB))
3032       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3033                            DAG.getBasicBlock(JT.MBB));
3034 
3035     DAG.setRoot(BrCond);
3036   } else {
3037     // Avoid emitting unnecessary branches to the next block.
3038     if (JT.MBB != NextBlock(SwitchBB))
3039       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3040                               DAG.getBasicBlock(JT.MBB)));
3041     else
3042       DAG.setRoot(CopyTo);
3043   }
3044 }
3045 
3046 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3047 /// variable if there exists one.
3048 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3049                                  SDValue &Chain) {
3050   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3051   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3052   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3053   MachineFunction &MF = DAG.getMachineFunction();
3054   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3055   MachineSDNode *Node =
3056       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3057   if (Global) {
3058     MachinePointerInfo MPInfo(Global);
3059     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3060                  MachineMemOperand::MODereferenceable;
3061     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3062         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3063         DAG.getEVTAlign(PtrTy));
3064     DAG.setNodeMemRefs(Node, {MemRef});
3065   }
3066   if (PtrTy != PtrMemTy)
3067     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3068   return SDValue(Node, 0);
3069 }
3070 
3071 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3072 /// tail spliced into a stack protector check success bb.
3073 ///
3074 /// For a high level explanation of how this fits into the stack protector
3075 /// generation see the comment on the declaration of class
3076 /// StackProtectorDescriptor.
3077 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3078                                                   MachineBasicBlock *ParentBB) {
3079 
3080   // First create the loads to the guard/stack slot for the comparison.
3081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3082   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3083   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3084 
3085   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3086   int FI = MFI.getStackProtectorIndex();
3087 
3088   SDValue Guard;
3089   SDLoc dl = getCurSDLoc();
3090   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3091   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3092   Align Align =
3093       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3094 
3095   // Generate code to load the content of the guard slot.
3096   SDValue GuardVal = DAG.getLoad(
3097       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3098       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3099       MachineMemOperand::MOVolatile);
3100 
3101   if (TLI.useStackGuardXorFP())
3102     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3103 
3104   // Retrieve guard check function, nullptr if instrumentation is inlined.
3105   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3106     // The target provides a guard check function to validate the guard value.
3107     // Generate a call to that function with the content of the guard slot as
3108     // argument.
3109     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3110     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3111 
3112     TargetLowering::ArgListTy Args;
3113     TargetLowering::ArgListEntry Entry;
3114     Entry.Node = GuardVal;
3115     Entry.Ty = FnTy->getParamType(0);
3116     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3117       Entry.IsInReg = true;
3118     Args.push_back(Entry);
3119 
3120     TargetLowering::CallLoweringInfo CLI(DAG);
3121     CLI.setDebugLoc(getCurSDLoc())
3122         .setChain(DAG.getEntryNode())
3123         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3124                    getValue(GuardCheckFn), std::move(Args));
3125 
3126     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3127     DAG.setRoot(Result.second);
3128     return;
3129   }
3130 
3131   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3132   // Otherwise, emit a volatile load to retrieve the stack guard value.
3133   SDValue Chain = DAG.getEntryNode();
3134   if (TLI.useLoadStackGuardNode()) {
3135     Guard = getLoadStackGuard(DAG, dl, Chain);
3136   } else {
3137     const Value *IRGuard = TLI.getSDagStackGuard(M);
3138     SDValue GuardPtr = getValue(IRGuard);
3139 
3140     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3141                         MachinePointerInfo(IRGuard, 0), Align,
3142                         MachineMemOperand::MOVolatile);
3143   }
3144 
3145   // Perform the comparison via a getsetcc.
3146   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3147                                                         *DAG.getContext(),
3148                                                         Guard.getValueType()),
3149                              Guard, GuardVal, ISD::SETNE);
3150 
3151   // If the guard/stackslot do not equal, branch to failure MBB.
3152   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3153                                MVT::Other, GuardVal.getOperand(0),
3154                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3155   // Otherwise branch to success MBB.
3156   SDValue Br = DAG.getNode(ISD::BR, dl,
3157                            MVT::Other, BrCond,
3158                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3159 
3160   DAG.setRoot(Br);
3161 }
3162 
3163 /// Codegen the failure basic block for a stack protector check.
3164 ///
3165 /// A failure stack protector machine basic block consists simply of a call to
3166 /// __stack_chk_fail().
3167 ///
3168 /// For a high level explanation of how this fits into the stack protector
3169 /// generation see the comment on the declaration of class
3170 /// StackProtectorDescriptor.
3171 void
3172 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3174   TargetLowering::MakeLibCallOptions CallOptions;
3175   CallOptions.setDiscardResult(true);
3176   SDValue Chain =
3177       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3178                       std::nullopt, CallOptions, getCurSDLoc())
3179           .second;
3180   // On PS4/PS5, the "return address" must still be within the calling
3181   // function, even if it's at the very end, so emit an explicit TRAP here.
3182   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3183   if (TM.getTargetTriple().isPS())
3184     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3185   // WebAssembly needs an unreachable instruction after a non-returning call,
3186   // because the function return type can be different from __stack_chk_fail's
3187   // return type (void).
3188   if (TM.getTargetTriple().isWasm())
3189     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3190 
3191   DAG.setRoot(Chain);
3192 }
3193 
3194 /// visitBitTestHeader - This function emits necessary code to produce value
3195 /// suitable for "bit tests"
3196 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3197                                              MachineBasicBlock *SwitchBB) {
3198   SDLoc dl = getCurSDLoc();
3199 
3200   // Subtract the minimum value.
3201   SDValue SwitchOp = getValue(B.SValue);
3202   EVT VT = SwitchOp.getValueType();
3203   SDValue RangeSub =
3204       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3205 
3206   // Determine the type of the test operands.
3207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3208   bool UsePtrType = false;
3209   if (!TLI.isTypeLegal(VT)) {
3210     UsePtrType = true;
3211   } else {
3212     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3213       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3214         // Switch table case range are encoded into series of masks.
3215         // Just use pointer type, it's guaranteed to fit.
3216         UsePtrType = true;
3217         break;
3218       }
3219   }
3220   SDValue Sub = RangeSub;
3221   if (UsePtrType) {
3222     VT = TLI.getPointerTy(DAG.getDataLayout());
3223     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3224   }
3225 
3226   B.RegVT = VT.getSimpleVT();
3227   B.Reg = FuncInfo.CreateReg(B.RegVT);
3228   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3229 
3230   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3231 
3232   if (!B.FallthroughUnreachable)
3233     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3234   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3235   SwitchBB->normalizeSuccProbs();
3236 
3237   SDValue Root = CopyTo;
3238   if (!B.FallthroughUnreachable) {
3239     // Conditional branch to the default block.
3240     SDValue RangeCmp = DAG.getSetCC(dl,
3241         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3242                                RangeSub.getValueType()),
3243         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3244         ISD::SETUGT);
3245 
3246     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3247                        DAG.getBasicBlock(B.Default));
3248   }
3249 
3250   // Avoid emitting unnecessary branches to the next block.
3251   if (MBB != NextBlock(SwitchBB))
3252     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3253 
3254   DAG.setRoot(Root);
3255 }
3256 
3257 /// visitBitTestCase - this function produces one "bit test"
3258 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3259                                            MachineBasicBlock* NextMBB,
3260                                            BranchProbability BranchProbToNext,
3261                                            unsigned Reg,
3262                                            BitTestCase &B,
3263                                            MachineBasicBlock *SwitchBB) {
3264   SDLoc dl = getCurSDLoc();
3265   MVT VT = BB.RegVT;
3266   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3267   SDValue Cmp;
3268   unsigned PopCount = llvm::popcount(B.Mask);
3269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3270   if (PopCount == 1) {
3271     // Testing for a single bit; just compare the shift count with what it
3272     // would need to be to shift a 1 bit in that position.
3273     Cmp = DAG.getSetCC(
3274         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3275         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3276         ISD::SETEQ);
3277   } else if (PopCount == BB.Range) {
3278     // There is only one zero bit in the range, test for it directly.
3279     Cmp = DAG.getSetCC(
3280         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3281         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3282   } else {
3283     // Make desired shift
3284     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3285                                     DAG.getConstant(1, dl, VT), ShiftOp);
3286 
3287     // Emit bit tests and jumps
3288     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3289                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3290     Cmp = DAG.getSetCC(
3291         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3292         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3293   }
3294 
3295   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3296   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3297   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3298   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3299   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3300   // one as they are relative probabilities (and thus work more like weights),
3301   // and hence we need to normalize them to let the sum of them become one.
3302   SwitchBB->normalizeSuccProbs();
3303 
3304   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3305                               MVT::Other, getControlRoot(),
3306                               Cmp, DAG.getBasicBlock(B.TargetBB));
3307 
3308   // Avoid emitting unnecessary branches to the next block.
3309   if (NextMBB != NextBlock(SwitchBB))
3310     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3311                         DAG.getBasicBlock(NextMBB));
3312 
3313   DAG.setRoot(BrAnd);
3314 }
3315 
3316 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3317   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3318 
3319   // Retrieve successors. Look through artificial IR level blocks like
3320   // catchswitch for successors.
3321   MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3322   const BasicBlock *EHPadBB = I.getSuccessor(1);
3323   MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3324 
3325   // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3326   // have to do anything here to lower funclet bundles.
3327   assert(!I.hasOperandBundlesOtherThan(
3328              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3329               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3330               LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth,
3331               LLVMContext::OB_clang_arc_attachedcall}) &&
3332          "Cannot lower invokes with arbitrary operand bundles yet!");
3333 
3334   const Value *Callee(I.getCalledOperand());
3335   const Function *Fn = dyn_cast<Function>(Callee);
3336   if (isa<InlineAsm>(Callee))
3337     visitInlineAsm(I, EHPadBB);
3338   else if (Fn && Fn->isIntrinsic()) {
3339     switch (Fn->getIntrinsicID()) {
3340     default:
3341       llvm_unreachable("Cannot invoke this intrinsic");
3342     case Intrinsic::donothing:
3343       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3344     case Intrinsic::seh_try_begin:
3345     case Intrinsic::seh_scope_begin:
3346     case Intrinsic::seh_try_end:
3347     case Intrinsic::seh_scope_end:
3348       if (EHPadMBB)
3349           // a block referenced by EH table
3350           // so dtor-funclet not removed by opts
3351           EHPadMBB->setMachineBlockAddressTaken();
3352       break;
3353     case Intrinsic::experimental_patchpoint_void:
3354     case Intrinsic::experimental_patchpoint:
3355       visitPatchpoint(I, EHPadBB);
3356       break;
3357     case Intrinsic::experimental_gc_statepoint:
3358       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3359       break;
3360     case Intrinsic::wasm_rethrow: {
3361       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3362       // special because it can be invoked, so we manually lower it to a DAG
3363       // node here.
3364       SmallVector<SDValue, 8> Ops;
3365       Ops.push_back(getControlRoot()); // inchain for the terminator node
3366       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3367       Ops.push_back(
3368           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3369                                 TLI.getPointerTy(DAG.getDataLayout())));
3370       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3371       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3372       break;
3373     }
3374     }
3375   } else if (I.hasDeoptState()) {
3376     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3377     // Eventually we will support lowering the @llvm.experimental.deoptimize
3378     // intrinsic, and right now there are no plans to support other intrinsics
3379     // with deopt state.
3380     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3381   } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3382     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB);
3383   } else {
3384     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3385   }
3386 
3387   // If the value of the invoke is used outside of its defining block, make it
3388   // available as a virtual register.
3389   // We already took care of the exported value for the statepoint instruction
3390   // during call to the LowerStatepoint.
3391   if (!isa<GCStatepointInst>(I)) {
3392     CopyToExportRegsIfNeeded(&I);
3393   }
3394 
3395   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3396   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3397   BranchProbability EHPadBBProb =
3398       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3399           : BranchProbability::getZero();
3400   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3401 
3402   // Update successor info.
3403   addSuccessorWithProb(InvokeMBB, Return);
3404   for (auto &UnwindDest : UnwindDests) {
3405     UnwindDest.first->setIsEHPad();
3406     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3407   }
3408   InvokeMBB->normalizeSuccProbs();
3409 
3410   // Drop into normal successor.
3411   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3412                           DAG.getBasicBlock(Return)));
3413 }
3414 
3415 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3416   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3417 
3418   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3419   // have to do anything here to lower funclet bundles.
3420   assert(!I.hasOperandBundlesOtherThan(
3421              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3422          "Cannot lower callbrs with arbitrary operand bundles yet!");
3423 
3424   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3425   visitInlineAsm(I);
3426   CopyToExportRegsIfNeeded(&I);
3427 
3428   // Retrieve successors.
3429   SmallPtrSet<BasicBlock *, 8> Dests;
3430   Dests.insert(I.getDefaultDest());
3431   MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3432 
3433   // Update successor info.
3434   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3435   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3436     BasicBlock *Dest = I.getIndirectDest(i);
3437     MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3438     Target->setIsInlineAsmBrIndirectTarget();
3439     Target->setMachineBlockAddressTaken();
3440     Target->setLabelMustBeEmitted();
3441     // Don't add duplicate machine successors.
3442     if (Dests.insert(Dest).second)
3443       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3444   }
3445   CallBrMBB->normalizeSuccProbs();
3446 
3447   // Drop into default successor.
3448   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3449                           MVT::Other, getControlRoot(),
3450                           DAG.getBasicBlock(Return)));
3451 }
3452 
3453 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3454   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3455 }
3456 
3457 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3458   assert(FuncInfo.MBB->isEHPad() &&
3459          "Call to landingpad not in landing pad!");
3460 
3461   // If there aren't registers to copy the values into (e.g., during SjLj
3462   // exceptions), then don't bother to create these DAG nodes.
3463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3464   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3465   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3466       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3467     return;
3468 
3469   // If landingpad's return type is token type, we don't create DAG nodes
3470   // for its exception pointer and selector value. The extraction of exception
3471   // pointer or selector value from token type landingpads is not currently
3472   // supported.
3473   if (LP.getType()->isTokenTy())
3474     return;
3475 
3476   SmallVector<EVT, 2> ValueVTs;
3477   SDLoc dl = getCurSDLoc();
3478   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3479   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3480 
3481   // Get the two live-in registers as SDValues. The physregs have already been
3482   // copied into virtual registers.
3483   SDValue Ops[2];
3484   if (FuncInfo.ExceptionPointerVirtReg) {
3485     Ops[0] = DAG.getZExtOrTrunc(
3486         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3487                            FuncInfo.ExceptionPointerVirtReg,
3488                            TLI.getPointerTy(DAG.getDataLayout())),
3489         dl, ValueVTs[0]);
3490   } else {
3491     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3492   }
3493   Ops[1] = DAG.getZExtOrTrunc(
3494       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3495                          FuncInfo.ExceptionSelectorVirtReg,
3496                          TLI.getPointerTy(DAG.getDataLayout())),
3497       dl, ValueVTs[1]);
3498 
3499   // Merge into one.
3500   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3501                             DAG.getVTList(ValueVTs), Ops);
3502   setValue(&LP, Res);
3503 }
3504 
3505 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3506                                            MachineBasicBlock *Last) {
3507   // Update JTCases.
3508   for (JumpTableBlock &JTB : SL->JTCases)
3509     if (JTB.first.HeaderBB == First)
3510       JTB.first.HeaderBB = Last;
3511 
3512   // Update BitTestCases.
3513   for (BitTestBlock &BTB : SL->BitTestCases)
3514     if (BTB.Parent == First)
3515       BTB.Parent = Last;
3516 }
3517 
3518 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3519   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3520 
3521   // Update machine-CFG edges with unique successors.
3522   SmallSet<BasicBlock*, 32> Done;
3523   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3524     BasicBlock *BB = I.getSuccessor(i);
3525     bool Inserted = Done.insert(BB).second;
3526     if (!Inserted)
3527         continue;
3528 
3529     MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3530     addSuccessorWithProb(IndirectBrMBB, Succ);
3531   }
3532   IndirectBrMBB->normalizeSuccProbs();
3533 
3534   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3535                           MVT::Other, getControlRoot(),
3536                           getValue(I.getAddress())));
3537 }
3538 
3539 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3540   if (!DAG.getTarget().Options.TrapUnreachable)
3541     return;
3542 
3543   // We may be able to ignore unreachable behind a noreturn call.
3544   if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode());
3545       Call && Call->doesNotReturn()) {
3546     if (DAG.getTarget().Options.NoTrapAfterNoreturn)
3547       return;
3548     // Do not emit an additional trap instruction.
3549     if (Call->isNonContinuableTrap())
3550       return;
3551   }
3552 
3553   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3554 }
3555 
3556 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3557   SDNodeFlags Flags;
3558   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3559     Flags.copyFMF(*FPOp);
3560 
3561   SDValue Op = getValue(I.getOperand(0));
3562   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3563                                     Op, Flags);
3564   setValue(&I, UnNodeValue);
3565 }
3566 
3567 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3568   SDNodeFlags Flags;
3569   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3570     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3571     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3572   }
3573   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3574     Flags.setExact(ExactOp->isExact());
3575   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3576     Flags.setDisjoint(DisjointOp->isDisjoint());
3577   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3578     Flags.copyFMF(*FPOp);
3579 
3580   SDValue Op1 = getValue(I.getOperand(0));
3581   SDValue Op2 = getValue(I.getOperand(1));
3582   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3583                                      Op1, Op2, Flags);
3584   setValue(&I, BinNodeValue);
3585 }
3586 
3587 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3588   SDValue Op1 = getValue(I.getOperand(0));
3589   SDValue Op2 = getValue(I.getOperand(1));
3590 
3591   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3592       Op1.getValueType(), DAG.getDataLayout());
3593 
3594   // Coerce the shift amount to the right type if we can. This exposes the
3595   // truncate or zext to optimization early.
3596   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3597     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3598            "Unexpected shift type");
3599     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3600   }
3601 
3602   bool nuw = false;
3603   bool nsw = false;
3604   bool exact = false;
3605 
3606   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3607 
3608     if (const OverflowingBinaryOperator *OFBinOp =
3609             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3610       nuw = OFBinOp->hasNoUnsignedWrap();
3611       nsw = OFBinOp->hasNoSignedWrap();
3612     }
3613     if (const PossiblyExactOperator *ExactOp =
3614             dyn_cast<const PossiblyExactOperator>(&I))
3615       exact = ExactOp->isExact();
3616   }
3617   SDNodeFlags Flags;
3618   Flags.setExact(exact);
3619   Flags.setNoSignedWrap(nsw);
3620   Flags.setNoUnsignedWrap(nuw);
3621   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3622                             Flags);
3623   setValue(&I, Res);
3624 }
3625 
3626 void SelectionDAGBuilder::visitSDiv(const User &I) {
3627   SDValue Op1 = getValue(I.getOperand(0));
3628   SDValue Op2 = getValue(I.getOperand(1));
3629 
3630   SDNodeFlags Flags;
3631   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3632                  cast<PossiblyExactOperator>(&I)->isExact());
3633   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3634                            Op2, Flags));
3635 }
3636 
3637 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3638   ICmpInst::Predicate predicate = I.getPredicate();
3639   SDValue Op1 = getValue(I.getOperand(0));
3640   SDValue Op2 = getValue(I.getOperand(1));
3641   ISD::CondCode Opcode = getICmpCondCode(predicate);
3642 
3643   auto &TLI = DAG.getTargetLoweringInfo();
3644   EVT MemVT =
3645       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3646 
3647   // If a pointer's DAG type is larger than its memory type then the DAG values
3648   // are zero-extended. This breaks signed comparisons so truncate back to the
3649   // underlying type before doing the compare.
3650   if (Op1.getValueType() != MemVT) {
3651     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3652     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3653   }
3654 
3655   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3656                                                         I.getType());
3657   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3658 }
3659 
3660 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3661   FCmpInst::Predicate predicate = I.getPredicate();
3662   SDValue Op1 = getValue(I.getOperand(0));
3663   SDValue Op2 = getValue(I.getOperand(1));
3664 
3665   ISD::CondCode Condition = getFCmpCondCode(predicate);
3666   auto *FPMO = cast<FPMathOperator>(&I);
3667   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3668     Condition = getFCmpCodeWithoutNaN(Condition);
3669 
3670   SDNodeFlags Flags;
3671   Flags.copyFMF(*FPMO);
3672   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3673 
3674   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3675                                                         I.getType());
3676   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3677 }
3678 
3679 // Check if the condition of the select has one use or two users that are both
3680 // selects with the same condition.
3681 static bool hasOnlySelectUsers(const Value *Cond) {
3682   return llvm::all_of(Cond->users(), [](const Value *V) {
3683     return isa<SelectInst>(V);
3684   });
3685 }
3686 
3687 void SelectionDAGBuilder::visitSelect(const User &I) {
3688   SmallVector<EVT, 4> ValueVTs;
3689   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3690                   ValueVTs);
3691   unsigned NumValues = ValueVTs.size();
3692   if (NumValues == 0) return;
3693 
3694   SmallVector<SDValue, 4> Values(NumValues);
3695   SDValue Cond     = getValue(I.getOperand(0));
3696   SDValue LHSVal   = getValue(I.getOperand(1));
3697   SDValue RHSVal   = getValue(I.getOperand(2));
3698   SmallVector<SDValue, 1> BaseOps(1, Cond);
3699   ISD::NodeType OpCode =
3700       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3701 
3702   bool IsUnaryAbs = false;
3703   bool Negate = false;
3704 
3705   SDNodeFlags Flags;
3706   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3707     Flags.copyFMF(*FPOp);
3708 
3709   Flags.setUnpredictable(
3710       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3711 
3712   // Min/max matching is only viable if all output VTs are the same.
3713   if (all_equal(ValueVTs)) {
3714     EVT VT = ValueVTs[0];
3715     LLVMContext &Ctx = *DAG.getContext();
3716     auto &TLI = DAG.getTargetLoweringInfo();
3717 
3718     // We care about the legality of the operation after it has been type
3719     // legalized.
3720     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3721       VT = TLI.getTypeToTransformTo(Ctx, VT);
3722 
3723     // If the vselect is legal, assume we want to leave this as a vector setcc +
3724     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3725     // min/max is legal on the scalar type.
3726     bool UseScalarMinMax = VT.isVector() &&
3727       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3728 
3729     // ValueTracking's select pattern matching does not account for -0.0,
3730     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3731     // -0.0 is less than +0.0.
3732     const Value *LHS, *RHS;
3733     auto SPR = matchSelectPattern(&I, LHS, RHS);
3734     ISD::NodeType Opc = ISD::DELETED_NODE;
3735     switch (SPR.Flavor) {
3736     case SPF_UMAX:    Opc = ISD::UMAX; break;
3737     case SPF_UMIN:    Opc = ISD::UMIN; break;
3738     case SPF_SMAX:    Opc = ISD::SMAX; break;
3739     case SPF_SMIN:    Opc = ISD::SMIN; break;
3740     case SPF_FMINNUM:
3741       switch (SPR.NaNBehavior) {
3742       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3743       case SPNB_RETURNS_NAN: break;
3744       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3745       case SPNB_RETURNS_ANY:
3746         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3747             (UseScalarMinMax &&
3748              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3749           Opc = ISD::FMINNUM;
3750         break;
3751       }
3752       break;
3753     case SPF_FMAXNUM:
3754       switch (SPR.NaNBehavior) {
3755       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3756       case SPNB_RETURNS_NAN: break;
3757       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3758       case SPNB_RETURNS_ANY:
3759         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3760             (UseScalarMinMax &&
3761              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3762           Opc = ISD::FMAXNUM;
3763         break;
3764       }
3765       break;
3766     case SPF_NABS:
3767       Negate = true;
3768       [[fallthrough]];
3769     case SPF_ABS:
3770       IsUnaryAbs = true;
3771       Opc = ISD::ABS;
3772       break;
3773     default: break;
3774     }
3775 
3776     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3777         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3778          (UseScalarMinMax &&
3779           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3780         // If the underlying comparison instruction is used by any other
3781         // instruction, the consumed instructions won't be destroyed, so it is
3782         // not profitable to convert to a min/max.
3783         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3784       OpCode = Opc;
3785       LHSVal = getValue(LHS);
3786       RHSVal = getValue(RHS);
3787       BaseOps.clear();
3788     }
3789 
3790     if (IsUnaryAbs) {
3791       OpCode = Opc;
3792       LHSVal = getValue(LHS);
3793       BaseOps.clear();
3794     }
3795   }
3796 
3797   if (IsUnaryAbs) {
3798     for (unsigned i = 0; i != NumValues; ++i) {
3799       SDLoc dl = getCurSDLoc();
3800       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3801       Values[i] =
3802           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3803       if (Negate)
3804         Values[i] = DAG.getNegative(Values[i], dl, VT);
3805     }
3806   } else {
3807     for (unsigned i = 0; i != NumValues; ++i) {
3808       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3809       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3810       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3811       Values[i] = DAG.getNode(
3812           OpCode, getCurSDLoc(),
3813           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3814     }
3815   }
3816 
3817   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3818                            DAG.getVTList(ValueVTs), Values));
3819 }
3820 
3821 void SelectionDAGBuilder::visitTrunc(const User &I) {
3822   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3823   SDValue N = getValue(I.getOperand(0));
3824   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3825                                                         I.getType());
3826   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3827 }
3828 
3829 void SelectionDAGBuilder::visitZExt(const User &I) {
3830   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3831   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3832   SDValue N = getValue(I.getOperand(0));
3833   auto &TLI = DAG.getTargetLoweringInfo();
3834   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3835 
3836   SDNodeFlags Flags;
3837   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3838     Flags.setNonNeg(PNI->hasNonNeg());
3839 
3840   // Eagerly use nonneg information to canonicalize towards sign_extend if
3841   // that is the target's preference.
3842   // TODO: Let the target do this later.
3843   if (Flags.hasNonNeg() &&
3844       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3845     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3846     return;
3847   }
3848 
3849   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3850 }
3851 
3852 void SelectionDAGBuilder::visitSExt(const User &I) {
3853   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3854   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3855   SDValue N = getValue(I.getOperand(0));
3856   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3857                                                         I.getType());
3858   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3859 }
3860 
3861 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3862   // FPTrunc is never a no-op cast, no need to check
3863   SDValue N = getValue(I.getOperand(0));
3864   SDLoc dl = getCurSDLoc();
3865   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3866   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3867   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3868                            DAG.getTargetConstant(
3869                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3870 }
3871 
3872 void SelectionDAGBuilder::visitFPExt(const User &I) {
3873   // FPExt is never a no-op cast, no need to check
3874   SDValue N = getValue(I.getOperand(0));
3875   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3876                                                         I.getType());
3877   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3878 }
3879 
3880 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3881   // FPToUI is never a no-op cast, no need to check
3882   SDValue N = getValue(I.getOperand(0));
3883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3884                                                         I.getType());
3885   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3886 }
3887 
3888 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3889   // FPToSI is never a no-op cast, no need to check
3890   SDValue N = getValue(I.getOperand(0));
3891   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3892                                                         I.getType());
3893   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3894 }
3895 
3896 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3897   // UIToFP is never a no-op cast, no need to check
3898   SDValue N = getValue(I.getOperand(0));
3899   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3900                                                         I.getType());
3901   SDNodeFlags Flags;
3902   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3903     Flags.setNonNeg(PNI->hasNonNeg());
3904 
3905   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3906 }
3907 
3908 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3909   // SIToFP is never a no-op cast, no need to check
3910   SDValue N = getValue(I.getOperand(0));
3911   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3912                                                         I.getType());
3913   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3914 }
3915 
3916 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3917   // What to do depends on the size of the integer and the size of the pointer.
3918   // We can either truncate, zero extend, or no-op, accordingly.
3919   SDValue N = getValue(I.getOperand(0));
3920   auto &TLI = DAG.getTargetLoweringInfo();
3921   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3922                                                         I.getType());
3923   EVT PtrMemVT =
3924       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3925   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3926   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3927   setValue(&I, N);
3928 }
3929 
3930 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3931   // What to do depends on the size of the integer and the size of the pointer.
3932   // We can either truncate, zero extend, or no-op, accordingly.
3933   SDValue N = getValue(I.getOperand(0));
3934   auto &TLI = DAG.getTargetLoweringInfo();
3935   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3936   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3937   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3938   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3939   setValue(&I, N);
3940 }
3941 
3942 void SelectionDAGBuilder::visitBitCast(const User &I) {
3943   SDValue N = getValue(I.getOperand(0));
3944   SDLoc dl = getCurSDLoc();
3945   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3946                                                         I.getType());
3947 
3948   // BitCast assures us that source and destination are the same size so this is
3949   // either a BITCAST or a no-op.
3950   if (DestVT != N.getValueType())
3951     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3952                              DestVT, N)); // convert types.
3953   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3954   // might fold any kind of constant expression to an integer constant and that
3955   // is not what we are looking for. Only recognize a bitcast of a genuine
3956   // constant integer as an opaque constant.
3957   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3958     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3959                                  /*isOpaque*/true));
3960   else
3961     setValue(&I, N);            // noop cast.
3962 }
3963 
3964 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3965   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3966   const Value *SV = I.getOperand(0);
3967   SDValue N = getValue(SV);
3968   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3969 
3970   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3971   unsigned DestAS = I.getType()->getPointerAddressSpace();
3972 
3973   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3974     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3975 
3976   setValue(&I, N);
3977 }
3978 
3979 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3981   SDValue InVec = getValue(I.getOperand(0));
3982   SDValue InVal = getValue(I.getOperand(1));
3983   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3984                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3985   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3986                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3987                            InVec, InVal, InIdx));
3988 }
3989 
3990 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3991   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3992   SDValue InVec = getValue(I.getOperand(0));
3993   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3994                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3995   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3996                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3997                            InVec, InIdx));
3998 }
3999 
4000 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4001   SDValue Src1 = getValue(I.getOperand(0));
4002   SDValue Src2 = getValue(I.getOperand(1));
4003   ArrayRef<int> Mask;
4004   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4005     Mask = SVI->getShuffleMask();
4006   else
4007     Mask = cast<ConstantExpr>(I).getShuffleMask();
4008   SDLoc DL = getCurSDLoc();
4009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4010   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4011   EVT SrcVT = Src1.getValueType();
4012 
4013   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4014       VT.isScalableVector()) {
4015     // Canonical splat form of first element of first input vector.
4016     SDValue FirstElt =
4017         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4018                     DAG.getVectorIdxConstant(0, DL));
4019     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4020     return;
4021   }
4022 
4023   // For now, we only handle splats for scalable vectors.
4024   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4025   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4026   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4027 
4028   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4029   unsigned MaskNumElts = Mask.size();
4030 
4031   if (SrcNumElts == MaskNumElts) {
4032     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4033     return;
4034   }
4035 
4036   // Normalize the shuffle vector since mask and vector length don't match.
4037   if (SrcNumElts < MaskNumElts) {
4038     // Mask is longer than the source vectors. We can use concatenate vector to
4039     // make the mask and vectors lengths match.
4040 
4041     if (MaskNumElts % SrcNumElts == 0) {
4042       // Mask length is a multiple of the source vector length.
4043       // Check if the shuffle is some kind of concatenation of the input
4044       // vectors.
4045       unsigned NumConcat = MaskNumElts / SrcNumElts;
4046       bool IsConcat = true;
4047       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4048       for (unsigned i = 0; i != MaskNumElts; ++i) {
4049         int Idx = Mask[i];
4050         if (Idx < 0)
4051           continue;
4052         // Ensure the indices in each SrcVT sized piece are sequential and that
4053         // the same source is used for the whole piece.
4054         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4055             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4056              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4057           IsConcat = false;
4058           break;
4059         }
4060         // Remember which source this index came from.
4061         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4062       }
4063 
4064       // The shuffle is concatenating multiple vectors together. Just emit
4065       // a CONCAT_VECTORS operation.
4066       if (IsConcat) {
4067         SmallVector<SDValue, 8> ConcatOps;
4068         for (auto Src : ConcatSrcs) {
4069           if (Src < 0)
4070             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4071           else if (Src == 0)
4072             ConcatOps.push_back(Src1);
4073           else
4074             ConcatOps.push_back(Src2);
4075         }
4076         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4077         return;
4078       }
4079     }
4080 
4081     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4082     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4083     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4084                                     PaddedMaskNumElts);
4085 
4086     // Pad both vectors with undefs to make them the same length as the mask.
4087     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4088 
4089     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4090     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4091     MOps1[0] = Src1;
4092     MOps2[0] = Src2;
4093 
4094     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4095     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4096 
4097     // Readjust mask for new input vector length.
4098     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4099     for (unsigned i = 0; i != MaskNumElts; ++i) {
4100       int Idx = Mask[i];
4101       if (Idx >= (int)SrcNumElts)
4102         Idx -= SrcNumElts - PaddedMaskNumElts;
4103       MappedOps[i] = Idx;
4104     }
4105 
4106     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4107 
4108     // If the concatenated vector was padded, extract a subvector with the
4109     // correct number of elements.
4110     if (MaskNumElts != PaddedMaskNumElts)
4111       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4112                            DAG.getVectorIdxConstant(0, DL));
4113 
4114     setValue(&I, Result);
4115     return;
4116   }
4117 
4118   if (SrcNumElts > MaskNumElts) {
4119     // Analyze the access pattern of the vector to see if we can extract
4120     // two subvectors and do the shuffle.
4121     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4122     bool CanExtract = true;
4123     for (int Idx : Mask) {
4124       unsigned Input = 0;
4125       if (Idx < 0)
4126         continue;
4127 
4128       if (Idx >= (int)SrcNumElts) {
4129         Input = 1;
4130         Idx -= SrcNumElts;
4131       }
4132 
4133       // If all the indices come from the same MaskNumElts sized portion of
4134       // the sources we can use extract. Also make sure the extract wouldn't
4135       // extract past the end of the source.
4136       int NewStartIdx = alignDown(Idx, MaskNumElts);
4137       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4138           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4139         CanExtract = false;
4140       // Make sure we always update StartIdx as we use it to track if all
4141       // elements are undef.
4142       StartIdx[Input] = NewStartIdx;
4143     }
4144 
4145     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4146       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4147       return;
4148     }
4149     if (CanExtract) {
4150       // Extract appropriate subvector and generate a vector shuffle
4151       for (unsigned Input = 0; Input < 2; ++Input) {
4152         SDValue &Src = Input == 0 ? Src1 : Src2;
4153         if (StartIdx[Input] < 0)
4154           Src = DAG.getUNDEF(VT);
4155         else {
4156           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4157                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4158         }
4159       }
4160 
4161       // Calculate new mask.
4162       SmallVector<int, 8> MappedOps(Mask);
4163       for (int &Idx : MappedOps) {
4164         if (Idx >= (int)SrcNumElts)
4165           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4166         else if (Idx >= 0)
4167           Idx -= StartIdx[0];
4168       }
4169 
4170       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4171       return;
4172     }
4173   }
4174 
4175   // We can't use either concat vectors or extract subvectors so fall back to
4176   // replacing the shuffle with extract and build vector.
4177   // to insert and build vector.
4178   EVT EltVT = VT.getVectorElementType();
4179   SmallVector<SDValue,8> Ops;
4180   for (int Idx : Mask) {
4181     SDValue Res;
4182 
4183     if (Idx < 0) {
4184       Res = DAG.getUNDEF(EltVT);
4185     } else {
4186       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4187       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4188 
4189       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4190                         DAG.getVectorIdxConstant(Idx, DL));
4191     }
4192 
4193     Ops.push_back(Res);
4194   }
4195 
4196   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4197 }
4198 
4199 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4200   ArrayRef<unsigned> Indices = I.getIndices();
4201   const Value *Op0 = I.getOperand(0);
4202   const Value *Op1 = I.getOperand(1);
4203   Type *AggTy = I.getType();
4204   Type *ValTy = Op1->getType();
4205   bool IntoUndef = isa<UndefValue>(Op0);
4206   bool FromUndef = isa<UndefValue>(Op1);
4207 
4208   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4209 
4210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4211   SmallVector<EVT, 4> AggValueVTs;
4212   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4213   SmallVector<EVT, 4> ValValueVTs;
4214   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4215 
4216   unsigned NumAggValues = AggValueVTs.size();
4217   unsigned NumValValues = ValValueVTs.size();
4218   SmallVector<SDValue, 4> Values(NumAggValues);
4219 
4220   // Ignore an insertvalue that produces an empty object
4221   if (!NumAggValues) {
4222     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4223     return;
4224   }
4225 
4226   SDValue Agg = getValue(Op0);
4227   unsigned i = 0;
4228   // Copy the beginning value(s) from the original aggregate.
4229   for (; i != LinearIndex; ++i)
4230     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4231                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4232   // Copy values from the inserted value(s).
4233   if (NumValValues) {
4234     SDValue Val = getValue(Op1);
4235     for (; i != LinearIndex + NumValValues; ++i)
4236       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4237                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4238   }
4239   // Copy remaining value(s) from the original aggregate.
4240   for (; i != NumAggValues; ++i)
4241     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4242                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4243 
4244   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4245                            DAG.getVTList(AggValueVTs), Values));
4246 }
4247 
4248 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4249   ArrayRef<unsigned> Indices = I.getIndices();
4250   const Value *Op0 = I.getOperand(0);
4251   Type *AggTy = Op0->getType();
4252   Type *ValTy = I.getType();
4253   bool OutOfUndef = isa<UndefValue>(Op0);
4254 
4255   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4256 
4257   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4258   SmallVector<EVT, 4> ValValueVTs;
4259   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4260 
4261   unsigned NumValValues = ValValueVTs.size();
4262 
4263   // Ignore a extractvalue that produces an empty object
4264   if (!NumValValues) {
4265     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4266     return;
4267   }
4268 
4269   SmallVector<SDValue, 4> Values(NumValValues);
4270 
4271   SDValue Agg = getValue(Op0);
4272   // Copy out the selected value(s).
4273   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4274     Values[i - LinearIndex] =
4275       OutOfUndef ?
4276         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4277         SDValue(Agg.getNode(), Agg.getResNo() + i);
4278 
4279   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4280                            DAG.getVTList(ValValueVTs), Values));
4281 }
4282 
4283 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4284   Value *Op0 = I.getOperand(0);
4285   // Note that the pointer operand may be a vector of pointers. Take the scalar
4286   // element which holds a pointer.
4287   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4288   SDValue N = getValue(Op0);
4289   SDLoc dl = getCurSDLoc();
4290   auto &TLI = DAG.getTargetLoweringInfo();
4291   GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4292 
4293   // Normalize Vector GEP - all scalar operands should be converted to the
4294   // splat vector.
4295   bool IsVectorGEP = I.getType()->isVectorTy();
4296   ElementCount VectorElementCount =
4297       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4298                   : ElementCount::getFixed(0);
4299 
4300   if (IsVectorGEP && !N.getValueType().isVector()) {
4301     LLVMContext &Context = *DAG.getContext();
4302     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4303     N = DAG.getSplat(VT, dl, N);
4304   }
4305 
4306   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4307        GTI != E; ++GTI) {
4308     const Value *Idx = GTI.getOperand();
4309     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4310       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4311       if (Field) {
4312         // N = N + Offset
4313         uint64_t Offset =
4314             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4315 
4316         // In an inbounds GEP with an offset that is nonnegative even when
4317         // interpreted as signed, assume there is no unsigned overflow.
4318         SDNodeFlags Flags;
4319         if (NW.hasNoUnsignedWrap() ||
4320             (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4321           Flags.setNoUnsignedWrap(true);
4322 
4323         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4324                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4325       }
4326     } else {
4327       // IdxSize is the width of the arithmetic according to IR semantics.
4328       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4329       // (and fix up the result later).
4330       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4331       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4332       TypeSize ElementSize =
4333           GTI.getSequentialElementStride(DAG.getDataLayout());
4334       // We intentionally mask away the high bits here; ElementSize may not
4335       // fit in IdxTy.
4336       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4337       bool ElementScalable = ElementSize.isScalable();
4338 
4339       // If this is a scalar constant or a splat vector of constants,
4340       // handle it quickly.
4341       const auto *C = dyn_cast<Constant>(Idx);
4342       if (C && isa<VectorType>(C->getType()))
4343         C = C->getSplatValue();
4344 
4345       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4346       if (CI && CI->isZero())
4347         continue;
4348       if (CI && !ElementScalable) {
4349         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4350         LLVMContext &Context = *DAG.getContext();
4351         SDValue OffsVal;
4352         if (IsVectorGEP)
4353           OffsVal = DAG.getConstant(
4354               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4355         else
4356           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4357 
4358         // In an inbounds GEP with an offset that is nonnegative even when
4359         // interpreted as signed, assume there is no unsigned overflow.
4360         SDNodeFlags Flags;
4361         if (NW.hasNoUnsignedWrap() ||
4362             (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4363           Flags.setNoUnsignedWrap(true);
4364 
4365         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4366 
4367         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4368         continue;
4369       }
4370 
4371       // N = N + Idx * ElementMul;
4372       SDValue IdxN = getValue(Idx);
4373 
4374       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4375         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4376                                   VectorElementCount);
4377         IdxN = DAG.getSplat(VT, dl, IdxN);
4378       }
4379 
4380       // If the index is smaller or larger than intptr_t, truncate or extend
4381       // it.
4382       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4383 
4384       if (ElementScalable) {
4385         EVT VScaleTy = N.getValueType().getScalarType();
4386         SDValue VScale = DAG.getNode(
4387             ISD::VSCALE, dl, VScaleTy,
4388             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4389         if (IsVectorGEP)
4390           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4391         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4392       } else {
4393         // If this is a multiply by a power of two, turn it into a shl
4394         // immediately.  This is a very common case.
4395         if (ElementMul != 1) {
4396           if (ElementMul.isPowerOf2()) {
4397             unsigned Amt = ElementMul.logBase2();
4398             IdxN = DAG.getNode(ISD::SHL, dl,
4399                                N.getValueType(), IdxN,
4400                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4401           } else {
4402             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4403                                             IdxN.getValueType());
4404             IdxN = DAG.getNode(ISD::MUL, dl,
4405                                N.getValueType(), IdxN, Scale);
4406           }
4407         }
4408       }
4409 
4410       N = DAG.getNode(ISD::ADD, dl,
4411                       N.getValueType(), N, IdxN);
4412     }
4413   }
4414 
4415   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4416   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4417   if (IsVectorGEP) {
4418     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4419     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4420   }
4421 
4422   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4423     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4424 
4425   setValue(&I, N);
4426 }
4427 
4428 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4429   // If this is a fixed sized alloca in the entry block of the function,
4430   // allocate it statically on the stack.
4431   if (FuncInfo.StaticAllocaMap.count(&I))
4432     return;   // getValue will auto-populate this.
4433 
4434   SDLoc dl = getCurSDLoc();
4435   Type *Ty = I.getAllocatedType();
4436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4437   auto &DL = DAG.getDataLayout();
4438   TypeSize TySize = DL.getTypeAllocSize(Ty);
4439   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4440 
4441   SDValue AllocSize = getValue(I.getArraySize());
4442 
4443   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4444   if (AllocSize.getValueType() != IntPtr)
4445     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4446 
4447   if (TySize.isScalable())
4448     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4449                             DAG.getVScale(dl, IntPtr,
4450                                           APInt(IntPtr.getScalarSizeInBits(),
4451                                                 TySize.getKnownMinValue())));
4452   else {
4453     SDValue TySizeValue =
4454         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4455     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4456                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4457   }
4458 
4459   // Handle alignment.  If the requested alignment is less than or equal to
4460   // the stack alignment, ignore it.  If the size is greater than or equal to
4461   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4462   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4463   if (*Alignment <= StackAlign)
4464     Alignment = std::nullopt;
4465 
4466   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4467   // Round the size of the allocation up to the stack alignment size
4468   // by add SA-1 to the size. This doesn't overflow because we're computing
4469   // an address inside an alloca.
4470   SDNodeFlags Flags;
4471   Flags.setNoUnsignedWrap(true);
4472   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4473                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4474 
4475   // Mask out the low bits for alignment purposes.
4476   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4477                           DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4478 
4479   SDValue Ops[] = {
4480       getRoot(), AllocSize,
4481       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4482   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4483   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4484   setValue(&I, DSA);
4485   DAG.setRoot(DSA.getValue(1));
4486 
4487   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4488 }
4489 
4490 static const MDNode *getRangeMetadata(const Instruction &I) {
4491   // If !noundef is not present, then !range violation results in a poison
4492   // value rather than immediate undefined behavior. In theory, transferring
4493   // these annotations to SDAG is fine, but in practice there are key SDAG
4494   // transforms that are known not to be poison-safe, such as folding logical
4495   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4496   // also present.
4497   if (!I.hasMetadata(LLVMContext::MD_noundef))
4498     return nullptr;
4499   return I.getMetadata(LLVMContext::MD_range);
4500 }
4501 
4502 static std::optional<ConstantRange> getRange(const Instruction &I) {
4503   if (const auto *CB = dyn_cast<CallBase>(&I)) {
4504     // see comment in getRangeMetadata about this check
4505     if (CB->hasRetAttr(Attribute::NoUndef))
4506       return CB->getRange();
4507   }
4508   if (const MDNode *Range = getRangeMetadata(I))
4509     return getConstantRangeFromMetadata(*Range);
4510   return std::nullopt;
4511 }
4512 
4513 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4514   if (I.isAtomic())
4515     return visitAtomicLoad(I);
4516 
4517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4518   const Value *SV = I.getOperand(0);
4519   if (TLI.supportSwiftError()) {
4520     // Swifterror values can come from either a function parameter with
4521     // swifterror attribute or an alloca with swifterror attribute.
4522     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4523       if (Arg->hasSwiftErrorAttr())
4524         return visitLoadFromSwiftError(I);
4525     }
4526 
4527     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4528       if (Alloca->isSwiftError())
4529         return visitLoadFromSwiftError(I);
4530     }
4531   }
4532 
4533   SDValue Ptr = getValue(SV);
4534 
4535   Type *Ty = I.getType();
4536   SmallVector<EVT, 4> ValueVTs, MemVTs;
4537   SmallVector<TypeSize, 4> Offsets;
4538   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4539   unsigned NumValues = ValueVTs.size();
4540   if (NumValues == 0)
4541     return;
4542 
4543   Align Alignment = I.getAlign();
4544   AAMDNodes AAInfo = I.getAAMetadata();
4545   const MDNode *Ranges = getRangeMetadata(I);
4546   bool isVolatile = I.isVolatile();
4547   MachineMemOperand::Flags MMOFlags =
4548       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4549 
4550   SDValue Root;
4551   bool ConstantMemory = false;
4552   if (isVolatile)
4553     // Serialize volatile loads with other side effects.
4554     Root = getRoot();
4555   else if (NumValues > MaxParallelChains)
4556     Root = getMemoryRoot();
4557   else if (AA &&
4558            AA->pointsToConstantMemory(MemoryLocation(
4559                SV,
4560                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4561                AAInfo))) {
4562     // Do not serialize (non-volatile) loads of constant memory with anything.
4563     Root = DAG.getEntryNode();
4564     ConstantMemory = true;
4565     MMOFlags |= MachineMemOperand::MOInvariant;
4566   } else {
4567     // Do not serialize non-volatile loads against each other.
4568     Root = DAG.getRoot();
4569   }
4570 
4571   SDLoc dl = getCurSDLoc();
4572 
4573   if (isVolatile)
4574     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4575 
4576   SmallVector<SDValue, 4> Values(NumValues);
4577   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4578 
4579   unsigned ChainI = 0;
4580   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4581     // Serializing loads here may result in excessive register pressure, and
4582     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4583     // could recover a bit by hoisting nodes upward in the chain by recognizing
4584     // they are side-effect free or do not alias. The optimizer should really
4585     // avoid this case by converting large object/array copies to llvm.memcpy
4586     // (MaxParallelChains should always remain as failsafe).
4587     if (ChainI == MaxParallelChains) {
4588       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4589       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4590                                   ArrayRef(Chains.data(), ChainI));
4591       Root = Chain;
4592       ChainI = 0;
4593     }
4594 
4595     // TODO: MachinePointerInfo only supports a fixed length offset.
4596     MachinePointerInfo PtrInfo =
4597         !Offsets[i].isScalable() || Offsets[i].isZero()
4598             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4599             : MachinePointerInfo();
4600 
4601     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4602     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4603                             MMOFlags, AAInfo, Ranges);
4604     Chains[ChainI] = L.getValue(1);
4605 
4606     if (MemVTs[i] != ValueVTs[i])
4607       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4608 
4609     Values[i] = L;
4610   }
4611 
4612   if (!ConstantMemory) {
4613     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4614                                 ArrayRef(Chains.data(), ChainI));
4615     if (isVolatile)
4616       DAG.setRoot(Chain);
4617     else
4618       PendingLoads.push_back(Chain);
4619   }
4620 
4621   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4622                            DAG.getVTList(ValueVTs), Values));
4623 }
4624 
4625 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4626   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4627          "call visitStoreToSwiftError when backend supports swifterror");
4628 
4629   SmallVector<EVT, 4> ValueVTs;
4630   SmallVector<uint64_t, 4> Offsets;
4631   const Value *SrcV = I.getOperand(0);
4632   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4633                   SrcV->getType(), ValueVTs, &Offsets, 0);
4634   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4635          "expect a single EVT for swifterror");
4636 
4637   SDValue Src = getValue(SrcV);
4638   // Create a virtual register, then update the virtual register.
4639   Register VReg =
4640       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4641   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4642   // Chain can be getRoot or getControlRoot.
4643   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4644                                       SDValue(Src.getNode(), Src.getResNo()));
4645   DAG.setRoot(CopyNode);
4646 }
4647 
4648 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4649   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4650          "call visitLoadFromSwiftError when backend supports swifterror");
4651 
4652   assert(!I.isVolatile() &&
4653          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4654          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4655          "Support volatile, non temporal, invariant for load_from_swift_error");
4656 
4657   const Value *SV = I.getOperand(0);
4658   Type *Ty = I.getType();
4659   assert(
4660       (!AA ||
4661        !AA->pointsToConstantMemory(MemoryLocation(
4662            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4663            I.getAAMetadata()))) &&
4664       "load_from_swift_error should not be constant memory");
4665 
4666   SmallVector<EVT, 4> ValueVTs;
4667   SmallVector<uint64_t, 4> Offsets;
4668   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4669                   ValueVTs, &Offsets, 0);
4670   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4671          "expect a single EVT for swifterror");
4672 
4673   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4674   SDValue L = DAG.getCopyFromReg(
4675       getRoot(), getCurSDLoc(),
4676       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4677 
4678   setValue(&I, L);
4679 }
4680 
4681 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4682   if (I.isAtomic())
4683     return visitAtomicStore(I);
4684 
4685   const Value *SrcV = I.getOperand(0);
4686   const Value *PtrV = I.getOperand(1);
4687 
4688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689   if (TLI.supportSwiftError()) {
4690     // Swifterror values can come from either a function parameter with
4691     // swifterror attribute or an alloca with swifterror attribute.
4692     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4693       if (Arg->hasSwiftErrorAttr())
4694         return visitStoreToSwiftError(I);
4695     }
4696 
4697     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4698       if (Alloca->isSwiftError())
4699         return visitStoreToSwiftError(I);
4700     }
4701   }
4702 
4703   SmallVector<EVT, 4> ValueVTs, MemVTs;
4704   SmallVector<TypeSize, 4> Offsets;
4705   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4706                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4707   unsigned NumValues = ValueVTs.size();
4708   if (NumValues == 0)
4709     return;
4710 
4711   // Get the lowered operands. Note that we do this after
4712   // checking if NumResults is zero, because with zero results
4713   // the operands won't have values in the map.
4714   SDValue Src = getValue(SrcV);
4715   SDValue Ptr = getValue(PtrV);
4716 
4717   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4718   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4719   SDLoc dl = getCurSDLoc();
4720   Align Alignment = I.getAlign();
4721   AAMDNodes AAInfo = I.getAAMetadata();
4722 
4723   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4724 
4725   unsigned ChainI = 0;
4726   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4727     // See visitLoad comments.
4728     if (ChainI == MaxParallelChains) {
4729       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4730                                   ArrayRef(Chains.data(), ChainI));
4731       Root = Chain;
4732       ChainI = 0;
4733     }
4734 
4735     // TODO: MachinePointerInfo only supports a fixed length offset.
4736     MachinePointerInfo PtrInfo =
4737         !Offsets[i].isScalable() || Offsets[i].isZero()
4738             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4739             : MachinePointerInfo();
4740 
4741     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4742     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4743     if (MemVTs[i] != ValueVTs[i])
4744       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4745     SDValue St =
4746         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4747     Chains[ChainI] = St;
4748   }
4749 
4750   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4751                                   ArrayRef(Chains.data(), ChainI));
4752   setValue(&I, StoreNode);
4753   DAG.setRoot(StoreNode);
4754 }
4755 
4756 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4757                                            bool IsCompressing) {
4758   SDLoc sdl = getCurSDLoc();
4759 
4760   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4761                                Align &Alignment) {
4762     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4763     Src0 = I.getArgOperand(0);
4764     Ptr = I.getArgOperand(1);
4765     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4766     Mask = I.getArgOperand(3);
4767   };
4768   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4769                                     Align &Alignment) {
4770     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4771     Src0 = I.getArgOperand(0);
4772     Ptr = I.getArgOperand(1);
4773     Mask = I.getArgOperand(2);
4774     Alignment = I.getParamAlign(1).valueOrOne();
4775   };
4776 
4777   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4778   Align Alignment;
4779   if (IsCompressing)
4780     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4781   else
4782     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4783 
4784   SDValue Ptr = getValue(PtrOperand);
4785   SDValue Src0 = getValue(Src0Operand);
4786   SDValue Mask = getValue(MaskOperand);
4787   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4788 
4789   EVT VT = Src0.getValueType();
4790 
4791   auto MMOFlags = MachineMemOperand::MOStore;
4792   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4793     MMOFlags |= MachineMemOperand::MONonTemporal;
4794 
4795   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4796       MachinePointerInfo(PtrOperand), MMOFlags,
4797       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4798 
4799   const auto &TLI = DAG.getTargetLoweringInfo();
4800   const auto &TTI =
4801       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4802   SDValue StoreNode =
4803       !IsCompressing &&
4804               TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType())
4805           ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4806                                  Mask)
4807           : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4808                                VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4809                                IsCompressing);
4810   DAG.setRoot(StoreNode);
4811   setValue(&I, StoreNode);
4812 }
4813 
4814 // Get a uniform base for the Gather/Scatter intrinsic.
4815 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4816 // We try to represent it as a base pointer + vector of indices.
4817 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4818 // The first operand of the GEP may be a single pointer or a vector of pointers
4819 // Example:
4820 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4821 //  or
4822 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4823 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4824 //
4825 // When the first GEP operand is a single pointer - it is the uniform base we
4826 // are looking for. If first operand of the GEP is a splat vector - we
4827 // extract the splat value and use it as a uniform base.
4828 // In all other cases the function returns 'false'.
4829 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4830                            ISD::MemIndexType &IndexType, SDValue &Scale,
4831                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4832                            uint64_t ElemSize) {
4833   SelectionDAG& DAG = SDB->DAG;
4834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4835   const DataLayout &DL = DAG.getDataLayout();
4836 
4837   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4838 
4839   // Handle splat constant pointer.
4840   if (auto *C = dyn_cast<Constant>(Ptr)) {
4841     C = C->getSplatValue();
4842     if (!C)
4843       return false;
4844 
4845     Base = SDB->getValue(C);
4846 
4847     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4848     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4849     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4850     IndexType = ISD::SIGNED_SCALED;
4851     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4852     return true;
4853   }
4854 
4855   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4856   if (!GEP || GEP->getParent() != CurBB)
4857     return false;
4858 
4859   if (GEP->getNumOperands() != 2)
4860     return false;
4861 
4862   const Value *BasePtr = GEP->getPointerOperand();
4863   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4864 
4865   // Make sure the base is scalar and the index is a vector.
4866   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4867     return false;
4868 
4869   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4870   if (ScaleVal.isScalable())
4871     return false;
4872 
4873   // Target may not support the required addressing mode.
4874   if (ScaleVal != 1 &&
4875       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4876     return false;
4877 
4878   Base = SDB->getValue(BasePtr);
4879   Index = SDB->getValue(IndexVal);
4880   IndexType = ISD::SIGNED_SCALED;
4881 
4882   Scale =
4883       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4884   return true;
4885 }
4886 
4887 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4888   SDLoc sdl = getCurSDLoc();
4889 
4890   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4891   const Value *Ptr = I.getArgOperand(1);
4892   SDValue Src0 = getValue(I.getArgOperand(0));
4893   SDValue Mask = getValue(I.getArgOperand(3));
4894   EVT VT = Src0.getValueType();
4895   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4896                         ->getMaybeAlignValue()
4897                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4899 
4900   SDValue Base;
4901   SDValue Index;
4902   ISD::MemIndexType IndexType;
4903   SDValue Scale;
4904   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4905                                     I.getParent(), VT.getScalarStoreSize());
4906 
4907   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4908   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4909       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4910       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4911   if (!UniformBase) {
4912     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4913     Index = getValue(Ptr);
4914     IndexType = ISD::SIGNED_SCALED;
4915     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4916   }
4917 
4918   EVT IdxVT = Index.getValueType();
4919   EVT EltTy = IdxVT.getVectorElementType();
4920   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4921     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4922     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4923   }
4924 
4925   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4926   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4927                                          Ops, MMO, IndexType, false);
4928   DAG.setRoot(Scatter);
4929   setValue(&I, Scatter);
4930 }
4931 
4932 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4933   SDLoc sdl = getCurSDLoc();
4934 
4935   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4936                               Align &Alignment) {
4937     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4938     Ptr = I.getArgOperand(0);
4939     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4940     Mask = I.getArgOperand(2);
4941     Src0 = I.getArgOperand(3);
4942   };
4943   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4944                                  Align &Alignment) {
4945     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4946     Ptr = I.getArgOperand(0);
4947     Alignment = I.getParamAlign(0).valueOrOne();
4948     Mask = I.getArgOperand(1);
4949     Src0 = I.getArgOperand(2);
4950   };
4951 
4952   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4953   Align Alignment;
4954   if (IsExpanding)
4955     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4956   else
4957     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4958 
4959   SDValue Ptr = getValue(PtrOperand);
4960   SDValue Src0 = getValue(Src0Operand);
4961   SDValue Mask = getValue(MaskOperand);
4962   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4963 
4964   EVT VT = Src0.getValueType();
4965   AAMDNodes AAInfo = I.getAAMetadata();
4966   const MDNode *Ranges = getRangeMetadata(I);
4967 
4968   // Do not serialize masked loads of constant memory with anything.
4969   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4970   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4971 
4972   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4973 
4974   auto MMOFlags = MachineMemOperand::MOLoad;
4975   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4976     MMOFlags |= MachineMemOperand::MONonTemporal;
4977 
4978   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4979       MachinePointerInfo(PtrOperand), MMOFlags,
4980       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4981 
4982   const auto &TLI = DAG.getTargetLoweringInfo();
4983   const auto &TTI =
4984       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4985   // The Load/Res may point to different values and both of them are output
4986   // variables.
4987   SDValue Load;
4988   SDValue Res;
4989   if (!IsExpanding &&
4990       TTI.hasConditionalLoadStoreForType(Src0Operand->getType()))
4991     Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
4992   else
4993     Res = Load =
4994         DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4995                           ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4996   if (AddToChain)
4997     PendingLoads.push_back(Load.getValue(1));
4998   setValue(&I, Res);
4999 }
5000 
5001 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5002   SDLoc sdl = getCurSDLoc();
5003 
5004   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
5005   const Value *Ptr = I.getArgOperand(0);
5006   SDValue Src0 = getValue(I.getArgOperand(3));
5007   SDValue Mask = getValue(I.getArgOperand(2));
5008 
5009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5010   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5011   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
5012                         ->getMaybeAlignValue()
5013                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
5014 
5015   const MDNode *Ranges = getRangeMetadata(I);
5016 
5017   SDValue Root = DAG.getRoot();
5018   SDValue Base;
5019   SDValue Index;
5020   ISD::MemIndexType IndexType;
5021   SDValue Scale;
5022   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
5023                                     I.getParent(), VT.getScalarStoreSize());
5024   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5025   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5026       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5027       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5028       Ranges);
5029 
5030   if (!UniformBase) {
5031     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5032     Index = getValue(Ptr);
5033     IndexType = ISD::SIGNED_SCALED;
5034     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5035   }
5036 
5037   EVT IdxVT = Index.getValueType();
5038   EVT EltTy = IdxVT.getVectorElementType();
5039   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5040     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5041     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5042   }
5043 
5044   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5045   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
5046                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
5047 
5048   PendingLoads.push_back(Gather.getValue(1));
5049   setValue(&I, Gather);
5050 }
5051 
5052 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5053   SDLoc dl = getCurSDLoc();
5054   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5055   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5056   SyncScope::ID SSID = I.getSyncScopeID();
5057 
5058   SDValue InChain = getRoot();
5059 
5060   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5061   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5062 
5063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5064   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5065 
5066   MachineFunction &MF = DAG.getMachineFunction();
5067   MachineMemOperand *MMO = MF.getMachineMemOperand(
5068       MachinePointerInfo(I.getPointerOperand()), Flags,
5069       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5070       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5071 
5072   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5073                                    dl, MemVT, VTs, InChain,
5074                                    getValue(I.getPointerOperand()),
5075                                    getValue(I.getCompareOperand()),
5076                                    getValue(I.getNewValOperand()), MMO);
5077 
5078   SDValue OutChain = L.getValue(2);
5079 
5080   setValue(&I, L);
5081   DAG.setRoot(OutChain);
5082 }
5083 
5084 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5085   SDLoc dl = getCurSDLoc();
5086   ISD::NodeType NT;
5087   switch (I.getOperation()) {
5088   default: llvm_unreachable("Unknown atomicrmw operation");
5089   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5090   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5091   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5092   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5093   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5094   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5095   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5096   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5097   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5098   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5099   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5100   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5101   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5102   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5103   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5104   case AtomicRMWInst::UIncWrap:
5105     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5106     break;
5107   case AtomicRMWInst::UDecWrap:
5108     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5109     break;
5110   }
5111   AtomicOrdering Ordering = I.getOrdering();
5112   SyncScope::ID SSID = I.getSyncScopeID();
5113 
5114   SDValue InChain = getRoot();
5115 
5116   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5117   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5118   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5119 
5120   MachineFunction &MF = DAG.getMachineFunction();
5121   MachineMemOperand *MMO = MF.getMachineMemOperand(
5122       MachinePointerInfo(I.getPointerOperand()), Flags,
5123       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5124       AAMDNodes(), nullptr, SSID, Ordering);
5125 
5126   SDValue L =
5127     DAG.getAtomic(NT, dl, MemVT, InChain,
5128                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5129                   MMO);
5130 
5131   SDValue OutChain = L.getValue(1);
5132 
5133   setValue(&I, L);
5134   DAG.setRoot(OutChain);
5135 }
5136 
5137 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5138   SDLoc dl = getCurSDLoc();
5139   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5140   SDValue Ops[3];
5141   Ops[0] = getRoot();
5142   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5143                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5144   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5145                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5146   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5147   setValue(&I, N);
5148   DAG.setRoot(N);
5149 }
5150 
5151 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5152   SDLoc dl = getCurSDLoc();
5153   AtomicOrdering Order = I.getOrdering();
5154   SyncScope::ID SSID = I.getSyncScopeID();
5155 
5156   SDValue InChain = getRoot();
5157 
5158   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5159   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5160   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5161 
5162   if (!TLI.supportsUnalignedAtomics() &&
5163       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5164     report_fatal_error("Cannot generate unaligned atomic load");
5165 
5166   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5167 
5168   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5169       MachinePointerInfo(I.getPointerOperand()), Flags,
5170       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5171       nullptr, SSID, Order);
5172 
5173   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5174 
5175   SDValue Ptr = getValue(I.getPointerOperand());
5176   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5177                             Ptr, MMO);
5178 
5179   SDValue OutChain = L.getValue(1);
5180   if (MemVT != VT)
5181     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5182 
5183   setValue(&I, L);
5184   DAG.setRoot(OutChain);
5185 }
5186 
5187 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5188   SDLoc dl = getCurSDLoc();
5189 
5190   AtomicOrdering Ordering = I.getOrdering();
5191   SyncScope::ID SSID = I.getSyncScopeID();
5192 
5193   SDValue InChain = getRoot();
5194 
5195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5196   EVT MemVT =
5197       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5198 
5199   if (!TLI.supportsUnalignedAtomics() &&
5200       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5201     report_fatal_error("Cannot generate unaligned atomic store");
5202 
5203   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5204 
5205   MachineFunction &MF = DAG.getMachineFunction();
5206   MachineMemOperand *MMO = MF.getMachineMemOperand(
5207       MachinePointerInfo(I.getPointerOperand()), Flags,
5208       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5209       nullptr, SSID, Ordering);
5210 
5211   SDValue Val = getValue(I.getValueOperand());
5212   if (Val.getValueType() != MemVT)
5213     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5214   SDValue Ptr = getValue(I.getPointerOperand());
5215 
5216   SDValue OutChain =
5217       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5218 
5219   setValue(&I, OutChain);
5220   DAG.setRoot(OutChain);
5221 }
5222 
5223 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5224 /// node.
5225 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5226                                                unsigned Intrinsic) {
5227   // Ignore the callsite's attributes. A specific call site may be marked with
5228   // readnone, but the lowering code will expect the chain based on the
5229   // definition.
5230   const Function *F = I.getCalledFunction();
5231   bool HasChain = !F->doesNotAccessMemory();
5232   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5233 
5234   // Build the operand list.
5235   SmallVector<SDValue, 8> Ops;
5236   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5237     if (OnlyLoad) {
5238       // We don't need to serialize loads against other loads.
5239       Ops.push_back(DAG.getRoot());
5240     } else {
5241       Ops.push_back(getRoot());
5242     }
5243   }
5244 
5245   // Info is set by getTgtMemIntrinsic
5246   TargetLowering::IntrinsicInfo Info;
5247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5248   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5249                                                DAG.getMachineFunction(),
5250                                                Intrinsic);
5251 
5252   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5253   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5254       Info.opc == ISD::INTRINSIC_W_CHAIN)
5255     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5256                                         TLI.getPointerTy(DAG.getDataLayout())));
5257 
5258   // Add all operands of the call to the operand list.
5259   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5260     const Value *Arg = I.getArgOperand(i);
5261     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5262       Ops.push_back(getValue(Arg));
5263       continue;
5264     }
5265 
5266     // Use TargetConstant instead of a regular constant for immarg.
5267     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5268     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5269       assert(CI->getBitWidth() <= 64 &&
5270              "large intrinsic immediates not handled");
5271       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5272     } else {
5273       Ops.push_back(
5274           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5275     }
5276   }
5277 
5278   SmallVector<EVT, 4> ValueVTs;
5279   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5280 
5281   if (HasChain)
5282     ValueVTs.push_back(MVT::Other);
5283 
5284   SDVTList VTs = DAG.getVTList(ValueVTs);
5285 
5286   // Propagate fast-math-flags from IR to node(s).
5287   SDNodeFlags Flags;
5288   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5289     Flags.copyFMF(*FPMO);
5290   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5291 
5292   // Create the node.
5293   SDValue Result;
5294 
5295   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5296     auto *Token = Bundle->Inputs[0].get();
5297     SDValue ConvControlToken = getValue(Token);
5298     assert(Ops.back().getValueType() != MVT::Glue &&
5299            "Did not expected another glue node here.");
5300     ConvControlToken =
5301         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5302     Ops.push_back(ConvControlToken);
5303   }
5304 
5305   // In some cases, custom collection of operands from CallInst I may be needed.
5306   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5307   if (IsTgtIntrinsic) {
5308     // This is target intrinsic that touches memory
5309     //
5310     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5311     //       didn't yield anything useful.
5312     MachinePointerInfo MPI;
5313     if (Info.ptrVal)
5314       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5315     else if (Info.fallbackAddressSpace)
5316       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5317     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5318                                      Info.memVT, MPI, Info.align, Info.flags,
5319                                      Info.size, I.getAAMetadata());
5320   } else if (!HasChain) {
5321     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5322   } else if (!I.getType()->isVoidTy()) {
5323     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5324   } else {
5325     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5326   }
5327 
5328   if (HasChain) {
5329     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5330     if (OnlyLoad)
5331       PendingLoads.push_back(Chain);
5332     else
5333       DAG.setRoot(Chain);
5334   }
5335 
5336   if (!I.getType()->isVoidTy()) {
5337     if (!isa<VectorType>(I.getType()))
5338       Result = lowerRangeToAssertZExt(DAG, I, Result);
5339 
5340     MaybeAlign Alignment = I.getRetAlign();
5341 
5342     // Insert `assertalign` node if there's an alignment.
5343     if (InsertAssertAlign && Alignment) {
5344       Result =
5345           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5346     }
5347   }
5348 
5349   setValue(&I, Result);
5350 }
5351 
5352 /// GetSignificand - Get the significand and build it into a floating-point
5353 /// number with exponent of 1:
5354 ///
5355 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5356 ///
5357 /// where Op is the hexadecimal representation of floating point value.
5358 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5359   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5360                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5361   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5362                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5363   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5364 }
5365 
5366 /// GetExponent - Get the exponent:
5367 ///
5368 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5369 ///
5370 /// where Op is the hexadecimal representation of floating point value.
5371 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5372                            const TargetLowering &TLI, const SDLoc &dl) {
5373   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5374                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5375   SDValue t1 = DAG.getNode(
5376       ISD::SRL, dl, MVT::i32, t0,
5377       DAG.getConstant(23, dl,
5378                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5379   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5380                            DAG.getConstant(127, dl, MVT::i32));
5381   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5382 }
5383 
5384 /// getF32Constant - Get 32-bit floating point constant.
5385 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5386                               const SDLoc &dl) {
5387   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5388                            MVT::f32);
5389 }
5390 
5391 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5392                                        SelectionDAG &DAG) {
5393   // TODO: What fast-math-flags should be set on the floating-point nodes?
5394 
5395   //   IntegerPartOfX = ((int32_t)(t0);
5396   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5397 
5398   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5399   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5400   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5401 
5402   //   IntegerPartOfX <<= 23;
5403   IntegerPartOfX =
5404       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5405                   DAG.getConstant(23, dl,
5406                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5407                                       MVT::i32, DAG.getDataLayout())));
5408 
5409   SDValue TwoToFractionalPartOfX;
5410   if (LimitFloatPrecision <= 6) {
5411     // For floating-point precision of 6:
5412     //
5413     //   TwoToFractionalPartOfX =
5414     //     0.997535578f +
5415     //       (0.735607626f + 0.252464424f * x) * x;
5416     //
5417     // error 0.0144103317, which is 6 bits
5418     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5419                              getF32Constant(DAG, 0x3e814304, dl));
5420     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5421                              getF32Constant(DAG, 0x3f3c50c8, dl));
5422     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5423     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5424                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5425   } else if (LimitFloatPrecision <= 12) {
5426     // For floating-point precision of 12:
5427     //
5428     //   TwoToFractionalPartOfX =
5429     //     0.999892986f +
5430     //       (0.696457318f +
5431     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5432     //
5433     // error 0.000107046256, which is 13 to 14 bits
5434     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5435                              getF32Constant(DAG, 0x3da235e3, dl));
5436     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5437                              getF32Constant(DAG, 0x3e65b8f3, dl));
5438     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5439     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5440                              getF32Constant(DAG, 0x3f324b07, dl));
5441     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5442     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5443                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5444   } else { // LimitFloatPrecision <= 18
5445     // For floating-point precision of 18:
5446     //
5447     //   TwoToFractionalPartOfX =
5448     //     0.999999982f +
5449     //       (0.693148872f +
5450     //         (0.240227044f +
5451     //           (0.554906021e-1f +
5452     //             (0.961591928e-2f +
5453     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5454     // error 2.47208000*10^(-7), which is better than 18 bits
5455     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5456                              getF32Constant(DAG, 0x3924b03e, dl));
5457     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5458                              getF32Constant(DAG, 0x3ab24b87, dl));
5459     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5460     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5461                              getF32Constant(DAG, 0x3c1d8c17, dl));
5462     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5463     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5464                              getF32Constant(DAG, 0x3d634a1d, dl));
5465     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5466     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5467                              getF32Constant(DAG, 0x3e75fe14, dl));
5468     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5469     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5470                               getF32Constant(DAG, 0x3f317234, dl));
5471     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5472     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5473                                          getF32Constant(DAG, 0x3f800000, dl));
5474   }
5475 
5476   // Add the exponent into the result in integer domain.
5477   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5478   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5479                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5480 }
5481 
5482 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5483 /// limited-precision mode.
5484 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5485                          const TargetLowering &TLI, SDNodeFlags Flags) {
5486   if (Op.getValueType() == MVT::f32 &&
5487       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5488 
5489     // Put the exponent in the right bit position for later addition to the
5490     // final result:
5491     //
5492     // t0 = Op * log2(e)
5493 
5494     // TODO: What fast-math-flags should be set here?
5495     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5496                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5497     return getLimitedPrecisionExp2(t0, dl, DAG);
5498   }
5499 
5500   // No special expansion.
5501   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5502 }
5503 
5504 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5505 /// limited-precision mode.
5506 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5507                          const TargetLowering &TLI, SDNodeFlags Flags) {
5508   // TODO: What fast-math-flags should be set on the floating-point nodes?
5509 
5510   if (Op.getValueType() == MVT::f32 &&
5511       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5512     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5513 
5514     // Scale the exponent by log(2).
5515     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5516     SDValue LogOfExponent =
5517         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5518                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5519 
5520     // Get the significand and build it into a floating-point number with
5521     // exponent of 1.
5522     SDValue X = GetSignificand(DAG, Op1, dl);
5523 
5524     SDValue LogOfMantissa;
5525     if (LimitFloatPrecision <= 6) {
5526       // For floating-point precision of 6:
5527       //
5528       //   LogofMantissa =
5529       //     -1.1609546f +
5530       //       (1.4034025f - 0.23903021f * x) * x;
5531       //
5532       // error 0.0034276066, which is better than 8 bits
5533       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5534                                getF32Constant(DAG, 0xbe74c456, dl));
5535       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5536                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5537       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5538       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5539                                   getF32Constant(DAG, 0x3f949a29, dl));
5540     } else if (LimitFloatPrecision <= 12) {
5541       // For floating-point precision of 12:
5542       //
5543       //   LogOfMantissa =
5544       //     -1.7417939f +
5545       //       (2.8212026f +
5546       //         (-1.4699568f +
5547       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5548       //
5549       // error 0.000061011436, which is 14 bits
5550       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5551                                getF32Constant(DAG, 0xbd67b6d6, dl));
5552       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5553                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5554       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5555       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5556                                getF32Constant(DAG, 0x3fbc278b, dl));
5557       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5558       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5559                                getF32Constant(DAG, 0x40348e95, dl));
5560       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5561       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5562                                   getF32Constant(DAG, 0x3fdef31a, dl));
5563     } else { // LimitFloatPrecision <= 18
5564       // For floating-point precision of 18:
5565       //
5566       //   LogOfMantissa =
5567       //     -2.1072184f +
5568       //       (4.2372794f +
5569       //         (-3.7029485f +
5570       //           (2.2781945f +
5571       //             (-0.87823314f +
5572       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5573       //
5574       // error 0.0000023660568, which is better than 18 bits
5575       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5576                                getF32Constant(DAG, 0xbc91e5ac, dl));
5577       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5578                                getF32Constant(DAG, 0x3e4350aa, dl));
5579       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5580       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5581                                getF32Constant(DAG, 0x3f60d3e3, dl));
5582       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5583       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5584                                getF32Constant(DAG, 0x4011cdf0, dl));
5585       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5586       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5587                                getF32Constant(DAG, 0x406cfd1c, dl));
5588       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5589       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5590                                getF32Constant(DAG, 0x408797cb, dl));
5591       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5592       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5593                                   getF32Constant(DAG, 0x4006dcab, dl));
5594     }
5595 
5596     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5597   }
5598 
5599   // No special expansion.
5600   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5601 }
5602 
5603 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5604 /// limited-precision mode.
5605 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5606                           const TargetLowering &TLI, SDNodeFlags Flags) {
5607   // TODO: What fast-math-flags should be set on the floating-point nodes?
5608 
5609   if (Op.getValueType() == MVT::f32 &&
5610       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5611     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5612 
5613     // Get the exponent.
5614     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5615 
5616     // Get the significand and build it into a floating-point number with
5617     // exponent of 1.
5618     SDValue X = GetSignificand(DAG, Op1, dl);
5619 
5620     // Different possible minimax approximations of significand in
5621     // floating-point for various degrees of accuracy over [1,2].
5622     SDValue Log2ofMantissa;
5623     if (LimitFloatPrecision <= 6) {
5624       // For floating-point precision of 6:
5625       //
5626       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5627       //
5628       // error 0.0049451742, which is more than 7 bits
5629       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5630                                getF32Constant(DAG, 0xbeb08fe0, dl));
5631       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5632                                getF32Constant(DAG, 0x40019463, dl));
5633       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5634       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5635                                    getF32Constant(DAG, 0x3fd6633d, dl));
5636     } else if (LimitFloatPrecision <= 12) {
5637       // For floating-point precision of 12:
5638       //
5639       //   Log2ofMantissa =
5640       //     -2.51285454f +
5641       //       (4.07009056f +
5642       //         (-2.12067489f +
5643       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5644       //
5645       // error 0.0000876136000, which is better than 13 bits
5646       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5647                                getF32Constant(DAG, 0xbda7262e, dl));
5648       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5649                                getF32Constant(DAG, 0x3f25280b, dl));
5650       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5651       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5652                                getF32Constant(DAG, 0x4007b923, dl));
5653       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5654       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5655                                getF32Constant(DAG, 0x40823e2f, dl));
5656       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5657       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5658                                    getF32Constant(DAG, 0x4020d29c, dl));
5659     } else { // LimitFloatPrecision <= 18
5660       // For floating-point precision of 18:
5661       //
5662       //   Log2ofMantissa =
5663       //     -3.0400495f +
5664       //       (6.1129976f +
5665       //         (-5.3420409f +
5666       //           (3.2865683f +
5667       //             (-1.2669343f +
5668       //               (0.27515199f -
5669       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5670       //
5671       // error 0.0000018516, which is better than 18 bits
5672       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5673                                getF32Constant(DAG, 0xbcd2769e, dl));
5674       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5675                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5676       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5677       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5678                                getF32Constant(DAG, 0x3fa22ae7, dl));
5679       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5680       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5681                                getF32Constant(DAG, 0x40525723, dl));
5682       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5683       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5684                                getF32Constant(DAG, 0x40aaf200, dl));
5685       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5686       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5687                                getF32Constant(DAG, 0x40c39dad, dl));
5688       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5689       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5690                                    getF32Constant(DAG, 0x4042902c, dl));
5691     }
5692 
5693     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5694   }
5695 
5696   // No special expansion.
5697   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5698 }
5699 
5700 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5701 /// limited-precision mode.
5702 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5703                            const TargetLowering &TLI, SDNodeFlags Flags) {
5704   // TODO: What fast-math-flags should be set on the floating-point nodes?
5705 
5706   if (Op.getValueType() == MVT::f32 &&
5707       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5708     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5709 
5710     // Scale the exponent by log10(2) [0.30102999f].
5711     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5712     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5713                                         getF32Constant(DAG, 0x3e9a209a, dl));
5714 
5715     // Get the significand and build it into a floating-point number with
5716     // exponent of 1.
5717     SDValue X = GetSignificand(DAG, Op1, dl);
5718 
5719     SDValue Log10ofMantissa;
5720     if (LimitFloatPrecision <= 6) {
5721       // For floating-point precision of 6:
5722       //
5723       //   Log10ofMantissa =
5724       //     -0.50419619f +
5725       //       (0.60948995f - 0.10380950f * x) * x;
5726       //
5727       // error 0.0014886165, which is 6 bits
5728       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5729                                getF32Constant(DAG, 0xbdd49a13, dl));
5730       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5731                                getF32Constant(DAG, 0x3f1c0789, dl));
5732       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5733       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5734                                     getF32Constant(DAG, 0x3f011300, dl));
5735     } else if (LimitFloatPrecision <= 12) {
5736       // For floating-point precision of 12:
5737       //
5738       //   Log10ofMantissa =
5739       //     -0.64831180f +
5740       //       (0.91751397f +
5741       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5742       //
5743       // error 0.00019228036, which is better than 12 bits
5744       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5745                                getF32Constant(DAG, 0x3d431f31, dl));
5746       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5747                                getF32Constant(DAG, 0x3ea21fb2, dl));
5748       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5749       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5750                                getF32Constant(DAG, 0x3f6ae232, dl));
5751       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5752       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5753                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5754     } else { // LimitFloatPrecision <= 18
5755       // For floating-point precision of 18:
5756       //
5757       //   Log10ofMantissa =
5758       //     -0.84299375f +
5759       //       (1.5327582f +
5760       //         (-1.0688956f +
5761       //           (0.49102474f +
5762       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5763       //
5764       // error 0.0000037995730, which is better than 18 bits
5765       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5766                                getF32Constant(DAG, 0x3c5d51ce, dl));
5767       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5768                                getF32Constant(DAG, 0x3e00685a, dl));
5769       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5770       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5771                                getF32Constant(DAG, 0x3efb6798, dl));
5772       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5773       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5774                                getF32Constant(DAG, 0x3f88d192, dl));
5775       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5776       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5777                                getF32Constant(DAG, 0x3fc4316c, dl));
5778       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5779       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5780                                     getF32Constant(DAG, 0x3f57ce70, dl));
5781     }
5782 
5783     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5784   }
5785 
5786   // No special expansion.
5787   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5788 }
5789 
5790 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5791 /// limited-precision mode.
5792 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5793                           const TargetLowering &TLI, SDNodeFlags Flags) {
5794   if (Op.getValueType() == MVT::f32 &&
5795       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5796     return getLimitedPrecisionExp2(Op, dl, DAG);
5797 
5798   // No special expansion.
5799   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5800 }
5801 
5802 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5803 /// limited-precision mode with x == 10.0f.
5804 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5805                          SelectionDAG &DAG, const TargetLowering &TLI,
5806                          SDNodeFlags Flags) {
5807   bool IsExp10 = false;
5808   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5809       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5810     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5811       APFloat Ten(10.0f);
5812       IsExp10 = LHSC->isExactlyValue(Ten);
5813     }
5814   }
5815 
5816   // TODO: What fast-math-flags should be set on the FMUL node?
5817   if (IsExp10) {
5818     // Put the exponent in the right bit position for later addition to the
5819     // final result:
5820     //
5821     //   #define LOG2OF10 3.3219281f
5822     //   t0 = Op * LOG2OF10;
5823     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5824                              getF32Constant(DAG, 0x40549a78, dl));
5825     return getLimitedPrecisionExp2(t0, dl, DAG);
5826   }
5827 
5828   // No special expansion.
5829   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5830 }
5831 
5832 /// ExpandPowI - Expand a llvm.powi intrinsic.
5833 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5834                           SelectionDAG &DAG) {
5835   // If RHS is a constant, we can expand this out to a multiplication tree if
5836   // it's beneficial on the target, otherwise we end up lowering to a call to
5837   // __powidf2 (for example).
5838   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5839     unsigned Val = RHSC->getSExtValue();
5840 
5841     // powi(x, 0) -> 1.0
5842     if (Val == 0)
5843       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5844 
5845     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5846             Val, DAG.shouldOptForSize())) {
5847       // Get the exponent as a positive value.
5848       if ((int)Val < 0)
5849         Val = -Val;
5850       // We use the simple binary decomposition method to generate the multiply
5851       // sequence.  There are more optimal ways to do this (for example,
5852       // powi(x,15) generates one more multiply than it should), but this has
5853       // the benefit of being both really simple and much better than a libcall.
5854       SDValue Res; // Logically starts equal to 1.0
5855       SDValue CurSquare = LHS;
5856       // TODO: Intrinsics should have fast-math-flags that propagate to these
5857       // nodes.
5858       while (Val) {
5859         if (Val & 1) {
5860           if (Res.getNode())
5861             Res =
5862                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5863           else
5864             Res = CurSquare; // 1.0*CurSquare.
5865         }
5866 
5867         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5868                                 CurSquare, CurSquare);
5869         Val >>= 1;
5870       }
5871 
5872       // If the original was negative, invert the result, producing 1/(x*x*x).
5873       if (RHSC->getSExtValue() < 0)
5874         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5875                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5876       return Res;
5877     }
5878   }
5879 
5880   // Otherwise, expand to a libcall.
5881   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5882 }
5883 
5884 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5885                             SDValue LHS, SDValue RHS, SDValue Scale,
5886                             SelectionDAG &DAG, const TargetLowering &TLI) {
5887   EVT VT = LHS.getValueType();
5888   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5889   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5890   LLVMContext &Ctx = *DAG.getContext();
5891 
5892   // If the type is legal but the operation isn't, this node might survive all
5893   // the way to operation legalization. If we end up there and we do not have
5894   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5895   // node.
5896 
5897   // Coax the legalizer into expanding the node during type legalization instead
5898   // by bumping the size by one bit. This will force it to Promote, enabling the
5899   // early expansion and avoiding the need to expand later.
5900 
5901   // We don't have to do this if Scale is 0; that can always be expanded, unless
5902   // it's a saturating signed operation. Those can experience true integer
5903   // division overflow, a case which we must avoid.
5904 
5905   // FIXME: We wouldn't have to do this (or any of the early
5906   // expansion/promotion) if it was possible to expand a libcall of an
5907   // illegal type during operation legalization. But it's not, so things
5908   // get a bit hacky.
5909   unsigned ScaleInt = Scale->getAsZExtVal();
5910   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5911       (TLI.isTypeLegal(VT) ||
5912        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5913     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5914         Opcode, VT, ScaleInt);
5915     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5916       EVT PromVT;
5917       if (VT.isScalarInteger())
5918         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5919       else if (VT.isVector()) {
5920         PromVT = VT.getVectorElementType();
5921         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5922         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5923       } else
5924         llvm_unreachable("Wrong VT for DIVFIX?");
5925       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5926       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5927       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5928       // For saturating operations, we need to shift up the LHS to get the
5929       // proper saturation width, and then shift down again afterwards.
5930       if (Saturating)
5931         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5932                           DAG.getConstant(1, DL, ShiftTy));
5933       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5934       if (Saturating)
5935         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5936                           DAG.getConstant(1, DL, ShiftTy));
5937       return DAG.getZExtOrTrunc(Res, DL, VT);
5938     }
5939   }
5940 
5941   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5942 }
5943 
5944 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5945 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5946 static void
5947 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5948                      const SDValue &N) {
5949   switch (N.getOpcode()) {
5950   case ISD::CopyFromReg: {
5951     SDValue Op = N.getOperand(1);
5952     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5953                       Op.getValueType().getSizeInBits());
5954     return;
5955   }
5956   case ISD::BITCAST:
5957   case ISD::AssertZext:
5958   case ISD::AssertSext:
5959   case ISD::TRUNCATE:
5960     getUnderlyingArgRegs(Regs, N.getOperand(0));
5961     return;
5962   case ISD::BUILD_PAIR:
5963   case ISD::BUILD_VECTOR:
5964   case ISD::CONCAT_VECTORS:
5965     for (SDValue Op : N->op_values())
5966       getUnderlyingArgRegs(Regs, Op);
5967     return;
5968   default:
5969     return;
5970   }
5971 }
5972 
5973 /// If the DbgValueInst is a dbg_value of a function argument, create the
5974 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5975 /// instruction selection, they will be inserted to the entry BB.
5976 /// We don't currently support this for variadic dbg_values, as they shouldn't
5977 /// appear for function arguments or in the prologue.
5978 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5979     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5980     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5981   const Argument *Arg = dyn_cast<Argument>(V);
5982   if (!Arg)
5983     return false;
5984 
5985   MachineFunction &MF = DAG.getMachineFunction();
5986   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5987 
5988   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5989   // we've been asked to pursue.
5990   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5991                               bool Indirect) {
5992     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5993       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5994       // pointing at the VReg, which will be patched up later.
5995       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5996       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5997           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5998           /* isKill */ false, /* isDead */ false,
5999           /* isUndef */ false, /* isEarlyClobber */ false,
6000           /* SubReg */ 0, /* isDebug */ true)});
6001 
6002       auto *NewDIExpr = FragExpr;
6003       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6004       // the DIExpression.
6005       if (Indirect)
6006         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6007       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
6008       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6009       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6010     } else {
6011       // Create a completely standard DBG_VALUE.
6012       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6013       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6014     }
6015   };
6016 
6017   if (Kind == FuncArgumentDbgValueKind::Value) {
6018     // ArgDbgValues are hoisted to the beginning of the entry block. So we
6019     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6020     // the entry block.
6021     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6022     if (!IsInEntryBlock)
6023       return false;
6024 
6025     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
6026     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6027     // variable that also is a param.
6028     //
6029     // Although, if we are at the top of the entry block already, we can still
6030     // emit using ArgDbgValue. This might catch some situations when the
6031     // dbg.value refers to an argument that isn't used in the entry block, so
6032     // any CopyToReg node would be optimized out and the only way to express
6033     // this DBG_VALUE is by using the physical reg (or FI) as done in this
6034     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
6035     // we should only emit as ArgDbgValue if the Variable is an argument to the
6036     // current function, and the dbg.value intrinsic is found in the entry
6037     // block.
6038     bool VariableIsFunctionInputArg = Variable->isParameter() &&
6039         !DL->getInlinedAt();
6040     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6041     if (!IsInPrologue && !VariableIsFunctionInputArg)
6042       return false;
6043 
6044     // Here we assume that a function argument on IR level only can be used to
6045     // describe one input parameter on source level. If we for example have
6046     // source code like this
6047     //
6048     //    struct A { long x, y; };
6049     //    void foo(struct A a, long b) {
6050     //      ...
6051     //      b = a.x;
6052     //      ...
6053     //    }
6054     //
6055     // and IR like this
6056     //
6057     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6058     //  entry:
6059     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6060     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6061     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6062     //    ...
6063     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6064     //    ...
6065     //
6066     // then the last dbg.value is describing a parameter "b" using a value that
6067     // is an argument. But since we already has used %a1 to describe a parameter
6068     // we should not handle that last dbg.value here (that would result in an
6069     // incorrect hoisting of the DBG_VALUE to the function entry).
6070     // Notice that we allow one dbg.value per IR level argument, to accommodate
6071     // for the situation with fragments above.
6072     // If there is no node for the value being handled, we return true to skip
6073     // the normal generation of debug info, as it would kill existing debug
6074     // info for the parameter in case of duplicates.
6075     if (VariableIsFunctionInputArg) {
6076       unsigned ArgNo = Arg->getArgNo();
6077       if (ArgNo >= FuncInfo.DescribedArgs.size())
6078         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6079       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6080         return !NodeMap[V].getNode();
6081       FuncInfo.DescribedArgs.set(ArgNo);
6082     }
6083   }
6084 
6085   bool IsIndirect = false;
6086   std::optional<MachineOperand> Op;
6087   // Some arguments' frame index is recorded during argument lowering.
6088   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6089   if (FI != std::numeric_limits<int>::max())
6090     Op = MachineOperand::CreateFI(FI);
6091 
6092   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6093   if (!Op && N.getNode()) {
6094     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6095     Register Reg;
6096     if (ArgRegsAndSizes.size() == 1)
6097       Reg = ArgRegsAndSizes.front().first;
6098 
6099     if (Reg && Reg.isVirtual()) {
6100       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6101       Register PR = RegInfo.getLiveInPhysReg(Reg);
6102       if (PR)
6103         Reg = PR;
6104     }
6105     if (Reg) {
6106       Op = MachineOperand::CreateReg(Reg, false);
6107       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6108     }
6109   }
6110 
6111   if (!Op && N.getNode()) {
6112     // Check if frame index is available.
6113     SDValue LCandidate = peekThroughBitcasts(N);
6114     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6115       if (FrameIndexSDNode *FINode =
6116           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6117         Op = MachineOperand::CreateFI(FINode->getIndex());
6118   }
6119 
6120   if (!Op) {
6121     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6122     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6123                                          SplitRegs) {
6124       unsigned Offset = 0;
6125       for (const auto &RegAndSize : SplitRegs) {
6126         // If the expression is already a fragment, the current register
6127         // offset+size might extend beyond the fragment. In this case, only
6128         // the register bits that are inside the fragment are relevant.
6129         int RegFragmentSizeInBits = RegAndSize.second;
6130         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6131           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6132           // The register is entirely outside the expression fragment,
6133           // so is irrelevant for debug info.
6134           if (Offset >= ExprFragmentSizeInBits)
6135             break;
6136           // The register is partially outside the expression fragment, only
6137           // the low bits within the fragment are relevant for debug info.
6138           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6139             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6140           }
6141         }
6142 
6143         auto FragmentExpr = DIExpression::createFragmentExpression(
6144             Expr, Offset, RegFragmentSizeInBits);
6145         Offset += RegAndSize.second;
6146         // If a valid fragment expression cannot be created, the variable's
6147         // correct value cannot be determined and so it is set as Undef.
6148         if (!FragmentExpr) {
6149           SDDbgValue *SDV = DAG.getConstantDbgValue(
6150               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6151           DAG.AddDbgValue(SDV, false);
6152           continue;
6153         }
6154         MachineInstr *NewMI =
6155             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6156                              Kind != FuncArgumentDbgValueKind::Value);
6157         FuncInfo.ArgDbgValues.push_back(NewMI);
6158       }
6159     };
6160 
6161     // Check if ValueMap has reg number.
6162     DenseMap<const Value *, Register>::const_iterator
6163       VMI = FuncInfo.ValueMap.find(V);
6164     if (VMI != FuncInfo.ValueMap.end()) {
6165       const auto &TLI = DAG.getTargetLoweringInfo();
6166       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6167                        V->getType(), std::nullopt);
6168       if (RFV.occupiesMultipleRegs()) {
6169         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6170         return true;
6171       }
6172 
6173       Op = MachineOperand::CreateReg(VMI->second, false);
6174       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6175     } else if (ArgRegsAndSizes.size() > 1) {
6176       // This was split due to the calling convention, and no virtual register
6177       // mapping exists for the value.
6178       splitMultiRegDbgValue(ArgRegsAndSizes);
6179       return true;
6180     }
6181   }
6182 
6183   if (!Op)
6184     return false;
6185 
6186   assert(Variable->isValidLocationForIntrinsic(DL) &&
6187          "Expected inlined-at fields to agree");
6188   MachineInstr *NewMI = nullptr;
6189 
6190   if (Op->isReg())
6191     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6192   else
6193     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6194                     Variable, Expr);
6195 
6196   // Otherwise, use ArgDbgValues.
6197   FuncInfo.ArgDbgValues.push_back(NewMI);
6198   return true;
6199 }
6200 
6201 /// Return the appropriate SDDbgValue based on N.
6202 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6203                                              DILocalVariable *Variable,
6204                                              DIExpression *Expr,
6205                                              const DebugLoc &dl,
6206                                              unsigned DbgSDNodeOrder) {
6207   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6208     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6209     // stack slot locations.
6210     //
6211     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6212     // debug values here after optimization:
6213     //
6214     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6215     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6216     //
6217     // Both describe the direct values of their associated variables.
6218     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6219                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6220   }
6221   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6222                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6223 }
6224 
6225 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6226   switch (Intrinsic) {
6227   case Intrinsic::smul_fix:
6228     return ISD::SMULFIX;
6229   case Intrinsic::umul_fix:
6230     return ISD::UMULFIX;
6231   case Intrinsic::smul_fix_sat:
6232     return ISD::SMULFIXSAT;
6233   case Intrinsic::umul_fix_sat:
6234     return ISD::UMULFIXSAT;
6235   case Intrinsic::sdiv_fix:
6236     return ISD::SDIVFIX;
6237   case Intrinsic::udiv_fix:
6238     return ISD::UDIVFIX;
6239   case Intrinsic::sdiv_fix_sat:
6240     return ISD::SDIVFIXSAT;
6241   case Intrinsic::udiv_fix_sat:
6242     return ISD::UDIVFIXSAT;
6243   default:
6244     llvm_unreachable("Unhandled fixed point intrinsic");
6245   }
6246 }
6247 
6248 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6249                                            const char *FunctionName) {
6250   assert(FunctionName && "FunctionName must not be nullptr");
6251   SDValue Callee = DAG.getExternalSymbol(
6252       FunctionName,
6253       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6254   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6255 }
6256 
6257 /// Given a @llvm.call.preallocated.setup, return the corresponding
6258 /// preallocated call.
6259 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6260   assert(cast<CallBase>(PreallocatedSetup)
6261                  ->getCalledFunction()
6262                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6263          "expected call_preallocated_setup Value");
6264   for (const auto *U : PreallocatedSetup->users()) {
6265     auto *UseCall = cast<CallBase>(U);
6266     const Function *Fn = UseCall->getCalledFunction();
6267     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6268       return UseCall;
6269     }
6270   }
6271   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6272 }
6273 
6274 /// If DI is a debug value with an EntryValue expression, lower it using the
6275 /// corresponding physical register of the associated Argument value
6276 /// (guaranteed to exist by the verifier).
6277 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6278     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6279     DIExpression *Expr, DebugLoc DbgLoc) {
6280   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6281     return false;
6282 
6283   // These properties are guaranteed by the verifier.
6284   const Argument *Arg = cast<Argument>(Values[0]);
6285   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6286 
6287   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6288   if (ArgIt == FuncInfo.ValueMap.end()) {
6289     LLVM_DEBUG(
6290         dbgs() << "Dropping dbg.value: expression is entry_value but "
6291                   "couldn't find an associated register for the Argument\n");
6292     return true;
6293   }
6294   Register ArgVReg = ArgIt->getSecond();
6295 
6296   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6297     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6298       SDDbgValue *SDV = DAG.getVRegDbgValue(
6299           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6300       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6301       return true;
6302     }
6303   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6304                        "couldn't find a physical register\n");
6305   return true;
6306 }
6307 
6308 /// Lower the call to the specified intrinsic function.
6309 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6310                                                   unsigned Intrinsic) {
6311   SDLoc sdl = getCurSDLoc();
6312   switch (Intrinsic) {
6313   case Intrinsic::experimental_convergence_anchor:
6314     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6315     break;
6316   case Intrinsic::experimental_convergence_entry:
6317     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6318     break;
6319   case Intrinsic::experimental_convergence_loop: {
6320     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6321     auto *Token = Bundle->Inputs[0].get();
6322     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6323                              getValue(Token)));
6324     break;
6325   }
6326   }
6327 }
6328 
6329 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6330                                                unsigned IntrinsicID) {
6331   // For now, we're only lowering an 'add' histogram.
6332   // We can add others later, e.g. saturating adds, min/max.
6333   assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6334          "Tried to lower unsupported histogram type");
6335   SDLoc sdl = getCurSDLoc();
6336   Value *Ptr = I.getOperand(0);
6337   SDValue Inc = getValue(I.getOperand(1));
6338   SDValue Mask = getValue(I.getOperand(2));
6339 
6340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6341   DataLayout TargetDL = DAG.getDataLayout();
6342   EVT VT = Inc.getValueType();
6343   Align Alignment = DAG.getEVTAlign(VT);
6344 
6345   const MDNode *Ranges = getRangeMetadata(I);
6346 
6347   SDValue Root = DAG.getRoot();
6348   SDValue Base;
6349   SDValue Index;
6350   ISD::MemIndexType IndexType;
6351   SDValue Scale;
6352   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
6353                                     I.getParent(), VT.getScalarStoreSize());
6354 
6355   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6356 
6357   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6358       MachinePointerInfo(AS),
6359       MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
6360       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6361 
6362   if (!UniformBase) {
6363     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6364     Index = getValue(Ptr);
6365     IndexType = ISD::SIGNED_SCALED;
6366     Scale =
6367         DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6368   }
6369 
6370   EVT IdxVT = Index.getValueType();
6371   EVT EltTy = IdxVT.getVectorElementType();
6372   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6373     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6374     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6375   }
6376 
6377   SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6378 
6379   SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6380   SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6381                                              Ops, MMO, IndexType);
6382 
6383   setValue(&I, Histogram);
6384   DAG.setRoot(Histogram);
6385 }
6386 
6387 /// Lower the call to the specified intrinsic function.
6388 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6389                                              unsigned Intrinsic) {
6390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6391   SDLoc sdl = getCurSDLoc();
6392   DebugLoc dl = getCurDebugLoc();
6393   SDValue Res;
6394 
6395   SDNodeFlags Flags;
6396   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6397     Flags.copyFMF(*FPOp);
6398 
6399   switch (Intrinsic) {
6400   default:
6401     // By default, turn this into a target intrinsic node.
6402     visitTargetIntrinsic(I, Intrinsic);
6403     return;
6404   case Intrinsic::vscale: {
6405     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6406     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6407     return;
6408   }
6409   case Intrinsic::vastart:  visitVAStart(I); return;
6410   case Intrinsic::vaend:    visitVAEnd(I); return;
6411   case Intrinsic::vacopy:   visitVACopy(I); return;
6412   case Intrinsic::returnaddress:
6413     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6414                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6415                              getValue(I.getArgOperand(0))));
6416     return;
6417   case Intrinsic::addressofreturnaddress:
6418     setValue(&I,
6419              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6420                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6421     return;
6422   case Intrinsic::sponentry:
6423     setValue(&I,
6424              DAG.getNode(ISD::SPONENTRY, sdl,
6425                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6426     return;
6427   case Intrinsic::frameaddress:
6428     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6429                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6430                              getValue(I.getArgOperand(0))));
6431     return;
6432   case Intrinsic::read_volatile_register:
6433   case Intrinsic::read_register: {
6434     Value *Reg = I.getArgOperand(0);
6435     SDValue Chain = getRoot();
6436     SDValue RegName =
6437         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6438     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6439     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6440       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6441     setValue(&I, Res);
6442     DAG.setRoot(Res.getValue(1));
6443     return;
6444   }
6445   case Intrinsic::write_register: {
6446     Value *Reg = I.getArgOperand(0);
6447     Value *RegValue = I.getArgOperand(1);
6448     SDValue Chain = getRoot();
6449     SDValue RegName =
6450         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6451     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6452                             RegName, getValue(RegValue)));
6453     return;
6454   }
6455   case Intrinsic::memcpy: {
6456     const auto &MCI = cast<MemCpyInst>(I);
6457     SDValue Op1 = getValue(I.getArgOperand(0));
6458     SDValue Op2 = getValue(I.getArgOperand(1));
6459     SDValue Op3 = getValue(I.getArgOperand(2));
6460     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6461     Align DstAlign = MCI.getDestAlign().valueOrOne();
6462     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6463     Align Alignment = std::min(DstAlign, SrcAlign);
6464     bool isVol = MCI.isVolatile();
6465     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6466     // node.
6467     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6468     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6469                                /* AlwaysInline */ false, &I, std::nullopt,
6470                                MachinePointerInfo(I.getArgOperand(0)),
6471                                MachinePointerInfo(I.getArgOperand(1)),
6472                                I.getAAMetadata(), AA);
6473     updateDAGForMaybeTailCall(MC);
6474     return;
6475   }
6476   case Intrinsic::memcpy_inline: {
6477     const auto &MCI = cast<MemCpyInlineInst>(I);
6478     SDValue Dst = getValue(I.getArgOperand(0));
6479     SDValue Src = getValue(I.getArgOperand(1));
6480     SDValue Size = getValue(I.getArgOperand(2));
6481     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6482     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6483     Align DstAlign = MCI.getDestAlign().valueOrOne();
6484     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6485     Align Alignment = std::min(DstAlign, SrcAlign);
6486     bool isVol = MCI.isVolatile();
6487     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6488     // node.
6489     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6490                                /* AlwaysInline */ true, &I, std::nullopt,
6491                                MachinePointerInfo(I.getArgOperand(0)),
6492                                MachinePointerInfo(I.getArgOperand(1)),
6493                                I.getAAMetadata(), AA);
6494     updateDAGForMaybeTailCall(MC);
6495     return;
6496   }
6497   case Intrinsic::memset: {
6498     const auto &MSI = cast<MemSetInst>(I);
6499     SDValue Op1 = getValue(I.getArgOperand(0));
6500     SDValue Op2 = getValue(I.getArgOperand(1));
6501     SDValue Op3 = getValue(I.getArgOperand(2));
6502     // @llvm.memset defines 0 and 1 to both mean no alignment.
6503     Align Alignment = MSI.getDestAlign().valueOrOne();
6504     bool isVol = MSI.isVolatile();
6505     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6506     SDValue MS = DAG.getMemset(
6507         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6508         &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6509     updateDAGForMaybeTailCall(MS);
6510     return;
6511   }
6512   case Intrinsic::memset_inline: {
6513     const auto &MSII = cast<MemSetInlineInst>(I);
6514     SDValue Dst = getValue(I.getArgOperand(0));
6515     SDValue Value = getValue(I.getArgOperand(1));
6516     SDValue Size = getValue(I.getArgOperand(2));
6517     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6518     // @llvm.memset defines 0 and 1 to both mean no alignment.
6519     Align DstAlign = MSII.getDestAlign().valueOrOne();
6520     bool isVol = MSII.isVolatile();
6521     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6522     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6523                                /* AlwaysInline */ true, &I,
6524                                MachinePointerInfo(I.getArgOperand(0)),
6525                                I.getAAMetadata());
6526     updateDAGForMaybeTailCall(MC);
6527     return;
6528   }
6529   case Intrinsic::memmove: {
6530     const auto &MMI = cast<MemMoveInst>(I);
6531     SDValue Op1 = getValue(I.getArgOperand(0));
6532     SDValue Op2 = getValue(I.getArgOperand(1));
6533     SDValue Op3 = getValue(I.getArgOperand(2));
6534     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6535     Align DstAlign = MMI.getDestAlign().valueOrOne();
6536     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6537     Align Alignment = std::min(DstAlign, SrcAlign);
6538     bool isVol = MMI.isVolatile();
6539     // FIXME: Support passing different dest/src alignments to the memmove DAG
6540     // node.
6541     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6542     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6543                                 /* OverrideTailCall */ std::nullopt,
6544                                 MachinePointerInfo(I.getArgOperand(0)),
6545                                 MachinePointerInfo(I.getArgOperand(1)),
6546                                 I.getAAMetadata(), AA);
6547     updateDAGForMaybeTailCall(MM);
6548     return;
6549   }
6550   case Intrinsic::memcpy_element_unordered_atomic: {
6551     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6552     SDValue Dst = getValue(MI.getRawDest());
6553     SDValue Src = getValue(MI.getRawSource());
6554     SDValue Length = getValue(MI.getLength());
6555 
6556     Type *LengthTy = MI.getLength()->getType();
6557     unsigned ElemSz = MI.getElementSizeInBytes();
6558     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6559     SDValue MC =
6560         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6561                             isTC, MachinePointerInfo(MI.getRawDest()),
6562                             MachinePointerInfo(MI.getRawSource()));
6563     updateDAGForMaybeTailCall(MC);
6564     return;
6565   }
6566   case Intrinsic::memmove_element_unordered_atomic: {
6567     auto &MI = cast<AtomicMemMoveInst>(I);
6568     SDValue Dst = getValue(MI.getRawDest());
6569     SDValue Src = getValue(MI.getRawSource());
6570     SDValue Length = getValue(MI.getLength());
6571 
6572     Type *LengthTy = MI.getLength()->getType();
6573     unsigned ElemSz = MI.getElementSizeInBytes();
6574     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6575     SDValue MC =
6576         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6577                              isTC, MachinePointerInfo(MI.getRawDest()),
6578                              MachinePointerInfo(MI.getRawSource()));
6579     updateDAGForMaybeTailCall(MC);
6580     return;
6581   }
6582   case Intrinsic::memset_element_unordered_atomic: {
6583     auto &MI = cast<AtomicMemSetInst>(I);
6584     SDValue Dst = getValue(MI.getRawDest());
6585     SDValue Val = getValue(MI.getValue());
6586     SDValue Length = getValue(MI.getLength());
6587 
6588     Type *LengthTy = MI.getLength()->getType();
6589     unsigned ElemSz = MI.getElementSizeInBytes();
6590     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6591     SDValue MC =
6592         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6593                             isTC, MachinePointerInfo(MI.getRawDest()));
6594     updateDAGForMaybeTailCall(MC);
6595     return;
6596   }
6597   case Intrinsic::call_preallocated_setup: {
6598     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6599     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6600     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6601                               getRoot(), SrcValue);
6602     setValue(&I, Res);
6603     DAG.setRoot(Res);
6604     return;
6605   }
6606   case Intrinsic::call_preallocated_arg: {
6607     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6608     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6609     SDValue Ops[3];
6610     Ops[0] = getRoot();
6611     Ops[1] = SrcValue;
6612     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6613                                    MVT::i32); // arg index
6614     SDValue Res = DAG.getNode(
6615         ISD::PREALLOCATED_ARG, sdl,
6616         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6617     setValue(&I, Res);
6618     DAG.setRoot(Res.getValue(1));
6619     return;
6620   }
6621   case Intrinsic::dbg_declare: {
6622     const auto &DI = cast<DbgDeclareInst>(I);
6623     // Debug intrinsics are handled separately in assignment tracking mode.
6624     // Some intrinsics are handled right after Argument lowering.
6625     if (AssignmentTrackingEnabled ||
6626         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6627       return;
6628     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6629     DILocalVariable *Variable = DI.getVariable();
6630     DIExpression *Expression = DI.getExpression();
6631     dropDanglingDebugInfo(Variable, Expression);
6632     // Assume dbg.declare can not currently use DIArgList, i.e.
6633     // it is non-variadic.
6634     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6635     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6636                        DI.getDebugLoc());
6637     return;
6638   }
6639   case Intrinsic::dbg_label: {
6640     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6641     DILabel *Label = DI.getLabel();
6642     assert(Label && "Missing label");
6643 
6644     SDDbgLabel *SDV;
6645     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6646     DAG.AddDbgLabel(SDV);
6647     return;
6648   }
6649   case Intrinsic::dbg_assign: {
6650     // Debug intrinsics are handled separately in assignment tracking mode.
6651     if (AssignmentTrackingEnabled)
6652       return;
6653     // If assignment tracking hasn't been enabled then fall through and treat
6654     // the dbg.assign as a dbg.value.
6655     [[fallthrough]];
6656   }
6657   case Intrinsic::dbg_value: {
6658     // Debug intrinsics are handled separately in assignment tracking mode.
6659     if (AssignmentTrackingEnabled)
6660       return;
6661     const DbgValueInst &DI = cast<DbgValueInst>(I);
6662     assert(DI.getVariable() && "Missing variable");
6663 
6664     DILocalVariable *Variable = DI.getVariable();
6665     DIExpression *Expression = DI.getExpression();
6666     dropDanglingDebugInfo(Variable, Expression);
6667 
6668     if (DI.isKillLocation()) {
6669       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6670       return;
6671     }
6672 
6673     SmallVector<Value *, 4> Values(DI.getValues());
6674     if (Values.empty())
6675       return;
6676 
6677     bool IsVariadic = DI.hasArgList();
6678     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6679                           SDNodeOrder, IsVariadic))
6680       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6681                            DI.getDebugLoc(), SDNodeOrder);
6682     return;
6683   }
6684 
6685   case Intrinsic::eh_typeid_for: {
6686     // Find the type id for the given typeinfo.
6687     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6688     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6689     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6690     setValue(&I, Res);
6691     return;
6692   }
6693 
6694   case Intrinsic::eh_return_i32:
6695   case Intrinsic::eh_return_i64:
6696     DAG.getMachineFunction().setCallsEHReturn(true);
6697     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6698                             MVT::Other,
6699                             getControlRoot(),
6700                             getValue(I.getArgOperand(0)),
6701                             getValue(I.getArgOperand(1))));
6702     return;
6703   case Intrinsic::eh_unwind_init:
6704     DAG.getMachineFunction().setCallsUnwindInit(true);
6705     return;
6706   case Intrinsic::eh_dwarf_cfa:
6707     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6708                              TLI.getPointerTy(DAG.getDataLayout()),
6709                              getValue(I.getArgOperand(0))));
6710     return;
6711   case Intrinsic::eh_sjlj_callsite: {
6712     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6713     assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6714 
6715     FuncInfo.setCurrentCallSite(CI->getZExtValue());
6716     return;
6717   }
6718   case Intrinsic::eh_sjlj_functioncontext: {
6719     // Get and store the index of the function context.
6720     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6721     AllocaInst *FnCtx =
6722       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6723     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6724     MFI.setFunctionContextIndex(FI);
6725     return;
6726   }
6727   case Intrinsic::eh_sjlj_setjmp: {
6728     SDValue Ops[2];
6729     Ops[0] = getRoot();
6730     Ops[1] = getValue(I.getArgOperand(0));
6731     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6732                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6733     setValue(&I, Op.getValue(0));
6734     DAG.setRoot(Op.getValue(1));
6735     return;
6736   }
6737   case Intrinsic::eh_sjlj_longjmp:
6738     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6739                             getRoot(), getValue(I.getArgOperand(0))));
6740     return;
6741   case Intrinsic::eh_sjlj_setup_dispatch:
6742     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6743                             getRoot()));
6744     return;
6745   case Intrinsic::masked_gather:
6746     visitMaskedGather(I);
6747     return;
6748   case Intrinsic::masked_load:
6749     visitMaskedLoad(I);
6750     return;
6751   case Intrinsic::masked_scatter:
6752     visitMaskedScatter(I);
6753     return;
6754   case Intrinsic::masked_store:
6755     visitMaskedStore(I);
6756     return;
6757   case Intrinsic::masked_expandload:
6758     visitMaskedLoad(I, true /* IsExpanding */);
6759     return;
6760   case Intrinsic::masked_compressstore:
6761     visitMaskedStore(I, true /* IsCompressing */);
6762     return;
6763   case Intrinsic::powi:
6764     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6765                             getValue(I.getArgOperand(1)), DAG));
6766     return;
6767   case Intrinsic::log:
6768     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6769     return;
6770   case Intrinsic::log2:
6771     setValue(&I,
6772              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6773     return;
6774   case Intrinsic::log10:
6775     setValue(&I,
6776              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6777     return;
6778   case Intrinsic::exp:
6779     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6780     return;
6781   case Intrinsic::exp2:
6782     setValue(&I,
6783              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6784     return;
6785   case Intrinsic::pow:
6786     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6787                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6788     return;
6789   case Intrinsic::sqrt:
6790   case Intrinsic::fabs:
6791   case Intrinsic::sin:
6792   case Intrinsic::cos:
6793   case Intrinsic::tan:
6794   case Intrinsic::asin:
6795   case Intrinsic::acos:
6796   case Intrinsic::atan:
6797   case Intrinsic::sinh:
6798   case Intrinsic::cosh:
6799   case Intrinsic::tanh:
6800   case Intrinsic::exp10:
6801   case Intrinsic::floor:
6802   case Intrinsic::ceil:
6803   case Intrinsic::trunc:
6804   case Intrinsic::rint:
6805   case Intrinsic::nearbyint:
6806   case Intrinsic::round:
6807   case Intrinsic::roundeven:
6808   case Intrinsic::canonicalize: {
6809     unsigned Opcode;
6810     // clang-format off
6811     switch (Intrinsic) {
6812     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6813     case Intrinsic::sqrt:         Opcode = ISD::FSQRT;         break;
6814     case Intrinsic::fabs:         Opcode = ISD::FABS;          break;
6815     case Intrinsic::sin:          Opcode = ISD::FSIN;          break;
6816     case Intrinsic::cos:          Opcode = ISD::FCOS;          break;
6817     case Intrinsic::tan:          Opcode = ISD::FTAN;          break;
6818     case Intrinsic::asin:         Opcode = ISD::FASIN;         break;
6819     case Intrinsic::acos:         Opcode = ISD::FACOS;         break;
6820     case Intrinsic::atan:         Opcode = ISD::FATAN;         break;
6821     case Intrinsic::sinh:         Opcode = ISD::FSINH;         break;
6822     case Intrinsic::cosh:         Opcode = ISD::FCOSH;         break;
6823     case Intrinsic::tanh:         Opcode = ISD::FTANH;         break;
6824     case Intrinsic::exp10:        Opcode = ISD::FEXP10;        break;
6825     case Intrinsic::floor:        Opcode = ISD::FFLOOR;        break;
6826     case Intrinsic::ceil:         Opcode = ISD::FCEIL;         break;
6827     case Intrinsic::trunc:        Opcode = ISD::FTRUNC;        break;
6828     case Intrinsic::rint:         Opcode = ISD::FRINT;         break;
6829     case Intrinsic::nearbyint:    Opcode = ISD::FNEARBYINT;    break;
6830     case Intrinsic::round:        Opcode = ISD::FROUND;        break;
6831     case Intrinsic::roundeven:    Opcode = ISD::FROUNDEVEN;    break;
6832     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6833     }
6834     // clang-format on
6835 
6836     setValue(&I, DAG.getNode(Opcode, sdl,
6837                              getValue(I.getArgOperand(0)).getValueType(),
6838                              getValue(I.getArgOperand(0)), Flags));
6839     return;
6840   }
6841   case Intrinsic::lround:
6842   case Intrinsic::llround:
6843   case Intrinsic::lrint:
6844   case Intrinsic::llrint: {
6845     unsigned Opcode;
6846     // clang-format off
6847     switch (Intrinsic) {
6848     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6849     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6850     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6851     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6852     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6853     }
6854     // clang-format on
6855 
6856     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6857     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6858                              getValue(I.getArgOperand(0))));
6859     return;
6860   }
6861   case Intrinsic::minnum:
6862     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6863                              getValue(I.getArgOperand(0)).getValueType(),
6864                              getValue(I.getArgOperand(0)),
6865                              getValue(I.getArgOperand(1)), Flags));
6866     return;
6867   case Intrinsic::maxnum:
6868     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6869                              getValue(I.getArgOperand(0)).getValueType(),
6870                              getValue(I.getArgOperand(0)),
6871                              getValue(I.getArgOperand(1)), Flags));
6872     return;
6873   case Intrinsic::minimum:
6874     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6875                              getValue(I.getArgOperand(0)).getValueType(),
6876                              getValue(I.getArgOperand(0)),
6877                              getValue(I.getArgOperand(1)), Flags));
6878     return;
6879   case Intrinsic::maximum:
6880     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6881                              getValue(I.getArgOperand(0)).getValueType(),
6882                              getValue(I.getArgOperand(0)),
6883                              getValue(I.getArgOperand(1)), Flags));
6884     return;
6885   case Intrinsic::minimumnum:
6886     setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6887                              getValue(I.getArgOperand(0)).getValueType(),
6888                              getValue(I.getArgOperand(0)),
6889                              getValue(I.getArgOperand(1)), Flags));
6890     return;
6891   case Intrinsic::maximumnum:
6892     setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
6893                              getValue(I.getArgOperand(0)).getValueType(),
6894                              getValue(I.getArgOperand(0)),
6895                              getValue(I.getArgOperand(1)), Flags));
6896     return;
6897   case Intrinsic::copysign:
6898     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6899                              getValue(I.getArgOperand(0)).getValueType(),
6900                              getValue(I.getArgOperand(0)),
6901                              getValue(I.getArgOperand(1)), Flags));
6902     return;
6903   case Intrinsic::ldexp:
6904     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6905                              getValue(I.getArgOperand(0)).getValueType(),
6906                              getValue(I.getArgOperand(0)),
6907                              getValue(I.getArgOperand(1)), Flags));
6908     return;
6909   case Intrinsic::frexp: {
6910     SmallVector<EVT, 2> ValueVTs;
6911     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6912     SDVTList VTs = DAG.getVTList(ValueVTs);
6913     setValue(&I,
6914              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6915     return;
6916   }
6917   case Intrinsic::arithmetic_fence: {
6918     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6919                              getValue(I.getArgOperand(0)).getValueType(),
6920                              getValue(I.getArgOperand(0)), Flags));
6921     return;
6922   }
6923   case Intrinsic::fma:
6924     setValue(&I, DAG.getNode(
6925                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6926                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6927                      getValue(I.getArgOperand(2)), Flags));
6928     return;
6929 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6930   case Intrinsic::INTRINSIC:
6931 #include "llvm/IR/ConstrainedOps.def"
6932     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6933     return;
6934 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6935 #include "llvm/IR/VPIntrinsics.def"
6936     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6937     return;
6938   case Intrinsic::fptrunc_round: {
6939     // Get the last argument, the metadata and convert it to an integer in the
6940     // call
6941     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6942     std::optional<RoundingMode> RoundMode =
6943         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6944 
6945     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6946 
6947     // Propagate fast-math-flags from IR to node(s).
6948     SDNodeFlags Flags;
6949     Flags.copyFMF(*cast<FPMathOperator>(&I));
6950     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6951 
6952     SDValue Result;
6953     Result = DAG.getNode(
6954         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6955         DAG.getTargetConstant((int)*RoundMode, sdl,
6956                               TLI.getPointerTy(DAG.getDataLayout())));
6957     setValue(&I, Result);
6958 
6959     return;
6960   }
6961   case Intrinsic::fmuladd: {
6962     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6963     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6964         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6965       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6966                                getValue(I.getArgOperand(0)).getValueType(),
6967                                getValue(I.getArgOperand(0)),
6968                                getValue(I.getArgOperand(1)),
6969                                getValue(I.getArgOperand(2)), Flags));
6970     } else {
6971       // TODO: Intrinsic calls should have fast-math-flags.
6972       SDValue Mul = DAG.getNode(
6973           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6974           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6975       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6976                                 getValue(I.getArgOperand(0)).getValueType(),
6977                                 Mul, getValue(I.getArgOperand(2)), Flags);
6978       setValue(&I, Add);
6979     }
6980     return;
6981   }
6982   case Intrinsic::convert_to_fp16:
6983     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6984                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6985                                          getValue(I.getArgOperand(0)),
6986                                          DAG.getTargetConstant(0, sdl,
6987                                                                MVT::i32))));
6988     return;
6989   case Intrinsic::convert_from_fp16:
6990     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6991                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6992                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6993                                          getValue(I.getArgOperand(0)))));
6994     return;
6995   case Intrinsic::fptosi_sat: {
6996     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6997     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6998                              getValue(I.getArgOperand(0)),
6999                              DAG.getValueType(VT.getScalarType())));
7000     return;
7001   }
7002   case Intrinsic::fptoui_sat: {
7003     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7004     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7005                              getValue(I.getArgOperand(0)),
7006                              DAG.getValueType(VT.getScalarType())));
7007     return;
7008   }
7009   case Intrinsic::set_rounding:
7010     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7011                       {getRoot(), getValue(I.getArgOperand(0))});
7012     setValue(&I, Res);
7013     DAG.setRoot(Res.getValue(0));
7014     return;
7015   case Intrinsic::is_fpclass: {
7016     const DataLayout DLayout = DAG.getDataLayout();
7017     EVT DestVT = TLI.getValueType(DLayout, I.getType());
7018     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7019     FPClassTest Test = static_cast<FPClassTest>(
7020         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7021     MachineFunction &MF = DAG.getMachineFunction();
7022     const Function &F = MF.getFunction();
7023     SDValue Op = getValue(I.getArgOperand(0));
7024     SDNodeFlags Flags;
7025     Flags.setNoFPExcept(
7026         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7027     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7028     // expansion can use illegal types. Making expansion early allows
7029     // legalizing these types prior to selection.
7030     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
7031       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7032       setValue(&I, Result);
7033       return;
7034     }
7035 
7036     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7037     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7038     setValue(&I, V);
7039     return;
7040   }
7041   case Intrinsic::get_fpenv: {
7042     const DataLayout DLayout = DAG.getDataLayout();
7043     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7044     Align TempAlign = DAG.getEVTAlign(EnvVT);
7045     SDValue Chain = getRoot();
7046     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7047     // and temporary storage in stack.
7048     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7049       Res = DAG.getNode(
7050           ISD::GET_FPENV, sdl,
7051           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7052                         MVT::Other),
7053           Chain);
7054     } else {
7055       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7056       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7057       auto MPI =
7058           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7059       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7060           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
7061           TempAlign);
7062       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7063       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7064     }
7065     setValue(&I, Res);
7066     DAG.setRoot(Res.getValue(1));
7067     return;
7068   }
7069   case Intrinsic::set_fpenv: {
7070     const DataLayout DLayout = DAG.getDataLayout();
7071     SDValue Env = getValue(I.getArgOperand(0));
7072     EVT EnvVT = Env.getValueType();
7073     Align TempAlign = DAG.getEVTAlign(EnvVT);
7074     SDValue Chain = getRoot();
7075     // If SET_FPENV is custom or legal, use it. Otherwise use loading
7076     // environment from memory.
7077     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7078       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7079     } else {
7080       // Allocate space in stack, copy environment bits into it and use this
7081       // memory in SET_FPENV_MEM.
7082       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7083       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7084       auto MPI =
7085           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7086       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7087                            MachineMemOperand::MOStore);
7088       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7089           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
7090           TempAlign);
7091       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7092     }
7093     DAG.setRoot(Chain);
7094     return;
7095   }
7096   case Intrinsic::reset_fpenv:
7097     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7098     return;
7099   case Intrinsic::get_fpmode:
7100     Res = DAG.getNode(
7101         ISD::GET_FPMODE, sdl,
7102         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7103                       MVT::Other),
7104         DAG.getRoot());
7105     setValue(&I, Res);
7106     DAG.setRoot(Res.getValue(1));
7107     return;
7108   case Intrinsic::set_fpmode:
7109     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7110                       getValue(I.getArgOperand(0)));
7111     DAG.setRoot(Res);
7112     return;
7113   case Intrinsic::reset_fpmode: {
7114     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7115     DAG.setRoot(Res);
7116     return;
7117   }
7118   case Intrinsic::pcmarker: {
7119     SDValue Tmp = getValue(I.getArgOperand(0));
7120     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7121     return;
7122   }
7123   case Intrinsic::readcyclecounter: {
7124     SDValue Op = getRoot();
7125     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7126                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7127     setValue(&I, Res);
7128     DAG.setRoot(Res.getValue(1));
7129     return;
7130   }
7131   case Intrinsic::readsteadycounter: {
7132     SDValue Op = getRoot();
7133     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7134                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7135     setValue(&I, Res);
7136     DAG.setRoot(Res.getValue(1));
7137     return;
7138   }
7139   case Intrinsic::bitreverse:
7140     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7141                              getValue(I.getArgOperand(0)).getValueType(),
7142                              getValue(I.getArgOperand(0))));
7143     return;
7144   case Intrinsic::bswap:
7145     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7146                              getValue(I.getArgOperand(0)).getValueType(),
7147                              getValue(I.getArgOperand(0))));
7148     return;
7149   case Intrinsic::cttz: {
7150     SDValue Arg = getValue(I.getArgOperand(0));
7151     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7152     EVT Ty = Arg.getValueType();
7153     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7154                              sdl, Ty, Arg));
7155     return;
7156   }
7157   case Intrinsic::ctlz: {
7158     SDValue Arg = getValue(I.getArgOperand(0));
7159     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7160     EVT Ty = Arg.getValueType();
7161     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7162                              sdl, Ty, Arg));
7163     return;
7164   }
7165   case Intrinsic::ctpop: {
7166     SDValue Arg = getValue(I.getArgOperand(0));
7167     EVT Ty = Arg.getValueType();
7168     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7169     return;
7170   }
7171   case Intrinsic::fshl:
7172   case Intrinsic::fshr: {
7173     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7174     SDValue X = getValue(I.getArgOperand(0));
7175     SDValue Y = getValue(I.getArgOperand(1));
7176     SDValue Z = getValue(I.getArgOperand(2));
7177     EVT VT = X.getValueType();
7178 
7179     if (X == Y) {
7180       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7181       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7182     } else {
7183       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7184       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7185     }
7186     return;
7187   }
7188   case Intrinsic::sadd_sat: {
7189     SDValue Op1 = getValue(I.getArgOperand(0));
7190     SDValue Op2 = getValue(I.getArgOperand(1));
7191     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7192     return;
7193   }
7194   case Intrinsic::uadd_sat: {
7195     SDValue Op1 = getValue(I.getArgOperand(0));
7196     SDValue Op2 = getValue(I.getArgOperand(1));
7197     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7198     return;
7199   }
7200   case Intrinsic::ssub_sat: {
7201     SDValue Op1 = getValue(I.getArgOperand(0));
7202     SDValue Op2 = getValue(I.getArgOperand(1));
7203     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7204     return;
7205   }
7206   case Intrinsic::usub_sat: {
7207     SDValue Op1 = getValue(I.getArgOperand(0));
7208     SDValue Op2 = getValue(I.getArgOperand(1));
7209     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7210     return;
7211   }
7212   case Intrinsic::sshl_sat: {
7213     SDValue Op1 = getValue(I.getArgOperand(0));
7214     SDValue Op2 = getValue(I.getArgOperand(1));
7215     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7216     return;
7217   }
7218   case Intrinsic::ushl_sat: {
7219     SDValue Op1 = getValue(I.getArgOperand(0));
7220     SDValue Op2 = getValue(I.getArgOperand(1));
7221     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7222     return;
7223   }
7224   case Intrinsic::smul_fix:
7225   case Intrinsic::umul_fix:
7226   case Intrinsic::smul_fix_sat:
7227   case Intrinsic::umul_fix_sat: {
7228     SDValue Op1 = getValue(I.getArgOperand(0));
7229     SDValue Op2 = getValue(I.getArgOperand(1));
7230     SDValue Op3 = getValue(I.getArgOperand(2));
7231     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7232                              Op1.getValueType(), Op1, Op2, Op3));
7233     return;
7234   }
7235   case Intrinsic::sdiv_fix:
7236   case Intrinsic::udiv_fix:
7237   case Intrinsic::sdiv_fix_sat:
7238   case Intrinsic::udiv_fix_sat: {
7239     SDValue Op1 = getValue(I.getArgOperand(0));
7240     SDValue Op2 = getValue(I.getArgOperand(1));
7241     SDValue Op3 = getValue(I.getArgOperand(2));
7242     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7243                               Op1, Op2, Op3, DAG, TLI));
7244     return;
7245   }
7246   case Intrinsic::smax: {
7247     SDValue Op1 = getValue(I.getArgOperand(0));
7248     SDValue Op2 = getValue(I.getArgOperand(1));
7249     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7250     return;
7251   }
7252   case Intrinsic::smin: {
7253     SDValue Op1 = getValue(I.getArgOperand(0));
7254     SDValue Op2 = getValue(I.getArgOperand(1));
7255     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7256     return;
7257   }
7258   case Intrinsic::umax: {
7259     SDValue Op1 = getValue(I.getArgOperand(0));
7260     SDValue Op2 = getValue(I.getArgOperand(1));
7261     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7262     return;
7263   }
7264   case Intrinsic::umin: {
7265     SDValue Op1 = getValue(I.getArgOperand(0));
7266     SDValue Op2 = getValue(I.getArgOperand(1));
7267     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7268     return;
7269   }
7270   case Intrinsic::abs: {
7271     // TODO: Preserve "int min is poison" arg in SDAG?
7272     SDValue Op1 = getValue(I.getArgOperand(0));
7273     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7274     return;
7275   }
7276   case Intrinsic::scmp: {
7277     SDValue Op1 = getValue(I.getArgOperand(0));
7278     SDValue Op2 = getValue(I.getArgOperand(1));
7279     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7280     setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7281     break;
7282   }
7283   case Intrinsic::ucmp: {
7284     SDValue Op1 = getValue(I.getArgOperand(0));
7285     SDValue Op2 = getValue(I.getArgOperand(1));
7286     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7287     setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7288     break;
7289   }
7290   case Intrinsic::stacksave: {
7291     SDValue Op = getRoot();
7292     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7293     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7294     setValue(&I, Res);
7295     DAG.setRoot(Res.getValue(1));
7296     return;
7297   }
7298   case Intrinsic::stackrestore:
7299     Res = getValue(I.getArgOperand(0));
7300     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7301     return;
7302   case Intrinsic::get_dynamic_area_offset: {
7303     SDValue Op = getRoot();
7304     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7305     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7306     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7307     // target.
7308     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7309       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7310                          " intrinsic!");
7311     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7312                       Op);
7313     DAG.setRoot(Op);
7314     setValue(&I, Res);
7315     return;
7316   }
7317   case Intrinsic::stackguard: {
7318     MachineFunction &MF = DAG.getMachineFunction();
7319     const Module &M = *MF.getFunction().getParent();
7320     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7321     SDValue Chain = getRoot();
7322     if (TLI.useLoadStackGuardNode()) {
7323       Res = getLoadStackGuard(DAG, sdl, Chain);
7324       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7325     } else {
7326       const Value *Global = TLI.getSDagStackGuard(M);
7327       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7328       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7329                         MachinePointerInfo(Global, 0), Align,
7330                         MachineMemOperand::MOVolatile);
7331     }
7332     if (TLI.useStackGuardXorFP())
7333       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7334     DAG.setRoot(Chain);
7335     setValue(&I, Res);
7336     return;
7337   }
7338   case Intrinsic::stackprotector: {
7339     // Emit code into the DAG to store the stack guard onto the stack.
7340     MachineFunction &MF = DAG.getMachineFunction();
7341     MachineFrameInfo &MFI = MF.getFrameInfo();
7342     SDValue Src, Chain = getRoot();
7343 
7344     if (TLI.useLoadStackGuardNode())
7345       Src = getLoadStackGuard(DAG, sdl, Chain);
7346     else
7347       Src = getValue(I.getArgOperand(0));   // The guard's value.
7348 
7349     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7350 
7351     int FI = FuncInfo.StaticAllocaMap[Slot];
7352     MFI.setStackProtectorIndex(FI);
7353     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7354 
7355     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7356 
7357     // Store the stack protector onto the stack.
7358     Res = DAG.getStore(
7359         Chain, sdl, Src, FIN,
7360         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7361         MaybeAlign(), MachineMemOperand::MOVolatile);
7362     setValue(&I, Res);
7363     DAG.setRoot(Res);
7364     return;
7365   }
7366   case Intrinsic::objectsize:
7367     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7368 
7369   case Intrinsic::is_constant:
7370     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7371 
7372   case Intrinsic::annotation:
7373   case Intrinsic::ptr_annotation:
7374   case Intrinsic::launder_invariant_group:
7375   case Intrinsic::strip_invariant_group:
7376     // Drop the intrinsic, but forward the value
7377     setValue(&I, getValue(I.getOperand(0)));
7378     return;
7379 
7380   case Intrinsic::assume:
7381   case Intrinsic::experimental_noalias_scope_decl:
7382   case Intrinsic::var_annotation:
7383   case Intrinsic::sideeffect:
7384     // Discard annotate attributes, noalias scope declarations, assumptions, and
7385     // artificial side-effects.
7386     return;
7387 
7388   case Intrinsic::codeview_annotation: {
7389     // Emit a label associated with this metadata.
7390     MachineFunction &MF = DAG.getMachineFunction();
7391     MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7392     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7393     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7394     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7395     DAG.setRoot(Res);
7396     return;
7397   }
7398 
7399   case Intrinsic::init_trampoline: {
7400     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7401 
7402     SDValue Ops[6];
7403     Ops[0] = getRoot();
7404     Ops[1] = getValue(I.getArgOperand(0));
7405     Ops[2] = getValue(I.getArgOperand(1));
7406     Ops[3] = getValue(I.getArgOperand(2));
7407     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7408     Ops[5] = DAG.getSrcValue(F);
7409 
7410     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7411 
7412     DAG.setRoot(Res);
7413     return;
7414   }
7415   case Intrinsic::adjust_trampoline:
7416     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7417                              TLI.getPointerTy(DAG.getDataLayout()),
7418                              getValue(I.getArgOperand(0))));
7419     return;
7420   case Intrinsic::gcroot: {
7421     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7422            "only valid in functions with gc specified, enforced by Verifier");
7423     assert(GFI && "implied by previous");
7424     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7425     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7426 
7427     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7428     GFI->addStackRoot(FI->getIndex(), TypeMap);
7429     return;
7430   }
7431   case Intrinsic::gcread:
7432   case Intrinsic::gcwrite:
7433     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7434   case Intrinsic::get_rounding:
7435     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7436     setValue(&I, Res);
7437     DAG.setRoot(Res.getValue(1));
7438     return;
7439 
7440   case Intrinsic::expect:
7441     // Just replace __builtin_expect(exp, c) with EXP.
7442     setValue(&I, getValue(I.getArgOperand(0)));
7443     return;
7444 
7445   case Intrinsic::ubsantrap:
7446   case Intrinsic::debugtrap:
7447   case Intrinsic::trap: {
7448     StringRef TrapFuncName =
7449         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7450     if (TrapFuncName.empty()) {
7451       switch (Intrinsic) {
7452       case Intrinsic::trap:
7453         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7454         break;
7455       case Intrinsic::debugtrap:
7456         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7457         break;
7458       case Intrinsic::ubsantrap:
7459         DAG.setRoot(DAG.getNode(
7460             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7461             DAG.getTargetConstant(
7462                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7463                 MVT::i32)));
7464         break;
7465       default: llvm_unreachable("unknown trap intrinsic");
7466       }
7467       DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7468                              I.hasFnAttr(Attribute::NoMerge));
7469       return;
7470     }
7471     TargetLowering::ArgListTy Args;
7472     if (Intrinsic == Intrinsic::ubsantrap) {
7473       Args.push_back(TargetLoweringBase::ArgListEntry());
7474       Args[0].Val = I.getArgOperand(0);
7475       Args[0].Node = getValue(Args[0].Val);
7476       Args[0].Ty = Args[0].Val->getType();
7477     }
7478 
7479     TargetLowering::CallLoweringInfo CLI(DAG);
7480     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7481         CallingConv::C, I.getType(),
7482         DAG.getExternalSymbol(TrapFuncName.data(),
7483                               TLI.getPointerTy(DAG.getDataLayout())),
7484         std::move(Args));
7485     CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7486     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7487     DAG.setRoot(Result.second);
7488     return;
7489   }
7490 
7491   case Intrinsic::allow_runtime_check:
7492   case Intrinsic::allow_ubsan_check:
7493     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7494     return;
7495 
7496   case Intrinsic::uadd_with_overflow:
7497   case Intrinsic::sadd_with_overflow:
7498   case Intrinsic::usub_with_overflow:
7499   case Intrinsic::ssub_with_overflow:
7500   case Intrinsic::umul_with_overflow:
7501   case Intrinsic::smul_with_overflow: {
7502     ISD::NodeType Op;
7503     switch (Intrinsic) {
7504     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7505     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7506     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7507     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7508     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7509     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7510     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7511     }
7512     SDValue Op1 = getValue(I.getArgOperand(0));
7513     SDValue Op2 = getValue(I.getArgOperand(1));
7514 
7515     EVT ResultVT = Op1.getValueType();
7516     EVT OverflowVT = MVT::i1;
7517     if (ResultVT.isVector())
7518       OverflowVT = EVT::getVectorVT(
7519           *Context, OverflowVT, ResultVT.getVectorElementCount());
7520 
7521     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7522     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7523     return;
7524   }
7525   case Intrinsic::prefetch: {
7526     SDValue Ops[5];
7527     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7528     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7529     Ops[0] = DAG.getRoot();
7530     Ops[1] = getValue(I.getArgOperand(0));
7531     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7532                                    MVT::i32);
7533     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7534                                    MVT::i32);
7535     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7536                                    MVT::i32);
7537     SDValue Result = DAG.getMemIntrinsicNode(
7538         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7539         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7540         /* align */ std::nullopt, Flags);
7541 
7542     // Chain the prefetch in parallel with any pending loads, to stay out of
7543     // the way of later optimizations.
7544     PendingLoads.push_back(Result);
7545     Result = getRoot();
7546     DAG.setRoot(Result);
7547     return;
7548   }
7549   case Intrinsic::lifetime_start:
7550   case Intrinsic::lifetime_end: {
7551     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7552     // Stack coloring is not enabled in O0, discard region information.
7553     if (TM.getOptLevel() == CodeGenOptLevel::None)
7554       return;
7555 
7556     const int64_t ObjectSize =
7557         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7558     Value *const ObjectPtr = I.getArgOperand(1);
7559     SmallVector<const Value *, 4> Allocas;
7560     getUnderlyingObjects(ObjectPtr, Allocas);
7561 
7562     for (const Value *Alloca : Allocas) {
7563       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7564 
7565       // Could not find an Alloca.
7566       if (!LifetimeObject)
7567         continue;
7568 
7569       // First check that the Alloca is static, otherwise it won't have a
7570       // valid frame index.
7571       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7572       if (SI == FuncInfo.StaticAllocaMap.end())
7573         return;
7574 
7575       const int FrameIndex = SI->second;
7576       int64_t Offset;
7577       if (GetPointerBaseWithConstantOffset(
7578               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7579         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7580       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7581                                 Offset);
7582       DAG.setRoot(Res);
7583     }
7584     return;
7585   }
7586   case Intrinsic::pseudoprobe: {
7587     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7588     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7589     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7590     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7591     DAG.setRoot(Res);
7592     return;
7593   }
7594   case Intrinsic::invariant_start:
7595     // Discard region information.
7596     setValue(&I,
7597              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7598     return;
7599   case Intrinsic::invariant_end:
7600     // Discard region information.
7601     return;
7602   case Intrinsic::clear_cache: {
7603     SDValue InputChain = DAG.getRoot();
7604     SDValue StartVal = getValue(I.getArgOperand(0));
7605     SDValue EndVal = getValue(I.getArgOperand(1));
7606     Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7607                       {InputChain, StartVal, EndVal});
7608     setValue(&I, Res);
7609     DAG.setRoot(Res);
7610     return;
7611   }
7612   case Intrinsic::donothing:
7613   case Intrinsic::seh_try_begin:
7614   case Intrinsic::seh_scope_begin:
7615   case Intrinsic::seh_try_end:
7616   case Intrinsic::seh_scope_end:
7617     // ignore
7618     return;
7619   case Intrinsic::experimental_stackmap:
7620     visitStackmap(I);
7621     return;
7622   case Intrinsic::experimental_patchpoint_void:
7623   case Intrinsic::experimental_patchpoint:
7624     visitPatchpoint(I);
7625     return;
7626   case Intrinsic::experimental_gc_statepoint:
7627     LowerStatepoint(cast<GCStatepointInst>(I));
7628     return;
7629   case Intrinsic::experimental_gc_result:
7630     visitGCResult(cast<GCResultInst>(I));
7631     return;
7632   case Intrinsic::experimental_gc_relocate:
7633     visitGCRelocate(cast<GCRelocateInst>(I));
7634     return;
7635   case Intrinsic::instrprof_cover:
7636     llvm_unreachable("instrprof failed to lower a cover");
7637   case Intrinsic::instrprof_increment:
7638     llvm_unreachable("instrprof failed to lower an increment");
7639   case Intrinsic::instrprof_timestamp:
7640     llvm_unreachable("instrprof failed to lower a timestamp");
7641   case Intrinsic::instrprof_value_profile:
7642     llvm_unreachable("instrprof failed to lower a value profiling call");
7643   case Intrinsic::instrprof_mcdc_parameters:
7644     llvm_unreachable("instrprof failed to lower mcdc parameters");
7645   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7646     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7647   case Intrinsic::localescape: {
7648     MachineFunction &MF = DAG.getMachineFunction();
7649     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7650 
7651     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7652     // is the same on all targets.
7653     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7654       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7655       if (isa<ConstantPointerNull>(Arg))
7656         continue; // Skip null pointers. They represent a hole in index space.
7657       AllocaInst *Slot = cast<AllocaInst>(Arg);
7658       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7659              "can only escape static allocas");
7660       int FI = FuncInfo.StaticAllocaMap[Slot];
7661       MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7662           GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7663       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7664               TII->get(TargetOpcode::LOCAL_ESCAPE))
7665           .addSym(FrameAllocSym)
7666           .addFrameIndex(FI);
7667     }
7668 
7669     return;
7670   }
7671 
7672   case Intrinsic::localrecover: {
7673     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7674     MachineFunction &MF = DAG.getMachineFunction();
7675 
7676     // Get the symbol that defines the frame offset.
7677     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7678     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7679     unsigned IdxVal =
7680         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7681     MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7682         GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7683 
7684     Value *FP = I.getArgOperand(1);
7685     SDValue FPVal = getValue(FP);
7686     EVT PtrVT = FPVal.getValueType();
7687 
7688     // Create a MCSymbol for the label to avoid any target lowering
7689     // that would make this PC relative.
7690     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7691     SDValue OffsetVal =
7692         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7693 
7694     // Add the offset to the FP.
7695     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7696     setValue(&I, Add);
7697 
7698     return;
7699   }
7700 
7701   case Intrinsic::eh_exceptionpointer:
7702   case Intrinsic::eh_exceptioncode: {
7703     // Get the exception pointer vreg, copy from it, and resize it to fit.
7704     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7705     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7706     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7707     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7708     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7709     if (Intrinsic == Intrinsic::eh_exceptioncode)
7710       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7711     setValue(&I, N);
7712     return;
7713   }
7714   case Intrinsic::xray_customevent: {
7715     // Here we want to make sure that the intrinsic behaves as if it has a
7716     // specific calling convention.
7717     const auto &Triple = DAG.getTarget().getTargetTriple();
7718     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7719       return;
7720 
7721     SmallVector<SDValue, 8> Ops;
7722 
7723     // We want to say that we always want the arguments in registers.
7724     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7725     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7726     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7727     SDValue Chain = getRoot();
7728     Ops.push_back(LogEntryVal);
7729     Ops.push_back(StrSizeVal);
7730     Ops.push_back(Chain);
7731 
7732     // We need to enforce the calling convention for the callsite, so that
7733     // argument ordering is enforced correctly, and that register allocation can
7734     // see that some registers may be assumed clobbered and have to preserve
7735     // them across calls to the intrinsic.
7736     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7737                                            sdl, NodeTys, Ops);
7738     SDValue patchableNode = SDValue(MN, 0);
7739     DAG.setRoot(patchableNode);
7740     setValue(&I, patchableNode);
7741     return;
7742   }
7743   case Intrinsic::xray_typedevent: {
7744     // Here we want to make sure that the intrinsic behaves as if it has a
7745     // specific calling convention.
7746     const auto &Triple = DAG.getTarget().getTargetTriple();
7747     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7748       return;
7749 
7750     SmallVector<SDValue, 8> Ops;
7751 
7752     // We want to say that we always want the arguments in registers.
7753     // It's unclear to me how manipulating the selection DAG here forces callers
7754     // to provide arguments in registers instead of on the stack.
7755     SDValue LogTypeId = getValue(I.getArgOperand(0));
7756     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7757     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7758     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7759     SDValue Chain = getRoot();
7760     Ops.push_back(LogTypeId);
7761     Ops.push_back(LogEntryVal);
7762     Ops.push_back(StrSizeVal);
7763     Ops.push_back(Chain);
7764 
7765     // We need to enforce the calling convention for the callsite, so that
7766     // argument ordering is enforced correctly, and that register allocation can
7767     // see that some registers may be assumed clobbered and have to preserve
7768     // them across calls to the intrinsic.
7769     MachineSDNode *MN = DAG.getMachineNode(
7770         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7771     SDValue patchableNode = SDValue(MN, 0);
7772     DAG.setRoot(patchableNode);
7773     setValue(&I, patchableNode);
7774     return;
7775   }
7776   case Intrinsic::experimental_deoptimize:
7777     LowerDeoptimizeCall(&I);
7778     return;
7779   case Intrinsic::experimental_stepvector:
7780     visitStepVector(I);
7781     return;
7782   case Intrinsic::vector_reduce_fadd:
7783   case Intrinsic::vector_reduce_fmul:
7784   case Intrinsic::vector_reduce_add:
7785   case Intrinsic::vector_reduce_mul:
7786   case Intrinsic::vector_reduce_and:
7787   case Intrinsic::vector_reduce_or:
7788   case Intrinsic::vector_reduce_xor:
7789   case Intrinsic::vector_reduce_smax:
7790   case Intrinsic::vector_reduce_smin:
7791   case Intrinsic::vector_reduce_umax:
7792   case Intrinsic::vector_reduce_umin:
7793   case Intrinsic::vector_reduce_fmax:
7794   case Intrinsic::vector_reduce_fmin:
7795   case Intrinsic::vector_reduce_fmaximum:
7796   case Intrinsic::vector_reduce_fminimum:
7797     visitVectorReduce(I, Intrinsic);
7798     return;
7799 
7800   case Intrinsic::icall_branch_funnel: {
7801     SmallVector<SDValue, 16> Ops;
7802     Ops.push_back(getValue(I.getArgOperand(0)));
7803 
7804     int64_t Offset;
7805     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7806         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7807     if (!Base)
7808       report_fatal_error(
7809           "llvm.icall.branch.funnel operand must be a GlobalValue");
7810     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7811 
7812     struct BranchFunnelTarget {
7813       int64_t Offset;
7814       SDValue Target;
7815     };
7816     SmallVector<BranchFunnelTarget, 8> Targets;
7817 
7818     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7819       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7820           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7821       if (ElemBase != Base)
7822         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7823                            "to the same GlobalValue");
7824 
7825       SDValue Val = getValue(I.getArgOperand(Op + 1));
7826       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7827       if (!GA)
7828         report_fatal_error(
7829             "llvm.icall.branch.funnel operand must be a GlobalValue");
7830       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7831                                      GA->getGlobal(), sdl, Val.getValueType(),
7832                                      GA->getOffset())});
7833     }
7834     llvm::sort(Targets,
7835                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7836                  return T1.Offset < T2.Offset;
7837                });
7838 
7839     for (auto &T : Targets) {
7840       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7841       Ops.push_back(T.Target);
7842     }
7843 
7844     Ops.push_back(DAG.getRoot()); // Chain
7845     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7846                                  MVT::Other, Ops),
7847               0);
7848     DAG.setRoot(N);
7849     setValue(&I, N);
7850     HasTailCall = true;
7851     return;
7852   }
7853 
7854   case Intrinsic::wasm_landingpad_index:
7855     // Information this intrinsic contained has been transferred to
7856     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7857     // delete it now.
7858     return;
7859 
7860   case Intrinsic::aarch64_settag:
7861   case Intrinsic::aarch64_settag_zero: {
7862     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7863     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7864     SDValue Val = TSI.EmitTargetCodeForSetTag(
7865         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7866         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7867         ZeroMemory);
7868     DAG.setRoot(Val);
7869     setValue(&I, Val);
7870     return;
7871   }
7872   case Intrinsic::amdgcn_cs_chain: {
7873     assert(I.arg_size() == 5 && "Additional args not supported yet");
7874     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7875            "Non-zero flags not supported yet");
7876 
7877     // At this point we don't care if it's amdgpu_cs_chain or
7878     // amdgpu_cs_chain_preserve.
7879     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7880 
7881     Type *RetTy = I.getType();
7882     assert(RetTy->isVoidTy() && "Should not return");
7883 
7884     SDValue Callee = getValue(I.getOperand(0));
7885 
7886     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7887     // We'll also tack the value of the EXEC mask at the end.
7888     TargetLowering::ArgListTy Args;
7889     Args.reserve(3);
7890 
7891     for (unsigned Idx : {2, 3, 1}) {
7892       TargetLowering::ArgListEntry Arg;
7893       Arg.Node = getValue(I.getOperand(Idx));
7894       Arg.Ty = I.getOperand(Idx)->getType();
7895       Arg.setAttributes(&I, Idx);
7896       Args.push_back(Arg);
7897     }
7898 
7899     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7900     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7901     Args[2].IsInReg = true; // EXEC should be inreg
7902 
7903     TargetLowering::CallLoweringInfo CLI(DAG);
7904     CLI.setDebugLoc(getCurSDLoc())
7905         .setChain(getRoot())
7906         .setCallee(CC, RetTy, Callee, std::move(Args))
7907         .setNoReturn(true)
7908         .setTailCall(true)
7909         .setConvergent(I.isConvergent());
7910     CLI.CB = &I;
7911     std::pair<SDValue, SDValue> Result =
7912         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7913     (void)Result;
7914     assert(!Result.first.getNode() && !Result.second.getNode() &&
7915            "Should've lowered as tail call");
7916 
7917     HasTailCall = true;
7918     return;
7919   }
7920   case Intrinsic::ptrmask: {
7921     SDValue Ptr = getValue(I.getOperand(0));
7922     SDValue Mask = getValue(I.getOperand(1));
7923 
7924     // On arm64_32, pointers are 32 bits when stored in memory, but
7925     // zero-extended to 64 bits when in registers.  Thus the mask is 32 bits to
7926     // match the index type, but the pointer is 64 bits, so the the mask must be
7927     // zero-extended up to 64 bits to match the pointer.
7928     EVT PtrVT =
7929         TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7930     EVT MemVT =
7931         TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
7932     assert(PtrVT == Ptr.getValueType());
7933     assert(MemVT == Mask.getValueType());
7934     if (MemVT != PtrVT)
7935       Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
7936 
7937     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7938     return;
7939   }
7940   case Intrinsic::threadlocal_address: {
7941     setValue(&I, getValue(I.getOperand(0)));
7942     return;
7943   }
7944   case Intrinsic::get_active_lane_mask: {
7945     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7946     SDValue Index = getValue(I.getOperand(0));
7947     EVT ElementVT = Index.getValueType();
7948 
7949     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7950       visitTargetIntrinsic(I, Intrinsic);
7951       return;
7952     }
7953 
7954     SDValue TripCount = getValue(I.getOperand(1));
7955     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7956                                  CCVT.getVectorElementCount());
7957 
7958     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7959     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7960     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7961     SDValue VectorInduction = DAG.getNode(
7962         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7963     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7964                                  VectorTripCount, ISD::CondCode::SETULT);
7965     setValue(&I, SetCC);
7966     return;
7967   }
7968   case Intrinsic::experimental_get_vector_length: {
7969     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7970            "Expected positive VF");
7971     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7972     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7973 
7974     SDValue Count = getValue(I.getOperand(0));
7975     EVT CountVT = Count.getValueType();
7976 
7977     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7978       visitTargetIntrinsic(I, Intrinsic);
7979       return;
7980     }
7981 
7982     // Expand to a umin between the trip count and the maximum elements the type
7983     // can hold.
7984     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7985 
7986     // Extend the trip count to at least the result VT.
7987     if (CountVT.bitsLT(VT)) {
7988       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7989       CountVT = VT;
7990     }
7991 
7992     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7993                                          ElementCount::get(VF, IsScalable));
7994 
7995     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7996     // Clip to the result type if needed.
7997     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7998 
7999     setValue(&I, Trunc);
8000     return;
8001   }
8002   case Intrinsic::experimental_vector_partial_reduce_add: {
8003     SDValue OpNode = getValue(I.getOperand(1));
8004     EVT ReducedTy = EVT::getEVT(I.getType());
8005     EVT FullTy = OpNode.getValueType();
8006 
8007     unsigned Stride = ReducedTy.getVectorMinNumElements();
8008     unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride;
8009 
8010     // Collect all of the subvectors
8011     std::deque<SDValue> Subvectors;
8012     Subvectors.push_back(getValue(I.getOperand(0)));
8013     for (unsigned i = 0; i < ScaleFactor; i++) {
8014       auto SourceIndex = DAG.getVectorIdxConstant(i * Stride, sdl);
8015       Subvectors.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ReducedTy,
8016                                        {OpNode, SourceIndex}));
8017     }
8018 
8019     // Flatten the subvector tree
8020     while (Subvectors.size() > 1) {
8021       Subvectors.push_back(DAG.getNode(ISD::ADD, sdl, ReducedTy,
8022                                        {Subvectors[0], Subvectors[1]}));
8023       Subvectors.pop_front();
8024       Subvectors.pop_front();
8025     }
8026 
8027     assert(Subvectors.size() == 1 &&
8028            "There should only be one subvector after tree flattening");
8029 
8030     setValue(&I, Subvectors[0]);
8031     return;
8032   }
8033   case Intrinsic::experimental_cttz_elts: {
8034     auto DL = getCurSDLoc();
8035     SDValue Op = getValue(I.getOperand(0));
8036     EVT OpVT = Op.getValueType();
8037 
8038     if (!TLI.shouldExpandCttzElements(OpVT)) {
8039       visitTargetIntrinsic(I, Intrinsic);
8040       return;
8041     }
8042 
8043     if (OpVT.getScalarType() != MVT::i1) {
8044       // Compare the input vector elements to zero & use to count trailing zeros
8045       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8046       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8047                               OpVT.getVectorElementCount());
8048       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8049     }
8050 
8051     // If the zero-is-poison flag is set, we can assume the upper limit
8052     // of the result is VF-1.
8053     bool ZeroIsPoison =
8054         !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8055     ConstantRange VScaleRange(1, true); // Dummy value.
8056     if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8057       VScaleRange = getVScaleRange(I.getCaller(), 64);
8058     unsigned EltWidth = TLI.getBitWidthForCttzElements(
8059         I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8060 
8061     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8062 
8063     // Create the new vector type & get the vector length
8064     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8065                                  OpVT.getVectorElementCount());
8066 
8067     SDValue VL =
8068         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8069 
8070     SDValue StepVec = DAG.getStepVector(DL, NewVT);
8071     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8072     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8073     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8074     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8075     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8076     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8077 
8078     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8079     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8080 
8081     setValue(&I, Ret);
8082     return;
8083   }
8084   case Intrinsic::vector_insert: {
8085     SDValue Vec = getValue(I.getOperand(0));
8086     SDValue SubVec = getValue(I.getOperand(1));
8087     SDValue Index = getValue(I.getOperand(2));
8088 
8089     // The intrinsic's index type is i64, but the SDNode requires an index type
8090     // suitable for the target. Convert the index as required.
8091     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8092     if (Index.getValueType() != VectorIdxTy)
8093       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8094 
8095     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8096     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8097                              Index));
8098     return;
8099   }
8100   case Intrinsic::vector_extract: {
8101     SDValue Vec = getValue(I.getOperand(0));
8102     SDValue Index = getValue(I.getOperand(1));
8103     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8104 
8105     // The intrinsic's index type is i64, but the SDNode requires an index type
8106     // suitable for the target. Convert the index as required.
8107     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8108     if (Index.getValueType() != VectorIdxTy)
8109       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8110 
8111     setValue(&I,
8112              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8113     return;
8114   }
8115   case Intrinsic::vector_reverse:
8116     visitVectorReverse(I);
8117     return;
8118   case Intrinsic::vector_splice:
8119     visitVectorSplice(I);
8120     return;
8121   case Intrinsic::callbr_landingpad:
8122     visitCallBrLandingPad(I);
8123     return;
8124   case Intrinsic::vector_interleave2:
8125     visitVectorInterleave(I);
8126     return;
8127   case Intrinsic::vector_deinterleave2:
8128     visitVectorDeinterleave(I);
8129     return;
8130   case Intrinsic::experimental_vector_compress:
8131     setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8132                              getValue(I.getArgOperand(0)).getValueType(),
8133                              getValue(I.getArgOperand(0)),
8134                              getValue(I.getArgOperand(1)),
8135                              getValue(I.getArgOperand(2)), Flags));
8136     return;
8137   case Intrinsic::experimental_convergence_anchor:
8138   case Intrinsic::experimental_convergence_entry:
8139   case Intrinsic::experimental_convergence_loop:
8140     visitConvergenceControl(I, Intrinsic);
8141     return;
8142   case Intrinsic::experimental_vector_histogram_add: {
8143     visitVectorHistogram(I, Intrinsic);
8144     return;
8145   }
8146   }
8147 }
8148 
8149 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8150     const ConstrainedFPIntrinsic &FPI) {
8151   SDLoc sdl = getCurSDLoc();
8152 
8153   // We do not need to serialize constrained FP intrinsics against
8154   // each other or against (nonvolatile) loads, so they can be
8155   // chained like loads.
8156   SDValue Chain = DAG.getRoot();
8157   SmallVector<SDValue, 4> Opers;
8158   Opers.push_back(Chain);
8159   for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8160     Opers.push_back(getValue(FPI.getArgOperand(I)));
8161 
8162   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
8163     assert(Result.getNode()->getNumValues() == 2);
8164 
8165     // Push node to the appropriate list so that future instructions can be
8166     // chained up correctly.
8167     SDValue OutChain = Result.getValue(1);
8168     switch (EB) {
8169     case fp::ExceptionBehavior::ebIgnore:
8170       // The only reason why ebIgnore nodes still need to be chained is that
8171       // they might depend on the current rounding mode, and therefore must
8172       // not be moved across instruction that may change that mode.
8173       [[fallthrough]];
8174     case fp::ExceptionBehavior::ebMayTrap:
8175       // These must not be moved across calls or instructions that may change
8176       // floating-point exception masks.
8177       PendingConstrainedFP.push_back(OutChain);
8178       break;
8179     case fp::ExceptionBehavior::ebStrict:
8180       // These must not be moved across calls or instructions that may change
8181       // floating-point exception masks or read floating-point exception flags.
8182       // In addition, they cannot be optimized out even if unused.
8183       PendingConstrainedFPStrict.push_back(OutChain);
8184       break;
8185     }
8186   };
8187 
8188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8189   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8190   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8191   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8192 
8193   SDNodeFlags Flags;
8194   if (EB == fp::ExceptionBehavior::ebIgnore)
8195     Flags.setNoFPExcept(true);
8196 
8197   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8198     Flags.copyFMF(*FPOp);
8199 
8200   unsigned Opcode;
8201   switch (FPI.getIntrinsicID()) {
8202   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8203 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8204   case Intrinsic::INTRINSIC:                                                   \
8205     Opcode = ISD::STRICT_##DAGN;                                               \
8206     break;
8207 #include "llvm/IR/ConstrainedOps.def"
8208   case Intrinsic::experimental_constrained_fmuladd: {
8209     Opcode = ISD::STRICT_FMA;
8210     // Break fmuladd into fmul and fadd.
8211     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8212         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8213       Opers.pop_back();
8214       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8215       pushOutChain(Mul, EB);
8216       Opcode = ISD::STRICT_FADD;
8217       Opers.clear();
8218       Opers.push_back(Mul.getValue(1));
8219       Opers.push_back(Mul.getValue(0));
8220       Opers.push_back(getValue(FPI.getArgOperand(2)));
8221     }
8222     break;
8223   }
8224   }
8225 
8226   // A few strict DAG nodes carry additional operands that are not
8227   // set up by the default code above.
8228   switch (Opcode) {
8229   default: break;
8230   case ISD::STRICT_FP_ROUND:
8231     Opers.push_back(
8232         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8233     break;
8234   case ISD::STRICT_FSETCC:
8235   case ISD::STRICT_FSETCCS: {
8236     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8237     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8238     if (TM.Options.NoNaNsFPMath)
8239       Condition = getFCmpCodeWithoutNaN(Condition);
8240     Opers.push_back(DAG.getCondCode(Condition));
8241     break;
8242   }
8243   }
8244 
8245   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8246   pushOutChain(Result, EB);
8247 
8248   SDValue FPResult = Result.getValue(0);
8249   setValue(&FPI, FPResult);
8250 }
8251 
8252 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8253   std::optional<unsigned> ResOPC;
8254   switch (VPIntrin.getIntrinsicID()) {
8255   case Intrinsic::vp_ctlz: {
8256     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8257     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8258     break;
8259   }
8260   case Intrinsic::vp_cttz: {
8261     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8262     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8263     break;
8264   }
8265   case Intrinsic::vp_cttz_elts: {
8266     bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8267     ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8268     break;
8269   }
8270 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8271   case Intrinsic::VPID:                                                        \
8272     ResOPC = ISD::VPSD;                                                        \
8273     break;
8274 #include "llvm/IR/VPIntrinsics.def"
8275   }
8276 
8277   if (!ResOPC)
8278     llvm_unreachable(
8279         "Inconsistency: no SDNode available for this VPIntrinsic!");
8280 
8281   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8282       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8283     if (VPIntrin.getFastMathFlags().allowReassoc())
8284       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8285                                                 : ISD::VP_REDUCE_FMUL;
8286   }
8287 
8288   return *ResOPC;
8289 }
8290 
8291 void SelectionDAGBuilder::visitVPLoad(
8292     const VPIntrinsic &VPIntrin, EVT VT,
8293     const SmallVectorImpl<SDValue> &OpValues) {
8294   SDLoc DL = getCurSDLoc();
8295   Value *PtrOperand = VPIntrin.getArgOperand(0);
8296   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8297   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8298   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8299   SDValue LD;
8300   // Do not serialize variable-length loads of constant memory with
8301   // anything.
8302   if (!Alignment)
8303     Alignment = DAG.getEVTAlign(VT);
8304   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8305   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8306   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8307   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8308       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8309       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8310   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8311                      MMO, false /*IsExpanding */);
8312   if (AddToChain)
8313     PendingLoads.push_back(LD.getValue(1));
8314   setValue(&VPIntrin, LD);
8315 }
8316 
8317 void SelectionDAGBuilder::visitVPGather(
8318     const VPIntrinsic &VPIntrin, EVT VT,
8319     const SmallVectorImpl<SDValue> &OpValues) {
8320   SDLoc DL = getCurSDLoc();
8321   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8322   Value *PtrOperand = VPIntrin.getArgOperand(0);
8323   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8324   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8325   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8326   SDValue LD;
8327   if (!Alignment)
8328     Alignment = DAG.getEVTAlign(VT.getScalarType());
8329   unsigned AS =
8330     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8331   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8332       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8333       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8334   SDValue Base, Index, Scale;
8335   ISD::MemIndexType IndexType;
8336   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8337                                     this, VPIntrin.getParent(),
8338                                     VT.getScalarStoreSize());
8339   if (!UniformBase) {
8340     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8341     Index = getValue(PtrOperand);
8342     IndexType = ISD::SIGNED_SCALED;
8343     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8344   }
8345   EVT IdxVT = Index.getValueType();
8346   EVT EltTy = IdxVT.getVectorElementType();
8347   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8348     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8349     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8350   }
8351   LD = DAG.getGatherVP(
8352       DAG.getVTList(VT, MVT::Other), VT, DL,
8353       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8354       IndexType);
8355   PendingLoads.push_back(LD.getValue(1));
8356   setValue(&VPIntrin, LD);
8357 }
8358 
8359 void SelectionDAGBuilder::visitVPStore(
8360     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8361   SDLoc DL = getCurSDLoc();
8362   Value *PtrOperand = VPIntrin.getArgOperand(1);
8363   EVT VT = OpValues[0].getValueType();
8364   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8365   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8366   SDValue ST;
8367   if (!Alignment)
8368     Alignment = DAG.getEVTAlign(VT);
8369   SDValue Ptr = OpValues[1];
8370   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8371   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8372       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8373       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8374   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8375                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8376                       /* IsTruncating */ false, /*IsCompressing*/ false);
8377   DAG.setRoot(ST);
8378   setValue(&VPIntrin, ST);
8379 }
8380 
8381 void SelectionDAGBuilder::visitVPScatter(
8382     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8383   SDLoc DL = getCurSDLoc();
8384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8385   Value *PtrOperand = VPIntrin.getArgOperand(1);
8386   EVT VT = OpValues[0].getValueType();
8387   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8388   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8389   SDValue ST;
8390   if (!Alignment)
8391     Alignment = DAG.getEVTAlign(VT.getScalarType());
8392   unsigned AS =
8393       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8394   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8395       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8396       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8397   SDValue Base, Index, Scale;
8398   ISD::MemIndexType IndexType;
8399   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8400                                     this, VPIntrin.getParent(),
8401                                     VT.getScalarStoreSize());
8402   if (!UniformBase) {
8403     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8404     Index = getValue(PtrOperand);
8405     IndexType = ISD::SIGNED_SCALED;
8406     Scale =
8407       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8408   }
8409   EVT IdxVT = Index.getValueType();
8410   EVT EltTy = IdxVT.getVectorElementType();
8411   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8412     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8413     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8414   }
8415   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8416                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8417                          OpValues[2], OpValues[3]},
8418                         MMO, IndexType);
8419   DAG.setRoot(ST);
8420   setValue(&VPIntrin, ST);
8421 }
8422 
8423 void SelectionDAGBuilder::visitVPStridedLoad(
8424     const VPIntrinsic &VPIntrin, EVT VT,
8425     const SmallVectorImpl<SDValue> &OpValues) {
8426   SDLoc DL = getCurSDLoc();
8427   Value *PtrOperand = VPIntrin.getArgOperand(0);
8428   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8429   if (!Alignment)
8430     Alignment = DAG.getEVTAlign(VT.getScalarType());
8431   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8432   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8433   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8434   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8435   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8436   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8437   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8438       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8439       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8440 
8441   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8442                                     OpValues[2], OpValues[3], MMO,
8443                                     false /*IsExpanding*/);
8444 
8445   if (AddToChain)
8446     PendingLoads.push_back(LD.getValue(1));
8447   setValue(&VPIntrin, LD);
8448 }
8449 
8450 void SelectionDAGBuilder::visitVPStridedStore(
8451     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8452   SDLoc DL = getCurSDLoc();
8453   Value *PtrOperand = VPIntrin.getArgOperand(1);
8454   EVT VT = OpValues[0].getValueType();
8455   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8456   if (!Alignment)
8457     Alignment = DAG.getEVTAlign(VT.getScalarType());
8458   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8459   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8460   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8461       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8462       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8463 
8464   SDValue ST = DAG.getStridedStoreVP(
8465       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8466       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8467       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8468       /*IsCompressing*/ false);
8469 
8470   DAG.setRoot(ST);
8471   setValue(&VPIntrin, ST);
8472 }
8473 
8474 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8476   SDLoc DL = getCurSDLoc();
8477 
8478   ISD::CondCode Condition;
8479   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8480   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8481   if (IsFP) {
8482     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8483     // flags, but calls that don't return floating-point types can't be
8484     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8485     Condition = getFCmpCondCode(CondCode);
8486     if (TM.Options.NoNaNsFPMath)
8487       Condition = getFCmpCodeWithoutNaN(Condition);
8488   } else {
8489     Condition = getICmpCondCode(CondCode);
8490   }
8491 
8492   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8493   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8494   // #2 is the condition code
8495   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8496   SDValue EVL = getValue(VPIntrin.getOperand(4));
8497   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8498   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8499          "Unexpected target EVL type");
8500   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8501 
8502   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8503                                                         VPIntrin.getType());
8504   setValue(&VPIntrin,
8505            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8506 }
8507 
8508 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8509     const VPIntrinsic &VPIntrin) {
8510   SDLoc DL = getCurSDLoc();
8511   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8512 
8513   auto IID = VPIntrin.getIntrinsicID();
8514 
8515   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8516     return visitVPCmp(*CmpI);
8517 
8518   SmallVector<EVT, 4> ValueVTs;
8519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8520   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8521   SDVTList VTs = DAG.getVTList(ValueVTs);
8522 
8523   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8524 
8525   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8526   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8527          "Unexpected target EVL type");
8528 
8529   // Request operands.
8530   SmallVector<SDValue, 7> OpValues;
8531   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8532     auto Op = getValue(VPIntrin.getArgOperand(I));
8533     if (I == EVLParamPos)
8534       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8535     OpValues.push_back(Op);
8536   }
8537 
8538   switch (Opcode) {
8539   default: {
8540     SDNodeFlags SDFlags;
8541     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8542       SDFlags.copyFMF(*FPMO);
8543     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8544     setValue(&VPIntrin, Result);
8545     break;
8546   }
8547   case ISD::VP_LOAD:
8548     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8549     break;
8550   case ISD::VP_GATHER:
8551     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8552     break;
8553   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8554     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8555     break;
8556   case ISD::VP_STORE:
8557     visitVPStore(VPIntrin, OpValues);
8558     break;
8559   case ISD::VP_SCATTER:
8560     visitVPScatter(VPIntrin, OpValues);
8561     break;
8562   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8563     visitVPStridedStore(VPIntrin, OpValues);
8564     break;
8565   case ISD::VP_FMULADD: {
8566     assert(OpValues.size() == 5 && "Unexpected number of operands");
8567     SDNodeFlags SDFlags;
8568     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8569       SDFlags.copyFMF(*FPMO);
8570     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8571         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8572       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8573     } else {
8574       SDValue Mul = DAG.getNode(
8575           ISD::VP_FMUL, DL, VTs,
8576           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8577       SDValue Add =
8578           DAG.getNode(ISD::VP_FADD, DL, VTs,
8579                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8580       setValue(&VPIntrin, Add);
8581     }
8582     break;
8583   }
8584   case ISD::VP_IS_FPCLASS: {
8585     const DataLayout DLayout = DAG.getDataLayout();
8586     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8587     auto Constant = OpValues[1]->getAsZExtVal();
8588     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8589     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8590                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8591     setValue(&VPIntrin, V);
8592     return;
8593   }
8594   case ISD::VP_INTTOPTR: {
8595     SDValue N = OpValues[0];
8596     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8597     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8598     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8599                                OpValues[2]);
8600     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8601                              OpValues[2]);
8602     setValue(&VPIntrin, N);
8603     break;
8604   }
8605   case ISD::VP_PTRTOINT: {
8606     SDValue N = OpValues[0];
8607     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8608                                                           VPIntrin.getType());
8609     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8610                                        VPIntrin.getOperand(0)->getType());
8611     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8612                                OpValues[2]);
8613     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8614                              OpValues[2]);
8615     setValue(&VPIntrin, N);
8616     break;
8617   }
8618   case ISD::VP_ABS:
8619   case ISD::VP_CTLZ:
8620   case ISD::VP_CTLZ_ZERO_UNDEF:
8621   case ISD::VP_CTTZ:
8622   case ISD::VP_CTTZ_ZERO_UNDEF:
8623   case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8624   case ISD::VP_CTTZ_ELTS: {
8625     SDValue Result =
8626         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8627     setValue(&VPIntrin, Result);
8628     break;
8629   }
8630   }
8631 }
8632 
8633 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8634                                           const BasicBlock *EHPadBB,
8635                                           MCSymbol *&BeginLabel) {
8636   MachineFunction &MF = DAG.getMachineFunction();
8637 
8638   // Insert a label before the invoke call to mark the try range.  This can be
8639   // used to detect deletion of the invoke via the MachineModuleInfo.
8640   BeginLabel = MF.getContext().createTempSymbol();
8641 
8642   // For SjLj, keep track of which landing pads go with which invokes
8643   // so as to maintain the ordering of pads in the LSDA.
8644   unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8645   if (CallSiteIndex) {
8646     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8647     LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8648 
8649     // Now that the call site is handled, stop tracking it.
8650     FuncInfo.setCurrentCallSite(0);
8651   }
8652 
8653   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8654 }
8655 
8656 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8657                                         const BasicBlock *EHPadBB,
8658                                         MCSymbol *BeginLabel) {
8659   assert(BeginLabel && "BeginLabel should've been set");
8660 
8661   MachineFunction &MF = DAG.getMachineFunction();
8662 
8663   // Insert a label at the end of the invoke call to mark the try range.  This
8664   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8665   MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8666   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8667 
8668   // Inform MachineModuleInfo of range.
8669   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8670   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8671   // actually use outlined funclets and their LSDA info style.
8672   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8673     assert(II && "II should've been set");
8674     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8675     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8676   } else if (!isScopedEHPersonality(Pers)) {
8677     assert(EHPadBB);
8678     MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
8679   }
8680 
8681   return Chain;
8682 }
8683 
8684 std::pair<SDValue, SDValue>
8685 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8686                                     const BasicBlock *EHPadBB) {
8687   MCSymbol *BeginLabel = nullptr;
8688 
8689   if (EHPadBB) {
8690     // Both PendingLoads and PendingExports must be flushed here;
8691     // this call might not return.
8692     (void)getRoot();
8693     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8694     CLI.setChain(getRoot());
8695   }
8696 
8697   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8698   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8699 
8700   assert((CLI.IsTailCall || Result.second.getNode()) &&
8701          "Non-null chain expected with non-tail call!");
8702   assert((Result.second.getNode() || !Result.first.getNode()) &&
8703          "Null value expected with tail call!");
8704 
8705   if (!Result.second.getNode()) {
8706     // As a special case, a null chain means that a tail call has been emitted
8707     // and the DAG root is already updated.
8708     HasTailCall = true;
8709 
8710     // Since there's no actual continuation from this block, nothing can be
8711     // relying on us setting vregs for them.
8712     PendingExports.clear();
8713   } else {
8714     DAG.setRoot(Result.second);
8715   }
8716 
8717   if (EHPadBB) {
8718     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8719                            BeginLabel));
8720     Result.second = getRoot();
8721   }
8722 
8723   return Result;
8724 }
8725 
8726 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8727                                       bool isTailCall, bool isMustTailCall,
8728                                       const BasicBlock *EHPadBB,
8729                                       const TargetLowering::PtrAuthInfo *PAI) {
8730   auto &DL = DAG.getDataLayout();
8731   FunctionType *FTy = CB.getFunctionType();
8732   Type *RetTy = CB.getType();
8733 
8734   TargetLowering::ArgListTy Args;
8735   Args.reserve(CB.arg_size());
8736 
8737   const Value *SwiftErrorVal = nullptr;
8738   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8739 
8740   if (isTailCall) {
8741     // Avoid emitting tail calls in functions with the disable-tail-calls
8742     // attribute.
8743     auto *Caller = CB.getParent()->getParent();
8744     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8745         "true" && !isMustTailCall)
8746       isTailCall = false;
8747 
8748     // We can't tail call inside a function with a swifterror argument. Lowering
8749     // does not support this yet. It would have to move into the swifterror
8750     // register before the call.
8751     if (TLI.supportSwiftError() &&
8752         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8753       isTailCall = false;
8754   }
8755 
8756   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8757     TargetLowering::ArgListEntry Entry;
8758     const Value *V = *I;
8759 
8760     // Skip empty types
8761     if (V->getType()->isEmptyTy())
8762       continue;
8763 
8764     SDValue ArgNode = getValue(V);
8765     Entry.Node = ArgNode; Entry.Ty = V->getType();
8766 
8767     Entry.setAttributes(&CB, I - CB.arg_begin());
8768 
8769     // Use swifterror virtual register as input to the call.
8770     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8771       SwiftErrorVal = V;
8772       // We find the virtual register for the actual swifterror argument.
8773       // Instead of using the Value, we use the virtual register instead.
8774       Entry.Node =
8775           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8776                           EVT(TLI.getPointerTy(DL)));
8777     }
8778 
8779     Args.push_back(Entry);
8780 
8781     // If we have an explicit sret argument that is an Instruction, (i.e., it
8782     // might point to function-local memory), we can't meaningfully tail-call.
8783     if (Entry.IsSRet && isa<Instruction>(V))
8784       isTailCall = false;
8785   }
8786 
8787   // If call site has a cfguardtarget operand bundle, create and add an
8788   // additional ArgListEntry.
8789   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8790     TargetLowering::ArgListEntry Entry;
8791     Value *V = Bundle->Inputs[0];
8792     SDValue ArgNode = getValue(V);
8793     Entry.Node = ArgNode;
8794     Entry.Ty = V->getType();
8795     Entry.IsCFGuardTarget = true;
8796     Args.push_back(Entry);
8797   }
8798 
8799   // Check if target-independent constraints permit a tail call here.
8800   // Target-dependent constraints are checked within TLI->LowerCallTo.
8801   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8802     isTailCall = false;
8803 
8804   // Disable tail calls if there is an swifterror argument. Targets have not
8805   // been updated to support tail calls.
8806   if (TLI.supportSwiftError() && SwiftErrorVal)
8807     isTailCall = false;
8808 
8809   ConstantInt *CFIType = nullptr;
8810   if (CB.isIndirectCall()) {
8811     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8812       if (!TLI.supportKCFIBundles())
8813         report_fatal_error(
8814             "Target doesn't support calls with kcfi operand bundles.");
8815       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8816       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8817     }
8818   }
8819 
8820   SDValue ConvControlToken;
8821   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8822     auto *Token = Bundle->Inputs[0].get();
8823     ConvControlToken = getValue(Token);
8824   }
8825 
8826   TargetLowering::CallLoweringInfo CLI(DAG);
8827   CLI.setDebugLoc(getCurSDLoc())
8828       .setChain(getRoot())
8829       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8830       .setTailCall(isTailCall)
8831       .setConvergent(CB.isConvergent())
8832       .setIsPreallocated(
8833           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8834       .setCFIType(CFIType)
8835       .setConvergenceControlToken(ConvControlToken);
8836 
8837   // Set the pointer authentication info if we have it.
8838   if (PAI) {
8839     if (!TLI.supportPtrAuthBundles())
8840       report_fatal_error(
8841           "This target doesn't support calls with ptrauth operand bundles.");
8842     CLI.setPtrAuth(*PAI);
8843   }
8844 
8845   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8846 
8847   if (Result.first.getNode()) {
8848     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8849     setValue(&CB, Result.first);
8850   }
8851 
8852   // The last element of CLI.InVals has the SDValue for swifterror return.
8853   // Here we copy it to a virtual register and update SwiftErrorMap for
8854   // book-keeping.
8855   if (SwiftErrorVal && TLI.supportSwiftError()) {
8856     // Get the last element of InVals.
8857     SDValue Src = CLI.InVals.back();
8858     Register VReg =
8859         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8860     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8861     DAG.setRoot(CopyNode);
8862   }
8863 }
8864 
8865 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8866                              SelectionDAGBuilder &Builder) {
8867   // Check to see if this load can be trivially constant folded, e.g. if the
8868   // input is from a string literal.
8869   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8870     // Cast pointer to the type we really want to load.
8871     Type *LoadTy =
8872         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8873     if (LoadVT.isVector())
8874       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8875 
8876     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8877                                          PointerType::getUnqual(LoadTy));
8878 
8879     if (const Constant *LoadCst =
8880             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8881                                          LoadTy, Builder.DAG.getDataLayout()))
8882       return Builder.getValue(LoadCst);
8883   }
8884 
8885   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8886   // still constant memory, the input chain can be the entry node.
8887   SDValue Root;
8888   bool ConstantMemory = false;
8889 
8890   // Do not serialize (non-volatile) loads of constant memory with anything.
8891   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8892     Root = Builder.DAG.getEntryNode();
8893     ConstantMemory = true;
8894   } else {
8895     // Do not serialize non-volatile loads against each other.
8896     Root = Builder.DAG.getRoot();
8897   }
8898 
8899   SDValue Ptr = Builder.getValue(PtrVal);
8900   SDValue LoadVal =
8901       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8902                           MachinePointerInfo(PtrVal), Align(1));
8903 
8904   if (!ConstantMemory)
8905     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8906   return LoadVal;
8907 }
8908 
8909 /// Record the value for an instruction that produces an integer result,
8910 /// converting the type where necessary.
8911 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8912                                                   SDValue Value,
8913                                                   bool IsSigned) {
8914   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8915                                                     I.getType(), true);
8916   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8917   setValue(&I, Value);
8918 }
8919 
8920 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8921 /// true and lower it. Otherwise return false, and it will be lowered like a
8922 /// normal call.
8923 /// The caller already checked that \p I calls the appropriate LibFunc with a
8924 /// correct prototype.
8925 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8926   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8927   const Value *Size = I.getArgOperand(2);
8928   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8929   if (CSize && CSize->getZExtValue() == 0) {
8930     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8931                                                           I.getType(), true);
8932     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8933     return true;
8934   }
8935 
8936   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8937   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8938       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8939       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8940   if (Res.first.getNode()) {
8941     processIntegerCallValue(I, Res.first, true);
8942     PendingLoads.push_back(Res.second);
8943     return true;
8944   }
8945 
8946   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8947   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8948   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8949     return false;
8950 
8951   // If the target has a fast compare for the given size, it will return a
8952   // preferred load type for that size. Require that the load VT is legal and
8953   // that the target supports unaligned loads of that type. Otherwise, return
8954   // INVALID.
8955   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8956     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8957     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8958     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8959       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8960       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8961       // TODO: Check alignment of src and dest ptrs.
8962       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8963       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8964       if (!TLI.isTypeLegal(LVT) ||
8965           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8966           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8967         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8968     }
8969 
8970     return LVT;
8971   };
8972 
8973   // This turns into unaligned loads. We only do this if the target natively
8974   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8975   // we'll only produce a small number of byte loads.
8976   MVT LoadVT;
8977   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8978   switch (NumBitsToCompare) {
8979   default:
8980     return false;
8981   case 16:
8982     LoadVT = MVT::i16;
8983     break;
8984   case 32:
8985     LoadVT = MVT::i32;
8986     break;
8987   case 64:
8988   case 128:
8989   case 256:
8990     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8991     break;
8992   }
8993 
8994   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8995     return false;
8996 
8997   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8998   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8999 
9000   // Bitcast to a wide integer type if the loads are vectors.
9001   if (LoadVT.isVector()) {
9002     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9003     LoadL = DAG.getBitcast(CmpVT, LoadL);
9004     LoadR = DAG.getBitcast(CmpVT, LoadR);
9005   }
9006 
9007   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9008   processIntegerCallValue(I, Cmp, false);
9009   return true;
9010 }
9011 
9012 /// See if we can lower a memchr call into an optimized form. If so, return
9013 /// true and lower it. Otherwise return false, and it will be lowered like a
9014 /// normal call.
9015 /// The caller already checked that \p I calls the appropriate LibFunc with a
9016 /// correct prototype.
9017 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9018   const Value *Src = I.getArgOperand(0);
9019   const Value *Char = I.getArgOperand(1);
9020   const Value *Length = I.getArgOperand(2);
9021 
9022   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9023   std::pair<SDValue, SDValue> Res =
9024     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9025                                 getValue(Src), getValue(Char), getValue(Length),
9026                                 MachinePointerInfo(Src));
9027   if (Res.first.getNode()) {
9028     setValue(&I, Res.first);
9029     PendingLoads.push_back(Res.second);
9030     return true;
9031   }
9032 
9033   return false;
9034 }
9035 
9036 /// See if we can lower a mempcpy call into an optimized form. If so, return
9037 /// true and lower it. Otherwise return false, and it will be lowered like a
9038 /// normal call.
9039 /// The caller already checked that \p I calls the appropriate LibFunc with a
9040 /// correct prototype.
9041 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9042   SDValue Dst = getValue(I.getArgOperand(0));
9043   SDValue Src = getValue(I.getArgOperand(1));
9044   SDValue Size = getValue(I.getArgOperand(2));
9045 
9046   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9047   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9048   // DAG::getMemcpy needs Alignment to be defined.
9049   Align Alignment = std::min(DstAlign, SrcAlign);
9050 
9051   SDLoc sdl = getCurSDLoc();
9052 
9053   // In the mempcpy context we need to pass in a false value for isTailCall
9054   // because the return pointer needs to be adjusted by the size of
9055   // the copied memory.
9056   SDValue Root = getMemoryRoot();
9057   SDValue MC = DAG.getMemcpy(
9058       Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9059       std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9060       MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9061   assert(MC.getNode() != nullptr &&
9062          "** memcpy should not be lowered as TailCall in mempcpy context **");
9063   DAG.setRoot(MC);
9064 
9065   // Check if Size needs to be truncated or extended.
9066   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9067 
9068   // Adjust return pointer to point just past the last dst byte.
9069   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
9070                                     Dst, Size);
9071   setValue(&I, DstPlusSize);
9072   return true;
9073 }
9074 
9075 /// See if we can lower a strcpy call into an optimized form.  If so, return
9076 /// true and lower it, otherwise return false and it will be lowered like a
9077 /// normal call.
9078 /// The caller already checked that \p I calls the appropriate LibFunc with a
9079 /// correct prototype.
9080 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9081   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9082 
9083   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9084   std::pair<SDValue, SDValue> Res =
9085     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
9086                                 getValue(Arg0), getValue(Arg1),
9087                                 MachinePointerInfo(Arg0),
9088                                 MachinePointerInfo(Arg1), isStpcpy);
9089   if (Res.first.getNode()) {
9090     setValue(&I, Res.first);
9091     DAG.setRoot(Res.second);
9092     return true;
9093   }
9094 
9095   return false;
9096 }
9097 
9098 /// See if we can lower a strcmp call into an optimized form.  If so, return
9099 /// true and lower it, otherwise return false and it will be lowered like a
9100 /// normal call.
9101 /// The caller already checked that \p I calls the appropriate LibFunc with a
9102 /// correct prototype.
9103 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9104   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9105 
9106   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9107   std::pair<SDValue, SDValue> Res =
9108     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9109                                 getValue(Arg0), getValue(Arg1),
9110                                 MachinePointerInfo(Arg0),
9111                                 MachinePointerInfo(Arg1));
9112   if (Res.first.getNode()) {
9113     processIntegerCallValue(I, Res.first, true);
9114     PendingLoads.push_back(Res.second);
9115     return true;
9116   }
9117 
9118   return false;
9119 }
9120 
9121 /// See if we can lower a strlen call into an optimized form.  If so, return
9122 /// true and lower it, otherwise return false and it will be lowered like a
9123 /// normal call.
9124 /// The caller already checked that \p I calls the appropriate LibFunc with a
9125 /// correct prototype.
9126 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9127   const Value *Arg0 = I.getArgOperand(0);
9128 
9129   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9130   std::pair<SDValue, SDValue> Res =
9131     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
9132                                 getValue(Arg0), MachinePointerInfo(Arg0));
9133   if (Res.first.getNode()) {
9134     processIntegerCallValue(I, Res.first, false);
9135     PendingLoads.push_back(Res.second);
9136     return true;
9137   }
9138 
9139   return false;
9140 }
9141 
9142 /// See if we can lower a strnlen call into an optimized form.  If so, return
9143 /// true and lower it, otherwise return false and it will be lowered like a
9144 /// normal call.
9145 /// The caller already checked that \p I calls the appropriate LibFunc with a
9146 /// correct prototype.
9147 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9148   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9149 
9150   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9151   std::pair<SDValue, SDValue> Res =
9152     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9153                                  getValue(Arg0), getValue(Arg1),
9154                                  MachinePointerInfo(Arg0));
9155   if (Res.first.getNode()) {
9156     processIntegerCallValue(I, Res.first, false);
9157     PendingLoads.push_back(Res.second);
9158     return true;
9159   }
9160 
9161   return false;
9162 }
9163 
9164 /// See if we can lower a unary floating-point operation into an SDNode with
9165 /// the specified Opcode.  If so, return true and lower it, otherwise return
9166 /// false and it will be lowered like a normal call.
9167 /// The caller already checked that \p I calls the appropriate LibFunc with a
9168 /// correct prototype.
9169 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9170                                               unsigned Opcode) {
9171   // We already checked this call's prototype; verify it doesn't modify errno.
9172   if (!I.onlyReadsMemory())
9173     return false;
9174 
9175   SDNodeFlags Flags;
9176   Flags.copyFMF(cast<FPMathOperator>(I));
9177 
9178   SDValue Tmp = getValue(I.getArgOperand(0));
9179   setValue(&I,
9180            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9181   return true;
9182 }
9183 
9184 /// See if we can lower a binary floating-point operation into an SDNode with
9185 /// the specified Opcode. If so, return true and lower it. Otherwise return
9186 /// false, and it will be lowered like a normal call.
9187 /// The caller already checked that \p I calls the appropriate LibFunc with a
9188 /// correct prototype.
9189 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9190                                                unsigned Opcode) {
9191   // We already checked this call's prototype; verify it doesn't modify errno.
9192   if (!I.onlyReadsMemory())
9193     return false;
9194 
9195   SDNodeFlags Flags;
9196   Flags.copyFMF(cast<FPMathOperator>(I));
9197 
9198   SDValue Tmp0 = getValue(I.getArgOperand(0));
9199   SDValue Tmp1 = getValue(I.getArgOperand(1));
9200   EVT VT = Tmp0.getValueType();
9201   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9202   return true;
9203 }
9204 
9205 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9206   // Handle inline assembly differently.
9207   if (I.isInlineAsm()) {
9208     visitInlineAsm(I);
9209     return;
9210   }
9211 
9212   diagnoseDontCall(I);
9213 
9214   if (Function *F = I.getCalledFunction()) {
9215     if (F->isDeclaration()) {
9216       // Is this an LLVM intrinsic or a target-specific intrinsic?
9217       unsigned IID = F->getIntrinsicID();
9218       if (!IID)
9219         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9220           IID = II->getIntrinsicID(F);
9221 
9222       if (IID) {
9223         visitIntrinsicCall(I, IID);
9224         return;
9225       }
9226     }
9227 
9228     // Check for well-known libc/libm calls.  If the function is internal, it
9229     // can't be a library call.  Don't do the check if marked as nobuiltin for
9230     // some reason or the call site requires strict floating point semantics.
9231     LibFunc Func;
9232     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9233         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9234         LibInfo->hasOptimizedCodeGen(Func)) {
9235       switch (Func) {
9236       default: break;
9237       case LibFunc_bcmp:
9238         if (visitMemCmpBCmpCall(I))
9239           return;
9240         break;
9241       case LibFunc_copysign:
9242       case LibFunc_copysignf:
9243       case LibFunc_copysignl:
9244         // We already checked this call's prototype; verify it doesn't modify
9245         // errno.
9246         if (I.onlyReadsMemory()) {
9247           SDValue LHS = getValue(I.getArgOperand(0));
9248           SDValue RHS = getValue(I.getArgOperand(1));
9249           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9250                                    LHS.getValueType(), LHS, RHS));
9251           return;
9252         }
9253         break;
9254       case LibFunc_fabs:
9255       case LibFunc_fabsf:
9256       case LibFunc_fabsl:
9257         if (visitUnaryFloatCall(I, ISD::FABS))
9258           return;
9259         break;
9260       case LibFunc_fmin:
9261       case LibFunc_fminf:
9262       case LibFunc_fminl:
9263         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9264           return;
9265         break;
9266       case LibFunc_fmax:
9267       case LibFunc_fmaxf:
9268       case LibFunc_fmaxl:
9269         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9270           return;
9271         break;
9272       case LibFunc_fminimum_num:
9273       case LibFunc_fminimum_numf:
9274       case LibFunc_fminimum_numl:
9275         if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM))
9276           return;
9277         break;
9278       case LibFunc_fmaximum_num:
9279       case LibFunc_fmaximum_numf:
9280       case LibFunc_fmaximum_numl:
9281         if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM))
9282           return;
9283         break;
9284       case LibFunc_sin:
9285       case LibFunc_sinf:
9286       case LibFunc_sinl:
9287         if (visitUnaryFloatCall(I, ISD::FSIN))
9288           return;
9289         break;
9290       case LibFunc_cos:
9291       case LibFunc_cosf:
9292       case LibFunc_cosl:
9293         if (visitUnaryFloatCall(I, ISD::FCOS))
9294           return;
9295         break;
9296       case LibFunc_tan:
9297       case LibFunc_tanf:
9298       case LibFunc_tanl:
9299         if (visitUnaryFloatCall(I, ISD::FTAN))
9300           return;
9301         break;
9302       case LibFunc_asin:
9303       case LibFunc_asinf:
9304       case LibFunc_asinl:
9305         if (visitUnaryFloatCall(I, ISD::FASIN))
9306           return;
9307         break;
9308       case LibFunc_acos:
9309       case LibFunc_acosf:
9310       case LibFunc_acosl:
9311         if (visitUnaryFloatCall(I, ISD::FACOS))
9312           return;
9313         break;
9314       case LibFunc_atan:
9315       case LibFunc_atanf:
9316       case LibFunc_atanl:
9317         if (visitUnaryFloatCall(I, ISD::FATAN))
9318           return;
9319         break;
9320       case LibFunc_sinh:
9321       case LibFunc_sinhf:
9322       case LibFunc_sinhl:
9323         if (visitUnaryFloatCall(I, ISD::FSINH))
9324           return;
9325         break;
9326       case LibFunc_cosh:
9327       case LibFunc_coshf:
9328       case LibFunc_coshl:
9329         if (visitUnaryFloatCall(I, ISD::FCOSH))
9330           return;
9331         break;
9332       case LibFunc_tanh:
9333       case LibFunc_tanhf:
9334       case LibFunc_tanhl:
9335         if (visitUnaryFloatCall(I, ISD::FTANH))
9336           return;
9337         break;
9338       case LibFunc_sqrt:
9339       case LibFunc_sqrtf:
9340       case LibFunc_sqrtl:
9341       case LibFunc_sqrt_finite:
9342       case LibFunc_sqrtf_finite:
9343       case LibFunc_sqrtl_finite:
9344         if (visitUnaryFloatCall(I, ISD::FSQRT))
9345           return;
9346         break;
9347       case LibFunc_floor:
9348       case LibFunc_floorf:
9349       case LibFunc_floorl:
9350         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9351           return;
9352         break;
9353       case LibFunc_nearbyint:
9354       case LibFunc_nearbyintf:
9355       case LibFunc_nearbyintl:
9356         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9357           return;
9358         break;
9359       case LibFunc_ceil:
9360       case LibFunc_ceilf:
9361       case LibFunc_ceill:
9362         if (visitUnaryFloatCall(I, ISD::FCEIL))
9363           return;
9364         break;
9365       case LibFunc_rint:
9366       case LibFunc_rintf:
9367       case LibFunc_rintl:
9368         if (visitUnaryFloatCall(I, ISD::FRINT))
9369           return;
9370         break;
9371       case LibFunc_round:
9372       case LibFunc_roundf:
9373       case LibFunc_roundl:
9374         if (visitUnaryFloatCall(I, ISD::FROUND))
9375           return;
9376         break;
9377       case LibFunc_trunc:
9378       case LibFunc_truncf:
9379       case LibFunc_truncl:
9380         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9381           return;
9382         break;
9383       case LibFunc_log2:
9384       case LibFunc_log2f:
9385       case LibFunc_log2l:
9386         if (visitUnaryFloatCall(I, ISD::FLOG2))
9387           return;
9388         break;
9389       case LibFunc_exp2:
9390       case LibFunc_exp2f:
9391       case LibFunc_exp2l:
9392         if (visitUnaryFloatCall(I, ISD::FEXP2))
9393           return;
9394         break;
9395       case LibFunc_exp10:
9396       case LibFunc_exp10f:
9397       case LibFunc_exp10l:
9398         if (visitUnaryFloatCall(I, ISD::FEXP10))
9399           return;
9400         break;
9401       case LibFunc_ldexp:
9402       case LibFunc_ldexpf:
9403       case LibFunc_ldexpl:
9404         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9405           return;
9406         break;
9407       case LibFunc_memcmp:
9408         if (visitMemCmpBCmpCall(I))
9409           return;
9410         break;
9411       case LibFunc_mempcpy:
9412         if (visitMemPCpyCall(I))
9413           return;
9414         break;
9415       case LibFunc_memchr:
9416         if (visitMemChrCall(I))
9417           return;
9418         break;
9419       case LibFunc_strcpy:
9420         if (visitStrCpyCall(I, false))
9421           return;
9422         break;
9423       case LibFunc_stpcpy:
9424         if (visitStrCpyCall(I, true))
9425           return;
9426         break;
9427       case LibFunc_strcmp:
9428         if (visitStrCmpCall(I))
9429           return;
9430         break;
9431       case LibFunc_strlen:
9432         if (visitStrLenCall(I))
9433           return;
9434         break;
9435       case LibFunc_strnlen:
9436         if (visitStrNLenCall(I))
9437           return;
9438         break;
9439       }
9440     }
9441   }
9442 
9443   if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9444     LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9445     return;
9446   }
9447 
9448   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9449   // have to do anything here to lower funclet bundles.
9450   // CFGuardTarget bundles are lowered in LowerCallTo.
9451   assert(!I.hasOperandBundlesOtherThan(
9452              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9453               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9454               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9455               LLVMContext::OB_convergencectrl}) &&
9456          "Cannot lower calls with arbitrary operand bundles!");
9457 
9458   SDValue Callee = getValue(I.getCalledOperand());
9459 
9460   if (I.hasDeoptState())
9461     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9462   else
9463     // Check if we can potentially perform a tail call. More detailed checking
9464     // is be done within LowerCallTo, after more information about the call is
9465     // known.
9466     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9467 }
9468 
9469 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle(
9470     const CallBase &CB, const BasicBlock *EHPadBB) {
9471   auto PAB = CB.getOperandBundle("ptrauth");
9472   const Value *CalleeV = CB.getCalledOperand();
9473 
9474   // Gather the call ptrauth data from the operand bundle:
9475   //   [ i32 <key>, i64 <discriminator> ]
9476   const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9477   const Value *Discriminator = PAB->Inputs[1];
9478 
9479   assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9480   assert(Discriminator->getType()->isIntegerTy(64) &&
9481          "Invalid ptrauth discriminator");
9482 
9483   // Look through ptrauth constants to find the raw callee.
9484   // Do a direct unauthenticated call if we found it and everything matches.
9485   if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9486     if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9487                                          DAG.getDataLayout()))
9488       return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9489                          CB.isMustTailCall(), EHPadBB);
9490 
9491   // Functions should never be ptrauth-called directly.
9492   assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9493 
9494   // Otherwise, do an authenticated indirect call.
9495   TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9496                                      getValue(Discriminator)};
9497 
9498   LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9499               EHPadBB, &PAI);
9500 }
9501 
9502 namespace {
9503 
9504 /// AsmOperandInfo - This contains information for each constraint that we are
9505 /// lowering.
9506 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9507 public:
9508   /// CallOperand - If this is the result output operand or a clobber
9509   /// this is null, otherwise it is the incoming operand to the CallInst.
9510   /// This gets modified as the asm is processed.
9511   SDValue CallOperand;
9512 
9513   /// AssignedRegs - If this is a register or register class operand, this
9514   /// contains the set of register corresponding to the operand.
9515   RegsForValue AssignedRegs;
9516 
9517   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9518     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9519   }
9520 
9521   /// Whether or not this operand accesses memory
9522   bool hasMemory(const TargetLowering &TLI) const {
9523     // Indirect operand accesses access memory.
9524     if (isIndirect)
9525       return true;
9526 
9527     for (const auto &Code : Codes)
9528       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9529         return true;
9530 
9531     return false;
9532   }
9533 };
9534 
9535 
9536 } // end anonymous namespace
9537 
9538 /// Make sure that the output operand \p OpInfo and its corresponding input
9539 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9540 /// out).
9541 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9542                                SDISelAsmOperandInfo &MatchingOpInfo,
9543                                SelectionDAG &DAG) {
9544   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9545     return;
9546 
9547   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9548   const auto &TLI = DAG.getTargetLoweringInfo();
9549 
9550   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9551       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9552                                        OpInfo.ConstraintVT);
9553   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9554       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9555                                        MatchingOpInfo.ConstraintVT);
9556   if ((OpInfo.ConstraintVT.isInteger() !=
9557        MatchingOpInfo.ConstraintVT.isInteger()) ||
9558       (MatchRC.second != InputRC.second)) {
9559     // FIXME: error out in a more elegant fashion
9560     report_fatal_error("Unsupported asm: input constraint"
9561                        " with a matching output constraint of"
9562                        " incompatible type!");
9563   }
9564   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9565 }
9566 
9567 /// Get a direct memory input to behave well as an indirect operand.
9568 /// This may introduce stores, hence the need for a \p Chain.
9569 /// \return The (possibly updated) chain.
9570 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9571                                         SDISelAsmOperandInfo &OpInfo,
9572                                         SelectionDAG &DAG) {
9573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9574 
9575   // If we don't have an indirect input, put it in the constpool if we can,
9576   // otherwise spill it to a stack slot.
9577   // TODO: This isn't quite right. We need to handle these according to
9578   // the addressing mode that the constraint wants. Also, this may take
9579   // an additional register for the computation and we don't want that
9580   // either.
9581 
9582   // If the operand is a float, integer, or vector constant, spill to a
9583   // constant pool entry to get its address.
9584   const Value *OpVal = OpInfo.CallOperandVal;
9585   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9586       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9587     OpInfo.CallOperand = DAG.getConstantPool(
9588         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9589     return Chain;
9590   }
9591 
9592   // Otherwise, create a stack slot and emit a store to it before the asm.
9593   Type *Ty = OpVal->getType();
9594   auto &DL = DAG.getDataLayout();
9595   TypeSize TySize = DL.getTypeAllocSize(Ty);
9596   MachineFunction &MF = DAG.getMachineFunction();
9597   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
9598   int StackID = 0;
9599   if (TySize.isScalable())
9600     StackID = TFI->getStackIDForScalableVectors();
9601   int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9602                                                  DL.getPrefTypeAlign(Ty), false,
9603                                                  nullptr, StackID);
9604   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9605   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9606                             MachinePointerInfo::getFixedStack(MF, SSFI),
9607                             TLI.getMemValueType(DL, Ty));
9608   OpInfo.CallOperand = StackSlot;
9609 
9610   return Chain;
9611 }
9612 
9613 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9614 /// specified operand.  We prefer to assign virtual registers, to allow the
9615 /// register allocator to handle the assignment process.  However, if the asm
9616 /// uses features that we can't model on machineinstrs, we have SDISel do the
9617 /// allocation.  This produces generally horrible, but correct, code.
9618 ///
9619 ///   OpInfo describes the operand
9620 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9621 static std::optional<unsigned>
9622 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9623                      SDISelAsmOperandInfo &OpInfo,
9624                      SDISelAsmOperandInfo &RefOpInfo) {
9625   LLVMContext &Context = *DAG.getContext();
9626   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9627 
9628   MachineFunction &MF = DAG.getMachineFunction();
9629   SmallVector<unsigned, 4> Regs;
9630   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9631 
9632   // No work to do for memory/address operands.
9633   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9634       OpInfo.ConstraintType == TargetLowering::C_Address)
9635     return std::nullopt;
9636 
9637   // If this is a constraint for a single physreg, or a constraint for a
9638   // register class, find it.
9639   unsigned AssignedReg;
9640   const TargetRegisterClass *RC;
9641   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9642       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9643   // RC is unset only on failure. Return immediately.
9644   if (!RC)
9645     return std::nullopt;
9646 
9647   // Get the actual register value type.  This is important, because the user
9648   // may have asked for (e.g.) the AX register in i32 type.  We need to
9649   // remember that AX is actually i16 to get the right extension.
9650   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9651 
9652   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9653     // If this is an FP operand in an integer register (or visa versa), or more
9654     // generally if the operand value disagrees with the register class we plan
9655     // to stick it in, fix the operand type.
9656     //
9657     // If this is an input value, the bitcast to the new type is done now.
9658     // Bitcast for output value is done at the end of visitInlineAsm().
9659     if ((OpInfo.Type == InlineAsm::isOutput ||
9660          OpInfo.Type == InlineAsm::isInput) &&
9661         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9662       // Try to convert to the first EVT that the reg class contains.  If the
9663       // types are identical size, use a bitcast to convert (e.g. two differing
9664       // vector types).  Note: output bitcast is done at the end of
9665       // visitInlineAsm().
9666       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9667         // Exclude indirect inputs while they are unsupported because the code
9668         // to perform the load is missing and thus OpInfo.CallOperand still
9669         // refers to the input address rather than the pointed-to value.
9670         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9671           OpInfo.CallOperand =
9672               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9673         OpInfo.ConstraintVT = RegVT;
9674         // If the operand is an FP value and we want it in integer registers,
9675         // use the corresponding integer type. This turns an f64 value into
9676         // i64, which can be passed with two i32 values on a 32-bit machine.
9677       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9678         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9679         if (OpInfo.Type == InlineAsm::isInput)
9680           OpInfo.CallOperand =
9681               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9682         OpInfo.ConstraintVT = VT;
9683       }
9684     }
9685   }
9686 
9687   // No need to allocate a matching input constraint since the constraint it's
9688   // matching to has already been allocated.
9689   if (OpInfo.isMatchingInputConstraint())
9690     return std::nullopt;
9691 
9692   EVT ValueVT = OpInfo.ConstraintVT;
9693   if (OpInfo.ConstraintVT == MVT::Other)
9694     ValueVT = RegVT;
9695 
9696   // Initialize NumRegs.
9697   unsigned NumRegs = 1;
9698   if (OpInfo.ConstraintVT != MVT::Other)
9699     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9700 
9701   // If this is a constraint for a specific physical register, like {r17},
9702   // assign it now.
9703 
9704   // If this associated to a specific register, initialize iterator to correct
9705   // place. If virtual, make sure we have enough registers
9706 
9707   // Initialize iterator if necessary
9708   TargetRegisterClass::iterator I = RC->begin();
9709   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9710 
9711   // Do not check for single registers.
9712   if (AssignedReg) {
9713     I = std::find(I, RC->end(), AssignedReg);
9714     if (I == RC->end()) {
9715       // RC does not contain the selected register, which indicates a
9716       // mismatch between the register and the required type/bitwidth.
9717       return {AssignedReg};
9718     }
9719   }
9720 
9721   for (; NumRegs; --NumRegs, ++I) {
9722     assert(I != RC->end() && "Ran out of registers to allocate!");
9723     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9724     Regs.push_back(R);
9725   }
9726 
9727   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9728   return std::nullopt;
9729 }
9730 
9731 static unsigned
9732 findMatchingInlineAsmOperand(unsigned OperandNo,
9733                              const std::vector<SDValue> &AsmNodeOperands) {
9734   // Scan until we find the definition we already emitted of this operand.
9735   unsigned CurOp = InlineAsm::Op_FirstOperand;
9736   for (; OperandNo; --OperandNo) {
9737     // Advance to the next operand.
9738     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9739     const InlineAsm::Flag F(OpFlag);
9740     assert(
9741         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9742         "Skipped past definitions?");
9743     CurOp += F.getNumOperandRegisters() + 1;
9744   }
9745   return CurOp;
9746 }
9747 
9748 namespace {
9749 
9750 class ExtraFlags {
9751   unsigned Flags = 0;
9752 
9753 public:
9754   explicit ExtraFlags(const CallBase &Call) {
9755     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9756     if (IA->hasSideEffects())
9757       Flags |= InlineAsm::Extra_HasSideEffects;
9758     if (IA->isAlignStack())
9759       Flags |= InlineAsm::Extra_IsAlignStack;
9760     if (Call.isConvergent())
9761       Flags |= InlineAsm::Extra_IsConvergent;
9762     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9763   }
9764 
9765   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9766     // Ideally, we would only check against memory constraints.  However, the
9767     // meaning of an Other constraint can be target-specific and we can't easily
9768     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9769     // for Other constraints as well.
9770     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9771         OpInfo.ConstraintType == TargetLowering::C_Other) {
9772       if (OpInfo.Type == InlineAsm::isInput)
9773         Flags |= InlineAsm::Extra_MayLoad;
9774       else if (OpInfo.Type == InlineAsm::isOutput)
9775         Flags |= InlineAsm::Extra_MayStore;
9776       else if (OpInfo.Type == InlineAsm::isClobber)
9777         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9778     }
9779   }
9780 
9781   unsigned get() const { return Flags; }
9782 };
9783 
9784 } // end anonymous namespace
9785 
9786 static bool isFunction(SDValue Op) {
9787   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9788     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9789       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9790 
9791       // In normal "call dllimport func" instruction (non-inlineasm) it force
9792       // indirect access by specifing call opcode. And usually specially print
9793       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9794       // not do in this way now. (In fact, this is similar with "Data Access"
9795       // action). So here we ignore dllimport function.
9796       if (Fn && !Fn->hasDLLImportStorageClass())
9797         return true;
9798     }
9799   }
9800   return false;
9801 }
9802 
9803 /// visitInlineAsm - Handle a call to an InlineAsm object.
9804 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9805                                          const BasicBlock *EHPadBB) {
9806   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9807 
9808   /// ConstraintOperands - Information about all of the constraints.
9809   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9810 
9811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9812   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9813       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9814 
9815   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9816   // AsmDialect, MayLoad, MayStore).
9817   bool HasSideEffect = IA->hasSideEffects();
9818   ExtraFlags ExtraInfo(Call);
9819 
9820   for (auto &T : TargetConstraints) {
9821     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9822     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9823 
9824     if (OpInfo.CallOperandVal)
9825       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9826 
9827     if (!HasSideEffect)
9828       HasSideEffect = OpInfo.hasMemory(TLI);
9829 
9830     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9831     // FIXME: Could we compute this on OpInfo rather than T?
9832 
9833     // Compute the constraint code and ConstraintType to use.
9834     TLI.ComputeConstraintToUse(T, SDValue());
9835 
9836     if (T.ConstraintType == TargetLowering::C_Immediate &&
9837         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9838       // We've delayed emitting a diagnostic like the "n" constraint because
9839       // inlining could cause an integer showing up.
9840       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9841                                           "' expects an integer constant "
9842                                           "expression");
9843 
9844     ExtraInfo.update(T);
9845   }
9846 
9847   // We won't need to flush pending loads if this asm doesn't touch
9848   // memory and is nonvolatile.
9849   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9850 
9851   bool EmitEHLabels = isa<InvokeInst>(Call);
9852   if (EmitEHLabels) {
9853     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9854   }
9855   bool IsCallBr = isa<CallBrInst>(Call);
9856 
9857   if (IsCallBr || EmitEHLabels) {
9858     // If this is a callbr or invoke we need to flush pending exports since
9859     // inlineasm_br and invoke are terminators.
9860     // We need to do this before nodes are glued to the inlineasm_br node.
9861     Chain = getControlRoot();
9862   }
9863 
9864   MCSymbol *BeginLabel = nullptr;
9865   if (EmitEHLabels) {
9866     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9867   }
9868 
9869   int OpNo = -1;
9870   SmallVector<StringRef> AsmStrs;
9871   IA->collectAsmStrs(AsmStrs);
9872 
9873   // Second pass over the constraints: compute which constraint option to use.
9874   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9875     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9876       OpNo++;
9877 
9878     // If this is an output operand with a matching input operand, look up the
9879     // matching input. If their types mismatch, e.g. one is an integer, the
9880     // other is floating point, or their sizes are different, flag it as an
9881     // error.
9882     if (OpInfo.hasMatchingInput()) {
9883       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9884       patchMatchingInput(OpInfo, Input, DAG);
9885     }
9886 
9887     // Compute the constraint code and ConstraintType to use.
9888     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9889 
9890     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9891          OpInfo.Type == InlineAsm::isClobber) ||
9892         OpInfo.ConstraintType == TargetLowering::C_Address)
9893       continue;
9894 
9895     // In Linux PIC model, there are 4 cases about value/label addressing:
9896     //
9897     // 1: Function call or Label jmp inside the module.
9898     // 2: Data access (such as global variable, static variable) inside module.
9899     // 3: Function call or Label jmp outside the module.
9900     // 4: Data access (such as global variable) outside the module.
9901     //
9902     // Due to current llvm inline asm architecture designed to not "recognize"
9903     // the asm code, there are quite troubles for us to treat mem addressing
9904     // differently for same value/adress used in different instuctions.
9905     // For example, in pic model, call a func may in plt way or direclty
9906     // pc-related, but lea/mov a function adress may use got.
9907     //
9908     // Here we try to "recognize" function call for the case 1 and case 3 in
9909     // inline asm. And try to adjust the constraint for them.
9910     //
9911     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9912     // label, so here we don't handle jmp function label now, but we need to
9913     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9914     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9915         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9916         TM.getCodeModel() != CodeModel::Large) {
9917       OpInfo.isIndirect = false;
9918       OpInfo.ConstraintType = TargetLowering::C_Address;
9919     }
9920 
9921     // If this is a memory input, and if the operand is not indirect, do what we
9922     // need to provide an address for the memory input.
9923     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9924         !OpInfo.isIndirect) {
9925       assert((OpInfo.isMultipleAlternative ||
9926               (OpInfo.Type == InlineAsm::isInput)) &&
9927              "Can only indirectify direct input operands!");
9928 
9929       // Memory operands really want the address of the value.
9930       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9931 
9932       // There is no longer a Value* corresponding to this operand.
9933       OpInfo.CallOperandVal = nullptr;
9934 
9935       // It is now an indirect operand.
9936       OpInfo.isIndirect = true;
9937     }
9938 
9939   }
9940 
9941   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9942   std::vector<SDValue> AsmNodeOperands;
9943   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9944   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9945       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9946 
9947   // If we have a !srcloc metadata node associated with it, we want to attach
9948   // this to the ultimately generated inline asm machineinstr.  To do this, we
9949   // pass in the third operand as this (potentially null) inline asm MDNode.
9950   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9951   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9952 
9953   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9954   // bits as operand 3.
9955   AsmNodeOperands.push_back(DAG.getTargetConstant(
9956       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9957 
9958   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9959   // this, assign virtual and physical registers for inputs and otput.
9960   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9961     // Assign Registers.
9962     SDISelAsmOperandInfo &RefOpInfo =
9963         OpInfo.isMatchingInputConstraint()
9964             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9965             : OpInfo;
9966     const auto RegError =
9967         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9968     if (RegError) {
9969       const MachineFunction &MF = DAG.getMachineFunction();
9970       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9971       const char *RegName = TRI.getName(*RegError);
9972       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9973                                    "' allocated for constraint '" +
9974                                    Twine(OpInfo.ConstraintCode) +
9975                                    "' does not match required type");
9976       return;
9977     }
9978 
9979     auto DetectWriteToReservedRegister = [&]() {
9980       const MachineFunction &MF = DAG.getMachineFunction();
9981       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9982       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9983         if (Register::isPhysicalRegister(Reg) &&
9984             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9985           const char *RegName = TRI.getName(Reg);
9986           emitInlineAsmError(Call, "write to reserved register '" +
9987                                        Twine(RegName) + "'");
9988           return true;
9989         }
9990       }
9991       return false;
9992     };
9993     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9994             (OpInfo.Type == InlineAsm::isInput &&
9995              !OpInfo.isMatchingInputConstraint())) &&
9996            "Only address as input operand is allowed.");
9997 
9998     switch (OpInfo.Type) {
9999     case InlineAsm::isOutput:
10000       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10001         const InlineAsm::ConstraintCode ConstraintID =
10002             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10003         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10004                "Failed to convert memory constraint code to constraint id.");
10005 
10006         // Add information to the INLINEASM node to know about this output.
10007         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10008         OpFlags.setMemConstraint(ConstraintID);
10009         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10010                                                         MVT::i32));
10011         AsmNodeOperands.push_back(OpInfo.CallOperand);
10012       } else {
10013         // Otherwise, this outputs to a register (directly for C_Register /
10014         // C_RegisterClass, and a target-defined fashion for
10015         // C_Immediate/C_Other). Find a register that we can use.
10016         if (OpInfo.AssignedRegs.Regs.empty()) {
10017           emitInlineAsmError(
10018               Call, "couldn't allocate output register for constraint '" +
10019                         Twine(OpInfo.ConstraintCode) + "'");
10020           return;
10021         }
10022 
10023         if (DetectWriteToReservedRegister())
10024           return;
10025 
10026         // Add information to the INLINEASM node to know that this register is
10027         // set.
10028         OpInfo.AssignedRegs.AddInlineAsmOperands(
10029             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10030                                   : InlineAsm::Kind::RegDef,
10031             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10032       }
10033       break;
10034 
10035     case InlineAsm::isInput:
10036     case InlineAsm::isLabel: {
10037       SDValue InOperandVal = OpInfo.CallOperand;
10038 
10039       if (OpInfo.isMatchingInputConstraint()) {
10040         // If this is required to match an output register we have already set,
10041         // just use its register.
10042         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10043                                                   AsmNodeOperands);
10044         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10045         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10046           if (OpInfo.isIndirect) {
10047             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10048             emitInlineAsmError(Call, "inline asm not supported yet: "
10049                                      "don't know how to handle tied "
10050                                      "indirect register inputs");
10051             return;
10052           }
10053 
10054           SmallVector<unsigned, 4> Regs;
10055           MachineFunction &MF = DAG.getMachineFunction();
10056           MachineRegisterInfo &MRI = MF.getRegInfo();
10057           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10058           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10059           Register TiedReg = R->getReg();
10060           MVT RegVT = R->getSimpleValueType(0);
10061           const TargetRegisterClass *RC =
10062               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
10063               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10064                                       : TRI.getMinimalPhysRegClass(TiedReg);
10065           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10066             Regs.push_back(MRI.createVirtualRegister(RC));
10067 
10068           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10069 
10070           SDLoc dl = getCurSDLoc();
10071           // Use the produced MatchedRegs object to
10072           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10073           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10074                                            OpInfo.getMatchedOperand(), dl, DAG,
10075                                            AsmNodeOperands);
10076           break;
10077         }
10078 
10079         assert(Flag.isMemKind() && "Unknown matching constraint!");
10080         assert(Flag.getNumOperandRegisters() == 1 &&
10081                "Unexpected number of operands");
10082         // Add information to the INLINEASM node to know about this input.
10083         // See InlineAsm.h isUseOperandTiedToDef.
10084         Flag.clearMemConstraint();
10085         Flag.setMatchingOp(OpInfo.getMatchedOperand());
10086         AsmNodeOperands.push_back(DAG.getTargetConstant(
10087             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10088         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10089         break;
10090       }
10091 
10092       // Treat indirect 'X' constraint as memory.
10093       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10094           OpInfo.isIndirect)
10095         OpInfo.ConstraintType = TargetLowering::C_Memory;
10096 
10097       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10098           OpInfo.ConstraintType == TargetLowering::C_Other) {
10099         std::vector<SDValue> Ops;
10100         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10101                                           Ops, DAG);
10102         if (Ops.empty()) {
10103           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10104             if (isa<ConstantSDNode>(InOperandVal)) {
10105               emitInlineAsmError(Call, "value out of range for constraint '" +
10106                                            Twine(OpInfo.ConstraintCode) + "'");
10107               return;
10108             }
10109 
10110           emitInlineAsmError(Call,
10111                              "invalid operand for inline asm constraint '" +
10112                                  Twine(OpInfo.ConstraintCode) + "'");
10113           return;
10114         }
10115 
10116         // Add information to the INLINEASM node to know about this input.
10117         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10118         AsmNodeOperands.push_back(DAG.getTargetConstant(
10119             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10120         llvm::append_range(AsmNodeOperands, Ops);
10121         break;
10122       }
10123 
10124       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10125         assert((OpInfo.isIndirect ||
10126                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10127                "Operand must be indirect to be a mem!");
10128         assert(InOperandVal.getValueType() ==
10129                    TLI.getPointerTy(DAG.getDataLayout()) &&
10130                "Memory operands expect pointer values");
10131 
10132         const InlineAsm::ConstraintCode ConstraintID =
10133             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10134         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10135                "Failed to convert memory constraint code to constraint id.");
10136 
10137         // Add information to the INLINEASM node to know about this input.
10138         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10139         ResOpType.setMemConstraint(ConstraintID);
10140         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10141                                                         getCurSDLoc(),
10142                                                         MVT::i32));
10143         AsmNodeOperands.push_back(InOperandVal);
10144         break;
10145       }
10146 
10147       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10148         const InlineAsm::ConstraintCode ConstraintID =
10149             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10150         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
10151                "Failed to convert memory constraint code to constraint id.");
10152 
10153         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10154 
10155         SDValue AsmOp = InOperandVal;
10156         if (isFunction(InOperandVal)) {
10157           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10158           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10159           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10160                                              InOperandVal.getValueType(),
10161                                              GA->getOffset());
10162         }
10163 
10164         // Add information to the INLINEASM node to know about this input.
10165         ResOpType.setMemConstraint(ConstraintID);
10166 
10167         AsmNodeOperands.push_back(
10168             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10169 
10170         AsmNodeOperands.push_back(AsmOp);
10171         break;
10172       }
10173 
10174       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10175           OpInfo.ConstraintType != TargetLowering::C_Register) {
10176         emitInlineAsmError(Call, "unknown asm constraint '" +
10177                                      Twine(OpInfo.ConstraintCode) + "'");
10178         return;
10179       }
10180 
10181       // TODO: Support this.
10182       if (OpInfo.isIndirect) {
10183         emitInlineAsmError(
10184             Call, "Don't know how to handle indirect register inputs yet "
10185                   "for constraint '" +
10186                       Twine(OpInfo.ConstraintCode) + "'");
10187         return;
10188       }
10189 
10190       // Copy the input into the appropriate registers.
10191       if (OpInfo.AssignedRegs.Regs.empty()) {
10192         emitInlineAsmError(Call,
10193                            "couldn't allocate input reg for constraint '" +
10194                                Twine(OpInfo.ConstraintCode) + "'");
10195         return;
10196       }
10197 
10198       if (DetectWriteToReservedRegister())
10199         return;
10200 
10201       SDLoc dl = getCurSDLoc();
10202 
10203       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10204                                         &Call);
10205 
10206       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10207                                                0, dl, DAG, AsmNodeOperands);
10208       break;
10209     }
10210     case InlineAsm::isClobber:
10211       // Add the clobbered value to the operand list, so that the register
10212       // allocator is aware that the physreg got clobbered.
10213       if (!OpInfo.AssignedRegs.Regs.empty())
10214         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
10215                                                  false, 0, getCurSDLoc(), DAG,
10216                                                  AsmNodeOperands);
10217       break;
10218     }
10219   }
10220 
10221   // Finish up input operands.  Set the input chain and add the flag last.
10222   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10223   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10224 
10225   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10226   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10227                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10228   Glue = Chain.getValue(1);
10229 
10230   // Do additional work to generate outputs.
10231 
10232   SmallVector<EVT, 1> ResultVTs;
10233   SmallVector<SDValue, 1> ResultValues;
10234   SmallVector<SDValue, 8> OutChains;
10235 
10236   llvm::Type *CallResultType = Call.getType();
10237   ArrayRef<Type *> ResultTypes;
10238   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10239     ResultTypes = StructResult->elements();
10240   else if (!CallResultType->isVoidTy())
10241     ResultTypes = ArrayRef(CallResultType);
10242 
10243   auto CurResultType = ResultTypes.begin();
10244   auto handleRegAssign = [&](SDValue V) {
10245     assert(CurResultType != ResultTypes.end() && "Unexpected value");
10246     assert((*CurResultType)->isSized() && "Unexpected unsized type");
10247     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10248     ++CurResultType;
10249     // If the type of the inline asm call site return value is different but has
10250     // same size as the type of the asm output bitcast it.  One example of this
10251     // is for vectors with different width / number of elements.  This can
10252     // happen for register classes that can contain multiple different value
10253     // types.  The preg or vreg allocated may not have the same VT as was
10254     // expected.
10255     //
10256     // This can also happen for a return value that disagrees with the register
10257     // class it is put in, eg. a double in a general-purpose register on a
10258     // 32-bit machine.
10259     if (ResultVT != V.getValueType() &&
10260         ResultVT.getSizeInBits() == V.getValueSizeInBits())
10261       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10262     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10263              V.getValueType().isInteger()) {
10264       // If a result value was tied to an input value, the computed result
10265       // may have a wider width than the expected result.  Extract the
10266       // relevant portion.
10267       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10268     }
10269     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10270     ResultVTs.push_back(ResultVT);
10271     ResultValues.push_back(V);
10272   };
10273 
10274   // Deal with output operands.
10275   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10276     if (OpInfo.Type == InlineAsm::isOutput) {
10277       SDValue Val;
10278       // Skip trivial output operands.
10279       if (OpInfo.AssignedRegs.Regs.empty())
10280         continue;
10281 
10282       switch (OpInfo.ConstraintType) {
10283       case TargetLowering::C_Register:
10284       case TargetLowering::C_RegisterClass:
10285         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10286                                                   Chain, &Glue, &Call);
10287         break;
10288       case TargetLowering::C_Immediate:
10289       case TargetLowering::C_Other:
10290         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10291                                               OpInfo, DAG);
10292         break;
10293       case TargetLowering::C_Memory:
10294         break; // Already handled.
10295       case TargetLowering::C_Address:
10296         break; // Silence warning.
10297       case TargetLowering::C_Unknown:
10298         assert(false && "Unexpected unknown constraint");
10299       }
10300 
10301       // Indirect output manifest as stores. Record output chains.
10302       if (OpInfo.isIndirect) {
10303         const Value *Ptr = OpInfo.CallOperandVal;
10304         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10305         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10306                                      MachinePointerInfo(Ptr));
10307         OutChains.push_back(Store);
10308       } else {
10309         // generate CopyFromRegs to associated registers.
10310         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10311         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10312           for (const SDValue &V : Val->op_values())
10313             handleRegAssign(V);
10314         } else
10315           handleRegAssign(Val);
10316       }
10317     }
10318   }
10319 
10320   // Set results.
10321   if (!ResultValues.empty()) {
10322     assert(CurResultType == ResultTypes.end() &&
10323            "Mismatch in number of ResultTypes");
10324     assert(ResultValues.size() == ResultTypes.size() &&
10325            "Mismatch in number of output operands in asm result");
10326 
10327     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10328                             DAG.getVTList(ResultVTs), ResultValues);
10329     setValue(&Call, V);
10330   }
10331 
10332   // Collect store chains.
10333   if (!OutChains.empty())
10334     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10335 
10336   if (EmitEHLabels) {
10337     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10338   }
10339 
10340   // Only Update Root if inline assembly has a memory effect.
10341   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10342       EmitEHLabels)
10343     DAG.setRoot(Chain);
10344 }
10345 
10346 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10347                                              const Twine &Message) {
10348   LLVMContext &Ctx = *DAG.getContext();
10349   Ctx.emitError(&Call, Message);
10350 
10351   // Make sure we leave the DAG in a valid state
10352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10353   SmallVector<EVT, 1> ValueVTs;
10354   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10355 
10356   if (ValueVTs.empty())
10357     return;
10358 
10359   SmallVector<SDValue, 1> Ops;
10360   for (const EVT &VT : ValueVTs)
10361     Ops.push_back(DAG.getUNDEF(VT));
10362 
10363   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10364 }
10365 
10366 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10367   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10368                           MVT::Other, getRoot(),
10369                           getValue(I.getArgOperand(0)),
10370                           DAG.getSrcValue(I.getArgOperand(0))));
10371 }
10372 
10373 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10375   const DataLayout &DL = DAG.getDataLayout();
10376   SDValue V = DAG.getVAArg(
10377       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10378       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10379       DL.getABITypeAlign(I.getType()).value());
10380   DAG.setRoot(V.getValue(1));
10381 
10382   if (I.getType()->isPointerTy())
10383     V = DAG.getPtrExtOrTrunc(
10384         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10385   setValue(&I, V);
10386 }
10387 
10388 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10389   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10390                           MVT::Other, getRoot(),
10391                           getValue(I.getArgOperand(0)),
10392                           DAG.getSrcValue(I.getArgOperand(0))));
10393 }
10394 
10395 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10396   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10397                           MVT::Other, getRoot(),
10398                           getValue(I.getArgOperand(0)),
10399                           getValue(I.getArgOperand(1)),
10400                           DAG.getSrcValue(I.getArgOperand(0)),
10401                           DAG.getSrcValue(I.getArgOperand(1))));
10402 }
10403 
10404 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10405                                                     const Instruction &I,
10406                                                     SDValue Op) {
10407   std::optional<ConstantRange> CR = getRange(I);
10408 
10409   if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10410     return Op;
10411 
10412   APInt Lo = CR->getUnsignedMin();
10413   if (!Lo.isMinValue())
10414     return Op;
10415 
10416   APInt Hi = CR->getUnsignedMax();
10417   unsigned Bits = std::max(Hi.getActiveBits(),
10418                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10419 
10420   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10421 
10422   SDLoc SL = getCurSDLoc();
10423 
10424   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10425                              DAG.getValueType(SmallVT));
10426   unsigned NumVals = Op.getNode()->getNumValues();
10427   if (NumVals == 1)
10428     return ZExt;
10429 
10430   SmallVector<SDValue, 4> Ops;
10431 
10432   Ops.push_back(ZExt);
10433   for (unsigned I = 1; I != NumVals; ++I)
10434     Ops.push_back(Op.getValue(I));
10435 
10436   return DAG.getMergeValues(Ops, SL);
10437 }
10438 
10439 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10440 /// the call being lowered.
10441 ///
10442 /// This is a helper for lowering intrinsics that follow a target calling
10443 /// convention or require stack pointer adjustment. Only a subset of the
10444 /// intrinsic's operands need to participate in the calling convention.
10445 void SelectionDAGBuilder::populateCallLoweringInfo(
10446     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10447     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10448     AttributeSet RetAttrs, bool IsPatchPoint) {
10449   TargetLowering::ArgListTy Args;
10450   Args.reserve(NumArgs);
10451 
10452   // Populate the argument list.
10453   // Attributes for args start at offset 1, after the return attribute.
10454   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10455        ArgI != ArgE; ++ArgI) {
10456     const Value *V = Call->getOperand(ArgI);
10457 
10458     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10459 
10460     TargetLowering::ArgListEntry Entry;
10461     Entry.Node = getValue(V);
10462     Entry.Ty = V->getType();
10463     Entry.setAttributes(Call, ArgI);
10464     Args.push_back(Entry);
10465   }
10466 
10467   CLI.setDebugLoc(getCurSDLoc())
10468       .setChain(getRoot())
10469       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10470                  RetAttrs)
10471       .setDiscardResult(Call->use_empty())
10472       .setIsPatchPoint(IsPatchPoint)
10473       .setIsPreallocated(
10474           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10475 }
10476 
10477 /// Add a stack map intrinsic call's live variable operands to a stackmap
10478 /// or patchpoint target node's operand list.
10479 ///
10480 /// Constants are converted to TargetConstants purely as an optimization to
10481 /// avoid constant materialization and register allocation.
10482 ///
10483 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10484 /// generate addess computation nodes, and so FinalizeISel can convert the
10485 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10486 /// address materialization and register allocation, but may also be required
10487 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10488 /// alloca in the entry block, then the runtime may assume that the alloca's
10489 /// StackMap location can be read immediately after compilation and that the
10490 /// location is valid at any point during execution (this is similar to the
10491 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10492 /// only available in a register, then the runtime would need to trap when
10493 /// execution reaches the StackMap in order to read the alloca's location.
10494 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10495                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10496                                 SelectionDAGBuilder &Builder) {
10497   SelectionDAG &DAG = Builder.DAG;
10498   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10499     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10500 
10501     // Things on the stack are pointer-typed, meaning that they are already
10502     // legal and can be emitted directly to target nodes.
10503     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10504       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10505     } else {
10506       // Otherwise emit a target independent node to be legalised.
10507       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10508     }
10509   }
10510 }
10511 
10512 /// Lower llvm.experimental.stackmap.
10513 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10514   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10515   //                                  [live variables...])
10516 
10517   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10518 
10519   SDValue Chain, InGlue, Callee;
10520   SmallVector<SDValue, 32> Ops;
10521 
10522   SDLoc DL = getCurSDLoc();
10523   Callee = getValue(CI.getCalledOperand());
10524 
10525   // The stackmap intrinsic only records the live variables (the arguments
10526   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10527   // intrinsic, this won't be lowered to a function call. This means we don't
10528   // have to worry about calling conventions and target specific lowering code.
10529   // Instead we perform the call lowering right here.
10530   //
10531   // chain, flag = CALLSEQ_START(chain, 0, 0)
10532   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10533   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10534   //
10535   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10536   InGlue = Chain.getValue(1);
10537 
10538   // Add the STACKMAP operands, starting with DAG house-keeping.
10539   Ops.push_back(Chain);
10540   Ops.push_back(InGlue);
10541 
10542   // Add the <id>, <numShadowBytes> operands.
10543   //
10544   // These do not require legalisation, and can be emitted directly to target
10545   // constant nodes.
10546   SDValue ID = getValue(CI.getArgOperand(0));
10547   assert(ID.getValueType() == MVT::i64);
10548   SDValue IDConst =
10549       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10550   Ops.push_back(IDConst);
10551 
10552   SDValue Shad = getValue(CI.getArgOperand(1));
10553   assert(Shad.getValueType() == MVT::i32);
10554   SDValue ShadConst =
10555       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10556   Ops.push_back(ShadConst);
10557 
10558   // Add the live variables.
10559   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10560 
10561   // Create the STACKMAP node.
10562   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10563   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10564   InGlue = Chain.getValue(1);
10565 
10566   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10567 
10568   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10569 
10570   // Set the root to the target-lowered call chain.
10571   DAG.setRoot(Chain);
10572 
10573   // Inform the Frame Information that we have a stackmap in this function.
10574   FuncInfo.MF->getFrameInfo().setHasStackMap();
10575 }
10576 
10577 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10578 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10579                                           const BasicBlock *EHPadBB) {
10580   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10581   //                                         i32 <numBytes>,
10582   //                                         i8* <target>,
10583   //                                         i32 <numArgs>,
10584   //                                         [Args...],
10585   //                                         [live variables...])
10586 
10587   CallingConv::ID CC = CB.getCallingConv();
10588   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10589   bool HasDef = !CB.getType()->isVoidTy();
10590   SDLoc dl = getCurSDLoc();
10591   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10592 
10593   // Handle immediate and symbolic callees.
10594   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10595     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10596                                    /*isTarget=*/true);
10597   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10598     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10599                                          SDLoc(SymbolicCallee),
10600                                          SymbolicCallee->getValueType(0));
10601 
10602   // Get the real number of arguments participating in the call <numArgs>
10603   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10604   unsigned NumArgs = NArgVal->getAsZExtVal();
10605 
10606   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10607   // Intrinsics include all meta-operands up to but not including CC.
10608   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10609   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10610          "Not enough arguments provided to the patchpoint intrinsic");
10611 
10612   // For AnyRegCC the arguments are lowered later on manually.
10613   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10614   Type *ReturnTy =
10615       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10616 
10617   TargetLowering::CallLoweringInfo CLI(DAG);
10618   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10619                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10620   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10621 
10622   SDNode *CallEnd = Result.second.getNode();
10623   if (CallEnd->getOpcode() == ISD::EH_LABEL)
10624     CallEnd = CallEnd->getOperand(0).getNode();
10625   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10626     CallEnd = CallEnd->getOperand(0).getNode();
10627 
10628   /// Get a call instruction from the call sequence chain.
10629   /// Tail calls are not allowed.
10630   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10631          "Expected a callseq node.");
10632   SDNode *Call = CallEnd->getOperand(0).getNode();
10633   bool HasGlue = Call->getGluedNode();
10634 
10635   // Replace the target specific call node with the patchable intrinsic.
10636   SmallVector<SDValue, 8> Ops;
10637 
10638   // Push the chain.
10639   Ops.push_back(*(Call->op_begin()));
10640 
10641   // Optionally, push the glue (if any).
10642   if (HasGlue)
10643     Ops.push_back(*(Call->op_end() - 1));
10644 
10645   // Push the register mask info.
10646   if (HasGlue)
10647     Ops.push_back(*(Call->op_end() - 2));
10648   else
10649     Ops.push_back(*(Call->op_end() - 1));
10650 
10651   // Add the <id> and <numBytes> constants.
10652   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10653   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10654   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10655   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10656 
10657   // Add the callee.
10658   Ops.push_back(Callee);
10659 
10660   // Adjust <numArgs> to account for any arguments that have been passed on the
10661   // stack instead.
10662   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10663   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10664   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10665   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10666 
10667   // Add the calling convention
10668   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10669 
10670   // Add the arguments we omitted previously. The register allocator should
10671   // place these in any free register.
10672   if (IsAnyRegCC)
10673     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10674       Ops.push_back(getValue(CB.getArgOperand(i)));
10675 
10676   // Push the arguments from the call instruction.
10677   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10678   Ops.append(Call->op_begin() + 2, e);
10679 
10680   // Push live variables for the stack map.
10681   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10682 
10683   SDVTList NodeTys;
10684   if (IsAnyRegCC && HasDef) {
10685     // Create the return types based on the intrinsic definition
10686     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10687     SmallVector<EVT, 3> ValueVTs;
10688     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10689     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10690 
10691     // There is always a chain and a glue type at the end
10692     ValueVTs.push_back(MVT::Other);
10693     ValueVTs.push_back(MVT::Glue);
10694     NodeTys = DAG.getVTList(ValueVTs);
10695   } else
10696     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10697 
10698   // Replace the target specific call node with a PATCHPOINT node.
10699   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10700 
10701   // Update the NodeMap.
10702   if (HasDef) {
10703     if (IsAnyRegCC)
10704       setValue(&CB, SDValue(PPV.getNode(), 0));
10705     else
10706       setValue(&CB, Result.first);
10707   }
10708 
10709   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10710   // call sequence. Furthermore the location of the chain and glue can change
10711   // when the AnyReg calling convention is used and the intrinsic returns a
10712   // value.
10713   if (IsAnyRegCC && HasDef) {
10714     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10715     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10716     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10717   } else
10718     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10719   DAG.DeleteNode(Call);
10720 
10721   // Inform the Frame Information that we have a patchpoint in this function.
10722   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10723 }
10724 
10725 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10726                                             unsigned Intrinsic) {
10727   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10728   SDValue Op1 = getValue(I.getArgOperand(0));
10729   SDValue Op2;
10730   if (I.arg_size() > 1)
10731     Op2 = getValue(I.getArgOperand(1));
10732   SDLoc dl = getCurSDLoc();
10733   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10734   SDValue Res;
10735   SDNodeFlags SDFlags;
10736   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10737     SDFlags.copyFMF(*FPMO);
10738 
10739   switch (Intrinsic) {
10740   case Intrinsic::vector_reduce_fadd:
10741     if (SDFlags.hasAllowReassociation())
10742       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10743                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10744                         SDFlags);
10745     else
10746       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10747     break;
10748   case Intrinsic::vector_reduce_fmul:
10749     if (SDFlags.hasAllowReassociation())
10750       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10751                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10752                         SDFlags);
10753     else
10754       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10755     break;
10756   case Intrinsic::vector_reduce_add:
10757     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10758     break;
10759   case Intrinsic::vector_reduce_mul:
10760     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10761     break;
10762   case Intrinsic::vector_reduce_and:
10763     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10764     break;
10765   case Intrinsic::vector_reduce_or:
10766     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10767     break;
10768   case Intrinsic::vector_reduce_xor:
10769     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10770     break;
10771   case Intrinsic::vector_reduce_smax:
10772     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10773     break;
10774   case Intrinsic::vector_reduce_smin:
10775     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10776     break;
10777   case Intrinsic::vector_reduce_umax:
10778     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10779     break;
10780   case Intrinsic::vector_reduce_umin:
10781     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10782     break;
10783   case Intrinsic::vector_reduce_fmax:
10784     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10785     break;
10786   case Intrinsic::vector_reduce_fmin:
10787     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10788     break;
10789   case Intrinsic::vector_reduce_fmaximum:
10790     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10791     break;
10792   case Intrinsic::vector_reduce_fminimum:
10793     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10794     break;
10795   default:
10796     llvm_unreachable("Unhandled vector reduce intrinsic");
10797   }
10798   setValue(&I, Res);
10799 }
10800 
10801 /// Returns an AttributeList representing the attributes applied to the return
10802 /// value of the given call.
10803 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10804   SmallVector<Attribute::AttrKind, 2> Attrs;
10805   if (CLI.RetSExt)
10806     Attrs.push_back(Attribute::SExt);
10807   if (CLI.RetZExt)
10808     Attrs.push_back(Attribute::ZExt);
10809   if (CLI.IsInReg)
10810     Attrs.push_back(Attribute::InReg);
10811 
10812   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10813                             Attrs);
10814 }
10815 
10816 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10817 /// implementation, which just calls LowerCall.
10818 /// FIXME: When all targets are
10819 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10820 std::pair<SDValue, SDValue>
10821 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10822   // Handle the incoming return values from the call.
10823   CLI.Ins.clear();
10824   Type *OrigRetTy = CLI.RetTy;
10825   SmallVector<EVT, 4> RetTys;
10826   SmallVector<TypeSize, 4> Offsets;
10827   auto &DL = CLI.DAG.getDataLayout();
10828   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10829 
10830   if (CLI.IsPostTypeLegalization) {
10831     // If we are lowering a libcall after legalization, split the return type.
10832     SmallVector<EVT, 4> OldRetTys;
10833     SmallVector<TypeSize, 4> OldOffsets;
10834     RetTys.swap(OldRetTys);
10835     Offsets.swap(OldOffsets);
10836 
10837     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10838       EVT RetVT = OldRetTys[i];
10839       uint64_t Offset = OldOffsets[i];
10840       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10841       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10842       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10843       RetTys.append(NumRegs, RegisterVT);
10844       for (unsigned j = 0; j != NumRegs; ++j)
10845         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10846     }
10847   }
10848 
10849   SmallVector<ISD::OutputArg, 4> Outs;
10850   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10851 
10852   bool CanLowerReturn =
10853       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10854                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10855 
10856   SDValue DemoteStackSlot;
10857   int DemoteStackIdx = -100;
10858   if (!CanLowerReturn) {
10859     // FIXME: equivalent assert?
10860     // assert(!CS.hasInAllocaArgument() &&
10861     //        "sret demotion is incompatible with inalloca");
10862     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10863     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10864     MachineFunction &MF = CLI.DAG.getMachineFunction();
10865     DemoteStackIdx =
10866         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10867     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10868                                               DL.getAllocaAddrSpace());
10869 
10870     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10871     ArgListEntry Entry;
10872     Entry.Node = DemoteStackSlot;
10873     Entry.Ty = StackSlotPtrType;
10874     Entry.IsSExt = false;
10875     Entry.IsZExt = false;
10876     Entry.IsInReg = false;
10877     Entry.IsSRet = true;
10878     Entry.IsNest = false;
10879     Entry.IsByVal = false;
10880     Entry.IsByRef = false;
10881     Entry.IsReturned = false;
10882     Entry.IsSwiftSelf = false;
10883     Entry.IsSwiftAsync = false;
10884     Entry.IsSwiftError = false;
10885     Entry.IsCFGuardTarget = false;
10886     Entry.Alignment = Alignment;
10887     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10888     CLI.NumFixedArgs += 1;
10889     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10890     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10891 
10892     // sret demotion isn't compatible with tail-calls, since the sret argument
10893     // points into the callers stack frame.
10894     CLI.IsTailCall = false;
10895   } else {
10896     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10897         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10898     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10899       ISD::ArgFlagsTy Flags;
10900       if (NeedsRegBlock) {
10901         Flags.setInConsecutiveRegs();
10902         if (I == RetTys.size() - 1)
10903           Flags.setInConsecutiveRegsLast();
10904       }
10905       EVT VT = RetTys[I];
10906       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10907                                                      CLI.CallConv, VT);
10908       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10909                                                        CLI.CallConv, VT);
10910       for (unsigned i = 0; i != NumRegs; ++i) {
10911         ISD::InputArg MyFlags;
10912         MyFlags.Flags = Flags;
10913         MyFlags.VT = RegisterVT;
10914         MyFlags.ArgVT = VT;
10915         MyFlags.Used = CLI.IsReturnValueUsed;
10916         if (CLI.RetTy->isPointerTy()) {
10917           MyFlags.Flags.setPointer();
10918           MyFlags.Flags.setPointerAddrSpace(
10919               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10920         }
10921         if (CLI.RetSExt)
10922           MyFlags.Flags.setSExt();
10923         if (CLI.RetZExt)
10924           MyFlags.Flags.setZExt();
10925         if (CLI.IsInReg)
10926           MyFlags.Flags.setInReg();
10927         CLI.Ins.push_back(MyFlags);
10928       }
10929     }
10930   }
10931 
10932   // We push in swifterror return as the last element of CLI.Ins.
10933   ArgListTy &Args = CLI.getArgs();
10934   if (supportSwiftError()) {
10935     for (const ArgListEntry &Arg : Args) {
10936       if (Arg.IsSwiftError) {
10937         ISD::InputArg MyFlags;
10938         MyFlags.VT = getPointerTy(DL);
10939         MyFlags.ArgVT = EVT(getPointerTy(DL));
10940         MyFlags.Flags.setSwiftError();
10941         CLI.Ins.push_back(MyFlags);
10942       }
10943     }
10944   }
10945 
10946   // Handle all of the outgoing arguments.
10947   CLI.Outs.clear();
10948   CLI.OutVals.clear();
10949   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10950     SmallVector<EVT, 4> ValueVTs;
10951     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10952     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10953     Type *FinalType = Args[i].Ty;
10954     if (Args[i].IsByVal)
10955       FinalType = Args[i].IndirectType;
10956     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10957         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10958     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10959          ++Value) {
10960       EVT VT = ValueVTs[Value];
10961       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10962       SDValue Op = SDValue(Args[i].Node.getNode(),
10963                            Args[i].Node.getResNo() + Value);
10964       ISD::ArgFlagsTy Flags;
10965 
10966       // Certain targets (such as MIPS), may have a different ABI alignment
10967       // for a type depending on the context. Give the target a chance to
10968       // specify the alignment it wants.
10969       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10970       Flags.setOrigAlign(OriginalAlignment);
10971 
10972       if (Args[i].Ty->isPointerTy()) {
10973         Flags.setPointer();
10974         Flags.setPointerAddrSpace(
10975             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10976       }
10977       if (Args[i].IsZExt)
10978         Flags.setZExt();
10979       if (Args[i].IsSExt)
10980         Flags.setSExt();
10981       if (Args[i].IsInReg) {
10982         // If we are using vectorcall calling convention, a structure that is
10983         // passed InReg - is surely an HVA
10984         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10985             isa<StructType>(FinalType)) {
10986           // The first value of a structure is marked
10987           if (0 == Value)
10988             Flags.setHvaStart();
10989           Flags.setHva();
10990         }
10991         // Set InReg Flag
10992         Flags.setInReg();
10993       }
10994       if (Args[i].IsSRet)
10995         Flags.setSRet();
10996       if (Args[i].IsSwiftSelf)
10997         Flags.setSwiftSelf();
10998       if (Args[i].IsSwiftAsync)
10999         Flags.setSwiftAsync();
11000       if (Args[i].IsSwiftError)
11001         Flags.setSwiftError();
11002       if (Args[i].IsCFGuardTarget)
11003         Flags.setCFGuardTarget();
11004       if (Args[i].IsByVal)
11005         Flags.setByVal();
11006       if (Args[i].IsByRef)
11007         Flags.setByRef();
11008       if (Args[i].IsPreallocated) {
11009         Flags.setPreallocated();
11010         // Set the byval flag for CCAssignFn callbacks that don't know about
11011         // preallocated.  This way we can know how many bytes we should've
11012         // allocated and how many bytes a callee cleanup function will pop.  If
11013         // we port preallocated to more targets, we'll have to add custom
11014         // preallocated handling in the various CC lowering callbacks.
11015         Flags.setByVal();
11016       }
11017       if (Args[i].IsInAlloca) {
11018         Flags.setInAlloca();
11019         // Set the byval flag for CCAssignFn callbacks that don't know about
11020         // inalloca.  This way we can know how many bytes we should've allocated
11021         // and how many bytes a callee cleanup function will pop.  If we port
11022         // inalloca to more targets, we'll have to add custom inalloca handling
11023         // in the various CC lowering callbacks.
11024         Flags.setByVal();
11025       }
11026       Align MemAlign;
11027       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11028         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11029         Flags.setByValSize(FrameSize);
11030 
11031         // info is not there but there are cases it cannot get right.
11032         if (auto MA = Args[i].Alignment)
11033           MemAlign = *MA;
11034         else
11035           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
11036       } else if (auto MA = Args[i].Alignment) {
11037         MemAlign = *MA;
11038       } else {
11039         MemAlign = OriginalAlignment;
11040       }
11041       Flags.setMemAlign(MemAlign);
11042       if (Args[i].IsNest)
11043         Flags.setNest();
11044       if (NeedsRegBlock)
11045         Flags.setInConsecutiveRegs();
11046 
11047       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11048                                                  CLI.CallConv, VT);
11049       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11050                                                         CLI.CallConv, VT);
11051       SmallVector<SDValue, 4> Parts(NumParts);
11052       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11053 
11054       if (Args[i].IsSExt)
11055         ExtendKind = ISD::SIGN_EXTEND;
11056       else if (Args[i].IsZExt)
11057         ExtendKind = ISD::ZERO_EXTEND;
11058 
11059       // Conservatively only handle 'returned' on non-vectors that can be lowered,
11060       // for now.
11061       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11062           CanLowerReturn) {
11063         assert((CLI.RetTy == Args[i].Ty ||
11064                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11065                  CLI.RetTy->getPointerAddressSpace() ==
11066                      Args[i].Ty->getPointerAddressSpace())) &&
11067                RetTys.size() == NumValues && "unexpected use of 'returned'");
11068         // Before passing 'returned' to the target lowering code, ensure that
11069         // either the register MVT and the actual EVT are the same size or that
11070         // the return value and argument are extended in the same way; in these
11071         // cases it's safe to pass the argument register value unchanged as the
11072         // return register value (although it's at the target's option whether
11073         // to do so)
11074         // TODO: allow code generation to take advantage of partially preserved
11075         // registers rather than clobbering the entire register when the
11076         // parameter extension method is not compatible with the return
11077         // extension method
11078         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11079             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11080              CLI.RetZExt == Args[i].IsZExt))
11081           Flags.setReturned();
11082       }
11083 
11084       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11085                      CLI.CallConv, ExtendKind);
11086 
11087       for (unsigned j = 0; j != NumParts; ++j) {
11088         // if it isn't first piece, alignment must be 1
11089         // For scalable vectors the scalable part is currently handled
11090         // by individual targets, so we just use the known minimum size here.
11091         ISD::OutputArg MyFlags(
11092             Flags, Parts[j].getValueType().getSimpleVT(), VT,
11093             i < CLI.NumFixedArgs, i,
11094             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11095         if (NumParts > 1 && j == 0)
11096           MyFlags.Flags.setSplit();
11097         else if (j != 0) {
11098           MyFlags.Flags.setOrigAlign(Align(1));
11099           if (j == NumParts - 1)
11100             MyFlags.Flags.setSplitEnd();
11101         }
11102 
11103         CLI.Outs.push_back(MyFlags);
11104         CLI.OutVals.push_back(Parts[j]);
11105       }
11106 
11107       if (NeedsRegBlock && Value == NumValues - 1)
11108         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11109     }
11110   }
11111 
11112   SmallVector<SDValue, 4> InVals;
11113   CLI.Chain = LowerCall(CLI, InVals);
11114 
11115   // Update CLI.InVals to use outside of this function.
11116   CLI.InVals = InVals;
11117 
11118   // Verify that the target's LowerCall behaved as expected.
11119   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11120          "LowerCall didn't return a valid chain!");
11121   assert((!CLI.IsTailCall || InVals.empty()) &&
11122          "LowerCall emitted a return value for a tail call!");
11123   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11124          "LowerCall didn't emit the correct number of values!");
11125 
11126   // For a tail call, the return value is merely live-out and there aren't
11127   // any nodes in the DAG representing it. Return a special value to
11128   // indicate that a tail call has been emitted and no more Instructions
11129   // should be processed in the current block.
11130   if (CLI.IsTailCall) {
11131     CLI.DAG.setRoot(CLI.Chain);
11132     return std::make_pair(SDValue(), SDValue());
11133   }
11134 
11135 #ifndef NDEBUG
11136   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11137     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11138     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11139            "LowerCall emitted a value with the wrong type!");
11140   }
11141 #endif
11142 
11143   SmallVector<SDValue, 4> ReturnValues;
11144   if (!CanLowerReturn) {
11145     // The instruction result is the result of loading from the
11146     // hidden sret parameter.
11147     SmallVector<EVT, 1> PVTs;
11148     Type *PtrRetTy =
11149         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
11150 
11151     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
11152     assert(PVTs.size() == 1 && "Pointers should fit in one register");
11153     EVT PtrVT = PVTs[0];
11154 
11155     unsigned NumValues = RetTys.size();
11156     ReturnValues.resize(NumValues);
11157     SmallVector<SDValue, 4> Chains(NumValues);
11158 
11159     // An aggregate return value cannot wrap around the address space, so
11160     // offsets to its parts don't wrap either.
11161     SDNodeFlags Flags;
11162     Flags.setNoUnsignedWrap(true);
11163 
11164     MachineFunction &MF = CLI.DAG.getMachineFunction();
11165     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11166     for (unsigned i = 0; i < NumValues; ++i) {
11167       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
11168                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
11169                                                         PtrVT), Flags);
11170       SDValue L = CLI.DAG.getLoad(
11171           RetTys[i], CLI.DL, CLI.Chain, Add,
11172           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
11173                                             DemoteStackIdx, Offsets[i]),
11174           HiddenSRetAlign);
11175       ReturnValues[i] = L;
11176       Chains[i] = L.getValue(1);
11177     }
11178 
11179     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11180   } else {
11181     // Collect the legal value parts into potentially illegal values
11182     // that correspond to the original function's return values.
11183     std::optional<ISD::NodeType> AssertOp;
11184     if (CLI.RetSExt)
11185       AssertOp = ISD::AssertSext;
11186     else if (CLI.RetZExt)
11187       AssertOp = ISD::AssertZext;
11188     unsigned CurReg = 0;
11189     for (EVT VT : RetTys) {
11190       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
11191                                                      CLI.CallConv, VT);
11192       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
11193                                                        CLI.CallConv, VT);
11194 
11195       ReturnValues.push_back(getCopyFromParts(
11196           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11197           CLI.Chain, CLI.CallConv, AssertOp));
11198       CurReg += NumRegs;
11199     }
11200 
11201     // For a function returning void, there is no return value. We can't create
11202     // such a node, so we just return a null return value in that case. In
11203     // that case, nothing will actually look at the value.
11204     if (ReturnValues.empty())
11205       return std::make_pair(SDValue(), CLI.Chain);
11206   }
11207 
11208   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11209                                 CLI.DAG.getVTList(RetTys), ReturnValues);
11210   return std::make_pair(Res, CLI.Chain);
11211 }
11212 
11213 /// Places new result values for the node in Results (their number
11214 /// and types must exactly match those of the original return values of
11215 /// the node), or leaves Results empty, which indicates that the node is not
11216 /// to be custom lowered after all.
11217 void TargetLowering::LowerOperationWrapper(SDNode *N,
11218                                            SmallVectorImpl<SDValue> &Results,
11219                                            SelectionDAG &DAG) const {
11220   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11221 
11222   if (!Res.getNode())
11223     return;
11224 
11225   // If the original node has one result, take the return value from
11226   // LowerOperation as is. It might not be result number 0.
11227   if (N->getNumValues() == 1) {
11228     Results.push_back(Res);
11229     return;
11230   }
11231 
11232   // If the original node has multiple results, then the return node should
11233   // have the same number of results.
11234   assert((N->getNumValues() == Res->getNumValues()) &&
11235       "Lowering returned the wrong number of results!");
11236 
11237   // Places new result values base on N result number.
11238   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11239     Results.push_back(Res.getValue(I));
11240 }
11241 
11242 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11243   llvm_unreachable("LowerOperation not implemented for this target!");
11244 }
11245 
11246 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
11247                                                      unsigned Reg,
11248                                                      ISD::NodeType ExtendType) {
11249   SDValue Op = getNonRegisterValue(V);
11250   assert((Op.getOpcode() != ISD::CopyFromReg ||
11251           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11252          "Copy from a reg to the same reg!");
11253   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
11254 
11255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11256   // If this is an InlineAsm we have to match the registers required, not the
11257   // notional registers required by the type.
11258 
11259   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11260                    std::nullopt); // This is not an ABI copy.
11261   SDValue Chain = DAG.getEntryNode();
11262 
11263   if (ExtendType == ISD::ANY_EXTEND) {
11264     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11265     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11266       ExtendType = PreferredExtendIt->second;
11267   }
11268   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11269   PendingExports.push_back(Chain);
11270 }
11271 
11272 #include "llvm/CodeGen/SelectionDAGISel.h"
11273 
11274 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11275 /// entry block, return true.  This includes arguments used by switches, since
11276 /// the switch may expand into multiple basic blocks.
11277 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11278   // With FastISel active, we may be splitting blocks, so force creation
11279   // of virtual registers for all non-dead arguments.
11280   if (FastISel)
11281     return A->use_empty();
11282 
11283   const BasicBlock &Entry = A->getParent()->front();
11284   for (const User *U : A->users())
11285     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11286       return false;  // Use not in entry block.
11287 
11288   return true;
11289 }
11290 
11291 using ArgCopyElisionMapTy =
11292     DenseMap<const Argument *,
11293              std::pair<const AllocaInst *, const StoreInst *>>;
11294 
11295 /// Scan the entry block of the function in FuncInfo for arguments that look
11296 /// like copies into a local alloca. Record any copied arguments in
11297 /// ArgCopyElisionCandidates.
11298 static void
11299 findArgumentCopyElisionCandidates(const DataLayout &DL,
11300                                   FunctionLoweringInfo *FuncInfo,
11301                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11302   // Record the state of every static alloca used in the entry block. Argument
11303   // allocas are all used in the entry block, so we need approximately as many
11304   // entries as we have arguments.
11305   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11306   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11307   unsigned NumArgs = FuncInfo->Fn->arg_size();
11308   StaticAllocas.reserve(NumArgs * 2);
11309 
11310   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11311     if (!V)
11312       return nullptr;
11313     V = V->stripPointerCasts();
11314     const auto *AI = dyn_cast<AllocaInst>(V);
11315     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11316       return nullptr;
11317     auto Iter = StaticAllocas.insert({AI, Unknown});
11318     return &Iter.first->second;
11319   };
11320 
11321   // Look for stores of arguments to static allocas. Look through bitcasts and
11322   // GEPs to handle type coercions, as long as the alloca is fully initialized
11323   // by the store. Any non-store use of an alloca escapes it and any subsequent
11324   // unanalyzed store might write it.
11325   // FIXME: Handle structs initialized with multiple stores.
11326   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11327     // Look for stores, and handle non-store uses conservatively.
11328     const auto *SI = dyn_cast<StoreInst>(&I);
11329     if (!SI) {
11330       // We will look through cast uses, so ignore them completely.
11331       if (I.isCast())
11332         continue;
11333       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11334       // to allocas.
11335       if (I.isDebugOrPseudoInst())
11336         continue;
11337       // This is an unknown instruction. Assume it escapes or writes to all
11338       // static alloca operands.
11339       for (const Use &U : I.operands()) {
11340         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11341           *Info = StaticAllocaInfo::Clobbered;
11342       }
11343       continue;
11344     }
11345 
11346     // If the stored value is a static alloca, mark it as escaped.
11347     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11348       *Info = StaticAllocaInfo::Clobbered;
11349 
11350     // Check if the destination is a static alloca.
11351     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11352     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11353     if (!Info)
11354       continue;
11355     const AllocaInst *AI = cast<AllocaInst>(Dst);
11356 
11357     // Skip allocas that have been initialized or clobbered.
11358     if (*Info != StaticAllocaInfo::Unknown)
11359       continue;
11360 
11361     // Check if the stored value is an argument, and that this store fully
11362     // initializes the alloca.
11363     // If the argument type has padding bits we can't directly forward a pointer
11364     // as the upper bits may contain garbage.
11365     // Don't elide copies from the same argument twice.
11366     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11367     const auto *Arg = dyn_cast<Argument>(Val);
11368     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11369         Arg->getType()->isEmptyTy() ||
11370         DL.getTypeStoreSize(Arg->getType()) !=
11371             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11372         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11373         ArgCopyElisionCandidates.count(Arg)) {
11374       *Info = StaticAllocaInfo::Clobbered;
11375       continue;
11376     }
11377 
11378     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11379                       << '\n');
11380 
11381     // Mark this alloca and store for argument copy elision.
11382     *Info = StaticAllocaInfo::Elidable;
11383     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11384 
11385     // Stop scanning if we've seen all arguments. This will happen early in -O0
11386     // builds, which is useful, because -O0 builds have large entry blocks and
11387     // many allocas.
11388     if (ArgCopyElisionCandidates.size() == NumArgs)
11389       break;
11390   }
11391 }
11392 
11393 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11394 /// ArgVal is a load from a suitable fixed stack object.
11395 static void tryToElideArgumentCopy(
11396     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11397     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11398     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11399     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11400     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11401   // Check if this is a load from a fixed stack object.
11402   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11403   if (!LNode)
11404     return;
11405   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11406   if (!FINode)
11407     return;
11408 
11409   // Check that the fixed stack object is the right size and alignment.
11410   // Look at the alignment that the user wrote on the alloca instead of looking
11411   // at the stack object.
11412   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11413   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11414   const AllocaInst *AI = ArgCopyIter->second.first;
11415   int FixedIndex = FINode->getIndex();
11416   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11417   int OldIndex = AllocaIndex;
11418   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11419   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11420     LLVM_DEBUG(
11421         dbgs() << "  argument copy elision failed due to bad fixed stack "
11422                   "object size\n");
11423     return;
11424   }
11425   Align RequiredAlignment = AI->getAlign();
11426   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11427     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11428                          "greater than stack argument alignment ("
11429                       << DebugStr(RequiredAlignment) << " vs "
11430                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11431     return;
11432   }
11433 
11434   // Perform the elision. Delete the old stack object and replace its only use
11435   // in the variable info map. Mark the stack object as mutable and aliased.
11436   LLVM_DEBUG({
11437     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11438            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11439            << '\n';
11440   });
11441   MFI.RemoveStackObject(OldIndex);
11442   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11443   MFI.setIsAliasedObjectIndex(FixedIndex, true);
11444   AllocaIndex = FixedIndex;
11445   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11446   for (SDValue ArgVal : ArgVals)
11447     Chains.push_back(ArgVal.getValue(1));
11448 
11449   // Avoid emitting code for the store implementing the copy.
11450   const StoreInst *SI = ArgCopyIter->second.second;
11451   ElidedArgCopyInstrs.insert(SI);
11452 
11453   // Check for uses of the argument again so that we can avoid exporting ArgVal
11454   // if it is't used by anything other than the store.
11455   for (const Value *U : Arg.users()) {
11456     if (U != SI) {
11457       ArgHasUses = true;
11458       break;
11459     }
11460   }
11461 }
11462 
11463 void SelectionDAGISel::LowerArguments(const Function &F) {
11464   SelectionDAG &DAG = SDB->DAG;
11465   SDLoc dl = SDB->getCurSDLoc();
11466   const DataLayout &DL = DAG.getDataLayout();
11467   SmallVector<ISD::InputArg, 16> Ins;
11468 
11469   // In Naked functions we aren't going to save any registers.
11470   if (F.hasFnAttribute(Attribute::Naked))
11471     return;
11472 
11473   if (!FuncInfo->CanLowerReturn) {
11474     // Put in an sret pointer parameter before all the other parameters.
11475     SmallVector<EVT, 1> ValueVTs;
11476     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11477                     PointerType::get(F.getContext(),
11478                                      DAG.getDataLayout().getAllocaAddrSpace()),
11479                     ValueVTs);
11480 
11481     // NOTE: Assuming that a pointer will never break down to more than one VT
11482     // or one register.
11483     ISD::ArgFlagsTy Flags;
11484     Flags.setSRet();
11485     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11486     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11487                          ISD::InputArg::NoArgIndex, 0);
11488     Ins.push_back(RetArg);
11489   }
11490 
11491   // Look for stores of arguments to static allocas. Mark such arguments with a
11492   // flag to ask the target to give us the memory location of that argument if
11493   // available.
11494   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11495   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11496                                     ArgCopyElisionCandidates);
11497 
11498   // Set up the incoming argument description vector.
11499   for (const Argument &Arg : F.args()) {
11500     unsigned ArgNo = Arg.getArgNo();
11501     SmallVector<EVT, 4> ValueVTs;
11502     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11503     bool isArgValueUsed = !Arg.use_empty();
11504     unsigned PartBase = 0;
11505     Type *FinalType = Arg.getType();
11506     if (Arg.hasAttribute(Attribute::ByVal))
11507       FinalType = Arg.getParamByValType();
11508     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11509         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11510     for (unsigned Value = 0, NumValues = ValueVTs.size();
11511          Value != NumValues; ++Value) {
11512       EVT VT = ValueVTs[Value];
11513       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11514       ISD::ArgFlagsTy Flags;
11515 
11516 
11517       if (Arg.getType()->isPointerTy()) {
11518         Flags.setPointer();
11519         Flags.setPointerAddrSpace(
11520             cast<PointerType>(Arg.getType())->getAddressSpace());
11521       }
11522       if (Arg.hasAttribute(Attribute::ZExt))
11523         Flags.setZExt();
11524       if (Arg.hasAttribute(Attribute::SExt))
11525         Flags.setSExt();
11526       if (Arg.hasAttribute(Attribute::InReg)) {
11527         // If we are using vectorcall calling convention, a structure that is
11528         // passed InReg - is surely an HVA
11529         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11530             isa<StructType>(Arg.getType())) {
11531           // The first value of a structure is marked
11532           if (0 == Value)
11533             Flags.setHvaStart();
11534           Flags.setHva();
11535         }
11536         // Set InReg Flag
11537         Flags.setInReg();
11538       }
11539       if (Arg.hasAttribute(Attribute::StructRet))
11540         Flags.setSRet();
11541       if (Arg.hasAttribute(Attribute::SwiftSelf))
11542         Flags.setSwiftSelf();
11543       if (Arg.hasAttribute(Attribute::SwiftAsync))
11544         Flags.setSwiftAsync();
11545       if (Arg.hasAttribute(Attribute::SwiftError))
11546         Flags.setSwiftError();
11547       if (Arg.hasAttribute(Attribute::ByVal))
11548         Flags.setByVal();
11549       if (Arg.hasAttribute(Attribute::ByRef))
11550         Flags.setByRef();
11551       if (Arg.hasAttribute(Attribute::InAlloca)) {
11552         Flags.setInAlloca();
11553         // Set the byval flag for CCAssignFn callbacks that don't know about
11554         // inalloca.  This way we can know how many bytes we should've allocated
11555         // and how many bytes a callee cleanup function will pop.  If we port
11556         // inalloca to more targets, we'll have to add custom inalloca handling
11557         // in the various CC lowering callbacks.
11558         Flags.setByVal();
11559       }
11560       if (Arg.hasAttribute(Attribute::Preallocated)) {
11561         Flags.setPreallocated();
11562         // Set the byval flag for CCAssignFn callbacks that don't know about
11563         // preallocated.  This way we can know how many bytes we should've
11564         // allocated and how many bytes a callee cleanup function will pop.  If
11565         // we port preallocated to more targets, we'll have to add custom
11566         // preallocated handling in the various CC lowering callbacks.
11567         Flags.setByVal();
11568       }
11569 
11570       // Certain targets (such as MIPS), may have a different ABI alignment
11571       // for a type depending on the context. Give the target a chance to
11572       // specify the alignment it wants.
11573       const Align OriginalAlignment(
11574           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11575       Flags.setOrigAlign(OriginalAlignment);
11576 
11577       Align MemAlign;
11578       Type *ArgMemTy = nullptr;
11579       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11580           Flags.isByRef()) {
11581         if (!ArgMemTy)
11582           ArgMemTy = Arg.getPointeeInMemoryValueType();
11583 
11584         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11585 
11586         // For in-memory arguments, size and alignment should be passed from FE.
11587         // BE will guess if this info is not there but there are cases it cannot
11588         // get right.
11589         if (auto ParamAlign = Arg.getParamStackAlign())
11590           MemAlign = *ParamAlign;
11591         else if ((ParamAlign = Arg.getParamAlign()))
11592           MemAlign = *ParamAlign;
11593         else
11594           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11595         if (Flags.isByRef())
11596           Flags.setByRefSize(MemSize);
11597         else
11598           Flags.setByValSize(MemSize);
11599       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11600         MemAlign = *ParamAlign;
11601       } else {
11602         MemAlign = OriginalAlignment;
11603       }
11604       Flags.setMemAlign(MemAlign);
11605 
11606       if (Arg.hasAttribute(Attribute::Nest))
11607         Flags.setNest();
11608       if (NeedsRegBlock)
11609         Flags.setInConsecutiveRegs();
11610       if (ArgCopyElisionCandidates.count(&Arg))
11611         Flags.setCopyElisionCandidate();
11612       if (Arg.hasAttribute(Attribute::Returned))
11613         Flags.setReturned();
11614 
11615       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11616           *CurDAG->getContext(), F.getCallingConv(), VT);
11617       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11618           *CurDAG->getContext(), F.getCallingConv(), VT);
11619       for (unsigned i = 0; i != NumRegs; ++i) {
11620         // For scalable vectors, use the minimum size; individual targets
11621         // are responsible for handling scalable vector arguments and
11622         // return values.
11623         ISD::InputArg MyFlags(
11624             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11625             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11626         if (NumRegs > 1 && i == 0)
11627           MyFlags.Flags.setSplit();
11628         // if it isn't first piece, alignment must be 1
11629         else if (i > 0) {
11630           MyFlags.Flags.setOrigAlign(Align(1));
11631           if (i == NumRegs - 1)
11632             MyFlags.Flags.setSplitEnd();
11633         }
11634         Ins.push_back(MyFlags);
11635       }
11636       if (NeedsRegBlock && Value == NumValues - 1)
11637         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11638       PartBase += VT.getStoreSize().getKnownMinValue();
11639     }
11640   }
11641 
11642   // Call the target to set up the argument values.
11643   SmallVector<SDValue, 8> InVals;
11644   SDValue NewRoot = TLI->LowerFormalArguments(
11645       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11646 
11647   // Verify that the target's LowerFormalArguments behaved as expected.
11648   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11649          "LowerFormalArguments didn't return a valid chain!");
11650   assert(InVals.size() == Ins.size() &&
11651          "LowerFormalArguments didn't emit the correct number of values!");
11652   LLVM_DEBUG({
11653     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11654       assert(InVals[i].getNode() &&
11655              "LowerFormalArguments emitted a null value!");
11656       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11657              "LowerFormalArguments emitted a value with the wrong type!");
11658     }
11659   });
11660 
11661   // Update the DAG with the new chain value resulting from argument lowering.
11662   DAG.setRoot(NewRoot);
11663 
11664   // Set up the argument values.
11665   unsigned i = 0;
11666   if (!FuncInfo->CanLowerReturn) {
11667     // Create a virtual register for the sret pointer, and put in a copy
11668     // from the sret argument into it.
11669     SmallVector<EVT, 1> ValueVTs;
11670     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11671                     PointerType::get(F.getContext(),
11672                                      DAG.getDataLayout().getAllocaAddrSpace()),
11673                     ValueVTs);
11674     MVT VT = ValueVTs[0].getSimpleVT();
11675     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11676     std::optional<ISD::NodeType> AssertOp;
11677     SDValue ArgValue =
11678         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11679                          F.getCallingConv(), AssertOp);
11680 
11681     MachineFunction& MF = SDB->DAG.getMachineFunction();
11682     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11683     Register SRetReg =
11684         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11685     FuncInfo->DemoteRegister = SRetReg;
11686     NewRoot =
11687         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11688     DAG.setRoot(NewRoot);
11689 
11690     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11691     ++i;
11692   }
11693 
11694   SmallVector<SDValue, 4> Chains;
11695   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11696   for (const Argument &Arg : F.args()) {
11697     SmallVector<SDValue, 4> ArgValues;
11698     SmallVector<EVT, 4> ValueVTs;
11699     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11700     unsigned NumValues = ValueVTs.size();
11701     if (NumValues == 0)
11702       continue;
11703 
11704     bool ArgHasUses = !Arg.use_empty();
11705 
11706     // Elide the copying store if the target loaded this argument from a
11707     // suitable fixed stack object.
11708     if (Ins[i].Flags.isCopyElisionCandidate()) {
11709       unsigned NumParts = 0;
11710       for (EVT VT : ValueVTs)
11711         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11712                                                        F.getCallingConv(), VT);
11713 
11714       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11715                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11716                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11717     }
11718 
11719     // If this argument is unused then remember its value. It is used to generate
11720     // debugging information.
11721     bool isSwiftErrorArg =
11722         TLI->supportSwiftError() &&
11723         Arg.hasAttribute(Attribute::SwiftError);
11724     if (!ArgHasUses && !isSwiftErrorArg) {
11725       SDB->setUnusedArgValue(&Arg, InVals[i]);
11726 
11727       // Also remember any frame index for use in FastISel.
11728       if (FrameIndexSDNode *FI =
11729           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11730         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11731     }
11732 
11733     for (unsigned Val = 0; Val != NumValues; ++Val) {
11734       EVT VT = ValueVTs[Val];
11735       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11736                                                       F.getCallingConv(), VT);
11737       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11738           *CurDAG->getContext(), F.getCallingConv(), VT);
11739 
11740       // Even an apparent 'unused' swifterror argument needs to be returned. So
11741       // we do generate a copy for it that can be used on return from the
11742       // function.
11743       if (ArgHasUses || isSwiftErrorArg) {
11744         std::optional<ISD::NodeType> AssertOp;
11745         if (Arg.hasAttribute(Attribute::SExt))
11746           AssertOp = ISD::AssertSext;
11747         else if (Arg.hasAttribute(Attribute::ZExt))
11748           AssertOp = ISD::AssertZext;
11749 
11750         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11751                                              PartVT, VT, nullptr, NewRoot,
11752                                              F.getCallingConv(), AssertOp));
11753       }
11754 
11755       i += NumParts;
11756     }
11757 
11758     // We don't need to do anything else for unused arguments.
11759     if (ArgValues.empty())
11760       continue;
11761 
11762     // Note down frame index.
11763     if (FrameIndexSDNode *FI =
11764         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11765       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11766 
11767     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11768                                      SDB->getCurSDLoc());
11769 
11770     SDB->setValue(&Arg, Res);
11771     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11772       // We want to associate the argument with the frame index, among
11773       // involved operands, that correspond to the lowest address. The
11774       // getCopyFromParts function, called earlier, is swapping the order of
11775       // the operands to BUILD_PAIR depending on endianness. The result of
11776       // that swapping is that the least significant bits of the argument will
11777       // be in the first operand of the BUILD_PAIR node, and the most
11778       // significant bits will be in the second operand.
11779       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11780       if (LoadSDNode *LNode =
11781           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11782         if (FrameIndexSDNode *FI =
11783             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11784           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11785     }
11786 
11787     // Analyses past this point are naive and don't expect an assertion.
11788     if (Res.getOpcode() == ISD::AssertZext)
11789       Res = Res.getOperand(0);
11790 
11791     // Update the SwiftErrorVRegDefMap.
11792     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11793       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11794       if (Register::isVirtualRegister(Reg))
11795         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11796                                    Reg);
11797     }
11798 
11799     // If this argument is live outside of the entry block, insert a copy from
11800     // wherever we got it to the vreg that other BB's will reference it as.
11801     if (Res.getOpcode() == ISD::CopyFromReg) {
11802       // If we can, though, try to skip creating an unnecessary vreg.
11803       // FIXME: This isn't very clean... it would be nice to make this more
11804       // general.
11805       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11806       if (Register::isVirtualRegister(Reg)) {
11807         FuncInfo->ValueMap[&Arg] = Reg;
11808         continue;
11809       }
11810     }
11811     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11812       FuncInfo->InitializeRegForValue(&Arg);
11813       SDB->CopyToExportRegsIfNeeded(&Arg);
11814     }
11815   }
11816 
11817   if (!Chains.empty()) {
11818     Chains.push_back(NewRoot);
11819     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11820   }
11821 
11822   DAG.setRoot(NewRoot);
11823 
11824   assert(i == InVals.size() && "Argument register count mismatch!");
11825 
11826   // If any argument copy elisions occurred and we have debug info, update the
11827   // stale frame indices used in the dbg.declare variable info table.
11828   if (!ArgCopyElisionFrameIndexMap.empty()) {
11829     for (MachineFunction::VariableDbgInfo &VI :
11830          MF->getInStackSlotVariableDbgInfo()) {
11831       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11832       if (I != ArgCopyElisionFrameIndexMap.end())
11833         VI.updateStackSlot(I->second);
11834     }
11835   }
11836 
11837   // Finally, if the target has anything special to do, allow it to do so.
11838   emitFunctionEntryCode();
11839 }
11840 
11841 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11842 /// ensure constants are generated when needed.  Remember the virtual registers
11843 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11844 /// directly add them, because expansion might result in multiple MBB's for one
11845 /// BB.  As such, the start of the BB might correspond to a different MBB than
11846 /// the end.
11847 void
11848 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11849   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11850 
11851   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11852 
11853   // Check PHI nodes in successors that expect a value to be available from this
11854   // block.
11855   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11856     if (!isa<PHINode>(SuccBB->begin())) continue;
11857     MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
11858 
11859     // If this terminator has multiple identical successors (common for
11860     // switches), only handle each succ once.
11861     if (!SuccsHandled.insert(SuccMBB).second)
11862       continue;
11863 
11864     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11865 
11866     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11867     // nodes and Machine PHI nodes, but the incoming operands have not been
11868     // emitted yet.
11869     for (const PHINode &PN : SuccBB->phis()) {
11870       // Ignore dead phi's.
11871       if (PN.use_empty())
11872         continue;
11873 
11874       // Skip empty types
11875       if (PN.getType()->isEmptyTy())
11876         continue;
11877 
11878       unsigned Reg;
11879       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11880 
11881       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11882         unsigned &RegOut = ConstantsOut[C];
11883         if (RegOut == 0) {
11884           RegOut = FuncInfo.CreateRegs(C);
11885           // We need to zero/sign extend ConstantInt phi operands to match
11886           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11887           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11888           if (auto *CI = dyn_cast<ConstantInt>(C))
11889             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11890                                                     : ISD::ZERO_EXTEND;
11891           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11892         }
11893         Reg = RegOut;
11894       } else {
11895         DenseMap<const Value *, Register>::iterator I =
11896           FuncInfo.ValueMap.find(PHIOp);
11897         if (I != FuncInfo.ValueMap.end())
11898           Reg = I->second;
11899         else {
11900           assert(isa<AllocaInst>(PHIOp) &&
11901                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11902                  "Didn't codegen value into a register!??");
11903           Reg = FuncInfo.CreateRegs(PHIOp);
11904           CopyValueToVirtualRegister(PHIOp, Reg);
11905         }
11906       }
11907 
11908       // Remember that this register needs to added to the machine PHI node as
11909       // the input for this MBB.
11910       SmallVector<EVT, 4> ValueVTs;
11911       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11912       for (EVT VT : ValueVTs) {
11913         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11914         for (unsigned i = 0; i != NumRegisters; ++i)
11915           FuncInfo.PHINodesToUpdate.push_back(
11916               std::make_pair(&*MBBI++, Reg + i));
11917         Reg += NumRegisters;
11918       }
11919     }
11920   }
11921 
11922   ConstantsOut.clear();
11923 }
11924 
11925 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11926   MachineFunction::iterator I(MBB);
11927   if (++I == FuncInfo.MF->end())
11928     return nullptr;
11929   return &*I;
11930 }
11931 
11932 /// During lowering new call nodes can be created (such as memset, etc.).
11933 /// Those will become new roots of the current DAG, but complications arise
11934 /// when they are tail calls. In such cases, the call lowering will update
11935 /// the root, but the builder still needs to know that a tail call has been
11936 /// lowered in order to avoid generating an additional return.
11937 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11938   // If the node is null, we do have a tail call.
11939   if (MaybeTC.getNode() != nullptr)
11940     DAG.setRoot(MaybeTC);
11941   else
11942     HasTailCall = true;
11943 }
11944 
11945 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11946                                         MachineBasicBlock *SwitchMBB,
11947                                         MachineBasicBlock *DefaultMBB) {
11948   MachineFunction *CurMF = FuncInfo.MF;
11949   MachineBasicBlock *NextMBB = nullptr;
11950   MachineFunction::iterator BBI(W.MBB);
11951   if (++BBI != FuncInfo.MF->end())
11952     NextMBB = &*BBI;
11953 
11954   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11955 
11956   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11957 
11958   if (Size == 2 && W.MBB == SwitchMBB) {
11959     // If any two of the cases has the same destination, and if one value
11960     // is the same as the other, but has one bit unset that the other has set,
11961     // use bit manipulation to do two compares at once.  For example:
11962     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11963     // TODO: This could be extended to merge any 2 cases in switches with 3
11964     // cases.
11965     // TODO: Handle cases where W.CaseBB != SwitchBB.
11966     CaseCluster &Small = *W.FirstCluster;
11967     CaseCluster &Big = *W.LastCluster;
11968 
11969     if (Small.Low == Small.High && Big.Low == Big.High &&
11970         Small.MBB == Big.MBB) {
11971       const APInt &SmallValue = Small.Low->getValue();
11972       const APInt &BigValue = Big.Low->getValue();
11973 
11974       // Check that there is only one bit different.
11975       APInt CommonBit = BigValue ^ SmallValue;
11976       if (CommonBit.isPowerOf2()) {
11977         SDValue CondLHS = getValue(Cond);
11978         EVT VT = CondLHS.getValueType();
11979         SDLoc DL = getCurSDLoc();
11980 
11981         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11982                                  DAG.getConstant(CommonBit, DL, VT));
11983         SDValue Cond = DAG.getSetCC(
11984             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11985             ISD::SETEQ);
11986 
11987         // Update successor info.
11988         // Both Small and Big will jump to Small.BB, so we sum up the
11989         // probabilities.
11990         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11991         if (BPI)
11992           addSuccessorWithProb(
11993               SwitchMBB, DefaultMBB,
11994               // The default destination is the first successor in IR.
11995               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11996         else
11997           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11998 
11999         // Insert the true branch.
12000         SDValue BrCond =
12001             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12002                         DAG.getBasicBlock(Small.MBB));
12003         // Insert the false branch.
12004         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12005                              DAG.getBasicBlock(DefaultMBB));
12006 
12007         DAG.setRoot(BrCond);
12008         return;
12009       }
12010     }
12011   }
12012 
12013   if (TM.getOptLevel() != CodeGenOptLevel::None) {
12014     // Here, we order cases by probability so the most likely case will be
12015     // checked first. However, two clusters can have the same probability in
12016     // which case their relative ordering is non-deterministic. So we use Low
12017     // as a tie-breaker as clusters are guaranteed to never overlap.
12018     llvm::sort(W.FirstCluster, W.LastCluster + 1,
12019                [](const CaseCluster &a, const CaseCluster &b) {
12020       return a.Prob != b.Prob ?
12021              a.Prob > b.Prob :
12022              a.Low->getValue().slt(b.Low->getValue());
12023     });
12024 
12025     // Rearrange the case blocks so that the last one falls through if possible
12026     // without changing the order of probabilities.
12027     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12028       --I;
12029       if (I->Prob > W.LastCluster->Prob)
12030         break;
12031       if (I->Kind == CC_Range && I->MBB == NextMBB) {
12032         std::swap(*I, *W.LastCluster);
12033         break;
12034       }
12035     }
12036   }
12037 
12038   // Compute total probability.
12039   BranchProbability DefaultProb = W.DefaultProb;
12040   BranchProbability UnhandledProbs = DefaultProb;
12041   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12042     UnhandledProbs += I->Prob;
12043 
12044   MachineBasicBlock *CurMBB = W.MBB;
12045   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12046     bool FallthroughUnreachable = false;
12047     MachineBasicBlock *Fallthrough;
12048     if (I == W.LastCluster) {
12049       // For the last cluster, fall through to the default destination.
12050       Fallthrough = DefaultMBB;
12051       FallthroughUnreachable = isa<UnreachableInst>(
12052           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12053     } else {
12054       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12055       CurMF->insert(BBI, Fallthrough);
12056       // Put Cond in a virtual register to make it available from the new blocks.
12057       ExportFromCurrentBlock(Cond);
12058     }
12059     UnhandledProbs -= I->Prob;
12060 
12061     switch (I->Kind) {
12062       case CC_JumpTable: {
12063         // FIXME: Optimize away range check based on pivot comparisons.
12064         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12065         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12066 
12067         // The jump block hasn't been inserted yet; insert it here.
12068         MachineBasicBlock *JumpMBB = JT->MBB;
12069         CurMF->insert(BBI, JumpMBB);
12070 
12071         auto JumpProb = I->Prob;
12072         auto FallthroughProb = UnhandledProbs;
12073 
12074         // If the default statement is a target of the jump table, we evenly
12075         // distribute the default probability to successors of CurMBB. Also
12076         // update the probability on the edge from JumpMBB to Fallthrough.
12077         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12078                                               SE = JumpMBB->succ_end();
12079              SI != SE; ++SI) {
12080           if (*SI == DefaultMBB) {
12081             JumpProb += DefaultProb / 2;
12082             FallthroughProb -= DefaultProb / 2;
12083             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12084             JumpMBB->normalizeSuccProbs();
12085             break;
12086           }
12087         }
12088 
12089         // If the default clause is unreachable, propagate that knowledge into
12090         // JTH->FallthroughUnreachable which will use it to suppress the range
12091         // check.
12092         //
12093         // However, don't do this if we're doing branch target enforcement,
12094         // because a table branch _without_ a range check can be a tempting JOP
12095         // gadget - out-of-bounds inputs that are impossible in correct
12096         // execution become possible again if an attacker can influence the
12097         // control flow. So if an attacker doesn't already have a BTI bypass
12098         // available, we don't want them to be able to get one out of this
12099         // table branch.
12100         if (FallthroughUnreachable) {
12101           Function &CurFunc = CurMF->getFunction();
12102           if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12103             JTH->FallthroughUnreachable = true;
12104         }
12105 
12106         if (!JTH->FallthroughUnreachable)
12107           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12108         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12109         CurMBB->normalizeSuccProbs();
12110 
12111         // The jump table header will be inserted in our current block, do the
12112         // range check, and fall through to our fallthrough block.
12113         JTH->HeaderBB = CurMBB;
12114         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12115 
12116         // If we're in the right place, emit the jump table header right now.
12117         if (CurMBB == SwitchMBB) {
12118           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12119           JTH->Emitted = true;
12120         }
12121         break;
12122       }
12123       case CC_BitTests: {
12124         // FIXME: Optimize away range check based on pivot comparisons.
12125         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12126 
12127         // The bit test blocks haven't been inserted yet; insert them here.
12128         for (BitTestCase &BTC : BTB->Cases)
12129           CurMF->insert(BBI, BTC.ThisBB);
12130 
12131         // Fill in fields of the BitTestBlock.
12132         BTB->Parent = CurMBB;
12133         BTB->Default = Fallthrough;
12134 
12135         BTB->DefaultProb = UnhandledProbs;
12136         // If the cases in bit test don't form a contiguous range, we evenly
12137         // distribute the probability on the edge to Fallthrough to two
12138         // successors of CurMBB.
12139         if (!BTB->ContiguousRange) {
12140           BTB->Prob += DefaultProb / 2;
12141           BTB->DefaultProb -= DefaultProb / 2;
12142         }
12143 
12144         if (FallthroughUnreachable)
12145           BTB->FallthroughUnreachable = true;
12146 
12147         // If we're in the right place, emit the bit test header right now.
12148         if (CurMBB == SwitchMBB) {
12149           visitBitTestHeader(*BTB, SwitchMBB);
12150           BTB->Emitted = true;
12151         }
12152         break;
12153       }
12154       case CC_Range: {
12155         const Value *RHS, *LHS, *MHS;
12156         ISD::CondCode CC;
12157         if (I->Low == I->High) {
12158           // Check Cond == I->Low.
12159           CC = ISD::SETEQ;
12160           LHS = Cond;
12161           RHS=I->Low;
12162           MHS = nullptr;
12163         } else {
12164           // Check I->Low <= Cond <= I->High.
12165           CC = ISD::SETLE;
12166           LHS = I->Low;
12167           MHS = Cond;
12168           RHS = I->High;
12169         }
12170 
12171         // If Fallthrough is unreachable, fold away the comparison.
12172         if (FallthroughUnreachable)
12173           CC = ISD::SETTRUE;
12174 
12175         // The false probability is the sum of all unhandled cases.
12176         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12177                      getCurSDLoc(), I->Prob, UnhandledProbs);
12178 
12179         if (CurMBB == SwitchMBB)
12180           visitSwitchCase(CB, SwitchMBB);
12181         else
12182           SL->SwitchCases.push_back(CB);
12183 
12184         break;
12185       }
12186     }
12187     CurMBB = Fallthrough;
12188   }
12189 }
12190 
12191 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12192                                         const SwitchWorkListItem &W,
12193                                         Value *Cond,
12194                                         MachineBasicBlock *SwitchMBB) {
12195   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12196          "Clusters not sorted?");
12197   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12198 
12199   auto [LastLeft, FirstRight, LeftProb, RightProb] =
12200       SL->computeSplitWorkItemInfo(W);
12201 
12202   // Use the first element on the right as pivot since we will make less-than
12203   // comparisons against it.
12204   CaseClusterIt PivotCluster = FirstRight;
12205   assert(PivotCluster > W.FirstCluster);
12206   assert(PivotCluster <= W.LastCluster);
12207 
12208   CaseClusterIt FirstLeft = W.FirstCluster;
12209   CaseClusterIt LastRight = W.LastCluster;
12210 
12211   const ConstantInt *Pivot = PivotCluster->Low;
12212 
12213   // New blocks will be inserted immediately after the current one.
12214   MachineFunction::iterator BBI(W.MBB);
12215   ++BBI;
12216 
12217   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12218   // we can branch to its destination directly if it's squeezed exactly in
12219   // between the known lower bound and Pivot - 1.
12220   MachineBasicBlock *LeftMBB;
12221   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12222       FirstLeft->Low == W.GE &&
12223       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12224     LeftMBB = FirstLeft->MBB;
12225   } else {
12226     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12227     FuncInfo.MF->insert(BBI, LeftMBB);
12228     WorkList.push_back(
12229         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12230     // Put Cond in a virtual register to make it available from the new blocks.
12231     ExportFromCurrentBlock(Cond);
12232   }
12233 
12234   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12235   // single cluster, RHS.Low == Pivot, and we can branch to its destination
12236   // directly if RHS.High equals the current upper bound.
12237   MachineBasicBlock *RightMBB;
12238   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12239       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12240     RightMBB = FirstRight->MBB;
12241   } else {
12242     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12243     FuncInfo.MF->insert(BBI, RightMBB);
12244     WorkList.push_back(
12245         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12246     // Put Cond in a virtual register to make it available from the new blocks.
12247     ExportFromCurrentBlock(Cond);
12248   }
12249 
12250   // Create the CaseBlock record that will be used to lower the branch.
12251   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12252                getCurSDLoc(), LeftProb, RightProb);
12253 
12254   if (W.MBB == SwitchMBB)
12255     visitSwitchCase(CB, SwitchMBB);
12256   else
12257     SL->SwitchCases.push_back(CB);
12258 }
12259 
12260 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12261 // from the swith statement.
12262 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
12263                                             BranchProbability PeeledCaseProb) {
12264   if (PeeledCaseProb == BranchProbability::getOne())
12265     return BranchProbability::getZero();
12266   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12267 
12268   uint32_t Numerator = CaseProb.getNumerator();
12269   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12270   return BranchProbability(Numerator, std::max(Numerator, Denominator));
12271 }
12272 
12273 // Try to peel the top probability case if it exceeds the threshold.
12274 // Return current MachineBasicBlock for the switch statement if the peeling
12275 // does not occur.
12276 // If the peeling is performed, return the newly created MachineBasicBlock
12277 // for the peeled switch statement. Also update Clusters to remove the peeled
12278 // case. PeeledCaseProb is the BranchProbability for the peeled case.
12279 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12280     const SwitchInst &SI, CaseClusterVector &Clusters,
12281     BranchProbability &PeeledCaseProb) {
12282   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12283   // Don't perform if there is only one cluster or optimizing for size.
12284   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12285       TM.getOptLevel() == CodeGenOptLevel::None ||
12286       SwitchMBB->getParent()->getFunction().hasMinSize())
12287     return SwitchMBB;
12288 
12289   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12290   unsigned PeeledCaseIndex = 0;
12291   bool SwitchPeeled = false;
12292   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12293     CaseCluster &CC = Clusters[Index];
12294     if (CC.Prob < TopCaseProb)
12295       continue;
12296     TopCaseProb = CC.Prob;
12297     PeeledCaseIndex = Index;
12298     SwitchPeeled = true;
12299   }
12300   if (!SwitchPeeled)
12301     return SwitchMBB;
12302 
12303   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12304                     << TopCaseProb << "\n");
12305 
12306   // Record the MBB for the peeled switch statement.
12307   MachineFunction::iterator BBI(SwitchMBB);
12308   ++BBI;
12309   MachineBasicBlock *PeeledSwitchMBB =
12310       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12311   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12312 
12313   ExportFromCurrentBlock(SI.getCondition());
12314   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12315   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12316                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12317   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12318 
12319   Clusters.erase(PeeledCaseIt);
12320   for (CaseCluster &CC : Clusters) {
12321     LLVM_DEBUG(
12322         dbgs() << "Scale the probablity for one cluster, before scaling: "
12323                << CC.Prob << "\n");
12324     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12325     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12326   }
12327   PeeledCaseProb = TopCaseProb;
12328   return PeeledSwitchMBB;
12329 }
12330 
12331 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12332   // Extract cases from the switch.
12333   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12334   CaseClusterVector Clusters;
12335   Clusters.reserve(SI.getNumCases());
12336   for (auto I : SI.cases()) {
12337     MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12338     const ConstantInt *CaseVal = I.getCaseValue();
12339     BranchProbability Prob =
12340         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12341             : BranchProbability(1, SI.getNumCases() + 1);
12342     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12343   }
12344 
12345   MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12346 
12347   // Cluster adjacent cases with the same destination. We do this at all
12348   // optimization levels because it's cheap to do and will make codegen faster
12349   // if there are many clusters.
12350   sortAndRangeify(Clusters);
12351 
12352   // The branch probablity of the peeled case.
12353   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12354   MachineBasicBlock *PeeledSwitchMBB =
12355       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12356 
12357   // If there is only the default destination, jump there directly.
12358   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12359   if (Clusters.empty()) {
12360     assert(PeeledSwitchMBB == SwitchMBB);
12361     SwitchMBB->addSuccessor(DefaultMBB);
12362     if (DefaultMBB != NextBlock(SwitchMBB)) {
12363       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12364                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12365     }
12366     return;
12367   }
12368 
12369   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12370                      DAG.getBFI());
12371   SL->findBitTestClusters(Clusters, &SI);
12372 
12373   LLVM_DEBUG({
12374     dbgs() << "Case clusters: ";
12375     for (const CaseCluster &C : Clusters) {
12376       if (C.Kind == CC_JumpTable)
12377         dbgs() << "JT:";
12378       if (C.Kind == CC_BitTests)
12379         dbgs() << "BT:";
12380 
12381       C.Low->getValue().print(dbgs(), true);
12382       if (C.Low != C.High) {
12383         dbgs() << '-';
12384         C.High->getValue().print(dbgs(), true);
12385       }
12386       dbgs() << ' ';
12387     }
12388     dbgs() << '\n';
12389   });
12390 
12391   assert(!Clusters.empty());
12392   SwitchWorkList WorkList;
12393   CaseClusterIt First = Clusters.begin();
12394   CaseClusterIt Last = Clusters.end() - 1;
12395   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12396   // Scale the branchprobability for DefaultMBB if the peel occurs and
12397   // DefaultMBB is not replaced.
12398   if (PeeledCaseProb != BranchProbability::getZero() &&
12399       DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12400     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12401   WorkList.push_back(
12402       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12403 
12404   while (!WorkList.empty()) {
12405     SwitchWorkListItem W = WorkList.pop_back_val();
12406     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12407 
12408     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12409         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12410       // For optimized builds, lower large range as a balanced binary tree.
12411       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12412       continue;
12413     }
12414 
12415     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12416   }
12417 }
12418 
12419 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12421   auto DL = getCurSDLoc();
12422   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12423   setValue(&I, DAG.getStepVector(DL, ResultVT));
12424 }
12425 
12426 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12428   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12429 
12430   SDLoc DL = getCurSDLoc();
12431   SDValue V = getValue(I.getOperand(0));
12432   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12433 
12434   if (VT.isScalableVector()) {
12435     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12436     return;
12437   }
12438 
12439   // Use VECTOR_SHUFFLE for the fixed-length vector
12440   // to maintain existing behavior.
12441   SmallVector<int, 8> Mask;
12442   unsigned NumElts = VT.getVectorMinNumElements();
12443   for (unsigned i = 0; i != NumElts; ++i)
12444     Mask.push_back(NumElts - 1 - i);
12445 
12446   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12447 }
12448 
12449 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12450   auto DL = getCurSDLoc();
12451   SDValue InVec = getValue(I.getOperand(0));
12452   EVT OutVT =
12453       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12454 
12455   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12456 
12457   // ISD Node needs the input vectors split into two equal parts
12458   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12459                            DAG.getVectorIdxConstant(0, DL));
12460   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12461                            DAG.getVectorIdxConstant(OutNumElts, DL));
12462 
12463   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12464   // legalisation and combines.
12465   if (OutVT.isFixedLengthVector()) {
12466     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12467                                         createStrideMask(0, 2, OutNumElts));
12468     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12469                                        createStrideMask(1, 2, OutNumElts));
12470     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12471     setValue(&I, Res);
12472     return;
12473   }
12474 
12475   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12476                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12477   setValue(&I, Res);
12478 }
12479 
12480 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12481   auto DL = getCurSDLoc();
12482   EVT InVT = getValue(I.getOperand(0)).getValueType();
12483   SDValue InVec0 = getValue(I.getOperand(0));
12484   SDValue InVec1 = getValue(I.getOperand(1));
12485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12486   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12487 
12488   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12489   // legalisation and combines.
12490   if (OutVT.isFixedLengthVector()) {
12491     unsigned NumElts = InVT.getVectorMinNumElements();
12492     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12493     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12494                                       createInterleaveMask(NumElts, 2)));
12495     return;
12496   }
12497 
12498   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12499                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12500   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12501                     Res.getValue(1));
12502   setValue(&I, Res);
12503 }
12504 
12505 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12506   SmallVector<EVT, 4> ValueVTs;
12507   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12508                   ValueVTs);
12509   unsigned NumValues = ValueVTs.size();
12510   if (NumValues == 0) return;
12511 
12512   SmallVector<SDValue, 4> Values(NumValues);
12513   SDValue Op = getValue(I.getOperand(0));
12514 
12515   for (unsigned i = 0; i != NumValues; ++i)
12516     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12517                             SDValue(Op.getNode(), Op.getResNo() + i));
12518 
12519   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12520                            DAG.getVTList(ValueVTs), Values));
12521 }
12522 
12523 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12525   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12526 
12527   SDLoc DL = getCurSDLoc();
12528   SDValue V1 = getValue(I.getOperand(0));
12529   SDValue V2 = getValue(I.getOperand(1));
12530   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12531 
12532   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12533   if (VT.isScalableVector()) {
12534     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12535                              DAG.getVectorIdxConstant(Imm, DL)));
12536     return;
12537   }
12538 
12539   unsigned NumElts = VT.getVectorNumElements();
12540 
12541   uint64_t Idx = (NumElts + Imm) % NumElts;
12542 
12543   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12544   SmallVector<int, 8> Mask;
12545   for (unsigned i = 0; i < NumElts; ++i)
12546     Mask.push_back(Idx + i);
12547   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12548 }
12549 
12550 // Consider the following MIR after SelectionDAG, which produces output in
12551 // phyregs in the first case or virtregs in the second case.
12552 //
12553 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12554 // %5:gr32 = COPY $ebx
12555 // %6:gr32 = COPY $edx
12556 // %1:gr32 = COPY %6:gr32
12557 // %0:gr32 = COPY %5:gr32
12558 //
12559 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12560 // %1:gr32 = COPY %6:gr32
12561 // %0:gr32 = COPY %5:gr32
12562 //
12563 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12564 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12565 //
12566 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12567 // to a single virtreg (such as %0). The remaining outputs monotonically
12568 // increase in virtreg number from there. If a callbr has no outputs, then it
12569 // should not have a corresponding callbr landingpad; in fact, the callbr
12570 // landingpad would not even be able to refer to such a callbr.
12571 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12572   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12573   // There is definitely at least one copy.
12574   assert(MI->getOpcode() == TargetOpcode::COPY &&
12575          "start of copy chain MUST be COPY");
12576   Reg = MI->getOperand(1).getReg();
12577   MI = MRI.def_begin(Reg)->getParent();
12578   // There may be an optional second copy.
12579   if (MI->getOpcode() == TargetOpcode::COPY) {
12580     assert(Reg.isVirtual() && "expected COPY of virtual register");
12581     Reg = MI->getOperand(1).getReg();
12582     assert(Reg.isPhysical() && "expected COPY of physical register");
12583     MI = MRI.def_begin(Reg)->getParent();
12584   }
12585   // The start of the chain must be an INLINEASM_BR.
12586   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12587          "end of copy chain MUST be INLINEASM_BR");
12588   return Reg;
12589 }
12590 
12591 // We must do this walk rather than the simpler
12592 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12593 // otherwise we will end up with copies of virtregs only valid along direct
12594 // edges.
12595 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12596   SmallVector<EVT, 8> ResultVTs;
12597   SmallVector<SDValue, 8> ResultValues;
12598   const auto *CBR =
12599       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12600 
12601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12602   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12603   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12604 
12605   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12606   SDValue Chain = DAG.getRoot();
12607 
12608   // Re-parse the asm constraints string.
12609   TargetLowering::AsmOperandInfoVector TargetConstraints =
12610       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12611   for (auto &T : TargetConstraints) {
12612     SDISelAsmOperandInfo OpInfo(T);
12613     if (OpInfo.Type != InlineAsm::isOutput)
12614       continue;
12615 
12616     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12617     // individual constraint.
12618     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12619 
12620     switch (OpInfo.ConstraintType) {
12621     case TargetLowering::C_Register:
12622     case TargetLowering::C_RegisterClass: {
12623       // Fill in OpInfo.AssignedRegs.Regs.
12624       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12625 
12626       // getRegistersForValue may produce 1 to many registers based on whether
12627       // the OpInfo.ConstraintVT is legal on the target or not.
12628       for (unsigned &Reg : OpInfo.AssignedRegs.Regs) {
12629         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12630         if (Register::isPhysicalRegister(OriginalDef))
12631           FuncInfo.MBB->addLiveIn(OriginalDef);
12632         // Update the assigned registers to use the original defs.
12633         Reg = OriginalDef;
12634       }
12635 
12636       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12637           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12638       ResultValues.push_back(V);
12639       ResultVTs.push_back(OpInfo.ConstraintVT);
12640       break;
12641     }
12642     case TargetLowering::C_Other: {
12643       SDValue Flag;
12644       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12645                                                   OpInfo, DAG);
12646       ++InitialDef;
12647       ResultValues.push_back(V);
12648       ResultVTs.push_back(OpInfo.ConstraintVT);
12649       break;
12650     }
12651     default:
12652       break;
12653     }
12654   }
12655   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12656                           DAG.getVTList(ResultVTs), ResultValues);
12657   setValue(&I, V);
12658 }
12659