xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7acc81b74428660efa5156815eebaee8a2ebe075)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // True if the Value passed requires ABI mangling as it is a parameter to a
161 // function or a return value from a function which is not an intrinsic.
162 static bool isABIRegCopy(const Value *V) {
163   const bool IsRetInst = V && isa<ReturnInst>(V);
164   const bool IsCallInst = V && isa<CallInst>(V);
165   const bool IsInLineAsm =
166       IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
167   const bool IsIndirectFunctionCall =
168       IsCallInst && !IsInLineAsm &&
169       !static_cast<const CallInst *>(V)->getCalledFunction();
170   // It is possible that the call instruction is an inline asm statement or an
171   // indirect function call in which case the return value of
172   // getCalledFunction() would be nullptr.
173   const bool IsInstrinsicCall =
174       IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
175       static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
176           Intrinsic::not_intrinsic;
177 
178   return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
179 }
180 
181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
182                                       const SDValue *Parts, unsigned NumParts,
183                                       MVT PartVT, EVT ValueVT, const Value *V,
184                                       bool IsABIRegCopy);
185 
186 /// getCopyFromParts - Create a value that contains the specified legal parts
187 /// combined into the value they represent.  If the parts combine to a type
188 /// larger than ValueVT then AssertOp can be used to specify whether the extra
189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
190 /// (ISD::AssertSext).
191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
192                                 const SDValue *Parts, unsigned NumParts,
193                                 MVT PartVT, EVT ValueVT, const Value *V,
194                                 Optional<ISD::NodeType> AssertOp = None,
195                                 bool IsABIRegCopy = false) {
196   if (ValueVT.isVector())
197     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
198                                   PartVT, ValueVT, V, IsABIRegCopy);
199 
200   assert(NumParts > 0 && "No parts to assemble!");
201   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
202   SDValue Val = Parts[0];
203 
204   if (NumParts > 1) {
205     // Assemble the value from multiple parts.
206     if (ValueVT.isInteger()) {
207       unsigned PartBits = PartVT.getSizeInBits();
208       unsigned ValueBits = ValueVT.getSizeInBits();
209 
210       // Assemble the power of 2 part.
211       unsigned RoundParts = NumParts & (NumParts - 1) ?
212         1 << Log2_32(NumParts) : NumParts;
213       unsigned RoundBits = PartBits * RoundParts;
214       EVT RoundVT = RoundBits == ValueBits ?
215         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
216       SDValue Lo, Hi;
217 
218       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
219 
220       if (RoundParts > 2) {
221         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
222                               PartVT, HalfVT, V);
223         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
224                               RoundParts / 2, PartVT, HalfVT, V);
225       } else {
226         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
227         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
228       }
229 
230       if (DAG.getDataLayout().isBigEndian())
231         std::swap(Lo, Hi);
232 
233       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
234 
235       if (RoundParts < NumParts) {
236         // Assemble the trailing non-power-of-2 part.
237         unsigned OddParts = NumParts - RoundParts;
238         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
239         Hi = getCopyFromParts(DAG, DL,
240                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
241 
242         // Combine the round and odd parts.
243         Lo = Val;
244         if (DAG.getDataLayout().isBigEndian())
245           std::swap(Lo, Hi);
246         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
247         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
248         Hi =
249             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
250                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
251                                         TLI.getPointerTy(DAG.getDataLayout())));
252         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
253         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
254       }
255     } else if (PartVT.isFloatingPoint()) {
256       // FP split into multiple FP parts (for ppcf128)
257       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
258              "Unexpected split");
259       SDValue Lo, Hi;
260       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
261       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
262       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
263         std::swap(Lo, Hi);
264       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
265     } else {
266       // FP split into integer parts (soft fp)
267       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
268              !PartVT.isVector() && "Unexpected split");
269       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
270       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
271     }
272   }
273 
274   // There is now one part, held in Val.  Correct it to match ValueVT.
275   // PartEVT is the type of the register class that holds the value.
276   // ValueVT is the type of the inline asm operation.
277   EVT PartEVT = Val.getValueType();
278 
279   if (PartEVT == ValueVT)
280     return Val;
281 
282   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
283       ValueVT.bitsLT(PartEVT)) {
284     // For an FP value in an integer part, we need to truncate to the right
285     // width first.
286     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
287     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
288   }
289 
290   // Handle types that have the same size.
291   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
292     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
293 
294   // Handle types with different sizes.
295   if (PartEVT.isInteger() && ValueVT.isInteger()) {
296     if (ValueVT.bitsLT(PartEVT)) {
297       // For a truncate, see if we have any information to
298       // indicate whether the truncated bits will always be
299       // zero or sign-extension.
300       if (AssertOp.hasValue())
301         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
302                           DAG.getValueType(ValueVT));
303       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304     }
305     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
306   }
307 
308   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
309     // FP_ROUND's are always exact here.
310     if (ValueVT.bitsLT(Val.getValueType()))
311       return DAG.getNode(
312           ISD::FP_ROUND, DL, ValueVT, Val,
313           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
314 
315     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
316   }
317 
318   llvm_unreachable("Unknown mismatch!");
319 }
320 
321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
322                                               const Twine &ErrMsg) {
323   const Instruction *I = dyn_cast_or_null<Instruction>(V);
324   if (!V)
325     return Ctx.emitError(ErrMsg);
326 
327   const char *AsmError = ", possible invalid constraint for vector type";
328   if (const CallInst *CI = dyn_cast<CallInst>(I))
329     if (isa<InlineAsm>(CI->getCalledValue()))
330       return Ctx.emitError(I, ErrMsg + AsmError);
331 
332   return Ctx.emitError(I, ErrMsg);
333 }
334 
335 /// getCopyFromPartsVector - Create a value that contains the specified legal
336 /// parts combined into the value they represent.  If the parts combine to a
337 /// type larger than ValueVT then AssertOp can be used to specify whether the
338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
339 /// ValueVT (ISD::AssertSext).
340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
341                                       const SDValue *Parts, unsigned NumParts,
342                                       MVT PartVT, EVT ValueVT, const Value *V,
343                                       bool IsABIRegCopy) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
359           RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
380                                   PartVT, IntermediateVT, V);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
389                                   PartVT, IntermediateVT, V);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
396                          (IntermediateVT.isVector()
397                               ? IntermediateVT.getVectorNumElements() * NumParts
398                               : NumIntermediates));
399     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
400                                                 : ISD::BUILD_VECTOR,
401                       DL, BuiltVectorTy, Ops);
402   }
403 
404   // There is now one part, held in Val.  Correct it to match ValueVT.
405   EVT PartEVT = Val.getValueType();
406 
407   if (PartEVT == ValueVT)
408     return Val;
409 
410   if (PartEVT.isVector()) {
411     // If the element type of the source/dest vectors are the same, but the
412     // parts vector has more elements than the value vector, then we have a
413     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
414     // elements we want.
415     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
416       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
417              "Cannot narrow, it would be a lossy transformation");
418       return DAG.getNode(
419           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
420           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
421     }
422 
423     // Vector/Vector bitcast.
424     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
425       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
426 
427     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
428       "Cannot handle this kind of promotion");
429     // Promoted vector extract
430     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
431 
432   }
433 
434   // Trivial bitcast if the types are the same size and the destination
435   // vector type is legal.
436   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
437       TLI.isTypeLegal(ValueVT))
438     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
439 
440   if (ValueVT.getVectorNumElements() != 1) {
441      // Certain ABIs require that vectors are passed as integers. For vectors
442      // are the same size, this is an obvious bitcast.
443      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
444        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
446        // Bitcast Val back the original type and extract the corresponding
447        // vector we want.
448        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
449        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
450                                            ValueVT.getVectorElementType(), Elts);
451        Val = DAG.getBitcast(WiderVecType, Val);
452        return DAG.getNode(
453            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
454            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
455      }
456 
457      diagnosePossiblyInvalidConstraint(
458          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
459      return DAG.getUNDEF(ValueVT);
460   }
461 
462   // Handle cases such as i8 -> <1 x i1>
463   EVT ValueSVT = ValueVT.getVectorElementType();
464   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
465     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
466                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
467 
468   return DAG.getBuildVector(ValueVT, DL, Val);
469 }
470 
471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
472                                  SDValue Val, SDValue *Parts, unsigned NumParts,
473                                  MVT PartVT, const Value *V, bool IsABIRegCopy);
474 
475 /// getCopyToParts - Create a series of nodes that contain the specified value
476 /// split into legal parts.  If the parts contain more bits than Val, then, for
477 /// integers, ExtendKind can be used to specify how to generate the extra bits.
478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
479                            SDValue *Parts, unsigned NumParts, MVT PartVT,
480                            const Value *V,
481                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND,
482                            bool IsABIRegCopy = false) {
483   EVT ValueVT = Val.getValueType();
484 
485   // Handle the vector case separately.
486   if (ValueVT.isVector())
487     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
488                                 IsABIRegCopy);
489 
490   unsigned PartBits = PartVT.getSizeInBits();
491   unsigned OrigNumParts = NumParts;
492   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
493          "Copying to an illegal type!");
494 
495   if (NumParts == 0)
496     return;
497 
498   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
499   EVT PartEVT = PartVT;
500   if (PartEVT == ValueVT) {
501     assert(NumParts == 1 && "No-op copy with multiple parts!");
502     Parts[0] = Val;
503     return;
504   }
505 
506   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
507     // If the parts cover more bits than the value has, promote the value.
508     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
509       assert(NumParts == 1 && "Do not know what to promote to!");
510       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
511     } else {
512       if (ValueVT.isFloatingPoint()) {
513         // FP values need to be bitcast, then extended if they are being put
514         // into a larger container.
515         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
516         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
517       }
518       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
519              ValueVT.isInteger() &&
520              "Unknown mismatch!");
521       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
522       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
523       if (PartVT == MVT::x86mmx)
524         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     }
526   } else if (PartBits == ValueVT.getSizeInBits()) {
527     // Different types of the same size.
528     assert(NumParts == 1 && PartEVT != ValueVT);
529     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
530   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
531     // If the parts cover less bits than value has, truncate the value.
532     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533            ValueVT.isInteger() &&
534            "Unknown mismatch!");
535     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
537     if (PartVT == MVT::x86mmx)
538       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   }
540 
541   // The value may have changed - recompute ValueVT.
542   ValueVT = Val.getValueType();
543   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
544          "Failed to tile the value with PartVT!");
545 
546   if (NumParts == 1) {
547     if (PartEVT != ValueVT) {
548       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
549                                         "scalar-to-vector conversion failed");
550       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551     }
552 
553     Parts[0] = Val;
554     return;
555   }
556 
557   // Expand the value into multiple parts.
558   if (NumParts & (NumParts - 1)) {
559     // The number of parts is not a power of 2.  Split off and copy the tail.
560     assert(PartVT.isInteger() && ValueVT.isInteger() &&
561            "Do not know what to expand to!");
562     unsigned RoundParts = 1 << Log2_32(NumParts);
563     unsigned RoundBits = RoundParts * PartBits;
564     unsigned OddParts = NumParts - RoundParts;
565     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
566                                  DAG.getIntPtrConstant(RoundBits, DL));
567     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
568 
569     if (DAG.getDataLayout().isBigEndian())
570       // The odd parts were reversed by getCopyToParts - unreverse them.
571       std::reverse(Parts + RoundParts, Parts + NumParts);
572 
573     NumParts = RoundParts;
574     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
575     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
576   }
577 
578   // The number of parts is a power of 2.  Repeatedly bisect the value using
579   // EXTRACT_ELEMENT.
580   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
581                          EVT::getIntegerVT(*DAG.getContext(),
582                                            ValueVT.getSizeInBits()),
583                          Val);
584 
585   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
586     for (unsigned i = 0; i < NumParts; i += StepSize) {
587       unsigned ThisBits = StepSize * PartBits / 2;
588       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
589       SDValue &Part0 = Parts[i];
590       SDValue &Part1 = Parts[i+StepSize/2];
591 
592       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
594       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
595                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
596 
597       if (ThisBits == PartBits && ThisVT != PartVT) {
598         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
599         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
600       }
601     }
602   }
603 
604   if (DAG.getDataLayout().isBigEndian())
605     std::reverse(Parts, Parts + OrigNumParts);
606 }
607 
608 
609 /// getCopyToPartsVector - Create a series of nodes that contain the specified
610 /// value split into legal parts.
611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
612                                  SDValue Val, SDValue *Parts, unsigned NumParts,
613                                  MVT PartVT, const Value *V,
614                                  bool IsABIRegCopy) {
615   EVT ValueVT = Val.getValueType();
616   assert(ValueVT.isVector() && "Not a vector");
617   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618 
619   if (NumParts == 1) {
620     EVT PartEVT = PartVT;
621     if (PartEVT == ValueVT) {
622       // Nothing to do.
623     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
624       // Bitconvert vector->vector case.
625       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
626     } else if (PartVT.isVector() &&
627                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
628                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
629       EVT ElementVT = PartVT.getVectorElementType();
630       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631       // undef elements.
632       SmallVector<SDValue, 16> Ops;
633       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
634         Ops.push_back(DAG.getNode(
635             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
636             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
637 
638       for (unsigned i = ValueVT.getVectorNumElements(),
639            e = PartVT.getVectorNumElements(); i != e; ++i)
640         Ops.push_back(DAG.getUNDEF(ElementVT));
641 
642       Val = DAG.getBuildVector(PartVT, DL, Ops);
643 
644       // FIXME: Use CONCAT for 2x -> 4x.
645 
646       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
647       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
648     } else if (PartVT.isVector() &&
649                PartEVT.getVectorElementType().bitsGE(
650                  ValueVT.getVectorElementType()) &&
651                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
652 
653       // Promoted vector extract
654       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
655     } else {
656       if (ValueVT.getVectorNumElements() == 1) {
657         Val = DAG.getNode(
658             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
659             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
660       } else {
661         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
662                "lossy conversion of vector to scalar type");
663         EVT IntermediateType =
664             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
665         Val = DAG.getBitcast(IntermediateType, Val);
666         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667       }
668     }
669 
670     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
671     Parts[0] = Val;
672     return;
673   }
674 
675   // Handle a multi-element vector.
676   EVT IntermediateVT;
677   MVT RegisterVT;
678   unsigned NumIntermediates;
679   unsigned NumRegs;
680   if (IsABIRegCopy) {
681     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
682         *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates,
683         RegisterVT);
684   } else {
685     NumRegs =
686         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
687                                    NumIntermediates, RegisterVT);
688   }
689   unsigned NumElements = ValueVT.getVectorNumElements();
690 
691   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
692   NumParts = NumRegs; // Silence a compiler warning.
693   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
694 
695   // Convert the vector to the appropiate type if necessary.
696   unsigned DestVectorNoElts =
697       NumIntermediates *
698       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
699   EVT BuiltVectorTy = EVT::getVectorVT(
700       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
701   if (Val.getValueType() != BuiltVectorTy)
702     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
703 
704   // Split the vector into intermediate operands.
705   SmallVector<SDValue, 8> Ops(NumIntermediates);
706   for (unsigned i = 0; i != NumIntermediates; ++i) {
707     if (IntermediateVT.isVector())
708       Ops[i] =
709           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
710                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
711                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
712     else
713       Ops[i] = DAG.getNode(
714           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
715           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
716   }
717 
718   // Split the intermediate operands into legal parts.
719   if (NumParts == NumIntermediates) {
720     // If the register was not expanded, promote or copy the value,
721     // as appropriate.
722     for (unsigned i = 0; i != NumParts; ++i)
723       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
724   } else if (NumParts > 0) {
725     // If the intermediate type was expanded, split each the value into
726     // legal parts.
727     assert(NumIntermediates != 0 && "division by zero");
728     assert(NumParts % NumIntermediates == 0 &&
729            "Must expand into a divisible number of parts!");
730     unsigned Factor = NumParts / NumIntermediates;
731     for (unsigned i = 0; i != NumIntermediates; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
733   }
734 }
735 
736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
737                            EVT valuevt, bool IsABIMangledValue)
738     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
739       RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {}
740 
741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
742                            const DataLayout &DL, unsigned Reg, Type *Ty,
743                            bool IsABIMangledValue) {
744   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
745 
746   IsABIMangled = IsABIMangledValue;
747 
748   for (EVT ValueVT : ValueVTs) {
749     unsigned NumRegs = IsABIMangledValue
750                            ? TLI.getNumRegistersForCallingConv(Context, ValueVT)
751                            : TLI.getNumRegisters(Context, ValueVT);
752     MVT RegisterVT = IsABIMangledValue
753                          ? TLI.getRegisterTypeForCallingConv(Context, ValueVT)
754                          : TLI.getRegisterType(Context, ValueVT);
755     for (unsigned i = 0; i != NumRegs; ++i)
756       Regs.push_back(Reg + i);
757     RegVTs.push_back(RegisterVT);
758     RegCount.push_back(NumRegs);
759     Reg += NumRegs;
760   }
761 }
762 
763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
764                                       FunctionLoweringInfo &FuncInfo,
765                                       const SDLoc &dl, SDValue &Chain,
766                                       SDValue *Flag, const Value *V) const {
767   // A Value with type {} or [0 x %t] needs no registers.
768   if (ValueVTs.empty())
769     return SDValue();
770 
771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 
773   // Assemble the legal parts into the final values.
774   SmallVector<SDValue, 4> Values(ValueVTs.size());
775   SmallVector<SDValue, 8> Parts;
776   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
777     // Copy the legal parts from the registers.
778     EVT ValueVT = ValueVTs[Value];
779     unsigned NumRegs = RegCount[Value];
780     MVT RegisterVT = IsABIMangled
781                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
782                          : RegVTs[Value];
783 
784     Parts.resize(NumRegs);
785     for (unsigned i = 0; i != NumRegs; ++i) {
786       SDValue P;
787       if (!Flag) {
788         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
789       } else {
790         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
791         *Flag = P.getValue(2);
792       }
793 
794       Chain = P.getValue(1);
795       Parts[i] = P;
796 
797       // If the source register was virtual and if we know something about it,
798       // add an assert node.
799       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
800           !RegisterVT.isInteger() || RegisterVT.isVector())
801         continue;
802 
803       const FunctionLoweringInfo::LiveOutInfo *LOI =
804         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
805       if (!LOI)
806         continue;
807 
808       unsigned RegSize = RegisterVT.getSizeInBits();
809       unsigned NumSignBits = LOI->NumSignBits;
810       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
811 
812       if (NumZeroBits == RegSize) {
813         // The current value is a zero.
814         // Explicitly express that as it would be easier for
815         // optimizations to kick in.
816         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
817         continue;
818       }
819 
820       // FIXME: We capture more information than the dag can represent.  For
821       // now, just use the tightest assertzext/assertsext possible.
822       bool isSExt = true;
823       EVT FromVT(MVT::Other);
824       if (NumSignBits == RegSize) {
825         isSExt = true;   // ASSERT SEXT 1
826         FromVT = MVT::i1;
827       } else if (NumZeroBits >= RegSize - 1) {
828         isSExt = false;  // ASSERT ZEXT 1
829         FromVT = MVT::i1;
830       } else if (NumSignBits > RegSize - 8) {
831         isSExt = true;   // ASSERT SEXT 8
832         FromVT = MVT::i8;
833       } else if (NumZeroBits >= RegSize - 8) {
834         isSExt = false;  // ASSERT ZEXT 8
835         FromVT = MVT::i8;
836       } else if (NumSignBits > RegSize - 16) {
837         isSExt = true;   // ASSERT SEXT 16
838         FromVT = MVT::i16;
839       } else if (NumZeroBits >= RegSize - 16) {
840         isSExt = false;  // ASSERT ZEXT 16
841         FromVT = MVT::i16;
842       } else if (NumSignBits > RegSize - 32) {
843         isSExt = true;   // ASSERT SEXT 32
844         FromVT = MVT::i32;
845       } else if (NumZeroBits >= RegSize - 32) {
846         isSExt = false;  // ASSERT ZEXT 32
847         FromVT = MVT::i32;
848       } else {
849         continue;
850       }
851       // Add an assertion node.
852       assert(FromVT != MVT::Other);
853       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
854                              RegisterVT, P, DAG.getValueType(FromVT));
855     }
856 
857     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
858                                      NumRegs, RegisterVT, ValueVT, V);
859     Part += NumRegs;
860     Parts.clear();
861   }
862 
863   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
864 }
865 
866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
867                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
868                                  const Value *V,
869                                  ISD::NodeType PreferredExtendType) const {
870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
871   ISD::NodeType ExtendKind = PreferredExtendType;
872 
873   // Get the list of the values's legal parts.
874   unsigned NumRegs = Regs.size();
875   SmallVector<SDValue, 8> Parts(NumRegs);
876   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
877     unsigned NumParts = RegCount[Value];
878 
879     MVT RegisterVT = IsABIMangled
880                          ? TLI.getRegisterTypeForCallingConv(RegVTs[Value])
881                          : RegVTs[Value];
882 
883     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
884       ExtendKind = ISD::ZERO_EXTEND;
885 
886     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
887                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
888     Part += NumParts;
889   }
890 
891   // Copy the parts into the registers.
892   SmallVector<SDValue, 8> Chains(NumRegs);
893   for (unsigned i = 0; i != NumRegs; ++i) {
894     SDValue Part;
895     if (!Flag) {
896       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
897     } else {
898       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
899       *Flag = Part.getValue(1);
900     }
901 
902     Chains[i] = Part.getValue(0);
903   }
904 
905   if (NumRegs == 1 || Flag)
906     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
907     // flagged to it. That is the CopyToReg nodes and the user are considered
908     // a single scheduling unit. If we create a TokenFactor and return it as
909     // chain, then the TokenFactor is both a predecessor (operand) of the
910     // user as well as a successor (the TF operands are flagged to the user).
911     // c1, f1 = CopyToReg
912     // c2, f2 = CopyToReg
913     // c3     = TokenFactor c1, c2
914     // ...
915     //        = op c3, ..., f2
916     Chain = Chains[NumRegs-1];
917   else
918     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
919 }
920 
921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
922                                         unsigned MatchingIdx, const SDLoc &dl,
923                                         SelectionDAG &DAG,
924                                         std::vector<SDValue> &Ops) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926 
927   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
928   if (HasMatching)
929     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
930   else if (!Regs.empty() &&
931            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
932     // Put the register class of the virtual registers in the flag word.  That
933     // way, later passes can recompute register class constraints for inline
934     // assembly as well as normal instructions.
935     // Don't do this for tied operands that can use the regclass information
936     // from the def.
937     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
938     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
939     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
940   }
941 
942   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
943   Ops.push_back(Res);
944 
945   if (Code == InlineAsm::Kind_Clobber) {
946     // Clobbers should always have a 1:1 mapping with registers, and may
947     // reference registers that have illegal (e.g. vector) types. Hence, we
948     // shouldn't try to apply any sort of splitting logic to them.
949     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
950            "No 1:1 mapping from clobbers to regs?");
951     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
952     (void)SP;
953     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
954       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
955       assert(
956           (Regs[I] != SP ||
957            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
958           "If we clobbered the stack pointer, MFI should know about it.");
959     }
960     return;
961   }
962 
963   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
965     MVT RegisterVT = RegVTs[Value];
966     for (unsigned i = 0; i != NumRegs; ++i) {
967       assert(Reg < Regs.size() && "Mismatch in # registers expected");
968       unsigned TheReg = Regs[Reg++];
969       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
970     }
971   }
972 }
973 
974 SmallVector<std::pair<unsigned, unsigned>, 4>
975 RegsForValue::getRegsAndSizes() const {
976   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
977   unsigned I = 0;
978   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
979     unsigned RegCount = std::get<0>(CountAndVT);
980     MVT RegisterVT = std::get<1>(CountAndVT);
981     unsigned RegisterSize = RegisterVT.getSizeInBits();
982     for (unsigned E = I + RegCount; I != E; ++I)
983       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
984   }
985   return OutVec;
986 }
987 
988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
989                                const TargetLibraryInfo *li) {
990   AA = aa;
991   GFI = gfi;
992   LibInfo = li;
993   DL = &DAG.getDataLayout();
994   Context = DAG.getContext();
995   LPadToCallSiteMap.clear();
996 }
997 
998 void SelectionDAGBuilder::clear() {
999   NodeMap.clear();
1000   UnusedArgNodeMap.clear();
1001   PendingLoads.clear();
1002   PendingExports.clear();
1003   CurInst = nullptr;
1004   HasTailCall = false;
1005   SDNodeOrder = LowestSDNodeOrder;
1006   StatepointLowering.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1010   DanglingDebugInfoMap.clear();
1011 }
1012 
1013 SDValue SelectionDAGBuilder::getRoot() {
1014   if (PendingLoads.empty())
1015     return DAG.getRoot();
1016 
1017   if (PendingLoads.size() == 1) {
1018     SDValue Root = PendingLoads[0];
1019     DAG.setRoot(Root);
1020     PendingLoads.clear();
1021     return Root;
1022   }
1023 
1024   // Otherwise, we have to make a token factor node.
1025   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1026                              PendingLoads);
1027   PendingLoads.clear();
1028   DAG.setRoot(Root);
1029   return Root;
1030 }
1031 
1032 SDValue SelectionDAGBuilder::getControlRoot() {
1033   SDValue Root = DAG.getRoot();
1034 
1035   if (PendingExports.empty())
1036     return Root;
1037 
1038   // Turn all of the CopyToReg chains into one factored node.
1039   if (Root.getOpcode() != ISD::EntryToken) {
1040     unsigned i = 0, e = PendingExports.size();
1041     for (; i != e; ++i) {
1042       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1043       if (PendingExports[i].getNode()->getOperand(0) == Root)
1044         break;  // Don't add the root if we already indirectly depend on it.
1045     }
1046 
1047     if (i == e)
1048       PendingExports.push_back(Root);
1049   }
1050 
1051   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1052                      PendingExports);
1053   PendingExports.clear();
1054   DAG.setRoot(Root);
1055   return Root;
1056 }
1057 
1058 void SelectionDAGBuilder::visit(const Instruction &I) {
1059   // Set up outgoing PHI node register values before emitting the terminator.
1060   if (isa<TerminatorInst>(&I)) {
1061     HandlePHINodesInSuccessorBlocks(I.getParent());
1062   }
1063 
1064   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1065   if (!isa<DbgInfoIntrinsic>(I))
1066     ++SDNodeOrder;
1067 
1068   CurInst = &I;
1069 
1070   visit(I.getOpcode(), I);
1071 
1072   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1073       !isStatepoint(&I)) // statepoints handle their exports internally
1074     CopyToExportRegsIfNeeded(&I);
1075 
1076   CurInst = nullptr;
1077 }
1078 
1079 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1080   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1081 }
1082 
1083 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1084   // Note: this doesn't use InstVisitor, because it has to work with
1085   // ConstantExpr's in addition to instructions.
1086   switch (Opcode) {
1087   default: llvm_unreachable("Unknown instruction type encountered!");
1088     // Build the switch statement using the Instruction.def file.
1089 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1090     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1091 #include "llvm/IR/Instruction.def"
1092   }
1093 }
1094 
1095 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1096                                                 const DIExpression *Expr) {
1097   for (auto &DDIMI : DanglingDebugInfoMap)
1098     for (auto &DDI : DDIMI.second)
1099       if (DDI.getDI()) {
1100         const DbgValueInst *DI = DDI.getDI();
1101         DIVariable *DanglingVariable = DI->getVariable();
1102         DIExpression *DanglingExpr = DI->getExpression();
1103         if (DanglingVariable == Variable &&
1104             Expr->fragmentsOverlap(DanglingExpr)) {
1105           DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1106           DDI = DanglingDebugInfo();
1107         }
1108       }
1109 }
1110 
1111 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1112 // generate the debug data structures now that we've seen its definition.
1113 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1114                                                    SDValue Val) {
1115   DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V];
1116   for (auto &DDI : DDIV) {
1117     if (!DDI.getDI())
1118       continue;
1119     const DbgValueInst *DI = DDI.getDI();
1120     DebugLoc dl = DDI.getdl();
1121     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1122     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1123     DILocalVariable *Variable = DI->getVariable();
1124     DIExpression *Expr = DI->getExpression();
1125     assert(Variable->isValidLocationForIntrinsic(dl) &&
1126            "Expected inlined-at fields to agree");
1127     SDDbgValue *SDV;
1128     if (Val.getNode()) {
1129       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1130         DEBUG(dbgs() << "Resolve dangling debug info [order=" << DbgSDNodeOrder
1131               << "] for:\n  " << *DI << "\n");
1132         DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1133         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1134         // inserted after the definition of Val when emitting the instructions
1135         // after ISel. An alternative could be to teach
1136         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1137         DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder)
1138                 dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder
1139                        << " to " << ValSDNodeOrder << "\n");
1140         SDV = getDbgValue(Val, Variable, Expr, dl,
1141                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1142         DAG.AddDbgValue(SDV, Val.getNode(), false);
1143       } else
1144         DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1145               << "in EmitFuncArgumentDbgValue\n");
1146     } else
1147       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1148   }
1149   DanglingDebugInfoMap[V].clear();
1150 }
1151 
1152 /// getCopyFromRegs - If there was virtual register allocated for the value V
1153 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1154 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1155   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1156   SDValue Result;
1157 
1158   if (It != FuncInfo.ValueMap.end()) {
1159     unsigned InReg = It->second;
1160 
1161     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1162                      DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
1163     SDValue Chain = DAG.getEntryNode();
1164     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1165                                  V);
1166     resolveDanglingDebugInfo(V, Result);
1167   }
1168 
1169   return Result;
1170 }
1171 
1172 /// getValue - Return an SDValue for the given Value.
1173 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1174   // If we already have an SDValue for this value, use it. It's important
1175   // to do this first, so that we don't create a CopyFromReg if we already
1176   // have a regular SDValue.
1177   SDValue &N = NodeMap[V];
1178   if (N.getNode()) return N;
1179 
1180   // If there's a virtual register allocated and initialized for this
1181   // value, use it.
1182   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1183     return copyFromReg;
1184 
1185   // Otherwise create a new SDValue and remember it.
1186   SDValue Val = getValueImpl(V);
1187   NodeMap[V] = Val;
1188   resolveDanglingDebugInfo(V, Val);
1189   return Val;
1190 }
1191 
1192 // Return true if SDValue exists for the given Value
1193 bool SelectionDAGBuilder::findValue(const Value *V) const {
1194   return (NodeMap.find(V) != NodeMap.end()) ||
1195     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1196 }
1197 
1198 /// getNonRegisterValue - Return an SDValue for the given Value, but
1199 /// don't look in FuncInfo.ValueMap for a virtual register.
1200 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1201   // If we already have an SDValue for this value, use it.
1202   SDValue &N = NodeMap[V];
1203   if (N.getNode()) {
1204     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1205       // Remove the debug location from the node as the node is about to be used
1206       // in a location which may differ from the original debug location.  This
1207       // is relevant to Constant and ConstantFP nodes because they can appear
1208       // as constant expressions inside PHI nodes.
1209       N->setDebugLoc(DebugLoc());
1210     }
1211     return N;
1212   }
1213 
1214   // Otherwise create a new SDValue and remember it.
1215   SDValue Val = getValueImpl(V);
1216   NodeMap[V] = Val;
1217   resolveDanglingDebugInfo(V, Val);
1218   return Val;
1219 }
1220 
1221 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1222 /// Create an SDValue for the given value.
1223 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1224   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1225 
1226   if (const Constant *C = dyn_cast<Constant>(V)) {
1227     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1228 
1229     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1230       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1231 
1232     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1233       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1234 
1235     if (isa<ConstantPointerNull>(C)) {
1236       unsigned AS = V->getType()->getPointerAddressSpace();
1237       return DAG.getConstant(0, getCurSDLoc(),
1238                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1239     }
1240 
1241     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1242       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1243 
1244     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1245       return DAG.getUNDEF(VT);
1246 
1247     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1248       visit(CE->getOpcode(), *CE);
1249       SDValue N1 = NodeMap[V];
1250       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1251       return N1;
1252     }
1253 
1254     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1255       SmallVector<SDValue, 4> Constants;
1256       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1257            OI != OE; ++OI) {
1258         SDNode *Val = getValue(*OI).getNode();
1259         // If the operand is an empty aggregate, there are no values.
1260         if (!Val) continue;
1261         // Add each leaf value from the operand to the Constants list
1262         // to form a flattened list of all the values.
1263         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1264           Constants.push_back(SDValue(Val, i));
1265       }
1266 
1267       return DAG.getMergeValues(Constants, getCurSDLoc());
1268     }
1269 
1270     if (const ConstantDataSequential *CDS =
1271           dyn_cast<ConstantDataSequential>(C)) {
1272       SmallVector<SDValue, 4> Ops;
1273       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1274         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1275         // Add each leaf value from the operand to the Constants list
1276         // to form a flattened list of all the values.
1277         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1278           Ops.push_back(SDValue(Val, i));
1279       }
1280 
1281       if (isa<ArrayType>(CDS->getType()))
1282         return DAG.getMergeValues(Ops, getCurSDLoc());
1283       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1284     }
1285 
1286     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1287       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1288              "Unknown struct or array constant!");
1289 
1290       SmallVector<EVT, 4> ValueVTs;
1291       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1292       unsigned NumElts = ValueVTs.size();
1293       if (NumElts == 0)
1294         return SDValue(); // empty struct
1295       SmallVector<SDValue, 4> Constants(NumElts);
1296       for (unsigned i = 0; i != NumElts; ++i) {
1297         EVT EltVT = ValueVTs[i];
1298         if (isa<UndefValue>(C))
1299           Constants[i] = DAG.getUNDEF(EltVT);
1300         else if (EltVT.isFloatingPoint())
1301           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1302         else
1303           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1304       }
1305 
1306       return DAG.getMergeValues(Constants, getCurSDLoc());
1307     }
1308 
1309     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1310       return DAG.getBlockAddress(BA, VT);
1311 
1312     VectorType *VecTy = cast<VectorType>(V->getType());
1313     unsigned NumElements = VecTy->getNumElements();
1314 
1315     // Now that we know the number and type of the elements, get that number of
1316     // elements into the Ops array based on what kind of constant it is.
1317     SmallVector<SDValue, 16> Ops;
1318     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1319       for (unsigned i = 0; i != NumElements; ++i)
1320         Ops.push_back(getValue(CV->getOperand(i)));
1321     } else {
1322       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1323       EVT EltVT =
1324           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1325 
1326       SDValue Op;
1327       if (EltVT.isFloatingPoint())
1328         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1329       else
1330         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1331       Ops.assign(NumElements, Op);
1332     }
1333 
1334     // Create a BUILD_VECTOR node.
1335     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1336   }
1337 
1338   // If this is a static alloca, generate it as the frameindex instead of
1339   // computation.
1340   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1341     DenseMap<const AllocaInst*, int>::iterator SI =
1342       FuncInfo.StaticAllocaMap.find(AI);
1343     if (SI != FuncInfo.StaticAllocaMap.end())
1344       return DAG.getFrameIndex(SI->second,
1345                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1346   }
1347 
1348   // If this is an instruction which fast-isel has deferred, select it now.
1349   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1350     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1351 
1352     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1353                      Inst->getType(), isABIRegCopy(V));
1354     SDValue Chain = DAG.getEntryNode();
1355     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1356   }
1357 
1358   llvm_unreachable("Can't get register for value!");
1359 }
1360 
1361 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1362   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1363   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1364   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1365   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1366   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1367   if (IsMSVCCXX || IsCoreCLR)
1368     CatchPadMBB->setIsEHFuncletEntry();
1369 
1370   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1371 }
1372 
1373 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1374   // Update machine-CFG edge.
1375   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1376   FuncInfo.MBB->addSuccessor(TargetMBB);
1377 
1378   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1379   bool IsSEH = isAsynchronousEHPersonality(Pers);
1380   if (IsSEH) {
1381     // If this is not a fall-through branch or optimizations are switched off,
1382     // emit the branch.
1383     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1384         TM.getOptLevel() == CodeGenOpt::None)
1385       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1386                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1387     return;
1388   }
1389 
1390   // Figure out the funclet membership for the catchret's successor.
1391   // This will be used by the FuncletLayout pass to determine how to order the
1392   // BB's.
1393   // A 'catchret' returns to the outer scope's color.
1394   Value *ParentPad = I.getCatchSwitchParentPad();
1395   const BasicBlock *SuccessorColor;
1396   if (isa<ConstantTokenNone>(ParentPad))
1397     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1398   else
1399     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1400   assert(SuccessorColor && "No parent funclet for catchret!");
1401   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1402   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1403 
1404   // Create the terminator node.
1405   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1406                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1407                             DAG.getBasicBlock(SuccessorColorMBB));
1408   DAG.setRoot(Ret);
1409 }
1410 
1411 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1412   // Don't emit any special code for the cleanuppad instruction. It just marks
1413   // the start of a funclet.
1414   FuncInfo.MBB->setIsEHFuncletEntry();
1415   FuncInfo.MBB->setIsCleanupFuncletEntry();
1416 }
1417 
1418 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1419 /// many places it could ultimately go. In the IR, we have a single unwind
1420 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1421 /// This function skips over imaginary basic blocks that hold catchswitch
1422 /// instructions, and finds all the "real" machine
1423 /// basic block destinations. As those destinations may not be successors of
1424 /// EHPadBB, here we also calculate the edge probability to those destinations.
1425 /// The passed-in Prob is the edge probability to EHPadBB.
1426 static void findUnwindDestinations(
1427     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1428     BranchProbability Prob,
1429     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1430         &UnwindDests) {
1431   EHPersonality Personality =
1432     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1433   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1434   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1435 
1436   while (EHPadBB) {
1437     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1438     BasicBlock *NewEHPadBB = nullptr;
1439     if (isa<LandingPadInst>(Pad)) {
1440       // Stop on landingpads. They are not funclets.
1441       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1442       break;
1443     } else if (isa<CleanupPadInst>(Pad)) {
1444       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1445       // personalities.
1446       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1447       UnwindDests.back().first->setIsEHFuncletEntry();
1448       break;
1449     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1450       // Add the catchpad handlers to the possible destinations.
1451       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1452         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1453         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1454         if (IsMSVCCXX || IsCoreCLR)
1455           UnwindDests.back().first->setIsEHFuncletEntry();
1456       }
1457       NewEHPadBB = CatchSwitch->getUnwindDest();
1458     } else {
1459       continue;
1460     }
1461 
1462     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1463     if (BPI && NewEHPadBB)
1464       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1465     EHPadBB = NewEHPadBB;
1466   }
1467 }
1468 
1469 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1470   // Update successor info.
1471   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1472   auto UnwindDest = I.getUnwindDest();
1473   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1474   BranchProbability UnwindDestProb =
1475       (BPI && UnwindDest)
1476           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1477           : BranchProbability::getZero();
1478   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1479   for (auto &UnwindDest : UnwindDests) {
1480     UnwindDest.first->setIsEHPad();
1481     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1482   }
1483   FuncInfo.MBB->normalizeSuccProbs();
1484 
1485   // Create the terminator node.
1486   SDValue Ret =
1487       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1488   DAG.setRoot(Ret);
1489 }
1490 
1491 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1492   report_fatal_error("visitCatchSwitch not yet implemented!");
1493 }
1494 
1495 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1496   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1497   auto &DL = DAG.getDataLayout();
1498   SDValue Chain = getControlRoot();
1499   SmallVector<ISD::OutputArg, 8> Outs;
1500   SmallVector<SDValue, 8> OutVals;
1501 
1502   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1503   // lower
1504   //
1505   //   %val = call <ty> @llvm.experimental.deoptimize()
1506   //   ret <ty> %val
1507   //
1508   // differently.
1509   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1510     LowerDeoptimizingReturn();
1511     return;
1512   }
1513 
1514   if (!FuncInfo.CanLowerReturn) {
1515     unsigned DemoteReg = FuncInfo.DemoteRegister;
1516     const Function *F = I.getParent()->getParent();
1517 
1518     // Emit a store of the return value through the virtual register.
1519     // Leave Outs empty so that LowerReturn won't try to load return
1520     // registers the usual way.
1521     SmallVector<EVT, 1> PtrValueVTs;
1522     ComputeValueVTs(TLI, DL,
1523                     F->getReturnType()->getPointerTo(
1524                         DAG.getDataLayout().getAllocaAddrSpace()),
1525                     PtrValueVTs);
1526 
1527     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1528                                         DemoteReg, PtrValueVTs[0]);
1529     SDValue RetOp = getValue(I.getOperand(0));
1530 
1531     SmallVector<EVT, 4> ValueVTs;
1532     SmallVector<uint64_t, 4> Offsets;
1533     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1534     unsigned NumValues = ValueVTs.size();
1535 
1536     SmallVector<SDValue, 4> Chains(NumValues);
1537     for (unsigned i = 0; i != NumValues; ++i) {
1538       // An aggregate return value cannot wrap around the address space, so
1539       // offsets to its parts don't wrap either.
1540       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1541       Chains[i] = DAG.getStore(
1542           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1543           // FIXME: better loc info would be nice.
1544           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1545     }
1546 
1547     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1548                         MVT::Other, Chains);
1549   } else if (I.getNumOperands() != 0) {
1550     SmallVector<EVT, 4> ValueVTs;
1551     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1552     unsigned NumValues = ValueVTs.size();
1553     if (NumValues) {
1554       SDValue RetOp = getValue(I.getOperand(0));
1555 
1556       const Function *F = I.getParent()->getParent();
1557 
1558       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1559       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1560                                           Attribute::SExt))
1561         ExtendKind = ISD::SIGN_EXTEND;
1562       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1563                                                Attribute::ZExt))
1564         ExtendKind = ISD::ZERO_EXTEND;
1565 
1566       LLVMContext &Context = F->getContext();
1567       bool RetInReg = F->getAttributes().hasAttribute(
1568           AttributeList::ReturnIndex, Attribute::InReg);
1569 
1570       for (unsigned j = 0; j != NumValues; ++j) {
1571         EVT VT = ValueVTs[j];
1572 
1573         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1574           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1575 
1576         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT);
1577         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT);
1578         SmallVector<SDValue, 4> Parts(NumParts);
1579         getCopyToParts(DAG, getCurSDLoc(),
1580                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1581                        &Parts[0], NumParts, PartVT, &I, ExtendKind, true);
1582 
1583         // 'inreg' on function refers to return value
1584         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1585         if (RetInReg)
1586           Flags.setInReg();
1587 
1588         // Propagate extension type if any
1589         if (ExtendKind == ISD::SIGN_EXTEND)
1590           Flags.setSExt();
1591         else if (ExtendKind == ISD::ZERO_EXTEND)
1592           Flags.setZExt();
1593 
1594         for (unsigned i = 0; i < NumParts; ++i) {
1595           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1596                                         VT, /*isfixed=*/true, 0, 0));
1597           OutVals.push_back(Parts[i]);
1598         }
1599       }
1600     }
1601   }
1602 
1603   // Push in swifterror virtual register as the last element of Outs. This makes
1604   // sure swifterror virtual register will be returned in the swifterror
1605   // physical register.
1606   const Function *F = I.getParent()->getParent();
1607   if (TLI.supportSwiftError() &&
1608       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1609     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1610     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1611     Flags.setSwiftError();
1612     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1613                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1614                                   true /*isfixed*/, 1 /*origidx*/,
1615                                   0 /*partOffs*/));
1616     // Create SDNode for the swifterror virtual register.
1617     OutVals.push_back(
1618         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1619                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1620                         EVT(TLI.getPointerTy(DL))));
1621   }
1622 
1623   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1624   CallingConv::ID CallConv =
1625     DAG.getMachineFunction().getFunction().getCallingConv();
1626   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1627       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1628 
1629   // Verify that the target's LowerReturn behaved as expected.
1630   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1631          "LowerReturn didn't return a valid chain!");
1632 
1633   // Update the DAG with the new chain value resulting from return lowering.
1634   DAG.setRoot(Chain);
1635 }
1636 
1637 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1638 /// created for it, emit nodes to copy the value into the virtual
1639 /// registers.
1640 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1641   // Skip empty types
1642   if (V->getType()->isEmptyTy())
1643     return;
1644 
1645   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1646   if (VMI != FuncInfo.ValueMap.end()) {
1647     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1648     CopyValueToVirtualRegister(V, VMI->second);
1649   }
1650 }
1651 
1652 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1653 /// the current basic block, add it to ValueMap now so that we'll get a
1654 /// CopyTo/FromReg.
1655 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1656   // No need to export constants.
1657   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1658 
1659   // Already exported?
1660   if (FuncInfo.isExportedInst(V)) return;
1661 
1662   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1663   CopyValueToVirtualRegister(V, Reg);
1664 }
1665 
1666 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1667                                                      const BasicBlock *FromBB) {
1668   // The operands of the setcc have to be in this block.  We don't know
1669   // how to export them from some other block.
1670   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1671     // Can export from current BB.
1672     if (VI->getParent() == FromBB)
1673       return true;
1674 
1675     // Is already exported, noop.
1676     return FuncInfo.isExportedInst(V);
1677   }
1678 
1679   // If this is an argument, we can export it if the BB is the entry block or
1680   // if it is already exported.
1681   if (isa<Argument>(V)) {
1682     if (FromBB == &FromBB->getParent()->getEntryBlock())
1683       return true;
1684 
1685     // Otherwise, can only export this if it is already exported.
1686     return FuncInfo.isExportedInst(V);
1687   }
1688 
1689   // Otherwise, constants can always be exported.
1690   return true;
1691 }
1692 
1693 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1694 BranchProbability
1695 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1696                                         const MachineBasicBlock *Dst) const {
1697   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1698   const BasicBlock *SrcBB = Src->getBasicBlock();
1699   const BasicBlock *DstBB = Dst->getBasicBlock();
1700   if (!BPI) {
1701     // If BPI is not available, set the default probability as 1 / N, where N is
1702     // the number of successors.
1703     auto SuccSize = std::max<uint32_t>(
1704         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1705     return BranchProbability(1, SuccSize);
1706   }
1707   return BPI->getEdgeProbability(SrcBB, DstBB);
1708 }
1709 
1710 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1711                                                MachineBasicBlock *Dst,
1712                                                BranchProbability Prob) {
1713   if (!FuncInfo.BPI)
1714     Src->addSuccessorWithoutProb(Dst);
1715   else {
1716     if (Prob.isUnknown())
1717       Prob = getEdgeProbability(Src, Dst);
1718     Src->addSuccessor(Dst, Prob);
1719   }
1720 }
1721 
1722 static bool InBlock(const Value *V, const BasicBlock *BB) {
1723   if (const Instruction *I = dyn_cast<Instruction>(V))
1724     return I->getParent() == BB;
1725   return true;
1726 }
1727 
1728 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1729 /// This function emits a branch and is used at the leaves of an OR or an
1730 /// AND operator tree.
1731 void
1732 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1733                                                   MachineBasicBlock *TBB,
1734                                                   MachineBasicBlock *FBB,
1735                                                   MachineBasicBlock *CurBB,
1736                                                   MachineBasicBlock *SwitchBB,
1737                                                   BranchProbability TProb,
1738                                                   BranchProbability FProb,
1739                                                   bool InvertCond) {
1740   const BasicBlock *BB = CurBB->getBasicBlock();
1741 
1742   // If the leaf of the tree is a comparison, merge the condition into
1743   // the caseblock.
1744   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1745     // The operands of the cmp have to be in this block.  We don't know
1746     // how to export them from some other block.  If this is the first block
1747     // of the sequence, no exporting is needed.
1748     if (CurBB == SwitchBB ||
1749         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1750          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1751       ISD::CondCode Condition;
1752       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1753         ICmpInst::Predicate Pred =
1754             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1755         Condition = getICmpCondCode(Pred);
1756       } else {
1757         const FCmpInst *FC = cast<FCmpInst>(Cond);
1758         FCmpInst::Predicate Pred =
1759             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1760         Condition = getFCmpCondCode(Pred);
1761         if (TM.Options.NoNaNsFPMath)
1762           Condition = getFCmpCodeWithoutNaN(Condition);
1763       }
1764 
1765       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1766                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1767       SwitchCases.push_back(CB);
1768       return;
1769     }
1770   }
1771 
1772   // Create a CaseBlock record representing this branch.
1773   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1774   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1775                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1776   SwitchCases.push_back(CB);
1777 }
1778 
1779 /// FindMergedConditions - If Cond is an expression like
1780 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1781                                                MachineBasicBlock *TBB,
1782                                                MachineBasicBlock *FBB,
1783                                                MachineBasicBlock *CurBB,
1784                                                MachineBasicBlock *SwitchBB,
1785                                                Instruction::BinaryOps Opc,
1786                                                BranchProbability TProb,
1787                                                BranchProbability FProb,
1788                                                bool InvertCond) {
1789   // Skip over not part of the tree and remember to invert op and operands at
1790   // next level.
1791   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1792     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1793     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1794       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1795                            !InvertCond);
1796       return;
1797     }
1798   }
1799 
1800   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1801   // Compute the effective opcode for Cond, taking into account whether it needs
1802   // to be inverted, e.g.
1803   //   and (not (or A, B)), C
1804   // gets lowered as
1805   //   and (and (not A, not B), C)
1806   unsigned BOpc = 0;
1807   if (BOp) {
1808     BOpc = BOp->getOpcode();
1809     if (InvertCond) {
1810       if (BOpc == Instruction::And)
1811         BOpc = Instruction::Or;
1812       else if (BOpc == Instruction::Or)
1813         BOpc = Instruction::And;
1814     }
1815   }
1816 
1817   // If this node is not part of the or/and tree, emit it as a branch.
1818   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1819       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1820       BOp->getParent() != CurBB->getBasicBlock() ||
1821       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1822       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1823     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1824                                  TProb, FProb, InvertCond);
1825     return;
1826   }
1827 
1828   //  Create TmpBB after CurBB.
1829   MachineFunction::iterator BBI(CurBB);
1830   MachineFunction &MF = DAG.getMachineFunction();
1831   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1832   CurBB->getParent()->insert(++BBI, TmpBB);
1833 
1834   if (Opc == Instruction::Or) {
1835     // Codegen X | Y as:
1836     // BB1:
1837     //   jmp_if_X TBB
1838     //   jmp TmpBB
1839     // TmpBB:
1840     //   jmp_if_Y TBB
1841     //   jmp FBB
1842     //
1843 
1844     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1845     // The requirement is that
1846     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1847     //     = TrueProb for original BB.
1848     // Assuming the original probabilities are A and B, one choice is to set
1849     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1850     // A/(1+B) and 2B/(1+B). This choice assumes that
1851     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1852     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1853     // TmpBB, but the math is more complicated.
1854 
1855     auto NewTrueProb = TProb / 2;
1856     auto NewFalseProb = TProb / 2 + FProb;
1857     // Emit the LHS condition.
1858     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1859                          NewTrueProb, NewFalseProb, InvertCond);
1860 
1861     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1862     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1863     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1864     // Emit the RHS condition into TmpBB.
1865     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1866                          Probs[0], Probs[1], InvertCond);
1867   } else {
1868     assert(Opc == Instruction::And && "Unknown merge op!");
1869     // Codegen X & Y as:
1870     // BB1:
1871     //   jmp_if_X TmpBB
1872     //   jmp FBB
1873     // TmpBB:
1874     //   jmp_if_Y TBB
1875     //   jmp FBB
1876     //
1877     //  This requires creation of TmpBB after CurBB.
1878 
1879     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1880     // The requirement is that
1881     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1882     //     = FalseProb for original BB.
1883     // Assuming the original probabilities are A and B, one choice is to set
1884     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1885     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1886     // TrueProb for BB1 * FalseProb for TmpBB.
1887 
1888     auto NewTrueProb = TProb + FProb / 2;
1889     auto NewFalseProb = FProb / 2;
1890     // Emit the LHS condition.
1891     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1892                          NewTrueProb, NewFalseProb, InvertCond);
1893 
1894     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1895     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1896     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1897     // Emit the RHS condition into TmpBB.
1898     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1899                          Probs[0], Probs[1], InvertCond);
1900   }
1901 }
1902 
1903 /// If the set of cases should be emitted as a series of branches, return true.
1904 /// If we should emit this as a bunch of and/or'd together conditions, return
1905 /// false.
1906 bool
1907 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1908   if (Cases.size() != 2) return true;
1909 
1910   // If this is two comparisons of the same values or'd or and'd together, they
1911   // will get folded into a single comparison, so don't emit two blocks.
1912   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1913        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1914       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1915        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1916     return false;
1917   }
1918 
1919   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1920   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1921   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1922       Cases[0].CC == Cases[1].CC &&
1923       isa<Constant>(Cases[0].CmpRHS) &&
1924       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1925     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1926       return false;
1927     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1928       return false;
1929   }
1930 
1931   return true;
1932 }
1933 
1934 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1935   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1936 
1937   // Update machine-CFG edges.
1938   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1939 
1940   if (I.isUnconditional()) {
1941     // Update machine-CFG edges.
1942     BrMBB->addSuccessor(Succ0MBB);
1943 
1944     // If this is not a fall-through branch or optimizations are switched off,
1945     // emit the branch.
1946     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1947       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1948                               MVT::Other, getControlRoot(),
1949                               DAG.getBasicBlock(Succ0MBB)));
1950 
1951     return;
1952   }
1953 
1954   // If this condition is one of the special cases we handle, do special stuff
1955   // now.
1956   const Value *CondVal = I.getCondition();
1957   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1958 
1959   // If this is a series of conditions that are or'd or and'd together, emit
1960   // this as a sequence of branches instead of setcc's with and/or operations.
1961   // As long as jumps are not expensive, this should improve performance.
1962   // For example, instead of something like:
1963   //     cmp A, B
1964   //     C = seteq
1965   //     cmp D, E
1966   //     F = setle
1967   //     or C, F
1968   //     jnz foo
1969   // Emit:
1970   //     cmp A, B
1971   //     je foo
1972   //     cmp D, E
1973   //     jle foo
1974   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1975     Instruction::BinaryOps Opcode = BOp->getOpcode();
1976     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1977         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1978         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1979       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1980                            Opcode,
1981                            getEdgeProbability(BrMBB, Succ0MBB),
1982                            getEdgeProbability(BrMBB, Succ1MBB),
1983                            /*InvertCond=*/false);
1984       // If the compares in later blocks need to use values not currently
1985       // exported from this block, export them now.  This block should always
1986       // be the first entry.
1987       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1988 
1989       // Allow some cases to be rejected.
1990       if (ShouldEmitAsBranches(SwitchCases)) {
1991         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1992           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1993           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1994         }
1995 
1996         // Emit the branch for this block.
1997         visitSwitchCase(SwitchCases[0], BrMBB);
1998         SwitchCases.erase(SwitchCases.begin());
1999         return;
2000       }
2001 
2002       // Okay, we decided not to do this, remove any inserted MBB's and clear
2003       // SwitchCases.
2004       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2005         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2006 
2007       SwitchCases.clear();
2008     }
2009   }
2010 
2011   // Create a CaseBlock record representing this branch.
2012   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2013                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2014 
2015   // Use visitSwitchCase to actually insert the fast branch sequence for this
2016   // cond branch.
2017   visitSwitchCase(CB, BrMBB);
2018 }
2019 
2020 /// visitSwitchCase - Emits the necessary code to represent a single node in
2021 /// the binary search tree resulting from lowering a switch instruction.
2022 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2023                                           MachineBasicBlock *SwitchBB) {
2024   SDValue Cond;
2025   SDValue CondLHS = getValue(CB.CmpLHS);
2026   SDLoc dl = CB.DL;
2027 
2028   // Build the setcc now.
2029   if (!CB.CmpMHS) {
2030     // Fold "(X == true)" to X and "(X == false)" to !X to
2031     // handle common cases produced by branch lowering.
2032     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2033         CB.CC == ISD::SETEQ)
2034       Cond = CondLHS;
2035     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2036              CB.CC == ISD::SETEQ) {
2037       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2038       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2039     } else
2040       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2041   } else {
2042     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2043 
2044     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2045     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2046 
2047     SDValue CmpOp = getValue(CB.CmpMHS);
2048     EVT VT = CmpOp.getValueType();
2049 
2050     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2051       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2052                           ISD::SETLE);
2053     } else {
2054       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2055                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2056       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2057                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2058     }
2059   }
2060 
2061   // Update successor info
2062   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2063   // TrueBB and FalseBB are always different unless the incoming IR is
2064   // degenerate. This only happens when running llc on weird IR.
2065   if (CB.TrueBB != CB.FalseBB)
2066     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2067   SwitchBB->normalizeSuccProbs();
2068 
2069   // If the lhs block is the next block, invert the condition so that we can
2070   // fall through to the lhs instead of the rhs block.
2071   if (CB.TrueBB == NextBlock(SwitchBB)) {
2072     std::swap(CB.TrueBB, CB.FalseBB);
2073     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2074     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2075   }
2076 
2077   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2078                                MVT::Other, getControlRoot(), Cond,
2079                                DAG.getBasicBlock(CB.TrueBB));
2080 
2081   // Insert the false branch. Do this even if it's a fall through branch,
2082   // this makes it easier to do DAG optimizations which require inverting
2083   // the branch condition.
2084   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2085                        DAG.getBasicBlock(CB.FalseBB));
2086 
2087   DAG.setRoot(BrCond);
2088 }
2089 
2090 /// visitJumpTable - Emit JumpTable node in the current MBB
2091 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2092   // Emit the code for the jump table
2093   assert(JT.Reg != -1U && "Should lower JT Header first!");
2094   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2095   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2096                                      JT.Reg, PTy);
2097   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2098   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2099                                     MVT::Other, Index.getValue(1),
2100                                     Table, Index);
2101   DAG.setRoot(BrJumpTable);
2102 }
2103 
2104 /// visitJumpTableHeader - This function emits necessary code to produce index
2105 /// in the JumpTable from switch case.
2106 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2107                                                JumpTableHeader &JTH,
2108                                                MachineBasicBlock *SwitchBB) {
2109   SDLoc dl = getCurSDLoc();
2110 
2111   // Subtract the lowest switch case value from the value being switched on and
2112   // conditional branch to default mbb if the result is greater than the
2113   // difference between smallest and largest cases.
2114   SDValue SwitchOp = getValue(JTH.SValue);
2115   EVT VT = SwitchOp.getValueType();
2116   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2117                             DAG.getConstant(JTH.First, dl, VT));
2118 
2119   // The SDNode we just created, which holds the value being switched on minus
2120   // the smallest case value, needs to be copied to a virtual register so it
2121   // can be used as an index into the jump table in a subsequent basic block.
2122   // This value may be smaller or larger than the target's pointer type, and
2123   // therefore require extension or truncating.
2124   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2125   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2126 
2127   unsigned JumpTableReg =
2128       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2129   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2130                                     JumpTableReg, SwitchOp);
2131   JT.Reg = JumpTableReg;
2132 
2133   // Emit the range check for the jump table, and branch to the default block
2134   // for the switch statement if the value being switched on exceeds the largest
2135   // case in the switch.
2136   SDValue CMP = DAG.getSetCC(
2137       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2138                                  Sub.getValueType()),
2139       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2140 
2141   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2142                                MVT::Other, CopyTo, CMP,
2143                                DAG.getBasicBlock(JT.Default));
2144 
2145   // Avoid emitting unnecessary branches to the next block.
2146   if (JT.MBB != NextBlock(SwitchBB))
2147     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2148                          DAG.getBasicBlock(JT.MBB));
2149 
2150   DAG.setRoot(BrCond);
2151 }
2152 
2153 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2154 /// variable if there exists one.
2155 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2156                                  SDValue &Chain) {
2157   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2158   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2159   MachineFunction &MF = DAG.getMachineFunction();
2160   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2161   MachineSDNode *Node =
2162       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2163   if (Global) {
2164     MachinePointerInfo MPInfo(Global);
2165     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2166     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2167                  MachineMemOperand::MODereferenceable;
2168     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2169                                        DAG.getEVTAlignment(PtrTy));
2170     Node->setMemRefs(MemRefs, MemRefs + 1);
2171   }
2172   return SDValue(Node, 0);
2173 }
2174 
2175 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2176 /// tail spliced into a stack protector check success bb.
2177 ///
2178 /// For a high level explanation of how this fits into the stack protector
2179 /// generation see the comment on the declaration of class
2180 /// StackProtectorDescriptor.
2181 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2182                                                   MachineBasicBlock *ParentBB) {
2183 
2184   // First create the loads to the guard/stack slot for the comparison.
2185   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2186   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2187 
2188   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2189   int FI = MFI.getStackProtectorIndex();
2190 
2191   SDValue Guard;
2192   SDLoc dl = getCurSDLoc();
2193   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2194   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2195   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2196 
2197   // Generate code to load the content of the guard slot.
2198   SDValue GuardVal = DAG.getLoad(
2199       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2200       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2201       MachineMemOperand::MOVolatile);
2202 
2203   if (TLI.useStackGuardXorFP())
2204     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2205 
2206   // Retrieve guard check function, nullptr if instrumentation is inlined.
2207   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2208     // The target provides a guard check function to validate the guard value.
2209     // Generate a call to that function with the content of the guard slot as
2210     // argument.
2211     auto *Fn = cast<Function>(GuardCheck);
2212     FunctionType *FnTy = Fn->getFunctionType();
2213     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2214 
2215     TargetLowering::ArgListTy Args;
2216     TargetLowering::ArgListEntry Entry;
2217     Entry.Node = GuardVal;
2218     Entry.Ty = FnTy->getParamType(0);
2219     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2220       Entry.IsInReg = true;
2221     Args.push_back(Entry);
2222 
2223     TargetLowering::CallLoweringInfo CLI(DAG);
2224     CLI.setDebugLoc(getCurSDLoc())
2225       .setChain(DAG.getEntryNode())
2226       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2227                  getValue(GuardCheck), std::move(Args));
2228 
2229     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2230     DAG.setRoot(Result.second);
2231     return;
2232   }
2233 
2234   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2235   // Otherwise, emit a volatile load to retrieve the stack guard value.
2236   SDValue Chain = DAG.getEntryNode();
2237   if (TLI.useLoadStackGuardNode()) {
2238     Guard = getLoadStackGuard(DAG, dl, Chain);
2239   } else {
2240     const Value *IRGuard = TLI.getSDagStackGuard(M);
2241     SDValue GuardPtr = getValue(IRGuard);
2242 
2243     Guard =
2244         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2245                     Align, MachineMemOperand::MOVolatile);
2246   }
2247 
2248   // Perform the comparison via a subtract/getsetcc.
2249   EVT VT = Guard.getValueType();
2250   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2251 
2252   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2253                                                         *DAG.getContext(),
2254                                                         Sub.getValueType()),
2255                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2256 
2257   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2258   // branch to failure MBB.
2259   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2260                                MVT::Other, GuardVal.getOperand(0),
2261                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2262   // Otherwise branch to success MBB.
2263   SDValue Br = DAG.getNode(ISD::BR, dl,
2264                            MVT::Other, BrCond,
2265                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2266 
2267   DAG.setRoot(Br);
2268 }
2269 
2270 /// Codegen the failure basic block for a stack protector check.
2271 ///
2272 /// A failure stack protector machine basic block consists simply of a call to
2273 /// __stack_chk_fail().
2274 ///
2275 /// For a high level explanation of how this fits into the stack protector
2276 /// generation see the comment on the declaration of class
2277 /// StackProtectorDescriptor.
2278 void
2279 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2280   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2281   SDValue Chain =
2282       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2283                       None, false, getCurSDLoc(), false, false).second;
2284   DAG.setRoot(Chain);
2285 }
2286 
2287 /// visitBitTestHeader - This function emits necessary code to produce value
2288 /// suitable for "bit tests"
2289 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2290                                              MachineBasicBlock *SwitchBB) {
2291   SDLoc dl = getCurSDLoc();
2292 
2293   // Subtract the minimum value
2294   SDValue SwitchOp = getValue(B.SValue);
2295   EVT VT = SwitchOp.getValueType();
2296   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2297                             DAG.getConstant(B.First, dl, VT));
2298 
2299   // Check range
2300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2301   SDValue RangeCmp = DAG.getSetCC(
2302       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2303                                  Sub.getValueType()),
2304       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2305 
2306   // Determine the type of the test operands.
2307   bool UsePtrType = false;
2308   if (!TLI.isTypeLegal(VT))
2309     UsePtrType = true;
2310   else {
2311     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2312       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2313         // Switch table case range are encoded into series of masks.
2314         // Just use pointer type, it's guaranteed to fit.
2315         UsePtrType = true;
2316         break;
2317       }
2318   }
2319   if (UsePtrType) {
2320     VT = TLI.getPointerTy(DAG.getDataLayout());
2321     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2322   }
2323 
2324   B.RegVT = VT.getSimpleVT();
2325   B.Reg = FuncInfo.CreateReg(B.RegVT);
2326   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2327 
2328   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2329 
2330   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2331   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2332   SwitchBB->normalizeSuccProbs();
2333 
2334   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2335                                 MVT::Other, CopyTo, RangeCmp,
2336                                 DAG.getBasicBlock(B.Default));
2337 
2338   // Avoid emitting unnecessary branches to the next block.
2339   if (MBB != NextBlock(SwitchBB))
2340     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2341                           DAG.getBasicBlock(MBB));
2342 
2343   DAG.setRoot(BrRange);
2344 }
2345 
2346 /// visitBitTestCase - this function produces one "bit test"
2347 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2348                                            MachineBasicBlock* NextMBB,
2349                                            BranchProbability BranchProbToNext,
2350                                            unsigned Reg,
2351                                            BitTestCase &B,
2352                                            MachineBasicBlock *SwitchBB) {
2353   SDLoc dl = getCurSDLoc();
2354   MVT VT = BB.RegVT;
2355   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2356   SDValue Cmp;
2357   unsigned PopCount = countPopulation(B.Mask);
2358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2359   if (PopCount == 1) {
2360     // Testing for a single bit; just compare the shift count with what it
2361     // would need to be to shift a 1 bit in that position.
2362     Cmp = DAG.getSetCC(
2363         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2364         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2365         ISD::SETEQ);
2366   } else if (PopCount == BB.Range) {
2367     // There is only one zero bit in the range, test for it directly.
2368     Cmp = DAG.getSetCC(
2369         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2370         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2371         ISD::SETNE);
2372   } else {
2373     // Make desired shift
2374     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2375                                     DAG.getConstant(1, dl, VT), ShiftOp);
2376 
2377     // Emit bit tests and jumps
2378     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2379                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2380     Cmp = DAG.getSetCC(
2381         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2382         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2383   }
2384 
2385   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2386   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2387   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2388   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2389   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2390   // one as they are relative probabilities (and thus work more like weights),
2391   // and hence we need to normalize them to let the sum of them become one.
2392   SwitchBB->normalizeSuccProbs();
2393 
2394   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2395                               MVT::Other, getControlRoot(),
2396                               Cmp, DAG.getBasicBlock(B.TargetBB));
2397 
2398   // Avoid emitting unnecessary branches to the next block.
2399   if (NextMBB != NextBlock(SwitchBB))
2400     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2401                         DAG.getBasicBlock(NextMBB));
2402 
2403   DAG.setRoot(BrAnd);
2404 }
2405 
2406 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2407   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2408 
2409   // Retrieve successors. Look through artificial IR level blocks like
2410   // catchswitch for successors.
2411   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2412   const BasicBlock *EHPadBB = I.getSuccessor(1);
2413 
2414   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2415   // have to do anything here to lower funclet bundles.
2416   assert(!I.hasOperandBundlesOtherThan(
2417              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2418          "Cannot lower invokes with arbitrary operand bundles yet!");
2419 
2420   const Value *Callee(I.getCalledValue());
2421   const Function *Fn = dyn_cast<Function>(Callee);
2422   if (isa<InlineAsm>(Callee))
2423     visitInlineAsm(&I);
2424   else if (Fn && Fn->isIntrinsic()) {
2425     switch (Fn->getIntrinsicID()) {
2426     default:
2427       llvm_unreachable("Cannot invoke this intrinsic");
2428     case Intrinsic::donothing:
2429       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2430       break;
2431     case Intrinsic::experimental_patchpoint_void:
2432     case Intrinsic::experimental_patchpoint_i64:
2433       visitPatchpoint(&I, EHPadBB);
2434       break;
2435     case Intrinsic::experimental_gc_statepoint:
2436       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2437       break;
2438     }
2439   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2440     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2441     // Eventually we will support lowering the @llvm.experimental.deoptimize
2442     // intrinsic, and right now there are no plans to support other intrinsics
2443     // with deopt state.
2444     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2445   } else {
2446     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2447   }
2448 
2449   // If the value of the invoke is used outside of its defining block, make it
2450   // available as a virtual register.
2451   // We already took care of the exported value for the statepoint instruction
2452   // during call to the LowerStatepoint.
2453   if (!isStatepoint(I)) {
2454     CopyToExportRegsIfNeeded(&I);
2455   }
2456 
2457   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2458   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2459   BranchProbability EHPadBBProb =
2460       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2461           : BranchProbability::getZero();
2462   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2463 
2464   // Update successor info.
2465   addSuccessorWithProb(InvokeMBB, Return);
2466   for (auto &UnwindDest : UnwindDests) {
2467     UnwindDest.first->setIsEHPad();
2468     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2469   }
2470   InvokeMBB->normalizeSuccProbs();
2471 
2472   // Drop into normal successor.
2473   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2474                           MVT::Other, getControlRoot(),
2475                           DAG.getBasicBlock(Return)));
2476 }
2477 
2478 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2479   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2480 }
2481 
2482 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2483   assert(FuncInfo.MBB->isEHPad() &&
2484          "Call to landingpad not in landing pad!");
2485 
2486   MachineBasicBlock *MBB = FuncInfo.MBB;
2487   addLandingPadInfo(LP, *MBB);
2488 
2489   // If there aren't registers to copy the values into (e.g., during SjLj
2490   // exceptions), then don't bother to create these DAG nodes.
2491   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2492   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2493   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2494       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2495     return;
2496 
2497   // If landingpad's return type is token type, we don't create DAG nodes
2498   // for its exception pointer and selector value. The extraction of exception
2499   // pointer or selector value from token type landingpads is not currently
2500   // supported.
2501   if (LP.getType()->isTokenTy())
2502     return;
2503 
2504   SmallVector<EVT, 2> ValueVTs;
2505   SDLoc dl = getCurSDLoc();
2506   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2507   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2508 
2509   // Get the two live-in registers as SDValues. The physregs have already been
2510   // copied into virtual registers.
2511   SDValue Ops[2];
2512   if (FuncInfo.ExceptionPointerVirtReg) {
2513     Ops[0] = DAG.getZExtOrTrunc(
2514         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2515                            FuncInfo.ExceptionPointerVirtReg,
2516                            TLI.getPointerTy(DAG.getDataLayout())),
2517         dl, ValueVTs[0]);
2518   } else {
2519     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2520   }
2521   Ops[1] = DAG.getZExtOrTrunc(
2522       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2523                          FuncInfo.ExceptionSelectorVirtReg,
2524                          TLI.getPointerTy(DAG.getDataLayout())),
2525       dl, ValueVTs[1]);
2526 
2527   // Merge into one.
2528   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2529                             DAG.getVTList(ValueVTs), Ops);
2530   setValue(&LP, Res);
2531 }
2532 
2533 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2534 #ifndef NDEBUG
2535   for (const CaseCluster &CC : Clusters)
2536     assert(CC.Low == CC.High && "Input clusters must be single-case");
2537 #endif
2538 
2539   llvm::sort(Clusters.begin(), Clusters.end(),
2540              [](const CaseCluster &a, const CaseCluster &b) {
2541     return a.Low->getValue().slt(b.Low->getValue());
2542   });
2543 
2544   // Merge adjacent clusters with the same destination.
2545   const unsigned N = Clusters.size();
2546   unsigned DstIndex = 0;
2547   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2548     CaseCluster &CC = Clusters[SrcIndex];
2549     const ConstantInt *CaseVal = CC.Low;
2550     MachineBasicBlock *Succ = CC.MBB;
2551 
2552     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2553         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2554       // If this case has the same successor and is a neighbour, merge it into
2555       // the previous cluster.
2556       Clusters[DstIndex - 1].High = CaseVal;
2557       Clusters[DstIndex - 1].Prob += CC.Prob;
2558     } else {
2559       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2560                    sizeof(Clusters[SrcIndex]));
2561     }
2562   }
2563   Clusters.resize(DstIndex);
2564 }
2565 
2566 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2567                                            MachineBasicBlock *Last) {
2568   // Update JTCases.
2569   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2570     if (JTCases[i].first.HeaderBB == First)
2571       JTCases[i].first.HeaderBB = Last;
2572 
2573   // Update BitTestCases.
2574   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2575     if (BitTestCases[i].Parent == First)
2576       BitTestCases[i].Parent = Last;
2577 }
2578 
2579 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2580   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2581 
2582   // Update machine-CFG edges with unique successors.
2583   SmallSet<BasicBlock*, 32> Done;
2584   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2585     BasicBlock *BB = I.getSuccessor(i);
2586     bool Inserted = Done.insert(BB).second;
2587     if (!Inserted)
2588         continue;
2589 
2590     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2591     addSuccessorWithProb(IndirectBrMBB, Succ);
2592   }
2593   IndirectBrMBB->normalizeSuccProbs();
2594 
2595   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2596                           MVT::Other, getControlRoot(),
2597                           getValue(I.getAddress())));
2598 }
2599 
2600 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2601   if (DAG.getTarget().Options.TrapUnreachable)
2602     DAG.setRoot(
2603         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2604 }
2605 
2606 void SelectionDAGBuilder::visitFSub(const User &I) {
2607   // -0.0 - X --> fneg
2608   Type *Ty = I.getType();
2609   if (isa<Constant>(I.getOperand(0)) &&
2610       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2611     SDValue Op2 = getValue(I.getOperand(1));
2612     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2613                              Op2.getValueType(), Op2));
2614     return;
2615   }
2616 
2617   visitBinary(I, ISD::FSUB);
2618 }
2619 
2620 /// Checks if the given instruction performs a vector reduction, in which case
2621 /// we have the freedom to alter the elements in the result as long as the
2622 /// reduction of them stays unchanged.
2623 static bool isVectorReductionOp(const User *I) {
2624   const Instruction *Inst = dyn_cast<Instruction>(I);
2625   if (!Inst || !Inst->getType()->isVectorTy())
2626     return false;
2627 
2628   auto OpCode = Inst->getOpcode();
2629   switch (OpCode) {
2630   case Instruction::Add:
2631   case Instruction::Mul:
2632   case Instruction::And:
2633   case Instruction::Or:
2634   case Instruction::Xor:
2635     break;
2636   case Instruction::FAdd:
2637   case Instruction::FMul:
2638     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2639       if (FPOp->getFastMathFlags().isFast())
2640         break;
2641     LLVM_FALLTHROUGH;
2642   default:
2643     return false;
2644   }
2645 
2646   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2647   unsigned ElemNumToReduce = ElemNum;
2648 
2649   // Do DFS search on the def-use chain from the given instruction. We only
2650   // allow four kinds of operations during the search until we reach the
2651   // instruction that extracts the first element from the vector:
2652   //
2653   //   1. The reduction operation of the same opcode as the given instruction.
2654   //
2655   //   2. PHI node.
2656   //
2657   //   3. ShuffleVector instruction together with a reduction operation that
2658   //      does a partial reduction.
2659   //
2660   //   4. ExtractElement that extracts the first element from the vector, and we
2661   //      stop searching the def-use chain here.
2662   //
2663   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2664   // from 1-3 to the stack to continue the DFS. The given instruction is not
2665   // a reduction operation if we meet any other instructions other than those
2666   // listed above.
2667 
2668   SmallVector<const User *, 16> UsersToVisit{Inst};
2669   SmallPtrSet<const User *, 16> Visited;
2670   bool ReduxExtracted = false;
2671 
2672   while (!UsersToVisit.empty()) {
2673     auto User = UsersToVisit.back();
2674     UsersToVisit.pop_back();
2675     if (!Visited.insert(User).second)
2676       continue;
2677 
2678     for (const auto &U : User->users()) {
2679       auto Inst = dyn_cast<Instruction>(U);
2680       if (!Inst)
2681         return false;
2682 
2683       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2684         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2685           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2686             return false;
2687         UsersToVisit.push_back(U);
2688       } else if (const ShuffleVectorInst *ShufInst =
2689                      dyn_cast<ShuffleVectorInst>(U)) {
2690         // Detect the following pattern: A ShuffleVector instruction together
2691         // with a reduction that do partial reduction on the first and second
2692         // ElemNumToReduce / 2 elements, and store the result in
2693         // ElemNumToReduce / 2 elements in another vector.
2694 
2695         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2696         if (ResultElements < ElemNum)
2697           return false;
2698 
2699         if (ElemNumToReduce == 1)
2700           return false;
2701         if (!isa<UndefValue>(U->getOperand(1)))
2702           return false;
2703         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2704           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2705             return false;
2706         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2707           if (ShufInst->getMaskValue(i) != -1)
2708             return false;
2709 
2710         // There is only one user of this ShuffleVector instruction, which
2711         // must be a reduction operation.
2712         if (!U->hasOneUse())
2713           return false;
2714 
2715         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2716         if (!U2 || U2->getOpcode() != OpCode)
2717           return false;
2718 
2719         // Check operands of the reduction operation.
2720         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2721             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2722           UsersToVisit.push_back(U2);
2723           ElemNumToReduce /= 2;
2724         } else
2725           return false;
2726       } else if (isa<ExtractElementInst>(U)) {
2727         // At this moment we should have reduced all elements in the vector.
2728         if (ElemNumToReduce != 1)
2729           return false;
2730 
2731         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2732         if (!Val || Val->getZExtValue() != 0)
2733           return false;
2734 
2735         ReduxExtracted = true;
2736       } else
2737         return false;
2738     }
2739   }
2740   return ReduxExtracted;
2741 }
2742 
2743 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2744   SDValue Op1 = getValue(I.getOperand(0));
2745   SDValue Op2 = getValue(I.getOperand(1));
2746 
2747   bool nuw = false;
2748   bool nsw = false;
2749   bool exact = false;
2750   bool vec_redux = false;
2751   FastMathFlags FMF;
2752 
2753   if (const OverflowingBinaryOperator *OFBinOp =
2754           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2755     nuw = OFBinOp->hasNoUnsignedWrap();
2756     nsw = OFBinOp->hasNoSignedWrap();
2757   }
2758   if (const PossiblyExactOperator *ExactOp =
2759           dyn_cast<const PossiblyExactOperator>(&I))
2760     exact = ExactOp->isExact();
2761   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2762     FMF = FPOp->getFastMathFlags();
2763 
2764   if (isVectorReductionOp(&I)) {
2765     vec_redux = true;
2766     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2767   }
2768 
2769   SDNodeFlags Flags;
2770   Flags.setExact(exact);
2771   Flags.setNoSignedWrap(nsw);
2772   Flags.setNoUnsignedWrap(nuw);
2773   Flags.setVectorReduction(vec_redux);
2774   Flags.setAllowReciprocal(FMF.allowReciprocal());
2775   Flags.setAllowContract(FMF.allowContract());
2776   Flags.setNoInfs(FMF.noInfs());
2777   Flags.setNoNaNs(FMF.noNaNs());
2778   Flags.setNoSignedZeros(FMF.noSignedZeros());
2779   Flags.setApproximateFuncs(FMF.approxFunc());
2780   Flags.setAllowReassociation(FMF.allowReassoc());
2781 
2782   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2783                                      Op1, Op2, Flags);
2784   setValue(&I, BinNodeValue);
2785 }
2786 
2787 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2788   SDValue Op1 = getValue(I.getOperand(0));
2789   SDValue Op2 = getValue(I.getOperand(1));
2790 
2791   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2792       Op2.getValueType(), DAG.getDataLayout());
2793 
2794   // Coerce the shift amount to the right type if we can.
2795   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2796     unsigned ShiftSize = ShiftTy.getSizeInBits();
2797     unsigned Op2Size = Op2.getValueSizeInBits();
2798     SDLoc DL = getCurSDLoc();
2799 
2800     // If the operand is smaller than the shift count type, promote it.
2801     if (ShiftSize > Op2Size)
2802       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2803 
2804     // If the operand is larger than the shift count type but the shift
2805     // count type has enough bits to represent any shift value, truncate
2806     // it now. This is a common case and it exposes the truncate to
2807     // optimization early.
2808     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2809       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2810     // Otherwise we'll need to temporarily settle for some other convenient
2811     // type.  Type legalization will make adjustments once the shiftee is split.
2812     else
2813       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2814   }
2815 
2816   bool nuw = false;
2817   bool nsw = false;
2818   bool exact = false;
2819 
2820   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2821 
2822     if (const OverflowingBinaryOperator *OFBinOp =
2823             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2824       nuw = OFBinOp->hasNoUnsignedWrap();
2825       nsw = OFBinOp->hasNoSignedWrap();
2826     }
2827     if (const PossiblyExactOperator *ExactOp =
2828             dyn_cast<const PossiblyExactOperator>(&I))
2829       exact = ExactOp->isExact();
2830   }
2831   SDNodeFlags Flags;
2832   Flags.setExact(exact);
2833   Flags.setNoSignedWrap(nsw);
2834   Flags.setNoUnsignedWrap(nuw);
2835   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2836                             Flags);
2837   setValue(&I, Res);
2838 }
2839 
2840 void SelectionDAGBuilder::visitSDiv(const User &I) {
2841   SDValue Op1 = getValue(I.getOperand(0));
2842   SDValue Op2 = getValue(I.getOperand(1));
2843 
2844   SDNodeFlags Flags;
2845   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2846                  cast<PossiblyExactOperator>(&I)->isExact());
2847   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2848                            Op2, Flags));
2849 }
2850 
2851 void SelectionDAGBuilder::visitICmp(const User &I) {
2852   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2853   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2854     predicate = IC->getPredicate();
2855   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2856     predicate = ICmpInst::Predicate(IC->getPredicate());
2857   SDValue Op1 = getValue(I.getOperand(0));
2858   SDValue Op2 = getValue(I.getOperand(1));
2859   ISD::CondCode Opcode = getICmpCondCode(predicate);
2860 
2861   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2862                                                         I.getType());
2863   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2864 }
2865 
2866 void SelectionDAGBuilder::visitFCmp(const User &I) {
2867   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2868   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2869     predicate = FC->getPredicate();
2870   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2871     predicate = FCmpInst::Predicate(FC->getPredicate());
2872   SDValue Op1 = getValue(I.getOperand(0));
2873   SDValue Op2 = getValue(I.getOperand(1));
2874   ISD::CondCode Condition = getFCmpCondCode(predicate);
2875 
2876   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2877   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2878   // further optimization, but currently FMF is only applicable to binary nodes.
2879   if (TM.Options.NoNaNsFPMath)
2880     Condition = getFCmpCodeWithoutNaN(Condition);
2881   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2882                                                         I.getType());
2883   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2884 }
2885 
2886 // Check if the condition of the select has one use or two users that are both
2887 // selects with the same condition.
2888 static bool hasOnlySelectUsers(const Value *Cond) {
2889   return llvm::all_of(Cond->users(), [](const Value *V) {
2890     return isa<SelectInst>(V);
2891   });
2892 }
2893 
2894 void SelectionDAGBuilder::visitSelect(const User &I) {
2895   SmallVector<EVT, 4> ValueVTs;
2896   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2897                   ValueVTs);
2898   unsigned NumValues = ValueVTs.size();
2899   if (NumValues == 0) return;
2900 
2901   SmallVector<SDValue, 4> Values(NumValues);
2902   SDValue Cond     = getValue(I.getOperand(0));
2903   SDValue LHSVal   = getValue(I.getOperand(1));
2904   SDValue RHSVal   = getValue(I.getOperand(2));
2905   auto BaseOps = {Cond};
2906   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2907     ISD::VSELECT : ISD::SELECT;
2908 
2909   // Min/max matching is only viable if all output VTs are the same.
2910   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2911     EVT VT = ValueVTs[0];
2912     LLVMContext &Ctx = *DAG.getContext();
2913     auto &TLI = DAG.getTargetLoweringInfo();
2914 
2915     // We care about the legality of the operation after it has been type
2916     // legalized.
2917     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2918            VT != TLI.getTypeToTransformTo(Ctx, VT))
2919       VT = TLI.getTypeToTransformTo(Ctx, VT);
2920 
2921     // If the vselect is legal, assume we want to leave this as a vector setcc +
2922     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2923     // min/max is legal on the scalar type.
2924     bool UseScalarMinMax = VT.isVector() &&
2925       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2926 
2927     Value *LHS, *RHS;
2928     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2929     ISD::NodeType Opc = ISD::DELETED_NODE;
2930     switch (SPR.Flavor) {
2931     case SPF_UMAX:    Opc = ISD::UMAX; break;
2932     case SPF_UMIN:    Opc = ISD::UMIN; break;
2933     case SPF_SMAX:    Opc = ISD::SMAX; break;
2934     case SPF_SMIN:    Opc = ISD::SMIN; break;
2935     case SPF_FMINNUM:
2936       switch (SPR.NaNBehavior) {
2937       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2938       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2939       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2940       case SPNB_RETURNS_ANY: {
2941         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2942           Opc = ISD::FMINNUM;
2943         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2944           Opc = ISD::FMINNAN;
2945         else if (UseScalarMinMax)
2946           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2947             ISD::FMINNUM : ISD::FMINNAN;
2948         break;
2949       }
2950       }
2951       break;
2952     case SPF_FMAXNUM:
2953       switch (SPR.NaNBehavior) {
2954       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2955       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2956       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2957       case SPNB_RETURNS_ANY:
2958 
2959         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2960           Opc = ISD::FMAXNUM;
2961         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2962           Opc = ISD::FMAXNAN;
2963         else if (UseScalarMinMax)
2964           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2965             ISD::FMAXNUM : ISD::FMAXNAN;
2966         break;
2967       }
2968       break;
2969     default: break;
2970     }
2971 
2972     if (Opc != ISD::DELETED_NODE &&
2973         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2974          (UseScalarMinMax &&
2975           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2976         // If the underlying comparison instruction is used by any other
2977         // instruction, the consumed instructions won't be destroyed, so it is
2978         // not profitable to convert to a min/max.
2979         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2980       OpCode = Opc;
2981       LHSVal = getValue(LHS);
2982       RHSVal = getValue(RHS);
2983       BaseOps = {};
2984     }
2985   }
2986 
2987   for (unsigned i = 0; i != NumValues; ++i) {
2988     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2989     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2990     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2991     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2992                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2993                             Ops);
2994   }
2995 
2996   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2997                            DAG.getVTList(ValueVTs), Values));
2998 }
2999 
3000 void SelectionDAGBuilder::visitTrunc(const User &I) {
3001   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3002   SDValue N = getValue(I.getOperand(0));
3003   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3004                                                         I.getType());
3005   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3006 }
3007 
3008 void SelectionDAGBuilder::visitZExt(const User &I) {
3009   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3010   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3011   SDValue N = getValue(I.getOperand(0));
3012   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3013                                                         I.getType());
3014   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3015 }
3016 
3017 void SelectionDAGBuilder::visitSExt(const User &I) {
3018   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3019   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3020   SDValue N = getValue(I.getOperand(0));
3021   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3022                                                         I.getType());
3023   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3024 }
3025 
3026 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3027   // FPTrunc is never a no-op cast, no need to check
3028   SDValue N = getValue(I.getOperand(0));
3029   SDLoc dl = getCurSDLoc();
3030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3031   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3032   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3033                            DAG.getTargetConstant(
3034                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3035 }
3036 
3037 void SelectionDAGBuilder::visitFPExt(const User &I) {
3038   // FPExt is never a no-op cast, no need to check
3039   SDValue N = getValue(I.getOperand(0));
3040   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3041                                                         I.getType());
3042   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3043 }
3044 
3045 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3046   // FPToUI is never a no-op cast, no need to check
3047   SDValue N = getValue(I.getOperand(0));
3048   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3049                                                         I.getType());
3050   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3051 }
3052 
3053 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3054   // FPToSI is never a no-op cast, no need to check
3055   SDValue N = getValue(I.getOperand(0));
3056   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3057                                                         I.getType());
3058   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3059 }
3060 
3061 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3062   // UIToFP is never a no-op cast, no need to check
3063   SDValue N = getValue(I.getOperand(0));
3064   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3065                                                         I.getType());
3066   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3067 }
3068 
3069 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3070   // SIToFP is never a no-op cast, no need to check
3071   SDValue N = getValue(I.getOperand(0));
3072   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3073                                                         I.getType());
3074   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3075 }
3076 
3077 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3078   // What to do depends on the size of the integer and the size of the pointer.
3079   // We can either truncate, zero extend, or no-op, accordingly.
3080   SDValue N = getValue(I.getOperand(0));
3081   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3082                                                         I.getType());
3083   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3084 }
3085 
3086 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3087   // What to do depends on the size of the integer and the size of the pointer.
3088   // We can either truncate, zero extend, or no-op, accordingly.
3089   SDValue N = getValue(I.getOperand(0));
3090   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3091                                                         I.getType());
3092   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3093 }
3094 
3095 void SelectionDAGBuilder::visitBitCast(const User &I) {
3096   SDValue N = getValue(I.getOperand(0));
3097   SDLoc dl = getCurSDLoc();
3098   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3099                                                         I.getType());
3100 
3101   // BitCast assures us that source and destination are the same size so this is
3102   // either a BITCAST or a no-op.
3103   if (DestVT != N.getValueType())
3104     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3105                              DestVT, N)); // convert types.
3106   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3107   // might fold any kind of constant expression to an integer constant and that
3108   // is not what we are looking for. Only recognize a bitcast of a genuine
3109   // constant integer as an opaque constant.
3110   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3111     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3112                                  /*isOpaque*/true));
3113   else
3114     setValue(&I, N);            // noop cast.
3115 }
3116 
3117 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3119   const Value *SV = I.getOperand(0);
3120   SDValue N = getValue(SV);
3121   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3122 
3123   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3124   unsigned DestAS = I.getType()->getPointerAddressSpace();
3125 
3126   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3127     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3128 
3129   setValue(&I, N);
3130 }
3131 
3132 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3133   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3134   SDValue InVec = getValue(I.getOperand(0));
3135   SDValue InVal = getValue(I.getOperand(1));
3136   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3137                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3138   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3139                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3140                            InVec, InVal, InIdx));
3141 }
3142 
3143 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3144   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3145   SDValue InVec = getValue(I.getOperand(0));
3146   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3147                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3148   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3149                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3150                            InVec, InIdx));
3151 }
3152 
3153 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3154   SDValue Src1 = getValue(I.getOperand(0));
3155   SDValue Src2 = getValue(I.getOperand(1));
3156   SDLoc DL = getCurSDLoc();
3157 
3158   SmallVector<int, 8> Mask;
3159   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3160   unsigned MaskNumElts = Mask.size();
3161 
3162   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3163   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3164   EVT SrcVT = Src1.getValueType();
3165   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3166 
3167   if (SrcNumElts == MaskNumElts) {
3168     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3169     return;
3170   }
3171 
3172   // Normalize the shuffle vector since mask and vector length don't match.
3173   if (SrcNumElts < MaskNumElts) {
3174     // Mask is longer than the source vectors. We can use concatenate vector to
3175     // make the mask and vectors lengths match.
3176 
3177     if (MaskNumElts % SrcNumElts == 0) {
3178       // Mask length is a multiple of the source vector length.
3179       // Check if the shuffle is some kind of concatenation of the input
3180       // vectors.
3181       unsigned NumConcat = MaskNumElts / SrcNumElts;
3182       bool IsConcat = true;
3183       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3184       for (unsigned i = 0; i != MaskNumElts; ++i) {
3185         int Idx = Mask[i];
3186         if (Idx < 0)
3187           continue;
3188         // Ensure the indices in each SrcVT sized piece are sequential and that
3189         // the same source is used for the whole piece.
3190         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3191             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3192              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3193           IsConcat = false;
3194           break;
3195         }
3196         // Remember which source this index came from.
3197         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3198       }
3199 
3200       // The shuffle is concatenating multiple vectors together. Just emit
3201       // a CONCAT_VECTORS operation.
3202       if (IsConcat) {
3203         SmallVector<SDValue, 8> ConcatOps;
3204         for (auto Src : ConcatSrcs) {
3205           if (Src < 0)
3206             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3207           else if (Src == 0)
3208             ConcatOps.push_back(Src1);
3209           else
3210             ConcatOps.push_back(Src2);
3211         }
3212         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3213         return;
3214       }
3215     }
3216 
3217     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3218     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3219     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3220                                     PaddedMaskNumElts);
3221 
3222     // Pad both vectors with undefs to make them the same length as the mask.
3223     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3224 
3225     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3226     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3227     MOps1[0] = Src1;
3228     MOps2[0] = Src2;
3229 
3230     Src1 = Src1.isUndef()
3231                ? DAG.getUNDEF(PaddedVT)
3232                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3233     Src2 = Src2.isUndef()
3234                ? DAG.getUNDEF(PaddedVT)
3235                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3236 
3237     // Readjust mask for new input vector length.
3238     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3239     for (unsigned i = 0; i != MaskNumElts; ++i) {
3240       int Idx = Mask[i];
3241       if (Idx >= (int)SrcNumElts)
3242         Idx -= SrcNumElts - PaddedMaskNumElts;
3243       MappedOps[i] = Idx;
3244     }
3245 
3246     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3247 
3248     // If the concatenated vector was padded, extract a subvector with the
3249     // correct number of elements.
3250     if (MaskNumElts != PaddedMaskNumElts)
3251       Result = DAG.getNode(
3252           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3253           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3254 
3255     setValue(&I, Result);
3256     return;
3257   }
3258 
3259   if (SrcNumElts > MaskNumElts) {
3260     // Analyze the access pattern of the vector to see if we can extract
3261     // two subvectors and do the shuffle.
3262     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3263     bool CanExtract = true;
3264     for (int Idx : Mask) {
3265       unsigned Input = 0;
3266       if (Idx < 0)
3267         continue;
3268 
3269       if (Idx >= (int)SrcNumElts) {
3270         Input = 1;
3271         Idx -= SrcNumElts;
3272       }
3273 
3274       // If all the indices come from the same MaskNumElts sized portion of
3275       // the sources we can use extract. Also make sure the extract wouldn't
3276       // extract past the end of the source.
3277       int NewStartIdx = alignDown(Idx, MaskNumElts);
3278       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3279           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3280         CanExtract = false;
3281       // Make sure we always update StartIdx as we use it to track if all
3282       // elements are undef.
3283       StartIdx[Input] = NewStartIdx;
3284     }
3285 
3286     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3287       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3288       return;
3289     }
3290     if (CanExtract) {
3291       // Extract appropriate subvector and generate a vector shuffle
3292       for (unsigned Input = 0; Input < 2; ++Input) {
3293         SDValue &Src = Input == 0 ? Src1 : Src2;
3294         if (StartIdx[Input] < 0)
3295           Src = DAG.getUNDEF(VT);
3296         else {
3297           Src = DAG.getNode(
3298               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3299               DAG.getConstant(StartIdx[Input], DL,
3300                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3301         }
3302       }
3303 
3304       // Calculate new mask.
3305       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3306       for (int &Idx : MappedOps) {
3307         if (Idx >= (int)SrcNumElts)
3308           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3309         else if (Idx >= 0)
3310           Idx -= StartIdx[0];
3311       }
3312 
3313       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3314       return;
3315     }
3316   }
3317 
3318   // We can't use either concat vectors or extract subvectors so fall back to
3319   // replacing the shuffle with extract and build vector.
3320   // to insert and build vector.
3321   EVT EltVT = VT.getVectorElementType();
3322   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3323   SmallVector<SDValue,8> Ops;
3324   for (int Idx : Mask) {
3325     SDValue Res;
3326 
3327     if (Idx < 0) {
3328       Res = DAG.getUNDEF(EltVT);
3329     } else {
3330       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3331       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3332 
3333       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3334                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3335     }
3336 
3337     Ops.push_back(Res);
3338   }
3339 
3340   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3341 }
3342 
3343 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3344   ArrayRef<unsigned> Indices;
3345   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3346     Indices = IV->getIndices();
3347   else
3348     Indices = cast<ConstantExpr>(&I)->getIndices();
3349 
3350   const Value *Op0 = I.getOperand(0);
3351   const Value *Op1 = I.getOperand(1);
3352   Type *AggTy = I.getType();
3353   Type *ValTy = Op1->getType();
3354   bool IntoUndef = isa<UndefValue>(Op0);
3355   bool FromUndef = isa<UndefValue>(Op1);
3356 
3357   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3358 
3359   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3360   SmallVector<EVT, 4> AggValueVTs;
3361   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3362   SmallVector<EVT, 4> ValValueVTs;
3363   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3364 
3365   unsigned NumAggValues = AggValueVTs.size();
3366   unsigned NumValValues = ValValueVTs.size();
3367   SmallVector<SDValue, 4> Values(NumAggValues);
3368 
3369   // Ignore an insertvalue that produces an empty object
3370   if (!NumAggValues) {
3371     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3372     return;
3373   }
3374 
3375   SDValue Agg = getValue(Op0);
3376   unsigned i = 0;
3377   // Copy the beginning value(s) from the original aggregate.
3378   for (; i != LinearIndex; ++i)
3379     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3380                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3381   // Copy values from the inserted value(s).
3382   if (NumValValues) {
3383     SDValue Val = getValue(Op1);
3384     for (; i != LinearIndex + NumValValues; ++i)
3385       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3386                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3387   }
3388   // Copy remaining value(s) from the original aggregate.
3389   for (; i != NumAggValues; ++i)
3390     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3391                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3392 
3393   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3394                            DAG.getVTList(AggValueVTs), Values));
3395 }
3396 
3397 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3398   ArrayRef<unsigned> Indices;
3399   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3400     Indices = EV->getIndices();
3401   else
3402     Indices = cast<ConstantExpr>(&I)->getIndices();
3403 
3404   const Value *Op0 = I.getOperand(0);
3405   Type *AggTy = Op0->getType();
3406   Type *ValTy = I.getType();
3407   bool OutOfUndef = isa<UndefValue>(Op0);
3408 
3409   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3410 
3411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3412   SmallVector<EVT, 4> ValValueVTs;
3413   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3414 
3415   unsigned NumValValues = ValValueVTs.size();
3416 
3417   // Ignore a extractvalue that produces an empty object
3418   if (!NumValValues) {
3419     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3420     return;
3421   }
3422 
3423   SmallVector<SDValue, 4> Values(NumValValues);
3424 
3425   SDValue Agg = getValue(Op0);
3426   // Copy out the selected value(s).
3427   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3428     Values[i - LinearIndex] =
3429       OutOfUndef ?
3430         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3431         SDValue(Agg.getNode(), Agg.getResNo() + i);
3432 
3433   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3434                            DAG.getVTList(ValValueVTs), Values));
3435 }
3436 
3437 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3438   Value *Op0 = I.getOperand(0);
3439   // Note that the pointer operand may be a vector of pointers. Take the scalar
3440   // element which holds a pointer.
3441   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3442   SDValue N = getValue(Op0);
3443   SDLoc dl = getCurSDLoc();
3444 
3445   // Normalize Vector GEP - all scalar operands should be converted to the
3446   // splat vector.
3447   unsigned VectorWidth = I.getType()->isVectorTy() ?
3448     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3449 
3450   if (VectorWidth && !N.getValueType().isVector()) {
3451     LLVMContext &Context = *DAG.getContext();
3452     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3453     N = DAG.getSplatBuildVector(VT, dl, N);
3454   }
3455 
3456   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3457        GTI != E; ++GTI) {
3458     const Value *Idx = GTI.getOperand();
3459     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3460       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3461       if (Field) {
3462         // N = N + Offset
3463         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3464 
3465         // In an inbounds GEP with an offset that is nonnegative even when
3466         // interpreted as signed, assume there is no unsigned overflow.
3467         SDNodeFlags Flags;
3468         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3469           Flags.setNoUnsignedWrap(true);
3470 
3471         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3472                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3473       }
3474     } else {
3475       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3476       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3477       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3478 
3479       // If this is a scalar constant or a splat vector of constants,
3480       // handle it quickly.
3481       const auto *CI = dyn_cast<ConstantInt>(Idx);
3482       if (!CI && isa<ConstantDataVector>(Idx) &&
3483           cast<ConstantDataVector>(Idx)->getSplatValue())
3484         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3485 
3486       if (CI) {
3487         if (CI->isZero())
3488           continue;
3489         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3490         LLVMContext &Context = *DAG.getContext();
3491         SDValue OffsVal = VectorWidth ?
3492           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3493           DAG.getConstant(Offs, dl, IdxTy);
3494 
3495         // In an inbouds GEP with an offset that is nonnegative even when
3496         // interpreted as signed, assume there is no unsigned overflow.
3497         SDNodeFlags Flags;
3498         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3499           Flags.setNoUnsignedWrap(true);
3500 
3501         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3502         continue;
3503       }
3504 
3505       // N = N + Idx * ElementSize;
3506       SDValue IdxN = getValue(Idx);
3507 
3508       if (!IdxN.getValueType().isVector() && VectorWidth) {
3509         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3510         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3511       }
3512 
3513       // If the index is smaller or larger than intptr_t, truncate or extend
3514       // it.
3515       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3516 
3517       // If this is a multiply by a power of two, turn it into a shl
3518       // immediately.  This is a very common case.
3519       if (ElementSize != 1) {
3520         if (ElementSize.isPowerOf2()) {
3521           unsigned Amt = ElementSize.logBase2();
3522           IdxN = DAG.getNode(ISD::SHL, dl,
3523                              N.getValueType(), IdxN,
3524                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3525         } else {
3526           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3527           IdxN = DAG.getNode(ISD::MUL, dl,
3528                              N.getValueType(), IdxN, Scale);
3529         }
3530       }
3531 
3532       N = DAG.getNode(ISD::ADD, dl,
3533                       N.getValueType(), N, IdxN);
3534     }
3535   }
3536 
3537   setValue(&I, N);
3538 }
3539 
3540 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3541   // If this is a fixed sized alloca in the entry block of the function,
3542   // allocate it statically on the stack.
3543   if (FuncInfo.StaticAllocaMap.count(&I))
3544     return;   // getValue will auto-populate this.
3545 
3546   SDLoc dl = getCurSDLoc();
3547   Type *Ty = I.getAllocatedType();
3548   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3549   auto &DL = DAG.getDataLayout();
3550   uint64_t TySize = DL.getTypeAllocSize(Ty);
3551   unsigned Align =
3552       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3553 
3554   SDValue AllocSize = getValue(I.getArraySize());
3555 
3556   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3557   if (AllocSize.getValueType() != IntPtr)
3558     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3559 
3560   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3561                           AllocSize,
3562                           DAG.getConstant(TySize, dl, IntPtr));
3563 
3564   // Handle alignment.  If the requested alignment is less than or equal to
3565   // the stack alignment, ignore it.  If the size is greater than or equal to
3566   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3567   unsigned StackAlign =
3568       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3569   if (Align <= StackAlign)
3570     Align = 0;
3571 
3572   // Round the size of the allocation up to the stack alignment size
3573   // by add SA-1 to the size. This doesn't overflow because we're computing
3574   // an address inside an alloca.
3575   SDNodeFlags Flags;
3576   Flags.setNoUnsignedWrap(true);
3577   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3578                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3579 
3580   // Mask out the low bits for alignment purposes.
3581   AllocSize =
3582       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3583                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3584 
3585   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3586   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3587   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3588   setValue(&I, DSA);
3589   DAG.setRoot(DSA.getValue(1));
3590 
3591   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3592 }
3593 
3594 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3595   if (I.isAtomic())
3596     return visitAtomicLoad(I);
3597 
3598   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3599   const Value *SV = I.getOperand(0);
3600   if (TLI.supportSwiftError()) {
3601     // Swifterror values can come from either a function parameter with
3602     // swifterror attribute or an alloca with swifterror attribute.
3603     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3604       if (Arg->hasSwiftErrorAttr())
3605         return visitLoadFromSwiftError(I);
3606     }
3607 
3608     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3609       if (Alloca->isSwiftError())
3610         return visitLoadFromSwiftError(I);
3611     }
3612   }
3613 
3614   SDValue Ptr = getValue(SV);
3615 
3616   Type *Ty = I.getType();
3617 
3618   bool isVolatile = I.isVolatile();
3619   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3620   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3621   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3622   unsigned Alignment = I.getAlignment();
3623 
3624   AAMDNodes AAInfo;
3625   I.getAAMetadata(AAInfo);
3626   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3627 
3628   SmallVector<EVT, 4> ValueVTs;
3629   SmallVector<uint64_t, 4> Offsets;
3630   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3631   unsigned NumValues = ValueVTs.size();
3632   if (NumValues == 0)
3633     return;
3634 
3635   SDValue Root;
3636   bool ConstantMemory = false;
3637   if (isVolatile || NumValues > MaxParallelChains)
3638     // Serialize volatile loads with other side effects.
3639     Root = getRoot();
3640   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3641                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3642     // Do not serialize (non-volatile) loads of constant memory with anything.
3643     Root = DAG.getEntryNode();
3644     ConstantMemory = true;
3645   } else {
3646     // Do not serialize non-volatile loads against each other.
3647     Root = DAG.getRoot();
3648   }
3649 
3650   SDLoc dl = getCurSDLoc();
3651 
3652   if (isVolatile)
3653     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3654 
3655   // An aggregate load cannot wrap around the address space, so offsets to its
3656   // parts don't wrap either.
3657   SDNodeFlags Flags;
3658   Flags.setNoUnsignedWrap(true);
3659 
3660   SmallVector<SDValue, 4> Values(NumValues);
3661   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3662   EVT PtrVT = Ptr.getValueType();
3663   unsigned ChainI = 0;
3664   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3665     // Serializing loads here may result in excessive register pressure, and
3666     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3667     // could recover a bit by hoisting nodes upward in the chain by recognizing
3668     // they are side-effect free or do not alias. The optimizer should really
3669     // avoid this case by converting large object/array copies to llvm.memcpy
3670     // (MaxParallelChains should always remain as failsafe).
3671     if (ChainI == MaxParallelChains) {
3672       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3673       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3674                                   makeArrayRef(Chains.data(), ChainI));
3675       Root = Chain;
3676       ChainI = 0;
3677     }
3678     SDValue A = DAG.getNode(ISD::ADD, dl,
3679                             PtrVT, Ptr,
3680                             DAG.getConstant(Offsets[i], dl, PtrVT),
3681                             Flags);
3682     auto MMOFlags = MachineMemOperand::MONone;
3683     if (isVolatile)
3684       MMOFlags |= MachineMemOperand::MOVolatile;
3685     if (isNonTemporal)
3686       MMOFlags |= MachineMemOperand::MONonTemporal;
3687     if (isInvariant)
3688       MMOFlags |= MachineMemOperand::MOInvariant;
3689     if (isDereferenceable)
3690       MMOFlags |= MachineMemOperand::MODereferenceable;
3691     MMOFlags |= TLI.getMMOFlags(I);
3692 
3693     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3694                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3695                             MMOFlags, AAInfo, Ranges);
3696 
3697     Values[i] = L;
3698     Chains[ChainI] = L.getValue(1);
3699   }
3700 
3701   if (!ConstantMemory) {
3702     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3703                                 makeArrayRef(Chains.data(), ChainI));
3704     if (isVolatile)
3705       DAG.setRoot(Chain);
3706     else
3707       PendingLoads.push_back(Chain);
3708   }
3709 
3710   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3711                            DAG.getVTList(ValueVTs), Values));
3712 }
3713 
3714 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3715   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3716          "call visitStoreToSwiftError when backend supports swifterror");
3717 
3718   SmallVector<EVT, 4> ValueVTs;
3719   SmallVector<uint64_t, 4> Offsets;
3720   const Value *SrcV = I.getOperand(0);
3721   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3722                   SrcV->getType(), ValueVTs, &Offsets);
3723   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3724          "expect a single EVT for swifterror");
3725 
3726   SDValue Src = getValue(SrcV);
3727   // Create a virtual register, then update the virtual register.
3728   unsigned VReg; bool CreatedVReg;
3729   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3730   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3731   // Chain can be getRoot or getControlRoot.
3732   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3733                                       SDValue(Src.getNode(), Src.getResNo()));
3734   DAG.setRoot(CopyNode);
3735   if (CreatedVReg)
3736     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3737 }
3738 
3739 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3740   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3741          "call visitLoadFromSwiftError when backend supports swifterror");
3742 
3743   assert(!I.isVolatile() &&
3744          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3745          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3746          "Support volatile, non temporal, invariant for load_from_swift_error");
3747 
3748   const Value *SV = I.getOperand(0);
3749   Type *Ty = I.getType();
3750   AAMDNodes AAInfo;
3751   I.getAAMetadata(AAInfo);
3752   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3753              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3754          "load_from_swift_error should not be constant memory");
3755 
3756   SmallVector<EVT, 4> ValueVTs;
3757   SmallVector<uint64_t, 4> Offsets;
3758   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3759                   ValueVTs, &Offsets);
3760   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3761          "expect a single EVT for swifterror");
3762 
3763   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3764   SDValue L = DAG.getCopyFromReg(
3765       getRoot(), getCurSDLoc(),
3766       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3767       ValueVTs[0]);
3768 
3769   setValue(&I, L);
3770 }
3771 
3772 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3773   if (I.isAtomic())
3774     return visitAtomicStore(I);
3775 
3776   const Value *SrcV = I.getOperand(0);
3777   const Value *PtrV = I.getOperand(1);
3778 
3779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3780   if (TLI.supportSwiftError()) {
3781     // Swifterror values can come from either a function parameter with
3782     // swifterror attribute or an alloca with swifterror attribute.
3783     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3784       if (Arg->hasSwiftErrorAttr())
3785         return visitStoreToSwiftError(I);
3786     }
3787 
3788     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3789       if (Alloca->isSwiftError())
3790         return visitStoreToSwiftError(I);
3791     }
3792   }
3793 
3794   SmallVector<EVT, 4> ValueVTs;
3795   SmallVector<uint64_t, 4> Offsets;
3796   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3797                   SrcV->getType(), ValueVTs, &Offsets);
3798   unsigned NumValues = ValueVTs.size();
3799   if (NumValues == 0)
3800     return;
3801 
3802   // Get the lowered operands. Note that we do this after
3803   // checking if NumResults is zero, because with zero results
3804   // the operands won't have values in the map.
3805   SDValue Src = getValue(SrcV);
3806   SDValue Ptr = getValue(PtrV);
3807 
3808   SDValue Root = getRoot();
3809   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3810   SDLoc dl = getCurSDLoc();
3811   EVT PtrVT = Ptr.getValueType();
3812   unsigned Alignment = I.getAlignment();
3813   AAMDNodes AAInfo;
3814   I.getAAMetadata(AAInfo);
3815 
3816   auto MMOFlags = MachineMemOperand::MONone;
3817   if (I.isVolatile())
3818     MMOFlags |= MachineMemOperand::MOVolatile;
3819   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3820     MMOFlags |= MachineMemOperand::MONonTemporal;
3821   MMOFlags |= TLI.getMMOFlags(I);
3822 
3823   // An aggregate load cannot wrap around the address space, so offsets to its
3824   // parts don't wrap either.
3825   SDNodeFlags Flags;
3826   Flags.setNoUnsignedWrap(true);
3827 
3828   unsigned ChainI = 0;
3829   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3830     // See visitLoad comments.
3831     if (ChainI == MaxParallelChains) {
3832       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3833                                   makeArrayRef(Chains.data(), ChainI));
3834       Root = Chain;
3835       ChainI = 0;
3836     }
3837     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3838                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3839     SDValue St = DAG.getStore(
3840         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3841         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3842     Chains[ChainI] = St;
3843   }
3844 
3845   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3846                                   makeArrayRef(Chains.data(), ChainI));
3847   DAG.setRoot(StoreNode);
3848 }
3849 
3850 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3851                                            bool IsCompressing) {
3852   SDLoc sdl = getCurSDLoc();
3853 
3854   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3855                            unsigned& Alignment) {
3856     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3857     Src0 = I.getArgOperand(0);
3858     Ptr = I.getArgOperand(1);
3859     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3860     Mask = I.getArgOperand(3);
3861   };
3862   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3863                            unsigned& Alignment) {
3864     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3865     Src0 = I.getArgOperand(0);
3866     Ptr = I.getArgOperand(1);
3867     Mask = I.getArgOperand(2);
3868     Alignment = 0;
3869   };
3870 
3871   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3872   unsigned Alignment;
3873   if (IsCompressing)
3874     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3875   else
3876     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3877 
3878   SDValue Ptr = getValue(PtrOperand);
3879   SDValue Src0 = getValue(Src0Operand);
3880   SDValue Mask = getValue(MaskOperand);
3881 
3882   EVT VT = Src0.getValueType();
3883   if (!Alignment)
3884     Alignment = DAG.getEVTAlignment(VT);
3885 
3886   AAMDNodes AAInfo;
3887   I.getAAMetadata(AAInfo);
3888 
3889   MachineMemOperand *MMO =
3890     DAG.getMachineFunction().
3891     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3892                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3893                           Alignment, AAInfo);
3894   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3895                                          MMO, false /* Truncating */,
3896                                          IsCompressing);
3897   DAG.setRoot(StoreNode);
3898   setValue(&I, StoreNode);
3899 }
3900 
3901 // Get a uniform base for the Gather/Scatter intrinsic.
3902 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3903 // We try to represent it as a base pointer + vector of indices.
3904 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3905 // The first operand of the GEP may be a single pointer or a vector of pointers
3906 // Example:
3907 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3908 //  or
3909 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3910 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3911 //
3912 // When the first GEP operand is a single pointer - it is the uniform base we
3913 // are looking for. If first operand of the GEP is a splat vector - we
3914 // extract the splat value and use it as a uniform base.
3915 // In all other cases the function returns 'false'.
3916 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3917                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3918   SelectionDAG& DAG = SDB->DAG;
3919   LLVMContext &Context = *DAG.getContext();
3920 
3921   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3922   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3923   if (!GEP)
3924     return false;
3925 
3926   const Value *GEPPtr = GEP->getPointerOperand();
3927   if (!GEPPtr->getType()->isVectorTy())
3928     Ptr = GEPPtr;
3929   else if (!(Ptr = getSplatValue(GEPPtr)))
3930     return false;
3931 
3932   unsigned FinalIndex = GEP->getNumOperands() - 1;
3933   Value *IndexVal = GEP->getOperand(FinalIndex);
3934 
3935   // Ensure all the other indices are 0.
3936   for (unsigned i = 1; i < FinalIndex; ++i) {
3937     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3938     if (!C || !C->isZero())
3939       return false;
3940   }
3941 
3942   // The operands of the GEP may be defined in another basic block.
3943   // In this case we'll not find nodes for the operands.
3944   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3945     return false;
3946 
3947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3948   const DataLayout &DL = DAG.getDataLayout();
3949   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3950                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3951   Base = SDB->getValue(Ptr);
3952   Index = SDB->getValue(IndexVal);
3953 
3954   if (!Index.getValueType().isVector()) {
3955     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3956     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3957     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3958   }
3959   return true;
3960 }
3961 
3962 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3963   SDLoc sdl = getCurSDLoc();
3964 
3965   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3966   const Value *Ptr = I.getArgOperand(1);
3967   SDValue Src0 = getValue(I.getArgOperand(0));
3968   SDValue Mask = getValue(I.getArgOperand(3));
3969   EVT VT = Src0.getValueType();
3970   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3971   if (!Alignment)
3972     Alignment = DAG.getEVTAlignment(VT);
3973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3974 
3975   AAMDNodes AAInfo;
3976   I.getAAMetadata(AAInfo);
3977 
3978   SDValue Base;
3979   SDValue Index;
3980   SDValue Scale;
3981   const Value *BasePtr = Ptr;
3982   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
3983 
3984   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3985   MachineMemOperand *MMO = DAG.getMachineFunction().
3986     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3987                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3988                          Alignment, AAInfo);
3989   if (!UniformBase) {
3990     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3991     Index = getValue(Ptr);
3992     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3993   }
3994   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
3995   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3996                                          Ops, MMO);
3997   DAG.setRoot(Scatter);
3998   setValue(&I, Scatter);
3999 }
4000 
4001 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4002   SDLoc sdl = getCurSDLoc();
4003 
4004   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4005                            unsigned& Alignment) {
4006     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4007     Ptr = I.getArgOperand(0);
4008     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4009     Mask = I.getArgOperand(2);
4010     Src0 = I.getArgOperand(3);
4011   };
4012   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4013                            unsigned& Alignment) {
4014     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4015     Ptr = I.getArgOperand(0);
4016     Alignment = 0;
4017     Mask = I.getArgOperand(1);
4018     Src0 = I.getArgOperand(2);
4019   };
4020 
4021   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4022   unsigned Alignment;
4023   if (IsExpanding)
4024     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4025   else
4026     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4027 
4028   SDValue Ptr = getValue(PtrOperand);
4029   SDValue Src0 = getValue(Src0Operand);
4030   SDValue Mask = getValue(MaskOperand);
4031 
4032   EVT VT = Src0.getValueType();
4033   if (!Alignment)
4034     Alignment = DAG.getEVTAlignment(VT);
4035 
4036   AAMDNodes AAInfo;
4037   I.getAAMetadata(AAInfo);
4038   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4039 
4040   // Do not serialize masked loads of constant memory with anything.
4041   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4042       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4043   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4044 
4045   MachineMemOperand *MMO =
4046     DAG.getMachineFunction().
4047     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4048                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4049                           Alignment, AAInfo, Ranges);
4050 
4051   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4052                                    ISD::NON_EXTLOAD, IsExpanding);
4053   if (AddToChain) {
4054     SDValue OutChain = Load.getValue(1);
4055     DAG.setRoot(OutChain);
4056   }
4057   setValue(&I, Load);
4058 }
4059 
4060 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4061   SDLoc sdl = getCurSDLoc();
4062 
4063   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4064   const Value *Ptr = I.getArgOperand(0);
4065   SDValue Src0 = getValue(I.getArgOperand(3));
4066   SDValue Mask = getValue(I.getArgOperand(2));
4067 
4068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4069   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4070   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4071   if (!Alignment)
4072     Alignment = DAG.getEVTAlignment(VT);
4073 
4074   AAMDNodes AAInfo;
4075   I.getAAMetadata(AAInfo);
4076   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4077 
4078   SDValue Root = DAG.getRoot();
4079   SDValue Base;
4080   SDValue Index;
4081   SDValue Scale;
4082   const Value *BasePtr = Ptr;
4083   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4084   bool ConstantMemory = false;
4085   if (UniformBase &&
4086       AA && AA->pointsToConstantMemory(MemoryLocation(
4087           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4088           AAInfo))) {
4089     // Do not serialize (non-volatile) loads of constant memory with anything.
4090     Root = DAG.getEntryNode();
4091     ConstantMemory = true;
4092   }
4093 
4094   MachineMemOperand *MMO =
4095     DAG.getMachineFunction().
4096     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4097                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4098                          Alignment, AAInfo, Ranges);
4099 
4100   if (!UniformBase) {
4101     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4102     Index = getValue(Ptr);
4103     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4104   }
4105   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4106   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4107                                        Ops, MMO);
4108 
4109   SDValue OutChain = Gather.getValue(1);
4110   if (!ConstantMemory)
4111     PendingLoads.push_back(OutChain);
4112   setValue(&I, Gather);
4113 }
4114 
4115 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4116   SDLoc dl = getCurSDLoc();
4117   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4118   AtomicOrdering FailureOrder = I.getFailureOrdering();
4119   SyncScope::ID SSID = I.getSyncScopeID();
4120 
4121   SDValue InChain = getRoot();
4122 
4123   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4124   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4125   SDValue L = DAG.getAtomicCmpSwap(
4126       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4127       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4128       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4129       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4130 
4131   SDValue OutChain = L.getValue(2);
4132 
4133   setValue(&I, L);
4134   DAG.setRoot(OutChain);
4135 }
4136 
4137 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4138   SDLoc dl = getCurSDLoc();
4139   ISD::NodeType NT;
4140   switch (I.getOperation()) {
4141   default: llvm_unreachable("Unknown atomicrmw operation");
4142   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4143   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4144   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4145   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4146   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4147   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4148   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4149   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4150   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4151   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4152   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4153   }
4154   AtomicOrdering Order = I.getOrdering();
4155   SyncScope::ID SSID = I.getSyncScopeID();
4156 
4157   SDValue InChain = getRoot();
4158 
4159   SDValue L =
4160     DAG.getAtomic(NT, dl,
4161                   getValue(I.getValOperand()).getSimpleValueType(),
4162                   InChain,
4163                   getValue(I.getPointerOperand()),
4164                   getValue(I.getValOperand()),
4165                   I.getPointerOperand(),
4166                   /* Alignment=*/ 0, Order, SSID);
4167 
4168   SDValue OutChain = L.getValue(1);
4169 
4170   setValue(&I, L);
4171   DAG.setRoot(OutChain);
4172 }
4173 
4174 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4175   SDLoc dl = getCurSDLoc();
4176   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4177   SDValue Ops[3];
4178   Ops[0] = getRoot();
4179   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4180                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4181   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4182                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4183   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4184 }
4185 
4186 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4187   SDLoc dl = getCurSDLoc();
4188   AtomicOrdering Order = I.getOrdering();
4189   SyncScope::ID SSID = I.getSyncScopeID();
4190 
4191   SDValue InChain = getRoot();
4192 
4193   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4194   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4195 
4196   if (!TLI.supportsUnalignedAtomics() &&
4197       I.getAlignment() < VT.getStoreSize())
4198     report_fatal_error("Cannot generate unaligned atomic load");
4199 
4200   MachineMemOperand *MMO =
4201       DAG.getMachineFunction().
4202       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4203                            MachineMemOperand::MOVolatile |
4204                            MachineMemOperand::MOLoad,
4205                            VT.getStoreSize(),
4206                            I.getAlignment() ? I.getAlignment() :
4207                                               DAG.getEVTAlignment(VT),
4208                            AAMDNodes(), nullptr, SSID, Order);
4209 
4210   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4211   SDValue L =
4212       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4213                     getValue(I.getPointerOperand()), MMO);
4214 
4215   SDValue OutChain = L.getValue(1);
4216 
4217   setValue(&I, L);
4218   DAG.setRoot(OutChain);
4219 }
4220 
4221 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4222   SDLoc dl = getCurSDLoc();
4223 
4224   AtomicOrdering Order = I.getOrdering();
4225   SyncScope::ID SSID = I.getSyncScopeID();
4226 
4227   SDValue InChain = getRoot();
4228 
4229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4230   EVT VT =
4231       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4232 
4233   if (I.getAlignment() < VT.getStoreSize())
4234     report_fatal_error("Cannot generate unaligned atomic store");
4235 
4236   SDValue OutChain =
4237     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4238                   InChain,
4239                   getValue(I.getPointerOperand()),
4240                   getValue(I.getValueOperand()),
4241                   I.getPointerOperand(), I.getAlignment(),
4242                   Order, SSID);
4243 
4244   DAG.setRoot(OutChain);
4245 }
4246 
4247 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4248 /// node.
4249 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4250                                                unsigned Intrinsic) {
4251   // Ignore the callsite's attributes. A specific call site may be marked with
4252   // readnone, but the lowering code will expect the chain based on the
4253   // definition.
4254   const Function *F = I.getCalledFunction();
4255   bool HasChain = !F->doesNotAccessMemory();
4256   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4257 
4258   // Build the operand list.
4259   SmallVector<SDValue, 8> Ops;
4260   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4261     if (OnlyLoad) {
4262       // We don't need to serialize loads against other loads.
4263       Ops.push_back(DAG.getRoot());
4264     } else {
4265       Ops.push_back(getRoot());
4266     }
4267   }
4268 
4269   // Info is set by getTgtMemInstrinsic
4270   TargetLowering::IntrinsicInfo Info;
4271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4272   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4273                                                DAG.getMachineFunction(),
4274                                                Intrinsic);
4275 
4276   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4277   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4278       Info.opc == ISD::INTRINSIC_W_CHAIN)
4279     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4280                                         TLI.getPointerTy(DAG.getDataLayout())));
4281 
4282   // Add all operands of the call to the operand list.
4283   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4284     SDValue Op = getValue(I.getArgOperand(i));
4285     Ops.push_back(Op);
4286   }
4287 
4288   SmallVector<EVT, 4> ValueVTs;
4289   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4290 
4291   if (HasChain)
4292     ValueVTs.push_back(MVT::Other);
4293 
4294   SDVTList VTs = DAG.getVTList(ValueVTs);
4295 
4296   // Create the node.
4297   SDValue Result;
4298   if (IsTgtIntrinsic) {
4299     // This is target intrinsic that touches memory
4300     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4301       Ops, Info.memVT,
4302       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4303       Info.flags, Info.size);
4304   } else if (!HasChain) {
4305     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4306   } else if (!I.getType()->isVoidTy()) {
4307     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4308   } else {
4309     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4310   }
4311 
4312   if (HasChain) {
4313     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4314     if (OnlyLoad)
4315       PendingLoads.push_back(Chain);
4316     else
4317       DAG.setRoot(Chain);
4318   }
4319 
4320   if (!I.getType()->isVoidTy()) {
4321     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4322       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4323       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4324     } else
4325       Result = lowerRangeToAssertZExt(DAG, I, Result);
4326 
4327     setValue(&I, Result);
4328   }
4329 }
4330 
4331 /// GetSignificand - Get the significand and build it into a floating-point
4332 /// number with exponent of 1:
4333 ///
4334 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4335 ///
4336 /// where Op is the hexadecimal representation of floating point value.
4337 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4338   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4339                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4340   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4341                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4342   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4343 }
4344 
4345 /// GetExponent - Get the exponent:
4346 ///
4347 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4348 ///
4349 /// where Op is the hexadecimal representation of floating point value.
4350 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4351                            const TargetLowering &TLI, const SDLoc &dl) {
4352   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4353                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4354   SDValue t1 = DAG.getNode(
4355       ISD::SRL, dl, MVT::i32, t0,
4356       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4357   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4358                            DAG.getConstant(127, dl, MVT::i32));
4359   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4360 }
4361 
4362 /// getF32Constant - Get 32-bit floating point constant.
4363 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4364                               const SDLoc &dl) {
4365   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4366                            MVT::f32);
4367 }
4368 
4369 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4370                                        SelectionDAG &DAG) {
4371   // TODO: What fast-math-flags should be set on the floating-point nodes?
4372 
4373   //   IntegerPartOfX = ((int32_t)(t0);
4374   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4375 
4376   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4377   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4378   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4379 
4380   //   IntegerPartOfX <<= 23;
4381   IntegerPartOfX = DAG.getNode(
4382       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4383       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4384                                   DAG.getDataLayout())));
4385 
4386   SDValue TwoToFractionalPartOfX;
4387   if (LimitFloatPrecision <= 6) {
4388     // For floating-point precision of 6:
4389     //
4390     //   TwoToFractionalPartOfX =
4391     //     0.997535578f +
4392     //       (0.735607626f + 0.252464424f * x) * x;
4393     //
4394     // error 0.0144103317, which is 6 bits
4395     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4396                              getF32Constant(DAG, 0x3e814304, dl));
4397     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4398                              getF32Constant(DAG, 0x3f3c50c8, dl));
4399     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4400     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4401                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4402   } else if (LimitFloatPrecision <= 12) {
4403     // For floating-point precision of 12:
4404     //
4405     //   TwoToFractionalPartOfX =
4406     //     0.999892986f +
4407     //       (0.696457318f +
4408     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4409     //
4410     // error 0.000107046256, which is 13 to 14 bits
4411     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4412                              getF32Constant(DAG, 0x3da235e3, dl));
4413     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4414                              getF32Constant(DAG, 0x3e65b8f3, dl));
4415     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4416     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4417                              getF32Constant(DAG, 0x3f324b07, dl));
4418     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4419     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4420                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4421   } else { // LimitFloatPrecision <= 18
4422     // For floating-point precision of 18:
4423     //
4424     //   TwoToFractionalPartOfX =
4425     //     0.999999982f +
4426     //       (0.693148872f +
4427     //         (0.240227044f +
4428     //           (0.554906021e-1f +
4429     //             (0.961591928e-2f +
4430     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4431     // error 2.47208000*10^(-7), which is better than 18 bits
4432     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4433                              getF32Constant(DAG, 0x3924b03e, dl));
4434     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4435                              getF32Constant(DAG, 0x3ab24b87, dl));
4436     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4437     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4438                              getF32Constant(DAG, 0x3c1d8c17, dl));
4439     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4440     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4441                              getF32Constant(DAG, 0x3d634a1d, dl));
4442     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4443     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4444                              getF32Constant(DAG, 0x3e75fe14, dl));
4445     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4446     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4447                               getF32Constant(DAG, 0x3f317234, dl));
4448     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4449     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4450                                          getF32Constant(DAG, 0x3f800000, dl));
4451   }
4452 
4453   // Add the exponent into the result in integer domain.
4454   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4455   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4456                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4457 }
4458 
4459 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4460 /// limited-precision mode.
4461 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4462                          const TargetLowering &TLI) {
4463   if (Op.getValueType() == MVT::f32 &&
4464       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4465 
4466     // Put the exponent in the right bit position for later addition to the
4467     // final result:
4468     //
4469     //   #define LOG2OFe 1.4426950f
4470     //   t0 = Op * LOG2OFe
4471 
4472     // TODO: What fast-math-flags should be set here?
4473     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4474                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4475     return getLimitedPrecisionExp2(t0, dl, DAG);
4476   }
4477 
4478   // No special expansion.
4479   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4480 }
4481 
4482 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4483 /// limited-precision mode.
4484 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4485                          const TargetLowering &TLI) {
4486   // TODO: What fast-math-flags should be set on the floating-point nodes?
4487 
4488   if (Op.getValueType() == MVT::f32 &&
4489       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4490     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4491 
4492     // Scale the exponent by log(2) [0.69314718f].
4493     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4494     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4495                                         getF32Constant(DAG, 0x3f317218, dl));
4496 
4497     // Get the significand and build it into a floating-point number with
4498     // exponent of 1.
4499     SDValue X = GetSignificand(DAG, Op1, dl);
4500 
4501     SDValue LogOfMantissa;
4502     if (LimitFloatPrecision <= 6) {
4503       // For floating-point precision of 6:
4504       //
4505       //   LogofMantissa =
4506       //     -1.1609546f +
4507       //       (1.4034025f - 0.23903021f * x) * x;
4508       //
4509       // error 0.0034276066, which is better than 8 bits
4510       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4511                                getF32Constant(DAG, 0xbe74c456, dl));
4512       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4513                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4514       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4515       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4516                                   getF32Constant(DAG, 0x3f949a29, dl));
4517     } else if (LimitFloatPrecision <= 12) {
4518       // For floating-point precision of 12:
4519       //
4520       //   LogOfMantissa =
4521       //     -1.7417939f +
4522       //       (2.8212026f +
4523       //         (-1.4699568f +
4524       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4525       //
4526       // error 0.000061011436, which is 14 bits
4527       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4528                                getF32Constant(DAG, 0xbd67b6d6, dl));
4529       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4530                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4531       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4532       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4533                                getF32Constant(DAG, 0x3fbc278b, dl));
4534       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4535       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4536                                getF32Constant(DAG, 0x40348e95, dl));
4537       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4538       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4539                                   getF32Constant(DAG, 0x3fdef31a, dl));
4540     } else { // LimitFloatPrecision <= 18
4541       // For floating-point precision of 18:
4542       //
4543       //   LogOfMantissa =
4544       //     -2.1072184f +
4545       //       (4.2372794f +
4546       //         (-3.7029485f +
4547       //           (2.2781945f +
4548       //             (-0.87823314f +
4549       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4550       //
4551       // error 0.0000023660568, which is better than 18 bits
4552       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4553                                getF32Constant(DAG, 0xbc91e5ac, dl));
4554       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4555                                getF32Constant(DAG, 0x3e4350aa, dl));
4556       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4557       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4558                                getF32Constant(DAG, 0x3f60d3e3, dl));
4559       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4560       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4561                                getF32Constant(DAG, 0x4011cdf0, dl));
4562       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4563       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4564                                getF32Constant(DAG, 0x406cfd1c, dl));
4565       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4566       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4567                                getF32Constant(DAG, 0x408797cb, dl));
4568       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4569       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4570                                   getF32Constant(DAG, 0x4006dcab, dl));
4571     }
4572 
4573     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4574   }
4575 
4576   // No special expansion.
4577   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4578 }
4579 
4580 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4581 /// limited-precision mode.
4582 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4583                           const TargetLowering &TLI) {
4584   // TODO: What fast-math-flags should be set on the floating-point nodes?
4585 
4586   if (Op.getValueType() == MVT::f32 &&
4587       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4588     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4589 
4590     // Get the exponent.
4591     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4592 
4593     // Get the significand and build it into a floating-point number with
4594     // exponent of 1.
4595     SDValue X = GetSignificand(DAG, Op1, dl);
4596 
4597     // Different possible minimax approximations of significand in
4598     // floating-point for various degrees of accuracy over [1,2].
4599     SDValue Log2ofMantissa;
4600     if (LimitFloatPrecision <= 6) {
4601       // For floating-point precision of 6:
4602       //
4603       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4604       //
4605       // error 0.0049451742, which is more than 7 bits
4606       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4607                                getF32Constant(DAG, 0xbeb08fe0, dl));
4608       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4609                                getF32Constant(DAG, 0x40019463, dl));
4610       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4611       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4612                                    getF32Constant(DAG, 0x3fd6633d, dl));
4613     } else if (LimitFloatPrecision <= 12) {
4614       // For floating-point precision of 12:
4615       //
4616       //   Log2ofMantissa =
4617       //     -2.51285454f +
4618       //       (4.07009056f +
4619       //         (-2.12067489f +
4620       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4621       //
4622       // error 0.0000876136000, which is better than 13 bits
4623       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4624                                getF32Constant(DAG, 0xbda7262e, dl));
4625       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4626                                getF32Constant(DAG, 0x3f25280b, dl));
4627       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4628       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4629                                getF32Constant(DAG, 0x4007b923, dl));
4630       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4631       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4632                                getF32Constant(DAG, 0x40823e2f, dl));
4633       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4634       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4635                                    getF32Constant(DAG, 0x4020d29c, dl));
4636     } else { // LimitFloatPrecision <= 18
4637       // For floating-point precision of 18:
4638       //
4639       //   Log2ofMantissa =
4640       //     -3.0400495f +
4641       //       (6.1129976f +
4642       //         (-5.3420409f +
4643       //           (3.2865683f +
4644       //             (-1.2669343f +
4645       //               (0.27515199f -
4646       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4647       //
4648       // error 0.0000018516, which is better than 18 bits
4649       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4650                                getF32Constant(DAG, 0xbcd2769e, dl));
4651       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4652                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4653       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4654       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4655                                getF32Constant(DAG, 0x3fa22ae7, dl));
4656       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4657       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4658                                getF32Constant(DAG, 0x40525723, dl));
4659       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4660       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4661                                getF32Constant(DAG, 0x40aaf200, dl));
4662       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4663       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4664                                getF32Constant(DAG, 0x40c39dad, dl));
4665       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4666       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4667                                    getF32Constant(DAG, 0x4042902c, dl));
4668     }
4669 
4670     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4671   }
4672 
4673   // No special expansion.
4674   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4675 }
4676 
4677 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4678 /// limited-precision mode.
4679 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4680                            const TargetLowering &TLI) {
4681   // TODO: What fast-math-flags should be set on the floating-point nodes?
4682 
4683   if (Op.getValueType() == MVT::f32 &&
4684       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4685     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4686 
4687     // Scale the exponent by log10(2) [0.30102999f].
4688     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4689     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4690                                         getF32Constant(DAG, 0x3e9a209a, dl));
4691 
4692     // Get the significand and build it into a floating-point number with
4693     // exponent of 1.
4694     SDValue X = GetSignificand(DAG, Op1, dl);
4695 
4696     SDValue Log10ofMantissa;
4697     if (LimitFloatPrecision <= 6) {
4698       // For floating-point precision of 6:
4699       //
4700       //   Log10ofMantissa =
4701       //     -0.50419619f +
4702       //       (0.60948995f - 0.10380950f * x) * x;
4703       //
4704       // error 0.0014886165, which is 6 bits
4705       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4706                                getF32Constant(DAG, 0xbdd49a13, dl));
4707       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4708                                getF32Constant(DAG, 0x3f1c0789, dl));
4709       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4710       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4711                                     getF32Constant(DAG, 0x3f011300, dl));
4712     } else if (LimitFloatPrecision <= 12) {
4713       // For floating-point precision of 12:
4714       //
4715       //   Log10ofMantissa =
4716       //     -0.64831180f +
4717       //       (0.91751397f +
4718       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4719       //
4720       // error 0.00019228036, which is better than 12 bits
4721       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4722                                getF32Constant(DAG, 0x3d431f31, dl));
4723       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4724                                getF32Constant(DAG, 0x3ea21fb2, dl));
4725       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4726       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4727                                getF32Constant(DAG, 0x3f6ae232, dl));
4728       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4729       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4730                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4731     } else { // LimitFloatPrecision <= 18
4732       // For floating-point precision of 18:
4733       //
4734       //   Log10ofMantissa =
4735       //     -0.84299375f +
4736       //       (1.5327582f +
4737       //         (-1.0688956f +
4738       //           (0.49102474f +
4739       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4740       //
4741       // error 0.0000037995730, which is better than 18 bits
4742       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4743                                getF32Constant(DAG, 0x3c5d51ce, dl));
4744       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4745                                getF32Constant(DAG, 0x3e00685a, dl));
4746       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4747       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4748                                getF32Constant(DAG, 0x3efb6798, dl));
4749       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4750       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4751                                getF32Constant(DAG, 0x3f88d192, dl));
4752       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4753       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4754                                getF32Constant(DAG, 0x3fc4316c, dl));
4755       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4756       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4757                                     getF32Constant(DAG, 0x3f57ce70, dl));
4758     }
4759 
4760     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4761   }
4762 
4763   // No special expansion.
4764   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4765 }
4766 
4767 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4768 /// limited-precision mode.
4769 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4770                           const TargetLowering &TLI) {
4771   if (Op.getValueType() == MVT::f32 &&
4772       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4773     return getLimitedPrecisionExp2(Op, dl, DAG);
4774 
4775   // No special expansion.
4776   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4777 }
4778 
4779 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4780 /// limited-precision mode with x == 10.0f.
4781 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4782                          SelectionDAG &DAG, const TargetLowering &TLI) {
4783   bool IsExp10 = false;
4784   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4785       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4786     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4787       APFloat Ten(10.0f);
4788       IsExp10 = LHSC->isExactlyValue(Ten);
4789     }
4790   }
4791 
4792   // TODO: What fast-math-flags should be set on the FMUL node?
4793   if (IsExp10) {
4794     // Put the exponent in the right bit position for later addition to the
4795     // final result:
4796     //
4797     //   #define LOG2OF10 3.3219281f
4798     //   t0 = Op * LOG2OF10;
4799     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4800                              getF32Constant(DAG, 0x40549a78, dl));
4801     return getLimitedPrecisionExp2(t0, dl, DAG);
4802   }
4803 
4804   // No special expansion.
4805   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4806 }
4807 
4808 /// ExpandPowI - Expand a llvm.powi intrinsic.
4809 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4810                           SelectionDAG &DAG) {
4811   // If RHS is a constant, we can expand this out to a multiplication tree,
4812   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4813   // optimizing for size, we only want to do this if the expansion would produce
4814   // a small number of multiplies, otherwise we do the full expansion.
4815   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4816     // Get the exponent as a positive value.
4817     unsigned Val = RHSC->getSExtValue();
4818     if ((int)Val < 0) Val = -Val;
4819 
4820     // powi(x, 0) -> 1.0
4821     if (Val == 0)
4822       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4823 
4824     const Function &F = DAG.getMachineFunction().getFunction();
4825     if (!F.optForSize() ||
4826         // If optimizing for size, don't insert too many multiplies.
4827         // This inserts up to 5 multiplies.
4828         countPopulation(Val) + Log2_32(Val) < 7) {
4829       // We use the simple binary decomposition method to generate the multiply
4830       // sequence.  There are more optimal ways to do this (for example,
4831       // powi(x,15) generates one more multiply than it should), but this has
4832       // the benefit of being both really simple and much better than a libcall.
4833       SDValue Res;  // Logically starts equal to 1.0
4834       SDValue CurSquare = LHS;
4835       // TODO: Intrinsics should have fast-math-flags that propagate to these
4836       // nodes.
4837       while (Val) {
4838         if (Val & 1) {
4839           if (Res.getNode())
4840             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4841           else
4842             Res = CurSquare;  // 1.0*CurSquare.
4843         }
4844 
4845         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4846                                 CurSquare, CurSquare);
4847         Val >>= 1;
4848       }
4849 
4850       // If the original was negative, invert the result, producing 1/(x*x*x).
4851       if (RHSC->getSExtValue() < 0)
4852         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4853                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4854       return Res;
4855     }
4856   }
4857 
4858   // Otherwise, expand to a libcall.
4859   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4860 }
4861 
4862 // getUnderlyingArgReg - Find underlying register used for a truncated or
4863 // bitcasted argument.
4864 static unsigned getUnderlyingArgReg(const SDValue &N) {
4865   switch (N.getOpcode()) {
4866   case ISD::CopyFromReg:
4867     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4868   case ISD::BITCAST:
4869   case ISD::AssertZext:
4870   case ISD::AssertSext:
4871   case ISD::TRUNCATE:
4872     return getUnderlyingArgReg(N.getOperand(0));
4873   default:
4874     return 0;
4875   }
4876 }
4877 
4878 /// If the DbgValueInst is a dbg_value of a function argument, create the
4879 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4880 /// instruction selection, they will be inserted to the entry BB.
4881 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4882     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4883     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4884   const Argument *Arg = dyn_cast<Argument>(V);
4885   if (!Arg)
4886     return false;
4887 
4888   MachineFunction &MF = DAG.getMachineFunction();
4889   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4890 
4891   bool IsIndirect = false;
4892   Optional<MachineOperand> Op;
4893   // Some arguments' frame index is recorded during argument lowering.
4894   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4895   if (FI != std::numeric_limits<int>::max())
4896     Op = MachineOperand::CreateFI(FI);
4897 
4898   if (!Op && N.getNode()) {
4899     unsigned Reg = getUnderlyingArgReg(N);
4900     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4901       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4902       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4903       if (PR)
4904         Reg = PR;
4905     }
4906     if (Reg) {
4907       Op = MachineOperand::CreateReg(Reg, false);
4908       IsIndirect = IsDbgDeclare;
4909     }
4910   }
4911 
4912   if (!Op && N.getNode())
4913     // Check if frame index is available.
4914     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4915       if (FrameIndexSDNode *FINode =
4916           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4917         Op = MachineOperand::CreateFI(FINode->getIndex());
4918 
4919   if (!Op) {
4920     // Check if ValueMap has reg number.
4921     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4922     if (VMI != FuncInfo.ValueMap.end()) {
4923       const auto &TLI = DAG.getTargetLoweringInfo();
4924       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4925                        V->getType(), isABIRegCopy(V));
4926       if (RFV.occupiesMultipleRegs()) {
4927         unsigned Offset = 0;
4928         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4929           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4930           auto FragmentExpr = DIExpression::createFragmentExpression(
4931               Expr, Offset, RegAndSize.second);
4932           if (!FragmentExpr)
4933             continue;
4934           FuncInfo.ArgDbgValues.push_back(
4935               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4936                       Op->getReg(), Variable, *FragmentExpr));
4937           Offset += RegAndSize.second;
4938         }
4939         return true;
4940       }
4941       Op = MachineOperand::CreateReg(VMI->second, false);
4942       IsIndirect = IsDbgDeclare;
4943     }
4944   }
4945 
4946   if (!Op)
4947     return false;
4948 
4949   assert(Variable->isValidLocationForIntrinsic(DL) &&
4950          "Expected inlined-at fields to agree");
4951   if (Op->isReg())
4952     FuncInfo.ArgDbgValues.push_back(
4953         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4954                 Op->getReg(), Variable, Expr));
4955   else
4956     FuncInfo.ArgDbgValues.push_back(
4957         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4958             .add(*Op)
4959             .addImm(0)
4960             .addMetadata(Variable)
4961             .addMetadata(Expr));
4962 
4963   return true;
4964 }
4965 
4966 /// Return the appropriate SDDbgValue based on N.
4967 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4968                                              DILocalVariable *Variable,
4969                                              DIExpression *Expr,
4970                                              const DebugLoc &dl,
4971                                              unsigned DbgSDNodeOrder) {
4972   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4973     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4974     // stack slot locations as such instead of as indirectly addressed
4975     // locations.
4976     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl,
4977                                      DbgSDNodeOrder);
4978   }
4979   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl,
4980                          DbgSDNodeOrder);
4981 }
4982 
4983 // VisualStudio defines setjmp as _setjmp
4984 #if defined(_MSC_VER) && defined(setjmp) && \
4985                          !defined(setjmp_undefined_for_msvc)
4986 #  pragma push_macro("setjmp")
4987 #  undef setjmp
4988 #  define setjmp_undefined_for_msvc
4989 #endif
4990 
4991 /// Lower the call to the specified intrinsic function. If we want to emit this
4992 /// as a call to a named external function, return the name. Otherwise, lower it
4993 /// and return null.
4994 const char *
4995 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4997   SDLoc sdl = getCurSDLoc();
4998   DebugLoc dl = getCurDebugLoc();
4999   SDValue Res;
5000 
5001   switch (Intrinsic) {
5002   default:
5003     // By default, turn this into a target intrinsic node.
5004     visitTargetIntrinsic(I, Intrinsic);
5005     return nullptr;
5006   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5007   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5008   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5009   case Intrinsic::returnaddress:
5010     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5011                              TLI.getPointerTy(DAG.getDataLayout()),
5012                              getValue(I.getArgOperand(0))));
5013     return nullptr;
5014   case Intrinsic::addressofreturnaddress:
5015     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5016                              TLI.getPointerTy(DAG.getDataLayout())));
5017     return nullptr;
5018   case Intrinsic::frameaddress:
5019     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5020                              TLI.getPointerTy(DAG.getDataLayout()),
5021                              getValue(I.getArgOperand(0))));
5022     return nullptr;
5023   case Intrinsic::read_register: {
5024     Value *Reg = I.getArgOperand(0);
5025     SDValue Chain = getRoot();
5026     SDValue RegName =
5027         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5028     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5029     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5030       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5031     setValue(&I, Res);
5032     DAG.setRoot(Res.getValue(1));
5033     return nullptr;
5034   }
5035   case Intrinsic::write_register: {
5036     Value *Reg = I.getArgOperand(0);
5037     Value *RegValue = I.getArgOperand(1);
5038     SDValue Chain = getRoot();
5039     SDValue RegName =
5040         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5041     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5042                             RegName, getValue(RegValue)));
5043     return nullptr;
5044   }
5045   case Intrinsic::setjmp:
5046     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5047   case Intrinsic::longjmp:
5048     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5049   case Intrinsic::memcpy: {
5050     const auto &MCI = cast<MemCpyInst>(I);
5051     SDValue Op1 = getValue(I.getArgOperand(0));
5052     SDValue Op2 = getValue(I.getArgOperand(1));
5053     SDValue Op3 = getValue(I.getArgOperand(2));
5054     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5055     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5056     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5057     unsigned Align = MinAlign(DstAlign, SrcAlign);
5058     bool isVol = MCI.isVolatile();
5059     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5060     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5061     // node.
5062     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5063                                false, isTC,
5064                                MachinePointerInfo(I.getArgOperand(0)),
5065                                MachinePointerInfo(I.getArgOperand(1)));
5066     updateDAGForMaybeTailCall(MC);
5067     return nullptr;
5068   }
5069   case Intrinsic::memset: {
5070     const auto &MSI = cast<MemSetInst>(I);
5071     SDValue Op1 = getValue(I.getArgOperand(0));
5072     SDValue Op2 = getValue(I.getArgOperand(1));
5073     SDValue Op3 = getValue(I.getArgOperand(2));
5074     // @llvm.memset defines 0 and 1 to both mean no alignment.
5075     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5076     bool isVol = MSI.isVolatile();
5077     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5078     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5079                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5080     updateDAGForMaybeTailCall(MS);
5081     return nullptr;
5082   }
5083   case Intrinsic::memmove: {
5084     const auto &MMI = cast<MemMoveInst>(I);
5085     SDValue Op1 = getValue(I.getArgOperand(0));
5086     SDValue Op2 = getValue(I.getArgOperand(1));
5087     SDValue Op3 = getValue(I.getArgOperand(2));
5088     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5089     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5090     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5091     unsigned Align = MinAlign(DstAlign, SrcAlign);
5092     bool isVol = MMI.isVolatile();
5093     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5094     // FIXME: Support passing different dest/src alignments to the memmove DAG
5095     // node.
5096     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5097                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5098                                 MachinePointerInfo(I.getArgOperand(1)));
5099     updateDAGForMaybeTailCall(MM);
5100     return nullptr;
5101   }
5102   case Intrinsic::memcpy_element_unordered_atomic: {
5103     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5104     SDValue Dst = getValue(MI.getRawDest());
5105     SDValue Src = getValue(MI.getRawSource());
5106     SDValue Length = getValue(MI.getLength());
5107 
5108     unsigned DstAlign = MI.getDestAlignment();
5109     unsigned SrcAlign = MI.getSourceAlignment();
5110     Type *LengthTy = MI.getLength()->getType();
5111     unsigned ElemSz = MI.getElementSizeInBytes();
5112     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5113     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5114                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5115                                      MachinePointerInfo(MI.getRawDest()),
5116                                      MachinePointerInfo(MI.getRawSource()));
5117     updateDAGForMaybeTailCall(MC);
5118     return nullptr;
5119   }
5120   case Intrinsic::memmove_element_unordered_atomic: {
5121     auto &MI = cast<AtomicMemMoveInst>(I);
5122     SDValue Dst = getValue(MI.getRawDest());
5123     SDValue Src = getValue(MI.getRawSource());
5124     SDValue Length = getValue(MI.getLength());
5125 
5126     unsigned DstAlign = MI.getDestAlignment();
5127     unsigned SrcAlign = MI.getSourceAlignment();
5128     Type *LengthTy = MI.getLength()->getType();
5129     unsigned ElemSz = MI.getElementSizeInBytes();
5130     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5131     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5132                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5133                                       MachinePointerInfo(MI.getRawDest()),
5134                                       MachinePointerInfo(MI.getRawSource()));
5135     updateDAGForMaybeTailCall(MC);
5136     return nullptr;
5137   }
5138   case Intrinsic::memset_element_unordered_atomic: {
5139     auto &MI = cast<AtomicMemSetInst>(I);
5140     SDValue Dst = getValue(MI.getRawDest());
5141     SDValue Val = getValue(MI.getValue());
5142     SDValue Length = getValue(MI.getLength());
5143 
5144     unsigned DstAlign = MI.getDestAlignment();
5145     Type *LengthTy = MI.getLength()->getType();
5146     unsigned ElemSz = MI.getElementSizeInBytes();
5147     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5148     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5149                                      LengthTy, ElemSz, isTC,
5150                                      MachinePointerInfo(MI.getRawDest()));
5151     updateDAGForMaybeTailCall(MC);
5152     return nullptr;
5153   }
5154   case Intrinsic::dbg_addr:
5155   case Intrinsic::dbg_declare: {
5156     const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I);
5157     DILocalVariable *Variable = DI.getVariable();
5158     DIExpression *Expression = DI.getExpression();
5159     dropDanglingDebugInfo(Variable, Expression);
5160     assert(Variable && "Missing variable");
5161 
5162     // Check if address has undef value.
5163     const Value *Address = DI.getVariableLocation();
5164     if (!Address || isa<UndefValue>(Address) ||
5165         (Address->use_empty() && !isa<Argument>(Address))) {
5166       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5167       return nullptr;
5168     }
5169 
5170     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5171 
5172     // Check if this variable can be described by a frame index, typically
5173     // either as a static alloca or a byval parameter.
5174     int FI = std::numeric_limits<int>::max();
5175     if (const auto *AI =
5176             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5177       if (AI->isStaticAlloca()) {
5178         auto I = FuncInfo.StaticAllocaMap.find(AI);
5179         if (I != FuncInfo.StaticAllocaMap.end())
5180           FI = I->second;
5181       }
5182     } else if (const auto *Arg = dyn_cast<Argument>(
5183                    Address->stripInBoundsConstantOffsets())) {
5184       FI = FuncInfo.getArgumentFrameIndex(Arg);
5185     }
5186 
5187     // llvm.dbg.addr is control dependent and always generates indirect
5188     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5189     // the MachineFunction variable table.
5190     if (FI != std::numeric_limits<int>::max()) {
5191       if (Intrinsic == Intrinsic::dbg_addr) {
5192          SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5193                                                      FI, dl, SDNodeOrder);
5194          DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5195       }
5196       return nullptr;
5197     }
5198 
5199     SDValue &N = NodeMap[Address];
5200     if (!N.getNode() && isa<Argument>(Address))
5201       // Check unused arguments map.
5202       N = UnusedArgNodeMap[Address];
5203     SDDbgValue *SDV;
5204     if (N.getNode()) {
5205       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5206         Address = BCI->getOperand(0);
5207       // Parameters are handled specially.
5208       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5209       if (isParameter && FINode) {
5210         // Byval parameter. We have a frame index at this point.
5211         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5212                                         FINode->getIndex(), dl, SDNodeOrder);
5213       } else if (isa<Argument>(Address)) {
5214         // Address is an argument, so try to emit its dbg value using
5215         // virtual register info from the FuncInfo.ValueMap.
5216         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5217         return nullptr;
5218       } else {
5219         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5220                               true, dl, SDNodeOrder);
5221       }
5222       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5223     } else {
5224       // If Address is an argument then try to emit its dbg value using
5225       // virtual register info from the FuncInfo.ValueMap.
5226       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5227                                     N)) {
5228         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5229       }
5230     }
5231     return nullptr;
5232   }
5233   case Intrinsic::dbg_value: {
5234     const DbgValueInst &DI = cast<DbgValueInst>(I);
5235     assert(DI.getVariable() && "Missing variable");
5236 
5237     DILocalVariable *Variable = DI.getVariable();
5238     DIExpression *Expression = DI.getExpression();
5239     dropDanglingDebugInfo(Variable, Expression);
5240     const Value *V = DI.getValue();
5241     if (!V)
5242       return nullptr;
5243 
5244     SDDbgValue *SDV;
5245     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5246       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5247       DAG.AddDbgValue(SDV, nullptr, false);
5248       return nullptr;
5249     }
5250 
5251     // Do not use getValue() in here; we don't want to generate code at
5252     // this point if it hasn't been done yet.
5253     SDValue N = NodeMap[V];
5254     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5255       N = UnusedArgNodeMap[V];
5256     if (N.getNode()) {
5257       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5258         return nullptr;
5259       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5260       DAG.AddDbgValue(SDV, N.getNode(), false);
5261       return nullptr;
5262     }
5263 
5264     // PHI nodes have already been selected, so we should know which VReg that
5265     // is assigns to already.
5266     if (isa<PHINode>(V)) {
5267       auto VMI = FuncInfo.ValueMap.find(V);
5268       if (VMI != FuncInfo.ValueMap.end()) {
5269         unsigned Reg = VMI->second;
5270         // The PHI node may be split up into several MI PHI nodes (in
5271         // FunctionLoweringInfo::set).
5272         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5273                          V->getType(), false);
5274         if (RFV.occupiesMultipleRegs()) {
5275           unsigned Offset = 0;
5276           unsigned BitsToDescribe = 0;
5277           if (auto VarSize = Variable->getSizeInBits())
5278             BitsToDescribe = *VarSize;
5279           if (auto Fragment = Expression->getFragmentInfo())
5280             BitsToDescribe = Fragment->SizeInBits;
5281           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5282             unsigned RegisterSize = RegAndSize.second;
5283             // Bail out if all bits are described already.
5284             if (Offset >= BitsToDescribe)
5285               break;
5286             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5287                 ? BitsToDescribe - Offset
5288                 : RegisterSize;
5289             auto FragmentExpr = DIExpression::createFragmentExpression(
5290                 Expression, Offset, FragmentSize);
5291             if (!FragmentExpr)
5292                 continue;
5293             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5294                                       false, dl, SDNodeOrder);
5295             DAG.AddDbgValue(SDV, nullptr, false);
5296             Offset += RegisterSize;
5297           }
5298         } else {
5299           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5300                                     SDNodeOrder);
5301           DAG.AddDbgValue(SDV, nullptr, false);
5302         }
5303         return nullptr;
5304       }
5305     }
5306 
5307     // TODO: When we get here we will either drop the dbg.value completely, or
5308     // we try to move it forward by letting it dangle for awhile. So we should
5309     // probably add an extra DbgValue to the DAG here, with a reference to
5310     // "noreg", to indicate that we have lost the debug location for the
5311     // variable.
5312 
5313     if (!V->use_empty() ) {
5314       // Do not call getValue(V) yet, as we don't want to generate code.
5315       // Remember it for later.
5316       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5317       DanglingDebugInfoMap[V].push_back(DDI);
5318       return nullptr;
5319     }
5320 
5321     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5322     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5323     return nullptr;
5324   }
5325 
5326   case Intrinsic::eh_typeid_for: {
5327     // Find the type id for the given typeinfo.
5328     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5329     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5330     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5331     setValue(&I, Res);
5332     return nullptr;
5333   }
5334 
5335   case Intrinsic::eh_return_i32:
5336   case Intrinsic::eh_return_i64:
5337     DAG.getMachineFunction().setCallsEHReturn(true);
5338     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5339                             MVT::Other,
5340                             getControlRoot(),
5341                             getValue(I.getArgOperand(0)),
5342                             getValue(I.getArgOperand(1))));
5343     return nullptr;
5344   case Intrinsic::eh_unwind_init:
5345     DAG.getMachineFunction().setCallsUnwindInit(true);
5346     return nullptr;
5347   case Intrinsic::eh_dwarf_cfa:
5348     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5349                              TLI.getPointerTy(DAG.getDataLayout()),
5350                              getValue(I.getArgOperand(0))));
5351     return nullptr;
5352   case Intrinsic::eh_sjlj_callsite: {
5353     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5354     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5355     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5356     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5357 
5358     MMI.setCurrentCallSite(CI->getZExtValue());
5359     return nullptr;
5360   }
5361   case Intrinsic::eh_sjlj_functioncontext: {
5362     // Get and store the index of the function context.
5363     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5364     AllocaInst *FnCtx =
5365       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5366     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5367     MFI.setFunctionContextIndex(FI);
5368     return nullptr;
5369   }
5370   case Intrinsic::eh_sjlj_setjmp: {
5371     SDValue Ops[2];
5372     Ops[0] = getRoot();
5373     Ops[1] = getValue(I.getArgOperand(0));
5374     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5375                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5376     setValue(&I, Op.getValue(0));
5377     DAG.setRoot(Op.getValue(1));
5378     return nullptr;
5379   }
5380   case Intrinsic::eh_sjlj_longjmp:
5381     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5382                             getRoot(), getValue(I.getArgOperand(0))));
5383     return nullptr;
5384   case Intrinsic::eh_sjlj_setup_dispatch:
5385     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5386                             getRoot()));
5387     return nullptr;
5388   case Intrinsic::masked_gather:
5389     visitMaskedGather(I);
5390     return nullptr;
5391   case Intrinsic::masked_load:
5392     visitMaskedLoad(I);
5393     return nullptr;
5394   case Intrinsic::masked_scatter:
5395     visitMaskedScatter(I);
5396     return nullptr;
5397   case Intrinsic::masked_store:
5398     visitMaskedStore(I);
5399     return nullptr;
5400   case Intrinsic::masked_expandload:
5401     visitMaskedLoad(I, true /* IsExpanding */);
5402     return nullptr;
5403   case Intrinsic::masked_compressstore:
5404     visitMaskedStore(I, true /* IsCompressing */);
5405     return nullptr;
5406   case Intrinsic::x86_mmx_pslli_w:
5407   case Intrinsic::x86_mmx_pslli_d:
5408   case Intrinsic::x86_mmx_pslli_q:
5409   case Intrinsic::x86_mmx_psrli_w:
5410   case Intrinsic::x86_mmx_psrli_d:
5411   case Intrinsic::x86_mmx_psrli_q:
5412   case Intrinsic::x86_mmx_psrai_w:
5413   case Intrinsic::x86_mmx_psrai_d: {
5414     SDValue ShAmt = getValue(I.getArgOperand(1));
5415     if (isa<ConstantSDNode>(ShAmt)) {
5416       visitTargetIntrinsic(I, Intrinsic);
5417       return nullptr;
5418     }
5419     unsigned NewIntrinsic = 0;
5420     EVT ShAmtVT = MVT::v2i32;
5421     switch (Intrinsic) {
5422     case Intrinsic::x86_mmx_pslli_w:
5423       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5424       break;
5425     case Intrinsic::x86_mmx_pslli_d:
5426       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5427       break;
5428     case Intrinsic::x86_mmx_pslli_q:
5429       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5430       break;
5431     case Intrinsic::x86_mmx_psrli_w:
5432       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5433       break;
5434     case Intrinsic::x86_mmx_psrli_d:
5435       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5436       break;
5437     case Intrinsic::x86_mmx_psrli_q:
5438       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5439       break;
5440     case Intrinsic::x86_mmx_psrai_w:
5441       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5442       break;
5443     case Intrinsic::x86_mmx_psrai_d:
5444       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5445       break;
5446     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5447     }
5448 
5449     // The vector shift intrinsics with scalars uses 32b shift amounts but
5450     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5451     // to be zero.
5452     // We must do this early because v2i32 is not a legal type.
5453     SDValue ShOps[2];
5454     ShOps[0] = ShAmt;
5455     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5456     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5457     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5458     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5459     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5460                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5461                        getValue(I.getArgOperand(0)), ShAmt);
5462     setValue(&I, Res);
5463     return nullptr;
5464   }
5465   case Intrinsic::powi:
5466     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5467                             getValue(I.getArgOperand(1)), DAG));
5468     return nullptr;
5469   case Intrinsic::log:
5470     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5471     return nullptr;
5472   case Intrinsic::log2:
5473     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5474     return nullptr;
5475   case Intrinsic::log10:
5476     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5477     return nullptr;
5478   case Intrinsic::exp:
5479     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5480     return nullptr;
5481   case Intrinsic::exp2:
5482     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5483     return nullptr;
5484   case Intrinsic::pow:
5485     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5486                            getValue(I.getArgOperand(1)), DAG, TLI));
5487     return nullptr;
5488   case Intrinsic::sqrt:
5489   case Intrinsic::fabs:
5490   case Intrinsic::sin:
5491   case Intrinsic::cos:
5492   case Intrinsic::floor:
5493   case Intrinsic::ceil:
5494   case Intrinsic::trunc:
5495   case Intrinsic::rint:
5496   case Intrinsic::nearbyint:
5497   case Intrinsic::round:
5498   case Intrinsic::canonicalize: {
5499     unsigned Opcode;
5500     switch (Intrinsic) {
5501     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5502     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5503     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5504     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5505     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5506     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5507     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5508     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5509     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5510     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5511     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5512     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5513     }
5514 
5515     setValue(&I, DAG.getNode(Opcode, sdl,
5516                              getValue(I.getArgOperand(0)).getValueType(),
5517                              getValue(I.getArgOperand(0))));
5518     return nullptr;
5519   }
5520   case Intrinsic::minnum: {
5521     auto VT = getValue(I.getArgOperand(0)).getValueType();
5522     unsigned Opc =
5523         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5524             ? ISD::FMINNAN
5525             : ISD::FMINNUM;
5526     setValue(&I, DAG.getNode(Opc, sdl, VT,
5527                              getValue(I.getArgOperand(0)),
5528                              getValue(I.getArgOperand(1))));
5529     return nullptr;
5530   }
5531   case Intrinsic::maxnum: {
5532     auto VT = getValue(I.getArgOperand(0)).getValueType();
5533     unsigned Opc =
5534         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5535             ? ISD::FMAXNAN
5536             : ISD::FMAXNUM;
5537     setValue(&I, DAG.getNode(Opc, sdl, VT,
5538                              getValue(I.getArgOperand(0)),
5539                              getValue(I.getArgOperand(1))));
5540     return nullptr;
5541   }
5542   case Intrinsic::copysign:
5543     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5544                              getValue(I.getArgOperand(0)).getValueType(),
5545                              getValue(I.getArgOperand(0)),
5546                              getValue(I.getArgOperand(1))));
5547     return nullptr;
5548   case Intrinsic::fma:
5549     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5550                              getValue(I.getArgOperand(0)).getValueType(),
5551                              getValue(I.getArgOperand(0)),
5552                              getValue(I.getArgOperand(1)),
5553                              getValue(I.getArgOperand(2))));
5554     return nullptr;
5555   case Intrinsic::experimental_constrained_fadd:
5556   case Intrinsic::experimental_constrained_fsub:
5557   case Intrinsic::experimental_constrained_fmul:
5558   case Intrinsic::experimental_constrained_fdiv:
5559   case Intrinsic::experimental_constrained_frem:
5560   case Intrinsic::experimental_constrained_fma:
5561   case Intrinsic::experimental_constrained_sqrt:
5562   case Intrinsic::experimental_constrained_pow:
5563   case Intrinsic::experimental_constrained_powi:
5564   case Intrinsic::experimental_constrained_sin:
5565   case Intrinsic::experimental_constrained_cos:
5566   case Intrinsic::experimental_constrained_exp:
5567   case Intrinsic::experimental_constrained_exp2:
5568   case Intrinsic::experimental_constrained_log:
5569   case Intrinsic::experimental_constrained_log10:
5570   case Intrinsic::experimental_constrained_log2:
5571   case Intrinsic::experimental_constrained_rint:
5572   case Intrinsic::experimental_constrained_nearbyint:
5573     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5574     return nullptr;
5575   case Intrinsic::fmuladd: {
5576     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5577     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5578         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5579       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5580                                getValue(I.getArgOperand(0)).getValueType(),
5581                                getValue(I.getArgOperand(0)),
5582                                getValue(I.getArgOperand(1)),
5583                                getValue(I.getArgOperand(2))));
5584     } else {
5585       // TODO: Intrinsic calls should have fast-math-flags.
5586       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5587                                 getValue(I.getArgOperand(0)).getValueType(),
5588                                 getValue(I.getArgOperand(0)),
5589                                 getValue(I.getArgOperand(1)));
5590       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5591                                 getValue(I.getArgOperand(0)).getValueType(),
5592                                 Mul,
5593                                 getValue(I.getArgOperand(2)));
5594       setValue(&I, Add);
5595     }
5596     return nullptr;
5597   }
5598   case Intrinsic::convert_to_fp16:
5599     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5600                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5601                                          getValue(I.getArgOperand(0)),
5602                                          DAG.getTargetConstant(0, sdl,
5603                                                                MVT::i32))));
5604     return nullptr;
5605   case Intrinsic::convert_from_fp16:
5606     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5607                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5608                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5609                                          getValue(I.getArgOperand(0)))));
5610     return nullptr;
5611   case Intrinsic::pcmarker: {
5612     SDValue Tmp = getValue(I.getArgOperand(0));
5613     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5614     return nullptr;
5615   }
5616   case Intrinsic::readcyclecounter: {
5617     SDValue Op = getRoot();
5618     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5619                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5620     setValue(&I, Res);
5621     DAG.setRoot(Res.getValue(1));
5622     return nullptr;
5623   }
5624   case Intrinsic::bitreverse:
5625     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5626                              getValue(I.getArgOperand(0)).getValueType(),
5627                              getValue(I.getArgOperand(0))));
5628     return nullptr;
5629   case Intrinsic::bswap:
5630     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5631                              getValue(I.getArgOperand(0)).getValueType(),
5632                              getValue(I.getArgOperand(0))));
5633     return nullptr;
5634   case Intrinsic::cttz: {
5635     SDValue Arg = getValue(I.getArgOperand(0));
5636     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5637     EVT Ty = Arg.getValueType();
5638     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5639                              sdl, Ty, Arg));
5640     return nullptr;
5641   }
5642   case Intrinsic::ctlz: {
5643     SDValue Arg = getValue(I.getArgOperand(0));
5644     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5645     EVT Ty = Arg.getValueType();
5646     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5647                              sdl, Ty, Arg));
5648     return nullptr;
5649   }
5650   case Intrinsic::ctpop: {
5651     SDValue Arg = getValue(I.getArgOperand(0));
5652     EVT Ty = Arg.getValueType();
5653     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5654     return nullptr;
5655   }
5656   case Intrinsic::stacksave: {
5657     SDValue Op = getRoot();
5658     Res = DAG.getNode(
5659         ISD::STACKSAVE, sdl,
5660         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5661     setValue(&I, Res);
5662     DAG.setRoot(Res.getValue(1));
5663     return nullptr;
5664   }
5665   case Intrinsic::stackrestore:
5666     Res = getValue(I.getArgOperand(0));
5667     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5668     return nullptr;
5669   case Intrinsic::get_dynamic_area_offset: {
5670     SDValue Op = getRoot();
5671     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5672     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5673     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5674     // target.
5675     if (PtrTy != ResTy)
5676       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5677                          " intrinsic!");
5678     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5679                       Op);
5680     DAG.setRoot(Op);
5681     setValue(&I, Res);
5682     return nullptr;
5683   }
5684   case Intrinsic::stackguard: {
5685     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5686     MachineFunction &MF = DAG.getMachineFunction();
5687     const Module &M = *MF.getFunction().getParent();
5688     SDValue Chain = getRoot();
5689     if (TLI.useLoadStackGuardNode()) {
5690       Res = getLoadStackGuard(DAG, sdl, Chain);
5691     } else {
5692       const Value *Global = TLI.getSDagStackGuard(M);
5693       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5694       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5695                         MachinePointerInfo(Global, 0), Align,
5696                         MachineMemOperand::MOVolatile);
5697     }
5698     if (TLI.useStackGuardXorFP())
5699       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5700     DAG.setRoot(Chain);
5701     setValue(&I, Res);
5702     return nullptr;
5703   }
5704   case Intrinsic::stackprotector: {
5705     // Emit code into the DAG to store the stack guard onto the stack.
5706     MachineFunction &MF = DAG.getMachineFunction();
5707     MachineFrameInfo &MFI = MF.getFrameInfo();
5708     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5709     SDValue Src, Chain = getRoot();
5710 
5711     if (TLI.useLoadStackGuardNode())
5712       Src = getLoadStackGuard(DAG, sdl, Chain);
5713     else
5714       Src = getValue(I.getArgOperand(0));   // The guard's value.
5715 
5716     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5717 
5718     int FI = FuncInfo.StaticAllocaMap[Slot];
5719     MFI.setStackProtectorIndex(FI);
5720 
5721     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5722 
5723     // Store the stack protector onto the stack.
5724     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5725                                                  DAG.getMachineFunction(), FI),
5726                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5727     setValue(&I, Res);
5728     DAG.setRoot(Res);
5729     return nullptr;
5730   }
5731   case Intrinsic::objectsize: {
5732     // If we don't know by now, we're never going to know.
5733     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5734 
5735     assert(CI && "Non-constant type in __builtin_object_size?");
5736 
5737     SDValue Arg = getValue(I.getCalledValue());
5738     EVT Ty = Arg.getValueType();
5739 
5740     if (CI->isZero())
5741       Res = DAG.getConstant(-1ULL, sdl, Ty);
5742     else
5743       Res = DAG.getConstant(0, sdl, Ty);
5744 
5745     setValue(&I, Res);
5746     return nullptr;
5747   }
5748   case Intrinsic::annotation:
5749   case Intrinsic::ptr_annotation:
5750   case Intrinsic::launder_invariant_group:
5751     // Drop the intrinsic, but forward the value
5752     setValue(&I, getValue(I.getOperand(0)));
5753     return nullptr;
5754   case Intrinsic::assume:
5755   case Intrinsic::var_annotation:
5756   case Intrinsic::sideeffect:
5757     // Discard annotate attributes, assumptions, and artificial side-effects.
5758     return nullptr;
5759 
5760   case Intrinsic::codeview_annotation: {
5761     // Emit a label associated with this metadata.
5762     MachineFunction &MF = DAG.getMachineFunction();
5763     MCSymbol *Label =
5764         MF.getMMI().getContext().createTempSymbol("annotation", true);
5765     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5766     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5767     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5768     DAG.setRoot(Res);
5769     return nullptr;
5770   }
5771 
5772   case Intrinsic::init_trampoline: {
5773     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5774 
5775     SDValue Ops[6];
5776     Ops[0] = getRoot();
5777     Ops[1] = getValue(I.getArgOperand(0));
5778     Ops[2] = getValue(I.getArgOperand(1));
5779     Ops[3] = getValue(I.getArgOperand(2));
5780     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5781     Ops[5] = DAG.getSrcValue(F);
5782 
5783     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5784 
5785     DAG.setRoot(Res);
5786     return nullptr;
5787   }
5788   case Intrinsic::adjust_trampoline:
5789     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5790                              TLI.getPointerTy(DAG.getDataLayout()),
5791                              getValue(I.getArgOperand(0))));
5792     return nullptr;
5793   case Intrinsic::gcroot: {
5794     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5795            "only valid in functions with gc specified, enforced by Verifier");
5796     assert(GFI && "implied by previous");
5797     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5798     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5799 
5800     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5801     GFI->addStackRoot(FI->getIndex(), TypeMap);
5802     return nullptr;
5803   }
5804   case Intrinsic::gcread:
5805   case Intrinsic::gcwrite:
5806     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5807   case Intrinsic::flt_rounds:
5808     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5809     return nullptr;
5810 
5811   case Intrinsic::expect:
5812     // Just replace __builtin_expect(exp, c) with EXP.
5813     setValue(&I, getValue(I.getArgOperand(0)));
5814     return nullptr;
5815 
5816   case Intrinsic::debugtrap:
5817   case Intrinsic::trap: {
5818     StringRef TrapFuncName =
5819         I.getAttributes()
5820             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5821             .getValueAsString();
5822     if (TrapFuncName.empty()) {
5823       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5824         ISD::TRAP : ISD::DEBUGTRAP;
5825       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5826       return nullptr;
5827     }
5828     TargetLowering::ArgListTy Args;
5829 
5830     TargetLowering::CallLoweringInfo CLI(DAG);
5831     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5832         CallingConv::C, I.getType(),
5833         DAG.getExternalSymbol(TrapFuncName.data(),
5834                               TLI.getPointerTy(DAG.getDataLayout())),
5835         std::move(Args));
5836 
5837     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5838     DAG.setRoot(Result.second);
5839     return nullptr;
5840   }
5841 
5842   case Intrinsic::uadd_with_overflow:
5843   case Intrinsic::sadd_with_overflow:
5844   case Intrinsic::usub_with_overflow:
5845   case Intrinsic::ssub_with_overflow:
5846   case Intrinsic::umul_with_overflow:
5847   case Intrinsic::smul_with_overflow: {
5848     ISD::NodeType Op;
5849     switch (Intrinsic) {
5850     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5851     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5852     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5853     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5854     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5855     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5856     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5857     }
5858     SDValue Op1 = getValue(I.getArgOperand(0));
5859     SDValue Op2 = getValue(I.getArgOperand(1));
5860 
5861     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5862     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5863     return nullptr;
5864   }
5865   case Intrinsic::prefetch: {
5866     SDValue Ops[5];
5867     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5868     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5869     Ops[0] = DAG.getRoot();
5870     Ops[1] = getValue(I.getArgOperand(0));
5871     Ops[2] = getValue(I.getArgOperand(1));
5872     Ops[3] = getValue(I.getArgOperand(2));
5873     Ops[4] = getValue(I.getArgOperand(3));
5874     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5875                                              DAG.getVTList(MVT::Other), Ops,
5876                                              EVT::getIntegerVT(*Context, 8),
5877                                              MachinePointerInfo(I.getArgOperand(0)),
5878                                              0, /* align */
5879                                              Flags);
5880 
5881     // Chain the prefetch in parallell with any pending loads, to stay out of
5882     // the way of later optimizations.
5883     PendingLoads.push_back(Result);
5884     Result = getRoot();
5885     DAG.setRoot(Result);
5886     return nullptr;
5887   }
5888   case Intrinsic::lifetime_start:
5889   case Intrinsic::lifetime_end: {
5890     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5891     // Stack coloring is not enabled in O0, discard region information.
5892     if (TM.getOptLevel() == CodeGenOpt::None)
5893       return nullptr;
5894 
5895     SmallVector<Value *, 4> Allocas;
5896     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5897 
5898     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5899            E = Allocas.end(); Object != E; ++Object) {
5900       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5901 
5902       // Could not find an Alloca.
5903       if (!LifetimeObject)
5904         continue;
5905 
5906       // First check that the Alloca is static, otherwise it won't have a
5907       // valid frame index.
5908       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5909       if (SI == FuncInfo.StaticAllocaMap.end())
5910         return nullptr;
5911 
5912       int FI = SI->second;
5913 
5914       SDValue Ops[2];
5915       Ops[0] = getRoot();
5916       Ops[1] =
5917           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5918       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5919 
5920       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5921       DAG.setRoot(Res);
5922     }
5923     return nullptr;
5924   }
5925   case Intrinsic::invariant_start:
5926     // Discard region information.
5927     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5928     return nullptr;
5929   case Intrinsic::invariant_end:
5930     // Discard region information.
5931     return nullptr;
5932   case Intrinsic::clear_cache:
5933     return TLI.getClearCacheBuiltinName();
5934   case Intrinsic::donothing:
5935     // ignore
5936     return nullptr;
5937   case Intrinsic::experimental_stackmap:
5938     visitStackmap(I);
5939     return nullptr;
5940   case Intrinsic::experimental_patchpoint_void:
5941   case Intrinsic::experimental_patchpoint_i64:
5942     visitPatchpoint(&I);
5943     return nullptr;
5944   case Intrinsic::experimental_gc_statepoint:
5945     LowerStatepoint(ImmutableStatepoint(&I));
5946     return nullptr;
5947   case Intrinsic::experimental_gc_result:
5948     visitGCResult(cast<GCResultInst>(I));
5949     return nullptr;
5950   case Intrinsic::experimental_gc_relocate:
5951     visitGCRelocate(cast<GCRelocateInst>(I));
5952     return nullptr;
5953   case Intrinsic::instrprof_increment:
5954     llvm_unreachable("instrprof failed to lower an increment");
5955   case Intrinsic::instrprof_value_profile:
5956     llvm_unreachable("instrprof failed to lower a value profiling call");
5957   case Intrinsic::localescape: {
5958     MachineFunction &MF = DAG.getMachineFunction();
5959     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5960 
5961     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5962     // is the same on all targets.
5963     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5964       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5965       if (isa<ConstantPointerNull>(Arg))
5966         continue; // Skip null pointers. They represent a hole in index space.
5967       AllocaInst *Slot = cast<AllocaInst>(Arg);
5968       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5969              "can only escape static allocas");
5970       int FI = FuncInfo.StaticAllocaMap[Slot];
5971       MCSymbol *FrameAllocSym =
5972           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5973               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5974       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5975               TII->get(TargetOpcode::LOCAL_ESCAPE))
5976           .addSym(FrameAllocSym)
5977           .addFrameIndex(FI);
5978     }
5979 
5980     return nullptr;
5981   }
5982 
5983   case Intrinsic::localrecover: {
5984     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5985     MachineFunction &MF = DAG.getMachineFunction();
5986     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5987 
5988     // Get the symbol that defines the frame offset.
5989     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5990     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5991     unsigned IdxVal =
5992         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
5993     MCSymbol *FrameAllocSym =
5994         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5995             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5996 
5997     // Create a MCSymbol for the label to avoid any target lowering
5998     // that would make this PC relative.
5999     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6000     SDValue OffsetVal =
6001         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6002 
6003     // Add the offset to the FP.
6004     Value *FP = I.getArgOperand(1);
6005     SDValue FPVal = getValue(FP);
6006     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6007     setValue(&I, Add);
6008 
6009     return nullptr;
6010   }
6011 
6012   case Intrinsic::eh_exceptionpointer:
6013   case Intrinsic::eh_exceptioncode: {
6014     // Get the exception pointer vreg, copy from it, and resize it to fit.
6015     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6016     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6017     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6018     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6019     SDValue N =
6020         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6021     if (Intrinsic == Intrinsic::eh_exceptioncode)
6022       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6023     setValue(&I, N);
6024     return nullptr;
6025   }
6026   case Intrinsic::xray_customevent: {
6027     // Here we want to make sure that the intrinsic behaves as if it has a
6028     // specific calling convention, and only for x86_64.
6029     // FIXME: Support other platforms later.
6030     const auto &Triple = DAG.getTarget().getTargetTriple();
6031     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6032       return nullptr;
6033 
6034     SDLoc DL = getCurSDLoc();
6035     SmallVector<SDValue, 8> Ops;
6036 
6037     // We want to say that we always want the arguments in registers.
6038     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6039     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6040     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6041     SDValue Chain = getRoot();
6042     Ops.push_back(LogEntryVal);
6043     Ops.push_back(StrSizeVal);
6044     Ops.push_back(Chain);
6045 
6046     // We need to enforce the calling convention for the callsite, so that
6047     // argument ordering is enforced correctly, and that register allocation can
6048     // see that some registers may be assumed clobbered and have to preserve
6049     // them across calls to the intrinsic.
6050     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6051                                            DL, NodeTys, Ops);
6052     SDValue patchableNode = SDValue(MN, 0);
6053     DAG.setRoot(patchableNode);
6054     setValue(&I, patchableNode);
6055     return nullptr;
6056   }
6057   case Intrinsic::xray_typedevent: {
6058     // Here we want to make sure that the intrinsic behaves as if it has a
6059     // specific calling convention, and only for x86_64.
6060     // FIXME: Support other platforms later.
6061     const auto &Triple = DAG.getTarget().getTargetTriple();
6062     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6063       return nullptr;
6064 
6065     SDLoc DL = getCurSDLoc();
6066     SmallVector<SDValue, 8> Ops;
6067 
6068     // We want to say that we always want the arguments in registers.
6069     // It's unclear to me how manipulating the selection DAG here forces callers
6070     // to provide arguments in registers instead of on the stack.
6071     SDValue LogTypeId = getValue(I.getArgOperand(0));
6072     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6073     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6074     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6075     SDValue Chain = getRoot();
6076     Ops.push_back(LogTypeId);
6077     Ops.push_back(LogEntryVal);
6078     Ops.push_back(StrSizeVal);
6079     Ops.push_back(Chain);
6080 
6081     // We need to enforce the calling convention for the callsite, so that
6082     // argument ordering is enforced correctly, and that register allocation can
6083     // see that some registers may be assumed clobbered and have to preserve
6084     // them across calls to the intrinsic.
6085     MachineSDNode *MN = DAG.getMachineNode(
6086         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6087     SDValue patchableNode = SDValue(MN, 0);
6088     DAG.setRoot(patchableNode);
6089     setValue(&I, patchableNode);
6090     return nullptr;
6091   }
6092   case Intrinsic::experimental_deoptimize:
6093     LowerDeoptimizeCall(&I);
6094     return nullptr;
6095 
6096   case Intrinsic::experimental_vector_reduce_fadd:
6097   case Intrinsic::experimental_vector_reduce_fmul:
6098   case Intrinsic::experimental_vector_reduce_add:
6099   case Intrinsic::experimental_vector_reduce_mul:
6100   case Intrinsic::experimental_vector_reduce_and:
6101   case Intrinsic::experimental_vector_reduce_or:
6102   case Intrinsic::experimental_vector_reduce_xor:
6103   case Intrinsic::experimental_vector_reduce_smax:
6104   case Intrinsic::experimental_vector_reduce_smin:
6105   case Intrinsic::experimental_vector_reduce_umax:
6106   case Intrinsic::experimental_vector_reduce_umin:
6107   case Intrinsic::experimental_vector_reduce_fmax:
6108   case Intrinsic::experimental_vector_reduce_fmin:
6109     visitVectorReduce(I, Intrinsic);
6110     return nullptr;
6111 
6112   case Intrinsic::icall_branch_funnel: {
6113     SmallVector<SDValue, 16> Ops;
6114     Ops.push_back(DAG.getRoot());
6115     Ops.push_back(getValue(I.getArgOperand(0)));
6116 
6117     int64_t Offset;
6118     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6119         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6120     if (!Base)
6121       report_fatal_error(
6122           "llvm.icall.branch.funnel operand must be a GlobalValue");
6123     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6124 
6125     struct BranchFunnelTarget {
6126       int64_t Offset;
6127       SDValue Target;
6128     };
6129     SmallVector<BranchFunnelTarget, 8> Targets;
6130 
6131     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6132       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6133           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6134       if (ElemBase != Base)
6135         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6136                            "to the same GlobalValue");
6137 
6138       SDValue Val = getValue(I.getArgOperand(Op + 1));
6139       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6140       if (!GA)
6141         report_fatal_error(
6142             "llvm.icall.branch.funnel operand must be a GlobalValue");
6143       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6144                                      GA->getGlobal(), getCurSDLoc(),
6145                                      Val.getValueType(), GA->getOffset())});
6146     }
6147     llvm::sort(Targets.begin(), Targets.end(),
6148                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6149                  return T1.Offset < T2.Offset;
6150                });
6151 
6152     for (auto &T : Targets) {
6153       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6154       Ops.push_back(T.Target);
6155     }
6156 
6157     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6158                                  getCurSDLoc(), MVT::Other, Ops),
6159               0);
6160     DAG.setRoot(N);
6161     setValue(&I, N);
6162     HasTailCall = true;
6163     return nullptr;
6164   }
6165   }
6166 }
6167 
6168 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6169     const ConstrainedFPIntrinsic &FPI) {
6170   SDLoc sdl = getCurSDLoc();
6171   unsigned Opcode;
6172   switch (FPI.getIntrinsicID()) {
6173   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6174   case Intrinsic::experimental_constrained_fadd:
6175     Opcode = ISD::STRICT_FADD;
6176     break;
6177   case Intrinsic::experimental_constrained_fsub:
6178     Opcode = ISD::STRICT_FSUB;
6179     break;
6180   case Intrinsic::experimental_constrained_fmul:
6181     Opcode = ISD::STRICT_FMUL;
6182     break;
6183   case Intrinsic::experimental_constrained_fdiv:
6184     Opcode = ISD::STRICT_FDIV;
6185     break;
6186   case Intrinsic::experimental_constrained_frem:
6187     Opcode = ISD::STRICT_FREM;
6188     break;
6189   case Intrinsic::experimental_constrained_fma:
6190     Opcode = ISD::STRICT_FMA;
6191     break;
6192   case Intrinsic::experimental_constrained_sqrt:
6193     Opcode = ISD::STRICT_FSQRT;
6194     break;
6195   case Intrinsic::experimental_constrained_pow:
6196     Opcode = ISD::STRICT_FPOW;
6197     break;
6198   case Intrinsic::experimental_constrained_powi:
6199     Opcode = ISD::STRICT_FPOWI;
6200     break;
6201   case Intrinsic::experimental_constrained_sin:
6202     Opcode = ISD::STRICT_FSIN;
6203     break;
6204   case Intrinsic::experimental_constrained_cos:
6205     Opcode = ISD::STRICT_FCOS;
6206     break;
6207   case Intrinsic::experimental_constrained_exp:
6208     Opcode = ISD::STRICT_FEXP;
6209     break;
6210   case Intrinsic::experimental_constrained_exp2:
6211     Opcode = ISD::STRICT_FEXP2;
6212     break;
6213   case Intrinsic::experimental_constrained_log:
6214     Opcode = ISD::STRICT_FLOG;
6215     break;
6216   case Intrinsic::experimental_constrained_log10:
6217     Opcode = ISD::STRICT_FLOG10;
6218     break;
6219   case Intrinsic::experimental_constrained_log2:
6220     Opcode = ISD::STRICT_FLOG2;
6221     break;
6222   case Intrinsic::experimental_constrained_rint:
6223     Opcode = ISD::STRICT_FRINT;
6224     break;
6225   case Intrinsic::experimental_constrained_nearbyint:
6226     Opcode = ISD::STRICT_FNEARBYINT;
6227     break;
6228   }
6229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6230   SDValue Chain = getRoot();
6231   SmallVector<EVT, 4> ValueVTs;
6232   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6233   ValueVTs.push_back(MVT::Other); // Out chain
6234 
6235   SDVTList VTs = DAG.getVTList(ValueVTs);
6236   SDValue Result;
6237   if (FPI.isUnaryOp())
6238     Result = DAG.getNode(Opcode, sdl, VTs,
6239                          { Chain, getValue(FPI.getArgOperand(0)) });
6240   else if (FPI.isTernaryOp())
6241     Result = DAG.getNode(Opcode, sdl, VTs,
6242                          { Chain, getValue(FPI.getArgOperand(0)),
6243                                   getValue(FPI.getArgOperand(1)),
6244                                   getValue(FPI.getArgOperand(2)) });
6245   else
6246     Result = DAG.getNode(Opcode, sdl, VTs,
6247                          { Chain, getValue(FPI.getArgOperand(0)),
6248                            getValue(FPI.getArgOperand(1))  });
6249 
6250   assert(Result.getNode()->getNumValues() == 2);
6251   SDValue OutChain = Result.getValue(1);
6252   DAG.setRoot(OutChain);
6253   SDValue FPResult = Result.getValue(0);
6254   setValue(&FPI, FPResult);
6255 }
6256 
6257 std::pair<SDValue, SDValue>
6258 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6259                                     const BasicBlock *EHPadBB) {
6260   MachineFunction &MF = DAG.getMachineFunction();
6261   MachineModuleInfo &MMI = MF.getMMI();
6262   MCSymbol *BeginLabel = nullptr;
6263 
6264   if (EHPadBB) {
6265     // Insert a label before the invoke call to mark the try range.  This can be
6266     // used to detect deletion of the invoke via the MachineModuleInfo.
6267     BeginLabel = MMI.getContext().createTempSymbol();
6268 
6269     // For SjLj, keep track of which landing pads go with which invokes
6270     // so as to maintain the ordering of pads in the LSDA.
6271     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6272     if (CallSiteIndex) {
6273       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6274       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6275 
6276       // Now that the call site is handled, stop tracking it.
6277       MMI.setCurrentCallSite(0);
6278     }
6279 
6280     // Both PendingLoads and PendingExports must be flushed here;
6281     // this call might not return.
6282     (void)getRoot();
6283     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6284 
6285     CLI.setChain(getRoot());
6286   }
6287   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6288   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6289 
6290   assert((CLI.IsTailCall || Result.second.getNode()) &&
6291          "Non-null chain expected with non-tail call!");
6292   assert((Result.second.getNode() || !Result.first.getNode()) &&
6293          "Null value expected with tail call!");
6294 
6295   if (!Result.second.getNode()) {
6296     // As a special case, a null chain means that a tail call has been emitted
6297     // and the DAG root is already updated.
6298     HasTailCall = true;
6299 
6300     // Since there's no actual continuation from this block, nothing can be
6301     // relying on us setting vregs for them.
6302     PendingExports.clear();
6303   } else {
6304     DAG.setRoot(Result.second);
6305   }
6306 
6307   if (EHPadBB) {
6308     // Insert a label at the end of the invoke call to mark the try range.  This
6309     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6310     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6311     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6312 
6313     // Inform MachineModuleInfo of range.
6314     if (MF.hasEHFunclets()) {
6315       assert(CLI.CS);
6316       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6317       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6318                                 BeginLabel, EndLabel);
6319     } else {
6320       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6321     }
6322   }
6323 
6324   return Result;
6325 }
6326 
6327 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6328                                       bool isTailCall,
6329                                       const BasicBlock *EHPadBB) {
6330   auto &DL = DAG.getDataLayout();
6331   FunctionType *FTy = CS.getFunctionType();
6332   Type *RetTy = CS.getType();
6333 
6334   TargetLowering::ArgListTy Args;
6335   Args.reserve(CS.arg_size());
6336 
6337   const Value *SwiftErrorVal = nullptr;
6338   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6339 
6340   // We can't tail call inside a function with a swifterror argument. Lowering
6341   // does not support this yet. It would have to move into the swifterror
6342   // register before the call.
6343   auto *Caller = CS.getInstruction()->getParent()->getParent();
6344   if (TLI.supportSwiftError() &&
6345       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6346     isTailCall = false;
6347 
6348   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6349        i != e; ++i) {
6350     TargetLowering::ArgListEntry Entry;
6351     const Value *V = *i;
6352 
6353     // Skip empty types
6354     if (V->getType()->isEmptyTy())
6355       continue;
6356 
6357     SDValue ArgNode = getValue(V);
6358     Entry.Node = ArgNode; Entry.Ty = V->getType();
6359 
6360     Entry.setAttributes(&CS, i - CS.arg_begin());
6361 
6362     // Use swifterror virtual register as input to the call.
6363     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6364       SwiftErrorVal = V;
6365       // We find the virtual register for the actual swifterror argument.
6366       // Instead of using the Value, we use the virtual register instead.
6367       Entry.Node = DAG.getRegister(FuncInfo
6368                                        .getOrCreateSwiftErrorVRegUseAt(
6369                                            CS.getInstruction(), FuncInfo.MBB, V)
6370                                        .first,
6371                                    EVT(TLI.getPointerTy(DL)));
6372     }
6373 
6374     Args.push_back(Entry);
6375 
6376     // If we have an explicit sret argument that is an Instruction, (i.e., it
6377     // might point to function-local memory), we can't meaningfully tail-call.
6378     if (Entry.IsSRet && isa<Instruction>(V))
6379       isTailCall = false;
6380   }
6381 
6382   // Check if target-independent constraints permit a tail call here.
6383   // Target-dependent constraints are checked within TLI->LowerCallTo.
6384   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6385     isTailCall = false;
6386 
6387   // Disable tail calls if there is an swifterror argument. Targets have not
6388   // been updated to support tail calls.
6389   if (TLI.supportSwiftError() && SwiftErrorVal)
6390     isTailCall = false;
6391 
6392   TargetLowering::CallLoweringInfo CLI(DAG);
6393   CLI.setDebugLoc(getCurSDLoc())
6394       .setChain(getRoot())
6395       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6396       .setTailCall(isTailCall)
6397       .setConvergent(CS.isConvergent());
6398   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6399 
6400   if (Result.first.getNode()) {
6401     const Instruction *Inst = CS.getInstruction();
6402     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6403     setValue(Inst, Result.first);
6404   }
6405 
6406   // The last element of CLI.InVals has the SDValue for swifterror return.
6407   // Here we copy it to a virtual register and update SwiftErrorMap for
6408   // book-keeping.
6409   if (SwiftErrorVal && TLI.supportSwiftError()) {
6410     // Get the last element of InVals.
6411     SDValue Src = CLI.InVals.back();
6412     unsigned VReg; bool CreatedVReg;
6413     std::tie(VReg, CreatedVReg) =
6414         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6415     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6416     // We update the virtual register for the actual swifterror argument.
6417     if (CreatedVReg)
6418       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6419     DAG.setRoot(CopyNode);
6420   }
6421 }
6422 
6423 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6424                              SelectionDAGBuilder &Builder) {
6425   // Check to see if this load can be trivially constant folded, e.g. if the
6426   // input is from a string literal.
6427   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6428     // Cast pointer to the type we really want to load.
6429     Type *LoadTy =
6430         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6431     if (LoadVT.isVector())
6432       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6433 
6434     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6435                                          PointerType::getUnqual(LoadTy));
6436 
6437     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6438             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6439       return Builder.getValue(LoadCst);
6440   }
6441 
6442   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6443   // still constant memory, the input chain can be the entry node.
6444   SDValue Root;
6445   bool ConstantMemory = false;
6446 
6447   // Do not serialize (non-volatile) loads of constant memory with anything.
6448   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6449     Root = Builder.DAG.getEntryNode();
6450     ConstantMemory = true;
6451   } else {
6452     // Do not serialize non-volatile loads against each other.
6453     Root = Builder.DAG.getRoot();
6454   }
6455 
6456   SDValue Ptr = Builder.getValue(PtrVal);
6457   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6458                                         Ptr, MachinePointerInfo(PtrVal),
6459                                         /* Alignment = */ 1);
6460 
6461   if (!ConstantMemory)
6462     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6463   return LoadVal;
6464 }
6465 
6466 /// Record the value for an instruction that produces an integer result,
6467 /// converting the type where necessary.
6468 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6469                                                   SDValue Value,
6470                                                   bool IsSigned) {
6471   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6472                                                     I.getType(), true);
6473   if (IsSigned)
6474     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6475   else
6476     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6477   setValue(&I, Value);
6478 }
6479 
6480 /// See if we can lower a memcmp call into an optimized form. If so, return
6481 /// true and lower it. Otherwise return false, and it will be lowered like a
6482 /// normal call.
6483 /// The caller already checked that \p I calls the appropriate LibFunc with a
6484 /// correct prototype.
6485 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6486   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6487   const Value *Size = I.getArgOperand(2);
6488   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6489   if (CSize && CSize->getZExtValue() == 0) {
6490     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6491                                                           I.getType(), true);
6492     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6493     return true;
6494   }
6495 
6496   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6497   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6498       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6499       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6500   if (Res.first.getNode()) {
6501     processIntegerCallValue(I, Res.first, true);
6502     PendingLoads.push_back(Res.second);
6503     return true;
6504   }
6505 
6506   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6507   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6508   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6509     return false;
6510 
6511   // If the target has a fast compare for the given size, it will return a
6512   // preferred load type for that size. Require that the load VT is legal and
6513   // that the target supports unaligned loads of that type. Otherwise, return
6514   // INVALID.
6515   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6516     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6517     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6518     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6519       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6520       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6521       // TODO: Check alignment of src and dest ptrs.
6522       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6523       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6524       if (!TLI.isTypeLegal(LVT) ||
6525           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6526           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6527         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6528     }
6529 
6530     return LVT;
6531   };
6532 
6533   // This turns into unaligned loads. We only do this if the target natively
6534   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6535   // we'll only produce a small number of byte loads.
6536   MVT LoadVT;
6537   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6538   switch (NumBitsToCompare) {
6539   default:
6540     return false;
6541   case 16:
6542     LoadVT = MVT::i16;
6543     break;
6544   case 32:
6545     LoadVT = MVT::i32;
6546     break;
6547   case 64:
6548   case 128:
6549   case 256:
6550     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6551     break;
6552   }
6553 
6554   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6555     return false;
6556 
6557   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6558   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6559 
6560   // Bitcast to a wide integer type if the loads are vectors.
6561   if (LoadVT.isVector()) {
6562     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6563     LoadL = DAG.getBitcast(CmpVT, LoadL);
6564     LoadR = DAG.getBitcast(CmpVT, LoadR);
6565   }
6566 
6567   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6568   processIntegerCallValue(I, Cmp, false);
6569   return true;
6570 }
6571 
6572 /// See if we can lower a memchr call into an optimized form. If so, return
6573 /// true and lower it. Otherwise return false, and it will be lowered like a
6574 /// normal call.
6575 /// The caller already checked that \p I calls the appropriate LibFunc with a
6576 /// correct prototype.
6577 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6578   const Value *Src = I.getArgOperand(0);
6579   const Value *Char = I.getArgOperand(1);
6580   const Value *Length = I.getArgOperand(2);
6581 
6582   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6583   std::pair<SDValue, SDValue> Res =
6584     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6585                                 getValue(Src), getValue(Char), getValue(Length),
6586                                 MachinePointerInfo(Src));
6587   if (Res.first.getNode()) {
6588     setValue(&I, Res.first);
6589     PendingLoads.push_back(Res.second);
6590     return true;
6591   }
6592 
6593   return false;
6594 }
6595 
6596 /// See if we can lower a mempcpy call into an optimized form. If so, return
6597 /// true and lower it. Otherwise return false, and it will be lowered like a
6598 /// normal call.
6599 /// The caller already checked that \p I calls the appropriate LibFunc with a
6600 /// correct prototype.
6601 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6602   SDValue Dst = getValue(I.getArgOperand(0));
6603   SDValue Src = getValue(I.getArgOperand(1));
6604   SDValue Size = getValue(I.getArgOperand(2));
6605 
6606   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6607   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6608   unsigned Align = std::min(DstAlign, SrcAlign);
6609   if (Align == 0) // Alignment of one or both could not be inferred.
6610     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6611 
6612   bool isVol = false;
6613   SDLoc sdl = getCurSDLoc();
6614 
6615   // In the mempcpy context we need to pass in a false value for isTailCall
6616   // because the return pointer needs to be adjusted by the size of
6617   // the copied memory.
6618   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6619                              false, /*isTailCall=*/false,
6620                              MachinePointerInfo(I.getArgOperand(0)),
6621                              MachinePointerInfo(I.getArgOperand(1)));
6622   assert(MC.getNode() != nullptr &&
6623          "** memcpy should not be lowered as TailCall in mempcpy context **");
6624   DAG.setRoot(MC);
6625 
6626   // Check if Size needs to be truncated or extended.
6627   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6628 
6629   // Adjust return pointer to point just past the last dst byte.
6630   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6631                                     Dst, Size);
6632   setValue(&I, DstPlusSize);
6633   return true;
6634 }
6635 
6636 /// See if we can lower a strcpy call into an optimized form.  If so, return
6637 /// true and lower it, otherwise return false and it will be lowered like a
6638 /// normal call.
6639 /// The caller already checked that \p I calls the appropriate LibFunc with a
6640 /// correct prototype.
6641 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6642   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6643 
6644   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6645   std::pair<SDValue, SDValue> Res =
6646     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6647                                 getValue(Arg0), getValue(Arg1),
6648                                 MachinePointerInfo(Arg0),
6649                                 MachinePointerInfo(Arg1), isStpcpy);
6650   if (Res.first.getNode()) {
6651     setValue(&I, Res.first);
6652     DAG.setRoot(Res.second);
6653     return true;
6654   }
6655 
6656   return false;
6657 }
6658 
6659 /// See if we can lower a strcmp call into an optimized form.  If so, return
6660 /// true and lower it, otherwise return false and it will be lowered like a
6661 /// normal call.
6662 /// The caller already checked that \p I calls the appropriate LibFunc with a
6663 /// correct prototype.
6664 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6665   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6666 
6667   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6668   std::pair<SDValue, SDValue> Res =
6669     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6670                                 getValue(Arg0), getValue(Arg1),
6671                                 MachinePointerInfo(Arg0),
6672                                 MachinePointerInfo(Arg1));
6673   if (Res.first.getNode()) {
6674     processIntegerCallValue(I, Res.first, true);
6675     PendingLoads.push_back(Res.second);
6676     return true;
6677   }
6678 
6679   return false;
6680 }
6681 
6682 /// See if we can lower a strlen call into an optimized form.  If so, return
6683 /// true and lower it, otherwise return false and it will be lowered like a
6684 /// normal call.
6685 /// The caller already checked that \p I calls the appropriate LibFunc with a
6686 /// correct prototype.
6687 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6688   const Value *Arg0 = I.getArgOperand(0);
6689 
6690   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6691   std::pair<SDValue, SDValue> Res =
6692     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6693                                 getValue(Arg0), MachinePointerInfo(Arg0));
6694   if (Res.first.getNode()) {
6695     processIntegerCallValue(I, Res.first, false);
6696     PendingLoads.push_back(Res.second);
6697     return true;
6698   }
6699 
6700   return false;
6701 }
6702 
6703 /// See if we can lower a strnlen call into an optimized form.  If so, return
6704 /// true and lower it, otherwise return false and it will be lowered like a
6705 /// normal call.
6706 /// The caller already checked that \p I calls the appropriate LibFunc with a
6707 /// correct prototype.
6708 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6709   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6710 
6711   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6712   std::pair<SDValue, SDValue> Res =
6713     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6714                                  getValue(Arg0), getValue(Arg1),
6715                                  MachinePointerInfo(Arg0));
6716   if (Res.first.getNode()) {
6717     processIntegerCallValue(I, Res.first, false);
6718     PendingLoads.push_back(Res.second);
6719     return true;
6720   }
6721 
6722   return false;
6723 }
6724 
6725 /// See if we can lower a unary floating-point operation into an SDNode with
6726 /// the specified Opcode.  If so, return true and lower it, otherwise return
6727 /// false and it will be lowered like a normal call.
6728 /// The caller already checked that \p I calls the appropriate LibFunc with a
6729 /// correct prototype.
6730 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6731                                               unsigned Opcode) {
6732   // We already checked this call's prototype; verify it doesn't modify errno.
6733   if (!I.onlyReadsMemory())
6734     return false;
6735 
6736   SDValue Tmp = getValue(I.getArgOperand(0));
6737   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6738   return true;
6739 }
6740 
6741 /// See if we can lower a binary floating-point operation into an SDNode with
6742 /// the specified Opcode. If so, return true and lower it. Otherwise return
6743 /// false, and it will be lowered like a normal call.
6744 /// The caller already checked that \p I calls the appropriate LibFunc with a
6745 /// correct prototype.
6746 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6747                                                unsigned Opcode) {
6748   // We already checked this call's prototype; verify it doesn't modify errno.
6749   if (!I.onlyReadsMemory())
6750     return false;
6751 
6752   SDValue Tmp0 = getValue(I.getArgOperand(0));
6753   SDValue Tmp1 = getValue(I.getArgOperand(1));
6754   EVT VT = Tmp0.getValueType();
6755   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6756   return true;
6757 }
6758 
6759 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6760   // Handle inline assembly differently.
6761   if (isa<InlineAsm>(I.getCalledValue())) {
6762     visitInlineAsm(&I);
6763     return;
6764   }
6765 
6766   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6767   computeUsesVAFloatArgument(I, MMI);
6768 
6769   const char *RenameFn = nullptr;
6770   if (Function *F = I.getCalledFunction()) {
6771     if (F->isDeclaration()) {
6772       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6773         if (unsigned IID = II->getIntrinsicID(F)) {
6774           RenameFn = visitIntrinsicCall(I, IID);
6775           if (!RenameFn)
6776             return;
6777         }
6778       }
6779       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6780         RenameFn = visitIntrinsicCall(I, IID);
6781         if (!RenameFn)
6782           return;
6783       }
6784     }
6785 
6786     // Check for well-known libc/libm calls.  If the function is internal, it
6787     // can't be a library call.  Don't do the check if marked as nobuiltin for
6788     // some reason or the call site requires strict floating point semantics.
6789     LibFunc Func;
6790     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6791         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6792         LibInfo->hasOptimizedCodeGen(Func)) {
6793       switch (Func) {
6794       default: break;
6795       case LibFunc_copysign:
6796       case LibFunc_copysignf:
6797       case LibFunc_copysignl:
6798         // We already checked this call's prototype; verify it doesn't modify
6799         // errno.
6800         if (I.onlyReadsMemory()) {
6801           SDValue LHS = getValue(I.getArgOperand(0));
6802           SDValue RHS = getValue(I.getArgOperand(1));
6803           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6804                                    LHS.getValueType(), LHS, RHS));
6805           return;
6806         }
6807         break;
6808       case LibFunc_fabs:
6809       case LibFunc_fabsf:
6810       case LibFunc_fabsl:
6811         if (visitUnaryFloatCall(I, ISD::FABS))
6812           return;
6813         break;
6814       case LibFunc_fmin:
6815       case LibFunc_fminf:
6816       case LibFunc_fminl:
6817         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6818           return;
6819         break;
6820       case LibFunc_fmax:
6821       case LibFunc_fmaxf:
6822       case LibFunc_fmaxl:
6823         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6824           return;
6825         break;
6826       case LibFunc_sin:
6827       case LibFunc_sinf:
6828       case LibFunc_sinl:
6829         if (visitUnaryFloatCall(I, ISD::FSIN))
6830           return;
6831         break;
6832       case LibFunc_cos:
6833       case LibFunc_cosf:
6834       case LibFunc_cosl:
6835         if (visitUnaryFloatCall(I, ISD::FCOS))
6836           return;
6837         break;
6838       case LibFunc_sqrt:
6839       case LibFunc_sqrtf:
6840       case LibFunc_sqrtl:
6841       case LibFunc_sqrt_finite:
6842       case LibFunc_sqrtf_finite:
6843       case LibFunc_sqrtl_finite:
6844         if (visitUnaryFloatCall(I, ISD::FSQRT))
6845           return;
6846         break;
6847       case LibFunc_floor:
6848       case LibFunc_floorf:
6849       case LibFunc_floorl:
6850         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6851           return;
6852         break;
6853       case LibFunc_nearbyint:
6854       case LibFunc_nearbyintf:
6855       case LibFunc_nearbyintl:
6856         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6857           return;
6858         break;
6859       case LibFunc_ceil:
6860       case LibFunc_ceilf:
6861       case LibFunc_ceill:
6862         if (visitUnaryFloatCall(I, ISD::FCEIL))
6863           return;
6864         break;
6865       case LibFunc_rint:
6866       case LibFunc_rintf:
6867       case LibFunc_rintl:
6868         if (visitUnaryFloatCall(I, ISD::FRINT))
6869           return;
6870         break;
6871       case LibFunc_round:
6872       case LibFunc_roundf:
6873       case LibFunc_roundl:
6874         if (visitUnaryFloatCall(I, ISD::FROUND))
6875           return;
6876         break;
6877       case LibFunc_trunc:
6878       case LibFunc_truncf:
6879       case LibFunc_truncl:
6880         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6881           return;
6882         break;
6883       case LibFunc_log2:
6884       case LibFunc_log2f:
6885       case LibFunc_log2l:
6886         if (visitUnaryFloatCall(I, ISD::FLOG2))
6887           return;
6888         break;
6889       case LibFunc_exp2:
6890       case LibFunc_exp2f:
6891       case LibFunc_exp2l:
6892         if (visitUnaryFloatCall(I, ISD::FEXP2))
6893           return;
6894         break;
6895       case LibFunc_memcmp:
6896         if (visitMemCmpCall(I))
6897           return;
6898         break;
6899       case LibFunc_mempcpy:
6900         if (visitMemPCpyCall(I))
6901           return;
6902         break;
6903       case LibFunc_memchr:
6904         if (visitMemChrCall(I))
6905           return;
6906         break;
6907       case LibFunc_strcpy:
6908         if (visitStrCpyCall(I, false))
6909           return;
6910         break;
6911       case LibFunc_stpcpy:
6912         if (visitStrCpyCall(I, true))
6913           return;
6914         break;
6915       case LibFunc_strcmp:
6916         if (visitStrCmpCall(I))
6917           return;
6918         break;
6919       case LibFunc_strlen:
6920         if (visitStrLenCall(I))
6921           return;
6922         break;
6923       case LibFunc_strnlen:
6924         if (visitStrNLenCall(I))
6925           return;
6926         break;
6927       }
6928     }
6929   }
6930 
6931   SDValue Callee;
6932   if (!RenameFn)
6933     Callee = getValue(I.getCalledValue());
6934   else
6935     Callee = DAG.getExternalSymbol(
6936         RenameFn,
6937         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6938 
6939   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6940   // have to do anything here to lower funclet bundles.
6941   assert(!I.hasOperandBundlesOtherThan(
6942              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6943          "Cannot lower calls with arbitrary operand bundles!");
6944 
6945   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6946     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6947   else
6948     // Check if we can potentially perform a tail call. More detailed checking
6949     // is be done within LowerCallTo, after more information about the call is
6950     // known.
6951     LowerCallTo(&I, Callee, I.isTailCall());
6952 }
6953 
6954 namespace {
6955 
6956 /// AsmOperandInfo - This contains information for each constraint that we are
6957 /// lowering.
6958 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6959 public:
6960   /// CallOperand - If this is the result output operand or a clobber
6961   /// this is null, otherwise it is the incoming operand to the CallInst.
6962   /// This gets modified as the asm is processed.
6963   SDValue CallOperand;
6964 
6965   /// AssignedRegs - If this is a register or register class operand, this
6966   /// contains the set of register corresponding to the operand.
6967   RegsForValue AssignedRegs;
6968 
6969   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6970     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
6971   }
6972 
6973   /// Whether or not this operand accesses memory
6974   bool hasMemory(const TargetLowering &TLI) const {
6975     // Indirect operand accesses access memory.
6976     if (isIndirect)
6977       return true;
6978 
6979     for (const auto &Code : Codes)
6980       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6981         return true;
6982 
6983     return false;
6984   }
6985 
6986   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6987   /// corresponds to.  If there is no Value* for this operand, it returns
6988   /// MVT::Other.
6989   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6990                            const DataLayout &DL) const {
6991     if (!CallOperandVal) return MVT::Other;
6992 
6993     if (isa<BasicBlock>(CallOperandVal))
6994       return TLI.getPointerTy(DL);
6995 
6996     llvm::Type *OpTy = CallOperandVal->getType();
6997 
6998     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6999     // If this is an indirect operand, the operand is a pointer to the
7000     // accessed type.
7001     if (isIndirect) {
7002       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7003       if (!PtrTy)
7004         report_fatal_error("Indirect operand for inline asm not a pointer!");
7005       OpTy = PtrTy->getElementType();
7006     }
7007 
7008     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7009     if (StructType *STy = dyn_cast<StructType>(OpTy))
7010       if (STy->getNumElements() == 1)
7011         OpTy = STy->getElementType(0);
7012 
7013     // If OpTy is not a single value, it may be a struct/union that we
7014     // can tile with integers.
7015     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7016       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7017       switch (BitSize) {
7018       default: break;
7019       case 1:
7020       case 8:
7021       case 16:
7022       case 32:
7023       case 64:
7024       case 128:
7025         OpTy = IntegerType::get(Context, BitSize);
7026         break;
7027       }
7028     }
7029 
7030     return TLI.getValueType(DL, OpTy, true);
7031   }
7032 };
7033 
7034 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7035 
7036 } // end anonymous namespace
7037 
7038 /// Make sure that the output operand \p OpInfo and its corresponding input
7039 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7040 /// out).
7041 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7042                                SDISelAsmOperandInfo &MatchingOpInfo,
7043                                SelectionDAG &DAG) {
7044   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7045     return;
7046 
7047   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7048   const auto &TLI = DAG.getTargetLoweringInfo();
7049 
7050   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7051       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7052                                        OpInfo.ConstraintVT);
7053   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7054       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7055                                        MatchingOpInfo.ConstraintVT);
7056   if ((OpInfo.ConstraintVT.isInteger() !=
7057        MatchingOpInfo.ConstraintVT.isInteger()) ||
7058       (MatchRC.second != InputRC.second)) {
7059     // FIXME: error out in a more elegant fashion
7060     report_fatal_error("Unsupported asm: input constraint"
7061                        " with a matching output constraint of"
7062                        " incompatible type!");
7063   }
7064   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7065 }
7066 
7067 /// Get a direct memory input to behave well as an indirect operand.
7068 /// This may introduce stores, hence the need for a \p Chain.
7069 /// \return The (possibly updated) chain.
7070 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7071                                         SDISelAsmOperandInfo &OpInfo,
7072                                         SelectionDAG &DAG) {
7073   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7074 
7075   // If we don't have an indirect input, put it in the constpool if we can,
7076   // otherwise spill it to a stack slot.
7077   // TODO: This isn't quite right. We need to handle these according to
7078   // the addressing mode that the constraint wants. Also, this may take
7079   // an additional register for the computation and we don't want that
7080   // either.
7081 
7082   // If the operand is a float, integer, or vector constant, spill to a
7083   // constant pool entry to get its address.
7084   const Value *OpVal = OpInfo.CallOperandVal;
7085   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7086       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7087     OpInfo.CallOperand = DAG.getConstantPool(
7088         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7089     return Chain;
7090   }
7091 
7092   // Otherwise, create a stack slot and emit a store to it before the asm.
7093   Type *Ty = OpVal->getType();
7094   auto &DL = DAG.getDataLayout();
7095   uint64_t TySize = DL.getTypeAllocSize(Ty);
7096   unsigned Align = DL.getPrefTypeAlignment(Ty);
7097   MachineFunction &MF = DAG.getMachineFunction();
7098   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7099   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7100   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7101                        MachinePointerInfo::getFixedStack(MF, SSFI));
7102   OpInfo.CallOperand = StackSlot;
7103 
7104   return Chain;
7105 }
7106 
7107 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7108 /// specified operand.  We prefer to assign virtual registers, to allow the
7109 /// register allocator to handle the assignment process.  However, if the asm
7110 /// uses features that we can't model on machineinstrs, we have SDISel do the
7111 /// allocation.  This produces generally horrible, but correct, code.
7112 ///
7113 ///   OpInfo describes the operand.
7114 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7115                                  const SDLoc &DL,
7116                                  SDISelAsmOperandInfo &OpInfo) {
7117   LLVMContext &Context = *DAG.getContext();
7118 
7119   MachineFunction &MF = DAG.getMachineFunction();
7120   SmallVector<unsigned, 4> Regs;
7121   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7122 
7123   // If this is a constraint for a single physreg, or a constraint for a
7124   // register class, find it.
7125   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7126       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
7127                                        OpInfo.ConstraintVT);
7128 
7129   unsigned NumRegs = 1;
7130   if (OpInfo.ConstraintVT != MVT::Other) {
7131     // If this is a FP input in an integer register (or visa versa) insert a bit
7132     // cast of the input value.  More generally, handle any case where the input
7133     // value disagrees with the register class we plan to stick this in.
7134     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
7135         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7136       // Try to convert to the first EVT that the reg class contains.  If the
7137       // types are identical size, use a bitcast to convert (e.g. two differing
7138       // vector types).
7139       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7140       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
7141         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7142                                          RegVT, OpInfo.CallOperand);
7143         OpInfo.ConstraintVT = RegVT;
7144       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7145         // If the input is a FP value and we want it in FP registers, do a
7146         // bitcast to the corresponding integer type.  This turns an f64 value
7147         // into i64, which can be passed with two i32 values on a 32-bit
7148         // machine.
7149         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7150         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
7151                                          RegVT, OpInfo.CallOperand);
7152         OpInfo.ConstraintVT = RegVT;
7153       }
7154     }
7155 
7156     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7157   }
7158 
7159   MVT RegVT;
7160   EVT ValueVT = OpInfo.ConstraintVT;
7161 
7162   // If this is a constraint for a specific physical register, like {r17},
7163   // assign it now.
7164   if (unsigned AssignedReg = PhysReg.first) {
7165     const TargetRegisterClass *RC = PhysReg.second;
7166     if (OpInfo.ConstraintVT == MVT::Other)
7167       ValueVT = *TRI.legalclasstypes_begin(*RC);
7168 
7169     // Get the actual register value type.  This is important, because the user
7170     // may have asked for (e.g.) the AX register in i32 type.  We need to
7171     // remember that AX is actually i16 to get the right extension.
7172     RegVT = *TRI.legalclasstypes_begin(*RC);
7173 
7174     // This is a explicit reference to a physical register.
7175     Regs.push_back(AssignedReg);
7176 
7177     // If this is an expanded reference, add the rest of the regs to Regs.
7178     if (NumRegs != 1) {
7179       TargetRegisterClass::iterator I = RC->begin();
7180       for (; *I != AssignedReg; ++I)
7181         assert(I != RC->end() && "Didn't find reg!");
7182 
7183       // Already added the first reg.
7184       --NumRegs; ++I;
7185       for (; NumRegs; --NumRegs, ++I) {
7186         assert(I != RC->end() && "Ran out of registers to allocate!");
7187         Regs.push_back(*I);
7188       }
7189     }
7190 
7191     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7192     return;
7193   }
7194 
7195   // Otherwise, if this was a reference to an LLVM register class, create vregs
7196   // for this reference.
7197   if (const TargetRegisterClass *RC = PhysReg.second) {
7198     RegVT = *TRI.legalclasstypes_begin(*RC);
7199     if (OpInfo.ConstraintVT == MVT::Other)
7200       ValueVT = RegVT;
7201 
7202     // Create the appropriate number of virtual registers.
7203     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7204     for (; NumRegs; --NumRegs)
7205       Regs.push_back(RegInfo.createVirtualRegister(RC));
7206 
7207     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7208     return;
7209   }
7210 
7211   // Otherwise, we couldn't allocate enough registers for this.
7212 }
7213 
7214 static unsigned
7215 findMatchingInlineAsmOperand(unsigned OperandNo,
7216                              const std::vector<SDValue> &AsmNodeOperands) {
7217   // Scan until we find the definition we already emitted of this operand.
7218   unsigned CurOp = InlineAsm::Op_FirstOperand;
7219   for (; OperandNo; --OperandNo) {
7220     // Advance to the next operand.
7221     unsigned OpFlag =
7222         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7223     assert((InlineAsm::isRegDefKind(OpFlag) ||
7224             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7225             InlineAsm::isMemKind(OpFlag)) &&
7226            "Skipped past definitions?");
7227     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7228   }
7229   return CurOp;
7230 }
7231 
7232 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7233 /// \return true if it has succeeded, false otherwise
7234 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7235                               MVT RegVT, SelectionDAG &DAG) {
7236   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7237   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7238   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7239     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7240       Regs.push_back(RegInfo.createVirtualRegister(RC));
7241     else
7242       return false;
7243   }
7244   return true;
7245 }
7246 
7247 namespace {
7248 
7249 class ExtraFlags {
7250   unsigned Flags = 0;
7251 
7252 public:
7253   explicit ExtraFlags(ImmutableCallSite CS) {
7254     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7255     if (IA->hasSideEffects())
7256       Flags |= InlineAsm::Extra_HasSideEffects;
7257     if (IA->isAlignStack())
7258       Flags |= InlineAsm::Extra_IsAlignStack;
7259     if (CS.isConvergent())
7260       Flags |= InlineAsm::Extra_IsConvergent;
7261     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7262   }
7263 
7264   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7265     // Ideally, we would only check against memory constraints.  However, the
7266     // meaning of an Other constraint can be target-specific and we can't easily
7267     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7268     // for Other constraints as well.
7269     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7270         OpInfo.ConstraintType == TargetLowering::C_Other) {
7271       if (OpInfo.Type == InlineAsm::isInput)
7272         Flags |= InlineAsm::Extra_MayLoad;
7273       else if (OpInfo.Type == InlineAsm::isOutput)
7274         Flags |= InlineAsm::Extra_MayStore;
7275       else if (OpInfo.Type == InlineAsm::isClobber)
7276         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7277     }
7278   }
7279 
7280   unsigned get() const { return Flags; }
7281 };
7282 
7283 } // end anonymous namespace
7284 
7285 /// visitInlineAsm - Handle a call to an InlineAsm object.
7286 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7287   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7288 
7289   /// ConstraintOperands - Information about all of the constraints.
7290   SDISelAsmOperandInfoVector ConstraintOperands;
7291 
7292   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7293   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7294       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7295 
7296   bool hasMemory = false;
7297 
7298   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7299   ExtraFlags ExtraInfo(CS);
7300 
7301   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7302   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7303   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7304     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7305     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7306 
7307     MVT OpVT = MVT::Other;
7308 
7309     // Compute the value type for each operand.
7310     if (OpInfo.Type == InlineAsm::isInput ||
7311         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7312       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7313 
7314       // Process the call argument. BasicBlocks are labels, currently appearing
7315       // only in asm's.
7316       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7317         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7318       } else {
7319         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7320       }
7321 
7322       OpVT =
7323           OpInfo
7324               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7325               .getSimpleVT();
7326     }
7327 
7328     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7329       // The return value of the call is this value.  As such, there is no
7330       // corresponding argument.
7331       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7332       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7333         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7334                                       STy->getElementType(ResNo));
7335       } else {
7336         assert(ResNo == 0 && "Asm only has one result!");
7337         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7338       }
7339       ++ResNo;
7340     }
7341 
7342     OpInfo.ConstraintVT = OpVT;
7343 
7344     if (!hasMemory)
7345       hasMemory = OpInfo.hasMemory(TLI);
7346 
7347     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7348     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7349     auto TargetConstraint = TargetConstraints[i];
7350 
7351     // Compute the constraint code and ConstraintType to use.
7352     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7353 
7354     ExtraInfo.update(TargetConstraint);
7355   }
7356 
7357   SDValue Chain, Flag;
7358 
7359   // We won't need to flush pending loads if this asm doesn't touch
7360   // memory and is nonvolatile.
7361   if (hasMemory || IA->hasSideEffects())
7362     Chain = getRoot();
7363   else
7364     Chain = DAG.getRoot();
7365 
7366   // Second pass over the constraints: compute which constraint option to use
7367   // and assign registers to constraints that want a specific physreg.
7368   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7369     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7370 
7371     // If this is an output operand with a matching input operand, look up the
7372     // matching input. If their types mismatch, e.g. one is an integer, the
7373     // other is floating point, or their sizes are different, flag it as an
7374     // error.
7375     if (OpInfo.hasMatchingInput()) {
7376       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7377       patchMatchingInput(OpInfo, Input, DAG);
7378     }
7379 
7380     // Compute the constraint code and ConstraintType to use.
7381     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7382 
7383     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7384         OpInfo.Type == InlineAsm::isClobber)
7385       continue;
7386 
7387     // If this is a memory input, and if the operand is not indirect, do what we
7388     // need to provide an address for the memory input.
7389     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7390         !OpInfo.isIndirect) {
7391       assert((OpInfo.isMultipleAlternative ||
7392               (OpInfo.Type == InlineAsm::isInput)) &&
7393              "Can only indirectify direct input operands!");
7394 
7395       // Memory operands really want the address of the value.
7396       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7397 
7398       // There is no longer a Value* corresponding to this operand.
7399       OpInfo.CallOperandVal = nullptr;
7400 
7401       // It is now an indirect operand.
7402       OpInfo.isIndirect = true;
7403     }
7404 
7405     // If this constraint is for a specific register, allocate it before
7406     // anything else.
7407     if (OpInfo.ConstraintType == TargetLowering::C_Register)
7408       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7409   }
7410 
7411   // Third pass - Loop over all of the operands, assigning virtual or physregs
7412   // to register class operands.
7413   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7414     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7415 
7416     // C_Register operands have already been allocated, Other/Memory don't need
7417     // to be.
7418     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7419       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
7420   }
7421 
7422   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7423   std::vector<SDValue> AsmNodeOperands;
7424   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7425   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7426       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7427 
7428   // If we have a !srcloc metadata node associated with it, we want to attach
7429   // this to the ultimately generated inline asm machineinstr.  To do this, we
7430   // pass in the third operand as this (potentially null) inline asm MDNode.
7431   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7432   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7433 
7434   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7435   // bits as operand 3.
7436   AsmNodeOperands.push_back(DAG.getTargetConstant(
7437       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7438 
7439   // Loop over all of the inputs, copying the operand values into the
7440   // appropriate registers and processing the output regs.
7441   RegsForValue RetValRegs;
7442 
7443   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7444   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7445 
7446   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7447     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7448 
7449     switch (OpInfo.Type) {
7450     case InlineAsm::isOutput:
7451       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7452           OpInfo.ConstraintType != TargetLowering::C_Register) {
7453         // Memory output, or 'other' output (e.g. 'X' constraint).
7454         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7455 
7456         unsigned ConstraintID =
7457             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7458         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7459                "Failed to convert memory constraint code to constraint id.");
7460 
7461         // Add information to the INLINEASM node to know about this output.
7462         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7463         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7464         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7465                                                         MVT::i32));
7466         AsmNodeOperands.push_back(OpInfo.CallOperand);
7467         break;
7468       }
7469 
7470       // Otherwise, this is a register or register class output.
7471 
7472       // Copy the output from the appropriate register.  Find a register that
7473       // we can use.
7474       if (OpInfo.AssignedRegs.Regs.empty()) {
7475         emitInlineAsmError(
7476             CS, "couldn't allocate output register for constraint '" +
7477                     Twine(OpInfo.ConstraintCode) + "'");
7478         return;
7479       }
7480 
7481       // If this is an indirect operand, store through the pointer after the
7482       // asm.
7483       if (OpInfo.isIndirect) {
7484         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7485                                                       OpInfo.CallOperandVal));
7486       } else {
7487         // This is the result value of the call.
7488         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7489         // Concatenate this output onto the outputs list.
7490         RetValRegs.append(OpInfo.AssignedRegs);
7491       }
7492 
7493       // Add information to the INLINEASM node to know that this register is
7494       // set.
7495       OpInfo.AssignedRegs
7496           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7497                                     ? InlineAsm::Kind_RegDefEarlyClobber
7498                                     : InlineAsm::Kind_RegDef,
7499                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7500       break;
7501 
7502     case InlineAsm::isInput: {
7503       SDValue InOperandVal = OpInfo.CallOperand;
7504 
7505       if (OpInfo.isMatchingInputConstraint()) {
7506         // If this is required to match an output register we have already set,
7507         // just use its register.
7508         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7509                                                   AsmNodeOperands);
7510         unsigned OpFlag =
7511           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7512         if (InlineAsm::isRegDefKind(OpFlag) ||
7513             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7514           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7515           if (OpInfo.isIndirect) {
7516             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7517             emitInlineAsmError(CS, "inline asm not supported yet:"
7518                                    " don't know how to handle tied "
7519                                    "indirect register inputs");
7520             return;
7521           }
7522 
7523           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7524           SmallVector<unsigned, 4> Regs;
7525 
7526           if (!createVirtualRegs(Regs,
7527                                  InlineAsm::getNumOperandRegisters(OpFlag),
7528                                  RegVT, DAG)) {
7529             emitInlineAsmError(CS, "inline asm error: This value type register "
7530                                    "class is not natively supported!");
7531             return;
7532           }
7533 
7534           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7535 
7536           SDLoc dl = getCurSDLoc();
7537           // Use the produced MatchedRegs object to
7538           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7539                                     CS.getInstruction());
7540           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7541                                            true, OpInfo.getMatchedOperand(), dl,
7542                                            DAG, AsmNodeOperands);
7543           break;
7544         }
7545 
7546         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7547         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7548                "Unexpected number of operands");
7549         // Add information to the INLINEASM node to know about this input.
7550         // See InlineAsm.h isUseOperandTiedToDef.
7551         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7552         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7553                                                     OpInfo.getMatchedOperand());
7554         AsmNodeOperands.push_back(DAG.getTargetConstant(
7555             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7556         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7557         break;
7558       }
7559 
7560       // Treat indirect 'X' constraint as memory.
7561       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7562           OpInfo.isIndirect)
7563         OpInfo.ConstraintType = TargetLowering::C_Memory;
7564 
7565       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7566         std::vector<SDValue> Ops;
7567         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7568                                           Ops, DAG);
7569         if (Ops.empty()) {
7570           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7571                                      Twine(OpInfo.ConstraintCode) + "'");
7572           return;
7573         }
7574 
7575         // Add information to the INLINEASM node to know about this input.
7576         unsigned ResOpType =
7577           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7578         AsmNodeOperands.push_back(DAG.getTargetConstant(
7579             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7580         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7581         break;
7582       }
7583 
7584       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7585         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7586         assert(InOperandVal.getValueType() ==
7587                    TLI.getPointerTy(DAG.getDataLayout()) &&
7588                "Memory operands expect pointer values");
7589 
7590         unsigned ConstraintID =
7591             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7592         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7593                "Failed to convert memory constraint code to constraint id.");
7594 
7595         // Add information to the INLINEASM node to know about this input.
7596         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7597         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7598         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7599                                                         getCurSDLoc(),
7600                                                         MVT::i32));
7601         AsmNodeOperands.push_back(InOperandVal);
7602         break;
7603       }
7604 
7605       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7606               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7607              "Unknown constraint type!");
7608 
7609       // TODO: Support this.
7610       if (OpInfo.isIndirect) {
7611         emitInlineAsmError(
7612             CS, "Don't know how to handle indirect register inputs yet "
7613                 "for constraint '" +
7614                     Twine(OpInfo.ConstraintCode) + "'");
7615         return;
7616       }
7617 
7618       // Copy the input into the appropriate registers.
7619       if (OpInfo.AssignedRegs.Regs.empty()) {
7620         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7621                                    Twine(OpInfo.ConstraintCode) + "'");
7622         return;
7623       }
7624 
7625       SDLoc dl = getCurSDLoc();
7626 
7627       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7628                                         Chain, &Flag, CS.getInstruction());
7629 
7630       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7631                                                dl, DAG, AsmNodeOperands);
7632       break;
7633     }
7634     case InlineAsm::isClobber:
7635       // Add the clobbered value to the operand list, so that the register
7636       // allocator is aware that the physreg got clobbered.
7637       if (!OpInfo.AssignedRegs.Regs.empty())
7638         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7639                                                  false, 0, getCurSDLoc(), DAG,
7640                                                  AsmNodeOperands);
7641       break;
7642     }
7643   }
7644 
7645   // Finish up input operands.  Set the input chain and add the flag last.
7646   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7647   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7648 
7649   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7650                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7651   Flag = Chain.getValue(1);
7652 
7653   // If this asm returns a register value, copy the result from that register
7654   // and set it as the value of the call.
7655   if (!RetValRegs.Regs.empty()) {
7656     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7657                                              Chain, &Flag, CS.getInstruction());
7658 
7659     // FIXME: Why don't we do this for inline asms with MRVs?
7660     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7661       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7662 
7663       // If any of the results of the inline asm is a vector, it may have the
7664       // wrong width/num elts.  This can happen for register classes that can
7665       // contain multiple different value types.  The preg or vreg allocated may
7666       // not have the same VT as was expected.  Convert it to the right type
7667       // with bit_convert.
7668       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7669         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7670                           ResultType, Val);
7671 
7672       } else if (ResultType != Val.getValueType() &&
7673                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7674         // If a result value was tied to an input value, the computed result may
7675         // have a wider width than the expected result.  Extract the relevant
7676         // portion.
7677         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7678       }
7679 
7680       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7681     }
7682 
7683     setValue(CS.getInstruction(), Val);
7684     // Don't need to use this as a chain in this case.
7685     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7686       return;
7687   }
7688 
7689   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7690 
7691   // Process indirect outputs, first output all of the flagged copies out of
7692   // physregs.
7693   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7694     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7695     const Value *Ptr = IndirectStoresToEmit[i].second;
7696     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7697                                              Chain, &Flag, IA);
7698     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7699   }
7700 
7701   // Emit the non-flagged stores from the physregs.
7702   SmallVector<SDValue, 8> OutChains;
7703   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7704     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7705                                getValue(StoresToEmit[i].second),
7706                                MachinePointerInfo(StoresToEmit[i].second));
7707     OutChains.push_back(Val);
7708   }
7709 
7710   if (!OutChains.empty())
7711     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7712 
7713   DAG.setRoot(Chain);
7714 }
7715 
7716 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7717                                              const Twine &Message) {
7718   LLVMContext &Ctx = *DAG.getContext();
7719   Ctx.emitError(CS.getInstruction(), Message);
7720 
7721   // Make sure we leave the DAG in a valid state
7722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7723   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7724   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7725 }
7726 
7727 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7728   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7729                           MVT::Other, getRoot(),
7730                           getValue(I.getArgOperand(0)),
7731                           DAG.getSrcValue(I.getArgOperand(0))));
7732 }
7733 
7734 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7735   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7736   const DataLayout &DL = DAG.getDataLayout();
7737   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7738                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7739                            DAG.getSrcValue(I.getOperand(0)),
7740                            DL.getABITypeAlignment(I.getType()));
7741   setValue(&I, V);
7742   DAG.setRoot(V.getValue(1));
7743 }
7744 
7745 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7746   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7747                           MVT::Other, getRoot(),
7748                           getValue(I.getArgOperand(0)),
7749                           DAG.getSrcValue(I.getArgOperand(0))));
7750 }
7751 
7752 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7753   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7754                           MVT::Other, getRoot(),
7755                           getValue(I.getArgOperand(0)),
7756                           getValue(I.getArgOperand(1)),
7757                           DAG.getSrcValue(I.getArgOperand(0)),
7758                           DAG.getSrcValue(I.getArgOperand(1))));
7759 }
7760 
7761 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7762                                                     const Instruction &I,
7763                                                     SDValue Op) {
7764   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7765   if (!Range)
7766     return Op;
7767 
7768   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7769   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7770     return Op;
7771 
7772   APInt Lo = CR.getUnsignedMin();
7773   if (!Lo.isMinValue())
7774     return Op;
7775 
7776   APInt Hi = CR.getUnsignedMax();
7777   unsigned Bits = Hi.getActiveBits();
7778 
7779   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7780 
7781   SDLoc SL = getCurSDLoc();
7782 
7783   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7784                              DAG.getValueType(SmallVT));
7785   unsigned NumVals = Op.getNode()->getNumValues();
7786   if (NumVals == 1)
7787     return ZExt;
7788 
7789   SmallVector<SDValue, 4> Ops;
7790 
7791   Ops.push_back(ZExt);
7792   for (unsigned I = 1; I != NumVals; ++I)
7793     Ops.push_back(Op.getValue(I));
7794 
7795   return DAG.getMergeValues(Ops, SL);
7796 }
7797 
7798 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7799 /// the call being lowered.
7800 ///
7801 /// This is a helper for lowering intrinsics that follow a target calling
7802 /// convention or require stack pointer adjustment. Only a subset of the
7803 /// intrinsic's operands need to participate in the calling convention.
7804 void SelectionDAGBuilder::populateCallLoweringInfo(
7805     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7806     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7807     bool IsPatchPoint) {
7808   TargetLowering::ArgListTy Args;
7809   Args.reserve(NumArgs);
7810 
7811   // Populate the argument list.
7812   // Attributes for args start at offset 1, after the return attribute.
7813   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7814        ArgI != ArgE; ++ArgI) {
7815     const Value *V = CS->getOperand(ArgI);
7816 
7817     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7818 
7819     TargetLowering::ArgListEntry Entry;
7820     Entry.Node = getValue(V);
7821     Entry.Ty = V->getType();
7822     Entry.setAttributes(&CS, ArgI);
7823     Args.push_back(Entry);
7824   }
7825 
7826   CLI.setDebugLoc(getCurSDLoc())
7827       .setChain(getRoot())
7828       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7829       .setDiscardResult(CS->use_empty())
7830       .setIsPatchPoint(IsPatchPoint);
7831 }
7832 
7833 /// Add a stack map intrinsic call's live variable operands to a stackmap
7834 /// or patchpoint target node's operand list.
7835 ///
7836 /// Constants are converted to TargetConstants purely as an optimization to
7837 /// avoid constant materialization and register allocation.
7838 ///
7839 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7840 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7841 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7842 /// address materialization and register allocation, but may also be required
7843 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7844 /// alloca in the entry block, then the runtime may assume that the alloca's
7845 /// StackMap location can be read immediately after compilation and that the
7846 /// location is valid at any point during execution (this is similar to the
7847 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7848 /// only available in a register, then the runtime would need to trap when
7849 /// execution reaches the StackMap in order to read the alloca's location.
7850 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7851                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7852                                 SelectionDAGBuilder &Builder) {
7853   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7854     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7855     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7856       Ops.push_back(
7857         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7858       Ops.push_back(
7859         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7860     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7861       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7862       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7863           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7864     } else
7865       Ops.push_back(OpVal);
7866   }
7867 }
7868 
7869 /// Lower llvm.experimental.stackmap directly to its target opcode.
7870 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7871   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7872   //                                  [live variables...])
7873 
7874   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7875 
7876   SDValue Chain, InFlag, Callee, NullPtr;
7877   SmallVector<SDValue, 32> Ops;
7878 
7879   SDLoc DL = getCurSDLoc();
7880   Callee = getValue(CI.getCalledValue());
7881   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7882 
7883   // The stackmap intrinsic only records the live variables (the arguemnts
7884   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7885   // intrinsic, this won't be lowered to a function call. This means we don't
7886   // have to worry about calling conventions and target specific lowering code.
7887   // Instead we perform the call lowering right here.
7888   //
7889   // chain, flag = CALLSEQ_START(chain, 0, 0)
7890   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7891   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7892   //
7893   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7894   InFlag = Chain.getValue(1);
7895 
7896   // Add the <id> and <numBytes> constants.
7897   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7898   Ops.push_back(DAG.getTargetConstant(
7899                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7900   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7901   Ops.push_back(DAG.getTargetConstant(
7902                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7903                   MVT::i32));
7904 
7905   // Push live variables for the stack map.
7906   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7907 
7908   // We are not pushing any register mask info here on the operands list,
7909   // because the stackmap doesn't clobber anything.
7910 
7911   // Push the chain and the glue flag.
7912   Ops.push_back(Chain);
7913   Ops.push_back(InFlag);
7914 
7915   // Create the STACKMAP node.
7916   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7917   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7918   Chain = SDValue(SM, 0);
7919   InFlag = Chain.getValue(1);
7920 
7921   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7922 
7923   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7924 
7925   // Set the root to the target-lowered call chain.
7926   DAG.setRoot(Chain);
7927 
7928   // Inform the Frame Information that we have a stackmap in this function.
7929   FuncInfo.MF->getFrameInfo().setHasStackMap();
7930 }
7931 
7932 /// Lower llvm.experimental.patchpoint directly to its target opcode.
7933 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7934                                           const BasicBlock *EHPadBB) {
7935   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7936   //                                                 i32 <numBytes>,
7937   //                                                 i8* <target>,
7938   //                                                 i32 <numArgs>,
7939   //                                                 [Args...],
7940   //                                                 [live variables...])
7941 
7942   CallingConv::ID CC = CS.getCallingConv();
7943   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7944   bool HasDef = !CS->getType()->isVoidTy();
7945   SDLoc dl = getCurSDLoc();
7946   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7947 
7948   // Handle immediate and symbolic callees.
7949   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7950     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7951                                    /*isTarget=*/true);
7952   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7953     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7954                                          SDLoc(SymbolicCallee),
7955                                          SymbolicCallee->getValueType(0));
7956 
7957   // Get the real number of arguments participating in the call <numArgs>
7958   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7959   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7960 
7961   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7962   // Intrinsics include all meta-operands up to but not including CC.
7963   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7964   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7965          "Not enough arguments provided to the patchpoint intrinsic");
7966 
7967   // For AnyRegCC the arguments are lowered later on manually.
7968   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7969   Type *ReturnTy =
7970     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7971 
7972   TargetLowering::CallLoweringInfo CLI(DAG);
7973   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7974                            true);
7975   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7976 
7977   SDNode *CallEnd = Result.second.getNode();
7978   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7979     CallEnd = CallEnd->getOperand(0).getNode();
7980 
7981   /// Get a call instruction from the call sequence chain.
7982   /// Tail calls are not allowed.
7983   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7984          "Expected a callseq node.");
7985   SDNode *Call = CallEnd->getOperand(0).getNode();
7986   bool HasGlue = Call->getGluedNode();
7987 
7988   // Replace the target specific call node with the patchable intrinsic.
7989   SmallVector<SDValue, 8> Ops;
7990 
7991   // Add the <id> and <numBytes> constants.
7992   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7993   Ops.push_back(DAG.getTargetConstant(
7994                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7995   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7996   Ops.push_back(DAG.getTargetConstant(
7997                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7998                   MVT::i32));
7999 
8000   // Add the callee.
8001   Ops.push_back(Callee);
8002 
8003   // Adjust <numArgs> to account for any arguments that have been passed on the
8004   // stack instead.
8005   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8006   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8007   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8008   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8009 
8010   // Add the calling convention
8011   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8012 
8013   // Add the arguments we omitted previously. The register allocator should
8014   // place these in any free register.
8015   if (IsAnyRegCC)
8016     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8017       Ops.push_back(getValue(CS.getArgument(i)));
8018 
8019   // Push the arguments from the call instruction up to the register mask.
8020   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8021   Ops.append(Call->op_begin() + 2, e);
8022 
8023   // Push live variables for the stack map.
8024   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8025 
8026   // Push the register mask info.
8027   if (HasGlue)
8028     Ops.push_back(*(Call->op_end()-2));
8029   else
8030     Ops.push_back(*(Call->op_end()-1));
8031 
8032   // Push the chain (this is originally the first operand of the call, but
8033   // becomes now the last or second to last operand).
8034   Ops.push_back(*(Call->op_begin()));
8035 
8036   // Push the glue flag (last operand).
8037   if (HasGlue)
8038     Ops.push_back(*(Call->op_end()-1));
8039 
8040   SDVTList NodeTys;
8041   if (IsAnyRegCC && HasDef) {
8042     // Create the return types based on the intrinsic definition
8043     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8044     SmallVector<EVT, 3> ValueVTs;
8045     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8046     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8047 
8048     // There is always a chain and a glue type at the end
8049     ValueVTs.push_back(MVT::Other);
8050     ValueVTs.push_back(MVT::Glue);
8051     NodeTys = DAG.getVTList(ValueVTs);
8052   } else
8053     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8054 
8055   // Replace the target specific call node with a PATCHPOINT node.
8056   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8057                                          dl, NodeTys, Ops);
8058 
8059   // Update the NodeMap.
8060   if (HasDef) {
8061     if (IsAnyRegCC)
8062       setValue(CS.getInstruction(), SDValue(MN, 0));
8063     else
8064       setValue(CS.getInstruction(), Result.first);
8065   }
8066 
8067   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8068   // call sequence. Furthermore the location of the chain and glue can change
8069   // when the AnyReg calling convention is used and the intrinsic returns a
8070   // value.
8071   if (IsAnyRegCC && HasDef) {
8072     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8073     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8074     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8075   } else
8076     DAG.ReplaceAllUsesWith(Call, MN);
8077   DAG.DeleteNode(Call);
8078 
8079   // Inform the Frame Information that we have a patchpoint in this function.
8080   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8081 }
8082 
8083 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8084                                             unsigned Intrinsic) {
8085   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8086   SDValue Op1 = getValue(I.getArgOperand(0));
8087   SDValue Op2;
8088   if (I.getNumArgOperands() > 1)
8089     Op2 = getValue(I.getArgOperand(1));
8090   SDLoc dl = getCurSDLoc();
8091   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8092   SDValue Res;
8093   FastMathFlags FMF;
8094   if (isa<FPMathOperator>(I))
8095     FMF = I.getFastMathFlags();
8096   SDNodeFlags SDFlags;
8097   SDFlags.setNoNaNs(FMF.noNaNs());
8098 
8099   switch (Intrinsic) {
8100   case Intrinsic::experimental_vector_reduce_fadd:
8101     if (FMF.isFast())
8102       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8103     else
8104       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8105     break;
8106   case Intrinsic::experimental_vector_reduce_fmul:
8107     if (FMF.isFast())
8108       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8109     else
8110       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8111     break;
8112   case Intrinsic::experimental_vector_reduce_add:
8113     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8114     break;
8115   case Intrinsic::experimental_vector_reduce_mul:
8116     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8117     break;
8118   case Intrinsic::experimental_vector_reduce_and:
8119     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8120     break;
8121   case Intrinsic::experimental_vector_reduce_or:
8122     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8123     break;
8124   case Intrinsic::experimental_vector_reduce_xor:
8125     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8126     break;
8127   case Intrinsic::experimental_vector_reduce_smax:
8128     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8129     break;
8130   case Intrinsic::experimental_vector_reduce_smin:
8131     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8132     break;
8133   case Intrinsic::experimental_vector_reduce_umax:
8134     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8135     break;
8136   case Intrinsic::experimental_vector_reduce_umin:
8137     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8138     break;
8139   case Intrinsic::experimental_vector_reduce_fmax:
8140     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
8141     break;
8142   case Intrinsic::experimental_vector_reduce_fmin:
8143     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
8144     break;
8145   default:
8146     llvm_unreachable("Unhandled vector reduce intrinsic");
8147   }
8148   setValue(&I, Res);
8149 }
8150 
8151 /// Returns an AttributeList representing the attributes applied to the return
8152 /// value of the given call.
8153 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8154   SmallVector<Attribute::AttrKind, 2> Attrs;
8155   if (CLI.RetSExt)
8156     Attrs.push_back(Attribute::SExt);
8157   if (CLI.RetZExt)
8158     Attrs.push_back(Attribute::ZExt);
8159   if (CLI.IsInReg)
8160     Attrs.push_back(Attribute::InReg);
8161 
8162   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8163                             Attrs);
8164 }
8165 
8166 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8167 /// implementation, which just calls LowerCall.
8168 /// FIXME: When all targets are
8169 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8170 std::pair<SDValue, SDValue>
8171 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8172   // Handle the incoming return values from the call.
8173   CLI.Ins.clear();
8174   Type *OrigRetTy = CLI.RetTy;
8175   SmallVector<EVT, 4> RetTys;
8176   SmallVector<uint64_t, 4> Offsets;
8177   auto &DL = CLI.DAG.getDataLayout();
8178   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8179 
8180   if (CLI.IsPostTypeLegalization) {
8181     // If we are lowering a libcall after legalization, split the return type.
8182     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8183     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8184     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8185       EVT RetVT = OldRetTys[i];
8186       uint64_t Offset = OldOffsets[i];
8187       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8188       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8189       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8190       RetTys.append(NumRegs, RegisterVT);
8191       for (unsigned j = 0; j != NumRegs; ++j)
8192         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8193     }
8194   }
8195 
8196   SmallVector<ISD::OutputArg, 4> Outs;
8197   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8198 
8199   bool CanLowerReturn =
8200       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8201                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8202 
8203   SDValue DemoteStackSlot;
8204   int DemoteStackIdx = -100;
8205   if (!CanLowerReturn) {
8206     // FIXME: equivalent assert?
8207     // assert(!CS.hasInAllocaArgument() &&
8208     //        "sret demotion is incompatible with inalloca");
8209     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8210     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8211     MachineFunction &MF = CLI.DAG.getMachineFunction();
8212     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8213     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
8214 
8215     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8216     ArgListEntry Entry;
8217     Entry.Node = DemoteStackSlot;
8218     Entry.Ty = StackSlotPtrType;
8219     Entry.IsSExt = false;
8220     Entry.IsZExt = false;
8221     Entry.IsInReg = false;
8222     Entry.IsSRet = true;
8223     Entry.IsNest = false;
8224     Entry.IsByVal = false;
8225     Entry.IsReturned = false;
8226     Entry.IsSwiftSelf = false;
8227     Entry.IsSwiftError = false;
8228     Entry.Alignment = Align;
8229     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8230     CLI.NumFixedArgs += 1;
8231     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8232 
8233     // sret demotion isn't compatible with tail-calls, since the sret argument
8234     // points into the callers stack frame.
8235     CLI.IsTailCall = false;
8236   } else {
8237     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8238       EVT VT = RetTys[I];
8239       MVT RegisterVT =
8240           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8241       unsigned NumRegs =
8242           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8243       for (unsigned i = 0; i != NumRegs; ++i) {
8244         ISD::InputArg MyFlags;
8245         MyFlags.VT = RegisterVT;
8246         MyFlags.ArgVT = VT;
8247         MyFlags.Used = CLI.IsReturnValueUsed;
8248         if (CLI.RetSExt)
8249           MyFlags.Flags.setSExt();
8250         if (CLI.RetZExt)
8251           MyFlags.Flags.setZExt();
8252         if (CLI.IsInReg)
8253           MyFlags.Flags.setInReg();
8254         CLI.Ins.push_back(MyFlags);
8255       }
8256     }
8257   }
8258 
8259   // We push in swifterror return as the last element of CLI.Ins.
8260   ArgListTy &Args = CLI.getArgs();
8261   if (supportSwiftError()) {
8262     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8263       if (Args[i].IsSwiftError) {
8264         ISD::InputArg MyFlags;
8265         MyFlags.VT = getPointerTy(DL);
8266         MyFlags.ArgVT = EVT(getPointerTy(DL));
8267         MyFlags.Flags.setSwiftError();
8268         CLI.Ins.push_back(MyFlags);
8269       }
8270     }
8271   }
8272 
8273   // Handle all of the outgoing arguments.
8274   CLI.Outs.clear();
8275   CLI.OutVals.clear();
8276   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8277     SmallVector<EVT, 4> ValueVTs;
8278     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8279     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8280     Type *FinalType = Args[i].Ty;
8281     if (Args[i].IsByVal)
8282       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8283     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8284         FinalType, CLI.CallConv, CLI.IsVarArg);
8285     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8286          ++Value) {
8287       EVT VT = ValueVTs[Value];
8288       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8289       SDValue Op = SDValue(Args[i].Node.getNode(),
8290                            Args[i].Node.getResNo() + Value);
8291       ISD::ArgFlagsTy Flags;
8292 
8293       // Certain targets (such as MIPS), may have a different ABI alignment
8294       // for a type depending on the context. Give the target a chance to
8295       // specify the alignment it wants.
8296       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8297 
8298       if (Args[i].IsZExt)
8299         Flags.setZExt();
8300       if (Args[i].IsSExt)
8301         Flags.setSExt();
8302       if (Args[i].IsInReg) {
8303         // If we are using vectorcall calling convention, a structure that is
8304         // passed InReg - is surely an HVA
8305         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8306             isa<StructType>(FinalType)) {
8307           // The first value of a structure is marked
8308           if (0 == Value)
8309             Flags.setHvaStart();
8310           Flags.setHva();
8311         }
8312         // Set InReg Flag
8313         Flags.setInReg();
8314       }
8315       if (Args[i].IsSRet)
8316         Flags.setSRet();
8317       if (Args[i].IsSwiftSelf)
8318         Flags.setSwiftSelf();
8319       if (Args[i].IsSwiftError)
8320         Flags.setSwiftError();
8321       if (Args[i].IsByVal)
8322         Flags.setByVal();
8323       if (Args[i].IsInAlloca) {
8324         Flags.setInAlloca();
8325         // Set the byval flag for CCAssignFn callbacks that don't know about
8326         // inalloca.  This way we can know how many bytes we should've allocated
8327         // and how many bytes a callee cleanup function will pop.  If we port
8328         // inalloca to more targets, we'll have to add custom inalloca handling
8329         // in the various CC lowering callbacks.
8330         Flags.setByVal();
8331       }
8332       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8333         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8334         Type *ElementTy = Ty->getElementType();
8335         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8336         // For ByVal, alignment should come from FE.  BE will guess if this
8337         // info is not there but there are cases it cannot get right.
8338         unsigned FrameAlign;
8339         if (Args[i].Alignment)
8340           FrameAlign = Args[i].Alignment;
8341         else
8342           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8343         Flags.setByValAlign(FrameAlign);
8344       }
8345       if (Args[i].IsNest)
8346         Flags.setNest();
8347       if (NeedsRegBlock)
8348         Flags.setInConsecutiveRegs();
8349       Flags.setOrigAlign(OriginalAlignment);
8350 
8351       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8352       unsigned NumParts =
8353           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8354       SmallVector<SDValue, 4> Parts(NumParts);
8355       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8356 
8357       if (Args[i].IsSExt)
8358         ExtendKind = ISD::SIGN_EXTEND;
8359       else if (Args[i].IsZExt)
8360         ExtendKind = ISD::ZERO_EXTEND;
8361 
8362       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8363       // for now.
8364       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8365           CanLowerReturn) {
8366         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8367                "unexpected use of 'returned'");
8368         // Before passing 'returned' to the target lowering code, ensure that
8369         // either the register MVT and the actual EVT are the same size or that
8370         // the return value and argument are extended in the same way; in these
8371         // cases it's safe to pass the argument register value unchanged as the
8372         // return register value (although it's at the target's option whether
8373         // to do so)
8374         // TODO: allow code generation to take advantage of partially preserved
8375         // registers rather than clobbering the entire register when the
8376         // parameter extension method is not compatible with the return
8377         // extension method
8378         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8379             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8380              CLI.RetZExt == Args[i].IsZExt))
8381           Flags.setReturned();
8382       }
8383 
8384       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8385                      CLI.CS.getInstruction(), ExtendKind, true);
8386 
8387       for (unsigned j = 0; j != NumParts; ++j) {
8388         // if it isn't first piece, alignment must be 1
8389         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8390                                i < CLI.NumFixedArgs,
8391                                i, j*Parts[j].getValueType().getStoreSize());
8392         if (NumParts > 1 && j == 0)
8393           MyFlags.Flags.setSplit();
8394         else if (j != 0) {
8395           MyFlags.Flags.setOrigAlign(1);
8396           if (j == NumParts - 1)
8397             MyFlags.Flags.setSplitEnd();
8398         }
8399 
8400         CLI.Outs.push_back(MyFlags);
8401         CLI.OutVals.push_back(Parts[j]);
8402       }
8403 
8404       if (NeedsRegBlock && Value == NumValues - 1)
8405         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8406     }
8407   }
8408 
8409   SmallVector<SDValue, 4> InVals;
8410   CLI.Chain = LowerCall(CLI, InVals);
8411 
8412   // Update CLI.InVals to use outside of this function.
8413   CLI.InVals = InVals;
8414 
8415   // Verify that the target's LowerCall behaved as expected.
8416   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8417          "LowerCall didn't return a valid chain!");
8418   assert((!CLI.IsTailCall || InVals.empty()) &&
8419          "LowerCall emitted a return value for a tail call!");
8420   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8421          "LowerCall didn't emit the correct number of values!");
8422 
8423   // For a tail call, the return value is merely live-out and there aren't
8424   // any nodes in the DAG representing it. Return a special value to
8425   // indicate that a tail call has been emitted and no more Instructions
8426   // should be processed in the current block.
8427   if (CLI.IsTailCall) {
8428     CLI.DAG.setRoot(CLI.Chain);
8429     return std::make_pair(SDValue(), SDValue());
8430   }
8431 
8432 #ifndef NDEBUG
8433   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8434     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8435     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8436            "LowerCall emitted a value with the wrong type!");
8437   }
8438 #endif
8439 
8440   SmallVector<SDValue, 4> ReturnValues;
8441   if (!CanLowerReturn) {
8442     // The instruction result is the result of loading from the
8443     // hidden sret parameter.
8444     SmallVector<EVT, 1> PVTs;
8445     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8446 
8447     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8448     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8449     EVT PtrVT = PVTs[0];
8450 
8451     unsigned NumValues = RetTys.size();
8452     ReturnValues.resize(NumValues);
8453     SmallVector<SDValue, 4> Chains(NumValues);
8454 
8455     // An aggregate return value cannot wrap around the address space, so
8456     // offsets to its parts don't wrap either.
8457     SDNodeFlags Flags;
8458     Flags.setNoUnsignedWrap(true);
8459 
8460     for (unsigned i = 0; i < NumValues; ++i) {
8461       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8462                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8463                                                         PtrVT), Flags);
8464       SDValue L = CLI.DAG.getLoad(
8465           RetTys[i], CLI.DL, CLI.Chain, Add,
8466           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8467                                             DemoteStackIdx, Offsets[i]),
8468           /* Alignment = */ 1);
8469       ReturnValues[i] = L;
8470       Chains[i] = L.getValue(1);
8471     }
8472 
8473     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8474   } else {
8475     // Collect the legal value parts into potentially illegal values
8476     // that correspond to the original function's return values.
8477     Optional<ISD::NodeType> AssertOp;
8478     if (CLI.RetSExt)
8479       AssertOp = ISD::AssertSext;
8480     else if (CLI.RetZExt)
8481       AssertOp = ISD::AssertZext;
8482     unsigned CurReg = 0;
8483     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8484       EVT VT = RetTys[I];
8485       MVT RegisterVT =
8486           getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT);
8487       unsigned NumRegs =
8488           getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT);
8489 
8490       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8491                                               NumRegs, RegisterVT, VT, nullptr,
8492                                               AssertOp, true));
8493       CurReg += NumRegs;
8494     }
8495 
8496     // For a function returning void, there is no return value. We can't create
8497     // such a node, so we just return a null return value in that case. In
8498     // that case, nothing will actually look at the value.
8499     if (ReturnValues.empty())
8500       return std::make_pair(SDValue(), CLI.Chain);
8501   }
8502 
8503   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8504                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8505   return std::make_pair(Res, CLI.Chain);
8506 }
8507 
8508 void TargetLowering::LowerOperationWrapper(SDNode *N,
8509                                            SmallVectorImpl<SDValue> &Results,
8510                                            SelectionDAG &DAG) const {
8511   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8512     Results.push_back(Res);
8513 }
8514 
8515 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8516   llvm_unreachable("LowerOperation not implemented for this target!");
8517 }
8518 
8519 void
8520 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8521   SDValue Op = getNonRegisterValue(V);
8522   assert((Op.getOpcode() != ISD::CopyFromReg ||
8523           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8524          "Copy from a reg to the same reg!");
8525   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8526 
8527   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8528   // If this is an InlineAsm we have to match the registers required, not the
8529   // notional registers required by the type.
8530 
8531   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8532                    V->getType(), isABIRegCopy(V));
8533   SDValue Chain = DAG.getEntryNode();
8534 
8535   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8536                               FuncInfo.PreferredExtendType.end())
8537                                  ? ISD::ANY_EXTEND
8538                                  : FuncInfo.PreferredExtendType[V];
8539   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8540   PendingExports.push_back(Chain);
8541 }
8542 
8543 #include "llvm/CodeGen/SelectionDAGISel.h"
8544 
8545 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8546 /// entry block, return true.  This includes arguments used by switches, since
8547 /// the switch may expand into multiple basic blocks.
8548 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8549   // With FastISel active, we may be splitting blocks, so force creation
8550   // of virtual registers for all non-dead arguments.
8551   if (FastISel)
8552     return A->use_empty();
8553 
8554   const BasicBlock &Entry = A->getParent()->front();
8555   for (const User *U : A->users())
8556     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8557       return false;  // Use not in entry block.
8558 
8559   return true;
8560 }
8561 
8562 using ArgCopyElisionMapTy =
8563     DenseMap<const Argument *,
8564              std::pair<const AllocaInst *, const StoreInst *>>;
8565 
8566 /// Scan the entry block of the function in FuncInfo for arguments that look
8567 /// like copies into a local alloca. Record any copied arguments in
8568 /// ArgCopyElisionCandidates.
8569 static void
8570 findArgumentCopyElisionCandidates(const DataLayout &DL,
8571                                   FunctionLoweringInfo *FuncInfo,
8572                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8573   // Record the state of every static alloca used in the entry block. Argument
8574   // allocas are all used in the entry block, so we need approximately as many
8575   // entries as we have arguments.
8576   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8577   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8578   unsigned NumArgs = FuncInfo->Fn->arg_size();
8579   StaticAllocas.reserve(NumArgs * 2);
8580 
8581   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8582     if (!V)
8583       return nullptr;
8584     V = V->stripPointerCasts();
8585     const auto *AI = dyn_cast<AllocaInst>(V);
8586     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8587       return nullptr;
8588     auto Iter = StaticAllocas.insert({AI, Unknown});
8589     return &Iter.first->second;
8590   };
8591 
8592   // Look for stores of arguments to static allocas. Look through bitcasts and
8593   // GEPs to handle type coercions, as long as the alloca is fully initialized
8594   // by the store. Any non-store use of an alloca escapes it and any subsequent
8595   // unanalyzed store might write it.
8596   // FIXME: Handle structs initialized with multiple stores.
8597   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8598     // Look for stores, and handle non-store uses conservatively.
8599     const auto *SI = dyn_cast<StoreInst>(&I);
8600     if (!SI) {
8601       // We will look through cast uses, so ignore them completely.
8602       if (I.isCast())
8603         continue;
8604       // Ignore debug info intrinsics, they don't escape or store to allocas.
8605       if (isa<DbgInfoIntrinsic>(I))
8606         continue;
8607       // This is an unknown instruction. Assume it escapes or writes to all
8608       // static alloca operands.
8609       for (const Use &U : I.operands()) {
8610         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8611           *Info = StaticAllocaInfo::Clobbered;
8612       }
8613       continue;
8614     }
8615 
8616     // If the stored value is a static alloca, mark it as escaped.
8617     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8618       *Info = StaticAllocaInfo::Clobbered;
8619 
8620     // Check if the destination is a static alloca.
8621     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8622     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8623     if (!Info)
8624       continue;
8625     const AllocaInst *AI = cast<AllocaInst>(Dst);
8626 
8627     // Skip allocas that have been initialized or clobbered.
8628     if (*Info != StaticAllocaInfo::Unknown)
8629       continue;
8630 
8631     // Check if the stored value is an argument, and that this store fully
8632     // initializes the alloca. Don't elide copies from the same argument twice.
8633     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8634     const auto *Arg = dyn_cast<Argument>(Val);
8635     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8636         Arg->getType()->isEmptyTy() ||
8637         DL.getTypeStoreSize(Arg->getType()) !=
8638             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8639         ArgCopyElisionCandidates.count(Arg)) {
8640       *Info = StaticAllocaInfo::Clobbered;
8641       continue;
8642     }
8643 
8644     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8645 
8646     // Mark this alloca and store for argument copy elision.
8647     *Info = StaticAllocaInfo::Elidable;
8648     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8649 
8650     // Stop scanning if we've seen all arguments. This will happen early in -O0
8651     // builds, which is useful, because -O0 builds have large entry blocks and
8652     // many allocas.
8653     if (ArgCopyElisionCandidates.size() == NumArgs)
8654       break;
8655   }
8656 }
8657 
8658 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8659 /// ArgVal is a load from a suitable fixed stack object.
8660 static void tryToElideArgumentCopy(
8661     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8662     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8663     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8664     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8665     SDValue ArgVal, bool &ArgHasUses) {
8666   // Check if this is a load from a fixed stack object.
8667   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8668   if (!LNode)
8669     return;
8670   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8671   if (!FINode)
8672     return;
8673 
8674   // Check that the fixed stack object is the right size and alignment.
8675   // Look at the alignment that the user wrote on the alloca instead of looking
8676   // at the stack object.
8677   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8678   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8679   const AllocaInst *AI = ArgCopyIter->second.first;
8680   int FixedIndex = FINode->getIndex();
8681   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8682   int OldIndex = AllocaIndex;
8683   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8684   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8685     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8686                     "object size\n");
8687     return;
8688   }
8689   unsigned RequiredAlignment = AI->getAlignment();
8690   if (!RequiredAlignment) {
8691     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8692         AI->getAllocatedType());
8693   }
8694   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8695     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8696                     "greater than stack argument alignment ("
8697                  << RequiredAlignment << " vs "
8698                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8699     return;
8700   }
8701 
8702   // Perform the elision. Delete the old stack object and replace its only use
8703   // in the variable info map. Mark the stack object as mutable.
8704   DEBUG({
8705     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8706            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8707            << '\n';
8708   });
8709   MFI.RemoveStackObject(OldIndex);
8710   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8711   AllocaIndex = FixedIndex;
8712   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8713   Chains.push_back(ArgVal.getValue(1));
8714 
8715   // Avoid emitting code for the store implementing the copy.
8716   const StoreInst *SI = ArgCopyIter->second.second;
8717   ElidedArgCopyInstrs.insert(SI);
8718 
8719   // Check for uses of the argument again so that we can avoid exporting ArgVal
8720   // if it is't used by anything other than the store.
8721   for (const Value *U : Arg.users()) {
8722     if (U != SI) {
8723       ArgHasUses = true;
8724       break;
8725     }
8726   }
8727 }
8728 
8729 void SelectionDAGISel::LowerArguments(const Function &F) {
8730   SelectionDAG &DAG = SDB->DAG;
8731   SDLoc dl = SDB->getCurSDLoc();
8732   const DataLayout &DL = DAG.getDataLayout();
8733   SmallVector<ISD::InputArg, 16> Ins;
8734 
8735   if (!FuncInfo->CanLowerReturn) {
8736     // Put in an sret pointer parameter before all the other parameters.
8737     SmallVector<EVT, 1> ValueVTs;
8738     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8739                     F.getReturnType()->getPointerTo(
8740                         DAG.getDataLayout().getAllocaAddrSpace()),
8741                     ValueVTs);
8742 
8743     // NOTE: Assuming that a pointer will never break down to more than one VT
8744     // or one register.
8745     ISD::ArgFlagsTy Flags;
8746     Flags.setSRet();
8747     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8748     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8749                          ISD::InputArg::NoArgIndex, 0);
8750     Ins.push_back(RetArg);
8751   }
8752 
8753   // Look for stores of arguments to static allocas. Mark such arguments with a
8754   // flag to ask the target to give us the memory location of that argument if
8755   // available.
8756   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8757   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8758 
8759   // Set up the incoming argument description vector.
8760   for (const Argument &Arg : F.args()) {
8761     unsigned ArgNo = Arg.getArgNo();
8762     SmallVector<EVT, 4> ValueVTs;
8763     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8764     bool isArgValueUsed = !Arg.use_empty();
8765     unsigned PartBase = 0;
8766     Type *FinalType = Arg.getType();
8767     if (Arg.hasAttribute(Attribute::ByVal))
8768       FinalType = cast<PointerType>(FinalType)->getElementType();
8769     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8770         FinalType, F.getCallingConv(), F.isVarArg());
8771     for (unsigned Value = 0, NumValues = ValueVTs.size();
8772          Value != NumValues; ++Value) {
8773       EVT VT = ValueVTs[Value];
8774       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8775       ISD::ArgFlagsTy Flags;
8776 
8777       // Certain targets (such as MIPS), may have a different ABI alignment
8778       // for a type depending on the context. Give the target a chance to
8779       // specify the alignment it wants.
8780       unsigned OriginalAlignment =
8781           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8782 
8783       if (Arg.hasAttribute(Attribute::ZExt))
8784         Flags.setZExt();
8785       if (Arg.hasAttribute(Attribute::SExt))
8786         Flags.setSExt();
8787       if (Arg.hasAttribute(Attribute::InReg)) {
8788         // If we are using vectorcall calling convention, a structure that is
8789         // passed InReg - is surely an HVA
8790         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8791             isa<StructType>(Arg.getType())) {
8792           // The first value of a structure is marked
8793           if (0 == Value)
8794             Flags.setHvaStart();
8795           Flags.setHva();
8796         }
8797         // Set InReg Flag
8798         Flags.setInReg();
8799       }
8800       if (Arg.hasAttribute(Attribute::StructRet))
8801         Flags.setSRet();
8802       if (Arg.hasAttribute(Attribute::SwiftSelf))
8803         Flags.setSwiftSelf();
8804       if (Arg.hasAttribute(Attribute::SwiftError))
8805         Flags.setSwiftError();
8806       if (Arg.hasAttribute(Attribute::ByVal))
8807         Flags.setByVal();
8808       if (Arg.hasAttribute(Attribute::InAlloca)) {
8809         Flags.setInAlloca();
8810         // Set the byval flag for CCAssignFn callbacks that don't know about
8811         // inalloca.  This way we can know how many bytes we should've allocated
8812         // and how many bytes a callee cleanup function will pop.  If we port
8813         // inalloca to more targets, we'll have to add custom inalloca handling
8814         // in the various CC lowering callbacks.
8815         Flags.setByVal();
8816       }
8817       if (F.getCallingConv() == CallingConv::X86_INTR) {
8818         // IA Interrupt passes frame (1st parameter) by value in the stack.
8819         if (ArgNo == 0)
8820           Flags.setByVal();
8821       }
8822       if (Flags.isByVal() || Flags.isInAlloca()) {
8823         PointerType *Ty = cast<PointerType>(Arg.getType());
8824         Type *ElementTy = Ty->getElementType();
8825         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8826         // For ByVal, alignment should be passed from FE.  BE will guess if
8827         // this info is not there but there are cases it cannot get right.
8828         unsigned FrameAlign;
8829         if (Arg.getParamAlignment())
8830           FrameAlign = Arg.getParamAlignment();
8831         else
8832           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8833         Flags.setByValAlign(FrameAlign);
8834       }
8835       if (Arg.hasAttribute(Attribute::Nest))
8836         Flags.setNest();
8837       if (NeedsRegBlock)
8838         Flags.setInConsecutiveRegs();
8839       Flags.setOrigAlign(OriginalAlignment);
8840       if (ArgCopyElisionCandidates.count(&Arg))
8841         Flags.setCopyElisionCandidate();
8842 
8843       MVT RegisterVT =
8844           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8845       unsigned NumRegs =
8846           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8847       for (unsigned i = 0; i != NumRegs; ++i) {
8848         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8849                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8850         if (NumRegs > 1 && i == 0)
8851           MyFlags.Flags.setSplit();
8852         // if it isn't first piece, alignment must be 1
8853         else if (i > 0) {
8854           MyFlags.Flags.setOrigAlign(1);
8855           if (i == NumRegs - 1)
8856             MyFlags.Flags.setSplitEnd();
8857         }
8858         Ins.push_back(MyFlags);
8859       }
8860       if (NeedsRegBlock && Value == NumValues - 1)
8861         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8862       PartBase += VT.getStoreSize();
8863     }
8864   }
8865 
8866   // Call the target to set up the argument values.
8867   SmallVector<SDValue, 8> InVals;
8868   SDValue NewRoot = TLI->LowerFormalArguments(
8869       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8870 
8871   // Verify that the target's LowerFormalArguments behaved as expected.
8872   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8873          "LowerFormalArguments didn't return a valid chain!");
8874   assert(InVals.size() == Ins.size() &&
8875          "LowerFormalArguments didn't emit the correct number of values!");
8876   DEBUG({
8877       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8878         assert(InVals[i].getNode() &&
8879                "LowerFormalArguments emitted a null value!");
8880         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8881                "LowerFormalArguments emitted a value with the wrong type!");
8882       }
8883     });
8884 
8885   // Update the DAG with the new chain value resulting from argument lowering.
8886   DAG.setRoot(NewRoot);
8887 
8888   // Set up the argument values.
8889   unsigned i = 0;
8890   if (!FuncInfo->CanLowerReturn) {
8891     // Create a virtual register for the sret pointer, and put in a copy
8892     // from the sret argument into it.
8893     SmallVector<EVT, 1> ValueVTs;
8894     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8895                     F.getReturnType()->getPointerTo(
8896                         DAG.getDataLayout().getAllocaAddrSpace()),
8897                     ValueVTs);
8898     MVT VT = ValueVTs[0].getSimpleVT();
8899     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8900     Optional<ISD::NodeType> AssertOp = None;
8901     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8902                                         RegVT, VT, nullptr, AssertOp);
8903 
8904     MachineFunction& MF = SDB->DAG.getMachineFunction();
8905     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8906     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8907     FuncInfo->DemoteRegister = SRetReg;
8908     NewRoot =
8909         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8910     DAG.setRoot(NewRoot);
8911 
8912     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8913     ++i;
8914   }
8915 
8916   SmallVector<SDValue, 4> Chains;
8917   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8918   for (const Argument &Arg : F.args()) {
8919     SmallVector<SDValue, 4> ArgValues;
8920     SmallVector<EVT, 4> ValueVTs;
8921     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8922     unsigned NumValues = ValueVTs.size();
8923     if (NumValues == 0)
8924       continue;
8925 
8926     bool ArgHasUses = !Arg.use_empty();
8927 
8928     // Elide the copying store if the target loaded this argument from a
8929     // suitable fixed stack object.
8930     if (Ins[i].Flags.isCopyElisionCandidate()) {
8931       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8932                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8933                              InVals[i], ArgHasUses);
8934     }
8935 
8936     // If this argument is unused then remember its value. It is used to generate
8937     // debugging information.
8938     bool isSwiftErrorArg =
8939         TLI->supportSwiftError() &&
8940         Arg.hasAttribute(Attribute::SwiftError);
8941     if (!ArgHasUses && !isSwiftErrorArg) {
8942       SDB->setUnusedArgValue(&Arg, InVals[i]);
8943 
8944       // Also remember any frame index for use in FastISel.
8945       if (FrameIndexSDNode *FI =
8946           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8947         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8948     }
8949 
8950     for (unsigned Val = 0; Val != NumValues; ++Val) {
8951       EVT VT = ValueVTs[Val];
8952       MVT PartVT =
8953           TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT);
8954       unsigned NumParts =
8955           TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT);
8956 
8957       // Even an apparant 'unused' swifterror argument needs to be returned. So
8958       // we do generate a copy for it that can be used on return from the
8959       // function.
8960       if (ArgHasUses || isSwiftErrorArg) {
8961         Optional<ISD::NodeType> AssertOp;
8962         if (Arg.hasAttribute(Attribute::SExt))
8963           AssertOp = ISD::AssertSext;
8964         else if (Arg.hasAttribute(Attribute::ZExt))
8965           AssertOp = ISD::AssertZext;
8966 
8967         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8968                                              PartVT, VT, nullptr, AssertOp,
8969                                              true));
8970       }
8971 
8972       i += NumParts;
8973     }
8974 
8975     // We don't need to do anything else for unused arguments.
8976     if (ArgValues.empty())
8977       continue;
8978 
8979     // Note down frame index.
8980     if (FrameIndexSDNode *FI =
8981         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8982       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8983 
8984     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8985                                      SDB->getCurSDLoc());
8986 
8987     SDB->setValue(&Arg, Res);
8988     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8989       // We want to associate the argument with the frame index, among
8990       // involved operands, that correspond to the lowest address. The
8991       // getCopyFromParts function, called earlier, is swapping the order of
8992       // the operands to BUILD_PAIR depending on endianness. The result of
8993       // that swapping is that the least significant bits of the argument will
8994       // be in the first operand of the BUILD_PAIR node, and the most
8995       // significant bits will be in the second operand.
8996       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8997       if (LoadSDNode *LNode =
8998           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
8999         if (FrameIndexSDNode *FI =
9000             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9001           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9002     }
9003 
9004     // Update the SwiftErrorVRegDefMap.
9005     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9006       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9007       if (TargetRegisterInfo::isVirtualRegister(Reg))
9008         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9009                                            FuncInfo->SwiftErrorArg, Reg);
9010     }
9011 
9012     // If this argument is live outside of the entry block, insert a copy from
9013     // wherever we got it to the vreg that other BB's will reference it as.
9014     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9015       // If we can, though, try to skip creating an unnecessary vreg.
9016       // FIXME: This isn't very clean... it would be nice to make this more
9017       // general.  It's also subtly incompatible with the hacks FastISel
9018       // uses with vregs.
9019       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9020       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9021         FuncInfo->ValueMap[&Arg] = Reg;
9022         continue;
9023       }
9024     }
9025     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9026       FuncInfo->InitializeRegForValue(&Arg);
9027       SDB->CopyToExportRegsIfNeeded(&Arg);
9028     }
9029   }
9030 
9031   if (!Chains.empty()) {
9032     Chains.push_back(NewRoot);
9033     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9034   }
9035 
9036   DAG.setRoot(NewRoot);
9037 
9038   assert(i == InVals.size() && "Argument register count mismatch!");
9039 
9040   // If any argument copy elisions occurred and we have debug info, update the
9041   // stale frame indices used in the dbg.declare variable info table.
9042   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9043   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9044     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9045       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9046       if (I != ArgCopyElisionFrameIndexMap.end())
9047         VI.Slot = I->second;
9048     }
9049   }
9050 
9051   // Finally, if the target has anything special to do, allow it to do so.
9052   EmitFunctionEntryCode();
9053 }
9054 
9055 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9056 /// ensure constants are generated when needed.  Remember the virtual registers
9057 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9058 /// directly add them, because expansion might result in multiple MBB's for one
9059 /// BB.  As such, the start of the BB might correspond to a different MBB than
9060 /// the end.
9061 void
9062 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9063   const TerminatorInst *TI = LLVMBB->getTerminator();
9064 
9065   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9066 
9067   // Check PHI nodes in successors that expect a value to be available from this
9068   // block.
9069   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9070     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9071     if (!isa<PHINode>(SuccBB->begin())) continue;
9072     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9073 
9074     // If this terminator has multiple identical successors (common for
9075     // switches), only handle each succ once.
9076     if (!SuccsHandled.insert(SuccMBB).second)
9077       continue;
9078 
9079     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9080 
9081     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9082     // nodes and Machine PHI nodes, but the incoming operands have not been
9083     // emitted yet.
9084     for (const PHINode &PN : SuccBB->phis()) {
9085       // Ignore dead phi's.
9086       if (PN.use_empty())
9087         continue;
9088 
9089       // Skip empty types
9090       if (PN.getType()->isEmptyTy())
9091         continue;
9092 
9093       unsigned Reg;
9094       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9095 
9096       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9097         unsigned &RegOut = ConstantsOut[C];
9098         if (RegOut == 0) {
9099           RegOut = FuncInfo.CreateRegs(C->getType());
9100           CopyValueToVirtualRegister(C, RegOut);
9101         }
9102         Reg = RegOut;
9103       } else {
9104         DenseMap<const Value *, unsigned>::iterator I =
9105           FuncInfo.ValueMap.find(PHIOp);
9106         if (I != FuncInfo.ValueMap.end())
9107           Reg = I->second;
9108         else {
9109           assert(isa<AllocaInst>(PHIOp) &&
9110                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9111                  "Didn't codegen value into a register!??");
9112           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9113           CopyValueToVirtualRegister(PHIOp, Reg);
9114         }
9115       }
9116 
9117       // Remember that this register needs to added to the machine PHI node as
9118       // the input for this MBB.
9119       SmallVector<EVT, 4> ValueVTs;
9120       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9121       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9122       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9123         EVT VT = ValueVTs[vti];
9124         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9125         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9126           FuncInfo.PHINodesToUpdate.push_back(
9127               std::make_pair(&*MBBI++, Reg + i));
9128         Reg += NumRegisters;
9129       }
9130     }
9131   }
9132 
9133   ConstantsOut.clear();
9134 }
9135 
9136 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9137 /// is 0.
9138 MachineBasicBlock *
9139 SelectionDAGBuilder::StackProtectorDescriptor::
9140 AddSuccessorMBB(const BasicBlock *BB,
9141                 MachineBasicBlock *ParentMBB,
9142                 bool IsLikely,
9143                 MachineBasicBlock *SuccMBB) {
9144   // If SuccBB has not been created yet, create it.
9145   if (!SuccMBB) {
9146     MachineFunction *MF = ParentMBB->getParent();
9147     MachineFunction::iterator BBI(ParentMBB);
9148     SuccMBB = MF->CreateMachineBasicBlock(BB);
9149     MF->insert(++BBI, SuccMBB);
9150   }
9151   // Add it as a successor of ParentMBB.
9152   ParentMBB->addSuccessor(
9153       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9154   return SuccMBB;
9155 }
9156 
9157 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9158   MachineFunction::iterator I(MBB);
9159   if (++I == FuncInfo.MF->end())
9160     return nullptr;
9161   return &*I;
9162 }
9163 
9164 /// During lowering new call nodes can be created (such as memset, etc.).
9165 /// Those will become new roots of the current DAG, but complications arise
9166 /// when they are tail calls. In such cases, the call lowering will update
9167 /// the root, but the builder still needs to know that a tail call has been
9168 /// lowered in order to avoid generating an additional return.
9169 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9170   // If the node is null, we do have a tail call.
9171   if (MaybeTC.getNode() != nullptr)
9172     DAG.setRoot(MaybeTC);
9173   else
9174     HasTailCall = true;
9175 }
9176 
9177 uint64_t
9178 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9179                                        unsigned First, unsigned Last) const {
9180   assert(Last >= First);
9181   const APInt &LowCase = Clusters[First].Low->getValue();
9182   const APInt &HighCase = Clusters[Last].High->getValue();
9183   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9184 
9185   // FIXME: A range of consecutive cases has 100% density, but only requires one
9186   // comparison to lower. We should discriminate against such consecutive ranges
9187   // in jump tables.
9188 
9189   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9190 }
9191 
9192 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9193     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9194     unsigned Last) const {
9195   assert(Last >= First);
9196   assert(TotalCases[Last] >= TotalCases[First]);
9197   uint64_t NumCases =
9198       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9199   return NumCases;
9200 }
9201 
9202 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9203                                          unsigned First, unsigned Last,
9204                                          const SwitchInst *SI,
9205                                          MachineBasicBlock *DefaultMBB,
9206                                          CaseCluster &JTCluster) {
9207   assert(First <= Last);
9208 
9209   auto Prob = BranchProbability::getZero();
9210   unsigned NumCmps = 0;
9211   std::vector<MachineBasicBlock*> Table;
9212   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9213 
9214   // Initialize probabilities in JTProbs.
9215   for (unsigned I = First; I <= Last; ++I)
9216     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9217 
9218   for (unsigned I = First; I <= Last; ++I) {
9219     assert(Clusters[I].Kind == CC_Range);
9220     Prob += Clusters[I].Prob;
9221     const APInt &Low = Clusters[I].Low->getValue();
9222     const APInt &High = Clusters[I].High->getValue();
9223     NumCmps += (Low == High) ? 1 : 2;
9224     if (I != First) {
9225       // Fill the gap between this and the previous cluster.
9226       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9227       assert(PreviousHigh.slt(Low));
9228       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9229       for (uint64_t J = 0; J < Gap; J++)
9230         Table.push_back(DefaultMBB);
9231     }
9232     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9233     for (uint64_t J = 0; J < ClusterSize; ++J)
9234       Table.push_back(Clusters[I].MBB);
9235     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9236   }
9237 
9238   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9239   unsigned NumDests = JTProbs.size();
9240   if (TLI.isSuitableForBitTests(
9241           NumDests, NumCmps, Clusters[First].Low->getValue(),
9242           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9243     // Clusters[First..Last] should be lowered as bit tests instead.
9244     return false;
9245   }
9246 
9247   // Create the MBB that will load from and jump through the table.
9248   // Note: We create it here, but it's not inserted into the function yet.
9249   MachineFunction *CurMF = FuncInfo.MF;
9250   MachineBasicBlock *JumpTableMBB =
9251       CurMF->CreateMachineBasicBlock(SI->getParent());
9252 
9253   // Add successors. Note: use table order for determinism.
9254   SmallPtrSet<MachineBasicBlock *, 8> Done;
9255   for (MachineBasicBlock *Succ : Table) {
9256     if (Done.count(Succ))
9257       continue;
9258     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9259     Done.insert(Succ);
9260   }
9261   JumpTableMBB->normalizeSuccProbs();
9262 
9263   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9264                      ->createJumpTableIndex(Table);
9265 
9266   // Set up the jump table info.
9267   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9268   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9269                       Clusters[Last].High->getValue(), SI->getCondition(),
9270                       nullptr, false);
9271   JTCases.emplace_back(std::move(JTH), std::move(JT));
9272 
9273   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9274                                      JTCases.size() - 1, Prob);
9275   return true;
9276 }
9277 
9278 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9279                                          const SwitchInst *SI,
9280                                          MachineBasicBlock *DefaultMBB) {
9281 #ifndef NDEBUG
9282   // Clusters must be non-empty, sorted, and only contain Range clusters.
9283   assert(!Clusters.empty());
9284   for (CaseCluster &C : Clusters)
9285     assert(C.Kind == CC_Range);
9286   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9287     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9288 #endif
9289 
9290   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9291   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9292     return;
9293 
9294   const int64_t N = Clusters.size();
9295   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9296   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9297 
9298   if (N < 2 || N < MinJumpTableEntries)
9299     return;
9300 
9301   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9302   SmallVector<unsigned, 8> TotalCases(N);
9303   for (unsigned i = 0; i < N; ++i) {
9304     const APInt &Hi = Clusters[i].High->getValue();
9305     const APInt &Lo = Clusters[i].Low->getValue();
9306     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9307     if (i != 0)
9308       TotalCases[i] += TotalCases[i - 1];
9309   }
9310 
9311   // Cheap case: the whole range may be suitable for jump table.
9312   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9313   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9314   assert(NumCases < UINT64_MAX / 100);
9315   assert(Range >= NumCases);
9316   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9317     CaseCluster JTCluster;
9318     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9319       Clusters[0] = JTCluster;
9320       Clusters.resize(1);
9321       return;
9322     }
9323   }
9324 
9325   // The algorithm below is not suitable for -O0.
9326   if (TM.getOptLevel() == CodeGenOpt::None)
9327     return;
9328 
9329   // Split Clusters into minimum number of dense partitions. The algorithm uses
9330   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9331   // for the Case Statement'" (1994), but builds the MinPartitions array in
9332   // reverse order to make it easier to reconstruct the partitions in ascending
9333   // order. In the choice between two optimal partitionings, it picks the one
9334   // which yields more jump tables.
9335 
9336   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9337   SmallVector<unsigned, 8> MinPartitions(N);
9338   // LastElement[i] is the last element of the partition starting at i.
9339   SmallVector<unsigned, 8> LastElement(N);
9340   // PartitionsScore[i] is used to break ties when choosing between two
9341   // partitionings resulting in the same number of partitions.
9342   SmallVector<unsigned, 8> PartitionsScore(N);
9343   // For PartitionsScore, a small number of comparisons is considered as good as
9344   // a jump table and a single comparison is considered better than a jump
9345   // table.
9346   enum PartitionScores : unsigned {
9347     NoTable = 0,
9348     Table = 1,
9349     FewCases = 1,
9350     SingleCase = 2
9351   };
9352 
9353   // Base case: There is only one way to partition Clusters[N-1].
9354   MinPartitions[N - 1] = 1;
9355   LastElement[N - 1] = N - 1;
9356   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9357 
9358   // Note: loop indexes are signed to avoid underflow.
9359   for (int64_t i = N - 2; i >= 0; i--) {
9360     // Find optimal partitioning of Clusters[i..N-1].
9361     // Baseline: Put Clusters[i] into a partition on its own.
9362     MinPartitions[i] = MinPartitions[i + 1] + 1;
9363     LastElement[i] = i;
9364     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9365 
9366     // Search for a solution that results in fewer partitions.
9367     for (int64_t j = N - 1; j > i; j--) {
9368       // Try building a partition from Clusters[i..j].
9369       uint64_t Range = getJumpTableRange(Clusters, i, j);
9370       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9371       assert(NumCases < UINT64_MAX / 100);
9372       assert(Range >= NumCases);
9373       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9374         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9375         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9376         int64_t NumEntries = j - i + 1;
9377 
9378         if (NumEntries == 1)
9379           Score += PartitionScores::SingleCase;
9380         else if (NumEntries <= SmallNumberOfEntries)
9381           Score += PartitionScores::FewCases;
9382         else if (NumEntries >= MinJumpTableEntries)
9383           Score += PartitionScores::Table;
9384 
9385         // If this leads to fewer partitions, or to the same number of
9386         // partitions with better score, it is a better partitioning.
9387         if (NumPartitions < MinPartitions[i] ||
9388             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9389           MinPartitions[i] = NumPartitions;
9390           LastElement[i] = j;
9391           PartitionsScore[i] = Score;
9392         }
9393       }
9394     }
9395   }
9396 
9397   // Iterate over the partitions, replacing some with jump tables in-place.
9398   unsigned DstIndex = 0;
9399   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9400     Last = LastElement[First];
9401     assert(Last >= First);
9402     assert(DstIndex <= First);
9403     unsigned NumClusters = Last - First + 1;
9404 
9405     CaseCluster JTCluster;
9406     if (NumClusters >= MinJumpTableEntries &&
9407         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9408       Clusters[DstIndex++] = JTCluster;
9409     } else {
9410       for (unsigned I = First; I <= Last; ++I)
9411         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9412     }
9413   }
9414   Clusters.resize(DstIndex);
9415 }
9416 
9417 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9418                                         unsigned First, unsigned Last,
9419                                         const SwitchInst *SI,
9420                                         CaseCluster &BTCluster) {
9421   assert(First <= Last);
9422   if (First == Last)
9423     return false;
9424 
9425   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9426   unsigned NumCmps = 0;
9427   for (int64_t I = First; I <= Last; ++I) {
9428     assert(Clusters[I].Kind == CC_Range);
9429     Dests.set(Clusters[I].MBB->getNumber());
9430     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9431   }
9432   unsigned NumDests = Dests.count();
9433 
9434   APInt Low = Clusters[First].Low->getValue();
9435   APInt High = Clusters[Last].High->getValue();
9436   assert(Low.slt(High));
9437 
9438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9439   const DataLayout &DL = DAG.getDataLayout();
9440   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9441     return false;
9442 
9443   APInt LowBound;
9444   APInt CmpRange;
9445 
9446   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9447   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9448          "Case range must fit in bit mask!");
9449 
9450   // Check if the clusters cover a contiguous range such that no value in the
9451   // range will jump to the default statement.
9452   bool ContiguousRange = true;
9453   for (int64_t I = First + 1; I <= Last; ++I) {
9454     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9455       ContiguousRange = false;
9456       break;
9457     }
9458   }
9459 
9460   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9461     // Optimize the case where all the case values fit in a word without having
9462     // to subtract minValue. In this case, we can optimize away the subtraction.
9463     LowBound = APInt::getNullValue(Low.getBitWidth());
9464     CmpRange = High;
9465     ContiguousRange = false;
9466   } else {
9467     LowBound = Low;
9468     CmpRange = High - Low;
9469   }
9470 
9471   CaseBitsVector CBV;
9472   auto TotalProb = BranchProbability::getZero();
9473   for (unsigned i = First; i <= Last; ++i) {
9474     // Find the CaseBits for this destination.
9475     unsigned j;
9476     for (j = 0; j < CBV.size(); ++j)
9477       if (CBV[j].BB == Clusters[i].MBB)
9478         break;
9479     if (j == CBV.size())
9480       CBV.push_back(
9481           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9482     CaseBits *CB = &CBV[j];
9483 
9484     // Update Mask, Bits and ExtraProb.
9485     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9486     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9487     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9488     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9489     CB->Bits += Hi - Lo + 1;
9490     CB->ExtraProb += Clusters[i].Prob;
9491     TotalProb += Clusters[i].Prob;
9492   }
9493 
9494   BitTestInfo BTI;
9495   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9496     // Sort by probability first, number of bits second, bit mask third.
9497     if (a.ExtraProb != b.ExtraProb)
9498       return a.ExtraProb > b.ExtraProb;
9499     if (a.Bits != b.Bits)
9500       return a.Bits > b.Bits;
9501     return a.Mask < b.Mask;
9502   });
9503 
9504   for (auto &CB : CBV) {
9505     MachineBasicBlock *BitTestBB =
9506         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9507     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9508   }
9509   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9510                             SI->getCondition(), -1U, MVT::Other, false,
9511                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9512                             TotalProb);
9513 
9514   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9515                                     BitTestCases.size() - 1, TotalProb);
9516   return true;
9517 }
9518 
9519 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9520                                               const SwitchInst *SI) {
9521 // Partition Clusters into as few subsets as possible, where each subset has a
9522 // range that fits in a machine word and has <= 3 unique destinations.
9523 
9524 #ifndef NDEBUG
9525   // Clusters must be sorted and contain Range or JumpTable clusters.
9526   assert(!Clusters.empty());
9527   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9528   for (const CaseCluster &C : Clusters)
9529     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9530   for (unsigned i = 1; i < Clusters.size(); ++i)
9531     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9532 #endif
9533 
9534   // The algorithm below is not suitable for -O0.
9535   if (TM.getOptLevel() == CodeGenOpt::None)
9536     return;
9537 
9538   // If target does not have legal shift left, do not emit bit tests at all.
9539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9540   const DataLayout &DL = DAG.getDataLayout();
9541 
9542   EVT PTy = TLI.getPointerTy(DL);
9543   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9544     return;
9545 
9546   int BitWidth = PTy.getSizeInBits();
9547   const int64_t N = Clusters.size();
9548 
9549   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9550   SmallVector<unsigned, 8> MinPartitions(N);
9551   // LastElement[i] is the last element of the partition starting at i.
9552   SmallVector<unsigned, 8> LastElement(N);
9553 
9554   // FIXME: This might not be the best algorithm for finding bit test clusters.
9555 
9556   // Base case: There is only one way to partition Clusters[N-1].
9557   MinPartitions[N - 1] = 1;
9558   LastElement[N - 1] = N - 1;
9559 
9560   // Note: loop indexes are signed to avoid underflow.
9561   for (int64_t i = N - 2; i >= 0; --i) {
9562     // Find optimal partitioning of Clusters[i..N-1].
9563     // Baseline: Put Clusters[i] into a partition on its own.
9564     MinPartitions[i] = MinPartitions[i + 1] + 1;
9565     LastElement[i] = i;
9566 
9567     // Search for a solution that results in fewer partitions.
9568     // Note: the search is limited by BitWidth, reducing time complexity.
9569     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9570       // Try building a partition from Clusters[i..j].
9571 
9572       // Check the range.
9573       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9574                                Clusters[j].High->getValue(), DL))
9575         continue;
9576 
9577       // Check nbr of destinations and cluster types.
9578       // FIXME: This works, but doesn't seem very efficient.
9579       bool RangesOnly = true;
9580       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9581       for (int64_t k = i; k <= j; k++) {
9582         if (Clusters[k].Kind != CC_Range) {
9583           RangesOnly = false;
9584           break;
9585         }
9586         Dests.set(Clusters[k].MBB->getNumber());
9587       }
9588       if (!RangesOnly || Dests.count() > 3)
9589         break;
9590 
9591       // Check if it's a better partition.
9592       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9593       if (NumPartitions < MinPartitions[i]) {
9594         // Found a better partition.
9595         MinPartitions[i] = NumPartitions;
9596         LastElement[i] = j;
9597       }
9598     }
9599   }
9600 
9601   // Iterate over the partitions, replacing with bit-test clusters in-place.
9602   unsigned DstIndex = 0;
9603   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9604     Last = LastElement[First];
9605     assert(First <= Last);
9606     assert(DstIndex <= First);
9607 
9608     CaseCluster BitTestCluster;
9609     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9610       Clusters[DstIndex++] = BitTestCluster;
9611     } else {
9612       size_t NumClusters = Last - First + 1;
9613       std::memmove(&Clusters[DstIndex], &Clusters[First],
9614                    sizeof(Clusters[0]) * NumClusters);
9615       DstIndex += NumClusters;
9616     }
9617   }
9618   Clusters.resize(DstIndex);
9619 }
9620 
9621 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9622                                         MachineBasicBlock *SwitchMBB,
9623                                         MachineBasicBlock *DefaultMBB) {
9624   MachineFunction *CurMF = FuncInfo.MF;
9625   MachineBasicBlock *NextMBB = nullptr;
9626   MachineFunction::iterator BBI(W.MBB);
9627   if (++BBI != FuncInfo.MF->end())
9628     NextMBB = &*BBI;
9629 
9630   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9631 
9632   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9633 
9634   if (Size == 2 && W.MBB == SwitchMBB) {
9635     // If any two of the cases has the same destination, and if one value
9636     // is the same as the other, but has one bit unset that the other has set,
9637     // use bit manipulation to do two compares at once.  For example:
9638     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9639     // TODO: This could be extended to merge any 2 cases in switches with 3
9640     // cases.
9641     // TODO: Handle cases where W.CaseBB != SwitchBB.
9642     CaseCluster &Small = *W.FirstCluster;
9643     CaseCluster &Big = *W.LastCluster;
9644 
9645     if (Small.Low == Small.High && Big.Low == Big.High &&
9646         Small.MBB == Big.MBB) {
9647       const APInt &SmallValue = Small.Low->getValue();
9648       const APInt &BigValue = Big.Low->getValue();
9649 
9650       // Check that there is only one bit different.
9651       APInt CommonBit = BigValue ^ SmallValue;
9652       if (CommonBit.isPowerOf2()) {
9653         SDValue CondLHS = getValue(Cond);
9654         EVT VT = CondLHS.getValueType();
9655         SDLoc DL = getCurSDLoc();
9656 
9657         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9658                                  DAG.getConstant(CommonBit, DL, VT));
9659         SDValue Cond = DAG.getSetCC(
9660             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9661             ISD::SETEQ);
9662 
9663         // Update successor info.
9664         // Both Small and Big will jump to Small.BB, so we sum up the
9665         // probabilities.
9666         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9667         if (BPI)
9668           addSuccessorWithProb(
9669               SwitchMBB, DefaultMBB,
9670               // The default destination is the first successor in IR.
9671               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9672         else
9673           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9674 
9675         // Insert the true branch.
9676         SDValue BrCond =
9677             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9678                         DAG.getBasicBlock(Small.MBB));
9679         // Insert the false branch.
9680         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9681                              DAG.getBasicBlock(DefaultMBB));
9682 
9683         DAG.setRoot(BrCond);
9684         return;
9685       }
9686     }
9687   }
9688 
9689   if (TM.getOptLevel() != CodeGenOpt::None) {
9690     // Here, we order cases by probability so the most likely case will be
9691     // checked first. However, two clusters can have the same probability in
9692     // which case their relative ordering is non-deterministic. So we use Low
9693     // as a tie-breaker as clusters are guaranteed to never overlap.
9694     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9695                [](const CaseCluster &a, const CaseCluster &b) {
9696       return a.Prob != b.Prob ?
9697              a.Prob > b.Prob :
9698              a.Low->getValue().slt(b.Low->getValue());
9699     });
9700 
9701     // Rearrange the case blocks so that the last one falls through if possible
9702     // without changing the order of probabilities.
9703     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9704       --I;
9705       if (I->Prob > W.LastCluster->Prob)
9706         break;
9707       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9708         std::swap(*I, *W.LastCluster);
9709         break;
9710       }
9711     }
9712   }
9713 
9714   // Compute total probability.
9715   BranchProbability DefaultProb = W.DefaultProb;
9716   BranchProbability UnhandledProbs = DefaultProb;
9717   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9718     UnhandledProbs += I->Prob;
9719 
9720   MachineBasicBlock *CurMBB = W.MBB;
9721   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9722     MachineBasicBlock *Fallthrough;
9723     if (I == W.LastCluster) {
9724       // For the last cluster, fall through to the default destination.
9725       Fallthrough = DefaultMBB;
9726     } else {
9727       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9728       CurMF->insert(BBI, Fallthrough);
9729       // Put Cond in a virtual register to make it available from the new blocks.
9730       ExportFromCurrentBlock(Cond);
9731     }
9732     UnhandledProbs -= I->Prob;
9733 
9734     switch (I->Kind) {
9735       case CC_JumpTable: {
9736         // FIXME: Optimize away range check based on pivot comparisons.
9737         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9738         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9739 
9740         // The jump block hasn't been inserted yet; insert it here.
9741         MachineBasicBlock *JumpMBB = JT->MBB;
9742         CurMF->insert(BBI, JumpMBB);
9743 
9744         auto JumpProb = I->Prob;
9745         auto FallthroughProb = UnhandledProbs;
9746 
9747         // If the default statement is a target of the jump table, we evenly
9748         // distribute the default probability to successors of CurMBB. Also
9749         // update the probability on the edge from JumpMBB to Fallthrough.
9750         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9751                                               SE = JumpMBB->succ_end();
9752              SI != SE; ++SI) {
9753           if (*SI == DefaultMBB) {
9754             JumpProb += DefaultProb / 2;
9755             FallthroughProb -= DefaultProb / 2;
9756             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9757             JumpMBB->normalizeSuccProbs();
9758             break;
9759           }
9760         }
9761 
9762         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9763         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9764         CurMBB->normalizeSuccProbs();
9765 
9766         // The jump table header will be inserted in our current block, do the
9767         // range check, and fall through to our fallthrough block.
9768         JTH->HeaderBB = CurMBB;
9769         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9770 
9771         // If we're in the right place, emit the jump table header right now.
9772         if (CurMBB == SwitchMBB) {
9773           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9774           JTH->Emitted = true;
9775         }
9776         break;
9777       }
9778       case CC_BitTests: {
9779         // FIXME: Optimize away range check based on pivot comparisons.
9780         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9781 
9782         // The bit test blocks haven't been inserted yet; insert them here.
9783         for (BitTestCase &BTC : BTB->Cases)
9784           CurMF->insert(BBI, BTC.ThisBB);
9785 
9786         // Fill in fields of the BitTestBlock.
9787         BTB->Parent = CurMBB;
9788         BTB->Default = Fallthrough;
9789 
9790         BTB->DefaultProb = UnhandledProbs;
9791         // If the cases in bit test don't form a contiguous range, we evenly
9792         // distribute the probability on the edge to Fallthrough to two
9793         // successors of CurMBB.
9794         if (!BTB->ContiguousRange) {
9795           BTB->Prob += DefaultProb / 2;
9796           BTB->DefaultProb -= DefaultProb / 2;
9797         }
9798 
9799         // If we're in the right place, emit the bit test header right now.
9800         if (CurMBB == SwitchMBB) {
9801           visitBitTestHeader(*BTB, SwitchMBB);
9802           BTB->Emitted = true;
9803         }
9804         break;
9805       }
9806       case CC_Range: {
9807         const Value *RHS, *LHS, *MHS;
9808         ISD::CondCode CC;
9809         if (I->Low == I->High) {
9810           // Check Cond == I->Low.
9811           CC = ISD::SETEQ;
9812           LHS = Cond;
9813           RHS=I->Low;
9814           MHS = nullptr;
9815         } else {
9816           // Check I->Low <= Cond <= I->High.
9817           CC = ISD::SETLE;
9818           LHS = I->Low;
9819           MHS = Cond;
9820           RHS = I->High;
9821         }
9822 
9823         // The false probability is the sum of all unhandled cases.
9824         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9825                      getCurSDLoc(), I->Prob, UnhandledProbs);
9826 
9827         if (CurMBB == SwitchMBB)
9828           visitSwitchCase(CB, SwitchMBB);
9829         else
9830           SwitchCases.push_back(CB);
9831 
9832         break;
9833       }
9834     }
9835     CurMBB = Fallthrough;
9836   }
9837 }
9838 
9839 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9840                                               CaseClusterIt First,
9841                                               CaseClusterIt Last) {
9842   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9843     if (X.Prob != CC.Prob)
9844       return X.Prob > CC.Prob;
9845 
9846     // Ties are broken by comparing the case value.
9847     return X.Low->getValue().slt(CC.Low->getValue());
9848   });
9849 }
9850 
9851 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9852                                         const SwitchWorkListItem &W,
9853                                         Value *Cond,
9854                                         MachineBasicBlock *SwitchMBB) {
9855   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9856          "Clusters not sorted?");
9857 
9858   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9859 
9860   // Balance the tree based on branch probabilities to create a near-optimal (in
9861   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9862   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9863   CaseClusterIt LastLeft = W.FirstCluster;
9864   CaseClusterIt FirstRight = W.LastCluster;
9865   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9866   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9867 
9868   // Move LastLeft and FirstRight towards each other from opposite directions to
9869   // find a partitioning of the clusters which balances the probability on both
9870   // sides. If LeftProb and RightProb are equal, alternate which side is
9871   // taken to ensure 0-probability nodes are distributed evenly.
9872   unsigned I = 0;
9873   while (LastLeft + 1 < FirstRight) {
9874     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9875       LeftProb += (++LastLeft)->Prob;
9876     else
9877       RightProb += (--FirstRight)->Prob;
9878     I++;
9879   }
9880 
9881   while (true) {
9882     // Our binary search tree differs from a typical BST in that ours can have up
9883     // to three values in each leaf. The pivot selection above doesn't take that
9884     // into account, which means the tree might require more nodes and be less
9885     // efficient. We compensate for this here.
9886 
9887     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9888     unsigned NumRight = W.LastCluster - FirstRight + 1;
9889 
9890     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9891       // If one side has less than 3 clusters, and the other has more than 3,
9892       // consider taking a cluster from the other side.
9893 
9894       if (NumLeft < NumRight) {
9895         // Consider moving the first cluster on the right to the left side.
9896         CaseCluster &CC = *FirstRight;
9897         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9898         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9899         if (LeftSideRank <= RightSideRank) {
9900           // Moving the cluster to the left does not demote it.
9901           ++LastLeft;
9902           ++FirstRight;
9903           continue;
9904         }
9905       } else {
9906         assert(NumRight < NumLeft);
9907         // Consider moving the last element on the left to the right side.
9908         CaseCluster &CC = *LastLeft;
9909         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9910         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9911         if (RightSideRank <= LeftSideRank) {
9912           // Moving the cluster to the right does not demot it.
9913           --LastLeft;
9914           --FirstRight;
9915           continue;
9916         }
9917       }
9918     }
9919     break;
9920   }
9921 
9922   assert(LastLeft + 1 == FirstRight);
9923   assert(LastLeft >= W.FirstCluster);
9924   assert(FirstRight <= W.LastCluster);
9925 
9926   // Use the first element on the right as pivot since we will make less-than
9927   // comparisons against it.
9928   CaseClusterIt PivotCluster = FirstRight;
9929   assert(PivotCluster > W.FirstCluster);
9930   assert(PivotCluster <= W.LastCluster);
9931 
9932   CaseClusterIt FirstLeft = W.FirstCluster;
9933   CaseClusterIt LastRight = W.LastCluster;
9934 
9935   const ConstantInt *Pivot = PivotCluster->Low;
9936 
9937   // New blocks will be inserted immediately after the current one.
9938   MachineFunction::iterator BBI(W.MBB);
9939   ++BBI;
9940 
9941   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9942   // we can branch to its destination directly if it's squeezed exactly in
9943   // between the known lower bound and Pivot - 1.
9944   MachineBasicBlock *LeftMBB;
9945   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9946       FirstLeft->Low == W.GE &&
9947       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9948     LeftMBB = FirstLeft->MBB;
9949   } else {
9950     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9951     FuncInfo.MF->insert(BBI, LeftMBB);
9952     WorkList.push_back(
9953         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9954     // Put Cond in a virtual register to make it available from the new blocks.
9955     ExportFromCurrentBlock(Cond);
9956   }
9957 
9958   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9959   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9960   // directly if RHS.High equals the current upper bound.
9961   MachineBasicBlock *RightMBB;
9962   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9963       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9964     RightMBB = FirstRight->MBB;
9965   } else {
9966     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9967     FuncInfo.MF->insert(BBI, RightMBB);
9968     WorkList.push_back(
9969         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9970     // Put Cond in a virtual register to make it available from the new blocks.
9971     ExportFromCurrentBlock(Cond);
9972   }
9973 
9974   // Create the CaseBlock record that will be used to lower the branch.
9975   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9976                getCurSDLoc(), LeftProb, RightProb);
9977 
9978   if (W.MBB == SwitchMBB)
9979     visitSwitchCase(CB, SwitchMBB);
9980   else
9981     SwitchCases.push_back(CB);
9982 }
9983 
9984 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
9985 // from the swith statement.
9986 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
9987                                             BranchProbability PeeledCaseProb) {
9988   if (PeeledCaseProb == BranchProbability::getOne())
9989     return BranchProbability::getZero();
9990   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
9991 
9992   uint32_t Numerator = CaseProb.getNumerator();
9993   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
9994   return BranchProbability(Numerator, std::max(Numerator, Denominator));
9995 }
9996 
9997 // Try to peel the top probability case if it exceeds the threshold.
9998 // Return current MachineBasicBlock for the switch statement if the peeling
9999 // does not occur.
10000 // If the peeling is performed, return the newly created MachineBasicBlock
10001 // for the peeled switch statement. Also update Clusters to remove the peeled
10002 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10003 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10004     const SwitchInst &SI, CaseClusterVector &Clusters,
10005     BranchProbability &PeeledCaseProb) {
10006   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10007   // Don't perform if there is only one cluster or optimizing for size.
10008   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10009       TM.getOptLevel() == CodeGenOpt::None ||
10010       SwitchMBB->getParent()->getFunction().optForMinSize())
10011     return SwitchMBB;
10012 
10013   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10014   unsigned PeeledCaseIndex = 0;
10015   bool SwitchPeeled = false;
10016   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10017     CaseCluster &CC = Clusters[Index];
10018     if (CC.Prob < TopCaseProb)
10019       continue;
10020     TopCaseProb = CC.Prob;
10021     PeeledCaseIndex = Index;
10022     SwitchPeeled = true;
10023   }
10024   if (!SwitchPeeled)
10025     return SwitchMBB;
10026 
10027   DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb
10028                << "\n");
10029 
10030   // Record the MBB for the peeled switch statement.
10031   MachineFunction::iterator BBI(SwitchMBB);
10032   ++BBI;
10033   MachineBasicBlock *PeeledSwitchMBB =
10034       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10035   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10036 
10037   ExportFromCurrentBlock(SI.getCondition());
10038   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10039   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10040                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10041   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10042 
10043   Clusters.erase(PeeledCaseIt);
10044   for (CaseCluster &CC : Clusters) {
10045     DEBUG(dbgs() << "Scale the probablity for one cluster, before scaling: "
10046                  << CC.Prob << "\n");
10047     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10048     DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10049   }
10050   PeeledCaseProb = TopCaseProb;
10051   return PeeledSwitchMBB;
10052 }
10053 
10054 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10055   // Extract cases from the switch.
10056   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10057   CaseClusterVector Clusters;
10058   Clusters.reserve(SI.getNumCases());
10059   for (auto I : SI.cases()) {
10060     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10061     const ConstantInt *CaseVal = I.getCaseValue();
10062     BranchProbability Prob =
10063         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10064             : BranchProbability(1, SI.getNumCases() + 1);
10065     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10066   }
10067 
10068   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10069 
10070   // Cluster adjacent cases with the same destination. We do this at all
10071   // optimization levels because it's cheap to do and will make codegen faster
10072   // if there are many clusters.
10073   sortAndRangeify(Clusters);
10074 
10075   if (TM.getOptLevel() != CodeGenOpt::None) {
10076     // Replace an unreachable default with the most popular destination.
10077     // FIXME: Exploit unreachable default more aggressively.
10078     bool UnreachableDefault =
10079         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10080     if (UnreachableDefault && !Clusters.empty()) {
10081       DenseMap<const BasicBlock *, unsigned> Popularity;
10082       unsigned MaxPop = 0;
10083       const BasicBlock *MaxBB = nullptr;
10084       for (auto I : SI.cases()) {
10085         const BasicBlock *BB = I.getCaseSuccessor();
10086         if (++Popularity[BB] > MaxPop) {
10087           MaxPop = Popularity[BB];
10088           MaxBB = BB;
10089         }
10090       }
10091       // Set new default.
10092       assert(MaxPop > 0 && MaxBB);
10093       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10094 
10095       // Remove cases that were pointing to the destination that is now the
10096       // default.
10097       CaseClusterVector New;
10098       New.reserve(Clusters.size());
10099       for (CaseCluster &CC : Clusters) {
10100         if (CC.MBB != DefaultMBB)
10101           New.push_back(CC);
10102       }
10103       Clusters = std::move(New);
10104     }
10105   }
10106 
10107   // The branch probablity of the peeled case.
10108   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10109   MachineBasicBlock *PeeledSwitchMBB =
10110       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10111 
10112   // If there is only the default destination, jump there directly.
10113   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10114   if (Clusters.empty()) {
10115     assert(PeeledSwitchMBB == SwitchMBB);
10116     SwitchMBB->addSuccessor(DefaultMBB);
10117     if (DefaultMBB != NextBlock(SwitchMBB)) {
10118       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10119                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10120     }
10121     return;
10122   }
10123 
10124   findJumpTables(Clusters, &SI, DefaultMBB);
10125   findBitTestClusters(Clusters, &SI);
10126 
10127   DEBUG({
10128     dbgs() << "Case clusters: ";
10129     for (const CaseCluster &C : Clusters) {
10130       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
10131       if (C.Kind == CC_BitTests) dbgs() << "BT:";
10132 
10133       C.Low->getValue().print(dbgs(), true);
10134       if (C.Low != C.High) {
10135         dbgs() << '-';
10136         C.High->getValue().print(dbgs(), true);
10137       }
10138       dbgs() << ' ';
10139     }
10140     dbgs() << '\n';
10141   });
10142 
10143   assert(!Clusters.empty());
10144   SwitchWorkList WorkList;
10145   CaseClusterIt First = Clusters.begin();
10146   CaseClusterIt Last = Clusters.end() - 1;
10147   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10148   // Scale the branchprobability for DefaultMBB if the peel occurs and
10149   // DefaultMBB is not replaced.
10150   if (PeeledCaseProb != BranchProbability::getZero() &&
10151       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10152     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10153   WorkList.push_back(
10154       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10155 
10156   while (!WorkList.empty()) {
10157     SwitchWorkListItem W = WorkList.back();
10158     WorkList.pop_back();
10159     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10160 
10161     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10162         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10163       // For optimized builds, lower large range as a balanced binary tree.
10164       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10165       continue;
10166     }
10167 
10168     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10169   }
10170 }
10171