xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7a7334663cd44c857e4e573e6f6db9c987817801)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
419                          (IntermediateVT.isVector()
420                               ? IntermediateVT.getVectorNumElements() * NumParts
421                               : NumIntermediates));
422     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
423                                                 : ISD::BUILD_VECTOR,
424                       DL, BuiltVectorTy, Ops);
425   }
426 
427   // There is now one part, held in Val.  Correct it to match ValueVT.
428   EVT PartEVT = Val.getValueType();
429 
430   if (PartEVT == ValueVT)
431     return Val;
432 
433   if (PartEVT.isVector()) {
434     // If the element type of the source/dest vectors are the same, but the
435     // parts vector has more elements than the value vector, then we have a
436     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
437     // elements we want.
438     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
439       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
440              "Cannot narrow, it would be a lossy transformation");
441       return DAG.getNode(
442           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
443           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
444     }
445 
446     // Vector/Vector bitcast.
447     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
448       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
449 
450     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
451       "Cannot handle this kind of promotion");
452     // Promoted vector extract
453     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
454 
455   }
456 
457   // Trivial bitcast if the types are the same size and the destination
458   // vector type is legal.
459   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
460       TLI.isTypeLegal(ValueVT))
461     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462 
463   if (ValueVT.getVectorNumElements() != 1) {
464      // Certain ABIs require that vectors are passed as integers. For vectors
465      // are the same size, this is an obvious bitcast.
466      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
467        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
468      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
469        // Bitcast Val back the original type and extract the corresponding
470        // vector we want.
471        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
472        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
473                                            ValueVT.getVectorElementType(), Elts);
474        Val = DAG.getBitcast(WiderVecType, Val);
475        return DAG.getNode(
476            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
477            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
478      }
479 
480      diagnosePossiblyInvalidConstraint(
481          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
482      return DAG.getUNDEF(ValueVT);
483   }
484 
485   // Handle cases such as i8 -> <1 x i1>
486   EVT ValueSVT = ValueVT.getVectorElementType();
487   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
488     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490 
491   return DAG.getBuildVector(ValueVT, DL, Val);
492 }
493 
494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                  SDValue Val, SDValue *Parts, unsigned NumParts,
496                                  MVT PartVT, const Value *V,
497                                  Optional<CallingConv::ID> CallConv);
498 
499 /// getCopyToParts - Create a series of nodes that contain the specified value
500 /// split into legal parts.  If the parts contain more bits than Val, then, for
501 /// integers, ExtendKind can be used to specify how to generate the extra bits.
502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
503                            SDValue *Parts, unsigned NumParts, MVT PartVT,
504                            const Value *V,
505                            Optional<CallingConv::ID> CallConv = None,
506                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507   EVT ValueVT = Val.getValueType();
508 
509   // Handle the vector case separately.
510   if (ValueVT.isVector())
511     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
512                                 CallConv);
513 
514   unsigned PartBits = PartVT.getSizeInBits();
515   unsigned OrigNumParts = NumParts;
516   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
517          "Copying to an illegal type!");
518 
519   if (NumParts == 0)
520     return;
521 
522   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
523   EVT PartEVT = PartVT;
524   if (PartEVT == ValueVT) {
525     assert(NumParts == 1 && "No-op copy with multiple parts!");
526     Parts[0] = Val;
527     return;
528   }
529 
530   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
531     // If the parts cover more bits than the value has, promote the value.
532     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
533       assert(NumParts == 1 && "Do not know what to promote to!");
534       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
535     } else {
536       if (ValueVT.isFloatingPoint()) {
537         // FP values need to be bitcast, then extended if they are being put
538         // into a larger container.
539         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
540         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
541       }
542       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543              ValueVT.isInteger() &&
544              "Unknown mismatch!");
545       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
547       if (PartVT == MVT::x86mmx)
548         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549     }
550   } else if (PartBits == ValueVT.getSizeInBits()) {
551     // Different types of the same size.
552     assert(NumParts == 1 && PartEVT != ValueVT);
553     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
555     // If the parts cover less bits than value has, truncate the value.
556     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
557            ValueVT.isInteger() &&
558            "Unknown mismatch!");
559     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
560     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
561     if (PartVT == MVT::x86mmx)
562       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563   }
564 
565   // The value may have changed - recompute ValueVT.
566   ValueVT = Val.getValueType();
567   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
568          "Failed to tile the value with PartVT!");
569 
570   if (NumParts == 1) {
571     if (PartEVT != ValueVT) {
572       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
573                                         "scalar-to-vector conversion failed");
574       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
575     }
576 
577     Parts[0] = Val;
578     return;
579   }
580 
581   // Expand the value into multiple parts.
582   if (NumParts & (NumParts - 1)) {
583     // The number of parts is not a power of 2.  Split off and copy the tail.
584     assert(PartVT.isInteger() && ValueVT.isInteger() &&
585            "Do not know what to expand to!");
586     unsigned RoundParts = 1 << Log2_32(NumParts);
587     unsigned RoundBits = RoundParts * PartBits;
588     unsigned OddParts = NumParts - RoundParts;
589     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
590       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
591 
592     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
593                    CallConv);
594 
595     if (DAG.getDataLayout().isBigEndian())
596       // The odd parts were reversed by getCopyToParts - unreverse them.
597       std::reverse(Parts + RoundParts, Parts + NumParts);
598 
599     NumParts = RoundParts;
600     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
601     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
602   }
603 
604   // The number of parts is a power of 2.  Repeatedly bisect the value using
605   // EXTRACT_ELEMENT.
606   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
607                          EVT::getIntegerVT(*DAG.getContext(),
608                                            ValueVT.getSizeInBits()),
609                          Val);
610 
611   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
612     for (unsigned i = 0; i < NumParts; i += StepSize) {
613       unsigned ThisBits = StepSize * PartBits / 2;
614       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
615       SDValue &Part0 = Parts[i];
616       SDValue &Part1 = Parts[i+StepSize/2];
617 
618       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
619                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
620       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
621                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
622 
623       if (ThisBits == PartBits && ThisVT != PartVT) {
624         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
625         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
626       }
627     }
628   }
629 
630   if (DAG.getDataLayout().isBigEndian())
631     std::reverse(Parts, Parts + OrigNumParts);
632 }
633 
634 static SDValue widenVectorToPartType(SelectionDAG &DAG,
635                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
636   if (!PartVT.isVector())
637     return SDValue();
638 
639   EVT ValueVT = Val.getValueType();
640   unsigned PartNumElts = PartVT.getVectorNumElements();
641   unsigned ValueNumElts = ValueVT.getVectorNumElements();
642   if (PartNumElts > ValueNumElts &&
643       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
644     EVT ElementVT = PartVT.getVectorElementType();
645     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
646     // undef elements.
647     SmallVector<SDValue, 16> Ops;
648     DAG.ExtractVectorElements(Val, Ops);
649     SDValue EltUndef = DAG.getUNDEF(ElementVT);
650     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
651       Ops.push_back(EltUndef);
652 
653     // FIXME: Use CONCAT for 2x -> 4x.
654     return DAG.getBuildVector(PartVT, DL, Ops);
655   }
656 
657   return SDValue();
658 }
659 
660 /// getCopyToPartsVector - Create a series of nodes that contain the specified
661 /// value split into legal parts.
662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
663                                  SDValue Val, SDValue *Parts, unsigned NumParts,
664                                  MVT PartVT, const Value *V,
665                                  Optional<CallingConv::ID> CallConv) {
666   EVT ValueVT = Val.getValueType();
667   assert(ValueVT.isVector() && "Not a vector");
668   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
669   const bool IsABIRegCopy = CallConv.hasValue();
670 
671   if (NumParts == 1) {
672     EVT PartEVT = PartVT;
673     if (PartEVT == ValueVT) {
674       // Nothing to do.
675     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
676       // Bitconvert vector->vector case.
677       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
678     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
679       Val = Widened;
680     } else if (PartVT.isVector() &&
681                PartEVT.getVectorElementType().bitsGE(
682                  ValueVT.getVectorElementType()) &&
683                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
684 
685       // Promoted vector extract
686       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
687     } else {
688       if (ValueVT.getVectorNumElements() == 1) {
689         Val = DAG.getNode(
690             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
691             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
692       } else {
693         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
694                "lossy conversion of vector to scalar type");
695         EVT IntermediateType =
696             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
697         Val = DAG.getBitcast(IntermediateType, Val);
698         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
699       }
700     }
701 
702     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
703     Parts[0] = Val;
704     return;
705   }
706 
707   // Handle a multi-element vector.
708   EVT IntermediateVT;
709   MVT RegisterVT;
710   unsigned NumIntermediates;
711   unsigned NumRegs;
712   if (IsABIRegCopy) {
713     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
714         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
715         NumIntermediates, RegisterVT);
716   } else {
717     NumRegs =
718         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
719                                    NumIntermediates, RegisterVT);
720   }
721 
722   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
723   NumParts = NumRegs; // Silence a compiler warning.
724   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
725 
726   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
727     IntermediateVT.getVectorNumElements() : 1;
728 
729   // Convert the vector to the appropriate type if necessary.
730   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
731 
732   EVT BuiltVectorTy = EVT::getVectorVT(
733       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
734   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
735   if (ValueVT != BuiltVectorTy) {
736     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
737       Val = Widened;
738 
739     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
740   }
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
747                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
748     } else {
749       Ops[i] = DAG.getNode(
750           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
751           DAG.getConstant(i, DL, IdxVT));
752     }
753   }
754 
755   // Split the intermediate operands into legal parts.
756   if (NumParts == NumIntermediates) {
757     // If the register was not expanded, promote or copy the value,
758     // as appropriate.
759     for (unsigned i = 0; i != NumParts; ++i)
760       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
761   } else if (NumParts > 0) {
762     // If the intermediate type was expanded, split each the value into
763     // legal parts.
764     assert(NumIntermediates != 0 && "division by zero");
765     assert(NumParts % NumIntermediates == 0 &&
766            "Must expand into a divisible number of parts!");
767     unsigned Factor = NumParts / NumIntermediates;
768     for (unsigned i = 0; i != NumIntermediates; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
770                      CallConv);
771   }
772 }
773 
774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
775                            EVT valuevt, Optional<CallingConv::ID> CC)
776     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
777       RegCount(1, regs.size()), CallConv(CC) {}
778 
779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
780                            const DataLayout &DL, unsigned Reg, Type *Ty,
781                            Optional<CallingConv::ID> CC) {
782   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
783 
784   CallConv = CC;
785 
786   for (EVT ValueVT : ValueVTs) {
787     unsigned NumRegs =
788         isABIMangled()
789             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getNumRegisters(Context, ValueVT);
791     MVT RegisterVT =
792         isABIMangled()
793             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
794             : TLI.getRegisterType(Context, ValueVT);
795     for (unsigned i = 0; i != NumRegs; ++i)
796       Regs.push_back(Reg + i);
797     RegVTs.push_back(RegisterVT);
798     RegCount.push_back(NumRegs);
799     Reg += NumRegs;
800   }
801 }
802 
803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
804                                       FunctionLoweringInfo &FuncInfo,
805                                       const SDLoc &dl, SDValue &Chain,
806                                       SDValue *Flag, const Value *V) const {
807   // A Value with type {} or [0 x %t] needs no registers.
808   if (ValueVTs.empty())
809     return SDValue();
810 
811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
812 
813   // Assemble the legal parts into the final values.
814   SmallVector<SDValue, 4> Values(ValueVTs.size());
815   SmallVector<SDValue, 8> Parts;
816   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
817     // Copy the legal parts from the registers.
818     EVT ValueVT = ValueVTs[Value];
819     unsigned NumRegs = RegCount[Value];
820     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
821                                           *DAG.getContext(),
822                                           CallConv.getValue(), RegVTs[Value])
823                                     : RegVTs[Value];
824 
825     Parts.resize(NumRegs);
826     for (unsigned i = 0; i != NumRegs; ++i) {
827       SDValue P;
828       if (!Flag) {
829         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
830       } else {
831         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
832         *Flag = P.getValue(2);
833       }
834 
835       Chain = P.getValue(1);
836       Parts[i] = P;
837 
838       // If the source register was virtual and if we know something about it,
839       // add an assert node.
840       if (!Register::isVirtualRegister(Regs[Part + i]) ||
841           !RegisterVT.isInteger())
842         continue;
843 
844       const FunctionLoweringInfo::LiveOutInfo *LOI =
845         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
846       if (!LOI)
847         continue;
848 
849       unsigned RegSize = RegisterVT.getScalarSizeInBits();
850       unsigned NumSignBits = LOI->NumSignBits;
851       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
852 
853       if (NumZeroBits == RegSize) {
854         // The current value is a zero.
855         // Explicitly express that as it would be easier for
856         // optimizations to kick in.
857         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
858         continue;
859       }
860 
861       // FIXME: We capture more information than the dag can represent.  For
862       // now, just use the tightest assertzext/assertsext possible.
863       bool isSExt;
864       EVT FromVT(MVT::Other);
865       if (NumZeroBits) {
866         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
867         isSExt = false;
868       } else if (NumSignBits > 1) {
869         FromVT =
870             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
871         isSExt = true;
872       } else {
873         continue;
874       }
875       // Add an assertion node.
876       assert(FromVT != MVT::Other);
877       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
878                              RegisterVT, P, DAG.getValueType(FromVT));
879     }
880 
881     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
882                                      RegisterVT, ValueVT, V, CallConv);
883     Part += NumRegs;
884     Parts.clear();
885   }
886 
887   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
888 }
889 
890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
891                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
892                                  const Value *V,
893                                  ISD::NodeType PreferredExtendType) const {
894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
895   ISD::NodeType ExtendKind = PreferredExtendType;
896 
897   // Get the list of the values's legal parts.
898   unsigned NumRegs = Regs.size();
899   SmallVector<SDValue, 8> Parts(NumRegs);
900   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
901     unsigned NumParts = RegCount[Value];
902 
903     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
904                                           *DAG.getContext(),
905                                           CallConv.getValue(), RegVTs[Value])
906                                     : RegVTs[Value];
907 
908     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
909       ExtendKind = ISD::ZERO_EXTEND;
910 
911     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
912                    NumParts, RegisterVT, V, CallConv, ExtendKind);
913     Part += NumParts;
914   }
915 
916   // Copy the parts into the registers.
917   SmallVector<SDValue, 8> Chains(NumRegs);
918   for (unsigned i = 0; i != NumRegs; ++i) {
919     SDValue Part;
920     if (!Flag) {
921       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
922     } else {
923       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
924       *Flag = Part.getValue(1);
925     }
926 
927     Chains[i] = Part.getValue(0);
928   }
929 
930   if (NumRegs == 1 || Flag)
931     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
932     // flagged to it. That is the CopyToReg nodes and the user are considered
933     // a single scheduling unit. If we create a TokenFactor and return it as
934     // chain, then the TokenFactor is both a predecessor (operand) of the
935     // user as well as a successor (the TF operands are flagged to the user).
936     // c1, f1 = CopyToReg
937     // c2, f2 = CopyToReg
938     // c3     = TokenFactor c1, c2
939     // ...
940     //        = op c3, ..., f2
941     Chain = Chains[NumRegs-1];
942   else
943     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
944 }
945 
946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
947                                         unsigned MatchingIdx, const SDLoc &dl,
948                                         SelectionDAG &DAG,
949                                         std::vector<SDValue> &Ops) const {
950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
951 
952   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
953   if (HasMatching)
954     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
955   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
956     // Put the register class of the virtual registers in the flag word.  That
957     // way, later passes can recompute register class constraints for inline
958     // assembly as well as normal instructions.
959     // Don't do this for tied operands that can use the regclass information
960     // from the def.
961     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
962     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
963     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
964   }
965 
966   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
967   Ops.push_back(Res);
968 
969   if (Code == InlineAsm::Kind_Clobber) {
970     // Clobbers should always have a 1:1 mapping with registers, and may
971     // reference registers that have illegal (e.g. vector) types. Hence, we
972     // shouldn't try to apply any sort of splitting logic to them.
973     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
974            "No 1:1 mapping from clobbers to regs?");
975     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
976     (void)SP;
977     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
978       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
979       assert(
980           (Regs[I] != SP ||
981            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
982           "If we clobbered the stack pointer, MFI should know about it.");
983     }
984     return;
985   }
986 
987   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
988     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
989     MVT RegisterVT = RegVTs[Value];
990     for (unsigned i = 0; i != NumRegs; ++i) {
991       assert(Reg < Regs.size() && "Mismatch in # registers expected");
992       unsigned TheReg = Regs[Reg++];
993       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
994     }
995   }
996 }
997 
998 SmallVector<std::pair<unsigned, unsigned>, 4>
999 RegsForValue::getRegsAndSizes() const {
1000   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1001   unsigned I = 0;
1002   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1003     unsigned RegCount = std::get<0>(CountAndVT);
1004     MVT RegisterVT = std::get<1>(CountAndVT);
1005     unsigned RegisterSize = RegisterVT.getSizeInBits();
1006     for (unsigned E = I + RegCount; I != E; ++I)
1007       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1008   }
1009   return OutVec;
1010 }
1011 
1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1013                                const TargetLibraryInfo *li) {
1014   AA = aa;
1015   GFI = gfi;
1016   LibInfo = li;
1017   DL = &DAG.getDataLayout();
1018   Context = DAG.getContext();
1019   LPadToCallSiteMap.clear();
1020   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1021 }
1022 
1023 void SelectionDAGBuilder::clear() {
1024   NodeMap.clear();
1025   UnusedArgNodeMap.clear();
1026   PendingLoads.clear();
1027   PendingExports.clear();
1028   CurInst = nullptr;
1029   HasTailCall = false;
1030   SDNodeOrder = LowestSDNodeOrder;
1031   StatepointLowering.clear();
1032 }
1033 
1034 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1035   DanglingDebugInfoMap.clear();
1036 }
1037 
1038 SDValue SelectionDAGBuilder::getRoot() {
1039   if (PendingLoads.empty())
1040     return DAG.getRoot();
1041 
1042   if (PendingLoads.size() == 1) {
1043     SDValue Root = PendingLoads[0];
1044     DAG.setRoot(Root);
1045     PendingLoads.clear();
1046     return Root;
1047   }
1048 
1049   // Otherwise, we have to make a token factor node.
1050   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1051   PendingLoads.clear();
1052   DAG.setRoot(Root);
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getControlRoot() {
1057   SDValue Root = DAG.getRoot();
1058 
1059   if (PendingExports.empty())
1060     return Root;
1061 
1062   // Turn all of the CopyToReg chains into one factored node.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = PendingExports.size();
1065     for (; i != e; ++i) {
1066       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1067       if (PendingExports[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       PendingExports.push_back(Root);
1073   }
1074 
1075   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1076                      PendingExports);
1077   PendingExports.clear();
1078   DAG.setRoot(Root);
1079   return Root;
1080 }
1081 
1082 void SelectionDAGBuilder::visit(const Instruction &I) {
1083   // Set up outgoing PHI node register values before emitting the terminator.
1084   if (I.isTerminator()) {
1085     HandlePHINodesInSuccessorBlocks(I.getParent());
1086   }
1087 
1088   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1089   if (!isa<DbgInfoIntrinsic>(I))
1090     ++SDNodeOrder;
1091 
1092   CurInst = &I;
1093 
1094   visit(I.getOpcode(), I);
1095 
1096   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1097     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1098     // maps to this instruction.
1099     // TODO: We could handle all flags (nsw, etc) here.
1100     // TODO: If an IR instruction maps to >1 node, only the final node will have
1101     //       flags set.
1102     if (SDNode *Node = getNodeForIRValue(&I)) {
1103       SDNodeFlags IncomingFlags;
1104       IncomingFlags.copyFMF(*FPMO);
1105       if (!Node->getFlags().isDefined())
1106         Node->setFlags(IncomingFlags);
1107       else
1108         Node->intersectFlagsWith(IncomingFlags);
1109     }
1110   }
1111 
1112   if (!I.isTerminator() && !HasTailCall &&
1113       !isStatepoint(&I)) // statepoints handle their exports internally
1114     CopyToExportRegsIfNeeded(&I);
1115 
1116   CurInst = nullptr;
1117 }
1118 
1119 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1120   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1121 }
1122 
1123 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1124   // Note: this doesn't use InstVisitor, because it has to work with
1125   // ConstantExpr's in addition to instructions.
1126   switch (Opcode) {
1127   default: llvm_unreachable("Unknown instruction type encountered!");
1128     // Build the switch statement using the Instruction.def file.
1129 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1130     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1131 #include "llvm/IR/Instruction.def"
1132   }
1133 }
1134 
1135 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1136                                                 const DIExpression *Expr) {
1137   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1138     const DbgValueInst *DI = DDI.getDI();
1139     DIVariable *DanglingVariable = DI->getVariable();
1140     DIExpression *DanglingExpr = DI->getExpression();
1141     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1142       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1143       return true;
1144     }
1145     return false;
1146   };
1147 
1148   for (auto &DDIMI : DanglingDebugInfoMap) {
1149     DanglingDebugInfoVector &DDIV = DDIMI.second;
1150 
1151     // If debug info is to be dropped, run it through final checks to see
1152     // whether it can be salvaged.
1153     for (auto &DDI : DDIV)
1154       if (isMatchingDbgValue(DDI))
1155         salvageUnresolvedDbgValue(DDI);
1156 
1157     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1158   }
1159 }
1160 
1161 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1162 // generate the debug data structures now that we've seen its definition.
1163 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1164                                                    SDValue Val) {
1165   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1166   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1167     return;
1168 
1169   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1170   for (auto &DDI : DDIV) {
1171     const DbgValueInst *DI = DDI.getDI();
1172     assert(DI && "Ill-formed DanglingDebugInfo");
1173     DebugLoc dl = DDI.getdl();
1174     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1175     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1176     DILocalVariable *Variable = DI->getVariable();
1177     DIExpression *Expr = DI->getExpression();
1178     assert(Variable->isValidLocationForIntrinsic(dl) &&
1179            "Expected inlined-at fields to agree");
1180     SDDbgValue *SDV;
1181     if (Val.getNode()) {
1182       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1183       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1184       // we couldn't resolve it directly when examining the DbgValue intrinsic
1185       // in the first place we should not be more successful here). Unless we
1186       // have some test case that prove this to be correct we should avoid
1187       // calling EmitFuncArgumentDbgValue here.
1188       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1189         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1190                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1191         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1192         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1193         // inserted after the definition of Val when emitting the instructions
1194         // after ISel. An alternative could be to teach
1195         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1196         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1197                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1198                    << ValSDNodeOrder << "\n");
1199         SDV = getDbgValue(Val, Variable, Expr, dl,
1200                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1201         DAG.AddDbgValue(SDV, Val.getNode(), false);
1202       } else
1203         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1204                           << "in EmitFuncArgumentDbgValue\n");
1205     } else {
1206       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1207       auto Undef =
1208           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1209       auto SDV =
1210           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1211       DAG.AddDbgValue(SDV, nullptr, false);
1212     }
1213   }
1214   DDIV.clear();
1215 }
1216 
1217 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1218   Value *V = DDI.getDI()->getValue();
1219   DILocalVariable *Var = DDI.getDI()->getVariable();
1220   DIExpression *Expr = DDI.getDI()->getExpression();
1221   DebugLoc DL = DDI.getdl();
1222   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1223   unsigned SDOrder = DDI.getSDNodeOrder();
1224 
1225   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1226   // that DW_OP_stack_value is desired.
1227   assert(isa<DbgValueInst>(DDI.getDI()));
1228   bool StackValue = true;
1229 
1230   // Can this Value can be encoded without any further work?
1231   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1232     return;
1233 
1234   // Attempt to salvage back through as many instructions as possible. Bail if
1235   // a non-instruction is seen, such as a constant expression or global
1236   // variable. FIXME: Further work could recover those too.
1237   while (isa<Instruction>(V)) {
1238     Instruction &VAsInst = *cast<Instruction>(V);
1239     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1240 
1241     // If we cannot salvage any further, and haven't yet found a suitable debug
1242     // expression, bail out.
1243     if (!NewExpr)
1244       break;
1245 
1246     // New value and expr now represent this debuginfo.
1247     V = VAsInst.getOperand(0);
1248     Expr = NewExpr;
1249 
1250     // Some kind of simplification occurred: check whether the operand of the
1251     // salvaged debug expression can be encoded in this DAG.
1252     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1253       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1254                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1255       return;
1256     }
1257   }
1258 
1259   // This was the final opportunity to salvage this debug information, and it
1260   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1261   // any earlier variable location.
1262   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1263   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1264   DAG.AddDbgValue(SDV, nullptr, false);
1265 
1266   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1267                     << "\n");
1268   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1269                     << "\n");
1270 }
1271 
1272 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1273                                            DIExpression *Expr, DebugLoc dl,
1274                                            DebugLoc InstDL, unsigned Order) {
1275   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1276   SDDbgValue *SDV;
1277   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1278       isa<ConstantPointerNull>(V)) {
1279     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1280     DAG.AddDbgValue(SDV, nullptr, false);
1281     return true;
1282   }
1283 
1284   // If the Value is a frame index, we can create a FrameIndex debug value
1285   // without relying on the DAG at all.
1286   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1287     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1288     if (SI != FuncInfo.StaticAllocaMap.end()) {
1289       auto SDV =
1290           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1291                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1292       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1293       // is still available even if the SDNode gets optimized out.
1294       DAG.AddDbgValue(SDV, nullptr, false);
1295       return true;
1296     }
1297   }
1298 
1299   // Do not use getValue() in here; we don't want to generate code at
1300   // this point if it hasn't been done yet.
1301   SDValue N = NodeMap[V];
1302   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1303     N = UnusedArgNodeMap[V];
1304   if (N.getNode()) {
1305     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1306       return true;
1307     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1308     DAG.AddDbgValue(SDV, N.getNode(), false);
1309     return true;
1310   }
1311 
1312   // Special rules apply for the first dbg.values of parameter variables in a
1313   // function. Identify them by the fact they reference Argument Values, that
1314   // they're parameters, and they are parameters of the current function. We
1315   // need to let them dangle until they get an SDNode.
1316   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1317                        !InstDL.getInlinedAt();
1318   if (!IsParamOfFunc) {
1319     // The value is not used in this block yet (or it would have an SDNode).
1320     // We still want the value to appear for the user if possible -- if it has
1321     // an associated VReg, we can refer to that instead.
1322     auto VMI = FuncInfo.ValueMap.find(V);
1323     if (VMI != FuncInfo.ValueMap.end()) {
1324       unsigned Reg = VMI->second;
1325       // If this is a PHI node, it may be split up into several MI PHI nodes
1326       // (in FunctionLoweringInfo::set).
1327       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1328                        V->getType(), None);
1329       if (RFV.occupiesMultipleRegs()) {
1330         unsigned Offset = 0;
1331         unsigned BitsToDescribe = 0;
1332         if (auto VarSize = Var->getSizeInBits())
1333           BitsToDescribe = *VarSize;
1334         if (auto Fragment = Expr->getFragmentInfo())
1335           BitsToDescribe = Fragment->SizeInBits;
1336         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1337           unsigned RegisterSize = RegAndSize.second;
1338           // Bail out if all bits are described already.
1339           if (Offset >= BitsToDescribe)
1340             break;
1341           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1342               ? BitsToDescribe - Offset
1343               : RegisterSize;
1344           auto FragmentExpr = DIExpression::createFragmentExpression(
1345               Expr, Offset, FragmentSize);
1346           if (!FragmentExpr)
1347               continue;
1348           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1349                                     false, dl, SDNodeOrder);
1350           DAG.AddDbgValue(SDV, nullptr, false);
1351           Offset += RegisterSize;
1352         }
1353       } else {
1354         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1355         DAG.AddDbgValue(SDV, nullptr, false);
1356       }
1357       return true;
1358     }
1359   }
1360 
1361   return false;
1362 }
1363 
1364 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1365   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1366   for (auto &Pair : DanglingDebugInfoMap)
1367     for (auto &DDI : Pair.second)
1368       salvageUnresolvedDbgValue(DDI);
1369   clearDanglingDebugInfo();
1370 }
1371 
1372 /// getCopyFromRegs - If there was virtual register allocated for the value V
1373 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1374 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1375   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1376   SDValue Result;
1377 
1378   if (It != FuncInfo.ValueMap.end()) {
1379     unsigned InReg = It->second;
1380 
1381     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1382                      DAG.getDataLayout(), InReg, Ty,
1383                      None); // This is not an ABI copy.
1384     SDValue Chain = DAG.getEntryNode();
1385     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1386                                  V);
1387     resolveDanglingDebugInfo(V, Result);
1388   }
1389 
1390   return Result;
1391 }
1392 
1393 /// getValue - Return an SDValue for the given Value.
1394 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1395   // If we already have an SDValue for this value, use it. It's important
1396   // to do this first, so that we don't create a CopyFromReg if we already
1397   // have a regular SDValue.
1398   SDValue &N = NodeMap[V];
1399   if (N.getNode()) return N;
1400 
1401   // If there's a virtual register allocated and initialized for this
1402   // value, use it.
1403   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1404     return copyFromReg;
1405 
1406   // Otherwise create a new SDValue and remember it.
1407   SDValue Val = getValueImpl(V);
1408   NodeMap[V] = Val;
1409   resolveDanglingDebugInfo(V, Val);
1410   return Val;
1411 }
1412 
1413 // Return true if SDValue exists for the given Value
1414 bool SelectionDAGBuilder::findValue(const Value *V) const {
1415   return (NodeMap.find(V) != NodeMap.end()) ||
1416     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1417 }
1418 
1419 /// getNonRegisterValue - Return an SDValue for the given Value, but
1420 /// don't look in FuncInfo.ValueMap for a virtual register.
1421 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1422   // If we already have an SDValue for this value, use it.
1423   SDValue &N = NodeMap[V];
1424   if (N.getNode()) {
1425     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1426       // Remove the debug location from the node as the node is about to be used
1427       // in a location which may differ from the original debug location.  This
1428       // is relevant to Constant and ConstantFP nodes because they can appear
1429       // as constant expressions inside PHI nodes.
1430       N->setDebugLoc(DebugLoc());
1431     }
1432     return N;
1433   }
1434 
1435   // Otherwise create a new SDValue and remember it.
1436   SDValue Val = getValueImpl(V);
1437   NodeMap[V] = Val;
1438   resolveDanglingDebugInfo(V, Val);
1439   return Val;
1440 }
1441 
1442 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1443 /// Create an SDValue for the given value.
1444 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1445   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1446 
1447   if (const Constant *C = dyn_cast<Constant>(V)) {
1448     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1449 
1450     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1451       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1452 
1453     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1454       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1455 
1456     if (isa<ConstantPointerNull>(C)) {
1457       unsigned AS = V->getType()->getPointerAddressSpace();
1458       return DAG.getConstant(0, getCurSDLoc(),
1459                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1460     }
1461 
1462     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1463       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1464 
1465     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1466       return DAG.getUNDEF(VT);
1467 
1468     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1469       visit(CE->getOpcode(), *CE);
1470       SDValue N1 = NodeMap[V];
1471       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1472       return N1;
1473     }
1474 
1475     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1476       SmallVector<SDValue, 4> Constants;
1477       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1478            OI != OE; ++OI) {
1479         SDNode *Val = getValue(*OI).getNode();
1480         // If the operand is an empty aggregate, there are no values.
1481         if (!Val) continue;
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Constants.push_back(SDValue(Val, i));
1486       }
1487 
1488       return DAG.getMergeValues(Constants, getCurSDLoc());
1489     }
1490 
1491     if (const ConstantDataSequential *CDS =
1492           dyn_cast<ConstantDataSequential>(C)) {
1493       SmallVector<SDValue, 4> Ops;
1494       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1495         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1496         // Add each leaf value from the operand to the Constants list
1497         // to form a flattened list of all the values.
1498         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1499           Ops.push_back(SDValue(Val, i));
1500       }
1501 
1502       if (isa<ArrayType>(CDS->getType()))
1503         return DAG.getMergeValues(Ops, getCurSDLoc());
1504       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1505     }
1506 
1507     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1508       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1509              "Unknown struct or array constant!");
1510 
1511       SmallVector<EVT, 4> ValueVTs;
1512       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1513       unsigned NumElts = ValueVTs.size();
1514       if (NumElts == 0)
1515         return SDValue(); // empty struct
1516       SmallVector<SDValue, 4> Constants(NumElts);
1517       for (unsigned i = 0; i != NumElts; ++i) {
1518         EVT EltVT = ValueVTs[i];
1519         if (isa<UndefValue>(C))
1520           Constants[i] = DAG.getUNDEF(EltVT);
1521         else if (EltVT.isFloatingPoint())
1522           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1523         else
1524           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1525       }
1526 
1527       return DAG.getMergeValues(Constants, getCurSDLoc());
1528     }
1529 
1530     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1531       return DAG.getBlockAddress(BA, VT);
1532 
1533     VectorType *VecTy = cast<VectorType>(V->getType());
1534     unsigned NumElements = VecTy->getNumElements();
1535 
1536     // Now that we know the number and type of the elements, get that number of
1537     // elements into the Ops array based on what kind of constant it is.
1538     SmallVector<SDValue, 16> Ops;
1539     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1540       for (unsigned i = 0; i != NumElements; ++i)
1541         Ops.push_back(getValue(CV->getOperand(i)));
1542     } else {
1543       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1544       EVT EltVT =
1545           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1546 
1547       SDValue Op;
1548       if (EltVT.isFloatingPoint())
1549         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1550       else
1551         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1552       Ops.assign(NumElements, Op);
1553     }
1554 
1555     // Create a BUILD_VECTOR node.
1556     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1557   }
1558 
1559   // If this is a static alloca, generate it as the frameindex instead of
1560   // computation.
1561   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1562     DenseMap<const AllocaInst*, int>::iterator SI =
1563       FuncInfo.StaticAllocaMap.find(AI);
1564     if (SI != FuncInfo.StaticAllocaMap.end())
1565       return DAG.getFrameIndex(SI->second,
1566                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1567   }
1568 
1569   // If this is an instruction which fast-isel has deferred, select it now.
1570   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1571     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1572 
1573     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1574                      Inst->getType(), getABIRegCopyCC(V));
1575     SDValue Chain = DAG.getEntryNode();
1576     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1577   }
1578 
1579   llvm_unreachable("Can't get register for value!");
1580 }
1581 
1582 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1583   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1584   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1585   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1586   bool IsSEH = isAsynchronousEHPersonality(Pers);
1587   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1588   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1589   if (!IsSEH)
1590     CatchPadMBB->setIsEHScopeEntry();
1591   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1592   if (IsMSVCCXX || IsCoreCLR)
1593     CatchPadMBB->setIsEHFuncletEntry();
1594   // Wasm does not need catchpads anymore
1595   if (!IsWasmCXX)
1596     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1597                             getControlRoot()));
1598 }
1599 
1600 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1601   // Update machine-CFG edge.
1602   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1603   FuncInfo.MBB->addSuccessor(TargetMBB);
1604 
1605   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1606   bool IsSEH = isAsynchronousEHPersonality(Pers);
1607   if (IsSEH) {
1608     // If this is not a fall-through branch or optimizations are switched off,
1609     // emit the branch.
1610     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1611         TM.getOptLevel() == CodeGenOpt::None)
1612       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1613                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1614     return;
1615   }
1616 
1617   // Figure out the funclet membership for the catchret's successor.
1618   // This will be used by the FuncletLayout pass to determine how to order the
1619   // BB's.
1620   // A 'catchret' returns to the outer scope's color.
1621   Value *ParentPad = I.getCatchSwitchParentPad();
1622   const BasicBlock *SuccessorColor;
1623   if (isa<ConstantTokenNone>(ParentPad))
1624     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1625   else
1626     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1627   assert(SuccessorColor && "No parent funclet for catchret!");
1628   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1629   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1630 
1631   // Create the terminator node.
1632   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1633                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1634                             DAG.getBasicBlock(SuccessorColorMBB));
1635   DAG.setRoot(Ret);
1636 }
1637 
1638 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1639   // Don't emit any special code for the cleanuppad instruction. It just marks
1640   // the start of an EH scope/funclet.
1641   FuncInfo.MBB->setIsEHScopeEntry();
1642   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1643   if (Pers != EHPersonality::Wasm_CXX) {
1644     FuncInfo.MBB->setIsEHFuncletEntry();
1645     FuncInfo.MBB->setIsCleanupFuncletEntry();
1646   }
1647 }
1648 
1649 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1650 // the control flow always stops at the single catch pad, as it does for a
1651 // cleanup pad. In case the exception caught is not of the types the catch pad
1652 // catches, it will be rethrown by a rethrow.
1653 static void findWasmUnwindDestinations(
1654     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1655     BranchProbability Prob,
1656     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1657         &UnwindDests) {
1658   while (EHPadBB) {
1659     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1660     if (isa<CleanupPadInst>(Pad)) {
1661       // Stop on cleanup pads.
1662       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1663       UnwindDests.back().first->setIsEHScopeEntry();
1664       break;
1665     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1666       // Add the catchpad handlers to the possible destinations. We don't
1667       // continue to the unwind destination of the catchswitch for wasm.
1668       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1669         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1670         UnwindDests.back().first->setIsEHScopeEntry();
1671       }
1672       break;
1673     } else {
1674       continue;
1675     }
1676   }
1677 }
1678 
1679 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1680 /// many places it could ultimately go. In the IR, we have a single unwind
1681 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1682 /// This function skips over imaginary basic blocks that hold catchswitch
1683 /// instructions, and finds all the "real" machine
1684 /// basic block destinations. As those destinations may not be successors of
1685 /// EHPadBB, here we also calculate the edge probability to those destinations.
1686 /// The passed-in Prob is the edge probability to EHPadBB.
1687 static void findUnwindDestinations(
1688     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1689     BranchProbability Prob,
1690     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1691         &UnwindDests) {
1692   EHPersonality Personality =
1693     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1694   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1695   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1696   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1697   bool IsSEH = isAsynchronousEHPersonality(Personality);
1698 
1699   if (IsWasmCXX) {
1700     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1701     assert(UnwindDests.size() <= 1 &&
1702            "There should be at most one unwind destination for wasm");
1703     return;
1704   }
1705 
1706   while (EHPadBB) {
1707     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1708     BasicBlock *NewEHPadBB = nullptr;
1709     if (isa<LandingPadInst>(Pad)) {
1710       // Stop on landingpads. They are not funclets.
1711       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1712       break;
1713     } else if (isa<CleanupPadInst>(Pad)) {
1714       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1715       // personalities.
1716       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1717       UnwindDests.back().first->setIsEHScopeEntry();
1718       UnwindDests.back().first->setIsEHFuncletEntry();
1719       break;
1720     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1721       // Add the catchpad handlers to the possible destinations.
1722       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1723         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1724         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1725         if (IsMSVCCXX || IsCoreCLR)
1726           UnwindDests.back().first->setIsEHFuncletEntry();
1727         if (!IsSEH)
1728           UnwindDests.back().first->setIsEHScopeEntry();
1729       }
1730       NewEHPadBB = CatchSwitch->getUnwindDest();
1731     } else {
1732       continue;
1733     }
1734 
1735     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1736     if (BPI && NewEHPadBB)
1737       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1738     EHPadBB = NewEHPadBB;
1739   }
1740 }
1741 
1742 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1743   // Update successor info.
1744   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1745   auto UnwindDest = I.getUnwindDest();
1746   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1747   BranchProbability UnwindDestProb =
1748       (BPI && UnwindDest)
1749           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1750           : BranchProbability::getZero();
1751   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1752   for (auto &UnwindDest : UnwindDests) {
1753     UnwindDest.first->setIsEHPad();
1754     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1755   }
1756   FuncInfo.MBB->normalizeSuccProbs();
1757 
1758   // Create the terminator node.
1759   SDValue Ret =
1760       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1761   DAG.setRoot(Ret);
1762 }
1763 
1764 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1765   report_fatal_error("visitCatchSwitch not yet implemented!");
1766 }
1767 
1768 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1770   auto &DL = DAG.getDataLayout();
1771   SDValue Chain = getControlRoot();
1772   SmallVector<ISD::OutputArg, 8> Outs;
1773   SmallVector<SDValue, 8> OutVals;
1774 
1775   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1776   // lower
1777   //
1778   //   %val = call <ty> @llvm.experimental.deoptimize()
1779   //   ret <ty> %val
1780   //
1781   // differently.
1782   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1783     LowerDeoptimizingReturn();
1784     return;
1785   }
1786 
1787   if (!FuncInfo.CanLowerReturn) {
1788     unsigned DemoteReg = FuncInfo.DemoteRegister;
1789     const Function *F = I.getParent()->getParent();
1790 
1791     // Emit a store of the return value through the virtual register.
1792     // Leave Outs empty so that LowerReturn won't try to load return
1793     // registers the usual way.
1794     SmallVector<EVT, 1> PtrValueVTs;
1795     ComputeValueVTs(TLI, DL,
1796                     F->getReturnType()->getPointerTo(
1797                         DAG.getDataLayout().getAllocaAddrSpace()),
1798                     PtrValueVTs);
1799 
1800     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1801                                         DemoteReg, PtrValueVTs[0]);
1802     SDValue RetOp = getValue(I.getOperand(0));
1803 
1804     SmallVector<EVT, 4> ValueVTs, MemVTs;
1805     SmallVector<uint64_t, 4> Offsets;
1806     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1807                     &Offsets);
1808     unsigned NumValues = ValueVTs.size();
1809 
1810     SmallVector<SDValue, 4> Chains(NumValues);
1811     for (unsigned i = 0; i != NumValues; ++i) {
1812       // An aggregate return value cannot wrap around the address space, so
1813       // offsets to its parts don't wrap either.
1814       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1815 
1816       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1817       if (MemVTs[i] != ValueVTs[i])
1818         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1819       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1820           // FIXME: better loc info would be nice.
1821           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1822     }
1823 
1824     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1825                         MVT::Other, Chains);
1826   } else if (I.getNumOperands() != 0) {
1827     SmallVector<EVT, 4> ValueVTs;
1828     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1829     unsigned NumValues = ValueVTs.size();
1830     if (NumValues) {
1831       SDValue RetOp = getValue(I.getOperand(0));
1832 
1833       const Function *F = I.getParent()->getParent();
1834 
1835       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1836           I.getOperand(0)->getType(), F->getCallingConv(),
1837           /*IsVarArg*/ false);
1838 
1839       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1840       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1841                                           Attribute::SExt))
1842         ExtendKind = ISD::SIGN_EXTEND;
1843       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1844                                                Attribute::ZExt))
1845         ExtendKind = ISD::ZERO_EXTEND;
1846 
1847       LLVMContext &Context = F->getContext();
1848       bool RetInReg = F->getAttributes().hasAttribute(
1849           AttributeList::ReturnIndex, Attribute::InReg);
1850 
1851       for (unsigned j = 0; j != NumValues; ++j) {
1852         EVT VT = ValueVTs[j];
1853 
1854         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1855           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1856 
1857         CallingConv::ID CC = F->getCallingConv();
1858 
1859         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1860         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1861         SmallVector<SDValue, 4> Parts(NumParts);
1862         getCopyToParts(DAG, getCurSDLoc(),
1863                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1864                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1865 
1866         // 'inreg' on function refers to return value
1867         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1868         if (RetInReg)
1869           Flags.setInReg();
1870 
1871         if (I.getOperand(0)->getType()->isPointerTy()) {
1872           Flags.setPointer();
1873           Flags.setPointerAddrSpace(
1874               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1875         }
1876 
1877         if (NeedsRegBlock) {
1878           Flags.setInConsecutiveRegs();
1879           if (j == NumValues - 1)
1880             Flags.setInConsecutiveRegsLast();
1881         }
1882 
1883         // Propagate extension type if any
1884         if (ExtendKind == ISD::SIGN_EXTEND)
1885           Flags.setSExt();
1886         else if (ExtendKind == ISD::ZERO_EXTEND)
1887           Flags.setZExt();
1888 
1889         for (unsigned i = 0; i < NumParts; ++i) {
1890           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1891                                         VT, /*isfixed=*/true, 0, 0));
1892           OutVals.push_back(Parts[i]);
1893         }
1894       }
1895     }
1896   }
1897 
1898   // Push in swifterror virtual register as the last element of Outs. This makes
1899   // sure swifterror virtual register will be returned in the swifterror
1900   // physical register.
1901   const Function *F = I.getParent()->getParent();
1902   if (TLI.supportSwiftError() &&
1903       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1904     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1905     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1906     Flags.setSwiftError();
1907     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1908                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1909                                   true /*isfixed*/, 1 /*origidx*/,
1910                                   0 /*partOffs*/));
1911     // Create SDNode for the swifterror virtual register.
1912     OutVals.push_back(
1913         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1914                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1915                         EVT(TLI.getPointerTy(DL))));
1916   }
1917 
1918   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1919   CallingConv::ID CallConv =
1920     DAG.getMachineFunction().getFunction().getCallingConv();
1921   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1922       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1923 
1924   // Verify that the target's LowerReturn behaved as expected.
1925   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1926          "LowerReturn didn't return a valid chain!");
1927 
1928   // Update the DAG with the new chain value resulting from return lowering.
1929   DAG.setRoot(Chain);
1930 }
1931 
1932 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1933 /// created for it, emit nodes to copy the value into the virtual
1934 /// registers.
1935 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1936   // Skip empty types
1937   if (V->getType()->isEmptyTy())
1938     return;
1939 
1940   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1941   if (VMI != FuncInfo.ValueMap.end()) {
1942     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1943     CopyValueToVirtualRegister(V, VMI->second);
1944   }
1945 }
1946 
1947 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1948 /// the current basic block, add it to ValueMap now so that we'll get a
1949 /// CopyTo/FromReg.
1950 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1951   // No need to export constants.
1952   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1953 
1954   // Already exported?
1955   if (FuncInfo.isExportedInst(V)) return;
1956 
1957   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1958   CopyValueToVirtualRegister(V, Reg);
1959 }
1960 
1961 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1962                                                      const BasicBlock *FromBB) {
1963   // The operands of the setcc have to be in this block.  We don't know
1964   // how to export them from some other block.
1965   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1966     // Can export from current BB.
1967     if (VI->getParent() == FromBB)
1968       return true;
1969 
1970     // Is already exported, noop.
1971     return FuncInfo.isExportedInst(V);
1972   }
1973 
1974   // If this is an argument, we can export it if the BB is the entry block or
1975   // if it is already exported.
1976   if (isa<Argument>(V)) {
1977     if (FromBB == &FromBB->getParent()->getEntryBlock())
1978       return true;
1979 
1980     // Otherwise, can only export this if it is already exported.
1981     return FuncInfo.isExportedInst(V);
1982   }
1983 
1984   // Otherwise, constants can always be exported.
1985   return true;
1986 }
1987 
1988 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1989 BranchProbability
1990 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1991                                         const MachineBasicBlock *Dst) const {
1992   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1993   const BasicBlock *SrcBB = Src->getBasicBlock();
1994   const BasicBlock *DstBB = Dst->getBasicBlock();
1995   if (!BPI) {
1996     // If BPI is not available, set the default probability as 1 / N, where N is
1997     // the number of successors.
1998     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1999     return BranchProbability(1, SuccSize);
2000   }
2001   return BPI->getEdgeProbability(SrcBB, DstBB);
2002 }
2003 
2004 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2005                                                MachineBasicBlock *Dst,
2006                                                BranchProbability Prob) {
2007   if (!FuncInfo.BPI)
2008     Src->addSuccessorWithoutProb(Dst);
2009   else {
2010     if (Prob.isUnknown())
2011       Prob = getEdgeProbability(Src, Dst);
2012     Src->addSuccessor(Dst, Prob);
2013   }
2014 }
2015 
2016 static bool InBlock(const Value *V, const BasicBlock *BB) {
2017   if (const Instruction *I = dyn_cast<Instruction>(V))
2018     return I->getParent() == BB;
2019   return true;
2020 }
2021 
2022 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2023 /// This function emits a branch and is used at the leaves of an OR or an
2024 /// AND operator tree.
2025 void
2026 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2027                                                   MachineBasicBlock *TBB,
2028                                                   MachineBasicBlock *FBB,
2029                                                   MachineBasicBlock *CurBB,
2030                                                   MachineBasicBlock *SwitchBB,
2031                                                   BranchProbability TProb,
2032                                                   BranchProbability FProb,
2033                                                   bool InvertCond) {
2034   const BasicBlock *BB = CurBB->getBasicBlock();
2035 
2036   // If the leaf of the tree is a comparison, merge the condition into
2037   // the caseblock.
2038   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2039     // The operands of the cmp have to be in this block.  We don't know
2040     // how to export them from some other block.  If this is the first block
2041     // of the sequence, no exporting is needed.
2042     if (CurBB == SwitchBB ||
2043         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2044          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2045       ISD::CondCode Condition;
2046       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2047         ICmpInst::Predicate Pred =
2048             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2049         Condition = getICmpCondCode(Pred);
2050       } else {
2051         const FCmpInst *FC = cast<FCmpInst>(Cond);
2052         FCmpInst::Predicate Pred =
2053             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2054         Condition = getFCmpCondCode(Pred);
2055         if (TM.Options.NoNaNsFPMath)
2056           Condition = getFCmpCodeWithoutNaN(Condition);
2057       }
2058 
2059       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2060                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2061       SL->SwitchCases.push_back(CB);
2062       return;
2063     }
2064   }
2065 
2066   // Create a CaseBlock record representing this branch.
2067   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2068   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2069                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2070   SL->SwitchCases.push_back(CB);
2071 }
2072 
2073 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2074                                                MachineBasicBlock *TBB,
2075                                                MachineBasicBlock *FBB,
2076                                                MachineBasicBlock *CurBB,
2077                                                MachineBasicBlock *SwitchBB,
2078                                                Instruction::BinaryOps Opc,
2079                                                BranchProbability TProb,
2080                                                BranchProbability FProb,
2081                                                bool InvertCond) {
2082   // Skip over not part of the tree and remember to invert op and operands at
2083   // next level.
2084   Value *NotCond;
2085   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2086       InBlock(NotCond, CurBB->getBasicBlock())) {
2087     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2088                          !InvertCond);
2089     return;
2090   }
2091 
2092   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2093   // Compute the effective opcode for Cond, taking into account whether it needs
2094   // to be inverted, e.g.
2095   //   and (not (or A, B)), C
2096   // gets lowered as
2097   //   and (and (not A, not B), C)
2098   unsigned BOpc = 0;
2099   if (BOp) {
2100     BOpc = BOp->getOpcode();
2101     if (InvertCond) {
2102       if (BOpc == Instruction::And)
2103         BOpc = Instruction::Or;
2104       else if (BOpc == Instruction::Or)
2105         BOpc = Instruction::And;
2106     }
2107   }
2108 
2109   // If this node is not part of the or/and tree, emit it as a branch.
2110   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2111       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2112       BOp->getParent() != CurBB->getBasicBlock() ||
2113       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2114       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2115     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2116                                  TProb, FProb, InvertCond);
2117     return;
2118   }
2119 
2120   //  Create TmpBB after CurBB.
2121   MachineFunction::iterator BBI(CurBB);
2122   MachineFunction &MF = DAG.getMachineFunction();
2123   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2124   CurBB->getParent()->insert(++BBI, TmpBB);
2125 
2126   if (Opc == Instruction::Or) {
2127     // Codegen X | Y as:
2128     // BB1:
2129     //   jmp_if_X TBB
2130     //   jmp TmpBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135 
2136     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2137     // The requirement is that
2138     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2139     //     = TrueProb for original BB.
2140     // Assuming the original probabilities are A and B, one choice is to set
2141     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2142     // A/(1+B) and 2B/(1+B). This choice assumes that
2143     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2144     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2145     // TmpBB, but the math is more complicated.
2146 
2147     auto NewTrueProb = TProb / 2;
2148     auto NewFalseProb = TProb / 2 + FProb;
2149     // Emit the LHS condition.
2150     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2151                          NewTrueProb, NewFalseProb, InvertCond);
2152 
2153     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2154     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2155     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2156     // Emit the RHS condition into TmpBB.
2157     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2158                          Probs[0], Probs[1], InvertCond);
2159   } else {
2160     assert(Opc == Instruction::And && "Unknown merge op!");
2161     // Codegen X & Y as:
2162     // BB1:
2163     //   jmp_if_X TmpBB
2164     //   jmp FBB
2165     // TmpBB:
2166     //   jmp_if_Y TBB
2167     //   jmp FBB
2168     //
2169     //  This requires creation of TmpBB after CurBB.
2170 
2171     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2172     // The requirement is that
2173     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2174     //     = FalseProb for original BB.
2175     // Assuming the original probabilities are A and B, one choice is to set
2176     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2177     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2178     // TrueProb for BB1 * FalseProb for TmpBB.
2179 
2180     auto NewTrueProb = TProb + FProb / 2;
2181     auto NewFalseProb = FProb / 2;
2182     // Emit the LHS condition.
2183     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2184                          NewTrueProb, NewFalseProb, InvertCond);
2185 
2186     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2187     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2188     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2189     // Emit the RHS condition into TmpBB.
2190     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2191                          Probs[0], Probs[1], InvertCond);
2192   }
2193 }
2194 
2195 /// If the set of cases should be emitted as a series of branches, return true.
2196 /// If we should emit this as a bunch of and/or'd together conditions, return
2197 /// false.
2198 bool
2199 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2200   if (Cases.size() != 2) return true;
2201 
2202   // If this is two comparisons of the same values or'd or and'd together, they
2203   // will get folded into a single comparison, so don't emit two blocks.
2204   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2205        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2206       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2207        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2208     return false;
2209   }
2210 
2211   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2212   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2213   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2214       Cases[0].CC == Cases[1].CC &&
2215       isa<Constant>(Cases[0].CmpRHS) &&
2216       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2217     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2218       return false;
2219     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2220       return false;
2221   }
2222 
2223   return true;
2224 }
2225 
2226 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2227   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2228 
2229   // Update machine-CFG edges.
2230   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2231 
2232   if (I.isUnconditional()) {
2233     // Update machine-CFG edges.
2234     BrMBB->addSuccessor(Succ0MBB);
2235 
2236     // If this is not a fall-through branch or optimizations are switched off,
2237     // emit the branch.
2238     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2239       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2240                               MVT::Other, getControlRoot(),
2241                               DAG.getBasicBlock(Succ0MBB)));
2242 
2243     return;
2244   }
2245 
2246   // If this condition is one of the special cases we handle, do special stuff
2247   // now.
2248   const Value *CondVal = I.getCondition();
2249   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2250 
2251   // If this is a series of conditions that are or'd or and'd together, emit
2252   // this as a sequence of branches instead of setcc's with and/or operations.
2253   // As long as jumps are not expensive, this should improve performance.
2254   // For example, instead of something like:
2255   //     cmp A, B
2256   //     C = seteq
2257   //     cmp D, E
2258   //     F = setle
2259   //     or C, F
2260   //     jnz foo
2261   // Emit:
2262   //     cmp A, B
2263   //     je foo
2264   //     cmp D, E
2265   //     jle foo
2266   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2267     Instruction::BinaryOps Opcode = BOp->getOpcode();
2268     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2269         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2270         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2271       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2272                            Opcode,
2273                            getEdgeProbability(BrMBB, Succ0MBB),
2274                            getEdgeProbability(BrMBB, Succ1MBB),
2275                            /*InvertCond=*/false);
2276       // If the compares in later blocks need to use values not currently
2277       // exported from this block, export them now.  This block should always
2278       // be the first entry.
2279       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2280 
2281       // Allow some cases to be rejected.
2282       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2283         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2284           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2285           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2286         }
2287 
2288         // Emit the branch for this block.
2289         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2290         SL->SwitchCases.erase(SL->SwitchCases.begin());
2291         return;
2292       }
2293 
2294       // Okay, we decided not to do this, remove any inserted MBB's and clear
2295       // SwitchCases.
2296       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2297         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2298 
2299       SL->SwitchCases.clear();
2300     }
2301   }
2302 
2303   // Create a CaseBlock record representing this branch.
2304   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2305                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2306 
2307   // Use visitSwitchCase to actually insert the fast branch sequence for this
2308   // cond branch.
2309   visitSwitchCase(CB, BrMBB);
2310 }
2311 
2312 /// visitSwitchCase - Emits the necessary code to represent a single node in
2313 /// the binary search tree resulting from lowering a switch instruction.
2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2315                                           MachineBasicBlock *SwitchBB) {
2316   SDValue Cond;
2317   SDValue CondLHS = getValue(CB.CmpLHS);
2318   SDLoc dl = CB.DL;
2319 
2320   if (CB.CC == ISD::SETTRUE) {
2321     // Branch or fall through to TrueBB.
2322     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2323     SwitchBB->normalizeSuccProbs();
2324     if (CB.TrueBB != NextBlock(SwitchBB)) {
2325       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2326                               DAG.getBasicBlock(CB.TrueBB)));
2327     }
2328     return;
2329   }
2330 
2331   auto &TLI = DAG.getTargetLoweringInfo();
2332   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2333 
2334   // Build the setcc now.
2335   if (!CB.CmpMHS) {
2336     // Fold "(X == true)" to X and "(X == false)" to !X to
2337     // handle common cases produced by branch lowering.
2338     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2339         CB.CC == ISD::SETEQ)
2340       Cond = CondLHS;
2341     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2342              CB.CC == ISD::SETEQ) {
2343       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2344       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2345     } else {
2346       SDValue CondRHS = getValue(CB.CmpRHS);
2347 
2348       // If a pointer's DAG type is larger than its memory type then the DAG
2349       // values are zero-extended. This breaks signed comparisons so truncate
2350       // back to the underlying type before doing the compare.
2351       if (CondLHS.getValueType() != MemVT) {
2352         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2353         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2354       }
2355       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2356     }
2357   } else {
2358     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2359 
2360     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2361     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2362 
2363     SDValue CmpOp = getValue(CB.CmpMHS);
2364     EVT VT = CmpOp.getValueType();
2365 
2366     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2367       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2368                           ISD::SETLE);
2369     } else {
2370       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2371                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2372       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2373                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2374     }
2375   }
2376 
2377   // Update successor info
2378   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2379   // TrueBB and FalseBB are always different unless the incoming IR is
2380   // degenerate. This only happens when running llc on weird IR.
2381   if (CB.TrueBB != CB.FalseBB)
2382     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2383   SwitchBB->normalizeSuccProbs();
2384 
2385   // If the lhs block is the next block, invert the condition so that we can
2386   // fall through to the lhs instead of the rhs block.
2387   if (CB.TrueBB == NextBlock(SwitchBB)) {
2388     std::swap(CB.TrueBB, CB.FalseBB);
2389     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2390     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2391   }
2392 
2393   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2394                                MVT::Other, getControlRoot(), Cond,
2395                                DAG.getBasicBlock(CB.TrueBB));
2396 
2397   // Insert the false branch. Do this even if it's a fall through branch,
2398   // this makes it easier to do DAG optimizations which require inverting
2399   // the branch condition.
2400   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2401                        DAG.getBasicBlock(CB.FalseBB));
2402 
2403   DAG.setRoot(BrCond);
2404 }
2405 
2406 /// visitJumpTable - Emit JumpTable node in the current MBB
2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2408   // Emit the code for the jump table
2409   assert(JT.Reg != -1U && "Should lower JT Header first!");
2410   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2411   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2412                                      JT.Reg, PTy);
2413   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2414   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2415                                     MVT::Other, Index.getValue(1),
2416                                     Table, Index);
2417   DAG.setRoot(BrJumpTable);
2418 }
2419 
2420 /// visitJumpTableHeader - This function emits necessary code to produce index
2421 /// in the JumpTable from switch case.
2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2423                                                JumpTableHeader &JTH,
2424                                                MachineBasicBlock *SwitchBB) {
2425   SDLoc dl = getCurSDLoc();
2426 
2427   // Subtract the lowest switch case value from the value being switched on.
2428   SDValue SwitchOp = getValue(JTH.SValue);
2429   EVT VT = SwitchOp.getValueType();
2430   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2431                             DAG.getConstant(JTH.First, dl, VT));
2432 
2433   // The SDNode we just created, which holds the value being switched on minus
2434   // the smallest case value, needs to be copied to a virtual register so it
2435   // can be used as an index into the jump table in a subsequent basic block.
2436   // This value may be smaller or larger than the target's pointer type, and
2437   // therefore require extension or truncating.
2438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2439   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2440 
2441   unsigned JumpTableReg =
2442       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2443   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2444                                     JumpTableReg, SwitchOp);
2445   JT.Reg = JumpTableReg;
2446 
2447   if (!JTH.OmitRangeCheck) {
2448     // Emit the range check for the jump table, and branch to the default block
2449     // for the switch statement if the value being switched on exceeds the
2450     // largest case in the switch.
2451     SDValue CMP = DAG.getSetCC(
2452         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2453                                    Sub.getValueType()),
2454         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2455 
2456     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2457                                  MVT::Other, CopyTo, CMP,
2458                                  DAG.getBasicBlock(JT.Default));
2459 
2460     // Avoid emitting unnecessary branches to the next block.
2461     if (JT.MBB != NextBlock(SwitchBB))
2462       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2463                            DAG.getBasicBlock(JT.MBB));
2464 
2465     DAG.setRoot(BrCond);
2466   } else {
2467     // Avoid emitting unnecessary branches to the next block.
2468     if (JT.MBB != NextBlock(SwitchBB))
2469       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2470                               DAG.getBasicBlock(JT.MBB)));
2471     else
2472       DAG.setRoot(CopyTo);
2473   }
2474 }
2475 
2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2477 /// variable if there exists one.
2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2479                                  SDValue &Chain) {
2480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2481   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2482   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2483   MachineFunction &MF = DAG.getMachineFunction();
2484   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2485   MachineSDNode *Node =
2486       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2487   if (Global) {
2488     MachinePointerInfo MPInfo(Global);
2489     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2490                  MachineMemOperand::MODereferenceable;
2491     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2492         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2493     DAG.setNodeMemRefs(Node, {MemRef});
2494   }
2495   if (PtrTy != PtrMemTy)
2496     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2497   return SDValue(Node, 0);
2498 }
2499 
2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2501 /// tail spliced into a stack protector check success bb.
2502 ///
2503 /// For a high level explanation of how this fits into the stack protector
2504 /// generation see the comment on the declaration of class
2505 /// StackProtectorDescriptor.
2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2507                                                   MachineBasicBlock *ParentBB) {
2508 
2509   // First create the loads to the guard/stack slot for the comparison.
2510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2511   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2512   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2513 
2514   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2515   int FI = MFI.getStackProtectorIndex();
2516 
2517   SDValue Guard;
2518   SDLoc dl = getCurSDLoc();
2519   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2520   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2521   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2522 
2523   // Generate code to load the content of the guard slot.
2524   SDValue GuardVal = DAG.getLoad(
2525       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2526       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2527       MachineMemOperand::MOVolatile);
2528 
2529   if (TLI.useStackGuardXorFP())
2530     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2531 
2532   // Retrieve guard check function, nullptr if instrumentation is inlined.
2533   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2534     // The target provides a guard check function to validate the guard value.
2535     // Generate a call to that function with the content of the guard slot as
2536     // argument.
2537     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2538     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2539 
2540     TargetLowering::ArgListTy Args;
2541     TargetLowering::ArgListEntry Entry;
2542     Entry.Node = GuardVal;
2543     Entry.Ty = FnTy->getParamType(0);
2544     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2545       Entry.IsInReg = true;
2546     Args.push_back(Entry);
2547 
2548     TargetLowering::CallLoweringInfo CLI(DAG);
2549     CLI.setDebugLoc(getCurSDLoc())
2550         .setChain(DAG.getEntryNode())
2551         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2552                    getValue(GuardCheckFn), std::move(Args));
2553 
2554     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2555     DAG.setRoot(Result.second);
2556     return;
2557   }
2558 
2559   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2560   // Otherwise, emit a volatile load to retrieve the stack guard value.
2561   SDValue Chain = DAG.getEntryNode();
2562   if (TLI.useLoadStackGuardNode()) {
2563     Guard = getLoadStackGuard(DAG, dl, Chain);
2564   } else {
2565     const Value *IRGuard = TLI.getSDagStackGuard(M);
2566     SDValue GuardPtr = getValue(IRGuard);
2567 
2568     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2569                         MachinePointerInfo(IRGuard, 0), Align,
2570                         MachineMemOperand::MOVolatile);
2571   }
2572 
2573   // Perform the comparison via a subtract/getsetcc.
2574   EVT VT = Guard.getValueType();
2575   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2576 
2577   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2578                                                         *DAG.getContext(),
2579                                                         Sub.getValueType()),
2580                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2581 
2582   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2583   // branch to failure MBB.
2584   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2585                                MVT::Other, GuardVal.getOperand(0),
2586                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2587   // Otherwise branch to success MBB.
2588   SDValue Br = DAG.getNode(ISD::BR, dl,
2589                            MVT::Other, BrCond,
2590                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2591 
2592   DAG.setRoot(Br);
2593 }
2594 
2595 /// Codegen the failure basic block for a stack protector check.
2596 ///
2597 /// A failure stack protector machine basic block consists simply of a call to
2598 /// __stack_chk_fail().
2599 ///
2600 /// For a high level explanation of how this fits into the stack protector
2601 /// generation see the comment on the declaration of class
2602 /// StackProtectorDescriptor.
2603 void
2604 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2606   TargetLowering::MakeLibCallOptions CallOptions;
2607   CallOptions.setDiscardResult(true);
2608   SDValue Chain =
2609       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2610                       None, CallOptions, getCurSDLoc()).second;
2611   // On PS4, the "return address" must still be within the calling function,
2612   // even if it's at the very end, so emit an explicit TRAP here.
2613   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2614   if (TM.getTargetTriple().isPS4CPU())
2615     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2616 
2617   DAG.setRoot(Chain);
2618 }
2619 
2620 /// visitBitTestHeader - This function emits necessary code to produce value
2621 /// suitable for "bit tests"
2622 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2623                                              MachineBasicBlock *SwitchBB) {
2624   SDLoc dl = getCurSDLoc();
2625 
2626   // Subtract the minimum value.
2627   SDValue SwitchOp = getValue(B.SValue);
2628   EVT VT = SwitchOp.getValueType();
2629   SDValue RangeSub =
2630       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2631 
2632   // Determine the type of the test operands.
2633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2634   bool UsePtrType = false;
2635   if (!TLI.isTypeLegal(VT)) {
2636     UsePtrType = true;
2637   } else {
2638     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2639       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2640         // Switch table case range are encoded into series of masks.
2641         // Just use pointer type, it's guaranteed to fit.
2642         UsePtrType = true;
2643         break;
2644       }
2645   }
2646   SDValue Sub = RangeSub;
2647   if (UsePtrType) {
2648     VT = TLI.getPointerTy(DAG.getDataLayout());
2649     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2650   }
2651 
2652   B.RegVT = VT.getSimpleVT();
2653   B.Reg = FuncInfo.CreateReg(B.RegVT);
2654   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2655 
2656   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2657 
2658   if (!B.OmitRangeCheck)
2659     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2660   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2661   SwitchBB->normalizeSuccProbs();
2662 
2663   SDValue Root = CopyTo;
2664   if (!B.OmitRangeCheck) {
2665     // Conditional branch to the default block.
2666     SDValue RangeCmp = DAG.getSetCC(dl,
2667         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2668                                RangeSub.getValueType()),
2669         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2670         ISD::SETUGT);
2671 
2672     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2673                        DAG.getBasicBlock(B.Default));
2674   }
2675 
2676   // Avoid emitting unnecessary branches to the next block.
2677   if (MBB != NextBlock(SwitchBB))
2678     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2679 
2680   DAG.setRoot(Root);
2681 }
2682 
2683 /// visitBitTestCase - this function produces one "bit test"
2684 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2685                                            MachineBasicBlock* NextMBB,
2686                                            BranchProbability BranchProbToNext,
2687                                            unsigned Reg,
2688                                            BitTestCase &B,
2689                                            MachineBasicBlock *SwitchBB) {
2690   SDLoc dl = getCurSDLoc();
2691   MVT VT = BB.RegVT;
2692   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2693   SDValue Cmp;
2694   unsigned PopCount = countPopulation(B.Mask);
2695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2696   if (PopCount == 1) {
2697     // Testing for a single bit; just compare the shift count with what it
2698     // would need to be to shift a 1 bit in that position.
2699     Cmp = DAG.getSetCC(
2700         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2701         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2702         ISD::SETEQ);
2703   } else if (PopCount == BB.Range) {
2704     // There is only one zero bit in the range, test for it directly.
2705     Cmp = DAG.getSetCC(
2706         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2707         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2708         ISD::SETNE);
2709   } else {
2710     // Make desired shift
2711     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2712                                     DAG.getConstant(1, dl, VT), ShiftOp);
2713 
2714     // Emit bit tests and jumps
2715     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2716                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2717     Cmp = DAG.getSetCC(
2718         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2719         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2720   }
2721 
2722   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2723   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2724   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2725   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2726   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2727   // one as they are relative probabilities (and thus work more like weights),
2728   // and hence we need to normalize them to let the sum of them become one.
2729   SwitchBB->normalizeSuccProbs();
2730 
2731   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2732                               MVT::Other, getControlRoot(),
2733                               Cmp, DAG.getBasicBlock(B.TargetBB));
2734 
2735   // Avoid emitting unnecessary branches to the next block.
2736   if (NextMBB != NextBlock(SwitchBB))
2737     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2738                         DAG.getBasicBlock(NextMBB));
2739 
2740   DAG.setRoot(BrAnd);
2741 }
2742 
2743 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2744   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2745 
2746   // Retrieve successors. Look through artificial IR level blocks like
2747   // catchswitch for successors.
2748   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2749   const BasicBlock *EHPadBB = I.getSuccessor(1);
2750 
2751   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2752   // have to do anything here to lower funclet bundles.
2753   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2754                                         LLVMContext::OB_funclet,
2755                                         LLVMContext::OB_cfguardtarget}) &&
2756          "Cannot lower invokes with arbitrary operand bundles yet!");
2757 
2758   const Value *Callee(I.getCalledValue());
2759   const Function *Fn = dyn_cast<Function>(Callee);
2760   if (isa<InlineAsm>(Callee))
2761     visitInlineAsm(&I);
2762   else if (Fn && Fn->isIntrinsic()) {
2763     switch (Fn->getIntrinsicID()) {
2764     default:
2765       llvm_unreachable("Cannot invoke this intrinsic");
2766     case Intrinsic::donothing:
2767       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2768       break;
2769     case Intrinsic::experimental_patchpoint_void:
2770     case Intrinsic::experimental_patchpoint_i64:
2771       visitPatchpoint(&I, EHPadBB);
2772       break;
2773     case Intrinsic::experimental_gc_statepoint:
2774       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2775       break;
2776     case Intrinsic::wasm_rethrow_in_catch: {
2777       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2778       // special because it can be invoked, so we manually lower it to a DAG
2779       // node here.
2780       SmallVector<SDValue, 8> Ops;
2781       Ops.push_back(getRoot()); // inchain
2782       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2783       Ops.push_back(
2784           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2785                                 TLI.getPointerTy(DAG.getDataLayout())));
2786       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2787       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2788       break;
2789     }
2790     }
2791   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2792     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2793     // Eventually we will support lowering the @llvm.experimental.deoptimize
2794     // intrinsic, and right now there are no plans to support other intrinsics
2795     // with deopt state.
2796     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2797   } else {
2798     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2799   }
2800 
2801   // If the value of the invoke is used outside of its defining block, make it
2802   // available as a virtual register.
2803   // We already took care of the exported value for the statepoint instruction
2804   // during call to the LowerStatepoint.
2805   if (!isStatepoint(I)) {
2806     CopyToExportRegsIfNeeded(&I);
2807   }
2808 
2809   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2810   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2811   BranchProbability EHPadBBProb =
2812       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2813           : BranchProbability::getZero();
2814   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2815 
2816   // Update successor info.
2817   addSuccessorWithProb(InvokeMBB, Return);
2818   for (auto &UnwindDest : UnwindDests) {
2819     UnwindDest.first->setIsEHPad();
2820     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2821   }
2822   InvokeMBB->normalizeSuccProbs();
2823 
2824   // Drop into normal successor.
2825   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2826                           DAG.getBasicBlock(Return)));
2827 }
2828 
2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2830   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2831 
2832   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2833   // have to do anything here to lower funclet bundles.
2834   assert(!I.hasOperandBundlesOtherThan(
2835              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2836          "Cannot lower callbrs with arbitrary operand bundles yet!");
2837 
2838   assert(isa<InlineAsm>(I.getCalledValue()) &&
2839          "Only know how to handle inlineasm callbr");
2840   visitInlineAsm(&I);
2841 
2842   // Retrieve successors.
2843   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2844 
2845   // Update successor info.
2846   addSuccessorWithProb(CallBrMBB, Return);
2847   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2848     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2849     addSuccessorWithProb(CallBrMBB, Target);
2850   }
2851   CallBrMBB->normalizeSuccProbs();
2852 
2853   // Drop into default successor.
2854   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2855                           MVT::Other, getControlRoot(),
2856                           DAG.getBasicBlock(Return)));
2857 }
2858 
2859 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2860   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2861 }
2862 
2863 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2864   assert(FuncInfo.MBB->isEHPad() &&
2865          "Call to landingpad not in landing pad!");
2866 
2867   // If there aren't registers to copy the values into (e.g., during SjLj
2868   // exceptions), then don't bother to create these DAG nodes.
2869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2870   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2871   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2872       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2873     return;
2874 
2875   // If landingpad's return type is token type, we don't create DAG nodes
2876   // for its exception pointer and selector value. The extraction of exception
2877   // pointer or selector value from token type landingpads is not currently
2878   // supported.
2879   if (LP.getType()->isTokenTy())
2880     return;
2881 
2882   SmallVector<EVT, 2> ValueVTs;
2883   SDLoc dl = getCurSDLoc();
2884   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2885   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2886 
2887   // Get the two live-in registers as SDValues. The physregs have already been
2888   // copied into virtual registers.
2889   SDValue Ops[2];
2890   if (FuncInfo.ExceptionPointerVirtReg) {
2891     Ops[0] = DAG.getZExtOrTrunc(
2892         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2893                            FuncInfo.ExceptionPointerVirtReg,
2894                            TLI.getPointerTy(DAG.getDataLayout())),
2895         dl, ValueVTs[0]);
2896   } else {
2897     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2898   }
2899   Ops[1] = DAG.getZExtOrTrunc(
2900       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2901                          FuncInfo.ExceptionSelectorVirtReg,
2902                          TLI.getPointerTy(DAG.getDataLayout())),
2903       dl, ValueVTs[1]);
2904 
2905   // Merge into one.
2906   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2907                             DAG.getVTList(ValueVTs), Ops);
2908   setValue(&LP, Res);
2909 }
2910 
2911 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2912                                            MachineBasicBlock *Last) {
2913   // Update JTCases.
2914   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2915     if (SL->JTCases[i].first.HeaderBB == First)
2916       SL->JTCases[i].first.HeaderBB = Last;
2917 
2918   // Update BitTestCases.
2919   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2920     if (SL->BitTestCases[i].Parent == First)
2921       SL->BitTestCases[i].Parent = Last;
2922 }
2923 
2924 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2925   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2926 
2927   // Update machine-CFG edges with unique successors.
2928   SmallSet<BasicBlock*, 32> Done;
2929   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2930     BasicBlock *BB = I.getSuccessor(i);
2931     bool Inserted = Done.insert(BB).second;
2932     if (!Inserted)
2933         continue;
2934 
2935     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2936     addSuccessorWithProb(IndirectBrMBB, Succ);
2937   }
2938   IndirectBrMBB->normalizeSuccProbs();
2939 
2940   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2941                           MVT::Other, getControlRoot(),
2942                           getValue(I.getAddress())));
2943 }
2944 
2945 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2946   if (!DAG.getTarget().Options.TrapUnreachable)
2947     return;
2948 
2949   // We may be able to ignore unreachable behind a noreturn call.
2950   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2951     const BasicBlock &BB = *I.getParent();
2952     if (&I != &BB.front()) {
2953       BasicBlock::const_iterator PredI =
2954         std::prev(BasicBlock::const_iterator(&I));
2955       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2956         if (Call->doesNotReturn())
2957           return;
2958       }
2959     }
2960   }
2961 
2962   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2963 }
2964 
2965 void SelectionDAGBuilder::visitFSub(const User &I) {
2966   // -0.0 - X --> fneg
2967   Type *Ty = I.getType();
2968   if (isa<Constant>(I.getOperand(0)) &&
2969       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2970     SDValue Op2 = getValue(I.getOperand(1));
2971     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2972                              Op2.getValueType(), Op2));
2973     return;
2974   }
2975 
2976   visitBinary(I, ISD::FSUB);
2977 }
2978 
2979 /// Checks if the given instruction performs a vector reduction, in which case
2980 /// we have the freedom to alter the elements in the result as long as the
2981 /// reduction of them stays unchanged.
2982 static bool isVectorReductionOp(const User *I) {
2983   const Instruction *Inst = dyn_cast<Instruction>(I);
2984   if (!Inst || !Inst->getType()->isVectorTy())
2985     return false;
2986 
2987   auto OpCode = Inst->getOpcode();
2988   switch (OpCode) {
2989   case Instruction::Add:
2990   case Instruction::Mul:
2991   case Instruction::And:
2992   case Instruction::Or:
2993   case Instruction::Xor:
2994     break;
2995   case Instruction::FAdd:
2996   case Instruction::FMul:
2997     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2998       if (FPOp->getFastMathFlags().isFast())
2999         break;
3000     LLVM_FALLTHROUGH;
3001   default:
3002     return false;
3003   }
3004 
3005   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3006   // Ensure the reduction size is a power of 2.
3007   if (!isPowerOf2_32(ElemNum))
3008     return false;
3009 
3010   unsigned ElemNumToReduce = ElemNum;
3011 
3012   // Do DFS search on the def-use chain from the given instruction. We only
3013   // allow four kinds of operations during the search until we reach the
3014   // instruction that extracts the first element from the vector:
3015   //
3016   //   1. The reduction operation of the same opcode as the given instruction.
3017   //
3018   //   2. PHI node.
3019   //
3020   //   3. ShuffleVector instruction together with a reduction operation that
3021   //      does a partial reduction.
3022   //
3023   //   4. ExtractElement that extracts the first element from the vector, and we
3024   //      stop searching the def-use chain here.
3025   //
3026   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3027   // from 1-3 to the stack to continue the DFS. The given instruction is not
3028   // a reduction operation if we meet any other instructions other than those
3029   // listed above.
3030 
3031   SmallVector<const User *, 16> UsersToVisit{Inst};
3032   SmallPtrSet<const User *, 16> Visited;
3033   bool ReduxExtracted = false;
3034 
3035   while (!UsersToVisit.empty()) {
3036     auto User = UsersToVisit.back();
3037     UsersToVisit.pop_back();
3038     if (!Visited.insert(User).second)
3039       continue;
3040 
3041     for (const auto &U : User->users()) {
3042       auto Inst = dyn_cast<Instruction>(U);
3043       if (!Inst)
3044         return false;
3045 
3046       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3047         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3048           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3049             return false;
3050         UsersToVisit.push_back(U);
3051       } else if (const ShuffleVectorInst *ShufInst =
3052                      dyn_cast<ShuffleVectorInst>(U)) {
3053         // Detect the following pattern: A ShuffleVector instruction together
3054         // with a reduction that do partial reduction on the first and second
3055         // ElemNumToReduce / 2 elements, and store the result in
3056         // ElemNumToReduce / 2 elements in another vector.
3057 
3058         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3059         if (ResultElements < ElemNum)
3060           return false;
3061 
3062         if (ElemNumToReduce == 1)
3063           return false;
3064         if (!isa<UndefValue>(U->getOperand(1)))
3065           return false;
3066         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3067           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3068             return false;
3069         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3070           if (ShufInst->getMaskValue(i) != -1)
3071             return false;
3072 
3073         // There is only one user of this ShuffleVector instruction, which
3074         // must be a reduction operation.
3075         if (!U->hasOneUse())
3076           return false;
3077 
3078         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3079         if (!U2 || U2->getOpcode() != OpCode)
3080           return false;
3081 
3082         // Check operands of the reduction operation.
3083         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3084             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3085           UsersToVisit.push_back(U2);
3086           ElemNumToReduce /= 2;
3087         } else
3088           return false;
3089       } else if (isa<ExtractElementInst>(U)) {
3090         // At this moment we should have reduced all elements in the vector.
3091         if (ElemNumToReduce != 1)
3092           return false;
3093 
3094         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3095         if (!Val || !Val->isZero())
3096           return false;
3097 
3098         ReduxExtracted = true;
3099       } else
3100         return false;
3101     }
3102   }
3103   return ReduxExtracted;
3104 }
3105 
3106 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3107   SDNodeFlags Flags;
3108 
3109   SDValue Op = getValue(I.getOperand(0));
3110   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3111                                     Op, Flags);
3112   setValue(&I, UnNodeValue);
3113 }
3114 
3115 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3116   SDNodeFlags Flags;
3117   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3118     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3119     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3120   }
3121   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3122     Flags.setExact(ExactOp->isExact());
3123   }
3124   if (isVectorReductionOp(&I)) {
3125     Flags.setVectorReduction(true);
3126     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3127 
3128     // If no flags are set we will propagate the incoming flags, if any flags
3129     // are set, we will intersect them with the incoming flag and so we need to
3130     // copy the FMF flags here.
3131     if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
3132       Flags.copyFMF(*FPOp);
3133     }
3134   }
3135 
3136   SDValue Op1 = getValue(I.getOperand(0));
3137   SDValue Op2 = getValue(I.getOperand(1));
3138   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3139                                      Op1, Op2, Flags);
3140   setValue(&I, BinNodeValue);
3141 }
3142 
3143 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3144   SDValue Op1 = getValue(I.getOperand(0));
3145   SDValue Op2 = getValue(I.getOperand(1));
3146 
3147   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3148       Op1.getValueType(), DAG.getDataLayout());
3149 
3150   // Coerce the shift amount to the right type if we can.
3151   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3152     unsigned ShiftSize = ShiftTy.getSizeInBits();
3153     unsigned Op2Size = Op2.getValueSizeInBits();
3154     SDLoc DL = getCurSDLoc();
3155 
3156     // If the operand is smaller than the shift count type, promote it.
3157     if (ShiftSize > Op2Size)
3158       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3159 
3160     // If the operand is larger than the shift count type but the shift
3161     // count type has enough bits to represent any shift value, truncate
3162     // it now. This is a common case and it exposes the truncate to
3163     // optimization early.
3164     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3165       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3166     // Otherwise we'll need to temporarily settle for some other convenient
3167     // type.  Type legalization will make adjustments once the shiftee is split.
3168     else
3169       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3170   }
3171 
3172   bool nuw = false;
3173   bool nsw = false;
3174   bool exact = false;
3175 
3176   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3177 
3178     if (const OverflowingBinaryOperator *OFBinOp =
3179             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3180       nuw = OFBinOp->hasNoUnsignedWrap();
3181       nsw = OFBinOp->hasNoSignedWrap();
3182     }
3183     if (const PossiblyExactOperator *ExactOp =
3184             dyn_cast<const PossiblyExactOperator>(&I))
3185       exact = ExactOp->isExact();
3186   }
3187   SDNodeFlags Flags;
3188   Flags.setExact(exact);
3189   Flags.setNoSignedWrap(nsw);
3190   Flags.setNoUnsignedWrap(nuw);
3191   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3192                             Flags);
3193   setValue(&I, Res);
3194 }
3195 
3196 void SelectionDAGBuilder::visitSDiv(const User &I) {
3197   SDValue Op1 = getValue(I.getOperand(0));
3198   SDValue Op2 = getValue(I.getOperand(1));
3199 
3200   SDNodeFlags Flags;
3201   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3202                  cast<PossiblyExactOperator>(&I)->isExact());
3203   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3204                            Op2, Flags));
3205 }
3206 
3207 void SelectionDAGBuilder::visitICmp(const User &I) {
3208   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3209   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3210     predicate = IC->getPredicate();
3211   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3212     predicate = ICmpInst::Predicate(IC->getPredicate());
3213   SDValue Op1 = getValue(I.getOperand(0));
3214   SDValue Op2 = getValue(I.getOperand(1));
3215   ISD::CondCode Opcode = getICmpCondCode(predicate);
3216 
3217   auto &TLI = DAG.getTargetLoweringInfo();
3218   EVT MemVT =
3219       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3220 
3221   // If a pointer's DAG type is larger than its memory type then the DAG values
3222   // are zero-extended. This breaks signed comparisons so truncate back to the
3223   // underlying type before doing the compare.
3224   if (Op1.getValueType() != MemVT) {
3225     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3226     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3227   }
3228 
3229   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3230                                                         I.getType());
3231   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3232 }
3233 
3234 void SelectionDAGBuilder::visitFCmp(const User &I) {
3235   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3236   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3237     predicate = FC->getPredicate();
3238   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3239     predicate = FCmpInst::Predicate(FC->getPredicate());
3240   SDValue Op1 = getValue(I.getOperand(0));
3241   SDValue Op2 = getValue(I.getOperand(1));
3242 
3243   ISD::CondCode Condition = getFCmpCondCode(predicate);
3244   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3245   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3246     Condition = getFCmpCodeWithoutNaN(Condition);
3247 
3248   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3249                                                         I.getType());
3250   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3251 }
3252 
3253 // Check if the condition of the select has one use or two users that are both
3254 // selects with the same condition.
3255 static bool hasOnlySelectUsers(const Value *Cond) {
3256   return llvm::all_of(Cond->users(), [](const Value *V) {
3257     return isa<SelectInst>(V);
3258   });
3259 }
3260 
3261 void SelectionDAGBuilder::visitSelect(const User &I) {
3262   SmallVector<EVT, 4> ValueVTs;
3263   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3264                   ValueVTs);
3265   unsigned NumValues = ValueVTs.size();
3266   if (NumValues == 0) return;
3267 
3268   SmallVector<SDValue, 4> Values(NumValues);
3269   SDValue Cond     = getValue(I.getOperand(0));
3270   SDValue LHSVal   = getValue(I.getOperand(1));
3271   SDValue RHSVal   = getValue(I.getOperand(2));
3272   auto BaseOps = {Cond};
3273   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3274     ISD::VSELECT : ISD::SELECT;
3275 
3276   bool IsUnaryAbs = false;
3277 
3278   // Min/max matching is only viable if all output VTs are the same.
3279   if (is_splat(ValueVTs)) {
3280     EVT VT = ValueVTs[0];
3281     LLVMContext &Ctx = *DAG.getContext();
3282     auto &TLI = DAG.getTargetLoweringInfo();
3283 
3284     // We care about the legality of the operation after it has been type
3285     // legalized.
3286     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3287       VT = TLI.getTypeToTransformTo(Ctx, VT);
3288 
3289     // If the vselect is legal, assume we want to leave this as a vector setcc +
3290     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3291     // min/max is legal on the scalar type.
3292     bool UseScalarMinMax = VT.isVector() &&
3293       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3294 
3295     Value *LHS, *RHS;
3296     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3297     ISD::NodeType Opc = ISD::DELETED_NODE;
3298     switch (SPR.Flavor) {
3299     case SPF_UMAX:    Opc = ISD::UMAX; break;
3300     case SPF_UMIN:    Opc = ISD::UMIN; break;
3301     case SPF_SMAX:    Opc = ISD::SMAX; break;
3302     case SPF_SMIN:    Opc = ISD::SMIN; break;
3303     case SPF_FMINNUM:
3304       switch (SPR.NaNBehavior) {
3305       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3306       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3307       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3308       case SPNB_RETURNS_ANY: {
3309         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3310           Opc = ISD::FMINNUM;
3311         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3312           Opc = ISD::FMINIMUM;
3313         else if (UseScalarMinMax)
3314           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3315             ISD::FMINNUM : ISD::FMINIMUM;
3316         break;
3317       }
3318       }
3319       break;
3320     case SPF_FMAXNUM:
3321       switch (SPR.NaNBehavior) {
3322       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3323       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3324       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3325       case SPNB_RETURNS_ANY:
3326 
3327         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3328           Opc = ISD::FMAXNUM;
3329         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3330           Opc = ISD::FMAXIMUM;
3331         else if (UseScalarMinMax)
3332           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3333             ISD::FMAXNUM : ISD::FMAXIMUM;
3334         break;
3335       }
3336       break;
3337     case SPF_ABS:
3338       IsUnaryAbs = true;
3339       Opc = ISD::ABS;
3340       break;
3341     case SPF_NABS:
3342       // TODO: we need to produce sub(0, abs(X)).
3343     default: break;
3344     }
3345 
3346     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3347         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3348          (UseScalarMinMax &&
3349           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3350         // If the underlying comparison instruction is used by any other
3351         // instruction, the consumed instructions won't be destroyed, so it is
3352         // not profitable to convert to a min/max.
3353         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3354       OpCode = Opc;
3355       LHSVal = getValue(LHS);
3356       RHSVal = getValue(RHS);
3357       BaseOps = {};
3358     }
3359 
3360     if (IsUnaryAbs) {
3361       OpCode = Opc;
3362       LHSVal = getValue(LHS);
3363       BaseOps = {};
3364     }
3365   }
3366 
3367   if (IsUnaryAbs) {
3368     for (unsigned i = 0; i != NumValues; ++i) {
3369       Values[i] =
3370           DAG.getNode(OpCode, getCurSDLoc(),
3371                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3372                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3373     }
3374   } else {
3375     for (unsigned i = 0; i != NumValues; ++i) {
3376       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3377       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3378       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3379       Values[i] = DAG.getNode(
3380           OpCode, getCurSDLoc(),
3381           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3382     }
3383   }
3384 
3385   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3386                            DAG.getVTList(ValueVTs), Values));
3387 }
3388 
3389 void SelectionDAGBuilder::visitTrunc(const User &I) {
3390   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3391   SDValue N = getValue(I.getOperand(0));
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3395 }
3396 
3397 void SelectionDAGBuilder::visitZExt(const User &I) {
3398   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3399   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3400   SDValue N = getValue(I.getOperand(0));
3401   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3402                                                         I.getType());
3403   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3404 }
3405 
3406 void SelectionDAGBuilder::visitSExt(const User &I) {
3407   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3408   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3409   SDValue N = getValue(I.getOperand(0));
3410   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3411                                                         I.getType());
3412   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3413 }
3414 
3415 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3416   // FPTrunc is never a no-op cast, no need to check
3417   SDValue N = getValue(I.getOperand(0));
3418   SDLoc dl = getCurSDLoc();
3419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3420   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3421   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3422                            DAG.getTargetConstant(
3423                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3424 }
3425 
3426 void SelectionDAGBuilder::visitFPExt(const User &I) {
3427   // FPExt is never a no-op cast, no need to check
3428   SDValue N = getValue(I.getOperand(0));
3429   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3430                                                         I.getType());
3431   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3432 }
3433 
3434 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3435   // FPToUI is never a no-op cast, no need to check
3436   SDValue N = getValue(I.getOperand(0));
3437   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3438                                                         I.getType());
3439   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3440 }
3441 
3442 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3443   // FPToSI is never a no-op cast, no need to check
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3451   // UIToFP is never a no-op cast, no need to check
3452   SDValue N = getValue(I.getOperand(0));
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3456 }
3457 
3458 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3459   // SIToFP is never a no-op cast, no need to check
3460   SDValue N = getValue(I.getOperand(0));
3461   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3462                                                         I.getType());
3463   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3464 }
3465 
3466 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3467   // What to do depends on the size of the integer and the size of the pointer.
3468   // We can either truncate, zero extend, or no-op, accordingly.
3469   SDValue N = getValue(I.getOperand(0));
3470   auto &TLI = DAG.getTargetLoweringInfo();
3471   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3472                                                         I.getType());
3473   EVT PtrMemVT =
3474       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3475   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3476   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3477   setValue(&I, N);
3478 }
3479 
3480 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3481   // What to do depends on the size of the integer and the size of the pointer.
3482   // We can either truncate, zero extend, or no-op, accordingly.
3483   SDValue N = getValue(I.getOperand(0));
3484   auto &TLI = DAG.getTargetLoweringInfo();
3485   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3486   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3487   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3488   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3489   setValue(&I, N);
3490 }
3491 
3492 void SelectionDAGBuilder::visitBitCast(const User &I) {
3493   SDValue N = getValue(I.getOperand(0));
3494   SDLoc dl = getCurSDLoc();
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497 
3498   // BitCast assures us that source and destination are the same size so this is
3499   // either a BITCAST or a no-op.
3500   if (DestVT != N.getValueType())
3501     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3502                              DestVT, N)); // convert types.
3503   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3504   // might fold any kind of constant expression to an integer constant and that
3505   // is not what we are looking for. Only recognize a bitcast of a genuine
3506   // constant integer as an opaque constant.
3507   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3508     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3509                                  /*isOpaque*/true));
3510   else
3511     setValue(&I, N);            // noop cast.
3512 }
3513 
3514 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3515   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516   const Value *SV = I.getOperand(0);
3517   SDValue N = getValue(SV);
3518   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3519 
3520   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3521   unsigned DestAS = I.getType()->getPointerAddressSpace();
3522 
3523   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3524     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3525 
3526   setValue(&I, N);
3527 }
3528 
3529 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3531   SDValue InVec = getValue(I.getOperand(0));
3532   SDValue InVal = getValue(I.getOperand(1));
3533   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3534                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3535   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3536                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3537                            InVec, InVal, InIdx));
3538 }
3539 
3540 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   SDValue InVec = getValue(I.getOperand(0));
3543   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3544                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3545   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3546                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3547                            InVec, InIdx));
3548 }
3549 
3550 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3551   SDValue Src1 = getValue(I.getOperand(0));
3552   SDValue Src2 = getValue(I.getOperand(1));
3553   Constant *MaskV = cast<Constant>(I.getOperand(2));
3554   SDLoc DL = getCurSDLoc();
3555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3556   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3557   EVT SrcVT = Src1.getValueType();
3558   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3559 
3560   if (MaskV->isNullValue() && VT.isScalableVector()) {
3561     // Canonical splat form of first element of first input vector.
3562     SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3563                                    SrcVT.getScalarType(), Src1,
3564                                    DAG.getConstant(0, DL,
3565                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
3566     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3567     return;
3568   }
3569 
3570   // For now, we only handle splats for scalable vectors.
3571   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3572   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3573   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3574 
3575   SmallVector<int, 8> Mask;
3576   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3577   unsigned MaskNumElts = Mask.size();
3578 
3579   if (SrcNumElts == MaskNumElts) {
3580     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3581     return;
3582   }
3583 
3584   // Normalize the shuffle vector since mask and vector length don't match.
3585   if (SrcNumElts < MaskNumElts) {
3586     // Mask is longer than the source vectors. We can use concatenate vector to
3587     // make the mask and vectors lengths match.
3588 
3589     if (MaskNumElts % SrcNumElts == 0) {
3590       // Mask length is a multiple of the source vector length.
3591       // Check if the shuffle is some kind of concatenation of the input
3592       // vectors.
3593       unsigned NumConcat = MaskNumElts / SrcNumElts;
3594       bool IsConcat = true;
3595       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3596       for (unsigned i = 0; i != MaskNumElts; ++i) {
3597         int Idx = Mask[i];
3598         if (Idx < 0)
3599           continue;
3600         // Ensure the indices in each SrcVT sized piece are sequential and that
3601         // the same source is used for the whole piece.
3602         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3603             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3604              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3605           IsConcat = false;
3606           break;
3607         }
3608         // Remember which source this index came from.
3609         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3610       }
3611 
3612       // The shuffle is concatenating multiple vectors together. Just emit
3613       // a CONCAT_VECTORS operation.
3614       if (IsConcat) {
3615         SmallVector<SDValue, 8> ConcatOps;
3616         for (auto Src : ConcatSrcs) {
3617           if (Src < 0)
3618             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3619           else if (Src == 0)
3620             ConcatOps.push_back(Src1);
3621           else
3622             ConcatOps.push_back(Src2);
3623         }
3624         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3625         return;
3626       }
3627     }
3628 
3629     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3630     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3631     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3632                                     PaddedMaskNumElts);
3633 
3634     // Pad both vectors with undefs to make them the same length as the mask.
3635     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3636 
3637     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3638     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3639     MOps1[0] = Src1;
3640     MOps2[0] = Src2;
3641 
3642     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3643     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3644 
3645     // Readjust mask for new input vector length.
3646     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3647     for (unsigned i = 0; i != MaskNumElts; ++i) {
3648       int Idx = Mask[i];
3649       if (Idx >= (int)SrcNumElts)
3650         Idx -= SrcNumElts - PaddedMaskNumElts;
3651       MappedOps[i] = Idx;
3652     }
3653 
3654     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3655 
3656     // If the concatenated vector was padded, extract a subvector with the
3657     // correct number of elements.
3658     if (MaskNumElts != PaddedMaskNumElts)
3659       Result = DAG.getNode(
3660           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3661           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3662 
3663     setValue(&I, Result);
3664     return;
3665   }
3666 
3667   if (SrcNumElts > MaskNumElts) {
3668     // Analyze the access pattern of the vector to see if we can extract
3669     // two subvectors and do the shuffle.
3670     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3671     bool CanExtract = true;
3672     for (int Idx : Mask) {
3673       unsigned Input = 0;
3674       if (Idx < 0)
3675         continue;
3676 
3677       if (Idx >= (int)SrcNumElts) {
3678         Input = 1;
3679         Idx -= SrcNumElts;
3680       }
3681 
3682       // If all the indices come from the same MaskNumElts sized portion of
3683       // the sources we can use extract. Also make sure the extract wouldn't
3684       // extract past the end of the source.
3685       int NewStartIdx = alignDown(Idx, MaskNumElts);
3686       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3687           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3688         CanExtract = false;
3689       // Make sure we always update StartIdx as we use it to track if all
3690       // elements are undef.
3691       StartIdx[Input] = NewStartIdx;
3692     }
3693 
3694     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3695       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3696       return;
3697     }
3698     if (CanExtract) {
3699       // Extract appropriate subvector and generate a vector shuffle
3700       for (unsigned Input = 0; Input < 2; ++Input) {
3701         SDValue &Src = Input == 0 ? Src1 : Src2;
3702         if (StartIdx[Input] < 0)
3703           Src = DAG.getUNDEF(VT);
3704         else {
3705           Src = DAG.getNode(
3706               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3707               DAG.getConstant(StartIdx[Input], DL,
3708                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3709         }
3710       }
3711 
3712       // Calculate new mask.
3713       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3714       for (int &Idx : MappedOps) {
3715         if (Idx >= (int)SrcNumElts)
3716           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3717         else if (Idx >= 0)
3718           Idx -= StartIdx[0];
3719       }
3720 
3721       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3722       return;
3723     }
3724   }
3725 
3726   // We can't use either concat vectors or extract subvectors so fall back to
3727   // replacing the shuffle with extract and build vector.
3728   // to insert and build vector.
3729   EVT EltVT = VT.getVectorElementType();
3730   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3731   SmallVector<SDValue,8> Ops;
3732   for (int Idx : Mask) {
3733     SDValue Res;
3734 
3735     if (Idx < 0) {
3736       Res = DAG.getUNDEF(EltVT);
3737     } else {
3738       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3739       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3740 
3741       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3742                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3743     }
3744 
3745     Ops.push_back(Res);
3746   }
3747 
3748   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3749 }
3750 
3751 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3752   ArrayRef<unsigned> Indices;
3753   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3754     Indices = IV->getIndices();
3755   else
3756     Indices = cast<ConstantExpr>(&I)->getIndices();
3757 
3758   const Value *Op0 = I.getOperand(0);
3759   const Value *Op1 = I.getOperand(1);
3760   Type *AggTy = I.getType();
3761   Type *ValTy = Op1->getType();
3762   bool IntoUndef = isa<UndefValue>(Op0);
3763   bool FromUndef = isa<UndefValue>(Op1);
3764 
3765   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3766 
3767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3768   SmallVector<EVT, 4> AggValueVTs;
3769   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3770   SmallVector<EVT, 4> ValValueVTs;
3771   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3772 
3773   unsigned NumAggValues = AggValueVTs.size();
3774   unsigned NumValValues = ValValueVTs.size();
3775   SmallVector<SDValue, 4> Values(NumAggValues);
3776 
3777   // Ignore an insertvalue that produces an empty object
3778   if (!NumAggValues) {
3779     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3780     return;
3781   }
3782 
3783   SDValue Agg = getValue(Op0);
3784   unsigned i = 0;
3785   // Copy the beginning value(s) from the original aggregate.
3786   for (; i != LinearIndex; ++i)
3787     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3788                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3789   // Copy values from the inserted value(s).
3790   if (NumValValues) {
3791     SDValue Val = getValue(Op1);
3792     for (; i != LinearIndex + NumValValues; ++i)
3793       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3794                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3795   }
3796   // Copy remaining value(s) from the original aggregate.
3797   for (; i != NumAggValues; ++i)
3798     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3799                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3800 
3801   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3802                            DAG.getVTList(AggValueVTs), Values));
3803 }
3804 
3805 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3806   ArrayRef<unsigned> Indices;
3807   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3808     Indices = EV->getIndices();
3809   else
3810     Indices = cast<ConstantExpr>(&I)->getIndices();
3811 
3812   const Value *Op0 = I.getOperand(0);
3813   Type *AggTy = Op0->getType();
3814   Type *ValTy = I.getType();
3815   bool OutOfUndef = isa<UndefValue>(Op0);
3816 
3817   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3818 
3819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3820   SmallVector<EVT, 4> ValValueVTs;
3821   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3822 
3823   unsigned NumValValues = ValValueVTs.size();
3824 
3825   // Ignore a extractvalue that produces an empty object
3826   if (!NumValValues) {
3827     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3828     return;
3829   }
3830 
3831   SmallVector<SDValue, 4> Values(NumValValues);
3832 
3833   SDValue Agg = getValue(Op0);
3834   // Copy out the selected value(s).
3835   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3836     Values[i - LinearIndex] =
3837       OutOfUndef ?
3838         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3839         SDValue(Agg.getNode(), Agg.getResNo() + i);
3840 
3841   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3842                            DAG.getVTList(ValValueVTs), Values));
3843 }
3844 
3845 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3846   Value *Op0 = I.getOperand(0);
3847   // Note that the pointer operand may be a vector of pointers. Take the scalar
3848   // element which holds a pointer.
3849   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3850   SDValue N = getValue(Op0);
3851   SDLoc dl = getCurSDLoc();
3852   auto &TLI = DAG.getTargetLoweringInfo();
3853   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3854   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3855 
3856   // Normalize Vector GEP - all scalar operands should be converted to the
3857   // splat vector.
3858   unsigned VectorWidth = I.getType()->isVectorTy() ?
3859     I.getType()->getVectorNumElements() : 0;
3860 
3861   if (VectorWidth && !N.getValueType().isVector()) {
3862     LLVMContext &Context = *DAG.getContext();
3863     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3864     N = DAG.getSplatBuildVector(VT, dl, N);
3865   }
3866 
3867   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3868        GTI != E; ++GTI) {
3869     const Value *Idx = GTI.getOperand();
3870     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3871       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3872       if (Field) {
3873         // N = N + Offset
3874         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3875 
3876         // In an inbounds GEP with an offset that is nonnegative even when
3877         // interpreted as signed, assume there is no unsigned overflow.
3878         SDNodeFlags Flags;
3879         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3880           Flags.setNoUnsignedWrap(true);
3881 
3882         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3883                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3884       }
3885     } else {
3886       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3887       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3888       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3889 
3890       // If this is a scalar constant or a splat vector of constants,
3891       // handle it quickly.
3892       const auto *C = dyn_cast<Constant>(Idx);
3893       if (C && isa<VectorType>(C->getType()))
3894         C = C->getSplatValue();
3895 
3896       if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3897         if (CI->isZero())
3898           continue;
3899         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3900         LLVMContext &Context = *DAG.getContext();
3901         SDValue OffsVal = VectorWidth ?
3902           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3903           DAG.getConstant(Offs, dl, IdxTy);
3904 
3905         // In an inbounds GEP with an offset that is nonnegative even when
3906         // interpreted as signed, assume there is no unsigned overflow.
3907         SDNodeFlags Flags;
3908         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3909           Flags.setNoUnsignedWrap(true);
3910 
3911         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3912 
3913         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3914         continue;
3915       }
3916 
3917       // N = N + Idx * ElementSize;
3918       SDValue IdxN = getValue(Idx);
3919 
3920       if (!IdxN.getValueType().isVector() && VectorWidth) {
3921         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3922         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3923       }
3924 
3925       // If the index is smaller or larger than intptr_t, truncate or extend
3926       // it.
3927       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3928 
3929       // If this is a multiply by a power of two, turn it into a shl
3930       // immediately.  This is a very common case.
3931       if (ElementSize != 1) {
3932         if (ElementSize.isPowerOf2()) {
3933           unsigned Amt = ElementSize.logBase2();
3934           IdxN = DAG.getNode(ISD::SHL, dl,
3935                              N.getValueType(), IdxN,
3936                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3937         } else {
3938           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3939                                           IdxN.getValueType());
3940           IdxN = DAG.getNode(ISD::MUL, dl,
3941                              N.getValueType(), IdxN, Scale);
3942         }
3943       }
3944 
3945       N = DAG.getNode(ISD::ADD, dl,
3946                       N.getValueType(), N, IdxN);
3947     }
3948   }
3949 
3950   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3951     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3952 
3953   setValue(&I, N);
3954 }
3955 
3956 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3957   // If this is a fixed sized alloca in the entry block of the function,
3958   // allocate it statically on the stack.
3959   if (FuncInfo.StaticAllocaMap.count(&I))
3960     return;   // getValue will auto-populate this.
3961 
3962   SDLoc dl = getCurSDLoc();
3963   Type *Ty = I.getAllocatedType();
3964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3965   auto &DL = DAG.getDataLayout();
3966   uint64_t TySize = DL.getTypeAllocSize(Ty);
3967   unsigned Align =
3968       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3969 
3970   SDValue AllocSize = getValue(I.getArraySize());
3971 
3972   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3973   if (AllocSize.getValueType() != IntPtr)
3974     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3975 
3976   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3977                           AllocSize,
3978                           DAG.getConstant(TySize, dl, IntPtr));
3979 
3980   // Handle alignment.  If the requested alignment is less than or equal to
3981   // the stack alignment, ignore it.  If the size is greater than or equal to
3982   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3983   unsigned StackAlign =
3984       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3985   if (Align <= StackAlign)
3986     Align = 0;
3987 
3988   // Round the size of the allocation up to the stack alignment size
3989   // by add SA-1 to the size. This doesn't overflow because we're computing
3990   // an address inside an alloca.
3991   SDNodeFlags Flags;
3992   Flags.setNoUnsignedWrap(true);
3993   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3994                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3995 
3996   // Mask out the low bits for alignment purposes.
3997   AllocSize =
3998       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3999                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4000 
4001   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4002   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4003   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4004   setValue(&I, DSA);
4005   DAG.setRoot(DSA.getValue(1));
4006 
4007   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4008 }
4009 
4010 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4011   if (I.isAtomic())
4012     return visitAtomicLoad(I);
4013 
4014   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4015   const Value *SV = I.getOperand(0);
4016   if (TLI.supportSwiftError()) {
4017     // Swifterror values can come from either a function parameter with
4018     // swifterror attribute or an alloca with swifterror attribute.
4019     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4020       if (Arg->hasSwiftErrorAttr())
4021         return visitLoadFromSwiftError(I);
4022     }
4023 
4024     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4025       if (Alloca->isSwiftError())
4026         return visitLoadFromSwiftError(I);
4027     }
4028   }
4029 
4030   SDValue Ptr = getValue(SV);
4031 
4032   Type *Ty = I.getType();
4033 
4034   bool isVolatile = I.isVolatile();
4035   bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4036   bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4037   bool isDereferenceable =
4038       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4039   unsigned Alignment = I.getAlignment();
4040 
4041   AAMDNodes AAInfo;
4042   I.getAAMetadata(AAInfo);
4043   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4044 
4045   SmallVector<EVT, 4> ValueVTs, MemVTs;
4046   SmallVector<uint64_t, 4> Offsets;
4047   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4048   unsigned NumValues = ValueVTs.size();
4049   if (NumValues == 0)
4050     return;
4051 
4052   SDValue Root;
4053   bool ConstantMemory = false;
4054   if (isVolatile || NumValues > MaxParallelChains)
4055     // Serialize volatile loads with other side effects.
4056     Root = getRoot();
4057   else if (AA &&
4058            AA->pointsToConstantMemory(MemoryLocation(
4059                SV,
4060                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4061                AAInfo))) {
4062     // Do not serialize (non-volatile) loads of constant memory with anything.
4063     Root = DAG.getEntryNode();
4064     ConstantMemory = true;
4065   } else {
4066     // Do not serialize non-volatile loads against each other.
4067     Root = DAG.getRoot();
4068   }
4069 
4070   SDLoc dl = getCurSDLoc();
4071 
4072   if (isVolatile)
4073     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4074 
4075   // An aggregate load cannot wrap around the address space, so offsets to its
4076   // parts don't wrap either.
4077   SDNodeFlags Flags;
4078   Flags.setNoUnsignedWrap(true);
4079 
4080   SmallVector<SDValue, 4> Values(NumValues);
4081   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4082   EVT PtrVT = Ptr.getValueType();
4083   unsigned ChainI = 0;
4084   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4085     // Serializing loads here may result in excessive register pressure, and
4086     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4087     // could recover a bit by hoisting nodes upward in the chain by recognizing
4088     // they are side-effect free or do not alias. The optimizer should really
4089     // avoid this case by converting large object/array copies to llvm.memcpy
4090     // (MaxParallelChains should always remain as failsafe).
4091     if (ChainI == MaxParallelChains) {
4092       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4093       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4094                                   makeArrayRef(Chains.data(), ChainI));
4095       Root = Chain;
4096       ChainI = 0;
4097     }
4098     SDValue A = DAG.getNode(ISD::ADD, dl,
4099                             PtrVT, Ptr,
4100                             DAG.getConstant(Offsets[i], dl, PtrVT),
4101                             Flags);
4102     auto MMOFlags = MachineMemOperand::MONone;
4103     if (isVolatile)
4104       MMOFlags |= MachineMemOperand::MOVolatile;
4105     if (isNonTemporal)
4106       MMOFlags |= MachineMemOperand::MONonTemporal;
4107     if (isInvariant)
4108       MMOFlags |= MachineMemOperand::MOInvariant;
4109     if (isDereferenceable)
4110       MMOFlags |= MachineMemOperand::MODereferenceable;
4111     MMOFlags |= TLI.getMMOFlags(I);
4112 
4113     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4114                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4115                             MMOFlags, AAInfo, Ranges);
4116     Chains[ChainI] = L.getValue(1);
4117 
4118     if (MemVTs[i] != ValueVTs[i])
4119       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4120 
4121     Values[i] = L;
4122   }
4123 
4124   if (!ConstantMemory) {
4125     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4126                                 makeArrayRef(Chains.data(), ChainI));
4127     if (isVolatile)
4128       DAG.setRoot(Chain);
4129     else
4130       PendingLoads.push_back(Chain);
4131   }
4132 
4133   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4134                            DAG.getVTList(ValueVTs), Values));
4135 }
4136 
4137 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4138   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4139          "call visitStoreToSwiftError when backend supports swifterror");
4140 
4141   SmallVector<EVT, 4> ValueVTs;
4142   SmallVector<uint64_t, 4> Offsets;
4143   const Value *SrcV = I.getOperand(0);
4144   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4145                   SrcV->getType(), ValueVTs, &Offsets);
4146   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4147          "expect a single EVT for swifterror");
4148 
4149   SDValue Src = getValue(SrcV);
4150   // Create a virtual register, then update the virtual register.
4151   Register VReg =
4152       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4153   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4154   // Chain can be getRoot or getControlRoot.
4155   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4156                                       SDValue(Src.getNode(), Src.getResNo()));
4157   DAG.setRoot(CopyNode);
4158 }
4159 
4160 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4161   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4162          "call visitLoadFromSwiftError when backend supports swifterror");
4163 
4164   assert(!I.isVolatile() &&
4165          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4166          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4167          "Support volatile, non temporal, invariant for load_from_swift_error");
4168 
4169   const Value *SV = I.getOperand(0);
4170   Type *Ty = I.getType();
4171   AAMDNodes AAInfo;
4172   I.getAAMetadata(AAInfo);
4173   assert(
4174       (!AA ||
4175        !AA->pointsToConstantMemory(MemoryLocation(
4176            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4177            AAInfo))) &&
4178       "load_from_swift_error should not be constant memory");
4179 
4180   SmallVector<EVT, 4> ValueVTs;
4181   SmallVector<uint64_t, 4> Offsets;
4182   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4183                   ValueVTs, &Offsets);
4184   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4185          "expect a single EVT for swifterror");
4186 
4187   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4188   SDValue L = DAG.getCopyFromReg(
4189       getRoot(), getCurSDLoc(),
4190       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4191 
4192   setValue(&I, L);
4193 }
4194 
4195 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4196   if (I.isAtomic())
4197     return visitAtomicStore(I);
4198 
4199   const Value *SrcV = I.getOperand(0);
4200   const Value *PtrV = I.getOperand(1);
4201 
4202   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4203   if (TLI.supportSwiftError()) {
4204     // Swifterror values can come from either a function parameter with
4205     // swifterror attribute or an alloca with swifterror attribute.
4206     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4207       if (Arg->hasSwiftErrorAttr())
4208         return visitStoreToSwiftError(I);
4209     }
4210 
4211     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4212       if (Alloca->isSwiftError())
4213         return visitStoreToSwiftError(I);
4214     }
4215   }
4216 
4217   SmallVector<EVT, 4> ValueVTs, MemVTs;
4218   SmallVector<uint64_t, 4> Offsets;
4219   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4220                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4221   unsigned NumValues = ValueVTs.size();
4222   if (NumValues == 0)
4223     return;
4224 
4225   // Get the lowered operands. Note that we do this after
4226   // checking if NumResults is zero, because with zero results
4227   // the operands won't have values in the map.
4228   SDValue Src = getValue(SrcV);
4229   SDValue Ptr = getValue(PtrV);
4230 
4231   SDValue Root = getRoot();
4232   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4233   SDLoc dl = getCurSDLoc();
4234   unsigned Alignment = I.getAlignment();
4235   AAMDNodes AAInfo;
4236   I.getAAMetadata(AAInfo);
4237 
4238   auto MMOFlags = MachineMemOperand::MONone;
4239   if (I.isVolatile())
4240     MMOFlags |= MachineMemOperand::MOVolatile;
4241   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4242     MMOFlags |= MachineMemOperand::MONonTemporal;
4243   MMOFlags |= TLI.getMMOFlags(I);
4244 
4245   // An aggregate load cannot wrap around the address space, so offsets to its
4246   // parts don't wrap either.
4247   SDNodeFlags Flags;
4248   Flags.setNoUnsignedWrap(true);
4249 
4250   unsigned ChainI = 0;
4251   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4252     // See visitLoad comments.
4253     if (ChainI == MaxParallelChains) {
4254       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4255                                   makeArrayRef(Chains.data(), ChainI));
4256       Root = Chain;
4257       ChainI = 0;
4258     }
4259     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4260     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4261     if (MemVTs[i] != ValueVTs[i])
4262       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4263     SDValue St =
4264         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4265                      Alignment, MMOFlags, AAInfo);
4266     Chains[ChainI] = St;
4267   }
4268 
4269   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4270                                   makeArrayRef(Chains.data(), ChainI));
4271   DAG.setRoot(StoreNode);
4272 }
4273 
4274 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4275                                            bool IsCompressing) {
4276   SDLoc sdl = getCurSDLoc();
4277 
4278   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4279                            unsigned& Alignment) {
4280     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4281     Src0 = I.getArgOperand(0);
4282     Ptr = I.getArgOperand(1);
4283     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4284     Mask = I.getArgOperand(3);
4285   };
4286   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4287                            unsigned& Alignment) {
4288     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4289     Src0 = I.getArgOperand(0);
4290     Ptr = I.getArgOperand(1);
4291     Mask = I.getArgOperand(2);
4292     Alignment = 0;
4293   };
4294 
4295   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4296   unsigned Alignment;
4297   if (IsCompressing)
4298     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4299   else
4300     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4301 
4302   SDValue Ptr = getValue(PtrOperand);
4303   SDValue Src0 = getValue(Src0Operand);
4304   SDValue Mask = getValue(MaskOperand);
4305   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4306 
4307   EVT VT = Src0.getValueType();
4308   if (!Alignment)
4309     Alignment = DAG.getEVTAlignment(VT);
4310 
4311   AAMDNodes AAInfo;
4312   I.getAAMetadata(AAInfo);
4313 
4314   MachineMemOperand *MMO =
4315     DAG.getMachineFunction().
4316     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4317                           MachineMemOperand::MOStore,
4318                           // TODO: Make MachineMemOperands aware of scalable
4319                           // vectors.
4320                           VT.getStoreSize().getKnownMinSize(),
4321                           Alignment, AAInfo);
4322   SDValue StoreNode =
4323       DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4324                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4325   DAG.setRoot(StoreNode);
4326   setValue(&I, StoreNode);
4327 }
4328 
4329 // Get a uniform base for the Gather/Scatter intrinsic.
4330 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4331 // We try to represent it as a base pointer + vector of indices.
4332 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4333 // The first operand of the GEP may be a single pointer or a vector of pointers
4334 // Example:
4335 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4336 //  or
4337 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4338 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4339 //
4340 // When the first GEP operand is a single pointer - it is the uniform base we
4341 // are looking for. If first operand of the GEP is a splat vector - we
4342 // extract the splat value and use it as a uniform base.
4343 // In all other cases the function returns 'false'.
4344 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4345                            ISD::MemIndexType &IndexType, SDValue &Scale,
4346                            SelectionDAGBuilder *SDB) {
4347   SelectionDAG& DAG = SDB->DAG;
4348   LLVMContext &Context = *DAG.getContext();
4349 
4350   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4351   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4352   if (!GEP)
4353     return false;
4354 
4355   const Value *GEPPtr = GEP->getPointerOperand();
4356   if (!GEPPtr->getType()->isVectorTy())
4357     Ptr = GEPPtr;
4358   else if (!(Ptr = getSplatValue(GEPPtr)))
4359     return false;
4360 
4361   unsigned FinalIndex = GEP->getNumOperands() - 1;
4362   Value *IndexVal = GEP->getOperand(FinalIndex);
4363   gep_type_iterator GTI = gep_type_begin(*GEP);
4364 
4365   // Ensure all the other indices are 0.
4366   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4367     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4368     if (!C)
4369       return false;
4370     if (isa<VectorType>(C->getType()))
4371       C = C->getSplatValue();
4372     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4373     if (!CI || !CI->isZero())
4374       return false;
4375   }
4376 
4377   // The operands of the GEP may be defined in another basic block.
4378   // In this case we'll not find nodes for the operands.
4379   if (!SDB->findValue(Ptr))
4380     return false;
4381   Constant *C = dyn_cast<Constant>(IndexVal);
4382   if (!C && !SDB->findValue(IndexVal))
4383     return false;
4384 
4385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4386   const DataLayout &DL = DAG.getDataLayout();
4387   StructType *STy = GTI.getStructTypeOrNull();
4388 
4389   if (STy) {
4390     const StructLayout *SL = DL.getStructLayout(STy);
4391     if (isa<VectorType>(C->getType())) {
4392       C = C->getSplatValue();
4393       // FIXME: If getSplatValue may return nullptr for a structure?
4394       // If not, the following check can be removed.
4395       if (!C)
4396         return false;
4397     }
4398     auto *CI = cast<ConstantInt>(C);
4399     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4400     Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()),
4401                             SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4402   } else {
4403     Scale = DAG.getTargetConstant(
4404                 DL.getTypeAllocSize(GEP->getResultElementType()),
4405                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4406     Index = SDB->getValue(IndexVal);
4407   }
4408   Base = SDB->getValue(Ptr);
4409   IndexType = ISD::SIGNED_SCALED;
4410 
4411   if (STy || !Index.getValueType().isVector()) {
4412     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4413     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4414     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4415   }
4416   return true;
4417 }
4418 
4419 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4420   SDLoc sdl = getCurSDLoc();
4421 
4422   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4423   const Value *Ptr = I.getArgOperand(1);
4424   SDValue Src0 = getValue(I.getArgOperand(0));
4425   SDValue Mask = getValue(I.getArgOperand(3));
4426   EVT VT = Src0.getValueType();
4427   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4428   if (!Alignment)
4429     Alignment = DAG.getEVTAlignment(VT);
4430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4431 
4432   AAMDNodes AAInfo;
4433   I.getAAMetadata(AAInfo);
4434 
4435   SDValue Base;
4436   SDValue Index;
4437   ISD::MemIndexType IndexType;
4438   SDValue Scale;
4439   const Value *BasePtr = Ptr;
4440   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4441                                     this);
4442 
4443   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4444   MachineMemOperand *MMO = DAG.getMachineFunction().
4445     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4446                          MachineMemOperand::MOStore,
4447                          // TODO: Make MachineMemOperands aware of scalable
4448                          // vectors.
4449                          VT.getStoreSize().getKnownMinSize(),
4450                          Alignment, AAInfo);
4451   if (!UniformBase) {
4452     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4453     Index = getValue(Ptr);
4454     IndexType = ISD::SIGNED_SCALED;
4455     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4456   }
4457   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4458   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4459                                          Ops, MMO, IndexType);
4460   DAG.setRoot(Scatter);
4461   setValue(&I, Scatter);
4462 }
4463 
4464 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4465   SDLoc sdl = getCurSDLoc();
4466 
4467   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4468                            unsigned& Alignment) {
4469     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4470     Ptr = I.getArgOperand(0);
4471     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4472     Mask = I.getArgOperand(2);
4473     Src0 = I.getArgOperand(3);
4474   };
4475   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4476                            unsigned& Alignment) {
4477     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4478     Ptr = I.getArgOperand(0);
4479     Alignment = 0;
4480     Mask = I.getArgOperand(1);
4481     Src0 = I.getArgOperand(2);
4482   };
4483 
4484   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4485   unsigned Alignment;
4486   if (IsExpanding)
4487     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4488   else
4489     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4490 
4491   SDValue Ptr = getValue(PtrOperand);
4492   SDValue Src0 = getValue(Src0Operand);
4493   SDValue Mask = getValue(MaskOperand);
4494   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4495 
4496   EVT VT = Src0.getValueType();
4497   if (!Alignment)
4498     Alignment = DAG.getEVTAlignment(VT);
4499 
4500   AAMDNodes AAInfo;
4501   I.getAAMetadata(AAInfo);
4502   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4503 
4504   // Do not serialize masked loads of constant memory with anything.
4505   MemoryLocation ML;
4506   if (VT.isScalableVector())
4507     ML = MemoryLocation(PtrOperand);
4508   else
4509     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4510                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4511                            AAInfo);
4512   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4513 
4514   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4515 
4516   MachineMemOperand *MMO =
4517     DAG.getMachineFunction().
4518     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4519                           MachineMemOperand::MOLoad,
4520                           // TODO: Make MachineMemOperands aware of scalable
4521                           // vectors.
4522                           VT.getStoreSize().getKnownMinSize(),
4523                           Alignment, AAInfo, Ranges);
4524 
4525   SDValue Load =
4526       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4527                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4528   if (AddToChain)
4529     PendingLoads.push_back(Load.getValue(1));
4530   setValue(&I, Load);
4531 }
4532 
4533 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4534   SDLoc sdl = getCurSDLoc();
4535 
4536   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4537   const Value *Ptr = I.getArgOperand(0);
4538   SDValue Src0 = getValue(I.getArgOperand(3));
4539   SDValue Mask = getValue(I.getArgOperand(2));
4540 
4541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4542   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4543   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4544   if (!Alignment)
4545     Alignment = DAG.getEVTAlignment(VT);
4546 
4547   AAMDNodes AAInfo;
4548   I.getAAMetadata(AAInfo);
4549   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4550 
4551   SDValue Root = DAG.getRoot();
4552   SDValue Base;
4553   SDValue Index;
4554   ISD::MemIndexType IndexType;
4555   SDValue Scale;
4556   const Value *BasePtr = Ptr;
4557   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4558                                     this);
4559   bool ConstantMemory = false;
4560   if (UniformBase && AA &&
4561       AA->pointsToConstantMemory(
4562           MemoryLocation(BasePtr,
4563                          LocationSize::precise(
4564                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4565                          AAInfo))) {
4566     // Do not serialize (non-volatile) loads of constant memory with anything.
4567     Root = DAG.getEntryNode();
4568     ConstantMemory = true;
4569   }
4570 
4571   MachineMemOperand *MMO =
4572     DAG.getMachineFunction().
4573     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4574                          MachineMemOperand::MOLoad,
4575                          // TODO: Make MachineMemOperands aware of scalable
4576                          // vectors.
4577                          VT.getStoreSize().getKnownMinSize(),
4578                          Alignment, AAInfo, Ranges);
4579 
4580   if (!UniformBase) {
4581     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4582     Index = getValue(Ptr);
4583     IndexType = ISD::SIGNED_SCALED;
4584     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4585   }
4586   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4587   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4588                                        Ops, MMO, IndexType);
4589 
4590   SDValue OutChain = Gather.getValue(1);
4591   if (!ConstantMemory)
4592     PendingLoads.push_back(OutChain);
4593   setValue(&I, Gather);
4594 }
4595 
4596 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4597   SDLoc dl = getCurSDLoc();
4598   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4599   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4600   SyncScope::ID SSID = I.getSyncScopeID();
4601 
4602   SDValue InChain = getRoot();
4603 
4604   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4605   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4606 
4607   auto Alignment = DAG.getEVTAlignment(MemVT);
4608 
4609   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4610   if (I.isVolatile())
4611     Flags |= MachineMemOperand::MOVolatile;
4612   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4613 
4614   MachineFunction &MF = DAG.getMachineFunction();
4615   MachineMemOperand *MMO =
4616     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4617                             Flags, MemVT.getStoreSize(), Alignment,
4618                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4619                             FailureOrdering);
4620 
4621   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4622                                    dl, MemVT, VTs, InChain,
4623                                    getValue(I.getPointerOperand()),
4624                                    getValue(I.getCompareOperand()),
4625                                    getValue(I.getNewValOperand()), MMO);
4626 
4627   SDValue OutChain = L.getValue(2);
4628 
4629   setValue(&I, L);
4630   DAG.setRoot(OutChain);
4631 }
4632 
4633 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4634   SDLoc dl = getCurSDLoc();
4635   ISD::NodeType NT;
4636   switch (I.getOperation()) {
4637   default: llvm_unreachable("Unknown atomicrmw operation");
4638   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4639   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4640   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4641   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4642   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4643   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4644   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4645   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4646   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4647   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4648   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4649   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4650   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4651   }
4652   AtomicOrdering Ordering = I.getOrdering();
4653   SyncScope::ID SSID = I.getSyncScopeID();
4654 
4655   SDValue InChain = getRoot();
4656 
4657   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4658   auto Alignment = DAG.getEVTAlignment(MemVT);
4659 
4660   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4661   if (I.isVolatile())
4662     Flags |= MachineMemOperand::MOVolatile;
4663   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4664 
4665   MachineFunction &MF = DAG.getMachineFunction();
4666   MachineMemOperand *MMO =
4667     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4668                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4669                             nullptr, SSID, Ordering);
4670 
4671   SDValue L =
4672     DAG.getAtomic(NT, dl, MemVT, InChain,
4673                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4674                   MMO);
4675 
4676   SDValue OutChain = L.getValue(1);
4677 
4678   setValue(&I, L);
4679   DAG.setRoot(OutChain);
4680 }
4681 
4682 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4683   SDLoc dl = getCurSDLoc();
4684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4685   SDValue Ops[3];
4686   Ops[0] = getRoot();
4687   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4688                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4689   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4690                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4691   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4692 }
4693 
4694 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4695   SDLoc dl = getCurSDLoc();
4696   AtomicOrdering Order = I.getOrdering();
4697   SyncScope::ID SSID = I.getSyncScopeID();
4698 
4699   SDValue InChain = getRoot();
4700 
4701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4702   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4703   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4704 
4705   if (!TLI.supportsUnalignedAtomics() &&
4706       I.getAlignment() < MemVT.getSizeInBits() / 8)
4707     report_fatal_error("Cannot generate unaligned atomic load");
4708 
4709   auto Flags = MachineMemOperand::MOLoad;
4710   if (I.isVolatile())
4711     Flags |= MachineMemOperand::MOVolatile;
4712   if (I.hasMetadata(LLVMContext::MD_invariant_load))
4713     Flags |= MachineMemOperand::MOInvariant;
4714   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4715                                DAG.getDataLayout()))
4716     Flags |= MachineMemOperand::MODereferenceable;
4717 
4718   Flags |= TLI.getMMOFlags(I);
4719 
4720   MachineMemOperand *MMO =
4721       DAG.getMachineFunction().
4722       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4723                            Flags, MemVT.getStoreSize(),
4724                            I.getAlignment() ? I.getAlignment() :
4725                                               DAG.getEVTAlignment(MemVT),
4726                            AAMDNodes(), nullptr, SSID, Order);
4727 
4728   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4729 
4730   SDValue Ptr = getValue(I.getPointerOperand());
4731 
4732   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4733     // TODO: Once this is better exercised by tests, it should be merged with
4734     // the normal path for loads to prevent future divergence.
4735     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4736     if (MemVT != VT)
4737       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4738 
4739     setValue(&I, L);
4740     SDValue OutChain = L.getValue(1);
4741     if (!I.isUnordered())
4742       DAG.setRoot(OutChain);
4743     else
4744       PendingLoads.push_back(OutChain);
4745     return;
4746   }
4747 
4748   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4749                             Ptr, MMO);
4750 
4751   SDValue OutChain = L.getValue(1);
4752   if (MemVT != VT)
4753     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4754 
4755   setValue(&I, L);
4756   DAG.setRoot(OutChain);
4757 }
4758 
4759 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4760   SDLoc dl = getCurSDLoc();
4761 
4762   AtomicOrdering Ordering = I.getOrdering();
4763   SyncScope::ID SSID = I.getSyncScopeID();
4764 
4765   SDValue InChain = getRoot();
4766 
4767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4768   EVT MemVT =
4769       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4770 
4771   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4772     report_fatal_error("Cannot generate unaligned atomic store");
4773 
4774   auto Flags = MachineMemOperand::MOStore;
4775   if (I.isVolatile())
4776     Flags |= MachineMemOperand::MOVolatile;
4777   Flags |= TLI.getMMOFlags(I);
4778 
4779   MachineFunction &MF = DAG.getMachineFunction();
4780   MachineMemOperand *MMO =
4781     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4782                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4783                             nullptr, SSID, Ordering);
4784 
4785   SDValue Val = getValue(I.getValueOperand());
4786   if (Val.getValueType() != MemVT)
4787     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4788   SDValue Ptr = getValue(I.getPointerOperand());
4789 
4790   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4791     // TODO: Once this is better exercised by tests, it should be merged with
4792     // the normal path for stores to prevent future divergence.
4793     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4794     DAG.setRoot(S);
4795     return;
4796   }
4797   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4798                                    Ptr, Val, MMO);
4799 
4800 
4801   DAG.setRoot(OutChain);
4802 }
4803 
4804 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4805 /// node.
4806 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4807                                                unsigned Intrinsic) {
4808   // Ignore the callsite's attributes. A specific call site may be marked with
4809   // readnone, but the lowering code will expect the chain based on the
4810   // definition.
4811   const Function *F = I.getCalledFunction();
4812   bool HasChain = !F->doesNotAccessMemory();
4813   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4814 
4815   // Build the operand list.
4816   SmallVector<SDValue, 8> Ops;
4817   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4818     if (OnlyLoad) {
4819       // We don't need to serialize loads against other loads.
4820       Ops.push_back(DAG.getRoot());
4821     } else {
4822       Ops.push_back(getRoot());
4823     }
4824   }
4825 
4826   // Info is set by getTgtMemInstrinsic
4827   TargetLowering::IntrinsicInfo Info;
4828   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4829   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4830                                                DAG.getMachineFunction(),
4831                                                Intrinsic);
4832 
4833   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4834   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4835       Info.opc == ISD::INTRINSIC_W_CHAIN)
4836     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4837                                         TLI.getPointerTy(DAG.getDataLayout())));
4838 
4839   // Add all operands of the call to the operand list.
4840   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4841     const Value *Arg = I.getArgOperand(i);
4842     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4843       Ops.push_back(getValue(Arg));
4844       continue;
4845     }
4846 
4847     // Use TargetConstant instead of a regular constant for immarg.
4848     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4849     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4850       assert(CI->getBitWidth() <= 64 &&
4851              "large intrinsic immediates not handled");
4852       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4853     } else {
4854       Ops.push_back(
4855           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4856     }
4857   }
4858 
4859   SmallVector<EVT, 4> ValueVTs;
4860   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4861 
4862   if (HasChain)
4863     ValueVTs.push_back(MVT::Other);
4864 
4865   SDVTList VTs = DAG.getVTList(ValueVTs);
4866 
4867   // Create the node.
4868   SDValue Result;
4869   if (IsTgtIntrinsic) {
4870     // This is target intrinsic that touches memory
4871     AAMDNodes AAInfo;
4872     I.getAAMetadata(AAInfo);
4873     Result = DAG.getMemIntrinsicNode(
4874         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4875         MachinePointerInfo(Info.ptrVal, Info.offset),
4876         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4877   } else if (!HasChain) {
4878     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4879   } else if (!I.getType()->isVoidTy()) {
4880     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4881   } else {
4882     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4883   }
4884 
4885   if (HasChain) {
4886     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4887     if (OnlyLoad)
4888       PendingLoads.push_back(Chain);
4889     else
4890       DAG.setRoot(Chain);
4891   }
4892 
4893   if (!I.getType()->isVoidTy()) {
4894     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4895       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4896       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4897     } else
4898       Result = lowerRangeToAssertZExt(DAG, I, Result);
4899 
4900     setValue(&I, Result);
4901   }
4902 }
4903 
4904 /// GetSignificand - Get the significand and build it into a floating-point
4905 /// number with exponent of 1:
4906 ///
4907 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4908 ///
4909 /// where Op is the hexadecimal representation of floating point value.
4910 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4911   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4912                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4913   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4914                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4915   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4916 }
4917 
4918 /// GetExponent - Get the exponent:
4919 ///
4920 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4921 ///
4922 /// where Op is the hexadecimal representation of floating point value.
4923 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4924                            const TargetLowering &TLI, const SDLoc &dl) {
4925   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4926                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4927   SDValue t1 = DAG.getNode(
4928       ISD::SRL, dl, MVT::i32, t0,
4929       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4930   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4931                            DAG.getConstant(127, dl, MVT::i32));
4932   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4933 }
4934 
4935 /// getF32Constant - Get 32-bit floating point constant.
4936 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4937                               const SDLoc &dl) {
4938   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4939                            MVT::f32);
4940 }
4941 
4942 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4943                                        SelectionDAG &DAG) {
4944   // TODO: What fast-math-flags should be set on the floating-point nodes?
4945 
4946   //   IntegerPartOfX = ((int32_t)(t0);
4947   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4948 
4949   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4950   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4951   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4952 
4953   //   IntegerPartOfX <<= 23;
4954   IntegerPartOfX = DAG.getNode(
4955       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4956       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4957                                   DAG.getDataLayout())));
4958 
4959   SDValue TwoToFractionalPartOfX;
4960   if (LimitFloatPrecision <= 6) {
4961     // For floating-point precision of 6:
4962     //
4963     //   TwoToFractionalPartOfX =
4964     //     0.997535578f +
4965     //       (0.735607626f + 0.252464424f * x) * x;
4966     //
4967     // error 0.0144103317, which is 6 bits
4968     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4969                              getF32Constant(DAG, 0x3e814304, dl));
4970     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4971                              getF32Constant(DAG, 0x3f3c50c8, dl));
4972     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4973     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4974                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4975   } else if (LimitFloatPrecision <= 12) {
4976     // For floating-point precision of 12:
4977     //
4978     //   TwoToFractionalPartOfX =
4979     //     0.999892986f +
4980     //       (0.696457318f +
4981     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4982     //
4983     // error 0.000107046256, which is 13 to 14 bits
4984     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4985                              getF32Constant(DAG, 0x3da235e3, dl));
4986     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4987                              getF32Constant(DAG, 0x3e65b8f3, dl));
4988     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4989     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4990                              getF32Constant(DAG, 0x3f324b07, dl));
4991     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4992     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4993                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4994   } else { // LimitFloatPrecision <= 18
4995     // For floating-point precision of 18:
4996     //
4997     //   TwoToFractionalPartOfX =
4998     //     0.999999982f +
4999     //       (0.693148872f +
5000     //         (0.240227044f +
5001     //           (0.554906021e-1f +
5002     //             (0.961591928e-2f +
5003     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5004     // error 2.47208000*10^(-7), which is better than 18 bits
5005     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5006                              getF32Constant(DAG, 0x3924b03e, dl));
5007     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5008                              getF32Constant(DAG, 0x3ab24b87, dl));
5009     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5010     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5011                              getF32Constant(DAG, 0x3c1d8c17, dl));
5012     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5013     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5014                              getF32Constant(DAG, 0x3d634a1d, dl));
5015     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5016     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5017                              getF32Constant(DAG, 0x3e75fe14, dl));
5018     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5019     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5020                               getF32Constant(DAG, 0x3f317234, dl));
5021     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5022     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5023                                          getF32Constant(DAG, 0x3f800000, dl));
5024   }
5025 
5026   // Add the exponent into the result in integer domain.
5027   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5028   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5029                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5030 }
5031 
5032 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5033 /// limited-precision mode.
5034 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5035                          const TargetLowering &TLI) {
5036   if (Op.getValueType() == MVT::f32 &&
5037       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5038 
5039     // Put the exponent in the right bit position for later addition to the
5040     // final result:
5041     //
5042     // t0 = Op * log2(e)
5043 
5044     // TODO: What fast-math-flags should be set here?
5045     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5046                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5047     return getLimitedPrecisionExp2(t0, dl, DAG);
5048   }
5049 
5050   // No special expansion.
5051   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5052 }
5053 
5054 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5055 /// limited-precision mode.
5056 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5057                          const TargetLowering &TLI) {
5058   // TODO: What fast-math-flags should be set on the floating-point nodes?
5059 
5060   if (Op.getValueType() == MVT::f32 &&
5061       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5062     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5063 
5064     // Scale the exponent by log(2).
5065     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5066     SDValue LogOfExponent =
5067         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5068                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5069 
5070     // Get the significand and build it into a floating-point number with
5071     // exponent of 1.
5072     SDValue X = GetSignificand(DAG, Op1, dl);
5073 
5074     SDValue LogOfMantissa;
5075     if (LimitFloatPrecision <= 6) {
5076       // For floating-point precision of 6:
5077       //
5078       //   LogofMantissa =
5079       //     -1.1609546f +
5080       //       (1.4034025f - 0.23903021f * x) * x;
5081       //
5082       // error 0.0034276066, which is better than 8 bits
5083       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5084                                getF32Constant(DAG, 0xbe74c456, dl));
5085       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5086                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5087       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5088       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5089                                   getF32Constant(DAG, 0x3f949a29, dl));
5090     } else if (LimitFloatPrecision <= 12) {
5091       // For floating-point precision of 12:
5092       //
5093       //   LogOfMantissa =
5094       //     -1.7417939f +
5095       //       (2.8212026f +
5096       //         (-1.4699568f +
5097       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5098       //
5099       // error 0.000061011436, which is 14 bits
5100       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5101                                getF32Constant(DAG, 0xbd67b6d6, dl));
5102       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5103                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5104       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5105       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5106                                getF32Constant(DAG, 0x3fbc278b, dl));
5107       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5108       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5109                                getF32Constant(DAG, 0x40348e95, dl));
5110       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5111       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5112                                   getF32Constant(DAG, 0x3fdef31a, dl));
5113     } else { // LimitFloatPrecision <= 18
5114       // For floating-point precision of 18:
5115       //
5116       //   LogOfMantissa =
5117       //     -2.1072184f +
5118       //       (4.2372794f +
5119       //         (-3.7029485f +
5120       //           (2.2781945f +
5121       //             (-0.87823314f +
5122       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5123       //
5124       // error 0.0000023660568, which is better than 18 bits
5125       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5126                                getF32Constant(DAG, 0xbc91e5ac, dl));
5127       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5128                                getF32Constant(DAG, 0x3e4350aa, dl));
5129       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5130       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5131                                getF32Constant(DAG, 0x3f60d3e3, dl));
5132       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5133       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5134                                getF32Constant(DAG, 0x4011cdf0, dl));
5135       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5136       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5137                                getF32Constant(DAG, 0x406cfd1c, dl));
5138       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5139       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5140                                getF32Constant(DAG, 0x408797cb, dl));
5141       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5142       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5143                                   getF32Constant(DAG, 0x4006dcab, dl));
5144     }
5145 
5146     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5147   }
5148 
5149   // No special expansion.
5150   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5151 }
5152 
5153 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5154 /// limited-precision mode.
5155 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5156                           const TargetLowering &TLI) {
5157   // TODO: What fast-math-flags should be set on the floating-point nodes?
5158 
5159   if (Op.getValueType() == MVT::f32 &&
5160       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5161     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5162 
5163     // Get the exponent.
5164     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5165 
5166     // Get the significand and build it into a floating-point number with
5167     // exponent of 1.
5168     SDValue X = GetSignificand(DAG, Op1, dl);
5169 
5170     // Different possible minimax approximations of significand in
5171     // floating-point for various degrees of accuracy over [1,2].
5172     SDValue Log2ofMantissa;
5173     if (LimitFloatPrecision <= 6) {
5174       // For floating-point precision of 6:
5175       //
5176       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5177       //
5178       // error 0.0049451742, which is more than 7 bits
5179       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5180                                getF32Constant(DAG, 0xbeb08fe0, dl));
5181       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5182                                getF32Constant(DAG, 0x40019463, dl));
5183       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5184       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5185                                    getF32Constant(DAG, 0x3fd6633d, dl));
5186     } else if (LimitFloatPrecision <= 12) {
5187       // For floating-point precision of 12:
5188       //
5189       //   Log2ofMantissa =
5190       //     -2.51285454f +
5191       //       (4.07009056f +
5192       //         (-2.12067489f +
5193       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5194       //
5195       // error 0.0000876136000, which is better than 13 bits
5196       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5197                                getF32Constant(DAG, 0xbda7262e, dl));
5198       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5199                                getF32Constant(DAG, 0x3f25280b, dl));
5200       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5201       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5202                                getF32Constant(DAG, 0x4007b923, dl));
5203       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5204       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5205                                getF32Constant(DAG, 0x40823e2f, dl));
5206       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5207       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5208                                    getF32Constant(DAG, 0x4020d29c, dl));
5209     } else { // LimitFloatPrecision <= 18
5210       // For floating-point precision of 18:
5211       //
5212       //   Log2ofMantissa =
5213       //     -3.0400495f +
5214       //       (6.1129976f +
5215       //         (-5.3420409f +
5216       //           (3.2865683f +
5217       //             (-1.2669343f +
5218       //               (0.27515199f -
5219       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5220       //
5221       // error 0.0000018516, which is better than 18 bits
5222       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5223                                getF32Constant(DAG, 0xbcd2769e, dl));
5224       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5225                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5226       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5227       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5228                                getF32Constant(DAG, 0x3fa22ae7, dl));
5229       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5230       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5231                                getF32Constant(DAG, 0x40525723, dl));
5232       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5233       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5234                                getF32Constant(DAG, 0x40aaf200, dl));
5235       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5236       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5237                                getF32Constant(DAG, 0x40c39dad, dl));
5238       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5239       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5240                                    getF32Constant(DAG, 0x4042902c, dl));
5241     }
5242 
5243     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5244   }
5245 
5246   // No special expansion.
5247   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5248 }
5249 
5250 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5251 /// limited-precision mode.
5252 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5253                            const TargetLowering &TLI) {
5254   // TODO: What fast-math-flags should be set on the floating-point nodes?
5255 
5256   if (Op.getValueType() == MVT::f32 &&
5257       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5258     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5259 
5260     // Scale the exponent by log10(2) [0.30102999f].
5261     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5262     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5263                                         getF32Constant(DAG, 0x3e9a209a, dl));
5264 
5265     // Get the significand and build it into a floating-point number with
5266     // exponent of 1.
5267     SDValue X = GetSignificand(DAG, Op1, dl);
5268 
5269     SDValue Log10ofMantissa;
5270     if (LimitFloatPrecision <= 6) {
5271       // For floating-point precision of 6:
5272       //
5273       //   Log10ofMantissa =
5274       //     -0.50419619f +
5275       //       (0.60948995f - 0.10380950f * x) * x;
5276       //
5277       // error 0.0014886165, which is 6 bits
5278       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5279                                getF32Constant(DAG, 0xbdd49a13, dl));
5280       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5281                                getF32Constant(DAG, 0x3f1c0789, dl));
5282       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5283       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5284                                     getF32Constant(DAG, 0x3f011300, dl));
5285     } else if (LimitFloatPrecision <= 12) {
5286       // For floating-point precision of 12:
5287       //
5288       //   Log10ofMantissa =
5289       //     -0.64831180f +
5290       //       (0.91751397f +
5291       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5292       //
5293       // error 0.00019228036, which is better than 12 bits
5294       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5295                                getF32Constant(DAG, 0x3d431f31, dl));
5296       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5297                                getF32Constant(DAG, 0x3ea21fb2, dl));
5298       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5299       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5300                                getF32Constant(DAG, 0x3f6ae232, dl));
5301       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5302       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5303                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5304     } else { // LimitFloatPrecision <= 18
5305       // For floating-point precision of 18:
5306       //
5307       //   Log10ofMantissa =
5308       //     -0.84299375f +
5309       //       (1.5327582f +
5310       //         (-1.0688956f +
5311       //           (0.49102474f +
5312       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5313       //
5314       // error 0.0000037995730, which is better than 18 bits
5315       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5316                                getF32Constant(DAG, 0x3c5d51ce, dl));
5317       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5318                                getF32Constant(DAG, 0x3e00685a, dl));
5319       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5320       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5321                                getF32Constant(DAG, 0x3efb6798, dl));
5322       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5323       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5324                                getF32Constant(DAG, 0x3f88d192, dl));
5325       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5326       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5327                                getF32Constant(DAG, 0x3fc4316c, dl));
5328       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5329       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5330                                     getF32Constant(DAG, 0x3f57ce70, dl));
5331     }
5332 
5333     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5334   }
5335 
5336   // No special expansion.
5337   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5338 }
5339 
5340 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5341 /// limited-precision mode.
5342 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5343                           const TargetLowering &TLI) {
5344   if (Op.getValueType() == MVT::f32 &&
5345       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5346     return getLimitedPrecisionExp2(Op, dl, DAG);
5347 
5348   // No special expansion.
5349   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5350 }
5351 
5352 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5353 /// limited-precision mode with x == 10.0f.
5354 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5355                          SelectionDAG &DAG, const TargetLowering &TLI) {
5356   bool IsExp10 = false;
5357   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5358       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5359     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5360       APFloat Ten(10.0f);
5361       IsExp10 = LHSC->isExactlyValue(Ten);
5362     }
5363   }
5364 
5365   // TODO: What fast-math-flags should be set on the FMUL node?
5366   if (IsExp10) {
5367     // Put the exponent in the right bit position for later addition to the
5368     // final result:
5369     //
5370     //   #define LOG2OF10 3.3219281f
5371     //   t0 = Op * LOG2OF10;
5372     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5373                              getF32Constant(DAG, 0x40549a78, dl));
5374     return getLimitedPrecisionExp2(t0, dl, DAG);
5375   }
5376 
5377   // No special expansion.
5378   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5379 }
5380 
5381 /// ExpandPowI - Expand a llvm.powi intrinsic.
5382 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5383                           SelectionDAG &DAG) {
5384   // If RHS is a constant, we can expand this out to a multiplication tree,
5385   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5386   // optimizing for size, we only want to do this if the expansion would produce
5387   // a small number of multiplies, otherwise we do the full expansion.
5388   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5389     // Get the exponent as a positive value.
5390     unsigned Val = RHSC->getSExtValue();
5391     if ((int)Val < 0) Val = -Val;
5392 
5393     // powi(x, 0) -> 1.0
5394     if (Val == 0)
5395       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5396 
5397     bool OptForSize = DAG.shouldOptForSize();
5398     if (!OptForSize ||
5399         // If optimizing for size, don't insert too many multiplies.
5400         // This inserts up to 5 multiplies.
5401         countPopulation(Val) + Log2_32(Val) < 7) {
5402       // We use the simple binary decomposition method to generate the multiply
5403       // sequence.  There are more optimal ways to do this (for example,
5404       // powi(x,15) generates one more multiply than it should), but this has
5405       // the benefit of being both really simple and much better than a libcall.
5406       SDValue Res;  // Logically starts equal to 1.0
5407       SDValue CurSquare = LHS;
5408       // TODO: Intrinsics should have fast-math-flags that propagate to these
5409       // nodes.
5410       while (Val) {
5411         if (Val & 1) {
5412           if (Res.getNode())
5413             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5414           else
5415             Res = CurSquare;  // 1.0*CurSquare.
5416         }
5417 
5418         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5419                                 CurSquare, CurSquare);
5420         Val >>= 1;
5421       }
5422 
5423       // If the original was negative, invert the result, producing 1/(x*x*x).
5424       if (RHSC->getSExtValue() < 0)
5425         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5426                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5427       return Res;
5428     }
5429   }
5430 
5431   // Otherwise, expand to a libcall.
5432   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5433 }
5434 
5435 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5436 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5437 static void
5438 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5439                      const SDValue &N) {
5440   switch (N.getOpcode()) {
5441   case ISD::CopyFromReg: {
5442     SDValue Op = N.getOperand(1);
5443     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5444                       Op.getValueType().getSizeInBits());
5445     return;
5446   }
5447   case ISD::BITCAST:
5448   case ISD::AssertZext:
5449   case ISD::AssertSext:
5450   case ISD::TRUNCATE:
5451     getUnderlyingArgRegs(Regs, N.getOperand(0));
5452     return;
5453   case ISD::BUILD_PAIR:
5454   case ISD::BUILD_VECTOR:
5455   case ISD::CONCAT_VECTORS:
5456     for (SDValue Op : N->op_values())
5457       getUnderlyingArgRegs(Regs, Op);
5458     return;
5459   default:
5460     return;
5461   }
5462 }
5463 
5464 /// If the DbgValueInst is a dbg_value of a function argument, create the
5465 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5466 /// instruction selection, they will be inserted to the entry BB.
5467 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5468     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5469     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5470   const Argument *Arg = dyn_cast<Argument>(V);
5471   if (!Arg)
5472     return false;
5473 
5474   if (!IsDbgDeclare) {
5475     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5476     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5477     // the entry block.
5478     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5479     if (!IsInEntryBlock)
5480       return false;
5481 
5482     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5483     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5484     // variable that also is a param.
5485     //
5486     // Although, if we are at the top of the entry block already, we can still
5487     // emit using ArgDbgValue. This might catch some situations when the
5488     // dbg.value refers to an argument that isn't used in the entry block, so
5489     // any CopyToReg node would be optimized out and the only way to express
5490     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5491     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5492     // we should only emit as ArgDbgValue if the Variable is an argument to the
5493     // current function, and the dbg.value intrinsic is found in the entry
5494     // block.
5495     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5496         !DL->getInlinedAt();
5497     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5498     if (!IsInPrologue && !VariableIsFunctionInputArg)
5499       return false;
5500 
5501     // Here we assume that a function argument on IR level only can be used to
5502     // describe one input parameter on source level. If we for example have
5503     // source code like this
5504     //
5505     //    struct A { long x, y; };
5506     //    void foo(struct A a, long b) {
5507     //      ...
5508     //      b = a.x;
5509     //      ...
5510     //    }
5511     //
5512     // and IR like this
5513     //
5514     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5515     //  entry:
5516     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5517     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5518     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5519     //    ...
5520     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5521     //    ...
5522     //
5523     // then the last dbg.value is describing a parameter "b" using a value that
5524     // is an argument. But since we already has used %a1 to describe a parameter
5525     // we should not handle that last dbg.value here (that would result in an
5526     // incorrect hoisting of the DBG_VALUE to the function entry).
5527     // Notice that we allow one dbg.value per IR level argument, to accommodate
5528     // for the situation with fragments above.
5529     if (VariableIsFunctionInputArg) {
5530       unsigned ArgNo = Arg->getArgNo();
5531       if (ArgNo >= FuncInfo.DescribedArgs.size())
5532         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5533       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5534         return false;
5535       FuncInfo.DescribedArgs.set(ArgNo);
5536     }
5537   }
5538 
5539   MachineFunction &MF = DAG.getMachineFunction();
5540   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5541 
5542   Optional<MachineOperand> Op;
5543   // Some arguments' frame index is recorded during argument lowering.
5544   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5545   if (FI != std::numeric_limits<int>::max())
5546     Op = MachineOperand::CreateFI(FI);
5547 
5548   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5549   if (!Op && N.getNode()) {
5550     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5551     Register Reg;
5552     if (ArgRegsAndSizes.size() == 1)
5553       Reg = ArgRegsAndSizes.front().first;
5554 
5555     if (Reg && Reg.isVirtual()) {
5556       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5557       Register PR = RegInfo.getLiveInPhysReg(Reg);
5558       if (PR)
5559         Reg = PR;
5560     }
5561     if (Reg) {
5562       Op = MachineOperand::CreateReg(Reg, false);
5563     }
5564   }
5565 
5566   if (!Op && N.getNode()) {
5567     // Check if frame index is available.
5568     SDValue LCandidate = peekThroughBitcasts(N);
5569     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5570       if (FrameIndexSDNode *FINode =
5571           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5572         Op = MachineOperand::CreateFI(FINode->getIndex());
5573   }
5574 
5575   if (!Op) {
5576     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5577     auto splitMultiRegDbgValue
5578       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5579       unsigned Offset = 0;
5580       for (auto RegAndSize : SplitRegs) {
5581         // If the expression is already a fragment, the current register
5582         // offset+size might extend beyond the fragment. In this case, only
5583         // the register bits that are inside the fragment are relevant.
5584         int RegFragmentSizeInBits = RegAndSize.second;
5585         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5586           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5587           // The register is entirely outside the expression fragment,
5588           // so is irrelevant for debug info.
5589           if (Offset >= ExprFragmentSizeInBits)
5590             break;
5591           // The register is partially outside the expression fragment, only
5592           // the low bits within the fragment are relevant for debug info.
5593           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5594             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5595           }
5596         }
5597 
5598         auto FragmentExpr = DIExpression::createFragmentExpression(
5599             Expr, Offset, RegFragmentSizeInBits);
5600         Offset += RegAndSize.second;
5601         // If a valid fragment expression cannot be created, the variable's
5602         // correct value cannot be determined and so it is set as Undef.
5603         if (!FragmentExpr) {
5604           SDDbgValue *SDV = DAG.getConstantDbgValue(
5605               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5606           DAG.AddDbgValue(SDV, nullptr, false);
5607           continue;
5608         }
5609         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5610         FuncInfo.ArgDbgValues.push_back(
5611           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5612                   RegAndSize.first, Variable, *FragmentExpr));
5613       }
5614     };
5615 
5616     // Check if ValueMap has reg number.
5617     DenseMap<const Value *, unsigned>::const_iterator
5618       VMI = FuncInfo.ValueMap.find(V);
5619     if (VMI != FuncInfo.ValueMap.end()) {
5620       const auto &TLI = DAG.getTargetLoweringInfo();
5621       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5622                        V->getType(), getABIRegCopyCC(V));
5623       if (RFV.occupiesMultipleRegs()) {
5624         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5625         return true;
5626       }
5627 
5628       Op = MachineOperand::CreateReg(VMI->second, false);
5629     } else if (ArgRegsAndSizes.size() > 1) {
5630       // This was split due to the calling convention, and no virtual register
5631       // mapping exists for the value.
5632       splitMultiRegDbgValue(ArgRegsAndSizes);
5633       return true;
5634     }
5635   }
5636 
5637   if (!Op)
5638     return false;
5639 
5640   assert(Variable->isValidLocationForIntrinsic(DL) &&
5641          "Expected inlined-at fields to agree");
5642 
5643   // If the argument arrives in a stack slot, then what the IR thought was a
5644   // normal Value is actually in memory, and we must add a deref to load it.
5645   if (Op->isFI()) {
5646     int FI = Op->getIndex();
5647     unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI);
5648     if (Expr->isImplicit()) {
5649       SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
5650       Expr = DIExpression::prependOpcodes(Expr, Ops);
5651     } else {
5652       Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
5653     }
5654   }
5655 
5656   // If this location was specified with a dbg.declare, then it and its
5657   // expression calculate the address of the variable. Append a deref to
5658   // force it to be a memory location.
5659   if (IsDbgDeclare)
5660     Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
5661 
5662   FuncInfo.ArgDbgValues.push_back(
5663       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5664               *Op, Variable, Expr));
5665 
5666   return true;
5667 }
5668 
5669 /// Return the appropriate SDDbgValue based on N.
5670 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5671                                              DILocalVariable *Variable,
5672                                              DIExpression *Expr,
5673                                              const DebugLoc &dl,
5674                                              unsigned DbgSDNodeOrder) {
5675   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5676     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5677     // stack slot locations.
5678     //
5679     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5680     // debug values here after optimization:
5681     //
5682     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5683     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5684     //
5685     // Both describe the direct values of their associated variables.
5686     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5687                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5688   }
5689   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5690                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5691 }
5692 
5693 // VisualStudio defines setjmp as _setjmp
5694 #if defined(_MSC_VER) && defined(setjmp) && \
5695                          !defined(setjmp_undefined_for_msvc)
5696 #  pragma push_macro("setjmp")
5697 #  undef setjmp
5698 #  define setjmp_undefined_for_msvc
5699 #endif
5700 
5701 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5702   switch (Intrinsic) {
5703   case Intrinsic::smul_fix:
5704     return ISD::SMULFIX;
5705   case Intrinsic::umul_fix:
5706     return ISD::UMULFIX;
5707   default:
5708     llvm_unreachable("Unhandled fixed point intrinsic");
5709   }
5710 }
5711 
5712 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5713                                            const char *FunctionName) {
5714   assert(FunctionName && "FunctionName must not be nullptr");
5715   SDValue Callee = DAG.getExternalSymbol(
5716       FunctionName,
5717       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5718   LowerCallTo(&I, Callee, I.isTailCall());
5719 }
5720 
5721 /// Lower the call to the specified intrinsic function.
5722 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5723                                              unsigned Intrinsic) {
5724   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5725   SDLoc sdl = getCurSDLoc();
5726   DebugLoc dl = getCurDebugLoc();
5727   SDValue Res;
5728 
5729   switch (Intrinsic) {
5730   default:
5731     // By default, turn this into a target intrinsic node.
5732     visitTargetIntrinsic(I, Intrinsic);
5733     return;
5734   case Intrinsic::vastart:  visitVAStart(I); return;
5735   case Intrinsic::vaend:    visitVAEnd(I); return;
5736   case Intrinsic::vacopy:   visitVACopy(I); return;
5737   case Intrinsic::returnaddress:
5738     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5739                              TLI.getPointerTy(DAG.getDataLayout()),
5740                              getValue(I.getArgOperand(0))));
5741     return;
5742   case Intrinsic::addressofreturnaddress:
5743     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5744                              TLI.getPointerTy(DAG.getDataLayout())));
5745     return;
5746   case Intrinsic::sponentry:
5747     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5748                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5749     return;
5750   case Intrinsic::frameaddress:
5751     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5752                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5753                              getValue(I.getArgOperand(0))));
5754     return;
5755   case Intrinsic::read_register: {
5756     Value *Reg = I.getArgOperand(0);
5757     SDValue Chain = getRoot();
5758     SDValue RegName =
5759         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5760     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5761     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5762       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5763     setValue(&I, Res);
5764     DAG.setRoot(Res.getValue(1));
5765     return;
5766   }
5767   case Intrinsic::write_register: {
5768     Value *Reg = I.getArgOperand(0);
5769     Value *RegValue = I.getArgOperand(1);
5770     SDValue Chain = getRoot();
5771     SDValue RegName =
5772         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5773     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5774                             RegName, getValue(RegValue)));
5775     return;
5776   }
5777   case Intrinsic::memcpy: {
5778     const auto &MCI = cast<MemCpyInst>(I);
5779     SDValue Op1 = getValue(I.getArgOperand(0));
5780     SDValue Op2 = getValue(I.getArgOperand(1));
5781     SDValue Op3 = getValue(I.getArgOperand(2));
5782     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5783     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5784     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5785     unsigned Align = MinAlign(DstAlign, SrcAlign);
5786     bool isVol = MCI.isVolatile();
5787     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5788     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5789     // node.
5790     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5791                                false, isTC,
5792                                MachinePointerInfo(I.getArgOperand(0)),
5793                                MachinePointerInfo(I.getArgOperand(1)));
5794     updateDAGForMaybeTailCall(MC);
5795     return;
5796   }
5797   case Intrinsic::memset: {
5798     const auto &MSI = cast<MemSetInst>(I);
5799     SDValue Op1 = getValue(I.getArgOperand(0));
5800     SDValue Op2 = getValue(I.getArgOperand(1));
5801     SDValue Op3 = getValue(I.getArgOperand(2));
5802     // @llvm.memset defines 0 and 1 to both mean no alignment.
5803     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5804     bool isVol = MSI.isVolatile();
5805     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5806     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5807                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5808     updateDAGForMaybeTailCall(MS);
5809     return;
5810   }
5811   case Intrinsic::memmove: {
5812     const auto &MMI = cast<MemMoveInst>(I);
5813     SDValue Op1 = getValue(I.getArgOperand(0));
5814     SDValue Op2 = getValue(I.getArgOperand(1));
5815     SDValue Op3 = getValue(I.getArgOperand(2));
5816     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5817     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5818     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5819     unsigned Align = MinAlign(DstAlign, SrcAlign);
5820     bool isVol = MMI.isVolatile();
5821     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5822     // FIXME: Support passing different dest/src alignments to the memmove DAG
5823     // node.
5824     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5825                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5826                                 MachinePointerInfo(I.getArgOperand(1)));
5827     updateDAGForMaybeTailCall(MM);
5828     return;
5829   }
5830   case Intrinsic::memcpy_element_unordered_atomic: {
5831     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5832     SDValue Dst = getValue(MI.getRawDest());
5833     SDValue Src = getValue(MI.getRawSource());
5834     SDValue Length = getValue(MI.getLength());
5835 
5836     unsigned DstAlign = MI.getDestAlignment();
5837     unsigned SrcAlign = MI.getSourceAlignment();
5838     Type *LengthTy = MI.getLength()->getType();
5839     unsigned ElemSz = MI.getElementSizeInBytes();
5840     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5841     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5842                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5843                                      MachinePointerInfo(MI.getRawDest()),
5844                                      MachinePointerInfo(MI.getRawSource()));
5845     updateDAGForMaybeTailCall(MC);
5846     return;
5847   }
5848   case Intrinsic::memmove_element_unordered_atomic: {
5849     auto &MI = cast<AtomicMemMoveInst>(I);
5850     SDValue Dst = getValue(MI.getRawDest());
5851     SDValue Src = getValue(MI.getRawSource());
5852     SDValue Length = getValue(MI.getLength());
5853 
5854     unsigned DstAlign = MI.getDestAlignment();
5855     unsigned SrcAlign = MI.getSourceAlignment();
5856     Type *LengthTy = MI.getLength()->getType();
5857     unsigned ElemSz = MI.getElementSizeInBytes();
5858     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5859     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5860                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5861                                       MachinePointerInfo(MI.getRawDest()),
5862                                       MachinePointerInfo(MI.getRawSource()));
5863     updateDAGForMaybeTailCall(MC);
5864     return;
5865   }
5866   case Intrinsic::memset_element_unordered_atomic: {
5867     auto &MI = cast<AtomicMemSetInst>(I);
5868     SDValue Dst = getValue(MI.getRawDest());
5869     SDValue Val = getValue(MI.getValue());
5870     SDValue Length = getValue(MI.getLength());
5871 
5872     unsigned DstAlign = MI.getDestAlignment();
5873     Type *LengthTy = MI.getLength()->getType();
5874     unsigned ElemSz = MI.getElementSizeInBytes();
5875     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5876     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5877                                      LengthTy, ElemSz, isTC,
5878                                      MachinePointerInfo(MI.getRawDest()));
5879     updateDAGForMaybeTailCall(MC);
5880     return;
5881   }
5882   case Intrinsic::dbg_addr:
5883   case Intrinsic::dbg_declare: {
5884     const auto &DI = cast<DbgVariableIntrinsic>(I);
5885     DILocalVariable *Variable = DI.getVariable();
5886     DIExpression *Expression = DI.getExpression();
5887     dropDanglingDebugInfo(Variable, Expression);
5888     assert(Variable && "Missing variable");
5889 
5890     // Check if address has undef value.
5891     const Value *Address = DI.getVariableLocation();
5892     if (!Address || isa<UndefValue>(Address) ||
5893         (Address->use_empty() && !isa<Argument>(Address))) {
5894       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5895       return;
5896     }
5897 
5898     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5899 
5900     // Check if this variable can be described by a frame index, typically
5901     // either as a static alloca or a byval parameter.
5902     int FI = std::numeric_limits<int>::max();
5903     if (const auto *AI =
5904             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5905       if (AI->isStaticAlloca()) {
5906         auto I = FuncInfo.StaticAllocaMap.find(AI);
5907         if (I != FuncInfo.StaticAllocaMap.end())
5908           FI = I->second;
5909       }
5910     } else if (const auto *Arg = dyn_cast<Argument>(
5911                    Address->stripInBoundsConstantOffsets())) {
5912       FI = FuncInfo.getArgumentFrameIndex(Arg);
5913     }
5914 
5915     // llvm.dbg.addr is control dependent and always generates indirect
5916     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5917     // the MachineFunction variable table.
5918     if (FI != std::numeric_limits<int>::max()) {
5919       if (Intrinsic == Intrinsic::dbg_addr) {
5920         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5921             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5922         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5923       }
5924       return;
5925     }
5926 
5927     SDValue &N = NodeMap[Address];
5928     if (!N.getNode() && isa<Argument>(Address))
5929       // Check unused arguments map.
5930       N = UnusedArgNodeMap[Address];
5931     SDDbgValue *SDV;
5932     if (N.getNode()) {
5933       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5934         Address = BCI->getOperand(0);
5935       // Parameters are handled specially.
5936       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5937       if (isParameter && FINode) {
5938         // Byval parameter. We have a frame index at this point.
5939         SDV =
5940             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5941                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5942       } else if (isa<Argument>(Address)) {
5943         // Address is an argument, so try to emit its dbg value using
5944         // virtual register info from the FuncInfo.ValueMap.
5945         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5946         return;
5947       } else {
5948         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5949                               true, dl, SDNodeOrder);
5950       }
5951       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5952     } else {
5953       // If Address is an argument then try to emit its dbg value using
5954       // virtual register info from the FuncInfo.ValueMap.
5955       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5956                                     N)) {
5957         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5958       }
5959     }
5960     return;
5961   }
5962   case Intrinsic::dbg_label: {
5963     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5964     DILabel *Label = DI.getLabel();
5965     assert(Label && "Missing label");
5966 
5967     SDDbgLabel *SDV;
5968     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5969     DAG.AddDbgLabel(SDV);
5970     return;
5971   }
5972   case Intrinsic::dbg_value: {
5973     const DbgValueInst &DI = cast<DbgValueInst>(I);
5974     assert(DI.getVariable() && "Missing variable");
5975 
5976     DILocalVariable *Variable = DI.getVariable();
5977     DIExpression *Expression = DI.getExpression();
5978     dropDanglingDebugInfo(Variable, Expression);
5979     const Value *V = DI.getValue();
5980     if (!V)
5981       return;
5982 
5983     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5984         SDNodeOrder))
5985       return;
5986 
5987     // TODO: Dangling debug info will eventually either be resolved or produce
5988     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5989     // between the original dbg.value location and its resolved DBG_VALUE, which
5990     // we should ideally fill with an extra Undef DBG_VALUE.
5991 
5992     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5993     return;
5994   }
5995 
5996   case Intrinsic::eh_typeid_for: {
5997     // Find the type id for the given typeinfo.
5998     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5999     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6000     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6001     setValue(&I, Res);
6002     return;
6003   }
6004 
6005   case Intrinsic::eh_return_i32:
6006   case Intrinsic::eh_return_i64:
6007     DAG.getMachineFunction().setCallsEHReturn(true);
6008     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6009                             MVT::Other,
6010                             getControlRoot(),
6011                             getValue(I.getArgOperand(0)),
6012                             getValue(I.getArgOperand(1))));
6013     return;
6014   case Intrinsic::eh_unwind_init:
6015     DAG.getMachineFunction().setCallsUnwindInit(true);
6016     return;
6017   case Intrinsic::eh_dwarf_cfa:
6018     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6019                              TLI.getPointerTy(DAG.getDataLayout()),
6020                              getValue(I.getArgOperand(0))));
6021     return;
6022   case Intrinsic::eh_sjlj_callsite: {
6023     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6024     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6025     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6026     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6027 
6028     MMI.setCurrentCallSite(CI->getZExtValue());
6029     return;
6030   }
6031   case Intrinsic::eh_sjlj_functioncontext: {
6032     // Get and store the index of the function context.
6033     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6034     AllocaInst *FnCtx =
6035       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6036     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6037     MFI.setFunctionContextIndex(FI);
6038     return;
6039   }
6040   case Intrinsic::eh_sjlj_setjmp: {
6041     SDValue Ops[2];
6042     Ops[0] = getRoot();
6043     Ops[1] = getValue(I.getArgOperand(0));
6044     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6045                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6046     setValue(&I, Op.getValue(0));
6047     DAG.setRoot(Op.getValue(1));
6048     return;
6049   }
6050   case Intrinsic::eh_sjlj_longjmp:
6051     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6052                             getRoot(), getValue(I.getArgOperand(0))));
6053     return;
6054   case Intrinsic::eh_sjlj_setup_dispatch:
6055     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6056                             getRoot()));
6057     return;
6058   case Intrinsic::masked_gather:
6059     visitMaskedGather(I);
6060     return;
6061   case Intrinsic::masked_load:
6062     visitMaskedLoad(I);
6063     return;
6064   case Intrinsic::masked_scatter:
6065     visitMaskedScatter(I);
6066     return;
6067   case Intrinsic::masked_store:
6068     visitMaskedStore(I);
6069     return;
6070   case Intrinsic::masked_expandload:
6071     visitMaskedLoad(I, true /* IsExpanding */);
6072     return;
6073   case Intrinsic::masked_compressstore:
6074     visitMaskedStore(I, true /* IsCompressing */);
6075     return;
6076   case Intrinsic::powi:
6077     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6078                             getValue(I.getArgOperand(1)), DAG));
6079     return;
6080   case Intrinsic::log:
6081     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6082     return;
6083   case Intrinsic::log2:
6084     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6085     return;
6086   case Intrinsic::log10:
6087     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6088     return;
6089   case Intrinsic::exp:
6090     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6091     return;
6092   case Intrinsic::exp2:
6093     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6094     return;
6095   case Intrinsic::pow:
6096     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6097                            getValue(I.getArgOperand(1)), DAG, TLI));
6098     return;
6099   case Intrinsic::sqrt:
6100   case Intrinsic::fabs:
6101   case Intrinsic::sin:
6102   case Intrinsic::cos:
6103   case Intrinsic::floor:
6104   case Intrinsic::ceil:
6105   case Intrinsic::trunc:
6106   case Intrinsic::rint:
6107   case Intrinsic::nearbyint:
6108   case Intrinsic::round:
6109   case Intrinsic::canonicalize: {
6110     unsigned Opcode;
6111     switch (Intrinsic) {
6112     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6113     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6114     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6115     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6116     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6117     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6118     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6119     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6120     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6121     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6122     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6123     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6124     }
6125 
6126     setValue(&I, DAG.getNode(Opcode, sdl,
6127                              getValue(I.getArgOperand(0)).getValueType(),
6128                              getValue(I.getArgOperand(0))));
6129     return;
6130   }
6131   case Intrinsic::lround:
6132   case Intrinsic::llround:
6133   case Intrinsic::lrint:
6134   case Intrinsic::llrint: {
6135     unsigned Opcode;
6136     switch (Intrinsic) {
6137     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6138     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6139     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6140     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6141     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6142     }
6143 
6144     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6145     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6146                              getValue(I.getArgOperand(0))));
6147     return;
6148   }
6149   case Intrinsic::minnum:
6150     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6151                              getValue(I.getArgOperand(0)).getValueType(),
6152                              getValue(I.getArgOperand(0)),
6153                              getValue(I.getArgOperand(1))));
6154     return;
6155   case Intrinsic::maxnum:
6156     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6157                              getValue(I.getArgOperand(0)).getValueType(),
6158                              getValue(I.getArgOperand(0)),
6159                              getValue(I.getArgOperand(1))));
6160     return;
6161   case Intrinsic::minimum:
6162     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6163                              getValue(I.getArgOperand(0)).getValueType(),
6164                              getValue(I.getArgOperand(0)),
6165                              getValue(I.getArgOperand(1))));
6166     return;
6167   case Intrinsic::maximum:
6168     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6169                              getValue(I.getArgOperand(0)).getValueType(),
6170                              getValue(I.getArgOperand(0)),
6171                              getValue(I.getArgOperand(1))));
6172     return;
6173   case Intrinsic::copysign:
6174     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6175                              getValue(I.getArgOperand(0)).getValueType(),
6176                              getValue(I.getArgOperand(0)),
6177                              getValue(I.getArgOperand(1))));
6178     return;
6179   case Intrinsic::fma:
6180     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6181                              getValue(I.getArgOperand(0)).getValueType(),
6182                              getValue(I.getArgOperand(0)),
6183                              getValue(I.getArgOperand(1)),
6184                              getValue(I.getArgOperand(2))));
6185     return;
6186 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
6187   case Intrinsic::INTRINSIC:
6188 #include "llvm/IR/ConstrainedOps.def"
6189     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6190     return;
6191   case Intrinsic::fmuladd: {
6192     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6193     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6194         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6195       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6196                                getValue(I.getArgOperand(0)).getValueType(),
6197                                getValue(I.getArgOperand(0)),
6198                                getValue(I.getArgOperand(1)),
6199                                getValue(I.getArgOperand(2))));
6200     } else {
6201       // TODO: Intrinsic calls should have fast-math-flags.
6202       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6203                                 getValue(I.getArgOperand(0)).getValueType(),
6204                                 getValue(I.getArgOperand(0)),
6205                                 getValue(I.getArgOperand(1)));
6206       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6207                                 getValue(I.getArgOperand(0)).getValueType(),
6208                                 Mul,
6209                                 getValue(I.getArgOperand(2)));
6210       setValue(&I, Add);
6211     }
6212     return;
6213   }
6214   case Intrinsic::convert_to_fp16:
6215     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6216                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6217                                          getValue(I.getArgOperand(0)),
6218                                          DAG.getTargetConstant(0, sdl,
6219                                                                MVT::i32))));
6220     return;
6221   case Intrinsic::convert_from_fp16:
6222     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6223                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6224                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6225                                          getValue(I.getArgOperand(0)))));
6226     return;
6227   case Intrinsic::pcmarker: {
6228     SDValue Tmp = getValue(I.getArgOperand(0));
6229     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6230     return;
6231   }
6232   case Intrinsic::readcyclecounter: {
6233     SDValue Op = getRoot();
6234     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6235                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6236     setValue(&I, Res);
6237     DAG.setRoot(Res.getValue(1));
6238     return;
6239   }
6240   case Intrinsic::bitreverse:
6241     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6242                              getValue(I.getArgOperand(0)).getValueType(),
6243                              getValue(I.getArgOperand(0))));
6244     return;
6245   case Intrinsic::bswap:
6246     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6247                              getValue(I.getArgOperand(0)).getValueType(),
6248                              getValue(I.getArgOperand(0))));
6249     return;
6250   case Intrinsic::cttz: {
6251     SDValue Arg = getValue(I.getArgOperand(0));
6252     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6253     EVT Ty = Arg.getValueType();
6254     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6255                              sdl, Ty, Arg));
6256     return;
6257   }
6258   case Intrinsic::ctlz: {
6259     SDValue Arg = getValue(I.getArgOperand(0));
6260     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6261     EVT Ty = Arg.getValueType();
6262     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6263                              sdl, Ty, Arg));
6264     return;
6265   }
6266   case Intrinsic::ctpop: {
6267     SDValue Arg = getValue(I.getArgOperand(0));
6268     EVT Ty = Arg.getValueType();
6269     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6270     return;
6271   }
6272   case Intrinsic::fshl:
6273   case Intrinsic::fshr: {
6274     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6275     SDValue X = getValue(I.getArgOperand(0));
6276     SDValue Y = getValue(I.getArgOperand(1));
6277     SDValue Z = getValue(I.getArgOperand(2));
6278     EVT VT = X.getValueType();
6279     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6280     SDValue Zero = DAG.getConstant(0, sdl, VT);
6281     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6282 
6283     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6284     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6285       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6286       return;
6287     }
6288 
6289     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6290     // avoid the select that is necessary in the general case to filter out
6291     // the 0-shift possibility that leads to UB.
6292     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6293       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6294       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6295         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6296         return;
6297       }
6298 
6299       // Some targets only rotate one way. Try the opposite direction.
6300       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6301       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6302         // Negate the shift amount because it is safe to ignore the high bits.
6303         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6304         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6305         return;
6306       }
6307 
6308       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6309       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6310       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6311       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6312       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6313       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6314       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6315       return;
6316     }
6317 
6318     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6319     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6320     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6321     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6322     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6323     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6324 
6325     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6326     // and that is undefined. We must compare and select to avoid UB.
6327     EVT CCVT = MVT::i1;
6328     if (VT.isVector())
6329       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6330 
6331     // For fshl, 0-shift returns the 1st arg (X).
6332     // For fshr, 0-shift returns the 2nd arg (Y).
6333     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6334     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6335     return;
6336   }
6337   case Intrinsic::sadd_sat: {
6338     SDValue Op1 = getValue(I.getArgOperand(0));
6339     SDValue Op2 = getValue(I.getArgOperand(1));
6340     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6341     return;
6342   }
6343   case Intrinsic::uadd_sat: {
6344     SDValue Op1 = getValue(I.getArgOperand(0));
6345     SDValue Op2 = getValue(I.getArgOperand(1));
6346     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6347     return;
6348   }
6349   case Intrinsic::ssub_sat: {
6350     SDValue Op1 = getValue(I.getArgOperand(0));
6351     SDValue Op2 = getValue(I.getArgOperand(1));
6352     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6353     return;
6354   }
6355   case Intrinsic::usub_sat: {
6356     SDValue Op1 = getValue(I.getArgOperand(0));
6357     SDValue Op2 = getValue(I.getArgOperand(1));
6358     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6359     return;
6360   }
6361   case Intrinsic::smul_fix:
6362   case Intrinsic::umul_fix: {
6363     SDValue Op1 = getValue(I.getArgOperand(0));
6364     SDValue Op2 = getValue(I.getArgOperand(1));
6365     SDValue Op3 = getValue(I.getArgOperand(2));
6366     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6367                              Op1.getValueType(), Op1, Op2, Op3));
6368     return;
6369   }
6370   case Intrinsic::smul_fix_sat: {
6371     SDValue Op1 = getValue(I.getArgOperand(0));
6372     SDValue Op2 = getValue(I.getArgOperand(1));
6373     SDValue Op3 = getValue(I.getArgOperand(2));
6374     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6375                              Op3));
6376     return;
6377   }
6378   case Intrinsic::umul_fix_sat: {
6379     SDValue Op1 = getValue(I.getArgOperand(0));
6380     SDValue Op2 = getValue(I.getArgOperand(1));
6381     SDValue Op3 = getValue(I.getArgOperand(2));
6382     setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6383                              Op3));
6384     return;
6385   }
6386   case Intrinsic::stacksave: {
6387     SDValue Op = getRoot();
6388     Res = DAG.getNode(
6389         ISD::STACKSAVE, sdl,
6390         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6391     setValue(&I, Res);
6392     DAG.setRoot(Res.getValue(1));
6393     return;
6394   }
6395   case Intrinsic::stackrestore:
6396     Res = getValue(I.getArgOperand(0));
6397     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6398     return;
6399   case Intrinsic::get_dynamic_area_offset: {
6400     SDValue Op = getRoot();
6401     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6402     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6403     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6404     // target.
6405     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6406       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6407                          " intrinsic!");
6408     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6409                       Op);
6410     DAG.setRoot(Op);
6411     setValue(&I, Res);
6412     return;
6413   }
6414   case Intrinsic::stackguard: {
6415     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6416     MachineFunction &MF = DAG.getMachineFunction();
6417     const Module &M = *MF.getFunction().getParent();
6418     SDValue Chain = getRoot();
6419     if (TLI.useLoadStackGuardNode()) {
6420       Res = getLoadStackGuard(DAG, sdl, Chain);
6421     } else {
6422       const Value *Global = TLI.getSDagStackGuard(M);
6423       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6424       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6425                         MachinePointerInfo(Global, 0), Align,
6426                         MachineMemOperand::MOVolatile);
6427     }
6428     if (TLI.useStackGuardXorFP())
6429       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6430     DAG.setRoot(Chain);
6431     setValue(&I, Res);
6432     return;
6433   }
6434   case Intrinsic::stackprotector: {
6435     // Emit code into the DAG to store the stack guard onto the stack.
6436     MachineFunction &MF = DAG.getMachineFunction();
6437     MachineFrameInfo &MFI = MF.getFrameInfo();
6438     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6439     SDValue Src, Chain = getRoot();
6440 
6441     if (TLI.useLoadStackGuardNode())
6442       Src = getLoadStackGuard(DAG, sdl, Chain);
6443     else
6444       Src = getValue(I.getArgOperand(0));   // The guard's value.
6445 
6446     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6447 
6448     int FI = FuncInfo.StaticAllocaMap[Slot];
6449     MFI.setStackProtectorIndex(FI);
6450 
6451     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6452 
6453     // Store the stack protector onto the stack.
6454     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6455                                                  DAG.getMachineFunction(), FI),
6456                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6457     setValue(&I, Res);
6458     DAG.setRoot(Res);
6459     return;
6460   }
6461   case Intrinsic::objectsize:
6462     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6463 
6464   case Intrinsic::is_constant:
6465     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6466 
6467   case Intrinsic::annotation:
6468   case Intrinsic::ptr_annotation:
6469   case Intrinsic::launder_invariant_group:
6470   case Intrinsic::strip_invariant_group:
6471     // Drop the intrinsic, but forward the value
6472     setValue(&I, getValue(I.getOperand(0)));
6473     return;
6474   case Intrinsic::assume:
6475   case Intrinsic::var_annotation:
6476   case Intrinsic::sideeffect:
6477     // Discard annotate attributes, assumptions, and artificial side-effects.
6478     return;
6479 
6480   case Intrinsic::codeview_annotation: {
6481     // Emit a label associated with this metadata.
6482     MachineFunction &MF = DAG.getMachineFunction();
6483     MCSymbol *Label =
6484         MF.getMMI().getContext().createTempSymbol("annotation", true);
6485     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6486     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6487     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6488     DAG.setRoot(Res);
6489     return;
6490   }
6491 
6492   case Intrinsic::init_trampoline: {
6493     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6494 
6495     SDValue Ops[6];
6496     Ops[0] = getRoot();
6497     Ops[1] = getValue(I.getArgOperand(0));
6498     Ops[2] = getValue(I.getArgOperand(1));
6499     Ops[3] = getValue(I.getArgOperand(2));
6500     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6501     Ops[5] = DAG.getSrcValue(F);
6502 
6503     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6504 
6505     DAG.setRoot(Res);
6506     return;
6507   }
6508   case Intrinsic::adjust_trampoline:
6509     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6510                              TLI.getPointerTy(DAG.getDataLayout()),
6511                              getValue(I.getArgOperand(0))));
6512     return;
6513   case Intrinsic::gcroot: {
6514     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6515            "only valid in functions with gc specified, enforced by Verifier");
6516     assert(GFI && "implied by previous");
6517     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6518     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6519 
6520     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6521     GFI->addStackRoot(FI->getIndex(), TypeMap);
6522     return;
6523   }
6524   case Intrinsic::gcread:
6525   case Intrinsic::gcwrite:
6526     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6527   case Intrinsic::flt_rounds:
6528     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6529     return;
6530 
6531   case Intrinsic::expect:
6532     // Just replace __builtin_expect(exp, c) with EXP.
6533     setValue(&I, getValue(I.getArgOperand(0)));
6534     return;
6535 
6536   case Intrinsic::debugtrap:
6537   case Intrinsic::trap: {
6538     StringRef TrapFuncName =
6539         I.getAttributes()
6540             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6541             .getValueAsString();
6542     if (TrapFuncName.empty()) {
6543       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6544         ISD::TRAP : ISD::DEBUGTRAP;
6545       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6546       return;
6547     }
6548     TargetLowering::ArgListTy Args;
6549 
6550     TargetLowering::CallLoweringInfo CLI(DAG);
6551     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6552         CallingConv::C, I.getType(),
6553         DAG.getExternalSymbol(TrapFuncName.data(),
6554                               TLI.getPointerTy(DAG.getDataLayout())),
6555         std::move(Args));
6556 
6557     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6558     DAG.setRoot(Result.second);
6559     return;
6560   }
6561 
6562   case Intrinsic::uadd_with_overflow:
6563   case Intrinsic::sadd_with_overflow:
6564   case Intrinsic::usub_with_overflow:
6565   case Intrinsic::ssub_with_overflow:
6566   case Intrinsic::umul_with_overflow:
6567   case Intrinsic::smul_with_overflow: {
6568     ISD::NodeType Op;
6569     switch (Intrinsic) {
6570     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6571     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6572     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6573     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6574     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6575     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6576     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6577     }
6578     SDValue Op1 = getValue(I.getArgOperand(0));
6579     SDValue Op2 = getValue(I.getArgOperand(1));
6580 
6581     EVT ResultVT = Op1.getValueType();
6582     EVT OverflowVT = MVT::i1;
6583     if (ResultVT.isVector())
6584       OverflowVT = EVT::getVectorVT(
6585           *Context, OverflowVT, ResultVT.getVectorNumElements());
6586 
6587     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6588     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6589     return;
6590   }
6591   case Intrinsic::prefetch: {
6592     SDValue Ops[5];
6593     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6594     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6595     Ops[0] = DAG.getRoot();
6596     Ops[1] = getValue(I.getArgOperand(0));
6597     Ops[2] = getValue(I.getArgOperand(1));
6598     Ops[3] = getValue(I.getArgOperand(2));
6599     Ops[4] = getValue(I.getArgOperand(3));
6600     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6601                                              DAG.getVTList(MVT::Other), Ops,
6602                                              EVT::getIntegerVT(*Context, 8),
6603                                              MachinePointerInfo(I.getArgOperand(0)),
6604                                              0, /* align */
6605                                              Flags);
6606 
6607     // Chain the prefetch in parallell with any pending loads, to stay out of
6608     // the way of later optimizations.
6609     PendingLoads.push_back(Result);
6610     Result = getRoot();
6611     DAG.setRoot(Result);
6612     return;
6613   }
6614   case Intrinsic::lifetime_start:
6615   case Intrinsic::lifetime_end: {
6616     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6617     // Stack coloring is not enabled in O0, discard region information.
6618     if (TM.getOptLevel() == CodeGenOpt::None)
6619       return;
6620 
6621     const int64_t ObjectSize =
6622         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6623     Value *const ObjectPtr = I.getArgOperand(1);
6624     SmallVector<const Value *, 4> Allocas;
6625     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6626 
6627     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6628            E = Allocas.end(); Object != E; ++Object) {
6629       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6630 
6631       // Could not find an Alloca.
6632       if (!LifetimeObject)
6633         continue;
6634 
6635       // First check that the Alloca is static, otherwise it won't have a
6636       // valid frame index.
6637       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6638       if (SI == FuncInfo.StaticAllocaMap.end())
6639         return;
6640 
6641       const int FrameIndex = SI->second;
6642       int64_t Offset;
6643       if (GetPointerBaseWithConstantOffset(
6644               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6645         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6646       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6647                                 Offset);
6648       DAG.setRoot(Res);
6649     }
6650     return;
6651   }
6652   case Intrinsic::invariant_start:
6653     // Discard region information.
6654     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6655     return;
6656   case Intrinsic::invariant_end:
6657     // Discard region information.
6658     return;
6659   case Intrinsic::clear_cache:
6660     /// FunctionName may be null.
6661     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6662       lowerCallToExternalSymbol(I, FunctionName);
6663     return;
6664   case Intrinsic::donothing:
6665     // ignore
6666     return;
6667   case Intrinsic::experimental_stackmap:
6668     visitStackmap(I);
6669     return;
6670   case Intrinsic::experimental_patchpoint_void:
6671   case Intrinsic::experimental_patchpoint_i64:
6672     visitPatchpoint(&I);
6673     return;
6674   case Intrinsic::experimental_gc_statepoint:
6675     LowerStatepoint(ImmutableStatepoint(&I));
6676     return;
6677   case Intrinsic::experimental_gc_result:
6678     visitGCResult(cast<GCResultInst>(I));
6679     return;
6680   case Intrinsic::experimental_gc_relocate:
6681     visitGCRelocate(cast<GCRelocateInst>(I));
6682     return;
6683   case Intrinsic::instrprof_increment:
6684     llvm_unreachable("instrprof failed to lower an increment");
6685   case Intrinsic::instrprof_value_profile:
6686     llvm_unreachable("instrprof failed to lower a value profiling call");
6687   case Intrinsic::localescape: {
6688     MachineFunction &MF = DAG.getMachineFunction();
6689     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6690 
6691     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6692     // is the same on all targets.
6693     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6694       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6695       if (isa<ConstantPointerNull>(Arg))
6696         continue; // Skip null pointers. They represent a hole in index space.
6697       AllocaInst *Slot = cast<AllocaInst>(Arg);
6698       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6699              "can only escape static allocas");
6700       int FI = FuncInfo.StaticAllocaMap[Slot];
6701       MCSymbol *FrameAllocSym =
6702           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6703               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6704       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6705               TII->get(TargetOpcode::LOCAL_ESCAPE))
6706           .addSym(FrameAllocSym)
6707           .addFrameIndex(FI);
6708     }
6709 
6710     return;
6711   }
6712 
6713   case Intrinsic::localrecover: {
6714     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6715     MachineFunction &MF = DAG.getMachineFunction();
6716     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6717 
6718     // Get the symbol that defines the frame offset.
6719     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6720     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6721     unsigned IdxVal =
6722         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6723     MCSymbol *FrameAllocSym =
6724         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6725             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6726 
6727     // Create a MCSymbol for the label to avoid any target lowering
6728     // that would make this PC relative.
6729     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6730     SDValue OffsetVal =
6731         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6732 
6733     // Add the offset to the FP.
6734     Value *FP = I.getArgOperand(1);
6735     SDValue FPVal = getValue(FP);
6736     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6737     setValue(&I, Add);
6738 
6739     return;
6740   }
6741 
6742   case Intrinsic::eh_exceptionpointer:
6743   case Intrinsic::eh_exceptioncode: {
6744     // Get the exception pointer vreg, copy from it, and resize it to fit.
6745     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6746     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6747     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6748     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6749     SDValue N =
6750         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6751     if (Intrinsic == Intrinsic::eh_exceptioncode)
6752       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6753     setValue(&I, N);
6754     return;
6755   }
6756   case Intrinsic::xray_customevent: {
6757     // Here we want to make sure that the intrinsic behaves as if it has a
6758     // specific calling convention, and only for x86_64.
6759     // FIXME: Support other platforms later.
6760     const auto &Triple = DAG.getTarget().getTargetTriple();
6761     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6762       return;
6763 
6764     SDLoc DL = getCurSDLoc();
6765     SmallVector<SDValue, 8> Ops;
6766 
6767     // We want to say that we always want the arguments in registers.
6768     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6769     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6770     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6771     SDValue Chain = getRoot();
6772     Ops.push_back(LogEntryVal);
6773     Ops.push_back(StrSizeVal);
6774     Ops.push_back(Chain);
6775 
6776     // We need to enforce the calling convention for the callsite, so that
6777     // argument ordering is enforced correctly, and that register allocation can
6778     // see that some registers may be assumed clobbered and have to preserve
6779     // them across calls to the intrinsic.
6780     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6781                                            DL, NodeTys, Ops);
6782     SDValue patchableNode = SDValue(MN, 0);
6783     DAG.setRoot(patchableNode);
6784     setValue(&I, patchableNode);
6785     return;
6786   }
6787   case Intrinsic::xray_typedevent: {
6788     // Here we want to make sure that the intrinsic behaves as if it has a
6789     // specific calling convention, and only for x86_64.
6790     // FIXME: Support other platforms later.
6791     const auto &Triple = DAG.getTarget().getTargetTriple();
6792     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6793       return;
6794 
6795     SDLoc DL = getCurSDLoc();
6796     SmallVector<SDValue, 8> Ops;
6797 
6798     // We want to say that we always want the arguments in registers.
6799     // It's unclear to me how manipulating the selection DAG here forces callers
6800     // to provide arguments in registers instead of on the stack.
6801     SDValue LogTypeId = getValue(I.getArgOperand(0));
6802     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6803     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6804     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6805     SDValue Chain = getRoot();
6806     Ops.push_back(LogTypeId);
6807     Ops.push_back(LogEntryVal);
6808     Ops.push_back(StrSizeVal);
6809     Ops.push_back(Chain);
6810 
6811     // We need to enforce the calling convention for the callsite, so that
6812     // argument ordering is enforced correctly, and that register allocation can
6813     // see that some registers may be assumed clobbered and have to preserve
6814     // them across calls to the intrinsic.
6815     MachineSDNode *MN = DAG.getMachineNode(
6816         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6817     SDValue patchableNode = SDValue(MN, 0);
6818     DAG.setRoot(patchableNode);
6819     setValue(&I, patchableNode);
6820     return;
6821   }
6822   case Intrinsic::experimental_deoptimize:
6823     LowerDeoptimizeCall(&I);
6824     return;
6825 
6826   case Intrinsic::experimental_vector_reduce_v2_fadd:
6827   case Intrinsic::experimental_vector_reduce_v2_fmul:
6828   case Intrinsic::experimental_vector_reduce_add:
6829   case Intrinsic::experimental_vector_reduce_mul:
6830   case Intrinsic::experimental_vector_reduce_and:
6831   case Intrinsic::experimental_vector_reduce_or:
6832   case Intrinsic::experimental_vector_reduce_xor:
6833   case Intrinsic::experimental_vector_reduce_smax:
6834   case Intrinsic::experimental_vector_reduce_smin:
6835   case Intrinsic::experimental_vector_reduce_umax:
6836   case Intrinsic::experimental_vector_reduce_umin:
6837   case Intrinsic::experimental_vector_reduce_fmax:
6838   case Intrinsic::experimental_vector_reduce_fmin:
6839     visitVectorReduce(I, Intrinsic);
6840     return;
6841 
6842   case Intrinsic::icall_branch_funnel: {
6843     SmallVector<SDValue, 16> Ops;
6844     Ops.push_back(getValue(I.getArgOperand(0)));
6845 
6846     int64_t Offset;
6847     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6848         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6849     if (!Base)
6850       report_fatal_error(
6851           "llvm.icall.branch.funnel operand must be a GlobalValue");
6852     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6853 
6854     struct BranchFunnelTarget {
6855       int64_t Offset;
6856       SDValue Target;
6857     };
6858     SmallVector<BranchFunnelTarget, 8> Targets;
6859 
6860     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6861       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6862           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6863       if (ElemBase != Base)
6864         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6865                            "to the same GlobalValue");
6866 
6867       SDValue Val = getValue(I.getArgOperand(Op + 1));
6868       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6869       if (!GA)
6870         report_fatal_error(
6871             "llvm.icall.branch.funnel operand must be a GlobalValue");
6872       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6873                                      GA->getGlobal(), getCurSDLoc(),
6874                                      Val.getValueType(), GA->getOffset())});
6875     }
6876     llvm::sort(Targets,
6877                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6878                  return T1.Offset < T2.Offset;
6879                });
6880 
6881     for (auto &T : Targets) {
6882       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6883       Ops.push_back(T.Target);
6884     }
6885 
6886     Ops.push_back(DAG.getRoot()); // Chain
6887     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6888                                  getCurSDLoc(), MVT::Other, Ops),
6889               0);
6890     DAG.setRoot(N);
6891     setValue(&I, N);
6892     HasTailCall = true;
6893     return;
6894   }
6895 
6896   case Intrinsic::wasm_landingpad_index:
6897     // Information this intrinsic contained has been transferred to
6898     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6899     // delete it now.
6900     return;
6901 
6902   case Intrinsic::aarch64_settag:
6903   case Intrinsic::aarch64_settag_zero: {
6904     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6905     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6906     SDValue Val = TSI.EmitTargetCodeForSetTag(
6907         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6908         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6909         ZeroMemory);
6910     DAG.setRoot(Val);
6911     setValue(&I, Val);
6912     return;
6913   }
6914   case Intrinsic::ptrmask: {
6915     SDValue Ptr = getValue(I.getOperand(0));
6916     SDValue Const = getValue(I.getOperand(1));
6917 
6918     EVT DestVT =
6919         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6920 
6921     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6922                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6923     return;
6924   }
6925   }
6926 }
6927 
6928 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6929     const ConstrainedFPIntrinsic &FPI) {
6930   SDLoc sdl = getCurSDLoc();
6931 
6932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6933   SmallVector<EVT, 4> ValueVTs;
6934   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6935   ValueVTs.push_back(MVT::Other); // Out chain
6936 
6937   // We do not need to serialize constrained FP intrinsics against
6938   // each other or against (nonvolatile) loads, so they can be
6939   // chained like loads.
6940   SDValue Chain = DAG.getRoot();
6941   SmallVector<SDValue, 4> Opers;
6942   Opers.push_back(Chain);
6943   if (FPI.isUnaryOp()) {
6944     Opers.push_back(getValue(FPI.getArgOperand(0)));
6945   } else if (FPI.isTernaryOp()) {
6946     Opers.push_back(getValue(FPI.getArgOperand(0)));
6947     Opers.push_back(getValue(FPI.getArgOperand(1)));
6948     Opers.push_back(getValue(FPI.getArgOperand(2)));
6949   } else {
6950     Opers.push_back(getValue(FPI.getArgOperand(0)));
6951     Opers.push_back(getValue(FPI.getArgOperand(1)));
6952   }
6953 
6954   unsigned Opcode;
6955   switch (FPI.getIntrinsicID()) {
6956   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6957 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
6958   case Intrinsic::INTRINSIC:                                                   \
6959     Opcode = ISD::STRICT_##DAGN;                                               \
6960     break;
6961 #include "llvm/IR/ConstrainedOps.def"
6962   }
6963 
6964   // A few strict DAG nodes carry additional operands that are not
6965   // set up by the default code above.
6966   switch (Opcode) {
6967   default: break;
6968   case ISD::STRICT_FP_ROUND:
6969     Opers.push_back(
6970         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
6971     break;
6972   case ISD::STRICT_FSETCC:
6973   case ISD::STRICT_FSETCCS: {
6974     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
6975     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
6976     break;
6977   }
6978   }
6979 
6980   SDVTList VTs = DAG.getVTList(ValueVTs);
6981   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers);
6982 
6983   if (FPI.getExceptionBehavior() != fp::ExceptionBehavior::ebIgnore) {
6984     SDNodeFlags Flags;
6985     Flags.setFPExcept(true);
6986     Result->setFlags(Flags);
6987   }
6988 
6989   assert(Result.getNode()->getNumValues() == 2);
6990   // See above -- chain is handled like for loads here.
6991   SDValue OutChain = Result.getValue(1);
6992   PendingLoads.push_back(OutChain);
6993   SDValue FPResult = Result.getValue(0);
6994   setValue(&FPI, FPResult);
6995 }
6996 
6997 std::pair<SDValue, SDValue>
6998 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6999                                     const BasicBlock *EHPadBB) {
7000   MachineFunction &MF = DAG.getMachineFunction();
7001   MachineModuleInfo &MMI = MF.getMMI();
7002   MCSymbol *BeginLabel = nullptr;
7003 
7004   if (EHPadBB) {
7005     // Insert a label before the invoke call to mark the try range.  This can be
7006     // used to detect deletion of the invoke via the MachineModuleInfo.
7007     BeginLabel = MMI.getContext().createTempSymbol();
7008 
7009     // For SjLj, keep track of which landing pads go with which invokes
7010     // so as to maintain the ordering of pads in the LSDA.
7011     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7012     if (CallSiteIndex) {
7013       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7014       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7015 
7016       // Now that the call site is handled, stop tracking it.
7017       MMI.setCurrentCallSite(0);
7018     }
7019 
7020     // Both PendingLoads and PendingExports must be flushed here;
7021     // this call might not return.
7022     (void)getRoot();
7023     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7024 
7025     CLI.setChain(getRoot());
7026   }
7027   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7028   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7029 
7030   assert((CLI.IsTailCall || Result.second.getNode()) &&
7031          "Non-null chain expected with non-tail call!");
7032   assert((Result.second.getNode() || !Result.first.getNode()) &&
7033          "Null value expected with tail call!");
7034 
7035   if (!Result.second.getNode()) {
7036     // As a special case, a null chain means that a tail call has been emitted
7037     // and the DAG root is already updated.
7038     HasTailCall = true;
7039 
7040     // Since there's no actual continuation from this block, nothing can be
7041     // relying on us setting vregs for them.
7042     PendingExports.clear();
7043   } else {
7044     DAG.setRoot(Result.second);
7045   }
7046 
7047   if (EHPadBB) {
7048     // Insert a label at the end of the invoke call to mark the try range.  This
7049     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7050     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7051     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7052 
7053     // Inform MachineModuleInfo of range.
7054     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7055     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7056     // actually use outlined funclets and their LSDA info style.
7057     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7058       assert(CLI.CS);
7059       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7060       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7061                                 BeginLabel, EndLabel);
7062     } else if (!isScopedEHPersonality(Pers)) {
7063       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7064     }
7065   }
7066 
7067   return Result;
7068 }
7069 
7070 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7071                                       bool isTailCall,
7072                                       const BasicBlock *EHPadBB) {
7073   auto &DL = DAG.getDataLayout();
7074   FunctionType *FTy = CS.getFunctionType();
7075   Type *RetTy = CS.getType();
7076 
7077   TargetLowering::ArgListTy Args;
7078   Args.reserve(CS.arg_size());
7079 
7080   const Value *SwiftErrorVal = nullptr;
7081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7082 
7083   // We can't tail call inside a function with a swifterror argument. Lowering
7084   // does not support this yet. It would have to move into the swifterror
7085   // register before the call.
7086   auto *Caller = CS.getInstruction()->getParent()->getParent();
7087   if (TLI.supportSwiftError() &&
7088       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7089     isTailCall = false;
7090 
7091   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7092        i != e; ++i) {
7093     TargetLowering::ArgListEntry Entry;
7094     const Value *V = *i;
7095 
7096     // Skip empty types
7097     if (V->getType()->isEmptyTy())
7098       continue;
7099 
7100     SDValue ArgNode = getValue(V);
7101     Entry.Node = ArgNode; Entry.Ty = V->getType();
7102 
7103     Entry.setAttributes(&CS, i - CS.arg_begin());
7104 
7105     // Use swifterror virtual register as input to the call.
7106     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7107       SwiftErrorVal = V;
7108       // We find the virtual register for the actual swifterror argument.
7109       // Instead of using the Value, we use the virtual register instead.
7110       Entry.Node = DAG.getRegister(
7111           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7112           EVT(TLI.getPointerTy(DL)));
7113     }
7114 
7115     Args.push_back(Entry);
7116 
7117     // If we have an explicit sret argument that is an Instruction, (i.e., it
7118     // might point to function-local memory), we can't meaningfully tail-call.
7119     if (Entry.IsSRet && isa<Instruction>(V))
7120       isTailCall = false;
7121   }
7122 
7123   // If call site has a cfguardtarget operand bundle, create and add an
7124   // additional ArgListEntry.
7125   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7126     TargetLowering::ArgListEntry Entry;
7127     Value *V = Bundle->Inputs[0];
7128     SDValue ArgNode = getValue(V);
7129     Entry.Node = ArgNode;
7130     Entry.Ty = V->getType();
7131     Entry.IsCFGuardTarget = true;
7132     Args.push_back(Entry);
7133   }
7134 
7135   // Check if target-independent constraints permit a tail call here.
7136   // Target-dependent constraints are checked within TLI->LowerCallTo.
7137   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7138     isTailCall = false;
7139 
7140   // Disable tail calls if there is an swifterror argument. Targets have not
7141   // been updated to support tail calls.
7142   if (TLI.supportSwiftError() && SwiftErrorVal)
7143     isTailCall = false;
7144 
7145   TargetLowering::CallLoweringInfo CLI(DAG);
7146   CLI.setDebugLoc(getCurSDLoc())
7147       .setChain(getRoot())
7148       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7149       .setTailCall(isTailCall)
7150       .setConvergent(CS.isConvergent());
7151   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7152 
7153   if (Result.first.getNode()) {
7154     const Instruction *Inst = CS.getInstruction();
7155     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7156     setValue(Inst, Result.first);
7157   }
7158 
7159   // The last element of CLI.InVals has the SDValue for swifterror return.
7160   // Here we copy it to a virtual register and update SwiftErrorMap for
7161   // book-keeping.
7162   if (SwiftErrorVal && TLI.supportSwiftError()) {
7163     // Get the last element of InVals.
7164     SDValue Src = CLI.InVals.back();
7165     Register VReg = SwiftError.getOrCreateVRegDefAt(
7166         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7167     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7168     DAG.setRoot(CopyNode);
7169   }
7170 }
7171 
7172 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7173                              SelectionDAGBuilder &Builder) {
7174   // Check to see if this load can be trivially constant folded, e.g. if the
7175   // input is from a string literal.
7176   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7177     // Cast pointer to the type we really want to load.
7178     Type *LoadTy =
7179         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7180     if (LoadVT.isVector())
7181       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7182 
7183     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7184                                          PointerType::getUnqual(LoadTy));
7185 
7186     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7187             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7188       return Builder.getValue(LoadCst);
7189   }
7190 
7191   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7192   // still constant memory, the input chain can be the entry node.
7193   SDValue Root;
7194   bool ConstantMemory = false;
7195 
7196   // Do not serialize (non-volatile) loads of constant memory with anything.
7197   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7198     Root = Builder.DAG.getEntryNode();
7199     ConstantMemory = true;
7200   } else {
7201     // Do not serialize non-volatile loads against each other.
7202     Root = Builder.DAG.getRoot();
7203   }
7204 
7205   SDValue Ptr = Builder.getValue(PtrVal);
7206   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7207                                         Ptr, MachinePointerInfo(PtrVal),
7208                                         /* Alignment = */ 1);
7209 
7210   if (!ConstantMemory)
7211     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7212   return LoadVal;
7213 }
7214 
7215 /// Record the value for an instruction that produces an integer result,
7216 /// converting the type where necessary.
7217 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7218                                                   SDValue Value,
7219                                                   bool IsSigned) {
7220   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7221                                                     I.getType(), true);
7222   if (IsSigned)
7223     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7224   else
7225     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7226   setValue(&I, Value);
7227 }
7228 
7229 /// See if we can lower a memcmp call into an optimized form. If so, return
7230 /// true and lower it. Otherwise return false, and it will be lowered like a
7231 /// normal call.
7232 /// The caller already checked that \p I calls the appropriate LibFunc with a
7233 /// correct prototype.
7234 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7235   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7236   const Value *Size = I.getArgOperand(2);
7237   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7238   if (CSize && CSize->getZExtValue() == 0) {
7239     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7240                                                           I.getType(), true);
7241     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7242     return true;
7243   }
7244 
7245   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7246   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7247       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7248       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7249   if (Res.first.getNode()) {
7250     processIntegerCallValue(I, Res.first, true);
7251     PendingLoads.push_back(Res.second);
7252     return true;
7253   }
7254 
7255   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7256   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7257   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7258     return false;
7259 
7260   // If the target has a fast compare for the given size, it will return a
7261   // preferred load type for that size. Require that the load VT is legal and
7262   // that the target supports unaligned loads of that type. Otherwise, return
7263   // INVALID.
7264   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7265     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7266     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7267     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7268       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7269       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7270       // TODO: Check alignment of src and dest ptrs.
7271       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7272       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7273       if (!TLI.isTypeLegal(LVT) ||
7274           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7275           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7276         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7277     }
7278 
7279     return LVT;
7280   };
7281 
7282   // This turns into unaligned loads. We only do this if the target natively
7283   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7284   // we'll only produce a small number of byte loads.
7285   MVT LoadVT;
7286   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7287   switch (NumBitsToCompare) {
7288   default:
7289     return false;
7290   case 16:
7291     LoadVT = MVT::i16;
7292     break;
7293   case 32:
7294     LoadVT = MVT::i32;
7295     break;
7296   case 64:
7297   case 128:
7298   case 256:
7299     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7300     break;
7301   }
7302 
7303   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7304     return false;
7305 
7306   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7307   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7308 
7309   // Bitcast to a wide integer type if the loads are vectors.
7310   if (LoadVT.isVector()) {
7311     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7312     LoadL = DAG.getBitcast(CmpVT, LoadL);
7313     LoadR = DAG.getBitcast(CmpVT, LoadR);
7314   }
7315 
7316   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7317   processIntegerCallValue(I, Cmp, false);
7318   return true;
7319 }
7320 
7321 /// See if we can lower a memchr call into an optimized form. If so, return
7322 /// true and lower it. Otherwise return false, and it will be lowered like a
7323 /// normal call.
7324 /// The caller already checked that \p I calls the appropriate LibFunc with a
7325 /// correct prototype.
7326 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7327   const Value *Src = I.getArgOperand(0);
7328   const Value *Char = I.getArgOperand(1);
7329   const Value *Length = I.getArgOperand(2);
7330 
7331   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7332   std::pair<SDValue, SDValue> Res =
7333     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7334                                 getValue(Src), getValue(Char), getValue(Length),
7335                                 MachinePointerInfo(Src));
7336   if (Res.first.getNode()) {
7337     setValue(&I, Res.first);
7338     PendingLoads.push_back(Res.second);
7339     return true;
7340   }
7341 
7342   return false;
7343 }
7344 
7345 /// See if we can lower a mempcpy call into an optimized form. If so, return
7346 /// true and lower it. Otherwise return false, and it will be lowered like a
7347 /// normal call.
7348 /// The caller already checked that \p I calls the appropriate LibFunc with a
7349 /// correct prototype.
7350 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7351   SDValue Dst = getValue(I.getArgOperand(0));
7352   SDValue Src = getValue(I.getArgOperand(1));
7353   SDValue Size = getValue(I.getArgOperand(2));
7354 
7355   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7356   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7357   unsigned Align = std::min(DstAlign, SrcAlign);
7358   if (Align == 0) // Alignment of one or both could not be inferred.
7359     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7360 
7361   bool isVol = false;
7362   SDLoc sdl = getCurSDLoc();
7363 
7364   // In the mempcpy context we need to pass in a false value for isTailCall
7365   // because the return pointer needs to be adjusted by the size of
7366   // the copied memory.
7367   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7368                              false, /*isTailCall=*/false,
7369                              MachinePointerInfo(I.getArgOperand(0)),
7370                              MachinePointerInfo(I.getArgOperand(1)));
7371   assert(MC.getNode() != nullptr &&
7372          "** memcpy should not be lowered as TailCall in mempcpy context **");
7373   DAG.setRoot(MC);
7374 
7375   // Check if Size needs to be truncated or extended.
7376   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7377 
7378   // Adjust return pointer to point just past the last dst byte.
7379   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7380                                     Dst, Size);
7381   setValue(&I, DstPlusSize);
7382   return true;
7383 }
7384 
7385 /// See if we can lower a strcpy call into an optimized form.  If so, return
7386 /// true and lower it, otherwise return false and it will be lowered like a
7387 /// normal call.
7388 /// The caller already checked that \p I calls the appropriate LibFunc with a
7389 /// correct prototype.
7390 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7391   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7392 
7393   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7394   std::pair<SDValue, SDValue> Res =
7395     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7396                                 getValue(Arg0), getValue(Arg1),
7397                                 MachinePointerInfo(Arg0),
7398                                 MachinePointerInfo(Arg1), isStpcpy);
7399   if (Res.first.getNode()) {
7400     setValue(&I, Res.first);
7401     DAG.setRoot(Res.second);
7402     return true;
7403   }
7404 
7405   return false;
7406 }
7407 
7408 /// See if we can lower a strcmp call into an optimized form.  If so, return
7409 /// true and lower it, otherwise return false and it will be lowered like a
7410 /// normal call.
7411 /// The caller already checked that \p I calls the appropriate LibFunc with a
7412 /// correct prototype.
7413 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7414   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7415 
7416   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7417   std::pair<SDValue, SDValue> Res =
7418     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7419                                 getValue(Arg0), getValue(Arg1),
7420                                 MachinePointerInfo(Arg0),
7421                                 MachinePointerInfo(Arg1));
7422   if (Res.first.getNode()) {
7423     processIntegerCallValue(I, Res.first, true);
7424     PendingLoads.push_back(Res.second);
7425     return true;
7426   }
7427 
7428   return false;
7429 }
7430 
7431 /// See if we can lower a strlen call into an optimized form.  If so, return
7432 /// true and lower it, otherwise return false and it will be lowered like a
7433 /// normal call.
7434 /// The caller already checked that \p I calls the appropriate LibFunc with a
7435 /// correct prototype.
7436 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7437   const Value *Arg0 = I.getArgOperand(0);
7438 
7439   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7440   std::pair<SDValue, SDValue> Res =
7441     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7442                                 getValue(Arg0), MachinePointerInfo(Arg0));
7443   if (Res.first.getNode()) {
7444     processIntegerCallValue(I, Res.first, false);
7445     PendingLoads.push_back(Res.second);
7446     return true;
7447   }
7448 
7449   return false;
7450 }
7451 
7452 /// See if we can lower a strnlen call into an optimized form.  If so, return
7453 /// true and lower it, otherwise return false and it will be lowered like a
7454 /// normal call.
7455 /// The caller already checked that \p I calls the appropriate LibFunc with a
7456 /// correct prototype.
7457 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7458   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7459 
7460   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7461   std::pair<SDValue, SDValue> Res =
7462     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7463                                  getValue(Arg0), getValue(Arg1),
7464                                  MachinePointerInfo(Arg0));
7465   if (Res.first.getNode()) {
7466     processIntegerCallValue(I, Res.first, false);
7467     PendingLoads.push_back(Res.second);
7468     return true;
7469   }
7470 
7471   return false;
7472 }
7473 
7474 /// See if we can lower a unary floating-point operation into an SDNode with
7475 /// the specified Opcode.  If so, return true and lower it, otherwise return
7476 /// false and it will be lowered like a normal call.
7477 /// The caller already checked that \p I calls the appropriate LibFunc with a
7478 /// correct prototype.
7479 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7480                                               unsigned Opcode) {
7481   // We already checked this call's prototype; verify it doesn't modify errno.
7482   if (!I.onlyReadsMemory())
7483     return false;
7484 
7485   SDValue Tmp = getValue(I.getArgOperand(0));
7486   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7487   return true;
7488 }
7489 
7490 /// See if we can lower a binary floating-point operation into an SDNode with
7491 /// the specified Opcode. If so, return true and lower it. Otherwise return
7492 /// false, and it will be lowered like a normal call.
7493 /// The caller already checked that \p I calls the appropriate LibFunc with a
7494 /// correct prototype.
7495 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7496                                                unsigned Opcode) {
7497   // We already checked this call's prototype; verify it doesn't modify errno.
7498   if (!I.onlyReadsMemory())
7499     return false;
7500 
7501   SDValue Tmp0 = getValue(I.getArgOperand(0));
7502   SDValue Tmp1 = getValue(I.getArgOperand(1));
7503   EVT VT = Tmp0.getValueType();
7504   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7505   return true;
7506 }
7507 
7508 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7509   // Handle inline assembly differently.
7510   if (isa<InlineAsm>(I.getCalledValue())) {
7511     visitInlineAsm(&I);
7512     return;
7513   }
7514 
7515   if (Function *F = I.getCalledFunction()) {
7516     if (F->isDeclaration()) {
7517       // Is this an LLVM intrinsic or a target-specific intrinsic?
7518       unsigned IID = F->getIntrinsicID();
7519       if (!IID)
7520         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7521           IID = II->getIntrinsicID(F);
7522 
7523       if (IID) {
7524         visitIntrinsicCall(I, IID);
7525         return;
7526       }
7527     }
7528 
7529     // Check for well-known libc/libm calls.  If the function is internal, it
7530     // can't be a library call.  Don't do the check if marked as nobuiltin for
7531     // some reason or the call site requires strict floating point semantics.
7532     LibFunc Func;
7533     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7534         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7535         LibInfo->hasOptimizedCodeGen(Func)) {
7536       switch (Func) {
7537       default: break;
7538       case LibFunc_copysign:
7539       case LibFunc_copysignf:
7540       case LibFunc_copysignl:
7541         // We already checked this call's prototype; verify it doesn't modify
7542         // errno.
7543         if (I.onlyReadsMemory()) {
7544           SDValue LHS = getValue(I.getArgOperand(0));
7545           SDValue RHS = getValue(I.getArgOperand(1));
7546           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7547                                    LHS.getValueType(), LHS, RHS));
7548           return;
7549         }
7550         break;
7551       case LibFunc_fabs:
7552       case LibFunc_fabsf:
7553       case LibFunc_fabsl:
7554         if (visitUnaryFloatCall(I, ISD::FABS))
7555           return;
7556         break;
7557       case LibFunc_fmin:
7558       case LibFunc_fminf:
7559       case LibFunc_fminl:
7560         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7561           return;
7562         break;
7563       case LibFunc_fmax:
7564       case LibFunc_fmaxf:
7565       case LibFunc_fmaxl:
7566         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7567           return;
7568         break;
7569       case LibFunc_sin:
7570       case LibFunc_sinf:
7571       case LibFunc_sinl:
7572         if (visitUnaryFloatCall(I, ISD::FSIN))
7573           return;
7574         break;
7575       case LibFunc_cos:
7576       case LibFunc_cosf:
7577       case LibFunc_cosl:
7578         if (visitUnaryFloatCall(I, ISD::FCOS))
7579           return;
7580         break;
7581       case LibFunc_sqrt:
7582       case LibFunc_sqrtf:
7583       case LibFunc_sqrtl:
7584       case LibFunc_sqrt_finite:
7585       case LibFunc_sqrtf_finite:
7586       case LibFunc_sqrtl_finite:
7587         if (visitUnaryFloatCall(I, ISD::FSQRT))
7588           return;
7589         break;
7590       case LibFunc_floor:
7591       case LibFunc_floorf:
7592       case LibFunc_floorl:
7593         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7594           return;
7595         break;
7596       case LibFunc_nearbyint:
7597       case LibFunc_nearbyintf:
7598       case LibFunc_nearbyintl:
7599         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7600           return;
7601         break;
7602       case LibFunc_ceil:
7603       case LibFunc_ceilf:
7604       case LibFunc_ceill:
7605         if (visitUnaryFloatCall(I, ISD::FCEIL))
7606           return;
7607         break;
7608       case LibFunc_rint:
7609       case LibFunc_rintf:
7610       case LibFunc_rintl:
7611         if (visitUnaryFloatCall(I, ISD::FRINT))
7612           return;
7613         break;
7614       case LibFunc_round:
7615       case LibFunc_roundf:
7616       case LibFunc_roundl:
7617         if (visitUnaryFloatCall(I, ISD::FROUND))
7618           return;
7619         break;
7620       case LibFunc_trunc:
7621       case LibFunc_truncf:
7622       case LibFunc_truncl:
7623         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7624           return;
7625         break;
7626       case LibFunc_log2:
7627       case LibFunc_log2f:
7628       case LibFunc_log2l:
7629         if (visitUnaryFloatCall(I, ISD::FLOG2))
7630           return;
7631         break;
7632       case LibFunc_exp2:
7633       case LibFunc_exp2f:
7634       case LibFunc_exp2l:
7635         if (visitUnaryFloatCall(I, ISD::FEXP2))
7636           return;
7637         break;
7638       case LibFunc_memcmp:
7639         if (visitMemCmpCall(I))
7640           return;
7641         break;
7642       case LibFunc_mempcpy:
7643         if (visitMemPCpyCall(I))
7644           return;
7645         break;
7646       case LibFunc_memchr:
7647         if (visitMemChrCall(I))
7648           return;
7649         break;
7650       case LibFunc_strcpy:
7651         if (visitStrCpyCall(I, false))
7652           return;
7653         break;
7654       case LibFunc_stpcpy:
7655         if (visitStrCpyCall(I, true))
7656           return;
7657         break;
7658       case LibFunc_strcmp:
7659         if (visitStrCmpCall(I))
7660           return;
7661         break;
7662       case LibFunc_strlen:
7663         if (visitStrLenCall(I))
7664           return;
7665         break;
7666       case LibFunc_strnlen:
7667         if (visitStrNLenCall(I))
7668           return;
7669         break;
7670       }
7671     }
7672   }
7673 
7674   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7675   // have to do anything here to lower funclet bundles.
7676   // CFGuardTarget bundles are lowered in LowerCallTo.
7677   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7678                                         LLVMContext::OB_funclet,
7679                                         LLVMContext::OB_cfguardtarget}) &&
7680          "Cannot lower calls with arbitrary operand bundles!");
7681 
7682   SDValue Callee = getValue(I.getCalledValue());
7683 
7684   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7685     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7686   else
7687     // Check if we can potentially perform a tail call. More detailed checking
7688     // is be done within LowerCallTo, after more information about the call is
7689     // known.
7690     LowerCallTo(&I, Callee, I.isTailCall());
7691 }
7692 
7693 namespace {
7694 
7695 /// AsmOperandInfo - This contains information for each constraint that we are
7696 /// lowering.
7697 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7698 public:
7699   /// CallOperand - If this is the result output operand or a clobber
7700   /// this is null, otherwise it is the incoming operand to the CallInst.
7701   /// This gets modified as the asm is processed.
7702   SDValue CallOperand;
7703 
7704   /// AssignedRegs - If this is a register or register class operand, this
7705   /// contains the set of register corresponding to the operand.
7706   RegsForValue AssignedRegs;
7707 
7708   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7709     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7710   }
7711 
7712   /// Whether or not this operand accesses memory
7713   bool hasMemory(const TargetLowering &TLI) const {
7714     // Indirect operand accesses access memory.
7715     if (isIndirect)
7716       return true;
7717 
7718     for (const auto &Code : Codes)
7719       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7720         return true;
7721 
7722     return false;
7723   }
7724 
7725   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7726   /// corresponds to.  If there is no Value* for this operand, it returns
7727   /// MVT::Other.
7728   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7729                            const DataLayout &DL) const {
7730     if (!CallOperandVal) return MVT::Other;
7731 
7732     if (isa<BasicBlock>(CallOperandVal))
7733       return TLI.getPointerTy(DL);
7734 
7735     llvm::Type *OpTy = CallOperandVal->getType();
7736 
7737     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7738     // If this is an indirect operand, the operand is a pointer to the
7739     // accessed type.
7740     if (isIndirect) {
7741       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7742       if (!PtrTy)
7743         report_fatal_error("Indirect operand for inline asm not a pointer!");
7744       OpTy = PtrTy->getElementType();
7745     }
7746 
7747     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7748     if (StructType *STy = dyn_cast<StructType>(OpTy))
7749       if (STy->getNumElements() == 1)
7750         OpTy = STy->getElementType(0);
7751 
7752     // If OpTy is not a single value, it may be a struct/union that we
7753     // can tile with integers.
7754     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7755       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7756       switch (BitSize) {
7757       default: break;
7758       case 1:
7759       case 8:
7760       case 16:
7761       case 32:
7762       case 64:
7763       case 128:
7764         OpTy = IntegerType::get(Context, BitSize);
7765         break;
7766       }
7767     }
7768 
7769     return TLI.getValueType(DL, OpTy, true);
7770   }
7771 };
7772 
7773 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7774 
7775 } // end anonymous namespace
7776 
7777 /// Make sure that the output operand \p OpInfo and its corresponding input
7778 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7779 /// out).
7780 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7781                                SDISelAsmOperandInfo &MatchingOpInfo,
7782                                SelectionDAG &DAG) {
7783   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7784     return;
7785 
7786   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7787   const auto &TLI = DAG.getTargetLoweringInfo();
7788 
7789   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7790       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7791                                        OpInfo.ConstraintVT);
7792   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7793       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7794                                        MatchingOpInfo.ConstraintVT);
7795   if ((OpInfo.ConstraintVT.isInteger() !=
7796        MatchingOpInfo.ConstraintVT.isInteger()) ||
7797       (MatchRC.second != InputRC.second)) {
7798     // FIXME: error out in a more elegant fashion
7799     report_fatal_error("Unsupported asm: input constraint"
7800                        " with a matching output constraint of"
7801                        " incompatible type!");
7802   }
7803   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7804 }
7805 
7806 /// Get a direct memory input to behave well as an indirect operand.
7807 /// This may introduce stores, hence the need for a \p Chain.
7808 /// \return The (possibly updated) chain.
7809 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7810                                         SDISelAsmOperandInfo &OpInfo,
7811                                         SelectionDAG &DAG) {
7812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7813 
7814   // If we don't have an indirect input, put it in the constpool if we can,
7815   // otherwise spill it to a stack slot.
7816   // TODO: This isn't quite right. We need to handle these according to
7817   // the addressing mode that the constraint wants. Also, this may take
7818   // an additional register for the computation and we don't want that
7819   // either.
7820 
7821   // If the operand is a float, integer, or vector constant, spill to a
7822   // constant pool entry to get its address.
7823   const Value *OpVal = OpInfo.CallOperandVal;
7824   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7825       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7826     OpInfo.CallOperand = DAG.getConstantPool(
7827         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7828     return Chain;
7829   }
7830 
7831   // Otherwise, create a stack slot and emit a store to it before the asm.
7832   Type *Ty = OpVal->getType();
7833   auto &DL = DAG.getDataLayout();
7834   uint64_t TySize = DL.getTypeAllocSize(Ty);
7835   unsigned Align = DL.getPrefTypeAlignment(Ty);
7836   MachineFunction &MF = DAG.getMachineFunction();
7837   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7838   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7839   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7840                             MachinePointerInfo::getFixedStack(MF, SSFI),
7841                             TLI.getMemValueType(DL, Ty));
7842   OpInfo.CallOperand = StackSlot;
7843 
7844   return Chain;
7845 }
7846 
7847 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7848 /// specified operand.  We prefer to assign virtual registers, to allow the
7849 /// register allocator to handle the assignment process.  However, if the asm
7850 /// uses features that we can't model on machineinstrs, we have SDISel do the
7851 /// allocation.  This produces generally horrible, but correct, code.
7852 ///
7853 ///   OpInfo describes the operand
7854 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7855 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7856                                  SDISelAsmOperandInfo &OpInfo,
7857                                  SDISelAsmOperandInfo &RefOpInfo) {
7858   LLVMContext &Context = *DAG.getContext();
7859   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7860 
7861   MachineFunction &MF = DAG.getMachineFunction();
7862   SmallVector<unsigned, 4> Regs;
7863   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7864 
7865   // No work to do for memory operations.
7866   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7867     return;
7868 
7869   // If this is a constraint for a single physreg, or a constraint for a
7870   // register class, find it.
7871   unsigned AssignedReg;
7872   const TargetRegisterClass *RC;
7873   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7874       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7875   // RC is unset only on failure. Return immediately.
7876   if (!RC)
7877     return;
7878 
7879   // Get the actual register value type.  This is important, because the user
7880   // may have asked for (e.g.) the AX register in i32 type.  We need to
7881   // remember that AX is actually i16 to get the right extension.
7882   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7883 
7884   if (OpInfo.ConstraintVT != MVT::Other) {
7885     // If this is an FP operand in an integer register (or visa versa), or more
7886     // generally if the operand value disagrees with the register class we plan
7887     // to stick it in, fix the operand type.
7888     //
7889     // If this is an input value, the bitcast to the new type is done now.
7890     // Bitcast for output value is done at the end of visitInlineAsm().
7891     if ((OpInfo.Type == InlineAsm::isOutput ||
7892          OpInfo.Type == InlineAsm::isInput) &&
7893         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7894       // Try to convert to the first EVT that the reg class contains.  If the
7895       // types are identical size, use a bitcast to convert (e.g. two differing
7896       // vector types).  Note: output bitcast is done at the end of
7897       // visitInlineAsm().
7898       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7899         // Exclude indirect inputs while they are unsupported because the code
7900         // to perform the load is missing and thus OpInfo.CallOperand still
7901         // refers to the input address rather than the pointed-to value.
7902         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7903           OpInfo.CallOperand =
7904               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7905         OpInfo.ConstraintVT = RegVT;
7906         // If the operand is an FP value and we want it in integer registers,
7907         // use the corresponding integer type. This turns an f64 value into
7908         // i64, which can be passed with two i32 values on a 32-bit machine.
7909       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7910         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7911         if (OpInfo.Type == InlineAsm::isInput)
7912           OpInfo.CallOperand =
7913               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7914         OpInfo.ConstraintVT = VT;
7915       }
7916     }
7917   }
7918 
7919   // No need to allocate a matching input constraint since the constraint it's
7920   // matching to has already been allocated.
7921   if (OpInfo.isMatchingInputConstraint())
7922     return;
7923 
7924   EVT ValueVT = OpInfo.ConstraintVT;
7925   if (OpInfo.ConstraintVT == MVT::Other)
7926     ValueVT = RegVT;
7927 
7928   // Initialize NumRegs.
7929   unsigned NumRegs = 1;
7930   if (OpInfo.ConstraintVT != MVT::Other)
7931     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7932 
7933   // If this is a constraint for a specific physical register, like {r17},
7934   // assign it now.
7935 
7936   // If this associated to a specific register, initialize iterator to correct
7937   // place. If virtual, make sure we have enough registers
7938 
7939   // Initialize iterator if necessary
7940   TargetRegisterClass::iterator I = RC->begin();
7941   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7942 
7943   // Do not check for single registers.
7944   if (AssignedReg) {
7945       for (; *I != AssignedReg; ++I)
7946         assert(I != RC->end() && "AssignedReg should be member of RC");
7947   }
7948 
7949   for (; NumRegs; --NumRegs, ++I) {
7950     assert(I != RC->end() && "Ran out of registers to allocate!");
7951     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7952     Regs.push_back(R);
7953   }
7954 
7955   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7956 }
7957 
7958 static unsigned
7959 findMatchingInlineAsmOperand(unsigned OperandNo,
7960                              const std::vector<SDValue> &AsmNodeOperands) {
7961   // Scan until we find the definition we already emitted of this operand.
7962   unsigned CurOp = InlineAsm::Op_FirstOperand;
7963   for (; OperandNo; --OperandNo) {
7964     // Advance to the next operand.
7965     unsigned OpFlag =
7966         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7967     assert((InlineAsm::isRegDefKind(OpFlag) ||
7968             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7969             InlineAsm::isMemKind(OpFlag)) &&
7970            "Skipped past definitions?");
7971     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7972   }
7973   return CurOp;
7974 }
7975 
7976 namespace {
7977 
7978 class ExtraFlags {
7979   unsigned Flags = 0;
7980 
7981 public:
7982   explicit ExtraFlags(ImmutableCallSite CS) {
7983     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7984     if (IA->hasSideEffects())
7985       Flags |= InlineAsm::Extra_HasSideEffects;
7986     if (IA->isAlignStack())
7987       Flags |= InlineAsm::Extra_IsAlignStack;
7988     if (CS.isConvergent())
7989       Flags |= InlineAsm::Extra_IsConvergent;
7990     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7991   }
7992 
7993   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7994     // Ideally, we would only check against memory constraints.  However, the
7995     // meaning of an Other constraint can be target-specific and we can't easily
7996     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7997     // for Other constraints as well.
7998     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7999         OpInfo.ConstraintType == TargetLowering::C_Other) {
8000       if (OpInfo.Type == InlineAsm::isInput)
8001         Flags |= InlineAsm::Extra_MayLoad;
8002       else if (OpInfo.Type == InlineAsm::isOutput)
8003         Flags |= InlineAsm::Extra_MayStore;
8004       else if (OpInfo.Type == InlineAsm::isClobber)
8005         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8006     }
8007   }
8008 
8009   unsigned get() const { return Flags; }
8010 };
8011 
8012 } // end anonymous namespace
8013 
8014 /// visitInlineAsm - Handle a call to an InlineAsm object.
8015 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8016   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8017 
8018   /// ConstraintOperands - Information about all of the constraints.
8019   SDISelAsmOperandInfoVector ConstraintOperands;
8020 
8021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8022   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8023       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8024 
8025   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8026   // AsmDialect, MayLoad, MayStore).
8027   bool HasSideEffect = IA->hasSideEffects();
8028   ExtraFlags ExtraInfo(CS);
8029 
8030   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8031   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8032   for (auto &T : TargetConstraints) {
8033     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8034     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8035 
8036     // Compute the value type for each operand.
8037     if (OpInfo.Type == InlineAsm::isInput ||
8038         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8039       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8040 
8041       // Process the call argument. BasicBlocks are labels, currently appearing
8042       // only in asm's.
8043       const Instruction *I = CS.getInstruction();
8044       if (isa<CallBrInst>(I) &&
8045           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8046                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8047         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8048         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8049         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8050       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8051         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8052       } else {
8053         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8054       }
8055 
8056       OpInfo.ConstraintVT =
8057           OpInfo
8058               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8059               .getSimpleVT();
8060     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8061       // The return value of the call is this value.  As such, there is no
8062       // corresponding argument.
8063       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8064       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8065         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8066             DAG.getDataLayout(), STy->getElementType(ResNo));
8067       } else {
8068         assert(ResNo == 0 && "Asm only has one result!");
8069         OpInfo.ConstraintVT =
8070             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8071       }
8072       ++ResNo;
8073     } else {
8074       OpInfo.ConstraintVT = MVT::Other;
8075     }
8076 
8077     if (!HasSideEffect)
8078       HasSideEffect = OpInfo.hasMemory(TLI);
8079 
8080     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8081     // FIXME: Could we compute this on OpInfo rather than T?
8082 
8083     // Compute the constraint code and ConstraintType to use.
8084     TLI.ComputeConstraintToUse(T, SDValue());
8085 
8086     if (T.ConstraintType == TargetLowering::C_Immediate &&
8087         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8088       // We've delayed emitting a diagnostic like the "n" constraint because
8089       // inlining could cause an integer showing up.
8090       return emitInlineAsmError(
8091           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8092                   "integer constant expression");
8093 
8094     ExtraInfo.update(T);
8095   }
8096 
8097 
8098   // We won't need to flush pending loads if this asm doesn't touch
8099   // memory and is nonvolatile.
8100   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8101 
8102   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8103   if (IsCallBr) {
8104     // If this is a callbr we need to flush pending exports since inlineasm_br
8105     // is a terminator. We need to do this before nodes are glued to
8106     // the inlineasm_br node.
8107     Chain = getControlRoot();
8108   }
8109 
8110   // Second pass over the constraints: compute which constraint option to use.
8111   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8112     // If this is an output operand with a matching input operand, look up the
8113     // matching input. If their types mismatch, e.g. one is an integer, the
8114     // other is floating point, or their sizes are different, flag it as an
8115     // error.
8116     if (OpInfo.hasMatchingInput()) {
8117       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8118       patchMatchingInput(OpInfo, Input, DAG);
8119     }
8120 
8121     // Compute the constraint code and ConstraintType to use.
8122     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8123 
8124     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8125         OpInfo.Type == InlineAsm::isClobber)
8126       continue;
8127 
8128     // If this is a memory input, and if the operand is not indirect, do what we
8129     // need to provide an address for the memory input.
8130     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8131         !OpInfo.isIndirect) {
8132       assert((OpInfo.isMultipleAlternative ||
8133               (OpInfo.Type == InlineAsm::isInput)) &&
8134              "Can only indirectify direct input operands!");
8135 
8136       // Memory operands really want the address of the value.
8137       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8138 
8139       // There is no longer a Value* corresponding to this operand.
8140       OpInfo.CallOperandVal = nullptr;
8141 
8142       // It is now an indirect operand.
8143       OpInfo.isIndirect = true;
8144     }
8145 
8146   }
8147 
8148   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8149   std::vector<SDValue> AsmNodeOperands;
8150   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8151   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8152       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8153 
8154   // If we have a !srcloc metadata node associated with it, we want to attach
8155   // this to the ultimately generated inline asm machineinstr.  To do this, we
8156   // pass in the third operand as this (potentially null) inline asm MDNode.
8157   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8158   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8159 
8160   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8161   // bits as operand 3.
8162   AsmNodeOperands.push_back(DAG.getTargetConstant(
8163       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8164 
8165   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8166   // this, assign virtual and physical registers for inputs and otput.
8167   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8168     // Assign Registers.
8169     SDISelAsmOperandInfo &RefOpInfo =
8170         OpInfo.isMatchingInputConstraint()
8171             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8172             : OpInfo;
8173     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8174 
8175     switch (OpInfo.Type) {
8176     case InlineAsm::isOutput:
8177       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8178           ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8179             OpInfo.ConstraintType == TargetLowering::C_Other) &&
8180            OpInfo.isIndirect)) {
8181         unsigned ConstraintID =
8182             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8183         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8184                "Failed to convert memory constraint code to constraint id.");
8185 
8186         // Add information to the INLINEASM node to know about this output.
8187         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8188         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8189         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8190                                                         MVT::i32));
8191         AsmNodeOperands.push_back(OpInfo.CallOperand);
8192         break;
8193       } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8194                    OpInfo.ConstraintType == TargetLowering::C_Other) &&
8195                   !OpInfo.isIndirect) ||
8196                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8197                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8198         // Otherwise, this outputs to a register (directly for C_Register /
8199         // C_RegisterClass, and a target-defined fashion for
8200         // C_Immediate/C_Other). Find a register that we can use.
8201         if (OpInfo.AssignedRegs.Regs.empty()) {
8202           emitInlineAsmError(
8203               CS, "couldn't allocate output register for constraint '" +
8204                       Twine(OpInfo.ConstraintCode) + "'");
8205           return;
8206         }
8207 
8208         // Add information to the INLINEASM node to know that this register is
8209         // set.
8210         OpInfo.AssignedRegs.AddInlineAsmOperands(
8211             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8212                                   : InlineAsm::Kind_RegDef,
8213             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8214       }
8215       break;
8216 
8217     case InlineAsm::isInput: {
8218       SDValue InOperandVal = OpInfo.CallOperand;
8219 
8220       if (OpInfo.isMatchingInputConstraint()) {
8221         // If this is required to match an output register we have already set,
8222         // just use its register.
8223         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8224                                                   AsmNodeOperands);
8225         unsigned OpFlag =
8226           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8227         if (InlineAsm::isRegDefKind(OpFlag) ||
8228             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8229           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8230           if (OpInfo.isIndirect) {
8231             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8232             emitInlineAsmError(CS, "inline asm not supported yet:"
8233                                    " don't know how to handle tied "
8234                                    "indirect register inputs");
8235             return;
8236           }
8237 
8238           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8239           SmallVector<unsigned, 4> Regs;
8240 
8241           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8242             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8243             MachineRegisterInfo &RegInfo =
8244                 DAG.getMachineFunction().getRegInfo();
8245             for (unsigned i = 0; i != NumRegs; ++i)
8246               Regs.push_back(RegInfo.createVirtualRegister(RC));
8247           } else {
8248             emitInlineAsmError(CS, "inline asm error: This value type register "
8249                                    "class is not natively supported!");
8250             return;
8251           }
8252 
8253           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8254 
8255           SDLoc dl = getCurSDLoc();
8256           // Use the produced MatchedRegs object to
8257           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8258                                     CS.getInstruction());
8259           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8260                                            true, OpInfo.getMatchedOperand(), dl,
8261                                            DAG, AsmNodeOperands);
8262           break;
8263         }
8264 
8265         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8266         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8267                "Unexpected number of operands");
8268         // Add information to the INLINEASM node to know about this input.
8269         // See InlineAsm.h isUseOperandTiedToDef.
8270         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8271         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8272                                                     OpInfo.getMatchedOperand());
8273         AsmNodeOperands.push_back(DAG.getTargetConstant(
8274             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8275         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8276         break;
8277       }
8278 
8279       // Treat indirect 'X' constraint as memory.
8280       if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8281            OpInfo.ConstraintType == TargetLowering::C_Other) &&
8282           OpInfo.isIndirect)
8283         OpInfo.ConstraintType = TargetLowering::C_Memory;
8284 
8285       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8286           OpInfo.ConstraintType == TargetLowering::C_Other) {
8287         std::vector<SDValue> Ops;
8288         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8289                                           Ops, DAG);
8290         if (Ops.empty()) {
8291           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8292             if (isa<ConstantSDNode>(InOperandVal)) {
8293               emitInlineAsmError(CS, "value out of range for constraint '" +
8294                                  Twine(OpInfo.ConstraintCode) + "'");
8295               return;
8296             }
8297 
8298           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8299                                      Twine(OpInfo.ConstraintCode) + "'");
8300           return;
8301         }
8302 
8303         // Add information to the INLINEASM node to know about this input.
8304         unsigned ResOpType =
8305           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8306         AsmNodeOperands.push_back(DAG.getTargetConstant(
8307             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8308         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8309         break;
8310       }
8311 
8312       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8313         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8314         assert(InOperandVal.getValueType() ==
8315                    TLI.getPointerTy(DAG.getDataLayout()) &&
8316                "Memory operands expect pointer values");
8317 
8318         unsigned ConstraintID =
8319             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8320         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8321                "Failed to convert memory constraint code to constraint id.");
8322 
8323         // Add information to the INLINEASM node to know about this input.
8324         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8325         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8326         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8327                                                         getCurSDLoc(),
8328                                                         MVT::i32));
8329         AsmNodeOperands.push_back(InOperandVal);
8330         break;
8331       }
8332 
8333       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8334               OpInfo.ConstraintType == TargetLowering::C_Register ||
8335               OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8336              "Unknown constraint type!");
8337 
8338       // TODO: Support this.
8339       if (OpInfo.isIndirect) {
8340         emitInlineAsmError(
8341             CS, "Don't know how to handle indirect register inputs yet "
8342                 "for constraint '" +
8343                     Twine(OpInfo.ConstraintCode) + "'");
8344         return;
8345       }
8346 
8347       // Copy the input into the appropriate registers.
8348       if (OpInfo.AssignedRegs.Regs.empty()) {
8349         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8350                                    Twine(OpInfo.ConstraintCode) + "'");
8351         return;
8352       }
8353 
8354       SDLoc dl = getCurSDLoc();
8355 
8356       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8357                                         Chain, &Flag, CS.getInstruction());
8358 
8359       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8360                                                dl, DAG, AsmNodeOperands);
8361       break;
8362     }
8363     case InlineAsm::isClobber:
8364       // Add the clobbered value to the operand list, so that the register
8365       // allocator is aware that the physreg got clobbered.
8366       if (!OpInfo.AssignedRegs.Regs.empty())
8367         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8368                                                  false, 0, getCurSDLoc(), DAG,
8369                                                  AsmNodeOperands);
8370       break;
8371     }
8372   }
8373 
8374   // Finish up input operands.  Set the input chain and add the flag last.
8375   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8376   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8377 
8378   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8379   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8380                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8381   Flag = Chain.getValue(1);
8382 
8383   // Do additional work to generate outputs.
8384 
8385   SmallVector<EVT, 1> ResultVTs;
8386   SmallVector<SDValue, 1> ResultValues;
8387   SmallVector<SDValue, 8> OutChains;
8388 
8389   llvm::Type *CSResultType = CS.getType();
8390   ArrayRef<Type *> ResultTypes;
8391   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8392     ResultTypes = StructResult->elements();
8393   else if (!CSResultType->isVoidTy())
8394     ResultTypes = makeArrayRef(CSResultType);
8395 
8396   auto CurResultType = ResultTypes.begin();
8397   auto handleRegAssign = [&](SDValue V) {
8398     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8399     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8400     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8401     ++CurResultType;
8402     // If the type of the inline asm call site return value is different but has
8403     // same size as the type of the asm output bitcast it.  One example of this
8404     // is for vectors with different width / number of elements.  This can
8405     // happen for register classes that can contain multiple different value
8406     // types.  The preg or vreg allocated may not have the same VT as was
8407     // expected.
8408     //
8409     // This can also happen for a return value that disagrees with the register
8410     // class it is put in, eg. a double in a general-purpose register on a
8411     // 32-bit machine.
8412     if (ResultVT != V.getValueType() &&
8413         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8414       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8415     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8416              V.getValueType().isInteger()) {
8417       // If a result value was tied to an input value, the computed result
8418       // may have a wider width than the expected result.  Extract the
8419       // relevant portion.
8420       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8421     }
8422     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8423     ResultVTs.push_back(ResultVT);
8424     ResultValues.push_back(V);
8425   };
8426 
8427   // Deal with output operands.
8428   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8429     if (OpInfo.Type == InlineAsm::isOutput) {
8430       SDValue Val;
8431       // Skip trivial output operands.
8432       if (OpInfo.AssignedRegs.Regs.empty())
8433         continue;
8434 
8435       switch (OpInfo.ConstraintType) {
8436       case TargetLowering::C_Register:
8437       case TargetLowering::C_RegisterClass:
8438         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8439             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8440         break;
8441       case TargetLowering::C_Immediate:
8442       case TargetLowering::C_Other:
8443         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8444                                               OpInfo, DAG);
8445         break;
8446       case TargetLowering::C_Memory:
8447         break; // Already handled.
8448       case TargetLowering::C_Unknown:
8449         assert(false && "Unexpected unknown constraint");
8450       }
8451 
8452       // Indirect output manifest as stores. Record output chains.
8453       if (OpInfo.isIndirect) {
8454         const Value *Ptr = OpInfo.CallOperandVal;
8455         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8456         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8457                                      MachinePointerInfo(Ptr));
8458         OutChains.push_back(Store);
8459       } else {
8460         // generate CopyFromRegs to associated registers.
8461         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8462         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8463           for (const SDValue &V : Val->op_values())
8464             handleRegAssign(V);
8465         } else
8466           handleRegAssign(Val);
8467       }
8468     }
8469   }
8470 
8471   // Set results.
8472   if (!ResultValues.empty()) {
8473     assert(CurResultType == ResultTypes.end() &&
8474            "Mismatch in number of ResultTypes");
8475     assert(ResultValues.size() == ResultTypes.size() &&
8476            "Mismatch in number of output operands in asm result");
8477 
8478     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8479                             DAG.getVTList(ResultVTs), ResultValues);
8480     setValue(CS.getInstruction(), V);
8481   }
8482 
8483   // Collect store chains.
8484   if (!OutChains.empty())
8485     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8486 
8487   // Only Update Root if inline assembly has a memory effect.
8488   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8489     DAG.setRoot(Chain);
8490 }
8491 
8492 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8493                                              const Twine &Message) {
8494   LLVMContext &Ctx = *DAG.getContext();
8495   Ctx.emitError(CS.getInstruction(), Message);
8496 
8497   // Make sure we leave the DAG in a valid state
8498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8499   SmallVector<EVT, 1> ValueVTs;
8500   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8501 
8502   if (ValueVTs.empty())
8503     return;
8504 
8505   SmallVector<SDValue, 1> Ops;
8506   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8507     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8508 
8509   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8510 }
8511 
8512 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8513   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8514                           MVT::Other, getRoot(),
8515                           getValue(I.getArgOperand(0)),
8516                           DAG.getSrcValue(I.getArgOperand(0))));
8517 }
8518 
8519 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8521   const DataLayout &DL = DAG.getDataLayout();
8522   SDValue V = DAG.getVAArg(
8523       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8524       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8525       DL.getABITypeAlignment(I.getType()));
8526   DAG.setRoot(V.getValue(1));
8527 
8528   if (I.getType()->isPointerTy())
8529     V = DAG.getPtrExtOrTrunc(
8530         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8531   setValue(&I, V);
8532 }
8533 
8534 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8535   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8536                           MVT::Other, getRoot(),
8537                           getValue(I.getArgOperand(0)),
8538                           DAG.getSrcValue(I.getArgOperand(0))));
8539 }
8540 
8541 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8542   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8543                           MVT::Other, getRoot(),
8544                           getValue(I.getArgOperand(0)),
8545                           getValue(I.getArgOperand(1)),
8546                           DAG.getSrcValue(I.getArgOperand(0)),
8547                           DAG.getSrcValue(I.getArgOperand(1))));
8548 }
8549 
8550 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8551                                                     const Instruction &I,
8552                                                     SDValue Op) {
8553   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8554   if (!Range)
8555     return Op;
8556 
8557   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8558   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8559     return Op;
8560 
8561   APInt Lo = CR.getUnsignedMin();
8562   if (!Lo.isMinValue())
8563     return Op;
8564 
8565   APInt Hi = CR.getUnsignedMax();
8566   unsigned Bits = std::max(Hi.getActiveBits(),
8567                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8568 
8569   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8570 
8571   SDLoc SL = getCurSDLoc();
8572 
8573   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8574                              DAG.getValueType(SmallVT));
8575   unsigned NumVals = Op.getNode()->getNumValues();
8576   if (NumVals == 1)
8577     return ZExt;
8578 
8579   SmallVector<SDValue, 4> Ops;
8580 
8581   Ops.push_back(ZExt);
8582   for (unsigned I = 1; I != NumVals; ++I)
8583     Ops.push_back(Op.getValue(I));
8584 
8585   return DAG.getMergeValues(Ops, SL);
8586 }
8587 
8588 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8589 /// the call being lowered.
8590 ///
8591 /// This is a helper for lowering intrinsics that follow a target calling
8592 /// convention or require stack pointer adjustment. Only a subset of the
8593 /// intrinsic's operands need to participate in the calling convention.
8594 void SelectionDAGBuilder::populateCallLoweringInfo(
8595     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8596     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8597     bool IsPatchPoint) {
8598   TargetLowering::ArgListTy Args;
8599   Args.reserve(NumArgs);
8600 
8601   // Populate the argument list.
8602   // Attributes for args start at offset 1, after the return attribute.
8603   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8604        ArgI != ArgE; ++ArgI) {
8605     const Value *V = Call->getOperand(ArgI);
8606 
8607     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8608 
8609     TargetLowering::ArgListEntry Entry;
8610     Entry.Node = getValue(V);
8611     Entry.Ty = V->getType();
8612     Entry.setAttributes(Call, ArgI);
8613     Args.push_back(Entry);
8614   }
8615 
8616   CLI.setDebugLoc(getCurSDLoc())
8617       .setChain(getRoot())
8618       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8619       .setDiscardResult(Call->use_empty())
8620       .setIsPatchPoint(IsPatchPoint);
8621 }
8622 
8623 /// Add a stack map intrinsic call's live variable operands to a stackmap
8624 /// or patchpoint target node's operand list.
8625 ///
8626 /// Constants are converted to TargetConstants purely as an optimization to
8627 /// avoid constant materialization and register allocation.
8628 ///
8629 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8630 /// generate addess computation nodes, and so FinalizeISel can convert the
8631 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8632 /// address materialization and register allocation, but may also be required
8633 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8634 /// alloca in the entry block, then the runtime may assume that the alloca's
8635 /// StackMap location can be read immediately after compilation and that the
8636 /// location is valid at any point during execution (this is similar to the
8637 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8638 /// only available in a register, then the runtime would need to trap when
8639 /// execution reaches the StackMap in order to read the alloca's location.
8640 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8641                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8642                                 SelectionDAGBuilder &Builder) {
8643   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8644     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8645     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8646       Ops.push_back(
8647         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8648       Ops.push_back(
8649         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8650     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8651       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8652       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8653           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8654     } else
8655       Ops.push_back(OpVal);
8656   }
8657 }
8658 
8659 /// Lower llvm.experimental.stackmap directly to its target opcode.
8660 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8661   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8662   //                                  [live variables...])
8663 
8664   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8665 
8666   SDValue Chain, InFlag, Callee, NullPtr;
8667   SmallVector<SDValue, 32> Ops;
8668 
8669   SDLoc DL = getCurSDLoc();
8670   Callee = getValue(CI.getCalledValue());
8671   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8672 
8673   // The stackmap intrinsic only records the live variables (the arguments
8674   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8675   // intrinsic, this won't be lowered to a function call. This means we don't
8676   // have to worry about calling conventions and target specific lowering code.
8677   // Instead we perform the call lowering right here.
8678   //
8679   // chain, flag = CALLSEQ_START(chain, 0, 0)
8680   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8681   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8682   //
8683   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8684   InFlag = Chain.getValue(1);
8685 
8686   // Add the <id> and <numBytes> constants.
8687   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8688   Ops.push_back(DAG.getTargetConstant(
8689                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8690   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8691   Ops.push_back(DAG.getTargetConstant(
8692                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8693                   MVT::i32));
8694 
8695   // Push live variables for the stack map.
8696   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8697 
8698   // We are not pushing any register mask info here on the operands list,
8699   // because the stackmap doesn't clobber anything.
8700 
8701   // Push the chain and the glue flag.
8702   Ops.push_back(Chain);
8703   Ops.push_back(InFlag);
8704 
8705   // Create the STACKMAP node.
8706   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8707   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8708   Chain = SDValue(SM, 0);
8709   InFlag = Chain.getValue(1);
8710 
8711   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8712 
8713   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8714 
8715   // Set the root to the target-lowered call chain.
8716   DAG.setRoot(Chain);
8717 
8718   // Inform the Frame Information that we have a stackmap in this function.
8719   FuncInfo.MF->getFrameInfo().setHasStackMap();
8720 }
8721 
8722 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8723 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8724                                           const BasicBlock *EHPadBB) {
8725   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8726   //                                                 i32 <numBytes>,
8727   //                                                 i8* <target>,
8728   //                                                 i32 <numArgs>,
8729   //                                                 [Args...],
8730   //                                                 [live variables...])
8731 
8732   CallingConv::ID CC = CS.getCallingConv();
8733   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8734   bool HasDef = !CS->getType()->isVoidTy();
8735   SDLoc dl = getCurSDLoc();
8736   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8737 
8738   // Handle immediate and symbolic callees.
8739   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8740     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8741                                    /*isTarget=*/true);
8742   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8743     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8744                                          SDLoc(SymbolicCallee),
8745                                          SymbolicCallee->getValueType(0));
8746 
8747   // Get the real number of arguments participating in the call <numArgs>
8748   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8749   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8750 
8751   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8752   // Intrinsics include all meta-operands up to but not including CC.
8753   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8754   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8755          "Not enough arguments provided to the patchpoint intrinsic");
8756 
8757   // For AnyRegCC the arguments are lowered later on manually.
8758   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8759   Type *ReturnTy =
8760     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8761 
8762   TargetLowering::CallLoweringInfo CLI(DAG);
8763   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8764                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8765   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8766 
8767   SDNode *CallEnd = Result.second.getNode();
8768   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8769     CallEnd = CallEnd->getOperand(0).getNode();
8770 
8771   /// Get a call instruction from the call sequence chain.
8772   /// Tail calls are not allowed.
8773   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8774          "Expected a callseq node.");
8775   SDNode *Call = CallEnd->getOperand(0).getNode();
8776   bool HasGlue = Call->getGluedNode();
8777 
8778   // Replace the target specific call node with the patchable intrinsic.
8779   SmallVector<SDValue, 8> Ops;
8780 
8781   // Add the <id> and <numBytes> constants.
8782   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8783   Ops.push_back(DAG.getTargetConstant(
8784                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8785   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8786   Ops.push_back(DAG.getTargetConstant(
8787                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8788                   MVT::i32));
8789 
8790   // Add the callee.
8791   Ops.push_back(Callee);
8792 
8793   // Adjust <numArgs> to account for any arguments that have been passed on the
8794   // stack instead.
8795   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8796   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8797   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8798   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8799 
8800   // Add the calling convention
8801   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8802 
8803   // Add the arguments we omitted previously. The register allocator should
8804   // place these in any free register.
8805   if (IsAnyRegCC)
8806     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8807       Ops.push_back(getValue(CS.getArgument(i)));
8808 
8809   // Push the arguments from the call instruction up to the register mask.
8810   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8811   Ops.append(Call->op_begin() + 2, e);
8812 
8813   // Push live variables for the stack map.
8814   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8815 
8816   // Push the register mask info.
8817   if (HasGlue)
8818     Ops.push_back(*(Call->op_end()-2));
8819   else
8820     Ops.push_back(*(Call->op_end()-1));
8821 
8822   // Push the chain (this is originally the first operand of the call, but
8823   // becomes now the last or second to last operand).
8824   Ops.push_back(*(Call->op_begin()));
8825 
8826   // Push the glue flag (last operand).
8827   if (HasGlue)
8828     Ops.push_back(*(Call->op_end()-1));
8829 
8830   SDVTList NodeTys;
8831   if (IsAnyRegCC && HasDef) {
8832     // Create the return types based on the intrinsic definition
8833     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8834     SmallVector<EVT, 3> ValueVTs;
8835     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8836     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8837 
8838     // There is always a chain and a glue type at the end
8839     ValueVTs.push_back(MVT::Other);
8840     ValueVTs.push_back(MVT::Glue);
8841     NodeTys = DAG.getVTList(ValueVTs);
8842   } else
8843     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8844 
8845   // Replace the target specific call node with a PATCHPOINT node.
8846   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8847                                          dl, NodeTys, Ops);
8848 
8849   // Update the NodeMap.
8850   if (HasDef) {
8851     if (IsAnyRegCC)
8852       setValue(CS.getInstruction(), SDValue(MN, 0));
8853     else
8854       setValue(CS.getInstruction(), Result.first);
8855   }
8856 
8857   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8858   // call sequence. Furthermore the location of the chain and glue can change
8859   // when the AnyReg calling convention is used and the intrinsic returns a
8860   // value.
8861   if (IsAnyRegCC && HasDef) {
8862     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8863     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8864     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8865   } else
8866     DAG.ReplaceAllUsesWith(Call, MN);
8867   DAG.DeleteNode(Call);
8868 
8869   // Inform the Frame Information that we have a patchpoint in this function.
8870   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8871 }
8872 
8873 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8874                                             unsigned Intrinsic) {
8875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8876   SDValue Op1 = getValue(I.getArgOperand(0));
8877   SDValue Op2;
8878   if (I.getNumArgOperands() > 1)
8879     Op2 = getValue(I.getArgOperand(1));
8880   SDLoc dl = getCurSDLoc();
8881   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8882   SDValue Res;
8883   FastMathFlags FMF;
8884   if (isa<FPMathOperator>(I))
8885     FMF = I.getFastMathFlags();
8886 
8887   switch (Intrinsic) {
8888   case Intrinsic::experimental_vector_reduce_v2_fadd:
8889     if (FMF.allowReassoc())
8890       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8891                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8892     else
8893       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8894     break;
8895   case Intrinsic::experimental_vector_reduce_v2_fmul:
8896     if (FMF.allowReassoc())
8897       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8898                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8899     else
8900       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8901     break;
8902   case Intrinsic::experimental_vector_reduce_add:
8903     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8904     break;
8905   case Intrinsic::experimental_vector_reduce_mul:
8906     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8907     break;
8908   case Intrinsic::experimental_vector_reduce_and:
8909     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8910     break;
8911   case Intrinsic::experimental_vector_reduce_or:
8912     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8913     break;
8914   case Intrinsic::experimental_vector_reduce_xor:
8915     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8916     break;
8917   case Intrinsic::experimental_vector_reduce_smax:
8918     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8919     break;
8920   case Intrinsic::experimental_vector_reduce_smin:
8921     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8922     break;
8923   case Intrinsic::experimental_vector_reduce_umax:
8924     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8925     break;
8926   case Intrinsic::experimental_vector_reduce_umin:
8927     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8928     break;
8929   case Intrinsic::experimental_vector_reduce_fmax:
8930     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8931     break;
8932   case Intrinsic::experimental_vector_reduce_fmin:
8933     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8934     break;
8935   default:
8936     llvm_unreachable("Unhandled vector reduce intrinsic");
8937   }
8938   setValue(&I, Res);
8939 }
8940 
8941 /// Returns an AttributeList representing the attributes applied to the return
8942 /// value of the given call.
8943 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8944   SmallVector<Attribute::AttrKind, 2> Attrs;
8945   if (CLI.RetSExt)
8946     Attrs.push_back(Attribute::SExt);
8947   if (CLI.RetZExt)
8948     Attrs.push_back(Attribute::ZExt);
8949   if (CLI.IsInReg)
8950     Attrs.push_back(Attribute::InReg);
8951 
8952   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8953                             Attrs);
8954 }
8955 
8956 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8957 /// implementation, which just calls LowerCall.
8958 /// FIXME: When all targets are
8959 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8960 std::pair<SDValue, SDValue>
8961 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8962   // Handle the incoming return values from the call.
8963   CLI.Ins.clear();
8964   Type *OrigRetTy = CLI.RetTy;
8965   SmallVector<EVT, 4> RetTys;
8966   SmallVector<uint64_t, 4> Offsets;
8967   auto &DL = CLI.DAG.getDataLayout();
8968   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8969 
8970   if (CLI.IsPostTypeLegalization) {
8971     // If we are lowering a libcall after legalization, split the return type.
8972     SmallVector<EVT, 4> OldRetTys;
8973     SmallVector<uint64_t, 4> OldOffsets;
8974     RetTys.swap(OldRetTys);
8975     Offsets.swap(OldOffsets);
8976 
8977     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8978       EVT RetVT = OldRetTys[i];
8979       uint64_t Offset = OldOffsets[i];
8980       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8981       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8982       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8983       RetTys.append(NumRegs, RegisterVT);
8984       for (unsigned j = 0; j != NumRegs; ++j)
8985         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8986     }
8987   }
8988 
8989   SmallVector<ISD::OutputArg, 4> Outs;
8990   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8991 
8992   bool CanLowerReturn =
8993       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8994                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8995 
8996   SDValue DemoteStackSlot;
8997   int DemoteStackIdx = -100;
8998   if (!CanLowerReturn) {
8999     // FIXME: equivalent assert?
9000     // assert(!CS.hasInAllocaArgument() &&
9001     //        "sret demotion is incompatible with inalloca");
9002     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9003     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9004     MachineFunction &MF = CLI.DAG.getMachineFunction();
9005     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9006     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9007                                               DL.getAllocaAddrSpace());
9008 
9009     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9010     ArgListEntry Entry;
9011     Entry.Node = DemoteStackSlot;
9012     Entry.Ty = StackSlotPtrType;
9013     Entry.IsSExt = false;
9014     Entry.IsZExt = false;
9015     Entry.IsInReg = false;
9016     Entry.IsSRet = true;
9017     Entry.IsNest = false;
9018     Entry.IsByVal = false;
9019     Entry.IsReturned = false;
9020     Entry.IsSwiftSelf = false;
9021     Entry.IsSwiftError = false;
9022     Entry.IsCFGuardTarget = false;
9023     Entry.Alignment = Align;
9024     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9025     CLI.NumFixedArgs += 1;
9026     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9027 
9028     // sret demotion isn't compatible with tail-calls, since the sret argument
9029     // points into the callers stack frame.
9030     CLI.IsTailCall = false;
9031   } else {
9032     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9033         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9034     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9035       ISD::ArgFlagsTy Flags;
9036       if (NeedsRegBlock) {
9037         Flags.setInConsecutiveRegs();
9038         if (I == RetTys.size() - 1)
9039           Flags.setInConsecutiveRegsLast();
9040       }
9041       EVT VT = RetTys[I];
9042       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9043                                                      CLI.CallConv, VT);
9044       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9045                                                        CLI.CallConv, VT);
9046       for (unsigned i = 0; i != NumRegs; ++i) {
9047         ISD::InputArg MyFlags;
9048         MyFlags.Flags = Flags;
9049         MyFlags.VT = RegisterVT;
9050         MyFlags.ArgVT = VT;
9051         MyFlags.Used = CLI.IsReturnValueUsed;
9052         if (CLI.RetTy->isPointerTy()) {
9053           MyFlags.Flags.setPointer();
9054           MyFlags.Flags.setPointerAddrSpace(
9055               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9056         }
9057         if (CLI.RetSExt)
9058           MyFlags.Flags.setSExt();
9059         if (CLI.RetZExt)
9060           MyFlags.Flags.setZExt();
9061         if (CLI.IsInReg)
9062           MyFlags.Flags.setInReg();
9063         CLI.Ins.push_back(MyFlags);
9064       }
9065     }
9066   }
9067 
9068   // We push in swifterror return as the last element of CLI.Ins.
9069   ArgListTy &Args = CLI.getArgs();
9070   if (supportSwiftError()) {
9071     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9072       if (Args[i].IsSwiftError) {
9073         ISD::InputArg MyFlags;
9074         MyFlags.VT = getPointerTy(DL);
9075         MyFlags.ArgVT = EVT(getPointerTy(DL));
9076         MyFlags.Flags.setSwiftError();
9077         CLI.Ins.push_back(MyFlags);
9078       }
9079     }
9080   }
9081 
9082   // Handle all of the outgoing arguments.
9083   CLI.Outs.clear();
9084   CLI.OutVals.clear();
9085   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9086     SmallVector<EVT, 4> ValueVTs;
9087     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9088     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9089     Type *FinalType = Args[i].Ty;
9090     if (Args[i].IsByVal)
9091       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9092     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9093         FinalType, CLI.CallConv, CLI.IsVarArg);
9094     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9095          ++Value) {
9096       EVT VT = ValueVTs[Value];
9097       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9098       SDValue Op = SDValue(Args[i].Node.getNode(),
9099                            Args[i].Node.getResNo() + Value);
9100       ISD::ArgFlagsTy Flags;
9101 
9102       // Certain targets (such as MIPS), may have a different ABI alignment
9103       // for a type depending on the context. Give the target a chance to
9104       // specify the alignment it wants.
9105       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9106 
9107       if (Args[i].Ty->isPointerTy()) {
9108         Flags.setPointer();
9109         Flags.setPointerAddrSpace(
9110             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9111       }
9112       if (Args[i].IsZExt)
9113         Flags.setZExt();
9114       if (Args[i].IsSExt)
9115         Flags.setSExt();
9116       if (Args[i].IsInReg) {
9117         // If we are using vectorcall calling convention, a structure that is
9118         // passed InReg - is surely an HVA
9119         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9120             isa<StructType>(FinalType)) {
9121           // The first value of a structure is marked
9122           if (0 == Value)
9123             Flags.setHvaStart();
9124           Flags.setHva();
9125         }
9126         // Set InReg Flag
9127         Flags.setInReg();
9128       }
9129       if (Args[i].IsSRet)
9130         Flags.setSRet();
9131       if (Args[i].IsSwiftSelf)
9132         Flags.setSwiftSelf();
9133       if (Args[i].IsSwiftError)
9134         Flags.setSwiftError();
9135       if (Args[i].IsCFGuardTarget)
9136         Flags.setCFGuardTarget();
9137       if (Args[i].IsByVal)
9138         Flags.setByVal();
9139       if (Args[i].IsInAlloca) {
9140         Flags.setInAlloca();
9141         // Set the byval flag for CCAssignFn callbacks that don't know about
9142         // inalloca.  This way we can know how many bytes we should've allocated
9143         // and how many bytes a callee cleanup function will pop.  If we port
9144         // inalloca to more targets, we'll have to add custom inalloca handling
9145         // in the various CC lowering callbacks.
9146         Flags.setByVal();
9147       }
9148       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9149         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9150         Type *ElementTy = Ty->getElementType();
9151 
9152         unsigned FrameSize = DL.getTypeAllocSize(
9153             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9154         Flags.setByValSize(FrameSize);
9155 
9156         // info is not there but there are cases it cannot get right.
9157         unsigned FrameAlign;
9158         if (Args[i].Alignment)
9159           FrameAlign = Args[i].Alignment;
9160         else
9161           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9162         Flags.setByValAlign(Align(FrameAlign));
9163       }
9164       if (Args[i].IsNest)
9165         Flags.setNest();
9166       if (NeedsRegBlock)
9167         Flags.setInConsecutiveRegs();
9168       Flags.setOrigAlign(OriginalAlignment);
9169 
9170       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9171                                                  CLI.CallConv, VT);
9172       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9173                                                         CLI.CallConv, VT);
9174       SmallVector<SDValue, 4> Parts(NumParts);
9175       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9176 
9177       if (Args[i].IsSExt)
9178         ExtendKind = ISD::SIGN_EXTEND;
9179       else if (Args[i].IsZExt)
9180         ExtendKind = ISD::ZERO_EXTEND;
9181 
9182       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9183       // for now.
9184       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9185           CanLowerReturn) {
9186         assert((CLI.RetTy == Args[i].Ty ||
9187                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9188                  CLI.RetTy->getPointerAddressSpace() ==
9189                      Args[i].Ty->getPointerAddressSpace())) &&
9190                RetTys.size() == NumValues && "unexpected use of 'returned'");
9191         // Before passing 'returned' to the target lowering code, ensure that
9192         // either the register MVT and the actual EVT are the same size or that
9193         // the return value and argument are extended in the same way; in these
9194         // cases it's safe to pass the argument register value unchanged as the
9195         // return register value (although it's at the target's option whether
9196         // to do so)
9197         // TODO: allow code generation to take advantage of partially preserved
9198         // registers rather than clobbering the entire register when the
9199         // parameter extension method is not compatible with the return
9200         // extension method
9201         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9202             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9203              CLI.RetZExt == Args[i].IsZExt))
9204           Flags.setReturned();
9205       }
9206 
9207       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9208                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9209 
9210       for (unsigned j = 0; j != NumParts; ++j) {
9211         // if it isn't first piece, alignment must be 1
9212         // For scalable vectors the scalable part is currently handled
9213         // by individual targets, so we just use the known minimum size here.
9214         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9215                     i < CLI.NumFixedArgs, i,
9216                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9217         if (NumParts > 1 && j == 0)
9218           MyFlags.Flags.setSplit();
9219         else if (j != 0) {
9220           MyFlags.Flags.setOrigAlign(Align::None());
9221           if (j == NumParts - 1)
9222             MyFlags.Flags.setSplitEnd();
9223         }
9224 
9225         CLI.Outs.push_back(MyFlags);
9226         CLI.OutVals.push_back(Parts[j]);
9227       }
9228 
9229       if (NeedsRegBlock && Value == NumValues - 1)
9230         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9231     }
9232   }
9233 
9234   SmallVector<SDValue, 4> InVals;
9235   CLI.Chain = LowerCall(CLI, InVals);
9236 
9237   // Update CLI.InVals to use outside of this function.
9238   CLI.InVals = InVals;
9239 
9240   // Verify that the target's LowerCall behaved as expected.
9241   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9242          "LowerCall didn't return a valid chain!");
9243   assert((!CLI.IsTailCall || InVals.empty()) &&
9244          "LowerCall emitted a return value for a tail call!");
9245   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9246          "LowerCall didn't emit the correct number of values!");
9247 
9248   // For a tail call, the return value is merely live-out and there aren't
9249   // any nodes in the DAG representing it. Return a special value to
9250   // indicate that a tail call has been emitted and no more Instructions
9251   // should be processed in the current block.
9252   if (CLI.IsTailCall) {
9253     CLI.DAG.setRoot(CLI.Chain);
9254     return std::make_pair(SDValue(), SDValue());
9255   }
9256 
9257 #ifndef NDEBUG
9258   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9259     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9260     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9261            "LowerCall emitted a value with the wrong type!");
9262   }
9263 #endif
9264 
9265   SmallVector<SDValue, 4> ReturnValues;
9266   if (!CanLowerReturn) {
9267     // The instruction result is the result of loading from the
9268     // hidden sret parameter.
9269     SmallVector<EVT, 1> PVTs;
9270     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9271 
9272     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9273     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9274     EVT PtrVT = PVTs[0];
9275 
9276     unsigned NumValues = RetTys.size();
9277     ReturnValues.resize(NumValues);
9278     SmallVector<SDValue, 4> Chains(NumValues);
9279 
9280     // An aggregate return value cannot wrap around the address space, so
9281     // offsets to its parts don't wrap either.
9282     SDNodeFlags Flags;
9283     Flags.setNoUnsignedWrap(true);
9284 
9285     for (unsigned i = 0; i < NumValues; ++i) {
9286       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9287                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9288                                                         PtrVT), Flags);
9289       SDValue L = CLI.DAG.getLoad(
9290           RetTys[i], CLI.DL, CLI.Chain, Add,
9291           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9292                                             DemoteStackIdx, Offsets[i]),
9293           /* Alignment = */ 1);
9294       ReturnValues[i] = L;
9295       Chains[i] = L.getValue(1);
9296     }
9297 
9298     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9299   } else {
9300     // Collect the legal value parts into potentially illegal values
9301     // that correspond to the original function's return values.
9302     Optional<ISD::NodeType> AssertOp;
9303     if (CLI.RetSExt)
9304       AssertOp = ISD::AssertSext;
9305     else if (CLI.RetZExt)
9306       AssertOp = ISD::AssertZext;
9307     unsigned CurReg = 0;
9308     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9309       EVT VT = RetTys[I];
9310       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9311                                                      CLI.CallConv, VT);
9312       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9313                                                        CLI.CallConv, VT);
9314 
9315       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9316                                               NumRegs, RegisterVT, VT, nullptr,
9317                                               CLI.CallConv, AssertOp));
9318       CurReg += NumRegs;
9319     }
9320 
9321     // For a function returning void, there is no return value. We can't create
9322     // such a node, so we just return a null return value in that case. In
9323     // that case, nothing will actually look at the value.
9324     if (ReturnValues.empty())
9325       return std::make_pair(SDValue(), CLI.Chain);
9326   }
9327 
9328   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9329                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9330   return std::make_pair(Res, CLI.Chain);
9331 }
9332 
9333 void TargetLowering::LowerOperationWrapper(SDNode *N,
9334                                            SmallVectorImpl<SDValue> &Results,
9335                                            SelectionDAG &DAG) const {
9336   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9337     Results.push_back(Res);
9338 }
9339 
9340 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9341   llvm_unreachable("LowerOperation not implemented for this target!");
9342 }
9343 
9344 void
9345 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9346   SDValue Op = getNonRegisterValue(V);
9347   assert((Op.getOpcode() != ISD::CopyFromReg ||
9348           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9349          "Copy from a reg to the same reg!");
9350   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9351 
9352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9353   // If this is an InlineAsm we have to match the registers required, not the
9354   // notional registers required by the type.
9355 
9356   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9357                    None); // This is not an ABI copy.
9358   SDValue Chain = DAG.getEntryNode();
9359 
9360   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9361                               FuncInfo.PreferredExtendType.end())
9362                                  ? ISD::ANY_EXTEND
9363                                  : FuncInfo.PreferredExtendType[V];
9364   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9365   PendingExports.push_back(Chain);
9366 }
9367 
9368 #include "llvm/CodeGen/SelectionDAGISel.h"
9369 
9370 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9371 /// entry block, return true.  This includes arguments used by switches, since
9372 /// the switch may expand into multiple basic blocks.
9373 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9374   // With FastISel active, we may be splitting blocks, so force creation
9375   // of virtual registers for all non-dead arguments.
9376   if (FastISel)
9377     return A->use_empty();
9378 
9379   const BasicBlock &Entry = A->getParent()->front();
9380   for (const User *U : A->users())
9381     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9382       return false;  // Use not in entry block.
9383 
9384   return true;
9385 }
9386 
9387 using ArgCopyElisionMapTy =
9388     DenseMap<const Argument *,
9389              std::pair<const AllocaInst *, const StoreInst *>>;
9390 
9391 /// Scan the entry block of the function in FuncInfo for arguments that look
9392 /// like copies into a local alloca. Record any copied arguments in
9393 /// ArgCopyElisionCandidates.
9394 static void
9395 findArgumentCopyElisionCandidates(const DataLayout &DL,
9396                                   FunctionLoweringInfo *FuncInfo,
9397                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9398   // Record the state of every static alloca used in the entry block. Argument
9399   // allocas are all used in the entry block, so we need approximately as many
9400   // entries as we have arguments.
9401   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9402   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9403   unsigned NumArgs = FuncInfo->Fn->arg_size();
9404   StaticAllocas.reserve(NumArgs * 2);
9405 
9406   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9407     if (!V)
9408       return nullptr;
9409     V = V->stripPointerCasts();
9410     const auto *AI = dyn_cast<AllocaInst>(V);
9411     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9412       return nullptr;
9413     auto Iter = StaticAllocas.insert({AI, Unknown});
9414     return &Iter.first->second;
9415   };
9416 
9417   // Look for stores of arguments to static allocas. Look through bitcasts and
9418   // GEPs to handle type coercions, as long as the alloca is fully initialized
9419   // by the store. Any non-store use of an alloca escapes it and any subsequent
9420   // unanalyzed store might write it.
9421   // FIXME: Handle structs initialized with multiple stores.
9422   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9423     // Look for stores, and handle non-store uses conservatively.
9424     const auto *SI = dyn_cast<StoreInst>(&I);
9425     if (!SI) {
9426       // We will look through cast uses, so ignore them completely.
9427       if (I.isCast())
9428         continue;
9429       // Ignore debug info intrinsics, they don't escape or store to allocas.
9430       if (isa<DbgInfoIntrinsic>(I))
9431         continue;
9432       // This is an unknown instruction. Assume it escapes or writes to all
9433       // static alloca operands.
9434       for (const Use &U : I.operands()) {
9435         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9436           *Info = StaticAllocaInfo::Clobbered;
9437       }
9438       continue;
9439     }
9440 
9441     // If the stored value is a static alloca, mark it as escaped.
9442     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9443       *Info = StaticAllocaInfo::Clobbered;
9444 
9445     // Check if the destination is a static alloca.
9446     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9447     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9448     if (!Info)
9449       continue;
9450     const AllocaInst *AI = cast<AllocaInst>(Dst);
9451 
9452     // Skip allocas that have been initialized or clobbered.
9453     if (*Info != StaticAllocaInfo::Unknown)
9454       continue;
9455 
9456     // Check if the stored value is an argument, and that this store fully
9457     // initializes the alloca. Don't elide copies from the same argument twice.
9458     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9459     const auto *Arg = dyn_cast<Argument>(Val);
9460     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9461         Arg->getType()->isEmptyTy() ||
9462         DL.getTypeStoreSize(Arg->getType()) !=
9463             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9464         ArgCopyElisionCandidates.count(Arg)) {
9465       *Info = StaticAllocaInfo::Clobbered;
9466       continue;
9467     }
9468 
9469     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9470                       << '\n');
9471 
9472     // Mark this alloca and store for argument copy elision.
9473     *Info = StaticAllocaInfo::Elidable;
9474     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9475 
9476     // Stop scanning if we've seen all arguments. This will happen early in -O0
9477     // builds, which is useful, because -O0 builds have large entry blocks and
9478     // many allocas.
9479     if (ArgCopyElisionCandidates.size() == NumArgs)
9480       break;
9481   }
9482 }
9483 
9484 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9485 /// ArgVal is a load from a suitable fixed stack object.
9486 static void tryToElideArgumentCopy(
9487     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9488     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9489     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9490     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9491     SDValue ArgVal, bool &ArgHasUses) {
9492   // Check if this is a load from a fixed stack object.
9493   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9494   if (!LNode)
9495     return;
9496   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9497   if (!FINode)
9498     return;
9499 
9500   // Check that the fixed stack object is the right size and alignment.
9501   // Look at the alignment that the user wrote on the alloca instead of looking
9502   // at the stack object.
9503   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9504   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9505   const AllocaInst *AI = ArgCopyIter->second.first;
9506   int FixedIndex = FINode->getIndex();
9507   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9508   int OldIndex = AllocaIndex;
9509   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9510   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9511     LLVM_DEBUG(
9512         dbgs() << "  argument copy elision failed due to bad fixed stack "
9513                   "object size\n");
9514     return;
9515   }
9516   unsigned RequiredAlignment = AI->getAlignment();
9517   if (!RequiredAlignment) {
9518     RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9519         AI->getAllocatedType());
9520   }
9521   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9522     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9523                          "greater than stack argument alignment ("
9524                       << RequiredAlignment << " vs "
9525                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9526     return;
9527   }
9528 
9529   // Perform the elision. Delete the old stack object and replace its only use
9530   // in the variable info map. Mark the stack object as mutable.
9531   LLVM_DEBUG({
9532     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9533            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9534            << '\n';
9535   });
9536   MFI.RemoveStackObject(OldIndex);
9537   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9538   AllocaIndex = FixedIndex;
9539   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9540   Chains.push_back(ArgVal.getValue(1));
9541 
9542   // Avoid emitting code for the store implementing the copy.
9543   const StoreInst *SI = ArgCopyIter->second.second;
9544   ElidedArgCopyInstrs.insert(SI);
9545 
9546   // Check for uses of the argument again so that we can avoid exporting ArgVal
9547   // if it is't used by anything other than the store.
9548   for (const Value *U : Arg.users()) {
9549     if (U != SI) {
9550       ArgHasUses = true;
9551       break;
9552     }
9553   }
9554 }
9555 
9556 void SelectionDAGISel::LowerArguments(const Function &F) {
9557   SelectionDAG &DAG = SDB->DAG;
9558   SDLoc dl = SDB->getCurSDLoc();
9559   const DataLayout &DL = DAG.getDataLayout();
9560   SmallVector<ISD::InputArg, 16> Ins;
9561 
9562   if (!FuncInfo->CanLowerReturn) {
9563     // Put in an sret pointer parameter before all the other parameters.
9564     SmallVector<EVT, 1> ValueVTs;
9565     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9566                     F.getReturnType()->getPointerTo(
9567                         DAG.getDataLayout().getAllocaAddrSpace()),
9568                     ValueVTs);
9569 
9570     // NOTE: Assuming that a pointer will never break down to more than one VT
9571     // or one register.
9572     ISD::ArgFlagsTy Flags;
9573     Flags.setSRet();
9574     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9575     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9576                          ISD::InputArg::NoArgIndex, 0);
9577     Ins.push_back(RetArg);
9578   }
9579 
9580   // Look for stores of arguments to static allocas. Mark such arguments with a
9581   // flag to ask the target to give us the memory location of that argument if
9582   // available.
9583   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9584   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9585                                     ArgCopyElisionCandidates);
9586 
9587   // Set up the incoming argument description vector.
9588   for (const Argument &Arg : F.args()) {
9589     unsigned ArgNo = Arg.getArgNo();
9590     SmallVector<EVT, 4> ValueVTs;
9591     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9592     bool isArgValueUsed = !Arg.use_empty();
9593     unsigned PartBase = 0;
9594     Type *FinalType = Arg.getType();
9595     if (Arg.hasAttribute(Attribute::ByVal))
9596       FinalType = Arg.getParamByValType();
9597     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9598         FinalType, F.getCallingConv(), F.isVarArg());
9599     for (unsigned Value = 0, NumValues = ValueVTs.size();
9600          Value != NumValues; ++Value) {
9601       EVT VT = ValueVTs[Value];
9602       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9603       ISD::ArgFlagsTy Flags;
9604 
9605       // Certain targets (such as MIPS), may have a different ABI alignment
9606       // for a type depending on the context. Give the target a chance to
9607       // specify the alignment it wants.
9608       const Align OriginalAlignment(
9609           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9610 
9611       if (Arg.getType()->isPointerTy()) {
9612         Flags.setPointer();
9613         Flags.setPointerAddrSpace(
9614             cast<PointerType>(Arg.getType())->getAddressSpace());
9615       }
9616       if (Arg.hasAttribute(Attribute::ZExt))
9617         Flags.setZExt();
9618       if (Arg.hasAttribute(Attribute::SExt))
9619         Flags.setSExt();
9620       if (Arg.hasAttribute(Attribute::InReg)) {
9621         // If we are using vectorcall calling convention, a structure that is
9622         // passed InReg - is surely an HVA
9623         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9624             isa<StructType>(Arg.getType())) {
9625           // The first value of a structure is marked
9626           if (0 == Value)
9627             Flags.setHvaStart();
9628           Flags.setHva();
9629         }
9630         // Set InReg Flag
9631         Flags.setInReg();
9632       }
9633       if (Arg.hasAttribute(Attribute::StructRet))
9634         Flags.setSRet();
9635       if (Arg.hasAttribute(Attribute::SwiftSelf))
9636         Flags.setSwiftSelf();
9637       if (Arg.hasAttribute(Attribute::SwiftError))
9638         Flags.setSwiftError();
9639       if (Arg.hasAttribute(Attribute::ByVal))
9640         Flags.setByVal();
9641       if (Arg.hasAttribute(Attribute::InAlloca)) {
9642         Flags.setInAlloca();
9643         // Set the byval flag for CCAssignFn callbacks that don't know about
9644         // inalloca.  This way we can know how many bytes we should've allocated
9645         // and how many bytes a callee cleanup function will pop.  If we port
9646         // inalloca to more targets, we'll have to add custom inalloca handling
9647         // in the various CC lowering callbacks.
9648         Flags.setByVal();
9649       }
9650       if (F.getCallingConv() == CallingConv::X86_INTR) {
9651         // IA Interrupt passes frame (1st parameter) by value in the stack.
9652         if (ArgNo == 0)
9653           Flags.setByVal();
9654       }
9655       if (Flags.isByVal() || Flags.isInAlloca()) {
9656         Type *ElementTy = Arg.getParamByValType();
9657 
9658         // For ByVal, size and alignment should be passed from FE.  BE will
9659         // guess if this info is not there but there are cases it cannot get
9660         // right.
9661         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9662         Flags.setByValSize(FrameSize);
9663 
9664         unsigned FrameAlign;
9665         if (Arg.getParamAlignment())
9666           FrameAlign = Arg.getParamAlignment();
9667         else
9668           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9669         Flags.setByValAlign(Align(FrameAlign));
9670       }
9671       if (Arg.hasAttribute(Attribute::Nest))
9672         Flags.setNest();
9673       if (NeedsRegBlock)
9674         Flags.setInConsecutiveRegs();
9675       Flags.setOrigAlign(OriginalAlignment);
9676       if (ArgCopyElisionCandidates.count(&Arg))
9677         Flags.setCopyElisionCandidate();
9678       if (Arg.hasAttribute(Attribute::Returned))
9679         Flags.setReturned();
9680 
9681       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9682           *CurDAG->getContext(), F.getCallingConv(), VT);
9683       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9684           *CurDAG->getContext(), F.getCallingConv(), VT);
9685       for (unsigned i = 0; i != NumRegs; ++i) {
9686         // For scalable vectors, use the minimum size; individual targets
9687         // are responsible for handling scalable vector arguments and
9688         // return values.
9689         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9690                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9691         if (NumRegs > 1 && i == 0)
9692           MyFlags.Flags.setSplit();
9693         // if it isn't first piece, alignment must be 1
9694         else if (i > 0) {
9695           MyFlags.Flags.setOrigAlign(Align::None());
9696           if (i == NumRegs - 1)
9697             MyFlags.Flags.setSplitEnd();
9698         }
9699         Ins.push_back(MyFlags);
9700       }
9701       if (NeedsRegBlock && Value == NumValues - 1)
9702         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9703       PartBase += VT.getStoreSize().getKnownMinSize();
9704     }
9705   }
9706 
9707   // Call the target to set up the argument values.
9708   SmallVector<SDValue, 8> InVals;
9709   SDValue NewRoot = TLI->LowerFormalArguments(
9710       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9711 
9712   // Verify that the target's LowerFormalArguments behaved as expected.
9713   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9714          "LowerFormalArguments didn't return a valid chain!");
9715   assert(InVals.size() == Ins.size() &&
9716          "LowerFormalArguments didn't emit the correct number of values!");
9717   LLVM_DEBUG({
9718     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9719       assert(InVals[i].getNode() &&
9720              "LowerFormalArguments emitted a null value!");
9721       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9722              "LowerFormalArguments emitted a value with the wrong type!");
9723     }
9724   });
9725 
9726   // Update the DAG with the new chain value resulting from argument lowering.
9727   DAG.setRoot(NewRoot);
9728 
9729   // Set up the argument values.
9730   unsigned i = 0;
9731   if (!FuncInfo->CanLowerReturn) {
9732     // Create a virtual register for the sret pointer, and put in a copy
9733     // from the sret argument into it.
9734     SmallVector<EVT, 1> ValueVTs;
9735     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9736                     F.getReturnType()->getPointerTo(
9737                         DAG.getDataLayout().getAllocaAddrSpace()),
9738                     ValueVTs);
9739     MVT VT = ValueVTs[0].getSimpleVT();
9740     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9741     Optional<ISD::NodeType> AssertOp = None;
9742     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9743                                         nullptr, F.getCallingConv(), AssertOp);
9744 
9745     MachineFunction& MF = SDB->DAG.getMachineFunction();
9746     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9747     Register SRetReg =
9748         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9749     FuncInfo->DemoteRegister = SRetReg;
9750     NewRoot =
9751         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9752     DAG.setRoot(NewRoot);
9753 
9754     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9755     ++i;
9756   }
9757 
9758   SmallVector<SDValue, 4> Chains;
9759   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9760   for (const Argument &Arg : F.args()) {
9761     SmallVector<SDValue, 4> ArgValues;
9762     SmallVector<EVT, 4> ValueVTs;
9763     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9764     unsigned NumValues = ValueVTs.size();
9765     if (NumValues == 0)
9766       continue;
9767 
9768     bool ArgHasUses = !Arg.use_empty();
9769 
9770     // Elide the copying store if the target loaded this argument from a
9771     // suitable fixed stack object.
9772     if (Ins[i].Flags.isCopyElisionCandidate()) {
9773       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9774                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9775                              InVals[i], ArgHasUses);
9776     }
9777 
9778     // If this argument is unused then remember its value. It is used to generate
9779     // debugging information.
9780     bool isSwiftErrorArg =
9781         TLI->supportSwiftError() &&
9782         Arg.hasAttribute(Attribute::SwiftError);
9783     if (!ArgHasUses && !isSwiftErrorArg) {
9784       SDB->setUnusedArgValue(&Arg, InVals[i]);
9785 
9786       // Also remember any frame index for use in FastISel.
9787       if (FrameIndexSDNode *FI =
9788           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9789         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9790     }
9791 
9792     for (unsigned Val = 0; Val != NumValues; ++Val) {
9793       EVT VT = ValueVTs[Val];
9794       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9795                                                       F.getCallingConv(), VT);
9796       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9797           *CurDAG->getContext(), F.getCallingConv(), VT);
9798 
9799       // Even an apparent 'unused' swifterror argument needs to be returned. So
9800       // we do generate a copy for it that can be used on return from the
9801       // function.
9802       if (ArgHasUses || isSwiftErrorArg) {
9803         Optional<ISD::NodeType> AssertOp;
9804         if (Arg.hasAttribute(Attribute::SExt))
9805           AssertOp = ISD::AssertSext;
9806         else if (Arg.hasAttribute(Attribute::ZExt))
9807           AssertOp = ISD::AssertZext;
9808 
9809         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9810                                              PartVT, VT, nullptr,
9811                                              F.getCallingConv(), AssertOp));
9812       }
9813 
9814       i += NumParts;
9815     }
9816 
9817     // We don't need to do anything else for unused arguments.
9818     if (ArgValues.empty())
9819       continue;
9820 
9821     // Note down frame index.
9822     if (FrameIndexSDNode *FI =
9823         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9824       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9825 
9826     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9827                                      SDB->getCurSDLoc());
9828 
9829     SDB->setValue(&Arg, Res);
9830     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9831       // We want to associate the argument with the frame index, among
9832       // involved operands, that correspond to the lowest address. The
9833       // getCopyFromParts function, called earlier, is swapping the order of
9834       // the operands to BUILD_PAIR depending on endianness. The result of
9835       // that swapping is that the least significant bits of the argument will
9836       // be in the first operand of the BUILD_PAIR node, and the most
9837       // significant bits will be in the second operand.
9838       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9839       if (LoadSDNode *LNode =
9840           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9841         if (FrameIndexSDNode *FI =
9842             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9843           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9844     }
9845 
9846     // Analyses past this point are naive and don't expect an assertion.
9847     if (Res.getOpcode() == ISD::AssertZext)
9848       Res = Res.getOperand(0);
9849 
9850     // Update the SwiftErrorVRegDefMap.
9851     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9852       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9853       if (Register::isVirtualRegister(Reg))
9854         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9855                                    Reg);
9856     }
9857 
9858     // If this argument is live outside of the entry block, insert a copy from
9859     // wherever we got it to the vreg that other BB's will reference it as.
9860     if (Res.getOpcode() == ISD::CopyFromReg) {
9861       // If we can, though, try to skip creating an unnecessary vreg.
9862       // FIXME: This isn't very clean... it would be nice to make this more
9863       // general.
9864       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9865       if (Register::isVirtualRegister(Reg)) {
9866         FuncInfo->ValueMap[&Arg] = Reg;
9867         continue;
9868       }
9869     }
9870     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9871       FuncInfo->InitializeRegForValue(&Arg);
9872       SDB->CopyToExportRegsIfNeeded(&Arg);
9873     }
9874   }
9875 
9876   if (!Chains.empty()) {
9877     Chains.push_back(NewRoot);
9878     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9879   }
9880 
9881   DAG.setRoot(NewRoot);
9882 
9883   assert(i == InVals.size() && "Argument register count mismatch!");
9884 
9885   // If any argument copy elisions occurred and we have debug info, update the
9886   // stale frame indices used in the dbg.declare variable info table.
9887   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9888   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9889     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9890       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9891       if (I != ArgCopyElisionFrameIndexMap.end())
9892         VI.Slot = I->second;
9893     }
9894   }
9895 
9896   // Finally, if the target has anything special to do, allow it to do so.
9897   EmitFunctionEntryCode();
9898 }
9899 
9900 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9901 /// ensure constants are generated when needed.  Remember the virtual registers
9902 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9903 /// directly add them, because expansion might result in multiple MBB's for one
9904 /// BB.  As such, the start of the BB might correspond to a different MBB than
9905 /// the end.
9906 void
9907 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9908   const Instruction *TI = LLVMBB->getTerminator();
9909 
9910   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9911 
9912   // Check PHI nodes in successors that expect a value to be available from this
9913   // block.
9914   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9915     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9916     if (!isa<PHINode>(SuccBB->begin())) continue;
9917     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9918 
9919     // If this terminator has multiple identical successors (common for
9920     // switches), only handle each succ once.
9921     if (!SuccsHandled.insert(SuccMBB).second)
9922       continue;
9923 
9924     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9925 
9926     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9927     // nodes and Machine PHI nodes, but the incoming operands have not been
9928     // emitted yet.
9929     for (const PHINode &PN : SuccBB->phis()) {
9930       // Ignore dead phi's.
9931       if (PN.use_empty())
9932         continue;
9933 
9934       // Skip empty types
9935       if (PN.getType()->isEmptyTy())
9936         continue;
9937 
9938       unsigned Reg;
9939       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9940 
9941       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9942         unsigned &RegOut = ConstantsOut[C];
9943         if (RegOut == 0) {
9944           RegOut = FuncInfo.CreateRegs(C);
9945           CopyValueToVirtualRegister(C, RegOut);
9946         }
9947         Reg = RegOut;
9948       } else {
9949         DenseMap<const Value *, unsigned>::iterator I =
9950           FuncInfo.ValueMap.find(PHIOp);
9951         if (I != FuncInfo.ValueMap.end())
9952           Reg = I->second;
9953         else {
9954           assert(isa<AllocaInst>(PHIOp) &&
9955                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9956                  "Didn't codegen value into a register!??");
9957           Reg = FuncInfo.CreateRegs(PHIOp);
9958           CopyValueToVirtualRegister(PHIOp, Reg);
9959         }
9960       }
9961 
9962       // Remember that this register needs to added to the machine PHI node as
9963       // the input for this MBB.
9964       SmallVector<EVT, 4> ValueVTs;
9965       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9966       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9967       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9968         EVT VT = ValueVTs[vti];
9969         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9970         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9971           FuncInfo.PHINodesToUpdate.push_back(
9972               std::make_pair(&*MBBI++, Reg + i));
9973         Reg += NumRegisters;
9974       }
9975     }
9976   }
9977 
9978   ConstantsOut.clear();
9979 }
9980 
9981 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9982 /// is 0.
9983 MachineBasicBlock *
9984 SelectionDAGBuilder::StackProtectorDescriptor::
9985 AddSuccessorMBB(const BasicBlock *BB,
9986                 MachineBasicBlock *ParentMBB,
9987                 bool IsLikely,
9988                 MachineBasicBlock *SuccMBB) {
9989   // If SuccBB has not been created yet, create it.
9990   if (!SuccMBB) {
9991     MachineFunction *MF = ParentMBB->getParent();
9992     MachineFunction::iterator BBI(ParentMBB);
9993     SuccMBB = MF->CreateMachineBasicBlock(BB);
9994     MF->insert(++BBI, SuccMBB);
9995   }
9996   // Add it as a successor of ParentMBB.
9997   ParentMBB->addSuccessor(
9998       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9999   return SuccMBB;
10000 }
10001 
10002 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10003   MachineFunction::iterator I(MBB);
10004   if (++I == FuncInfo.MF->end())
10005     return nullptr;
10006   return &*I;
10007 }
10008 
10009 /// During lowering new call nodes can be created (such as memset, etc.).
10010 /// Those will become new roots of the current DAG, but complications arise
10011 /// when they are tail calls. In such cases, the call lowering will update
10012 /// the root, but the builder still needs to know that a tail call has been
10013 /// lowered in order to avoid generating an additional return.
10014 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10015   // If the node is null, we do have a tail call.
10016   if (MaybeTC.getNode() != nullptr)
10017     DAG.setRoot(MaybeTC);
10018   else
10019     HasTailCall = true;
10020 }
10021 
10022 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10023                                         MachineBasicBlock *SwitchMBB,
10024                                         MachineBasicBlock *DefaultMBB) {
10025   MachineFunction *CurMF = FuncInfo.MF;
10026   MachineBasicBlock *NextMBB = nullptr;
10027   MachineFunction::iterator BBI(W.MBB);
10028   if (++BBI != FuncInfo.MF->end())
10029     NextMBB = &*BBI;
10030 
10031   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10032 
10033   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10034 
10035   if (Size == 2 && W.MBB == SwitchMBB) {
10036     // If any two of the cases has the same destination, and if one value
10037     // is the same as the other, but has one bit unset that the other has set,
10038     // use bit manipulation to do two compares at once.  For example:
10039     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10040     // TODO: This could be extended to merge any 2 cases in switches with 3
10041     // cases.
10042     // TODO: Handle cases where W.CaseBB != SwitchBB.
10043     CaseCluster &Small = *W.FirstCluster;
10044     CaseCluster &Big = *W.LastCluster;
10045 
10046     if (Small.Low == Small.High && Big.Low == Big.High &&
10047         Small.MBB == Big.MBB) {
10048       const APInt &SmallValue = Small.Low->getValue();
10049       const APInt &BigValue = Big.Low->getValue();
10050 
10051       // Check that there is only one bit different.
10052       APInt CommonBit = BigValue ^ SmallValue;
10053       if (CommonBit.isPowerOf2()) {
10054         SDValue CondLHS = getValue(Cond);
10055         EVT VT = CondLHS.getValueType();
10056         SDLoc DL = getCurSDLoc();
10057 
10058         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10059                                  DAG.getConstant(CommonBit, DL, VT));
10060         SDValue Cond = DAG.getSetCC(
10061             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10062             ISD::SETEQ);
10063 
10064         // Update successor info.
10065         // Both Small and Big will jump to Small.BB, so we sum up the
10066         // probabilities.
10067         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10068         if (BPI)
10069           addSuccessorWithProb(
10070               SwitchMBB, DefaultMBB,
10071               // The default destination is the first successor in IR.
10072               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10073         else
10074           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10075 
10076         // Insert the true branch.
10077         SDValue BrCond =
10078             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10079                         DAG.getBasicBlock(Small.MBB));
10080         // Insert the false branch.
10081         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10082                              DAG.getBasicBlock(DefaultMBB));
10083 
10084         DAG.setRoot(BrCond);
10085         return;
10086       }
10087     }
10088   }
10089 
10090   if (TM.getOptLevel() != CodeGenOpt::None) {
10091     // Here, we order cases by probability so the most likely case will be
10092     // checked first. However, two clusters can have the same probability in
10093     // which case their relative ordering is non-deterministic. So we use Low
10094     // as a tie-breaker as clusters are guaranteed to never overlap.
10095     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10096                [](const CaseCluster &a, const CaseCluster &b) {
10097       return a.Prob != b.Prob ?
10098              a.Prob > b.Prob :
10099              a.Low->getValue().slt(b.Low->getValue());
10100     });
10101 
10102     // Rearrange the case blocks so that the last one falls through if possible
10103     // without changing the order of probabilities.
10104     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10105       --I;
10106       if (I->Prob > W.LastCluster->Prob)
10107         break;
10108       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10109         std::swap(*I, *W.LastCluster);
10110         break;
10111       }
10112     }
10113   }
10114 
10115   // Compute total probability.
10116   BranchProbability DefaultProb = W.DefaultProb;
10117   BranchProbability UnhandledProbs = DefaultProb;
10118   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10119     UnhandledProbs += I->Prob;
10120 
10121   MachineBasicBlock *CurMBB = W.MBB;
10122   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10123     bool FallthroughUnreachable = false;
10124     MachineBasicBlock *Fallthrough;
10125     if (I == W.LastCluster) {
10126       // For the last cluster, fall through to the default destination.
10127       Fallthrough = DefaultMBB;
10128       FallthroughUnreachable = isa<UnreachableInst>(
10129           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10130     } else {
10131       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10132       CurMF->insert(BBI, Fallthrough);
10133       // Put Cond in a virtual register to make it available from the new blocks.
10134       ExportFromCurrentBlock(Cond);
10135     }
10136     UnhandledProbs -= I->Prob;
10137 
10138     switch (I->Kind) {
10139       case CC_JumpTable: {
10140         // FIXME: Optimize away range check based on pivot comparisons.
10141         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10142         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10143 
10144         // The jump block hasn't been inserted yet; insert it here.
10145         MachineBasicBlock *JumpMBB = JT->MBB;
10146         CurMF->insert(BBI, JumpMBB);
10147 
10148         auto JumpProb = I->Prob;
10149         auto FallthroughProb = UnhandledProbs;
10150 
10151         // If the default statement is a target of the jump table, we evenly
10152         // distribute the default probability to successors of CurMBB. Also
10153         // update the probability on the edge from JumpMBB to Fallthrough.
10154         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10155                                               SE = JumpMBB->succ_end();
10156              SI != SE; ++SI) {
10157           if (*SI == DefaultMBB) {
10158             JumpProb += DefaultProb / 2;
10159             FallthroughProb -= DefaultProb / 2;
10160             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10161             JumpMBB->normalizeSuccProbs();
10162             break;
10163           }
10164         }
10165 
10166         if (FallthroughUnreachable) {
10167           // Skip the range check if the fallthrough block is unreachable.
10168           JTH->OmitRangeCheck = true;
10169         }
10170 
10171         if (!JTH->OmitRangeCheck)
10172           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10173         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10174         CurMBB->normalizeSuccProbs();
10175 
10176         // The jump table header will be inserted in our current block, do the
10177         // range check, and fall through to our fallthrough block.
10178         JTH->HeaderBB = CurMBB;
10179         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10180 
10181         // If we're in the right place, emit the jump table header right now.
10182         if (CurMBB == SwitchMBB) {
10183           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10184           JTH->Emitted = true;
10185         }
10186         break;
10187       }
10188       case CC_BitTests: {
10189         // FIXME: Optimize away range check based on pivot comparisons.
10190         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10191 
10192         // The bit test blocks haven't been inserted yet; insert them here.
10193         for (BitTestCase &BTC : BTB->Cases)
10194           CurMF->insert(BBI, BTC.ThisBB);
10195 
10196         // Fill in fields of the BitTestBlock.
10197         BTB->Parent = CurMBB;
10198         BTB->Default = Fallthrough;
10199 
10200         BTB->DefaultProb = UnhandledProbs;
10201         // If the cases in bit test don't form a contiguous range, we evenly
10202         // distribute the probability on the edge to Fallthrough to two
10203         // successors of CurMBB.
10204         if (!BTB->ContiguousRange) {
10205           BTB->Prob += DefaultProb / 2;
10206           BTB->DefaultProb -= DefaultProb / 2;
10207         }
10208 
10209         if (FallthroughUnreachable) {
10210           // Skip the range check if the fallthrough block is unreachable.
10211           BTB->OmitRangeCheck = true;
10212         }
10213 
10214         // If we're in the right place, emit the bit test header right now.
10215         if (CurMBB == SwitchMBB) {
10216           visitBitTestHeader(*BTB, SwitchMBB);
10217           BTB->Emitted = true;
10218         }
10219         break;
10220       }
10221       case CC_Range: {
10222         const Value *RHS, *LHS, *MHS;
10223         ISD::CondCode CC;
10224         if (I->Low == I->High) {
10225           // Check Cond == I->Low.
10226           CC = ISD::SETEQ;
10227           LHS = Cond;
10228           RHS=I->Low;
10229           MHS = nullptr;
10230         } else {
10231           // Check I->Low <= Cond <= I->High.
10232           CC = ISD::SETLE;
10233           LHS = I->Low;
10234           MHS = Cond;
10235           RHS = I->High;
10236         }
10237 
10238         // If Fallthrough is unreachable, fold away the comparison.
10239         if (FallthroughUnreachable)
10240           CC = ISD::SETTRUE;
10241 
10242         // The false probability is the sum of all unhandled cases.
10243         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10244                      getCurSDLoc(), I->Prob, UnhandledProbs);
10245 
10246         if (CurMBB == SwitchMBB)
10247           visitSwitchCase(CB, SwitchMBB);
10248         else
10249           SL->SwitchCases.push_back(CB);
10250 
10251         break;
10252       }
10253     }
10254     CurMBB = Fallthrough;
10255   }
10256 }
10257 
10258 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10259                                               CaseClusterIt First,
10260                                               CaseClusterIt Last) {
10261   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10262     if (X.Prob != CC.Prob)
10263       return X.Prob > CC.Prob;
10264 
10265     // Ties are broken by comparing the case value.
10266     return X.Low->getValue().slt(CC.Low->getValue());
10267   });
10268 }
10269 
10270 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10271                                         const SwitchWorkListItem &W,
10272                                         Value *Cond,
10273                                         MachineBasicBlock *SwitchMBB) {
10274   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10275          "Clusters not sorted?");
10276 
10277   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10278 
10279   // Balance the tree based on branch probabilities to create a near-optimal (in
10280   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10281   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10282   CaseClusterIt LastLeft = W.FirstCluster;
10283   CaseClusterIt FirstRight = W.LastCluster;
10284   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10285   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10286 
10287   // Move LastLeft and FirstRight towards each other from opposite directions to
10288   // find a partitioning of the clusters which balances the probability on both
10289   // sides. If LeftProb and RightProb are equal, alternate which side is
10290   // taken to ensure 0-probability nodes are distributed evenly.
10291   unsigned I = 0;
10292   while (LastLeft + 1 < FirstRight) {
10293     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10294       LeftProb += (++LastLeft)->Prob;
10295     else
10296       RightProb += (--FirstRight)->Prob;
10297     I++;
10298   }
10299 
10300   while (true) {
10301     // Our binary search tree differs from a typical BST in that ours can have up
10302     // to three values in each leaf. The pivot selection above doesn't take that
10303     // into account, which means the tree might require more nodes and be less
10304     // efficient. We compensate for this here.
10305 
10306     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10307     unsigned NumRight = W.LastCluster - FirstRight + 1;
10308 
10309     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10310       // If one side has less than 3 clusters, and the other has more than 3,
10311       // consider taking a cluster from the other side.
10312 
10313       if (NumLeft < NumRight) {
10314         // Consider moving the first cluster on the right to the left side.
10315         CaseCluster &CC = *FirstRight;
10316         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10317         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10318         if (LeftSideRank <= RightSideRank) {
10319           // Moving the cluster to the left does not demote it.
10320           ++LastLeft;
10321           ++FirstRight;
10322           continue;
10323         }
10324       } else {
10325         assert(NumRight < NumLeft);
10326         // Consider moving the last element on the left to the right side.
10327         CaseCluster &CC = *LastLeft;
10328         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10329         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10330         if (RightSideRank <= LeftSideRank) {
10331           // Moving the cluster to the right does not demot it.
10332           --LastLeft;
10333           --FirstRight;
10334           continue;
10335         }
10336       }
10337     }
10338     break;
10339   }
10340 
10341   assert(LastLeft + 1 == FirstRight);
10342   assert(LastLeft >= W.FirstCluster);
10343   assert(FirstRight <= W.LastCluster);
10344 
10345   // Use the first element on the right as pivot since we will make less-than
10346   // comparisons against it.
10347   CaseClusterIt PivotCluster = FirstRight;
10348   assert(PivotCluster > W.FirstCluster);
10349   assert(PivotCluster <= W.LastCluster);
10350 
10351   CaseClusterIt FirstLeft = W.FirstCluster;
10352   CaseClusterIt LastRight = W.LastCluster;
10353 
10354   const ConstantInt *Pivot = PivotCluster->Low;
10355 
10356   // New blocks will be inserted immediately after the current one.
10357   MachineFunction::iterator BBI(W.MBB);
10358   ++BBI;
10359 
10360   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10361   // we can branch to its destination directly if it's squeezed exactly in
10362   // between the known lower bound and Pivot - 1.
10363   MachineBasicBlock *LeftMBB;
10364   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10365       FirstLeft->Low == W.GE &&
10366       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10367     LeftMBB = FirstLeft->MBB;
10368   } else {
10369     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10370     FuncInfo.MF->insert(BBI, LeftMBB);
10371     WorkList.push_back(
10372         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10373     // Put Cond in a virtual register to make it available from the new blocks.
10374     ExportFromCurrentBlock(Cond);
10375   }
10376 
10377   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10378   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10379   // directly if RHS.High equals the current upper bound.
10380   MachineBasicBlock *RightMBB;
10381   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10382       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10383     RightMBB = FirstRight->MBB;
10384   } else {
10385     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10386     FuncInfo.MF->insert(BBI, RightMBB);
10387     WorkList.push_back(
10388         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10389     // Put Cond in a virtual register to make it available from the new blocks.
10390     ExportFromCurrentBlock(Cond);
10391   }
10392 
10393   // Create the CaseBlock record that will be used to lower the branch.
10394   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10395                getCurSDLoc(), LeftProb, RightProb);
10396 
10397   if (W.MBB == SwitchMBB)
10398     visitSwitchCase(CB, SwitchMBB);
10399   else
10400     SL->SwitchCases.push_back(CB);
10401 }
10402 
10403 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10404 // from the swith statement.
10405 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10406                                             BranchProbability PeeledCaseProb) {
10407   if (PeeledCaseProb == BranchProbability::getOne())
10408     return BranchProbability::getZero();
10409   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10410 
10411   uint32_t Numerator = CaseProb.getNumerator();
10412   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10413   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10414 }
10415 
10416 // Try to peel the top probability case if it exceeds the threshold.
10417 // Return current MachineBasicBlock for the switch statement if the peeling
10418 // does not occur.
10419 // If the peeling is performed, return the newly created MachineBasicBlock
10420 // for the peeled switch statement. Also update Clusters to remove the peeled
10421 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10422 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10423     const SwitchInst &SI, CaseClusterVector &Clusters,
10424     BranchProbability &PeeledCaseProb) {
10425   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10426   // Don't perform if there is only one cluster or optimizing for size.
10427   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10428       TM.getOptLevel() == CodeGenOpt::None ||
10429       SwitchMBB->getParent()->getFunction().hasMinSize())
10430     return SwitchMBB;
10431 
10432   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10433   unsigned PeeledCaseIndex = 0;
10434   bool SwitchPeeled = false;
10435   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10436     CaseCluster &CC = Clusters[Index];
10437     if (CC.Prob < TopCaseProb)
10438       continue;
10439     TopCaseProb = CC.Prob;
10440     PeeledCaseIndex = Index;
10441     SwitchPeeled = true;
10442   }
10443   if (!SwitchPeeled)
10444     return SwitchMBB;
10445 
10446   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10447                     << TopCaseProb << "\n");
10448 
10449   // Record the MBB for the peeled switch statement.
10450   MachineFunction::iterator BBI(SwitchMBB);
10451   ++BBI;
10452   MachineBasicBlock *PeeledSwitchMBB =
10453       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10454   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10455 
10456   ExportFromCurrentBlock(SI.getCondition());
10457   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10458   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10459                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10460   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10461 
10462   Clusters.erase(PeeledCaseIt);
10463   for (CaseCluster &CC : Clusters) {
10464     LLVM_DEBUG(
10465         dbgs() << "Scale the probablity for one cluster, before scaling: "
10466                << CC.Prob << "\n");
10467     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10468     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10469   }
10470   PeeledCaseProb = TopCaseProb;
10471   return PeeledSwitchMBB;
10472 }
10473 
10474 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10475   // Extract cases from the switch.
10476   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10477   CaseClusterVector Clusters;
10478   Clusters.reserve(SI.getNumCases());
10479   for (auto I : SI.cases()) {
10480     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10481     const ConstantInt *CaseVal = I.getCaseValue();
10482     BranchProbability Prob =
10483         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10484             : BranchProbability(1, SI.getNumCases() + 1);
10485     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10486   }
10487 
10488   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10489 
10490   // Cluster adjacent cases with the same destination. We do this at all
10491   // optimization levels because it's cheap to do and will make codegen faster
10492   // if there are many clusters.
10493   sortAndRangeify(Clusters);
10494 
10495   // The branch probablity of the peeled case.
10496   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10497   MachineBasicBlock *PeeledSwitchMBB =
10498       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10499 
10500   // If there is only the default destination, jump there directly.
10501   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10502   if (Clusters.empty()) {
10503     assert(PeeledSwitchMBB == SwitchMBB);
10504     SwitchMBB->addSuccessor(DefaultMBB);
10505     if (DefaultMBB != NextBlock(SwitchMBB)) {
10506       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10507                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10508     }
10509     return;
10510   }
10511 
10512   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10513   SL->findBitTestClusters(Clusters, &SI);
10514 
10515   LLVM_DEBUG({
10516     dbgs() << "Case clusters: ";
10517     for (const CaseCluster &C : Clusters) {
10518       if (C.Kind == CC_JumpTable)
10519         dbgs() << "JT:";
10520       if (C.Kind == CC_BitTests)
10521         dbgs() << "BT:";
10522 
10523       C.Low->getValue().print(dbgs(), true);
10524       if (C.Low != C.High) {
10525         dbgs() << '-';
10526         C.High->getValue().print(dbgs(), true);
10527       }
10528       dbgs() << ' ';
10529     }
10530     dbgs() << '\n';
10531   });
10532 
10533   assert(!Clusters.empty());
10534   SwitchWorkList WorkList;
10535   CaseClusterIt First = Clusters.begin();
10536   CaseClusterIt Last = Clusters.end() - 1;
10537   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10538   // Scale the branchprobability for DefaultMBB if the peel occurs and
10539   // DefaultMBB is not replaced.
10540   if (PeeledCaseProb != BranchProbability::getZero() &&
10541       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10542     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10543   WorkList.push_back(
10544       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10545 
10546   while (!WorkList.empty()) {
10547     SwitchWorkListItem W = WorkList.back();
10548     WorkList.pop_back();
10549     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10550 
10551     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10552         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10553       // For optimized builds, lower large range as a balanced binary tree.
10554       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10555       continue;
10556     }
10557 
10558     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10559   }
10560 }
10561 
10562 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10563   SDValue N = getValue(I.getOperand(0));
10564   setValue(&I, N);
10565 }
10566