1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/StackMaps.h" 39 #include "llvm/CodeGen/WinEHFuncInfo.h" 40 #include "llvm/IR/CallingConv.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Statepoint.h" 55 #include "llvm/MC/MCSymbol.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetFrameLowering.h" 62 #include "llvm/Target/TargetInstrInfo.h" 63 #include "llvm/Target/TargetIntrinsicInfo.h" 64 #include "llvm/Target/TargetLowering.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include "llvm/Target/TargetSubtargetInfo.h" 67 #include <algorithm> 68 #include <utility> 69 using namespace llvm; 70 71 #define DEBUG_TYPE "isel" 72 73 /// LimitFloatPrecision - Generate low-precision inline sequences for 74 /// some float libcalls (6, 8 or 12 bits). 75 static unsigned LimitFloatPrecision; 76 77 static cl::opt<unsigned, true> 78 LimitFPPrecision("limit-float-precision", 79 cl::desc("Generate low-precision inline sequences " 80 "for some float libcalls"), 81 cl::location(LimitFloatPrecision), 82 cl::init(0)); 83 84 static cl::opt<bool> 85 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 86 cl::desc("Enable fast-math-flags for DAG nodes")); 87 88 // Limit the width of DAG chains. This is important in general to prevent 89 // DAG-based analysis from blowing up. For example, alias analysis and 90 // load clustering may not complete in reasonable time. It is difficult to 91 // recognize and avoid this situation within each individual analysis, and 92 // future analyses are likely to have the same behavior. Limiting DAG width is 93 // the safe approach and will be especially important with global DAGs. 94 // 95 // MaxParallelChains default is arbitrarily high to avoid affecting 96 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 97 // sequence over this should have been converted to llvm.memcpy by the 98 // frontend. It easy to induce this behavior with .ll code such as: 99 // %buffer = alloca [4096 x i8] 100 // %data = load [4096 x i8]* %argPtr 101 // store [4096 x i8] %data, [4096 x i8]* %buffer 102 static const unsigned MaxParallelChains = 64; 103 104 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 105 const SDValue *Parts, unsigned NumParts, 106 MVT PartVT, EVT ValueVT, const Value *V); 107 108 /// getCopyFromParts - Create a value that contains the specified legal parts 109 /// combined into the value they represent. If the parts combine to a type 110 /// larger then ValueVT then AssertOp can be used to specify whether the extra 111 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 112 /// (ISD::AssertSext). 113 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 114 const SDValue *Parts, 115 unsigned NumParts, MVT PartVT, EVT ValueVT, 116 const Value *V, 117 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 118 if (ValueVT.isVector()) 119 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 120 PartVT, ValueVT, V); 121 122 assert(NumParts > 0 && "No parts to assemble!"); 123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 124 SDValue Val = Parts[0]; 125 126 if (NumParts > 1) { 127 // Assemble the value from multiple parts. 128 if (ValueVT.isInteger()) { 129 unsigned PartBits = PartVT.getSizeInBits(); 130 unsigned ValueBits = ValueVT.getSizeInBits(); 131 132 // Assemble the power of 2 part. 133 unsigned RoundParts = NumParts & (NumParts - 1) ? 134 1 << Log2_32(NumParts) : NumParts; 135 unsigned RoundBits = PartBits * RoundParts; 136 EVT RoundVT = RoundBits == ValueBits ? 137 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 138 SDValue Lo, Hi; 139 140 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 141 142 if (RoundParts > 2) { 143 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 144 PartVT, HalfVT, V); 145 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 146 RoundParts / 2, PartVT, HalfVT, V); 147 } else { 148 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 149 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 150 } 151 152 if (DAG.getDataLayout().isBigEndian()) 153 std::swap(Lo, Hi); 154 155 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 156 157 if (RoundParts < NumParts) { 158 // Assemble the trailing non-power-of-2 part. 159 unsigned OddParts = NumParts - RoundParts; 160 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 161 Hi = getCopyFromParts(DAG, DL, 162 Parts + RoundParts, OddParts, PartVT, OddVT, V); 163 164 // Combine the round and odd parts. 165 Lo = Val; 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 169 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 170 Hi = 171 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 172 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 173 TLI.getPointerTy(DAG.getDataLayout()))); 174 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 175 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 176 } 177 } else if (PartVT.isFloatingPoint()) { 178 // FP split into multiple FP parts (for ppcf128) 179 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 180 "Unexpected split"); 181 SDValue Lo, Hi; 182 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 183 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 184 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 185 std::swap(Lo, Hi); 186 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 187 } else { 188 // FP split into integer parts (soft fp) 189 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 190 !PartVT.isVector() && "Unexpected split"); 191 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 192 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 193 } 194 } 195 196 // There is now one part, held in Val. Correct it to match ValueVT. 197 EVT PartEVT = Val.getValueType(); 198 199 if (PartEVT == ValueVT) 200 return Val; 201 202 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 203 ValueVT.bitsLT(PartEVT)) { 204 // For an FP value in an integer part, we need to truncate to the right 205 // width first. 206 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 208 } 209 210 if (PartEVT.isInteger() && ValueVT.isInteger()) { 211 if (ValueVT.bitsLT(PartEVT)) { 212 // For a truncate, see if we have any information to 213 // indicate whether the truncated bits will always be 214 // zero or sign-extension. 215 if (AssertOp != ISD::DELETED_NODE) 216 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 217 DAG.getValueType(ValueVT)); 218 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 219 } 220 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 224 // FP_ROUND's are always exact here. 225 if (ValueVT.bitsLT(Val.getValueType())) 226 return DAG.getNode( 227 ISD::FP_ROUND, DL, ValueVT, Val, 228 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 229 230 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 231 } 232 233 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 234 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 235 236 llvm_unreachable("Unknown mismatch!"); 237 } 238 239 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 240 const Twine &ErrMsg) { 241 const Instruction *I = dyn_cast_or_null<Instruction>(V); 242 if (!V) 243 return Ctx.emitError(ErrMsg); 244 245 const char *AsmError = ", possible invalid constraint for vector type"; 246 if (const CallInst *CI = dyn_cast<CallInst>(I)) 247 if (isa<InlineAsm>(CI->getCalledValue())) 248 return Ctx.emitError(I, ErrMsg + AsmError); 249 250 return Ctx.emitError(I, ErrMsg); 251 } 252 253 /// getCopyFromPartsVector - Create a value that contains the specified legal 254 /// parts combined into the value they represent. If the parts combine to a 255 /// type larger then ValueVT then AssertOp can be used to specify whether the 256 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 257 /// ValueVT (ISD::AssertSext). 258 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 259 const SDValue *Parts, unsigned NumParts, 260 MVT PartVT, EVT ValueVT, const Value *V) { 261 assert(ValueVT.isVector() && "Not a vector value"); 262 assert(NumParts > 0 && "No parts to assemble!"); 263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 264 SDValue Val = Parts[0]; 265 266 // Handle a multi-element vector. 267 if (NumParts > 1) { 268 EVT IntermediateVT; 269 MVT RegisterVT; 270 unsigned NumIntermediates; 271 unsigned NumRegs = 272 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 273 NumIntermediates, RegisterVT); 274 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 275 NumParts = NumRegs; // Silence a compiler warning. 276 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 277 assert(RegisterVT.getSizeInBits() == 278 Parts[0].getSimpleValueType().getSizeInBits() && 279 "Part type sizes don't match!"); 280 281 // Assemble the parts into intermediate operands. 282 SmallVector<SDValue, 8> Ops(NumIntermediates); 283 if (NumIntermediates == NumParts) { 284 // If the register was not expanded, truncate or copy the value, 285 // as appropriate. 286 for (unsigned i = 0; i != NumParts; ++i) 287 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 288 PartVT, IntermediateVT, V); 289 } else if (NumParts > 0) { 290 // If the intermediate type was expanded, build the intermediate 291 // operands from the parts. 292 assert(NumParts % NumIntermediates == 0 && 293 "Must expand into a divisible number of parts!"); 294 unsigned Factor = NumParts / NumIntermediates; 295 for (unsigned i = 0; i != NumIntermediates; ++i) 296 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 297 PartVT, IntermediateVT, V); 298 } 299 300 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 301 // intermediate operands. 302 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 303 : ISD::BUILD_VECTOR, 304 DL, ValueVT, Ops); 305 } 306 307 // There is now one part, held in Val. Correct it to match ValueVT. 308 EVT PartEVT = Val.getValueType(); 309 310 if (PartEVT == ValueVT) 311 return Val; 312 313 if (PartEVT.isVector()) { 314 // If the element type of the source/dest vectors are the same, but the 315 // parts vector has more elements than the value vector, then we have a 316 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 317 // elements we want. 318 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 319 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 320 "Cannot narrow, it would be a lossy transformation"); 321 return DAG.getNode( 322 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 323 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 324 } 325 326 // Vector/Vector bitcast. 327 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 328 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 329 330 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 331 "Cannot handle this kind of promotion"); 332 // Promoted vector extract 333 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 334 335 } 336 337 // Trivial bitcast if the types are the same size and the destination 338 // vector type is legal. 339 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 340 TLI.isTypeLegal(ValueVT)) 341 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 342 343 // Handle cases such as i8 -> <1 x i1> 344 if (ValueVT.getVectorNumElements() != 1) { 345 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 346 "non-trivial scalar-to-vector conversion"); 347 return DAG.getUNDEF(ValueVT); 348 } 349 350 if (ValueVT.getVectorNumElements() == 1 && 351 ValueVT.getVectorElementType() != PartEVT) 352 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 353 354 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 355 } 356 357 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 358 SDValue Val, SDValue *Parts, unsigned NumParts, 359 MVT PartVT, const Value *V); 360 361 /// getCopyToParts - Create a series of nodes that contain the specified value 362 /// split into legal parts. If the parts contain more bits than Val, then, for 363 /// integers, ExtendKind can be used to specify how to generate the extra bits. 364 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 365 SDValue Val, SDValue *Parts, unsigned NumParts, 366 MVT PartVT, const Value *V, 367 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 368 EVT ValueVT = Val.getValueType(); 369 370 // Handle the vector case separately. 371 if (ValueVT.isVector()) 372 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 373 374 unsigned PartBits = PartVT.getSizeInBits(); 375 unsigned OrigNumParts = NumParts; 376 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 377 "Copying to an illegal type!"); 378 379 if (NumParts == 0) 380 return; 381 382 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 383 EVT PartEVT = PartVT; 384 if (PartEVT == ValueVT) { 385 assert(NumParts == 1 && "No-op copy with multiple parts!"); 386 Parts[0] = Val; 387 return; 388 } 389 390 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 391 // If the parts cover more bits than the value has, promote the value. 392 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 393 assert(NumParts == 1 && "Do not know what to promote to!"); 394 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 395 } else { 396 if (ValueVT.isFloatingPoint()) { 397 // FP values need to be bitcast, then extended if they are being put 398 // into a larger container. 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 400 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 401 } 402 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 403 ValueVT.isInteger() && 404 "Unknown mismatch!"); 405 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 406 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 407 if (PartVT == MVT::x86mmx) 408 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 409 } 410 } else if (PartBits == ValueVT.getSizeInBits()) { 411 // Different types of the same size. 412 assert(NumParts == 1 && PartEVT != ValueVT); 413 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 414 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 415 // If the parts cover less bits than value has, truncate the value. 416 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 417 ValueVT.isInteger() && 418 "Unknown mismatch!"); 419 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 420 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 421 if (PartVT == MVT::x86mmx) 422 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 423 } 424 425 // The value may have changed - recompute ValueVT. 426 ValueVT = Val.getValueType(); 427 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 428 "Failed to tile the value with PartVT!"); 429 430 if (NumParts == 1) { 431 if (PartEVT != ValueVT) 432 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 433 "scalar-to-vector conversion failed"); 434 435 Parts[0] = Val; 436 return; 437 } 438 439 // Expand the value into multiple parts. 440 if (NumParts & (NumParts - 1)) { 441 // The number of parts is not a power of 2. Split off and copy the tail. 442 assert(PartVT.isInteger() && ValueVT.isInteger() && 443 "Do not know what to expand to!"); 444 unsigned RoundParts = 1 << Log2_32(NumParts); 445 unsigned RoundBits = RoundParts * PartBits; 446 unsigned OddParts = NumParts - RoundParts; 447 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 448 DAG.getIntPtrConstant(RoundBits, DL)); 449 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 450 451 if (DAG.getDataLayout().isBigEndian()) 452 // The odd parts were reversed by getCopyToParts - unreverse them. 453 std::reverse(Parts + RoundParts, Parts + NumParts); 454 455 NumParts = RoundParts; 456 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 457 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 458 } 459 460 // The number of parts is a power of 2. Repeatedly bisect the value using 461 // EXTRACT_ELEMENT. 462 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 463 EVT::getIntegerVT(*DAG.getContext(), 464 ValueVT.getSizeInBits()), 465 Val); 466 467 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 468 for (unsigned i = 0; i < NumParts; i += StepSize) { 469 unsigned ThisBits = StepSize * PartBits / 2; 470 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 471 SDValue &Part0 = Parts[i]; 472 SDValue &Part1 = Parts[i+StepSize/2]; 473 474 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 475 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 476 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 477 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 478 479 if (ThisBits == PartBits && ThisVT != PartVT) { 480 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 481 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 482 } 483 } 484 } 485 486 if (DAG.getDataLayout().isBigEndian()) 487 std::reverse(Parts, Parts + OrigNumParts); 488 } 489 490 491 /// getCopyToPartsVector - Create a series of nodes that contain the specified 492 /// value split into legal parts. 493 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 494 SDValue Val, SDValue *Parts, unsigned NumParts, 495 MVT PartVT, const Value *V) { 496 EVT ValueVT = Val.getValueType(); 497 assert(ValueVT.isVector() && "Not a vector"); 498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 499 500 if (NumParts == 1) { 501 EVT PartEVT = PartVT; 502 if (PartEVT == ValueVT) { 503 // Nothing to do. 504 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 505 // Bitconvert vector->vector case. 506 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 507 } else if (PartVT.isVector() && 508 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 509 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 510 EVT ElementVT = PartVT.getVectorElementType(); 511 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 512 // undef elements. 513 SmallVector<SDValue, 16> Ops; 514 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 515 Ops.push_back(DAG.getNode( 516 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 517 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 518 519 for (unsigned i = ValueVT.getVectorNumElements(), 520 e = PartVT.getVectorNumElements(); i != e; ++i) 521 Ops.push_back(DAG.getUNDEF(ElementVT)); 522 523 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 524 525 // FIXME: Use CONCAT for 2x -> 4x. 526 527 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 528 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 529 } else if (PartVT.isVector() && 530 PartEVT.getVectorElementType().bitsGE( 531 ValueVT.getVectorElementType()) && 532 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 533 534 // Promoted vector extract 535 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 536 } else{ 537 // Vector -> scalar conversion. 538 assert(ValueVT.getVectorNumElements() == 1 && 539 "Only trivial vector-to-scalar conversions should get here!"); 540 Val = DAG.getNode( 541 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 542 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 543 544 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 545 } 546 547 Parts[0] = Val; 548 return; 549 } 550 551 // Handle a multi-element vector. 552 EVT IntermediateVT; 553 MVT RegisterVT; 554 unsigned NumIntermediates; 555 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 556 IntermediateVT, 557 NumIntermediates, RegisterVT); 558 unsigned NumElements = ValueVT.getVectorNumElements(); 559 560 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 561 NumParts = NumRegs; // Silence a compiler warning. 562 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 563 564 // Split the vector into intermediate operands. 565 SmallVector<SDValue, 8> Ops(NumIntermediates); 566 for (unsigned i = 0; i != NumIntermediates; ++i) { 567 if (IntermediateVT.isVector()) 568 Ops[i] = 569 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 570 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 571 TLI.getVectorIdxTy(DAG.getDataLayout()))); 572 else 573 Ops[i] = DAG.getNode( 574 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 575 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 576 } 577 578 // Split the intermediate operands into legal parts. 579 if (NumParts == NumIntermediates) { 580 // If the register was not expanded, promote or copy the value, 581 // as appropriate. 582 for (unsigned i = 0; i != NumParts; ++i) 583 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 584 } else if (NumParts > 0) { 585 // If the intermediate type was expanded, split each the value into 586 // legal parts. 587 assert(NumIntermediates != 0 && "division by zero"); 588 assert(NumParts % NumIntermediates == 0 && 589 "Must expand into a divisible number of parts!"); 590 unsigned Factor = NumParts / NumIntermediates; 591 for (unsigned i = 0; i != NumIntermediates; ++i) 592 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 593 } 594 } 595 596 RegsForValue::RegsForValue() {} 597 598 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 599 EVT valuevt) 600 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 601 602 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 603 const DataLayout &DL, unsigned Reg, Type *Ty) { 604 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 605 606 for (EVT ValueVT : ValueVTs) { 607 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 608 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 609 for (unsigned i = 0; i != NumRegs; ++i) 610 Regs.push_back(Reg + i); 611 RegVTs.push_back(RegisterVT); 612 Reg += NumRegs; 613 } 614 } 615 616 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 617 /// this value and returns the result as a ValueVT value. This uses 618 /// Chain/Flag as the input and updates them for the output Chain/Flag. 619 /// If the Flag pointer is NULL, no flag is used. 620 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 621 FunctionLoweringInfo &FuncInfo, 622 SDLoc dl, 623 SDValue &Chain, SDValue *Flag, 624 const Value *V) const { 625 // A Value with type {} or [0 x %t] needs no registers. 626 if (ValueVTs.empty()) 627 return SDValue(); 628 629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 630 631 // Assemble the legal parts into the final values. 632 SmallVector<SDValue, 4> Values(ValueVTs.size()); 633 SmallVector<SDValue, 8> Parts; 634 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 635 // Copy the legal parts from the registers. 636 EVT ValueVT = ValueVTs[Value]; 637 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 638 MVT RegisterVT = RegVTs[Value]; 639 640 Parts.resize(NumRegs); 641 for (unsigned i = 0; i != NumRegs; ++i) { 642 SDValue P; 643 if (!Flag) { 644 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 645 } else { 646 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 647 *Flag = P.getValue(2); 648 } 649 650 Chain = P.getValue(1); 651 Parts[i] = P; 652 653 // If the source register was virtual and if we know something about it, 654 // add an assert node. 655 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 656 !RegisterVT.isInteger() || RegisterVT.isVector()) 657 continue; 658 659 const FunctionLoweringInfo::LiveOutInfo *LOI = 660 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 661 if (!LOI) 662 continue; 663 664 unsigned RegSize = RegisterVT.getSizeInBits(); 665 unsigned NumSignBits = LOI->NumSignBits; 666 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 667 668 if (NumZeroBits == RegSize) { 669 // The current value is a zero. 670 // Explicitly express that as it would be easier for 671 // optimizations to kick in. 672 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 673 continue; 674 } 675 676 // FIXME: We capture more information than the dag can represent. For 677 // now, just use the tightest assertzext/assertsext possible. 678 bool isSExt = true; 679 EVT FromVT(MVT::Other); 680 if (NumSignBits == RegSize) { 681 isSExt = true; // ASSERT SEXT 1 682 FromVT = MVT::i1; 683 } else if (NumZeroBits >= RegSize - 1) { 684 isSExt = false; // ASSERT ZEXT 1 685 FromVT = MVT::i1; 686 } else if (NumSignBits > RegSize - 8) { 687 isSExt = true; // ASSERT SEXT 8 688 FromVT = MVT::i8; 689 } else if (NumZeroBits >= RegSize - 8) { 690 isSExt = false; // ASSERT ZEXT 8 691 FromVT = MVT::i8; 692 } else if (NumSignBits > RegSize - 16) { 693 isSExt = true; // ASSERT SEXT 16 694 FromVT = MVT::i16; 695 } else if (NumZeroBits >= RegSize - 16) { 696 isSExt = false; // ASSERT ZEXT 16 697 FromVT = MVT::i16; 698 } else if (NumSignBits > RegSize - 32) { 699 isSExt = true; // ASSERT SEXT 32 700 FromVT = MVT::i32; 701 } else if (NumZeroBits >= RegSize - 32) { 702 isSExt = false; // ASSERT ZEXT 32 703 FromVT = MVT::i32; 704 } else { 705 continue; 706 } 707 // Add an assertion node. 708 assert(FromVT != MVT::Other); 709 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 710 RegisterVT, P, DAG.getValueType(FromVT)); 711 } 712 713 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 714 NumRegs, RegisterVT, ValueVT, V); 715 Part += NumRegs; 716 Parts.clear(); 717 } 718 719 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 720 } 721 722 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 723 /// specified value into the registers specified by this object. This uses 724 /// Chain/Flag as the input and updates them for the output Chain/Flag. 725 /// If the Flag pointer is NULL, no flag is used. 726 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 727 SDValue &Chain, SDValue *Flag, const Value *V, 728 ISD::NodeType PreferredExtendType) const { 729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 730 ISD::NodeType ExtendKind = PreferredExtendType; 731 732 // Get the list of the values's legal parts. 733 unsigned NumRegs = Regs.size(); 734 SmallVector<SDValue, 8> Parts(NumRegs); 735 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 736 EVT ValueVT = ValueVTs[Value]; 737 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 738 MVT RegisterVT = RegVTs[Value]; 739 740 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 741 ExtendKind = ISD::ZERO_EXTEND; 742 743 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 744 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 745 Part += NumParts; 746 } 747 748 // Copy the parts into the registers. 749 SmallVector<SDValue, 8> Chains(NumRegs); 750 for (unsigned i = 0; i != NumRegs; ++i) { 751 SDValue Part; 752 if (!Flag) { 753 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 754 } else { 755 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 756 *Flag = Part.getValue(1); 757 } 758 759 Chains[i] = Part.getValue(0); 760 } 761 762 if (NumRegs == 1 || Flag) 763 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 764 // flagged to it. That is the CopyToReg nodes and the user are considered 765 // a single scheduling unit. If we create a TokenFactor and return it as 766 // chain, then the TokenFactor is both a predecessor (operand) of the 767 // user as well as a successor (the TF operands are flagged to the user). 768 // c1, f1 = CopyToReg 769 // c2, f2 = CopyToReg 770 // c3 = TokenFactor c1, c2 771 // ... 772 // = op c3, ..., f2 773 Chain = Chains[NumRegs-1]; 774 else 775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 776 } 777 778 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 779 /// operand list. This adds the code marker and includes the number of 780 /// values added into it. 781 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 782 unsigned MatchingIdx, SDLoc dl, 783 SelectionDAG &DAG, 784 std::vector<SDValue> &Ops) const { 785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 786 787 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 788 if (HasMatching) 789 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 790 else if (!Regs.empty() && 791 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 792 // Put the register class of the virtual registers in the flag word. That 793 // way, later passes can recompute register class constraints for inline 794 // assembly as well as normal instructions. 795 // Don't do this for tied operands that can use the regclass information 796 // from the def. 797 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 798 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 799 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 800 } 801 802 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 803 Ops.push_back(Res); 804 805 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 806 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 807 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 808 MVT RegisterVT = RegVTs[Value]; 809 for (unsigned i = 0; i != NumRegs; ++i) { 810 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 811 unsigned TheReg = Regs[Reg++]; 812 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 813 814 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 815 // If we clobbered the stack pointer, MFI should know about it. 816 assert(DAG.getMachineFunction().getFrameInfo()-> 817 hasOpaqueSPAdjustment()); 818 } 819 } 820 } 821 } 822 823 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 824 const TargetLibraryInfo *li) { 825 AA = &aa; 826 GFI = gfi; 827 LibInfo = li; 828 DL = &DAG.getDataLayout(); 829 Context = DAG.getContext(); 830 LPadToCallSiteMap.clear(); 831 } 832 833 /// clear - Clear out the current SelectionDAG and the associated 834 /// state and prepare this SelectionDAGBuilder object to be used 835 /// for a new block. This doesn't clear out information about 836 /// additional blocks that are needed to complete switch lowering 837 /// or PHI node updating; that information is cleared out as it is 838 /// consumed. 839 void SelectionDAGBuilder::clear() { 840 NodeMap.clear(); 841 UnusedArgNodeMap.clear(); 842 PendingLoads.clear(); 843 PendingExports.clear(); 844 CurInst = nullptr; 845 HasTailCall = false; 846 SDNodeOrder = LowestSDNodeOrder; 847 StatepointLowering.clear(); 848 } 849 850 /// clearDanglingDebugInfo - Clear the dangling debug information 851 /// map. This function is separated from the clear so that debug 852 /// information that is dangling in a basic block can be properly 853 /// resolved in a different basic block. This allows the 854 /// SelectionDAG to resolve dangling debug information attached 855 /// to PHI nodes. 856 void SelectionDAGBuilder::clearDanglingDebugInfo() { 857 DanglingDebugInfoMap.clear(); 858 } 859 860 /// getRoot - Return the current virtual root of the Selection DAG, 861 /// flushing any PendingLoad items. This must be done before emitting 862 /// a store or any other node that may need to be ordered after any 863 /// prior load instructions. 864 /// 865 SDValue SelectionDAGBuilder::getRoot() { 866 if (PendingLoads.empty()) 867 return DAG.getRoot(); 868 869 if (PendingLoads.size() == 1) { 870 SDValue Root = PendingLoads[0]; 871 DAG.setRoot(Root); 872 PendingLoads.clear(); 873 return Root; 874 } 875 876 // Otherwise, we have to make a token factor node. 877 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 878 PendingLoads); 879 PendingLoads.clear(); 880 DAG.setRoot(Root); 881 return Root; 882 } 883 884 /// getControlRoot - Similar to getRoot, but instead of flushing all the 885 /// PendingLoad items, flush all the PendingExports items. It is necessary 886 /// to do this before emitting a terminator instruction. 887 /// 888 SDValue SelectionDAGBuilder::getControlRoot() { 889 SDValue Root = DAG.getRoot(); 890 891 if (PendingExports.empty()) 892 return Root; 893 894 // Turn all of the CopyToReg chains into one factored node. 895 if (Root.getOpcode() != ISD::EntryToken) { 896 unsigned i = 0, e = PendingExports.size(); 897 for (; i != e; ++i) { 898 assert(PendingExports[i].getNode()->getNumOperands() > 1); 899 if (PendingExports[i].getNode()->getOperand(0) == Root) 900 break; // Don't add the root if we already indirectly depend on it. 901 } 902 903 if (i == e) 904 PendingExports.push_back(Root); 905 } 906 907 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 908 PendingExports); 909 PendingExports.clear(); 910 DAG.setRoot(Root); 911 return Root; 912 } 913 914 void SelectionDAGBuilder::visit(const Instruction &I) { 915 // Set up outgoing PHI node register values before emitting the terminator. 916 if (isa<TerminatorInst>(&I)) 917 HandlePHINodesInSuccessorBlocks(I.getParent()); 918 919 ++SDNodeOrder; 920 921 CurInst = &I; 922 923 visit(I.getOpcode(), I); 924 925 if (!isa<TerminatorInst>(&I) && !HasTailCall && 926 !isStatepoint(&I)) // statepoints handle their exports internally 927 CopyToExportRegsIfNeeded(&I); 928 929 CurInst = nullptr; 930 } 931 932 void SelectionDAGBuilder::visitPHI(const PHINode &) { 933 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 934 } 935 936 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 937 // Note: this doesn't use InstVisitor, because it has to work with 938 // ConstantExpr's in addition to instructions. 939 switch (Opcode) { 940 default: llvm_unreachable("Unknown instruction type encountered!"); 941 // Build the switch statement using the Instruction.def file. 942 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 943 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 944 #include "llvm/IR/Instruction.def" 945 } 946 } 947 948 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 949 // generate the debug data structures now that we've seen its definition. 950 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 951 SDValue Val) { 952 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 953 if (DDI.getDI()) { 954 const DbgValueInst *DI = DDI.getDI(); 955 DebugLoc dl = DDI.getdl(); 956 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 957 DILocalVariable *Variable = DI->getVariable(); 958 DIExpression *Expr = DI->getExpression(); 959 assert(Variable->isValidLocationForIntrinsic(dl) && 960 "Expected inlined-at fields to agree"); 961 uint64_t Offset = DI->getOffset(); 962 SDDbgValue *SDV; 963 if (Val.getNode()) { 964 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 965 Val)) { 966 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 967 false, Offset, dl, DbgSDNodeOrder); 968 DAG.AddDbgValue(SDV, Val.getNode(), false); 969 } 970 } else 971 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 972 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 973 } 974 } 975 976 /// getCopyFromRegs - If there was virtual register allocated for the value V 977 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 978 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 979 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 980 SDValue Result; 981 982 if (It != FuncInfo.ValueMap.end()) { 983 unsigned InReg = It->second; 984 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 985 DAG.getDataLayout(), InReg, Ty); 986 SDValue Chain = DAG.getEntryNode(); 987 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 988 resolveDanglingDebugInfo(V, Result); 989 } 990 991 return Result; 992 } 993 994 /// getValue - Return an SDValue for the given Value. 995 SDValue SelectionDAGBuilder::getValue(const Value *V) { 996 // If we already have an SDValue for this value, use it. It's important 997 // to do this first, so that we don't create a CopyFromReg if we already 998 // have a regular SDValue. 999 SDValue &N = NodeMap[V]; 1000 if (N.getNode()) return N; 1001 1002 // If there's a virtual register allocated and initialized for this 1003 // value, use it. 1004 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1005 return copyFromReg; 1006 1007 // Otherwise create a new SDValue and remember it. 1008 SDValue Val = getValueImpl(V); 1009 NodeMap[V] = Val; 1010 resolveDanglingDebugInfo(V, Val); 1011 return Val; 1012 } 1013 1014 // Return true if SDValue exists for the given Value 1015 bool SelectionDAGBuilder::findValue(const Value *V) const { 1016 return (NodeMap.find(V) != NodeMap.end()) || 1017 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1018 } 1019 1020 /// getNonRegisterValue - Return an SDValue for the given Value, but 1021 /// don't look in FuncInfo.ValueMap for a virtual register. 1022 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1023 // If we already have an SDValue for this value, use it. 1024 SDValue &N = NodeMap[V]; 1025 if (N.getNode()) { 1026 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1027 // Remove the debug location from the node as the node is about to be used 1028 // in a location which may differ from the original debug location. This 1029 // is relevant to Constant and ConstantFP nodes because they can appear 1030 // as constant expressions inside PHI nodes. 1031 N->setDebugLoc(DebugLoc()); 1032 } 1033 return N; 1034 } 1035 1036 // Otherwise create a new SDValue and remember it. 1037 SDValue Val = getValueImpl(V); 1038 NodeMap[V] = Val; 1039 resolveDanglingDebugInfo(V, Val); 1040 return Val; 1041 } 1042 1043 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1044 /// Create an SDValue for the given value. 1045 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1047 1048 if (const Constant *C = dyn_cast<Constant>(V)) { 1049 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1050 1051 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1052 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1053 1054 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1055 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1056 1057 if (isa<ConstantPointerNull>(C)) { 1058 unsigned AS = V->getType()->getPointerAddressSpace(); 1059 return DAG.getConstant(0, getCurSDLoc(), 1060 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1061 } 1062 1063 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1064 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1065 1066 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1067 return DAG.getUNDEF(VT); 1068 1069 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1070 visit(CE->getOpcode(), *CE); 1071 SDValue N1 = NodeMap[V]; 1072 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1073 return N1; 1074 } 1075 1076 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1077 SmallVector<SDValue, 4> Constants; 1078 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1079 OI != OE; ++OI) { 1080 SDNode *Val = getValue(*OI).getNode(); 1081 // If the operand is an empty aggregate, there are no values. 1082 if (!Val) continue; 1083 // Add each leaf value from the operand to the Constants list 1084 // to form a flattened list of all the values. 1085 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1086 Constants.push_back(SDValue(Val, i)); 1087 } 1088 1089 return DAG.getMergeValues(Constants, getCurSDLoc()); 1090 } 1091 1092 if (const ConstantDataSequential *CDS = 1093 dyn_cast<ConstantDataSequential>(C)) { 1094 SmallVector<SDValue, 4> Ops; 1095 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1096 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1097 // Add each leaf value from the operand to the Constants list 1098 // to form a flattened list of all the values. 1099 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1100 Ops.push_back(SDValue(Val, i)); 1101 } 1102 1103 if (isa<ArrayType>(CDS->getType())) 1104 return DAG.getMergeValues(Ops, getCurSDLoc()); 1105 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1106 VT, Ops); 1107 } 1108 1109 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1110 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1111 "Unknown struct or array constant!"); 1112 1113 SmallVector<EVT, 4> ValueVTs; 1114 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1115 unsigned NumElts = ValueVTs.size(); 1116 if (NumElts == 0) 1117 return SDValue(); // empty struct 1118 SmallVector<SDValue, 4> Constants(NumElts); 1119 for (unsigned i = 0; i != NumElts; ++i) { 1120 EVT EltVT = ValueVTs[i]; 1121 if (isa<UndefValue>(C)) 1122 Constants[i] = DAG.getUNDEF(EltVT); 1123 else if (EltVT.isFloatingPoint()) 1124 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1125 else 1126 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1127 } 1128 1129 return DAG.getMergeValues(Constants, getCurSDLoc()); 1130 } 1131 1132 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1133 return DAG.getBlockAddress(BA, VT); 1134 1135 VectorType *VecTy = cast<VectorType>(V->getType()); 1136 unsigned NumElements = VecTy->getNumElements(); 1137 1138 // Now that we know the number and type of the elements, get that number of 1139 // elements into the Ops array based on what kind of constant it is. 1140 SmallVector<SDValue, 16> Ops; 1141 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1142 for (unsigned i = 0; i != NumElements; ++i) 1143 Ops.push_back(getValue(CV->getOperand(i))); 1144 } else { 1145 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1146 EVT EltVT = 1147 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1148 1149 SDValue Op; 1150 if (EltVT.isFloatingPoint()) 1151 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1152 else 1153 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1154 Ops.assign(NumElements, Op); 1155 } 1156 1157 // Create a BUILD_VECTOR node. 1158 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1159 } 1160 1161 // If this is a static alloca, generate it as the frameindex instead of 1162 // computation. 1163 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1164 DenseMap<const AllocaInst*, int>::iterator SI = 1165 FuncInfo.StaticAllocaMap.find(AI); 1166 if (SI != FuncInfo.StaticAllocaMap.end()) 1167 return DAG.getFrameIndex(SI->second, 1168 TLI.getPointerTy(DAG.getDataLayout())); 1169 } 1170 1171 // If this is an instruction which fast-isel has deferred, select it now. 1172 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1173 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1174 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1175 Inst->getType()); 1176 SDValue Chain = DAG.getEntryNode(); 1177 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1178 } 1179 1180 llvm_unreachable("Can't get register for value!"); 1181 } 1182 1183 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1184 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1185 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1186 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1187 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1188 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1189 if (IsMSVCCXX || IsCoreCLR) 1190 CatchPadMBB->setIsEHFuncletEntry(); 1191 1192 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1193 } 1194 1195 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1196 // Update machine-CFG edge. 1197 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1198 FuncInfo.MBB->addSuccessor(TargetMBB); 1199 1200 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1201 bool IsSEH = isAsynchronousEHPersonality(Pers); 1202 if (IsSEH) { 1203 // If this is not a fall-through branch or optimizations are switched off, 1204 // emit the branch. 1205 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1206 TM.getOptLevel() == CodeGenOpt::None) 1207 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1208 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1209 return; 1210 } 1211 1212 // Figure out the funclet membership for the catchret's successor. 1213 // This will be used by the FuncletLayout pass to determine how to order the 1214 // BB's. 1215 // A 'catchret' returns to the outer scope's color. 1216 Value *ParentPad = I.getCatchSwitchParentPad(); 1217 const BasicBlock *SuccessorColor; 1218 if (isa<ConstantTokenNone>(ParentPad)) 1219 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1220 else 1221 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1222 assert(SuccessorColor && "No parent funclet for catchret!"); 1223 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1224 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1225 1226 // Create the terminator node. 1227 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1228 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1229 DAG.getBasicBlock(SuccessorColorMBB)); 1230 DAG.setRoot(Ret); 1231 } 1232 1233 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1234 // Don't emit any special code for the cleanuppad instruction. It just marks 1235 // the start of a funclet. 1236 FuncInfo.MBB->setIsEHFuncletEntry(); 1237 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1238 } 1239 1240 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1241 /// many places it could ultimately go. In the IR, we have a single unwind 1242 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1243 /// This function skips over imaginary basic blocks that hold catchswitch 1244 /// instructions, and finds all the "real" machine 1245 /// basic block destinations. As those destinations may not be successors of 1246 /// EHPadBB, here we also calculate the edge probability to those destinations. 1247 /// The passed-in Prob is the edge probability to EHPadBB. 1248 static void findUnwindDestinations( 1249 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1250 BranchProbability Prob, 1251 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1252 &UnwindDests) { 1253 EHPersonality Personality = 1254 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1255 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1256 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1257 1258 while (EHPadBB) { 1259 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1260 BasicBlock *NewEHPadBB = nullptr; 1261 if (isa<LandingPadInst>(Pad)) { 1262 // Stop on landingpads. They are not funclets. 1263 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1264 break; 1265 } else if (isa<CleanupPadInst>(Pad)) { 1266 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1267 // personalities. 1268 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1269 UnwindDests.back().first->setIsEHFuncletEntry(); 1270 break; 1271 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1272 // Add the catchpad handlers to the possible destinations. 1273 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1274 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1275 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1276 if (IsMSVCCXX || IsCoreCLR) 1277 UnwindDests.back().first->setIsEHFuncletEntry(); 1278 } 1279 NewEHPadBB = CatchSwitch->getUnwindDest(); 1280 } else { 1281 continue; 1282 } 1283 1284 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1285 if (BPI && NewEHPadBB) 1286 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1287 EHPadBB = NewEHPadBB; 1288 } 1289 } 1290 1291 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1292 // Update successor info. 1293 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1294 auto UnwindDest = I.getUnwindDest(); 1295 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1296 BranchProbability UnwindDestProb = 1297 (BPI && UnwindDest) 1298 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1299 : BranchProbability::getZero(); 1300 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1301 for (auto &UnwindDest : UnwindDests) { 1302 UnwindDest.first->setIsEHPad(); 1303 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1304 } 1305 FuncInfo.MBB->normalizeSuccProbs(); 1306 1307 // Create the terminator node. 1308 SDValue Ret = 1309 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1310 DAG.setRoot(Ret); 1311 } 1312 1313 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1314 report_fatal_error("visitCatchSwitch not yet implemented!"); 1315 } 1316 1317 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1318 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1319 auto &DL = DAG.getDataLayout(); 1320 SDValue Chain = getControlRoot(); 1321 SmallVector<ISD::OutputArg, 8> Outs; 1322 SmallVector<SDValue, 8> OutVals; 1323 1324 if (!FuncInfo.CanLowerReturn) { 1325 unsigned DemoteReg = FuncInfo.DemoteRegister; 1326 const Function *F = I.getParent()->getParent(); 1327 1328 // Emit a store of the return value through the virtual register. 1329 // Leave Outs empty so that LowerReturn won't try to load return 1330 // registers the usual way. 1331 SmallVector<EVT, 1> PtrValueVTs; 1332 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1333 PtrValueVTs); 1334 1335 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1336 DemoteReg, PtrValueVTs[0]); 1337 SDValue RetOp = getValue(I.getOperand(0)); 1338 1339 SmallVector<EVT, 4> ValueVTs; 1340 SmallVector<uint64_t, 4> Offsets; 1341 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1342 unsigned NumValues = ValueVTs.size(); 1343 1344 // An aggregate return value cannot wrap around the address space, so 1345 // offsets to its parts don't wrap either. 1346 SDNodeFlags Flags; 1347 Flags.setNoUnsignedWrap(true); 1348 1349 SmallVector<SDValue, 4> Chains(NumValues); 1350 for (unsigned i = 0; i != NumValues; ++i) { 1351 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1352 RetPtr.getValueType(), RetPtr, 1353 DAG.getIntPtrConstant(Offsets[i], 1354 getCurSDLoc()), 1355 &Flags); 1356 Chains[i] = 1357 DAG.getStore(Chain, getCurSDLoc(), 1358 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1359 // FIXME: better loc info would be nice. 1360 Add, MachinePointerInfo(), false, false, 0); 1361 } 1362 1363 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1364 MVT::Other, Chains); 1365 } else if (I.getNumOperands() != 0) { 1366 SmallVector<EVT, 4> ValueVTs; 1367 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1368 unsigned NumValues = ValueVTs.size(); 1369 if (NumValues) { 1370 SDValue RetOp = getValue(I.getOperand(0)); 1371 1372 const Function *F = I.getParent()->getParent(); 1373 1374 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1375 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1376 Attribute::SExt)) 1377 ExtendKind = ISD::SIGN_EXTEND; 1378 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1379 Attribute::ZExt)) 1380 ExtendKind = ISD::ZERO_EXTEND; 1381 1382 LLVMContext &Context = F->getContext(); 1383 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1384 Attribute::InReg); 1385 1386 for (unsigned j = 0; j != NumValues; ++j) { 1387 EVT VT = ValueVTs[j]; 1388 1389 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1390 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1391 1392 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1393 MVT PartVT = TLI.getRegisterType(Context, VT); 1394 SmallVector<SDValue, 4> Parts(NumParts); 1395 getCopyToParts(DAG, getCurSDLoc(), 1396 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1397 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1398 1399 // 'inreg' on function refers to return value 1400 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1401 if (RetInReg) 1402 Flags.setInReg(); 1403 1404 // Propagate extension type if any 1405 if (ExtendKind == ISD::SIGN_EXTEND) 1406 Flags.setSExt(); 1407 else if (ExtendKind == ISD::ZERO_EXTEND) 1408 Flags.setZExt(); 1409 1410 for (unsigned i = 0; i < NumParts; ++i) { 1411 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1412 VT, /*isfixed=*/true, 0, 0)); 1413 OutVals.push_back(Parts[i]); 1414 } 1415 } 1416 } 1417 } 1418 1419 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1420 CallingConv::ID CallConv = 1421 DAG.getMachineFunction().getFunction()->getCallingConv(); 1422 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1423 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1424 1425 // Verify that the target's LowerReturn behaved as expected. 1426 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1427 "LowerReturn didn't return a valid chain!"); 1428 1429 // Update the DAG with the new chain value resulting from return lowering. 1430 DAG.setRoot(Chain); 1431 } 1432 1433 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1434 /// created for it, emit nodes to copy the value into the virtual 1435 /// registers. 1436 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1437 // Skip empty types 1438 if (V->getType()->isEmptyTy()) 1439 return; 1440 1441 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1442 if (VMI != FuncInfo.ValueMap.end()) { 1443 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1444 CopyValueToVirtualRegister(V, VMI->second); 1445 } 1446 } 1447 1448 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1449 /// the current basic block, add it to ValueMap now so that we'll get a 1450 /// CopyTo/FromReg. 1451 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1452 // No need to export constants. 1453 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1454 1455 // Already exported? 1456 if (FuncInfo.isExportedInst(V)) return; 1457 1458 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1459 CopyValueToVirtualRegister(V, Reg); 1460 } 1461 1462 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1463 const BasicBlock *FromBB) { 1464 // The operands of the setcc have to be in this block. We don't know 1465 // how to export them from some other block. 1466 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1467 // Can export from current BB. 1468 if (VI->getParent() == FromBB) 1469 return true; 1470 1471 // Is already exported, noop. 1472 return FuncInfo.isExportedInst(V); 1473 } 1474 1475 // If this is an argument, we can export it if the BB is the entry block or 1476 // if it is already exported. 1477 if (isa<Argument>(V)) { 1478 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1479 return true; 1480 1481 // Otherwise, can only export this if it is already exported. 1482 return FuncInfo.isExportedInst(V); 1483 } 1484 1485 // Otherwise, constants can always be exported. 1486 return true; 1487 } 1488 1489 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1490 BranchProbability 1491 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1492 const MachineBasicBlock *Dst) const { 1493 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1494 const BasicBlock *SrcBB = Src->getBasicBlock(); 1495 const BasicBlock *DstBB = Dst->getBasicBlock(); 1496 if (!BPI) { 1497 // If BPI is not available, set the default probability as 1 / N, where N is 1498 // the number of successors. 1499 auto SuccSize = std::max<uint32_t>( 1500 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1501 return BranchProbability(1, SuccSize); 1502 } 1503 return BPI->getEdgeProbability(SrcBB, DstBB); 1504 } 1505 1506 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1507 MachineBasicBlock *Dst, 1508 BranchProbability Prob) { 1509 if (!FuncInfo.BPI) 1510 Src->addSuccessorWithoutProb(Dst); 1511 else { 1512 if (Prob.isUnknown()) 1513 Prob = getEdgeProbability(Src, Dst); 1514 Src->addSuccessor(Dst, Prob); 1515 } 1516 } 1517 1518 static bool InBlock(const Value *V, const BasicBlock *BB) { 1519 if (const Instruction *I = dyn_cast<Instruction>(V)) 1520 return I->getParent() == BB; 1521 return true; 1522 } 1523 1524 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1525 /// This function emits a branch and is used at the leaves of an OR or an 1526 /// AND operator tree. 1527 /// 1528 void 1529 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1530 MachineBasicBlock *TBB, 1531 MachineBasicBlock *FBB, 1532 MachineBasicBlock *CurBB, 1533 MachineBasicBlock *SwitchBB, 1534 BranchProbability TProb, 1535 BranchProbability FProb) { 1536 const BasicBlock *BB = CurBB->getBasicBlock(); 1537 1538 // If the leaf of the tree is a comparison, merge the condition into 1539 // the caseblock. 1540 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1541 // The operands of the cmp have to be in this block. We don't know 1542 // how to export them from some other block. If this is the first block 1543 // of the sequence, no exporting is needed. 1544 if (CurBB == SwitchBB || 1545 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1546 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1547 ISD::CondCode Condition; 1548 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1549 Condition = getICmpCondCode(IC->getPredicate()); 1550 } else { 1551 const FCmpInst *FC = cast<FCmpInst>(Cond); 1552 Condition = getFCmpCondCode(FC->getPredicate()); 1553 if (TM.Options.NoNaNsFPMath) 1554 Condition = getFCmpCodeWithoutNaN(Condition); 1555 } 1556 1557 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1558 TBB, FBB, CurBB, TProb, FProb); 1559 SwitchCases.push_back(CB); 1560 return; 1561 } 1562 } 1563 1564 // Create a CaseBlock record representing this branch. 1565 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1566 nullptr, TBB, FBB, CurBB, TProb, FProb); 1567 SwitchCases.push_back(CB); 1568 } 1569 1570 /// FindMergedConditions - If Cond is an expression like 1571 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1572 MachineBasicBlock *TBB, 1573 MachineBasicBlock *FBB, 1574 MachineBasicBlock *CurBB, 1575 MachineBasicBlock *SwitchBB, 1576 Instruction::BinaryOps Opc, 1577 BranchProbability TProb, 1578 BranchProbability FProb) { 1579 // If this node is not part of the or/and tree, emit it as a branch. 1580 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1581 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1582 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1583 BOp->getParent() != CurBB->getBasicBlock() || 1584 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1585 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1586 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1587 TProb, FProb); 1588 return; 1589 } 1590 1591 // Create TmpBB after CurBB. 1592 MachineFunction::iterator BBI(CurBB); 1593 MachineFunction &MF = DAG.getMachineFunction(); 1594 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1595 CurBB->getParent()->insert(++BBI, TmpBB); 1596 1597 if (Opc == Instruction::Or) { 1598 // Codegen X | Y as: 1599 // BB1: 1600 // jmp_if_X TBB 1601 // jmp TmpBB 1602 // TmpBB: 1603 // jmp_if_Y TBB 1604 // jmp FBB 1605 // 1606 1607 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1608 // The requirement is that 1609 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1610 // = TrueProb for original BB. 1611 // Assuming the original probabilities are A and B, one choice is to set 1612 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1613 // A/(1+B) and 2B/(1+B). This choice assumes that 1614 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1615 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1616 // TmpBB, but the math is more complicated. 1617 1618 auto NewTrueProb = TProb / 2; 1619 auto NewFalseProb = TProb / 2 + FProb; 1620 // Emit the LHS condition. 1621 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1622 NewTrueProb, NewFalseProb); 1623 1624 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1625 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1626 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1627 // Emit the RHS condition into TmpBB. 1628 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1629 Probs[0], Probs[1]); 1630 } else { 1631 assert(Opc == Instruction::And && "Unknown merge op!"); 1632 // Codegen X & Y as: 1633 // BB1: 1634 // jmp_if_X TmpBB 1635 // jmp FBB 1636 // TmpBB: 1637 // jmp_if_Y TBB 1638 // jmp FBB 1639 // 1640 // This requires creation of TmpBB after CurBB. 1641 1642 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1643 // The requirement is that 1644 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1645 // = FalseProb for original BB. 1646 // Assuming the original probabilities are A and B, one choice is to set 1647 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1648 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1649 // TrueProb for BB1 * FalseProb for TmpBB. 1650 1651 auto NewTrueProb = TProb + FProb / 2; 1652 auto NewFalseProb = FProb / 2; 1653 // Emit the LHS condition. 1654 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1655 NewTrueProb, NewFalseProb); 1656 1657 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1658 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1659 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1660 // Emit the RHS condition into TmpBB. 1661 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1662 Probs[0], Probs[1]); 1663 } 1664 } 1665 1666 /// If the set of cases should be emitted as a series of branches, return true. 1667 /// If we should emit this as a bunch of and/or'd together conditions, return 1668 /// false. 1669 bool 1670 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1671 if (Cases.size() != 2) return true; 1672 1673 // If this is two comparisons of the same values or'd or and'd together, they 1674 // will get folded into a single comparison, so don't emit two blocks. 1675 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1676 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1677 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1678 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1679 return false; 1680 } 1681 1682 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1683 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1684 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1685 Cases[0].CC == Cases[1].CC && 1686 isa<Constant>(Cases[0].CmpRHS) && 1687 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1688 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1689 return false; 1690 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1691 return false; 1692 } 1693 1694 return true; 1695 } 1696 1697 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1698 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1699 1700 // Update machine-CFG edges. 1701 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1702 1703 if (I.isUnconditional()) { 1704 // Update machine-CFG edges. 1705 BrMBB->addSuccessor(Succ0MBB); 1706 1707 // If this is not a fall-through branch or optimizations are switched off, 1708 // emit the branch. 1709 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1710 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1711 MVT::Other, getControlRoot(), 1712 DAG.getBasicBlock(Succ0MBB))); 1713 1714 return; 1715 } 1716 1717 // If this condition is one of the special cases we handle, do special stuff 1718 // now. 1719 const Value *CondVal = I.getCondition(); 1720 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1721 1722 // If this is a series of conditions that are or'd or and'd together, emit 1723 // this as a sequence of branches instead of setcc's with and/or operations. 1724 // As long as jumps are not expensive, this should improve performance. 1725 // For example, instead of something like: 1726 // cmp A, B 1727 // C = seteq 1728 // cmp D, E 1729 // F = setle 1730 // or C, F 1731 // jnz foo 1732 // Emit: 1733 // cmp A, B 1734 // je foo 1735 // cmp D, E 1736 // jle foo 1737 // 1738 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1739 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1740 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1741 !I.getMetadata(LLVMContext::MD_unpredictable) && 1742 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1743 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1744 Opcode, 1745 getEdgeProbability(BrMBB, Succ0MBB), 1746 getEdgeProbability(BrMBB, Succ1MBB)); 1747 // If the compares in later blocks need to use values not currently 1748 // exported from this block, export them now. This block should always 1749 // be the first entry. 1750 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1751 1752 // Allow some cases to be rejected. 1753 if (ShouldEmitAsBranches(SwitchCases)) { 1754 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1755 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1756 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1757 } 1758 1759 // Emit the branch for this block. 1760 visitSwitchCase(SwitchCases[0], BrMBB); 1761 SwitchCases.erase(SwitchCases.begin()); 1762 return; 1763 } 1764 1765 // Okay, we decided not to do this, remove any inserted MBB's and clear 1766 // SwitchCases. 1767 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1768 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1769 1770 SwitchCases.clear(); 1771 } 1772 } 1773 1774 // Create a CaseBlock record representing this branch. 1775 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1776 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1777 1778 // Use visitSwitchCase to actually insert the fast branch sequence for this 1779 // cond branch. 1780 visitSwitchCase(CB, BrMBB); 1781 } 1782 1783 /// visitSwitchCase - Emits the necessary code to represent a single node in 1784 /// the binary search tree resulting from lowering a switch instruction. 1785 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1786 MachineBasicBlock *SwitchBB) { 1787 SDValue Cond; 1788 SDValue CondLHS = getValue(CB.CmpLHS); 1789 SDLoc dl = getCurSDLoc(); 1790 1791 // Build the setcc now. 1792 if (!CB.CmpMHS) { 1793 // Fold "(X == true)" to X and "(X == false)" to !X to 1794 // handle common cases produced by branch lowering. 1795 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1796 CB.CC == ISD::SETEQ) 1797 Cond = CondLHS; 1798 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1799 CB.CC == ISD::SETEQ) { 1800 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1801 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1802 } else 1803 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1804 } else { 1805 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1806 1807 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1808 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1809 1810 SDValue CmpOp = getValue(CB.CmpMHS); 1811 EVT VT = CmpOp.getValueType(); 1812 1813 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1814 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1815 ISD::SETLE); 1816 } else { 1817 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1818 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1819 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1820 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1821 } 1822 } 1823 1824 // Update successor info 1825 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1826 // TrueBB and FalseBB are always different unless the incoming IR is 1827 // degenerate. This only happens when running llc on weird IR. 1828 if (CB.TrueBB != CB.FalseBB) 1829 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1830 SwitchBB->normalizeSuccProbs(); 1831 1832 // If the lhs block is the next block, invert the condition so that we can 1833 // fall through to the lhs instead of the rhs block. 1834 if (CB.TrueBB == NextBlock(SwitchBB)) { 1835 std::swap(CB.TrueBB, CB.FalseBB); 1836 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1837 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1838 } 1839 1840 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1841 MVT::Other, getControlRoot(), Cond, 1842 DAG.getBasicBlock(CB.TrueBB)); 1843 1844 // Insert the false branch. Do this even if it's a fall through branch, 1845 // this makes it easier to do DAG optimizations which require inverting 1846 // the branch condition. 1847 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1848 DAG.getBasicBlock(CB.FalseBB)); 1849 1850 DAG.setRoot(BrCond); 1851 } 1852 1853 /// visitJumpTable - Emit JumpTable node in the current MBB 1854 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1855 // Emit the code for the jump table 1856 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1857 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1858 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1859 JT.Reg, PTy); 1860 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1861 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1862 MVT::Other, Index.getValue(1), 1863 Table, Index); 1864 DAG.setRoot(BrJumpTable); 1865 } 1866 1867 /// visitJumpTableHeader - This function emits necessary code to produce index 1868 /// in the JumpTable from switch case. 1869 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1870 JumpTableHeader &JTH, 1871 MachineBasicBlock *SwitchBB) { 1872 SDLoc dl = getCurSDLoc(); 1873 1874 // Subtract the lowest switch case value from the value being switched on and 1875 // conditional branch to default mbb if the result is greater than the 1876 // difference between smallest and largest cases. 1877 SDValue SwitchOp = getValue(JTH.SValue); 1878 EVT VT = SwitchOp.getValueType(); 1879 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1880 DAG.getConstant(JTH.First, dl, VT)); 1881 1882 // The SDNode we just created, which holds the value being switched on minus 1883 // the smallest case value, needs to be copied to a virtual register so it 1884 // can be used as an index into the jump table in a subsequent basic block. 1885 // This value may be smaller or larger than the target's pointer type, and 1886 // therefore require extension or truncating. 1887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1888 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1889 1890 unsigned JumpTableReg = 1891 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1892 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1893 JumpTableReg, SwitchOp); 1894 JT.Reg = JumpTableReg; 1895 1896 // Emit the range check for the jump table, and branch to the default block 1897 // for the switch statement if the value being switched on exceeds the largest 1898 // case in the switch. 1899 SDValue CMP = DAG.getSetCC( 1900 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1901 Sub.getValueType()), 1902 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1903 1904 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1905 MVT::Other, CopyTo, CMP, 1906 DAG.getBasicBlock(JT.Default)); 1907 1908 // Avoid emitting unnecessary branches to the next block. 1909 if (JT.MBB != NextBlock(SwitchBB)) 1910 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1911 DAG.getBasicBlock(JT.MBB)); 1912 1913 DAG.setRoot(BrCond); 1914 } 1915 1916 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1917 /// tail spliced into a stack protector check success bb. 1918 /// 1919 /// For a high level explanation of how this fits into the stack protector 1920 /// generation see the comment on the declaration of class 1921 /// StackProtectorDescriptor. 1922 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1923 MachineBasicBlock *ParentBB) { 1924 1925 // First create the loads to the guard/stack slot for the comparison. 1926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1927 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1928 1929 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1930 int FI = MFI->getStackProtectorIndex(); 1931 1932 const Value *IRGuard = SPD.getGuard(); 1933 SDValue GuardPtr = getValue(IRGuard); 1934 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1935 1936 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1937 1938 SDValue Guard; 1939 SDLoc dl = getCurSDLoc(); 1940 1941 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1942 // guard value from the virtual register holding the value. Otherwise, emit a 1943 // volatile load to retrieve the stack guard value. 1944 unsigned GuardReg = SPD.getGuardReg(); 1945 1946 if (GuardReg && TLI.useLoadStackGuardNode()) 1947 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1948 PtrTy); 1949 else 1950 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1951 GuardPtr, MachinePointerInfo(IRGuard, 0), 1952 true, false, false, Align); 1953 1954 SDValue StackSlot = DAG.getLoad( 1955 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1956 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1957 false, false, Align); 1958 1959 // Perform the comparison via a subtract/getsetcc. 1960 EVT VT = Guard.getValueType(); 1961 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1962 1963 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1964 *DAG.getContext(), 1965 Sub.getValueType()), 1966 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1967 1968 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1969 // branch to failure MBB. 1970 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1971 MVT::Other, StackSlot.getOperand(0), 1972 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1973 // Otherwise branch to success MBB. 1974 SDValue Br = DAG.getNode(ISD::BR, dl, 1975 MVT::Other, BrCond, 1976 DAG.getBasicBlock(SPD.getSuccessMBB())); 1977 1978 DAG.setRoot(Br); 1979 } 1980 1981 /// Codegen the failure basic block for a stack protector check. 1982 /// 1983 /// A failure stack protector machine basic block consists simply of a call to 1984 /// __stack_chk_fail(). 1985 /// 1986 /// For a high level explanation of how this fits into the stack protector 1987 /// generation see the comment on the declaration of class 1988 /// StackProtectorDescriptor. 1989 void 1990 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1992 SDValue Chain = 1993 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1994 None, false, getCurSDLoc(), false, false).second; 1995 DAG.setRoot(Chain); 1996 } 1997 1998 /// visitBitTestHeader - This function emits necessary code to produce value 1999 /// suitable for "bit tests" 2000 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2001 MachineBasicBlock *SwitchBB) { 2002 SDLoc dl = getCurSDLoc(); 2003 2004 // Subtract the minimum value 2005 SDValue SwitchOp = getValue(B.SValue); 2006 EVT VT = SwitchOp.getValueType(); 2007 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2008 DAG.getConstant(B.First, dl, VT)); 2009 2010 // Check range 2011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2012 SDValue RangeCmp = DAG.getSetCC( 2013 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2014 Sub.getValueType()), 2015 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2016 2017 // Determine the type of the test operands. 2018 bool UsePtrType = false; 2019 if (!TLI.isTypeLegal(VT)) 2020 UsePtrType = true; 2021 else { 2022 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2023 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2024 // Switch table case range are encoded into series of masks. 2025 // Just use pointer type, it's guaranteed to fit. 2026 UsePtrType = true; 2027 break; 2028 } 2029 } 2030 if (UsePtrType) { 2031 VT = TLI.getPointerTy(DAG.getDataLayout()); 2032 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2033 } 2034 2035 B.RegVT = VT.getSimpleVT(); 2036 B.Reg = FuncInfo.CreateReg(B.RegVT); 2037 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2038 2039 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2040 2041 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2042 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2043 SwitchBB->normalizeSuccProbs(); 2044 2045 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2046 MVT::Other, CopyTo, RangeCmp, 2047 DAG.getBasicBlock(B.Default)); 2048 2049 // Avoid emitting unnecessary branches to the next block. 2050 if (MBB != NextBlock(SwitchBB)) 2051 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2052 DAG.getBasicBlock(MBB)); 2053 2054 DAG.setRoot(BrRange); 2055 } 2056 2057 /// visitBitTestCase - this function produces one "bit test" 2058 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2059 MachineBasicBlock* NextMBB, 2060 BranchProbability BranchProbToNext, 2061 unsigned Reg, 2062 BitTestCase &B, 2063 MachineBasicBlock *SwitchBB) { 2064 SDLoc dl = getCurSDLoc(); 2065 MVT VT = BB.RegVT; 2066 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2067 SDValue Cmp; 2068 unsigned PopCount = countPopulation(B.Mask); 2069 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2070 if (PopCount == 1) { 2071 // Testing for a single bit; just compare the shift count with what it 2072 // would need to be to shift a 1 bit in that position. 2073 Cmp = DAG.getSetCC( 2074 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2075 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2076 ISD::SETEQ); 2077 } else if (PopCount == BB.Range) { 2078 // There is only one zero bit in the range, test for it directly. 2079 Cmp = DAG.getSetCC( 2080 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2081 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2082 ISD::SETNE); 2083 } else { 2084 // Make desired shift 2085 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2086 DAG.getConstant(1, dl, VT), ShiftOp); 2087 2088 // Emit bit tests and jumps 2089 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2090 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2091 Cmp = DAG.getSetCC( 2092 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2093 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2094 } 2095 2096 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2097 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2098 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2099 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2100 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2101 // one as they are relative probabilities (and thus work more like weights), 2102 // and hence we need to normalize them to let the sum of them become one. 2103 SwitchBB->normalizeSuccProbs(); 2104 2105 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2106 MVT::Other, getControlRoot(), 2107 Cmp, DAG.getBasicBlock(B.TargetBB)); 2108 2109 // Avoid emitting unnecessary branches to the next block. 2110 if (NextMBB != NextBlock(SwitchBB)) 2111 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2112 DAG.getBasicBlock(NextMBB)); 2113 2114 DAG.setRoot(BrAnd); 2115 } 2116 2117 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2118 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2119 2120 // Retrieve successors. Look through artificial IR level blocks like 2121 // catchswitch for successors. 2122 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2123 const BasicBlock *EHPadBB = I.getSuccessor(1); 2124 2125 const Value *Callee(I.getCalledValue()); 2126 const Function *Fn = dyn_cast<Function>(Callee); 2127 if (isa<InlineAsm>(Callee)) 2128 visitInlineAsm(&I); 2129 else if (Fn && Fn->isIntrinsic()) { 2130 switch (Fn->getIntrinsicID()) { 2131 default: 2132 llvm_unreachable("Cannot invoke this intrinsic"); 2133 case Intrinsic::donothing: 2134 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2135 break; 2136 case Intrinsic::experimental_patchpoint_void: 2137 case Intrinsic::experimental_patchpoint_i64: 2138 visitPatchpoint(&I, EHPadBB); 2139 break; 2140 case Intrinsic::experimental_gc_statepoint: 2141 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2142 break; 2143 } 2144 } else 2145 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2146 2147 // If the value of the invoke is used outside of its defining block, make it 2148 // available as a virtual register. 2149 // We already took care of the exported value for the statepoint instruction 2150 // during call to the LowerStatepoint. 2151 if (!isStatepoint(I)) { 2152 CopyToExportRegsIfNeeded(&I); 2153 } 2154 2155 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2156 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2157 BranchProbability EHPadBBProb = 2158 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2159 : BranchProbability::getZero(); 2160 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2161 2162 // Update successor info. 2163 addSuccessorWithProb(InvokeMBB, Return); 2164 for (auto &UnwindDest : UnwindDests) { 2165 UnwindDest.first->setIsEHPad(); 2166 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2167 } 2168 InvokeMBB->normalizeSuccProbs(); 2169 2170 // Drop into normal successor. 2171 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2172 MVT::Other, getControlRoot(), 2173 DAG.getBasicBlock(Return))); 2174 } 2175 2176 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2177 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2178 } 2179 2180 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2181 assert(FuncInfo.MBB->isEHPad() && 2182 "Call to landingpad not in landing pad!"); 2183 2184 MachineBasicBlock *MBB = FuncInfo.MBB; 2185 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2186 AddLandingPadInfo(LP, MMI, MBB); 2187 2188 // If there aren't registers to copy the values into (e.g., during SjLj 2189 // exceptions), then don't bother to create these DAG nodes. 2190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2191 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2192 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2193 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2194 return; 2195 2196 // If landingpad's return type is token type, we don't create DAG nodes 2197 // for its exception pointer and selector value. The extraction of exception 2198 // pointer or selector value from token type landingpads is not currently 2199 // supported. 2200 if (LP.getType()->isTokenTy()) 2201 return; 2202 2203 SmallVector<EVT, 2> ValueVTs; 2204 SDLoc dl = getCurSDLoc(); 2205 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2206 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2207 2208 // Get the two live-in registers as SDValues. The physregs have already been 2209 // copied into virtual registers. 2210 SDValue Ops[2]; 2211 if (FuncInfo.ExceptionPointerVirtReg) { 2212 Ops[0] = DAG.getZExtOrTrunc( 2213 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2214 FuncInfo.ExceptionPointerVirtReg, 2215 TLI.getPointerTy(DAG.getDataLayout())), 2216 dl, ValueVTs[0]); 2217 } else { 2218 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2219 } 2220 Ops[1] = DAG.getZExtOrTrunc( 2221 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2222 FuncInfo.ExceptionSelectorVirtReg, 2223 TLI.getPointerTy(DAG.getDataLayout())), 2224 dl, ValueVTs[1]); 2225 2226 // Merge into one. 2227 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2228 DAG.getVTList(ValueVTs), Ops); 2229 setValue(&LP, Res); 2230 } 2231 2232 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2233 #ifndef NDEBUG 2234 for (const CaseCluster &CC : Clusters) 2235 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2236 #endif 2237 2238 std::sort(Clusters.begin(), Clusters.end(), 2239 [](const CaseCluster &a, const CaseCluster &b) { 2240 return a.Low->getValue().slt(b.Low->getValue()); 2241 }); 2242 2243 // Merge adjacent clusters with the same destination. 2244 const unsigned N = Clusters.size(); 2245 unsigned DstIndex = 0; 2246 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2247 CaseCluster &CC = Clusters[SrcIndex]; 2248 const ConstantInt *CaseVal = CC.Low; 2249 MachineBasicBlock *Succ = CC.MBB; 2250 2251 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2252 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2253 // If this case has the same successor and is a neighbour, merge it into 2254 // the previous cluster. 2255 Clusters[DstIndex - 1].High = CaseVal; 2256 Clusters[DstIndex - 1].Prob += CC.Prob; 2257 } else { 2258 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2259 sizeof(Clusters[SrcIndex])); 2260 } 2261 } 2262 Clusters.resize(DstIndex); 2263 } 2264 2265 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2266 MachineBasicBlock *Last) { 2267 // Update JTCases. 2268 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2269 if (JTCases[i].first.HeaderBB == First) 2270 JTCases[i].first.HeaderBB = Last; 2271 2272 // Update BitTestCases. 2273 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2274 if (BitTestCases[i].Parent == First) 2275 BitTestCases[i].Parent = Last; 2276 } 2277 2278 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2279 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2280 2281 // Update machine-CFG edges with unique successors. 2282 SmallSet<BasicBlock*, 32> Done; 2283 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2284 BasicBlock *BB = I.getSuccessor(i); 2285 bool Inserted = Done.insert(BB).second; 2286 if (!Inserted) 2287 continue; 2288 2289 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2290 addSuccessorWithProb(IndirectBrMBB, Succ); 2291 } 2292 IndirectBrMBB->normalizeSuccProbs(); 2293 2294 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2295 MVT::Other, getControlRoot(), 2296 getValue(I.getAddress()))); 2297 } 2298 2299 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2300 if (DAG.getTarget().Options.TrapUnreachable) 2301 DAG.setRoot( 2302 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2303 } 2304 2305 void SelectionDAGBuilder::visitFSub(const User &I) { 2306 // -0.0 - X --> fneg 2307 Type *Ty = I.getType(); 2308 if (isa<Constant>(I.getOperand(0)) && 2309 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2310 SDValue Op2 = getValue(I.getOperand(1)); 2311 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2312 Op2.getValueType(), Op2)); 2313 return; 2314 } 2315 2316 visitBinary(I, ISD::FSUB); 2317 } 2318 2319 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2320 SDValue Op1 = getValue(I.getOperand(0)); 2321 SDValue Op2 = getValue(I.getOperand(1)); 2322 2323 bool nuw = false; 2324 bool nsw = false; 2325 bool exact = false; 2326 FastMathFlags FMF; 2327 2328 if (const OverflowingBinaryOperator *OFBinOp = 2329 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2330 nuw = OFBinOp->hasNoUnsignedWrap(); 2331 nsw = OFBinOp->hasNoSignedWrap(); 2332 } 2333 if (const PossiblyExactOperator *ExactOp = 2334 dyn_cast<const PossiblyExactOperator>(&I)) 2335 exact = ExactOp->isExact(); 2336 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2337 FMF = FPOp->getFastMathFlags(); 2338 2339 SDNodeFlags Flags; 2340 Flags.setExact(exact); 2341 Flags.setNoSignedWrap(nsw); 2342 Flags.setNoUnsignedWrap(nuw); 2343 if (EnableFMFInDAG) { 2344 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2345 Flags.setNoInfs(FMF.noInfs()); 2346 Flags.setNoNaNs(FMF.noNaNs()); 2347 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2348 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2349 } 2350 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2351 Op1, Op2, &Flags); 2352 setValue(&I, BinNodeValue); 2353 } 2354 2355 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2356 SDValue Op1 = getValue(I.getOperand(0)); 2357 SDValue Op2 = getValue(I.getOperand(1)); 2358 2359 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2360 Op2.getValueType(), DAG.getDataLayout()); 2361 2362 // Coerce the shift amount to the right type if we can. 2363 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2364 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2365 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2366 SDLoc DL = getCurSDLoc(); 2367 2368 // If the operand is smaller than the shift count type, promote it. 2369 if (ShiftSize > Op2Size) 2370 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2371 2372 // If the operand is larger than the shift count type but the shift 2373 // count type has enough bits to represent any shift value, truncate 2374 // it now. This is a common case and it exposes the truncate to 2375 // optimization early. 2376 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2377 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2378 // Otherwise we'll need to temporarily settle for some other convenient 2379 // type. Type legalization will make adjustments once the shiftee is split. 2380 else 2381 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2382 } 2383 2384 bool nuw = false; 2385 bool nsw = false; 2386 bool exact = false; 2387 2388 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2389 2390 if (const OverflowingBinaryOperator *OFBinOp = 2391 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2392 nuw = OFBinOp->hasNoUnsignedWrap(); 2393 nsw = OFBinOp->hasNoSignedWrap(); 2394 } 2395 if (const PossiblyExactOperator *ExactOp = 2396 dyn_cast<const PossiblyExactOperator>(&I)) 2397 exact = ExactOp->isExact(); 2398 } 2399 SDNodeFlags Flags; 2400 Flags.setExact(exact); 2401 Flags.setNoSignedWrap(nsw); 2402 Flags.setNoUnsignedWrap(nuw); 2403 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2404 &Flags); 2405 setValue(&I, Res); 2406 } 2407 2408 void SelectionDAGBuilder::visitSDiv(const User &I) { 2409 SDValue Op1 = getValue(I.getOperand(0)); 2410 SDValue Op2 = getValue(I.getOperand(1)); 2411 2412 SDNodeFlags Flags; 2413 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2414 cast<PossiblyExactOperator>(&I)->isExact()); 2415 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2416 Op2, &Flags)); 2417 } 2418 2419 void SelectionDAGBuilder::visitICmp(const User &I) { 2420 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2421 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2422 predicate = IC->getPredicate(); 2423 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2424 predicate = ICmpInst::Predicate(IC->getPredicate()); 2425 SDValue Op1 = getValue(I.getOperand(0)); 2426 SDValue Op2 = getValue(I.getOperand(1)); 2427 ISD::CondCode Opcode = getICmpCondCode(predicate); 2428 2429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2430 I.getType()); 2431 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2432 } 2433 2434 void SelectionDAGBuilder::visitFCmp(const User &I) { 2435 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2436 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2437 predicate = FC->getPredicate(); 2438 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2439 predicate = FCmpInst::Predicate(FC->getPredicate()); 2440 SDValue Op1 = getValue(I.getOperand(0)); 2441 SDValue Op2 = getValue(I.getOperand(1)); 2442 ISD::CondCode Condition = getFCmpCondCode(predicate); 2443 2444 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2445 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2446 // further optimization, but currently FMF is only applicable to binary nodes. 2447 if (TM.Options.NoNaNsFPMath) 2448 Condition = getFCmpCodeWithoutNaN(Condition); 2449 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2450 I.getType()); 2451 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2452 } 2453 2454 void SelectionDAGBuilder::visitSelect(const User &I) { 2455 SmallVector<EVT, 4> ValueVTs; 2456 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2457 ValueVTs); 2458 unsigned NumValues = ValueVTs.size(); 2459 if (NumValues == 0) return; 2460 2461 SmallVector<SDValue, 4> Values(NumValues); 2462 SDValue Cond = getValue(I.getOperand(0)); 2463 SDValue LHSVal = getValue(I.getOperand(1)); 2464 SDValue RHSVal = getValue(I.getOperand(2)); 2465 auto BaseOps = {Cond}; 2466 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2467 ISD::VSELECT : ISD::SELECT; 2468 2469 // Min/max matching is only viable if all output VTs are the same. 2470 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2471 EVT VT = ValueVTs[0]; 2472 LLVMContext &Ctx = *DAG.getContext(); 2473 auto &TLI = DAG.getTargetLoweringInfo(); 2474 2475 // We care about the legality of the operation after it has been type 2476 // legalized. 2477 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2478 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2479 VT = TLI.getTypeToTransformTo(Ctx, VT); 2480 2481 // If the vselect is legal, assume we want to leave this as a vector setcc + 2482 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2483 // min/max is legal on the scalar type. 2484 bool UseScalarMinMax = VT.isVector() && 2485 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2486 2487 Value *LHS, *RHS; 2488 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2489 ISD::NodeType Opc = ISD::DELETED_NODE; 2490 switch (SPR.Flavor) { 2491 case SPF_UMAX: Opc = ISD::UMAX; break; 2492 case SPF_UMIN: Opc = ISD::UMIN; break; 2493 case SPF_SMAX: Opc = ISD::SMAX; break; 2494 case SPF_SMIN: Opc = ISD::SMIN; break; 2495 case SPF_FMINNUM: 2496 switch (SPR.NaNBehavior) { 2497 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2498 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2499 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2500 case SPNB_RETURNS_ANY: { 2501 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2502 Opc = ISD::FMINNUM; 2503 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2504 Opc = ISD::FMINNAN; 2505 else if (UseScalarMinMax) 2506 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2507 ISD::FMINNUM : ISD::FMINNAN; 2508 break; 2509 } 2510 } 2511 break; 2512 case SPF_FMAXNUM: 2513 switch (SPR.NaNBehavior) { 2514 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2515 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2516 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2517 case SPNB_RETURNS_ANY: 2518 2519 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2520 Opc = ISD::FMAXNUM; 2521 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2522 Opc = ISD::FMAXNAN; 2523 else if (UseScalarMinMax) 2524 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2525 ISD::FMAXNUM : ISD::FMAXNAN; 2526 break; 2527 } 2528 break; 2529 default: break; 2530 } 2531 2532 if (Opc != ISD::DELETED_NODE && 2533 (TLI.isOperationLegalOrCustom(Opc, VT) || 2534 (UseScalarMinMax && 2535 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2536 // If the underlying comparison instruction is used by any other 2537 // instruction, the consumed instructions won't be destroyed, so it is 2538 // not profitable to convert to a min/max. 2539 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2540 OpCode = Opc; 2541 LHSVal = getValue(LHS); 2542 RHSVal = getValue(RHS); 2543 BaseOps = {}; 2544 } 2545 } 2546 2547 for (unsigned i = 0; i != NumValues; ++i) { 2548 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2549 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2550 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2551 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2552 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2553 Ops); 2554 } 2555 2556 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2557 DAG.getVTList(ValueVTs), Values)); 2558 } 2559 2560 void SelectionDAGBuilder::visitTrunc(const User &I) { 2561 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2562 SDValue N = getValue(I.getOperand(0)); 2563 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2564 I.getType()); 2565 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2566 } 2567 2568 void SelectionDAGBuilder::visitZExt(const User &I) { 2569 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2570 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2571 SDValue N = getValue(I.getOperand(0)); 2572 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2573 I.getType()); 2574 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2575 } 2576 2577 void SelectionDAGBuilder::visitSExt(const User &I) { 2578 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2579 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2580 SDValue N = getValue(I.getOperand(0)); 2581 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2582 I.getType()); 2583 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2584 } 2585 2586 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2587 // FPTrunc is never a no-op cast, no need to check 2588 SDValue N = getValue(I.getOperand(0)); 2589 SDLoc dl = getCurSDLoc(); 2590 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2591 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2592 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2593 DAG.getTargetConstant( 2594 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2595 } 2596 2597 void SelectionDAGBuilder::visitFPExt(const User &I) { 2598 // FPExt is never a no-op cast, no need to check 2599 SDValue N = getValue(I.getOperand(0)); 2600 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2601 I.getType()); 2602 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2603 } 2604 2605 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2606 // FPToUI is never a no-op cast, no need to check 2607 SDValue N = getValue(I.getOperand(0)); 2608 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2609 I.getType()); 2610 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2611 } 2612 2613 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2614 // FPToSI is never a no-op cast, no need to check 2615 SDValue N = getValue(I.getOperand(0)); 2616 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2617 I.getType()); 2618 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2619 } 2620 2621 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2622 // UIToFP is never a no-op cast, no need to check 2623 SDValue N = getValue(I.getOperand(0)); 2624 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2625 I.getType()); 2626 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2627 } 2628 2629 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2630 // SIToFP is never a no-op cast, no need to check 2631 SDValue N = getValue(I.getOperand(0)); 2632 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2633 I.getType()); 2634 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2635 } 2636 2637 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2638 // What to do depends on the size of the integer and the size of the pointer. 2639 // We can either truncate, zero extend, or no-op, accordingly. 2640 SDValue N = getValue(I.getOperand(0)); 2641 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2642 I.getType()); 2643 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2644 } 2645 2646 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2647 // What to do depends on the size of the integer and the size of the pointer. 2648 // We can either truncate, zero extend, or no-op, accordingly. 2649 SDValue N = getValue(I.getOperand(0)); 2650 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2651 I.getType()); 2652 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2653 } 2654 2655 void SelectionDAGBuilder::visitBitCast(const User &I) { 2656 SDValue N = getValue(I.getOperand(0)); 2657 SDLoc dl = getCurSDLoc(); 2658 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2659 I.getType()); 2660 2661 // BitCast assures us that source and destination are the same size so this is 2662 // either a BITCAST or a no-op. 2663 if (DestVT != N.getValueType()) 2664 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2665 DestVT, N)); // convert types. 2666 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2667 // might fold any kind of constant expression to an integer constant and that 2668 // is not what we are looking for. Only regcognize a bitcast of a genuine 2669 // constant integer as an opaque constant. 2670 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2671 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2672 /*isOpaque*/true)); 2673 else 2674 setValue(&I, N); // noop cast. 2675 } 2676 2677 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2679 const Value *SV = I.getOperand(0); 2680 SDValue N = getValue(SV); 2681 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2682 2683 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2684 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2685 2686 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2687 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2688 2689 setValue(&I, N); 2690 } 2691 2692 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2694 SDValue InVec = getValue(I.getOperand(0)); 2695 SDValue InVal = getValue(I.getOperand(1)); 2696 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2697 TLI.getVectorIdxTy(DAG.getDataLayout())); 2698 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2699 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2700 InVec, InVal, InIdx)); 2701 } 2702 2703 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2705 SDValue InVec = getValue(I.getOperand(0)); 2706 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2707 TLI.getVectorIdxTy(DAG.getDataLayout())); 2708 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2709 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2710 InVec, InIdx)); 2711 } 2712 2713 // Utility for visitShuffleVector - Return true if every element in Mask, 2714 // beginning from position Pos and ending in Pos+Size, falls within the 2715 // specified sequential range [L, L+Pos). or is undef. 2716 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2717 unsigned Pos, unsigned Size, int Low) { 2718 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2719 if (Mask[i] >= 0 && Mask[i] != Low) 2720 return false; 2721 return true; 2722 } 2723 2724 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2725 SDValue Src1 = getValue(I.getOperand(0)); 2726 SDValue Src2 = getValue(I.getOperand(1)); 2727 2728 SmallVector<int, 8> Mask; 2729 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2730 unsigned MaskNumElts = Mask.size(); 2731 2732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2733 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2734 EVT SrcVT = Src1.getValueType(); 2735 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2736 2737 if (SrcNumElts == MaskNumElts) { 2738 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2739 &Mask[0])); 2740 return; 2741 } 2742 2743 // Normalize the shuffle vector since mask and vector length don't match. 2744 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2745 // Mask is longer than the source vectors and is a multiple of the source 2746 // vectors. We can use concatenate vector to make the mask and vectors 2747 // lengths match. 2748 if (SrcNumElts*2 == MaskNumElts) { 2749 // First check for Src1 in low and Src2 in high 2750 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2751 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2752 // The shuffle is concatenating two vectors together. 2753 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2754 VT, Src1, Src2)); 2755 return; 2756 } 2757 // Then check for Src2 in low and Src1 in high 2758 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2759 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2760 // The shuffle is concatenating two vectors together. 2761 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2762 VT, Src2, Src1)); 2763 return; 2764 } 2765 } 2766 2767 // Pad both vectors with undefs to make them the same length as the mask. 2768 unsigned NumConcat = MaskNumElts / SrcNumElts; 2769 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2770 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2771 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2772 2773 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2774 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2775 MOps1[0] = Src1; 2776 MOps2[0] = Src2; 2777 2778 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2779 getCurSDLoc(), VT, MOps1); 2780 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2781 getCurSDLoc(), VT, MOps2); 2782 2783 // Readjust mask for new input vector length. 2784 SmallVector<int, 8> MappedOps; 2785 for (unsigned i = 0; i != MaskNumElts; ++i) { 2786 int Idx = Mask[i]; 2787 if (Idx >= (int)SrcNumElts) 2788 Idx -= SrcNumElts - MaskNumElts; 2789 MappedOps.push_back(Idx); 2790 } 2791 2792 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2793 &MappedOps[0])); 2794 return; 2795 } 2796 2797 if (SrcNumElts > MaskNumElts) { 2798 // Analyze the access pattern of the vector to see if we can extract 2799 // two subvectors and do the shuffle. The analysis is done by calculating 2800 // the range of elements the mask access on both vectors. 2801 int MinRange[2] = { static_cast<int>(SrcNumElts), 2802 static_cast<int>(SrcNumElts)}; 2803 int MaxRange[2] = {-1, -1}; 2804 2805 for (unsigned i = 0; i != MaskNumElts; ++i) { 2806 int Idx = Mask[i]; 2807 unsigned Input = 0; 2808 if (Idx < 0) 2809 continue; 2810 2811 if (Idx >= (int)SrcNumElts) { 2812 Input = 1; 2813 Idx -= SrcNumElts; 2814 } 2815 if (Idx > MaxRange[Input]) 2816 MaxRange[Input] = Idx; 2817 if (Idx < MinRange[Input]) 2818 MinRange[Input] = Idx; 2819 } 2820 2821 // Check if the access is smaller than the vector size and can we find 2822 // a reasonable extract index. 2823 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2824 // Extract. 2825 int StartIdx[2]; // StartIdx to extract from 2826 for (unsigned Input = 0; Input < 2; ++Input) { 2827 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2828 RangeUse[Input] = 0; // Unused 2829 StartIdx[Input] = 0; 2830 continue; 2831 } 2832 2833 // Find a good start index that is a multiple of the mask length. Then 2834 // see if the rest of the elements are in range. 2835 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2836 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2837 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2838 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2839 } 2840 2841 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2842 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2843 return; 2844 } 2845 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2846 // Extract appropriate subvector and generate a vector shuffle 2847 for (unsigned Input = 0; Input < 2; ++Input) { 2848 SDValue &Src = Input == 0 ? Src1 : Src2; 2849 if (RangeUse[Input] == 0) 2850 Src = DAG.getUNDEF(VT); 2851 else { 2852 SDLoc dl = getCurSDLoc(); 2853 Src = DAG.getNode( 2854 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2855 DAG.getConstant(StartIdx[Input], dl, 2856 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2857 } 2858 } 2859 2860 // Calculate new mask. 2861 SmallVector<int, 8> MappedOps; 2862 for (unsigned i = 0; i != MaskNumElts; ++i) { 2863 int Idx = Mask[i]; 2864 if (Idx >= 0) { 2865 if (Idx < (int)SrcNumElts) 2866 Idx -= StartIdx[0]; 2867 else 2868 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2869 } 2870 MappedOps.push_back(Idx); 2871 } 2872 2873 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2874 &MappedOps[0])); 2875 return; 2876 } 2877 } 2878 2879 // We can't use either concat vectors or extract subvectors so fall back to 2880 // replacing the shuffle with extract and build vector. 2881 // to insert and build vector. 2882 EVT EltVT = VT.getVectorElementType(); 2883 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2884 SDLoc dl = getCurSDLoc(); 2885 SmallVector<SDValue,8> Ops; 2886 for (unsigned i = 0; i != MaskNumElts; ++i) { 2887 int Idx = Mask[i]; 2888 SDValue Res; 2889 2890 if (Idx < 0) { 2891 Res = DAG.getUNDEF(EltVT); 2892 } else { 2893 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2894 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2895 2896 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2897 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2898 } 2899 2900 Ops.push_back(Res); 2901 } 2902 2903 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2904 } 2905 2906 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2907 const Value *Op0 = I.getOperand(0); 2908 const Value *Op1 = I.getOperand(1); 2909 Type *AggTy = I.getType(); 2910 Type *ValTy = Op1->getType(); 2911 bool IntoUndef = isa<UndefValue>(Op0); 2912 bool FromUndef = isa<UndefValue>(Op1); 2913 2914 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2915 2916 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2917 SmallVector<EVT, 4> AggValueVTs; 2918 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2919 SmallVector<EVT, 4> ValValueVTs; 2920 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2921 2922 unsigned NumAggValues = AggValueVTs.size(); 2923 unsigned NumValValues = ValValueVTs.size(); 2924 SmallVector<SDValue, 4> Values(NumAggValues); 2925 2926 // Ignore an insertvalue that produces an empty object 2927 if (!NumAggValues) { 2928 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2929 return; 2930 } 2931 2932 SDValue Agg = getValue(Op0); 2933 unsigned i = 0; 2934 // Copy the beginning value(s) from the original aggregate. 2935 for (; i != LinearIndex; ++i) 2936 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2937 SDValue(Agg.getNode(), Agg.getResNo() + i); 2938 // Copy values from the inserted value(s). 2939 if (NumValValues) { 2940 SDValue Val = getValue(Op1); 2941 for (; i != LinearIndex + NumValValues; ++i) 2942 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2943 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2944 } 2945 // Copy remaining value(s) from the original aggregate. 2946 for (; i != NumAggValues; ++i) 2947 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2948 SDValue(Agg.getNode(), Agg.getResNo() + i); 2949 2950 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2951 DAG.getVTList(AggValueVTs), Values)); 2952 } 2953 2954 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2955 const Value *Op0 = I.getOperand(0); 2956 Type *AggTy = Op0->getType(); 2957 Type *ValTy = I.getType(); 2958 bool OutOfUndef = isa<UndefValue>(Op0); 2959 2960 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2961 2962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2963 SmallVector<EVT, 4> ValValueVTs; 2964 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2965 2966 unsigned NumValValues = ValValueVTs.size(); 2967 2968 // Ignore a extractvalue that produces an empty object 2969 if (!NumValValues) { 2970 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2971 return; 2972 } 2973 2974 SmallVector<SDValue, 4> Values(NumValValues); 2975 2976 SDValue Agg = getValue(Op0); 2977 // Copy out the selected value(s). 2978 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2979 Values[i - LinearIndex] = 2980 OutOfUndef ? 2981 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2982 SDValue(Agg.getNode(), Agg.getResNo() + i); 2983 2984 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2985 DAG.getVTList(ValValueVTs), Values)); 2986 } 2987 2988 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2989 Value *Op0 = I.getOperand(0); 2990 // Note that the pointer operand may be a vector of pointers. Take the scalar 2991 // element which holds a pointer. 2992 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 2993 SDValue N = getValue(Op0); 2994 SDLoc dl = getCurSDLoc(); 2995 2996 // Normalize Vector GEP - all scalar operands should be converted to the 2997 // splat vector. 2998 unsigned VectorWidth = I.getType()->isVectorTy() ? 2999 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3000 3001 if (VectorWidth && !N.getValueType().isVector()) { 3002 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3003 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3004 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3005 } 3006 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3007 GTI != E; ++GTI) { 3008 const Value *Idx = GTI.getOperand(); 3009 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3010 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3011 if (Field) { 3012 // N = N + Offset 3013 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3014 3015 // In an inbouds GEP with an offset that is nonnegative even when 3016 // interpreted as signed, assume there is no unsigned overflow. 3017 SDNodeFlags Flags; 3018 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3019 Flags.setNoUnsignedWrap(true); 3020 3021 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3022 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3023 } 3024 } else { 3025 MVT PtrTy = 3026 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3027 unsigned PtrSize = PtrTy.getSizeInBits(); 3028 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3029 3030 // If this is a scalar constant or a splat vector of constants, 3031 // handle it quickly. 3032 const auto *CI = dyn_cast<ConstantInt>(Idx); 3033 if (!CI && isa<ConstantDataVector>(Idx) && 3034 cast<ConstantDataVector>(Idx)->getSplatValue()) 3035 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3036 3037 if (CI) { 3038 if (CI->isZero()) 3039 continue; 3040 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3041 SDValue OffsVal = VectorWidth ? 3042 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3043 DAG.getConstant(Offs, dl, PtrTy); 3044 3045 // In an inbouds GEP with an offset that is nonnegative even when 3046 // interpreted as signed, assume there is no unsigned overflow. 3047 SDNodeFlags Flags; 3048 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3049 Flags.setNoUnsignedWrap(true); 3050 3051 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3052 continue; 3053 } 3054 3055 // N = N + Idx * ElementSize; 3056 SDValue IdxN = getValue(Idx); 3057 3058 if (!IdxN.getValueType().isVector() && VectorWidth) { 3059 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3060 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3061 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3062 } 3063 // If the index is smaller or larger than intptr_t, truncate or extend 3064 // it. 3065 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3066 3067 // If this is a multiply by a power of two, turn it into a shl 3068 // immediately. This is a very common case. 3069 if (ElementSize != 1) { 3070 if (ElementSize.isPowerOf2()) { 3071 unsigned Amt = ElementSize.logBase2(); 3072 IdxN = DAG.getNode(ISD::SHL, dl, 3073 N.getValueType(), IdxN, 3074 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3075 } else { 3076 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3077 IdxN = DAG.getNode(ISD::MUL, dl, 3078 N.getValueType(), IdxN, Scale); 3079 } 3080 } 3081 3082 N = DAG.getNode(ISD::ADD, dl, 3083 N.getValueType(), N, IdxN); 3084 } 3085 } 3086 3087 setValue(&I, N); 3088 } 3089 3090 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3091 // If this is a fixed sized alloca in the entry block of the function, 3092 // allocate it statically on the stack. 3093 if (FuncInfo.StaticAllocaMap.count(&I)) 3094 return; // getValue will auto-populate this. 3095 3096 SDLoc dl = getCurSDLoc(); 3097 Type *Ty = I.getAllocatedType(); 3098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3099 auto &DL = DAG.getDataLayout(); 3100 uint64_t TySize = DL.getTypeAllocSize(Ty); 3101 unsigned Align = 3102 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3103 3104 SDValue AllocSize = getValue(I.getArraySize()); 3105 3106 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3107 if (AllocSize.getValueType() != IntPtr) 3108 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3109 3110 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3111 AllocSize, 3112 DAG.getConstant(TySize, dl, IntPtr)); 3113 3114 // Handle alignment. If the requested alignment is less than or equal to 3115 // the stack alignment, ignore it. If the size is greater than or equal to 3116 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3117 unsigned StackAlign = 3118 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3119 if (Align <= StackAlign) 3120 Align = 0; 3121 3122 // Round the size of the allocation up to the stack alignment size 3123 // by add SA-1 to the size. This doesn't overflow because we're computing 3124 // an address inside an alloca. 3125 SDNodeFlags Flags; 3126 Flags.setNoUnsignedWrap(true); 3127 AllocSize = DAG.getNode(ISD::ADD, dl, 3128 AllocSize.getValueType(), AllocSize, 3129 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3130 3131 // Mask out the low bits for alignment purposes. 3132 AllocSize = DAG.getNode(ISD::AND, dl, 3133 AllocSize.getValueType(), AllocSize, 3134 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3135 dl)); 3136 3137 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3138 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3139 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3140 setValue(&I, DSA); 3141 DAG.setRoot(DSA.getValue(1)); 3142 3143 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3144 } 3145 3146 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3147 if (I.isAtomic()) 3148 return visitAtomicLoad(I); 3149 3150 const Value *SV = I.getOperand(0); 3151 SDValue Ptr = getValue(SV); 3152 3153 Type *Ty = I.getType(); 3154 3155 bool isVolatile = I.isVolatile(); 3156 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3157 3158 // The IR notion of invariant_load only guarantees that all *non-faulting* 3159 // invariant loads result in the same value. The MI notion of invariant load 3160 // guarantees that the load can be legally moved to any location within its 3161 // containing function. The MI notion of invariant_load is stronger than the 3162 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3163 // with a guarantee that the location being loaded from is dereferenceable 3164 // throughout the function's lifetime. 3165 3166 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3167 isDereferenceablePointer(SV, DAG.getDataLayout()); 3168 unsigned Alignment = I.getAlignment(); 3169 3170 AAMDNodes AAInfo; 3171 I.getAAMetadata(AAInfo); 3172 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3173 3174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3175 SmallVector<EVT, 4> ValueVTs; 3176 SmallVector<uint64_t, 4> Offsets; 3177 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3178 unsigned NumValues = ValueVTs.size(); 3179 if (NumValues == 0) 3180 return; 3181 3182 SDValue Root; 3183 bool ConstantMemory = false; 3184 if (isVolatile || NumValues > MaxParallelChains) 3185 // Serialize volatile loads with other side effects. 3186 Root = getRoot(); 3187 else if (AA->pointsToConstantMemory(MemoryLocation( 3188 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3189 // Do not serialize (non-volatile) loads of constant memory with anything. 3190 Root = DAG.getEntryNode(); 3191 ConstantMemory = true; 3192 } else { 3193 // Do not serialize non-volatile loads against each other. 3194 Root = DAG.getRoot(); 3195 } 3196 3197 SDLoc dl = getCurSDLoc(); 3198 3199 if (isVolatile) 3200 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3201 3202 // An aggregate load cannot wrap around the address space, so offsets to its 3203 // parts don't wrap either. 3204 SDNodeFlags Flags; 3205 Flags.setNoUnsignedWrap(true); 3206 3207 SmallVector<SDValue, 4> Values(NumValues); 3208 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3209 EVT PtrVT = Ptr.getValueType(); 3210 unsigned ChainI = 0; 3211 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3212 // Serializing loads here may result in excessive register pressure, and 3213 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3214 // could recover a bit by hoisting nodes upward in the chain by recognizing 3215 // they are side-effect free or do not alias. The optimizer should really 3216 // avoid this case by converting large object/array copies to llvm.memcpy 3217 // (MaxParallelChains should always remain as failsafe). 3218 if (ChainI == MaxParallelChains) { 3219 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3220 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3221 makeArrayRef(Chains.data(), ChainI)); 3222 Root = Chain; 3223 ChainI = 0; 3224 } 3225 SDValue A = DAG.getNode(ISD::ADD, dl, 3226 PtrVT, Ptr, 3227 DAG.getConstant(Offsets[i], dl, PtrVT), 3228 &Flags); 3229 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3230 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3231 isNonTemporal, isInvariant, Alignment, AAInfo, 3232 Ranges); 3233 3234 Values[i] = L; 3235 Chains[ChainI] = L.getValue(1); 3236 } 3237 3238 if (!ConstantMemory) { 3239 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3240 makeArrayRef(Chains.data(), ChainI)); 3241 if (isVolatile) 3242 DAG.setRoot(Chain); 3243 else 3244 PendingLoads.push_back(Chain); 3245 } 3246 3247 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3248 DAG.getVTList(ValueVTs), Values)); 3249 } 3250 3251 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3252 if (I.isAtomic()) 3253 return visitAtomicStore(I); 3254 3255 const Value *SrcV = I.getOperand(0); 3256 const Value *PtrV = I.getOperand(1); 3257 3258 SmallVector<EVT, 4> ValueVTs; 3259 SmallVector<uint64_t, 4> Offsets; 3260 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3261 SrcV->getType(), ValueVTs, &Offsets); 3262 unsigned NumValues = ValueVTs.size(); 3263 if (NumValues == 0) 3264 return; 3265 3266 // Get the lowered operands. Note that we do this after 3267 // checking if NumResults is zero, because with zero results 3268 // the operands won't have values in the map. 3269 SDValue Src = getValue(SrcV); 3270 SDValue Ptr = getValue(PtrV); 3271 3272 SDValue Root = getRoot(); 3273 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3274 EVT PtrVT = Ptr.getValueType(); 3275 bool isVolatile = I.isVolatile(); 3276 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3277 unsigned Alignment = I.getAlignment(); 3278 SDLoc dl = getCurSDLoc(); 3279 3280 AAMDNodes AAInfo; 3281 I.getAAMetadata(AAInfo); 3282 3283 // An aggregate load cannot wrap around the address space, so offsets to its 3284 // parts don't wrap either. 3285 SDNodeFlags Flags; 3286 Flags.setNoUnsignedWrap(true); 3287 3288 unsigned ChainI = 0; 3289 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3290 // See visitLoad comments. 3291 if (ChainI == MaxParallelChains) { 3292 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3293 makeArrayRef(Chains.data(), ChainI)); 3294 Root = Chain; 3295 ChainI = 0; 3296 } 3297 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3298 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3299 SDValue St = DAG.getStore(Root, dl, 3300 SDValue(Src.getNode(), Src.getResNo() + i), 3301 Add, MachinePointerInfo(PtrV, Offsets[i]), 3302 isVolatile, isNonTemporal, Alignment, AAInfo); 3303 Chains[ChainI] = St; 3304 } 3305 3306 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3307 makeArrayRef(Chains.data(), ChainI)); 3308 DAG.setRoot(StoreNode); 3309 } 3310 3311 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3312 SDLoc sdl = getCurSDLoc(); 3313 3314 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3315 Value *PtrOperand = I.getArgOperand(1); 3316 SDValue Ptr = getValue(PtrOperand); 3317 SDValue Src0 = getValue(I.getArgOperand(0)); 3318 SDValue Mask = getValue(I.getArgOperand(3)); 3319 EVT VT = Src0.getValueType(); 3320 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3321 if (!Alignment) 3322 Alignment = DAG.getEVTAlignment(VT); 3323 3324 AAMDNodes AAInfo; 3325 I.getAAMetadata(AAInfo); 3326 3327 MachineMemOperand *MMO = 3328 DAG.getMachineFunction(). 3329 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3330 MachineMemOperand::MOStore, VT.getStoreSize(), 3331 Alignment, AAInfo); 3332 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3333 MMO, false); 3334 DAG.setRoot(StoreNode); 3335 setValue(&I, StoreNode); 3336 } 3337 3338 // Get a uniform base for the Gather/Scatter intrinsic. 3339 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3340 // We try to represent it as a base pointer + vector of indices. 3341 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3342 // The first operand of the GEP may be a single pointer or a vector of pointers 3343 // Example: 3344 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3345 // or 3346 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3347 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3348 // 3349 // When the first GEP operand is a single pointer - it is the uniform base we 3350 // are looking for. If first operand of the GEP is a splat vector - we 3351 // extract the spalt value and use it as a uniform base. 3352 // In all other cases the function returns 'false'. 3353 // 3354 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3355 SelectionDAGBuilder* SDB) { 3356 3357 SelectionDAG& DAG = SDB->DAG; 3358 LLVMContext &Context = *DAG.getContext(); 3359 3360 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3361 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3362 if (!GEP || GEP->getNumOperands() > 2) 3363 return false; 3364 3365 const Value *GEPPtr = GEP->getPointerOperand(); 3366 if (!GEPPtr->getType()->isVectorTy()) 3367 Ptr = GEPPtr; 3368 else if (!(Ptr = getSplatValue(GEPPtr))) 3369 return false; 3370 3371 Value *IndexVal = GEP->getOperand(1); 3372 3373 // The operands of the GEP may be defined in another basic block. 3374 // In this case we'll not find nodes for the operands. 3375 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3376 return false; 3377 3378 Base = SDB->getValue(Ptr); 3379 Index = SDB->getValue(IndexVal); 3380 3381 // Suppress sign extension. 3382 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3383 if (SDB->findValue(Sext->getOperand(0))) { 3384 IndexVal = Sext->getOperand(0); 3385 Index = SDB->getValue(IndexVal); 3386 } 3387 } 3388 if (!Index.getValueType().isVector()) { 3389 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3390 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3391 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3392 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3393 } 3394 return true; 3395 } 3396 3397 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3398 SDLoc sdl = getCurSDLoc(); 3399 3400 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3401 const Value *Ptr = I.getArgOperand(1); 3402 SDValue Src0 = getValue(I.getArgOperand(0)); 3403 SDValue Mask = getValue(I.getArgOperand(3)); 3404 EVT VT = Src0.getValueType(); 3405 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3406 if (!Alignment) 3407 Alignment = DAG.getEVTAlignment(VT); 3408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3409 3410 AAMDNodes AAInfo; 3411 I.getAAMetadata(AAInfo); 3412 3413 SDValue Base; 3414 SDValue Index; 3415 const Value *BasePtr = Ptr; 3416 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3417 3418 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3419 MachineMemOperand *MMO = DAG.getMachineFunction(). 3420 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3421 MachineMemOperand::MOStore, VT.getStoreSize(), 3422 Alignment, AAInfo); 3423 if (!UniformBase) { 3424 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3425 Index = getValue(Ptr); 3426 } 3427 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3428 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3429 Ops, MMO); 3430 DAG.setRoot(Scatter); 3431 setValue(&I, Scatter); 3432 } 3433 3434 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3435 SDLoc sdl = getCurSDLoc(); 3436 3437 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3438 Value *PtrOperand = I.getArgOperand(0); 3439 SDValue Ptr = getValue(PtrOperand); 3440 SDValue Src0 = getValue(I.getArgOperand(3)); 3441 SDValue Mask = getValue(I.getArgOperand(2)); 3442 3443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3444 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3445 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3446 if (!Alignment) 3447 Alignment = DAG.getEVTAlignment(VT); 3448 3449 AAMDNodes AAInfo; 3450 I.getAAMetadata(AAInfo); 3451 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3452 3453 SDValue InChain = DAG.getRoot(); 3454 if (AA->pointsToConstantMemory(MemoryLocation( 3455 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3456 AAInfo))) { 3457 // Do not serialize (non-volatile) loads of constant memory with anything. 3458 InChain = DAG.getEntryNode(); 3459 } 3460 3461 MachineMemOperand *MMO = 3462 DAG.getMachineFunction(). 3463 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3464 MachineMemOperand::MOLoad, VT.getStoreSize(), 3465 Alignment, AAInfo, Ranges); 3466 3467 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3468 ISD::NON_EXTLOAD); 3469 SDValue OutChain = Load.getValue(1); 3470 DAG.setRoot(OutChain); 3471 setValue(&I, Load); 3472 } 3473 3474 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3475 SDLoc sdl = getCurSDLoc(); 3476 3477 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3478 const Value *Ptr = I.getArgOperand(0); 3479 SDValue Src0 = getValue(I.getArgOperand(3)); 3480 SDValue Mask = getValue(I.getArgOperand(2)); 3481 3482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3483 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3484 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3485 if (!Alignment) 3486 Alignment = DAG.getEVTAlignment(VT); 3487 3488 AAMDNodes AAInfo; 3489 I.getAAMetadata(AAInfo); 3490 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3491 3492 SDValue Root = DAG.getRoot(); 3493 SDValue Base; 3494 SDValue Index; 3495 const Value *BasePtr = Ptr; 3496 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3497 bool ConstantMemory = false; 3498 if (UniformBase && 3499 AA->pointsToConstantMemory(MemoryLocation( 3500 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3501 AAInfo))) { 3502 // Do not serialize (non-volatile) loads of constant memory with anything. 3503 Root = DAG.getEntryNode(); 3504 ConstantMemory = true; 3505 } 3506 3507 MachineMemOperand *MMO = 3508 DAG.getMachineFunction(). 3509 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3510 MachineMemOperand::MOLoad, VT.getStoreSize(), 3511 Alignment, AAInfo, Ranges); 3512 3513 if (!UniformBase) { 3514 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3515 Index = getValue(Ptr); 3516 } 3517 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3518 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3519 Ops, MMO); 3520 3521 SDValue OutChain = Gather.getValue(1); 3522 if (!ConstantMemory) 3523 PendingLoads.push_back(OutChain); 3524 setValue(&I, Gather); 3525 } 3526 3527 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3528 SDLoc dl = getCurSDLoc(); 3529 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3530 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3531 SynchronizationScope Scope = I.getSynchScope(); 3532 3533 SDValue InChain = getRoot(); 3534 3535 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3536 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3537 SDValue L = DAG.getAtomicCmpSwap( 3538 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3539 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3540 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3541 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3542 3543 SDValue OutChain = L.getValue(2); 3544 3545 setValue(&I, L); 3546 DAG.setRoot(OutChain); 3547 } 3548 3549 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3550 SDLoc dl = getCurSDLoc(); 3551 ISD::NodeType NT; 3552 switch (I.getOperation()) { 3553 default: llvm_unreachable("Unknown atomicrmw operation"); 3554 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3555 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3556 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3557 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3558 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3559 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3560 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3561 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3562 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3563 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3564 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3565 } 3566 AtomicOrdering Order = I.getOrdering(); 3567 SynchronizationScope Scope = I.getSynchScope(); 3568 3569 SDValue InChain = getRoot(); 3570 3571 SDValue L = 3572 DAG.getAtomic(NT, dl, 3573 getValue(I.getValOperand()).getSimpleValueType(), 3574 InChain, 3575 getValue(I.getPointerOperand()), 3576 getValue(I.getValOperand()), 3577 I.getPointerOperand(), 3578 /* Alignment=*/ 0, Order, Scope); 3579 3580 SDValue OutChain = L.getValue(1); 3581 3582 setValue(&I, L); 3583 DAG.setRoot(OutChain); 3584 } 3585 3586 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3587 SDLoc dl = getCurSDLoc(); 3588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3589 SDValue Ops[3]; 3590 Ops[0] = getRoot(); 3591 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3592 TLI.getPointerTy(DAG.getDataLayout())); 3593 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3594 TLI.getPointerTy(DAG.getDataLayout())); 3595 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3596 } 3597 3598 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3599 SDLoc dl = getCurSDLoc(); 3600 AtomicOrdering Order = I.getOrdering(); 3601 SynchronizationScope Scope = I.getSynchScope(); 3602 3603 SDValue InChain = getRoot(); 3604 3605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3606 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3607 3608 if (I.getAlignment() < VT.getSizeInBits() / 8) 3609 report_fatal_error("Cannot generate unaligned atomic load"); 3610 3611 MachineMemOperand *MMO = 3612 DAG.getMachineFunction(). 3613 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3614 MachineMemOperand::MOVolatile | 3615 MachineMemOperand::MOLoad, 3616 VT.getStoreSize(), 3617 I.getAlignment() ? I.getAlignment() : 3618 DAG.getEVTAlignment(VT)); 3619 3620 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3621 SDValue L = 3622 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3623 getValue(I.getPointerOperand()), MMO, 3624 Order, Scope); 3625 3626 SDValue OutChain = L.getValue(1); 3627 3628 setValue(&I, L); 3629 DAG.setRoot(OutChain); 3630 } 3631 3632 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3633 SDLoc dl = getCurSDLoc(); 3634 3635 AtomicOrdering Order = I.getOrdering(); 3636 SynchronizationScope Scope = I.getSynchScope(); 3637 3638 SDValue InChain = getRoot(); 3639 3640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3641 EVT VT = 3642 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3643 3644 if (I.getAlignment() < VT.getSizeInBits() / 8) 3645 report_fatal_error("Cannot generate unaligned atomic store"); 3646 3647 SDValue OutChain = 3648 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3649 InChain, 3650 getValue(I.getPointerOperand()), 3651 getValue(I.getValueOperand()), 3652 I.getPointerOperand(), I.getAlignment(), 3653 Order, Scope); 3654 3655 DAG.setRoot(OutChain); 3656 } 3657 3658 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3659 /// node. 3660 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3661 unsigned Intrinsic) { 3662 bool HasChain = !I.doesNotAccessMemory(); 3663 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3664 3665 // Build the operand list. 3666 SmallVector<SDValue, 8> Ops; 3667 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3668 if (OnlyLoad) { 3669 // We don't need to serialize loads against other loads. 3670 Ops.push_back(DAG.getRoot()); 3671 } else { 3672 Ops.push_back(getRoot()); 3673 } 3674 } 3675 3676 // Info is set by getTgtMemInstrinsic 3677 TargetLowering::IntrinsicInfo Info; 3678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3679 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3680 3681 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3682 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3683 Info.opc == ISD::INTRINSIC_W_CHAIN) 3684 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3685 TLI.getPointerTy(DAG.getDataLayout()))); 3686 3687 // Add all operands of the call to the operand list. 3688 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3689 SDValue Op = getValue(I.getArgOperand(i)); 3690 Ops.push_back(Op); 3691 } 3692 3693 SmallVector<EVT, 4> ValueVTs; 3694 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3695 3696 if (HasChain) 3697 ValueVTs.push_back(MVT::Other); 3698 3699 SDVTList VTs = DAG.getVTList(ValueVTs); 3700 3701 // Create the node. 3702 SDValue Result; 3703 if (IsTgtIntrinsic) { 3704 // This is target intrinsic that touches memory 3705 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3706 VTs, Ops, Info.memVT, 3707 MachinePointerInfo(Info.ptrVal, Info.offset), 3708 Info.align, Info.vol, 3709 Info.readMem, Info.writeMem, Info.size); 3710 } else if (!HasChain) { 3711 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3712 } else if (!I.getType()->isVoidTy()) { 3713 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3714 } else { 3715 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3716 } 3717 3718 if (HasChain) { 3719 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3720 if (OnlyLoad) 3721 PendingLoads.push_back(Chain); 3722 else 3723 DAG.setRoot(Chain); 3724 } 3725 3726 if (!I.getType()->isVoidTy()) { 3727 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3728 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3729 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3730 } else 3731 Result = lowerRangeToAssertZExt(DAG, I, Result); 3732 3733 setValue(&I, Result); 3734 } 3735 } 3736 3737 /// GetSignificand - Get the significand and build it into a floating-point 3738 /// number with exponent of 1: 3739 /// 3740 /// Op = (Op & 0x007fffff) | 0x3f800000; 3741 /// 3742 /// where Op is the hexadecimal representation of floating point value. 3743 static SDValue 3744 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3745 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3746 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3747 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3748 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3749 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3750 } 3751 3752 /// GetExponent - Get the exponent: 3753 /// 3754 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3755 /// 3756 /// where Op is the hexadecimal representation of floating point value. 3757 static SDValue 3758 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3759 SDLoc dl) { 3760 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3761 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3762 SDValue t1 = DAG.getNode( 3763 ISD::SRL, dl, MVT::i32, t0, 3764 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3765 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3766 DAG.getConstant(127, dl, MVT::i32)); 3767 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3768 } 3769 3770 /// getF32Constant - Get 32-bit floating point constant. 3771 static SDValue 3772 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3773 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3774 MVT::f32); 3775 } 3776 3777 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3778 SelectionDAG &DAG) { 3779 // TODO: What fast-math-flags should be set on the floating-point nodes? 3780 3781 // IntegerPartOfX = ((int32_t)(t0); 3782 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3783 3784 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3785 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3786 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3787 3788 // IntegerPartOfX <<= 23; 3789 IntegerPartOfX = DAG.getNode( 3790 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3791 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3792 DAG.getDataLayout()))); 3793 3794 SDValue TwoToFractionalPartOfX; 3795 if (LimitFloatPrecision <= 6) { 3796 // For floating-point precision of 6: 3797 // 3798 // TwoToFractionalPartOfX = 3799 // 0.997535578f + 3800 // (0.735607626f + 0.252464424f * x) * x; 3801 // 3802 // error 0.0144103317, which is 6 bits 3803 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3804 getF32Constant(DAG, 0x3e814304, dl)); 3805 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3806 getF32Constant(DAG, 0x3f3c50c8, dl)); 3807 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3808 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3809 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3810 } else if (LimitFloatPrecision <= 12) { 3811 // For floating-point precision of 12: 3812 // 3813 // TwoToFractionalPartOfX = 3814 // 0.999892986f + 3815 // (0.696457318f + 3816 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3817 // 3818 // error 0.000107046256, which is 13 to 14 bits 3819 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3820 getF32Constant(DAG, 0x3da235e3, dl)); 3821 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3822 getF32Constant(DAG, 0x3e65b8f3, dl)); 3823 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3824 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3825 getF32Constant(DAG, 0x3f324b07, dl)); 3826 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3827 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3828 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3829 } else { // LimitFloatPrecision <= 18 3830 // For floating-point precision of 18: 3831 // 3832 // TwoToFractionalPartOfX = 3833 // 0.999999982f + 3834 // (0.693148872f + 3835 // (0.240227044f + 3836 // (0.554906021e-1f + 3837 // (0.961591928e-2f + 3838 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3839 // error 2.47208000*10^(-7), which is better than 18 bits 3840 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3841 getF32Constant(DAG, 0x3924b03e, dl)); 3842 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3843 getF32Constant(DAG, 0x3ab24b87, dl)); 3844 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3845 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3846 getF32Constant(DAG, 0x3c1d8c17, dl)); 3847 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3848 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3849 getF32Constant(DAG, 0x3d634a1d, dl)); 3850 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3851 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3852 getF32Constant(DAG, 0x3e75fe14, dl)); 3853 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3854 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3855 getF32Constant(DAG, 0x3f317234, dl)); 3856 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3857 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3858 getF32Constant(DAG, 0x3f800000, dl)); 3859 } 3860 3861 // Add the exponent into the result in integer domain. 3862 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3863 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3864 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3865 } 3866 3867 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3868 /// limited-precision mode. 3869 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3870 const TargetLowering &TLI) { 3871 if (Op.getValueType() == MVT::f32 && 3872 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3873 3874 // Put the exponent in the right bit position for later addition to the 3875 // final result: 3876 // 3877 // #define LOG2OFe 1.4426950f 3878 // t0 = Op * LOG2OFe 3879 3880 // TODO: What fast-math-flags should be set here? 3881 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3882 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3883 return getLimitedPrecisionExp2(t0, dl, DAG); 3884 } 3885 3886 // No special expansion. 3887 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3888 } 3889 3890 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3891 /// limited-precision mode. 3892 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3893 const TargetLowering &TLI) { 3894 3895 // TODO: What fast-math-flags should be set on the floating-point nodes? 3896 3897 if (Op.getValueType() == MVT::f32 && 3898 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3899 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3900 3901 // Scale the exponent by log(2) [0.69314718f]. 3902 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3903 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3904 getF32Constant(DAG, 0x3f317218, dl)); 3905 3906 // Get the significand and build it into a floating-point number with 3907 // exponent of 1. 3908 SDValue X = GetSignificand(DAG, Op1, dl); 3909 3910 SDValue LogOfMantissa; 3911 if (LimitFloatPrecision <= 6) { 3912 // For floating-point precision of 6: 3913 // 3914 // LogofMantissa = 3915 // -1.1609546f + 3916 // (1.4034025f - 0.23903021f * x) * x; 3917 // 3918 // error 0.0034276066, which is better than 8 bits 3919 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3920 getF32Constant(DAG, 0xbe74c456, dl)); 3921 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3922 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3923 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3924 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3925 getF32Constant(DAG, 0x3f949a29, dl)); 3926 } else if (LimitFloatPrecision <= 12) { 3927 // For floating-point precision of 12: 3928 // 3929 // LogOfMantissa = 3930 // -1.7417939f + 3931 // (2.8212026f + 3932 // (-1.4699568f + 3933 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3934 // 3935 // error 0.000061011436, which is 14 bits 3936 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3937 getF32Constant(DAG, 0xbd67b6d6, dl)); 3938 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3939 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3941 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3942 getF32Constant(DAG, 0x3fbc278b, dl)); 3943 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3944 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3945 getF32Constant(DAG, 0x40348e95, dl)); 3946 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3947 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3948 getF32Constant(DAG, 0x3fdef31a, dl)); 3949 } else { // LimitFloatPrecision <= 18 3950 // For floating-point precision of 18: 3951 // 3952 // LogOfMantissa = 3953 // -2.1072184f + 3954 // (4.2372794f + 3955 // (-3.7029485f + 3956 // (2.2781945f + 3957 // (-0.87823314f + 3958 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3959 // 3960 // error 0.0000023660568, which is better than 18 bits 3961 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3962 getF32Constant(DAG, 0xbc91e5ac, dl)); 3963 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3964 getF32Constant(DAG, 0x3e4350aa, dl)); 3965 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3966 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3967 getF32Constant(DAG, 0x3f60d3e3, dl)); 3968 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3969 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3970 getF32Constant(DAG, 0x4011cdf0, dl)); 3971 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3972 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3973 getF32Constant(DAG, 0x406cfd1c, dl)); 3974 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3975 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3976 getF32Constant(DAG, 0x408797cb, dl)); 3977 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3978 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3979 getF32Constant(DAG, 0x4006dcab, dl)); 3980 } 3981 3982 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3983 } 3984 3985 // No special expansion. 3986 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3987 } 3988 3989 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3990 /// limited-precision mode. 3991 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3992 const TargetLowering &TLI) { 3993 3994 // TODO: What fast-math-flags should be set on the floating-point nodes? 3995 3996 if (Op.getValueType() == MVT::f32 && 3997 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3998 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3999 4000 // Get the exponent. 4001 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4002 4003 // Get the significand and build it into a floating-point number with 4004 // exponent of 1. 4005 SDValue X = GetSignificand(DAG, Op1, dl); 4006 4007 // Different possible minimax approximations of significand in 4008 // floating-point for various degrees of accuracy over [1,2]. 4009 SDValue Log2ofMantissa; 4010 if (LimitFloatPrecision <= 6) { 4011 // For floating-point precision of 6: 4012 // 4013 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4014 // 4015 // error 0.0049451742, which is more than 7 bits 4016 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4017 getF32Constant(DAG, 0xbeb08fe0, dl)); 4018 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4019 getF32Constant(DAG, 0x40019463, dl)); 4020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4021 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4022 getF32Constant(DAG, 0x3fd6633d, dl)); 4023 } else if (LimitFloatPrecision <= 12) { 4024 // For floating-point precision of 12: 4025 // 4026 // Log2ofMantissa = 4027 // -2.51285454f + 4028 // (4.07009056f + 4029 // (-2.12067489f + 4030 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4031 // 4032 // error 0.0000876136000, which is better than 13 bits 4033 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4034 getF32Constant(DAG, 0xbda7262e, dl)); 4035 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4036 getF32Constant(DAG, 0x3f25280b, dl)); 4037 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4038 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4039 getF32Constant(DAG, 0x4007b923, dl)); 4040 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4041 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4042 getF32Constant(DAG, 0x40823e2f, dl)); 4043 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4044 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4045 getF32Constant(DAG, 0x4020d29c, dl)); 4046 } else { // LimitFloatPrecision <= 18 4047 // For floating-point precision of 18: 4048 // 4049 // Log2ofMantissa = 4050 // -3.0400495f + 4051 // (6.1129976f + 4052 // (-5.3420409f + 4053 // (3.2865683f + 4054 // (-1.2669343f + 4055 // (0.27515199f - 4056 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4057 // 4058 // error 0.0000018516, which is better than 18 bits 4059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4060 getF32Constant(DAG, 0xbcd2769e, dl)); 4061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4062 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4064 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4065 getF32Constant(DAG, 0x3fa22ae7, dl)); 4066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4068 getF32Constant(DAG, 0x40525723, dl)); 4069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4070 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4071 getF32Constant(DAG, 0x40aaf200, dl)); 4072 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4073 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4074 getF32Constant(DAG, 0x40c39dad, dl)); 4075 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4076 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4077 getF32Constant(DAG, 0x4042902c, dl)); 4078 } 4079 4080 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4081 } 4082 4083 // No special expansion. 4084 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4085 } 4086 4087 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4088 /// limited-precision mode. 4089 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4090 const TargetLowering &TLI) { 4091 4092 // TODO: What fast-math-flags should be set on the floating-point nodes? 4093 4094 if (Op.getValueType() == MVT::f32 && 4095 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4096 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4097 4098 // Scale the exponent by log10(2) [0.30102999f]. 4099 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4100 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4101 getF32Constant(DAG, 0x3e9a209a, dl)); 4102 4103 // Get the significand and build it into a floating-point number with 4104 // exponent of 1. 4105 SDValue X = GetSignificand(DAG, Op1, dl); 4106 4107 SDValue Log10ofMantissa; 4108 if (LimitFloatPrecision <= 6) { 4109 // For floating-point precision of 6: 4110 // 4111 // Log10ofMantissa = 4112 // -0.50419619f + 4113 // (0.60948995f - 0.10380950f * x) * x; 4114 // 4115 // error 0.0014886165, which is 6 bits 4116 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4117 getF32Constant(DAG, 0xbdd49a13, dl)); 4118 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4119 getF32Constant(DAG, 0x3f1c0789, dl)); 4120 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4121 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4122 getF32Constant(DAG, 0x3f011300, dl)); 4123 } else if (LimitFloatPrecision <= 12) { 4124 // For floating-point precision of 12: 4125 // 4126 // Log10ofMantissa = 4127 // -0.64831180f + 4128 // (0.91751397f + 4129 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4130 // 4131 // error 0.00019228036, which is better than 12 bits 4132 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4133 getF32Constant(DAG, 0x3d431f31, dl)); 4134 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4135 getF32Constant(DAG, 0x3ea21fb2, dl)); 4136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4137 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4138 getF32Constant(DAG, 0x3f6ae232, dl)); 4139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4140 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4141 getF32Constant(DAG, 0x3f25f7c3, dl)); 4142 } else { // LimitFloatPrecision <= 18 4143 // For floating-point precision of 18: 4144 // 4145 // Log10ofMantissa = 4146 // -0.84299375f + 4147 // (1.5327582f + 4148 // (-1.0688956f + 4149 // (0.49102474f + 4150 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4151 // 4152 // error 0.0000037995730, which is better than 18 bits 4153 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4154 getF32Constant(DAG, 0x3c5d51ce, dl)); 4155 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4156 getF32Constant(DAG, 0x3e00685a, dl)); 4157 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4158 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4159 getF32Constant(DAG, 0x3efb6798, dl)); 4160 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4161 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4162 getF32Constant(DAG, 0x3f88d192, dl)); 4163 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4164 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4165 getF32Constant(DAG, 0x3fc4316c, dl)); 4166 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4167 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4168 getF32Constant(DAG, 0x3f57ce70, dl)); 4169 } 4170 4171 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4172 } 4173 4174 // No special expansion. 4175 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4176 } 4177 4178 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4179 /// limited-precision mode. 4180 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4181 const TargetLowering &TLI) { 4182 if (Op.getValueType() == MVT::f32 && 4183 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4184 return getLimitedPrecisionExp2(Op, dl, DAG); 4185 4186 // No special expansion. 4187 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4188 } 4189 4190 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4191 /// limited-precision mode with x == 10.0f. 4192 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4193 SelectionDAG &DAG, const TargetLowering &TLI) { 4194 bool IsExp10 = false; 4195 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4196 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4197 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4198 APFloat Ten(10.0f); 4199 IsExp10 = LHSC->isExactlyValue(Ten); 4200 } 4201 } 4202 4203 // TODO: What fast-math-flags should be set on the FMUL node? 4204 if (IsExp10) { 4205 // Put the exponent in the right bit position for later addition to the 4206 // final result: 4207 // 4208 // #define LOG2OF10 3.3219281f 4209 // t0 = Op * LOG2OF10; 4210 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4211 getF32Constant(DAG, 0x40549a78, dl)); 4212 return getLimitedPrecisionExp2(t0, dl, DAG); 4213 } 4214 4215 // No special expansion. 4216 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4217 } 4218 4219 4220 /// ExpandPowI - Expand a llvm.powi intrinsic. 4221 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4222 SelectionDAG &DAG) { 4223 // If RHS is a constant, we can expand this out to a multiplication tree, 4224 // otherwise we end up lowering to a call to __powidf2 (for example). When 4225 // optimizing for size, we only want to do this if the expansion would produce 4226 // a small number of multiplies, otherwise we do the full expansion. 4227 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4228 // Get the exponent as a positive value. 4229 unsigned Val = RHSC->getSExtValue(); 4230 if ((int)Val < 0) Val = -Val; 4231 4232 // powi(x, 0) -> 1.0 4233 if (Val == 0) 4234 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4235 4236 const Function *F = DAG.getMachineFunction().getFunction(); 4237 if (!F->optForSize() || 4238 // If optimizing for size, don't insert too many multiplies. 4239 // This inserts up to 5 multiplies. 4240 countPopulation(Val) + Log2_32(Val) < 7) { 4241 // We use the simple binary decomposition method to generate the multiply 4242 // sequence. There are more optimal ways to do this (for example, 4243 // powi(x,15) generates one more multiply than it should), but this has 4244 // the benefit of being both really simple and much better than a libcall. 4245 SDValue Res; // Logically starts equal to 1.0 4246 SDValue CurSquare = LHS; 4247 // TODO: Intrinsics should have fast-math-flags that propagate to these 4248 // nodes. 4249 while (Val) { 4250 if (Val & 1) { 4251 if (Res.getNode()) 4252 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4253 else 4254 Res = CurSquare; // 1.0*CurSquare. 4255 } 4256 4257 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4258 CurSquare, CurSquare); 4259 Val >>= 1; 4260 } 4261 4262 // If the original was negative, invert the result, producing 1/(x*x*x). 4263 if (RHSC->getSExtValue() < 0) 4264 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4265 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4266 return Res; 4267 } 4268 } 4269 4270 // Otherwise, expand to a libcall. 4271 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4272 } 4273 4274 // getUnderlyingArgReg - Find underlying register used for a truncated or 4275 // bitcasted argument. 4276 static unsigned getUnderlyingArgReg(const SDValue &N) { 4277 switch (N.getOpcode()) { 4278 case ISD::CopyFromReg: 4279 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4280 case ISD::BITCAST: 4281 case ISD::AssertZext: 4282 case ISD::AssertSext: 4283 case ISD::TRUNCATE: 4284 return getUnderlyingArgReg(N.getOperand(0)); 4285 default: 4286 return 0; 4287 } 4288 } 4289 4290 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4291 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4292 /// At the end of instruction selection, they will be inserted to the entry BB. 4293 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4294 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4295 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4296 const Argument *Arg = dyn_cast<Argument>(V); 4297 if (!Arg) 4298 return false; 4299 4300 MachineFunction &MF = DAG.getMachineFunction(); 4301 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4302 4303 // Ignore inlined function arguments here. 4304 // 4305 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4306 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4307 return false; 4308 4309 Optional<MachineOperand> Op; 4310 // Some arguments' frame index is recorded during argument lowering. 4311 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4312 Op = MachineOperand::CreateFI(FI); 4313 4314 if (!Op && N.getNode()) { 4315 unsigned Reg = getUnderlyingArgReg(N); 4316 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4317 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4318 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4319 if (PR) 4320 Reg = PR; 4321 } 4322 if (Reg) 4323 Op = MachineOperand::CreateReg(Reg, false); 4324 } 4325 4326 if (!Op) { 4327 // Check if ValueMap has reg number. 4328 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4329 if (VMI != FuncInfo.ValueMap.end()) 4330 Op = MachineOperand::CreateReg(VMI->second, false); 4331 } 4332 4333 if (!Op && N.getNode()) 4334 // Check if frame index is available. 4335 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4336 if (FrameIndexSDNode *FINode = 4337 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4338 Op = MachineOperand::CreateFI(FINode->getIndex()); 4339 4340 if (!Op) 4341 return false; 4342 4343 assert(Variable->isValidLocationForIntrinsic(DL) && 4344 "Expected inlined-at fields to agree"); 4345 if (Op->isReg()) 4346 FuncInfo.ArgDbgValues.push_back( 4347 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4348 Op->getReg(), Offset, Variable, Expr)); 4349 else 4350 FuncInfo.ArgDbgValues.push_back( 4351 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4352 .addOperand(*Op) 4353 .addImm(Offset) 4354 .addMetadata(Variable) 4355 .addMetadata(Expr)); 4356 4357 return true; 4358 } 4359 4360 // VisualStudio defines setjmp as _setjmp 4361 #if defined(_MSC_VER) && defined(setjmp) && \ 4362 !defined(setjmp_undefined_for_msvc) 4363 # pragma push_macro("setjmp") 4364 # undef setjmp 4365 # define setjmp_undefined_for_msvc 4366 #endif 4367 4368 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4369 /// we want to emit this as a call to a named external function, return the name 4370 /// otherwise lower it and return null. 4371 const char * 4372 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4374 SDLoc sdl = getCurSDLoc(); 4375 DebugLoc dl = getCurDebugLoc(); 4376 SDValue Res; 4377 4378 switch (Intrinsic) { 4379 default: 4380 // By default, turn this into a target intrinsic node. 4381 visitTargetIntrinsic(I, Intrinsic); 4382 return nullptr; 4383 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4384 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4385 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4386 case Intrinsic::returnaddress: 4387 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4388 TLI.getPointerTy(DAG.getDataLayout()), 4389 getValue(I.getArgOperand(0)))); 4390 return nullptr; 4391 case Intrinsic::frameaddress: 4392 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4393 TLI.getPointerTy(DAG.getDataLayout()), 4394 getValue(I.getArgOperand(0)))); 4395 return nullptr; 4396 case Intrinsic::read_register: { 4397 Value *Reg = I.getArgOperand(0); 4398 SDValue Chain = getRoot(); 4399 SDValue RegName = 4400 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4401 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4402 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4403 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4404 setValue(&I, Res); 4405 DAG.setRoot(Res.getValue(1)); 4406 return nullptr; 4407 } 4408 case Intrinsic::write_register: { 4409 Value *Reg = I.getArgOperand(0); 4410 Value *RegValue = I.getArgOperand(1); 4411 SDValue Chain = getRoot(); 4412 SDValue RegName = 4413 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4414 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4415 RegName, getValue(RegValue))); 4416 return nullptr; 4417 } 4418 case Intrinsic::setjmp: 4419 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4420 case Intrinsic::longjmp: 4421 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4422 case Intrinsic::memcpy: { 4423 SDValue Op1 = getValue(I.getArgOperand(0)); 4424 SDValue Op2 = getValue(I.getArgOperand(1)); 4425 SDValue Op3 = getValue(I.getArgOperand(2)); 4426 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4427 if (!Align) 4428 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4429 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4430 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4431 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4432 false, isTC, 4433 MachinePointerInfo(I.getArgOperand(0)), 4434 MachinePointerInfo(I.getArgOperand(1))); 4435 updateDAGForMaybeTailCall(MC); 4436 return nullptr; 4437 } 4438 case Intrinsic::memset: { 4439 SDValue Op1 = getValue(I.getArgOperand(0)); 4440 SDValue Op2 = getValue(I.getArgOperand(1)); 4441 SDValue Op3 = getValue(I.getArgOperand(2)); 4442 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4443 if (!Align) 4444 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4445 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4446 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4447 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4448 isTC, MachinePointerInfo(I.getArgOperand(0))); 4449 updateDAGForMaybeTailCall(MS); 4450 return nullptr; 4451 } 4452 case Intrinsic::memmove: { 4453 SDValue Op1 = getValue(I.getArgOperand(0)); 4454 SDValue Op2 = getValue(I.getArgOperand(1)); 4455 SDValue Op3 = getValue(I.getArgOperand(2)); 4456 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4457 if (!Align) 4458 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4459 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4460 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4461 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4462 isTC, MachinePointerInfo(I.getArgOperand(0)), 4463 MachinePointerInfo(I.getArgOperand(1))); 4464 updateDAGForMaybeTailCall(MM); 4465 return nullptr; 4466 } 4467 case Intrinsic::dbg_declare: { 4468 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4469 DILocalVariable *Variable = DI.getVariable(); 4470 DIExpression *Expression = DI.getExpression(); 4471 const Value *Address = DI.getAddress(); 4472 assert(Variable && "Missing variable"); 4473 if (!Address) { 4474 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4475 return nullptr; 4476 } 4477 4478 // Check if address has undef value. 4479 if (isa<UndefValue>(Address) || 4480 (Address->use_empty() && !isa<Argument>(Address))) { 4481 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4482 return nullptr; 4483 } 4484 4485 SDValue &N = NodeMap[Address]; 4486 if (!N.getNode() && isa<Argument>(Address)) 4487 // Check unused arguments map. 4488 N = UnusedArgNodeMap[Address]; 4489 SDDbgValue *SDV; 4490 if (N.getNode()) { 4491 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4492 Address = BCI->getOperand(0); 4493 // Parameters are handled specially. 4494 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4495 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4496 if (isParameter && FINode) { 4497 // Byval parameter. We have a frame index at this point. 4498 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4499 FINode->getIndex(), 0, dl, SDNodeOrder); 4500 } else if (isa<Argument>(Address)) { 4501 // Address is an argument, so try to emit its dbg value using 4502 // virtual register info from the FuncInfo.ValueMap. 4503 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4504 N); 4505 return nullptr; 4506 } else { 4507 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4508 true, 0, dl, SDNodeOrder); 4509 } 4510 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4511 } else { 4512 // If Address is an argument then try to emit its dbg value using 4513 // virtual register info from the FuncInfo.ValueMap. 4514 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4515 N)) { 4516 // If variable is pinned by a alloca in dominating bb then 4517 // use StaticAllocaMap. 4518 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4519 if (AI->getParent() != DI.getParent()) { 4520 DenseMap<const AllocaInst*, int>::iterator SI = 4521 FuncInfo.StaticAllocaMap.find(AI); 4522 if (SI != FuncInfo.StaticAllocaMap.end()) { 4523 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4524 0, dl, SDNodeOrder); 4525 DAG.AddDbgValue(SDV, nullptr, false); 4526 return nullptr; 4527 } 4528 } 4529 } 4530 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4531 } 4532 } 4533 return nullptr; 4534 } 4535 case Intrinsic::dbg_value: { 4536 const DbgValueInst &DI = cast<DbgValueInst>(I); 4537 assert(DI.getVariable() && "Missing variable"); 4538 4539 DILocalVariable *Variable = DI.getVariable(); 4540 DIExpression *Expression = DI.getExpression(); 4541 uint64_t Offset = DI.getOffset(); 4542 const Value *V = DI.getValue(); 4543 if (!V) 4544 return nullptr; 4545 4546 SDDbgValue *SDV; 4547 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4548 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4549 SDNodeOrder); 4550 DAG.AddDbgValue(SDV, nullptr, false); 4551 } else { 4552 // Do not use getValue() in here; we don't want to generate code at 4553 // this point if it hasn't been done yet. 4554 SDValue N = NodeMap[V]; 4555 if (!N.getNode() && isa<Argument>(V)) 4556 // Check unused arguments map. 4557 N = UnusedArgNodeMap[V]; 4558 if (N.getNode()) { 4559 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4560 false, N)) { 4561 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4562 false, Offset, dl, SDNodeOrder); 4563 DAG.AddDbgValue(SDV, N.getNode(), false); 4564 } 4565 } else if (!V->use_empty() ) { 4566 // Do not call getValue(V) yet, as we don't want to generate code. 4567 // Remember it for later. 4568 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4569 DanglingDebugInfoMap[V] = DDI; 4570 } else { 4571 // We may expand this to cover more cases. One case where we have no 4572 // data available is an unreferenced parameter. 4573 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4574 } 4575 } 4576 4577 // Build a debug info table entry. 4578 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4579 V = BCI->getOperand(0); 4580 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4581 // Don't handle byval struct arguments or VLAs, for example. 4582 if (!AI) { 4583 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4584 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4585 return nullptr; 4586 } 4587 DenseMap<const AllocaInst*, int>::iterator SI = 4588 FuncInfo.StaticAllocaMap.find(AI); 4589 if (SI == FuncInfo.StaticAllocaMap.end()) 4590 return nullptr; // VLAs. 4591 return nullptr; 4592 } 4593 4594 case Intrinsic::eh_typeid_for: { 4595 // Find the type id for the given typeinfo. 4596 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4597 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4598 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4599 setValue(&I, Res); 4600 return nullptr; 4601 } 4602 4603 case Intrinsic::eh_return_i32: 4604 case Intrinsic::eh_return_i64: 4605 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4606 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4607 MVT::Other, 4608 getControlRoot(), 4609 getValue(I.getArgOperand(0)), 4610 getValue(I.getArgOperand(1)))); 4611 return nullptr; 4612 case Intrinsic::eh_unwind_init: 4613 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4614 return nullptr; 4615 case Intrinsic::eh_dwarf_cfa: { 4616 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4617 TLI.getPointerTy(DAG.getDataLayout())); 4618 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4619 CfaArg.getValueType(), 4620 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4621 CfaArg.getValueType()), 4622 CfaArg); 4623 SDValue FA = DAG.getNode( 4624 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4625 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4626 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4627 FA, Offset)); 4628 return nullptr; 4629 } 4630 case Intrinsic::eh_sjlj_callsite: { 4631 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4632 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4633 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4634 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4635 4636 MMI.setCurrentCallSite(CI->getZExtValue()); 4637 return nullptr; 4638 } 4639 case Intrinsic::eh_sjlj_functioncontext: { 4640 // Get and store the index of the function context. 4641 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4642 AllocaInst *FnCtx = 4643 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4644 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4645 MFI->setFunctionContextIndex(FI); 4646 return nullptr; 4647 } 4648 case Intrinsic::eh_sjlj_setjmp: { 4649 SDValue Ops[2]; 4650 Ops[0] = getRoot(); 4651 Ops[1] = getValue(I.getArgOperand(0)); 4652 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4653 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4654 setValue(&I, Op.getValue(0)); 4655 DAG.setRoot(Op.getValue(1)); 4656 return nullptr; 4657 } 4658 case Intrinsic::eh_sjlj_longjmp: { 4659 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4660 getRoot(), getValue(I.getArgOperand(0)))); 4661 return nullptr; 4662 } 4663 case Intrinsic::eh_sjlj_setup_dispatch: { 4664 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4665 getRoot())); 4666 return nullptr; 4667 } 4668 4669 case Intrinsic::masked_gather: 4670 visitMaskedGather(I); 4671 return nullptr; 4672 case Intrinsic::masked_load: 4673 visitMaskedLoad(I); 4674 return nullptr; 4675 case Intrinsic::masked_scatter: 4676 visitMaskedScatter(I); 4677 return nullptr; 4678 case Intrinsic::masked_store: 4679 visitMaskedStore(I); 4680 return nullptr; 4681 case Intrinsic::x86_mmx_pslli_w: 4682 case Intrinsic::x86_mmx_pslli_d: 4683 case Intrinsic::x86_mmx_pslli_q: 4684 case Intrinsic::x86_mmx_psrli_w: 4685 case Intrinsic::x86_mmx_psrli_d: 4686 case Intrinsic::x86_mmx_psrli_q: 4687 case Intrinsic::x86_mmx_psrai_w: 4688 case Intrinsic::x86_mmx_psrai_d: { 4689 SDValue ShAmt = getValue(I.getArgOperand(1)); 4690 if (isa<ConstantSDNode>(ShAmt)) { 4691 visitTargetIntrinsic(I, Intrinsic); 4692 return nullptr; 4693 } 4694 unsigned NewIntrinsic = 0; 4695 EVT ShAmtVT = MVT::v2i32; 4696 switch (Intrinsic) { 4697 case Intrinsic::x86_mmx_pslli_w: 4698 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4699 break; 4700 case Intrinsic::x86_mmx_pslli_d: 4701 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4702 break; 4703 case Intrinsic::x86_mmx_pslli_q: 4704 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4705 break; 4706 case Intrinsic::x86_mmx_psrli_w: 4707 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4708 break; 4709 case Intrinsic::x86_mmx_psrli_d: 4710 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4711 break; 4712 case Intrinsic::x86_mmx_psrli_q: 4713 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4714 break; 4715 case Intrinsic::x86_mmx_psrai_w: 4716 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4717 break; 4718 case Intrinsic::x86_mmx_psrai_d: 4719 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4720 break; 4721 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4722 } 4723 4724 // The vector shift intrinsics with scalars uses 32b shift amounts but 4725 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4726 // to be zero. 4727 // We must do this early because v2i32 is not a legal type. 4728 SDValue ShOps[2]; 4729 ShOps[0] = ShAmt; 4730 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4731 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4732 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4733 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4734 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4735 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4736 getValue(I.getArgOperand(0)), ShAmt); 4737 setValue(&I, Res); 4738 return nullptr; 4739 } 4740 case Intrinsic::convertff: 4741 case Intrinsic::convertfsi: 4742 case Intrinsic::convertfui: 4743 case Intrinsic::convertsif: 4744 case Intrinsic::convertuif: 4745 case Intrinsic::convertss: 4746 case Intrinsic::convertsu: 4747 case Intrinsic::convertus: 4748 case Intrinsic::convertuu: { 4749 ISD::CvtCode Code = ISD::CVT_INVALID; 4750 switch (Intrinsic) { 4751 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4752 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4753 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4754 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4755 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4756 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4757 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4758 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4759 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4760 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4761 } 4762 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4763 const Value *Op1 = I.getArgOperand(0); 4764 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4765 DAG.getValueType(DestVT), 4766 DAG.getValueType(getValue(Op1).getValueType()), 4767 getValue(I.getArgOperand(1)), 4768 getValue(I.getArgOperand(2)), 4769 Code); 4770 setValue(&I, Res); 4771 return nullptr; 4772 } 4773 case Intrinsic::powi: 4774 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4775 getValue(I.getArgOperand(1)), DAG)); 4776 return nullptr; 4777 case Intrinsic::log: 4778 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4779 return nullptr; 4780 case Intrinsic::log2: 4781 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4782 return nullptr; 4783 case Intrinsic::log10: 4784 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4785 return nullptr; 4786 case Intrinsic::exp: 4787 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4788 return nullptr; 4789 case Intrinsic::exp2: 4790 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4791 return nullptr; 4792 case Intrinsic::pow: 4793 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4794 getValue(I.getArgOperand(1)), DAG, TLI)); 4795 return nullptr; 4796 case Intrinsic::sqrt: 4797 case Intrinsic::fabs: 4798 case Intrinsic::sin: 4799 case Intrinsic::cos: 4800 case Intrinsic::floor: 4801 case Intrinsic::ceil: 4802 case Intrinsic::trunc: 4803 case Intrinsic::rint: 4804 case Intrinsic::nearbyint: 4805 case Intrinsic::round: { 4806 unsigned Opcode; 4807 switch (Intrinsic) { 4808 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4809 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4810 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4811 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4812 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4813 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4814 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4815 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4816 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4817 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4818 case Intrinsic::round: Opcode = ISD::FROUND; break; 4819 } 4820 4821 setValue(&I, DAG.getNode(Opcode, sdl, 4822 getValue(I.getArgOperand(0)).getValueType(), 4823 getValue(I.getArgOperand(0)))); 4824 return nullptr; 4825 } 4826 case Intrinsic::minnum: 4827 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4828 getValue(I.getArgOperand(0)).getValueType(), 4829 getValue(I.getArgOperand(0)), 4830 getValue(I.getArgOperand(1)))); 4831 return nullptr; 4832 case Intrinsic::maxnum: 4833 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4834 getValue(I.getArgOperand(0)).getValueType(), 4835 getValue(I.getArgOperand(0)), 4836 getValue(I.getArgOperand(1)))); 4837 return nullptr; 4838 case Intrinsic::copysign: 4839 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4840 getValue(I.getArgOperand(0)).getValueType(), 4841 getValue(I.getArgOperand(0)), 4842 getValue(I.getArgOperand(1)))); 4843 return nullptr; 4844 case Intrinsic::fma: 4845 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4846 getValue(I.getArgOperand(0)).getValueType(), 4847 getValue(I.getArgOperand(0)), 4848 getValue(I.getArgOperand(1)), 4849 getValue(I.getArgOperand(2)))); 4850 return nullptr; 4851 case Intrinsic::fmuladd: { 4852 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4853 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4854 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4855 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4856 getValue(I.getArgOperand(0)).getValueType(), 4857 getValue(I.getArgOperand(0)), 4858 getValue(I.getArgOperand(1)), 4859 getValue(I.getArgOperand(2)))); 4860 } else { 4861 // TODO: Intrinsic calls should have fast-math-flags. 4862 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4863 getValue(I.getArgOperand(0)).getValueType(), 4864 getValue(I.getArgOperand(0)), 4865 getValue(I.getArgOperand(1))); 4866 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4867 getValue(I.getArgOperand(0)).getValueType(), 4868 Mul, 4869 getValue(I.getArgOperand(2))); 4870 setValue(&I, Add); 4871 } 4872 return nullptr; 4873 } 4874 case Intrinsic::convert_to_fp16: 4875 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4876 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4877 getValue(I.getArgOperand(0)), 4878 DAG.getTargetConstant(0, sdl, 4879 MVT::i32)))); 4880 return nullptr; 4881 case Intrinsic::convert_from_fp16: 4882 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4883 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4884 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4885 getValue(I.getArgOperand(0))))); 4886 return nullptr; 4887 case Intrinsic::pcmarker: { 4888 SDValue Tmp = getValue(I.getArgOperand(0)); 4889 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4890 return nullptr; 4891 } 4892 case Intrinsic::readcyclecounter: { 4893 SDValue Op = getRoot(); 4894 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4895 DAG.getVTList(MVT::i64, MVT::Other), Op); 4896 setValue(&I, Res); 4897 DAG.setRoot(Res.getValue(1)); 4898 return nullptr; 4899 } 4900 case Intrinsic::bitreverse: 4901 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4902 getValue(I.getArgOperand(0)).getValueType(), 4903 getValue(I.getArgOperand(0)))); 4904 return nullptr; 4905 case Intrinsic::bswap: 4906 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4907 getValue(I.getArgOperand(0)).getValueType(), 4908 getValue(I.getArgOperand(0)))); 4909 return nullptr; 4910 case Intrinsic::cttz: { 4911 SDValue Arg = getValue(I.getArgOperand(0)); 4912 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4913 EVT Ty = Arg.getValueType(); 4914 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4915 sdl, Ty, Arg)); 4916 return nullptr; 4917 } 4918 case Intrinsic::ctlz: { 4919 SDValue Arg = getValue(I.getArgOperand(0)); 4920 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4921 EVT Ty = Arg.getValueType(); 4922 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4923 sdl, Ty, Arg)); 4924 return nullptr; 4925 } 4926 case Intrinsic::ctpop: { 4927 SDValue Arg = getValue(I.getArgOperand(0)); 4928 EVT Ty = Arg.getValueType(); 4929 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4930 return nullptr; 4931 } 4932 case Intrinsic::stacksave: { 4933 SDValue Op = getRoot(); 4934 Res = DAG.getNode( 4935 ISD::STACKSAVE, sdl, 4936 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4937 setValue(&I, Res); 4938 DAG.setRoot(Res.getValue(1)); 4939 return nullptr; 4940 } 4941 case Intrinsic::stackrestore: { 4942 Res = getValue(I.getArgOperand(0)); 4943 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4944 return nullptr; 4945 } 4946 case Intrinsic::get_dynamic_area_offset: { 4947 SDValue Op = getRoot(); 4948 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4949 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4950 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4951 // target. 4952 if (PtrTy != ResTy) 4953 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4954 " intrinsic!"); 4955 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4956 Op); 4957 DAG.setRoot(Op); 4958 setValue(&I, Res); 4959 return nullptr; 4960 } 4961 case Intrinsic::stackprotector: { 4962 // Emit code into the DAG to store the stack guard onto the stack. 4963 MachineFunction &MF = DAG.getMachineFunction(); 4964 MachineFrameInfo *MFI = MF.getFrameInfo(); 4965 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4966 SDValue Src, Chain = getRoot(); 4967 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4968 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4969 4970 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4971 // global variable __stack_chk_guard. 4972 if (!GV) 4973 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4974 if (BC->getOpcode() == Instruction::BitCast) 4975 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4976 4977 if (GV && TLI.useLoadStackGuardNode()) { 4978 // Emit a LOAD_STACK_GUARD node. 4979 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4980 sdl, PtrTy, Chain); 4981 MachinePointerInfo MPInfo(GV); 4982 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4983 unsigned Flags = MachineMemOperand::MOLoad | 4984 MachineMemOperand::MOInvariant; 4985 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4986 PtrTy.getSizeInBits() / 8, 4987 DAG.getEVTAlignment(PtrTy)); 4988 Node->setMemRefs(MemRefs, MemRefs + 1); 4989 4990 // Copy the guard value to a virtual register so that it can be 4991 // retrieved in the epilogue. 4992 Src = SDValue(Node, 0); 4993 const TargetRegisterClass *RC = 4994 TLI.getRegClassFor(Src.getSimpleValueType()); 4995 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4996 4997 SPDescriptor.setGuardReg(Reg); 4998 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4999 } else { 5000 Src = getValue(I.getArgOperand(0)); // The guard's value. 5001 } 5002 5003 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5004 5005 int FI = FuncInfo.StaticAllocaMap[Slot]; 5006 MFI->setStackProtectorIndex(FI); 5007 5008 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5009 5010 // Store the stack protector onto the stack. 5011 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5012 DAG.getMachineFunction(), FI), 5013 true, false, 0); 5014 setValue(&I, Res); 5015 DAG.setRoot(Res); 5016 return nullptr; 5017 } 5018 case Intrinsic::objectsize: { 5019 // If we don't know by now, we're never going to know. 5020 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5021 5022 assert(CI && "Non-constant type in __builtin_object_size?"); 5023 5024 SDValue Arg = getValue(I.getCalledValue()); 5025 EVT Ty = Arg.getValueType(); 5026 5027 if (CI->isZero()) 5028 Res = DAG.getConstant(-1ULL, sdl, Ty); 5029 else 5030 Res = DAG.getConstant(0, sdl, Ty); 5031 5032 setValue(&I, Res); 5033 return nullptr; 5034 } 5035 case Intrinsic::annotation: 5036 case Intrinsic::ptr_annotation: 5037 // Drop the intrinsic, but forward the value 5038 setValue(&I, getValue(I.getOperand(0))); 5039 return nullptr; 5040 case Intrinsic::assume: 5041 case Intrinsic::var_annotation: 5042 // Discard annotate attributes and assumptions 5043 return nullptr; 5044 5045 case Intrinsic::init_trampoline: { 5046 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5047 5048 SDValue Ops[6]; 5049 Ops[0] = getRoot(); 5050 Ops[1] = getValue(I.getArgOperand(0)); 5051 Ops[2] = getValue(I.getArgOperand(1)); 5052 Ops[3] = getValue(I.getArgOperand(2)); 5053 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5054 Ops[5] = DAG.getSrcValue(F); 5055 5056 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5057 5058 DAG.setRoot(Res); 5059 return nullptr; 5060 } 5061 case Intrinsic::adjust_trampoline: { 5062 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5063 TLI.getPointerTy(DAG.getDataLayout()), 5064 getValue(I.getArgOperand(0)))); 5065 return nullptr; 5066 } 5067 case Intrinsic::gcroot: { 5068 MachineFunction &MF = DAG.getMachineFunction(); 5069 const Function *F = MF.getFunction(); 5070 (void)F; 5071 assert(F->hasGC() && 5072 "only valid in functions with gc specified, enforced by Verifier"); 5073 assert(GFI && "implied by previous"); 5074 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5075 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5076 5077 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5078 GFI->addStackRoot(FI->getIndex(), TypeMap); 5079 return nullptr; 5080 } 5081 case Intrinsic::gcread: 5082 case Intrinsic::gcwrite: 5083 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5084 case Intrinsic::flt_rounds: 5085 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5086 return nullptr; 5087 5088 case Intrinsic::expect: { 5089 // Just replace __builtin_expect(exp, c) with EXP. 5090 setValue(&I, getValue(I.getArgOperand(0))); 5091 return nullptr; 5092 } 5093 5094 case Intrinsic::debugtrap: 5095 case Intrinsic::trap: { 5096 StringRef TrapFuncName = 5097 I.getAttributes() 5098 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5099 .getValueAsString(); 5100 if (TrapFuncName.empty()) { 5101 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5102 ISD::TRAP : ISD::DEBUGTRAP; 5103 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5104 return nullptr; 5105 } 5106 TargetLowering::ArgListTy Args; 5107 5108 TargetLowering::CallLoweringInfo CLI(DAG); 5109 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5110 CallingConv::C, I.getType(), 5111 DAG.getExternalSymbol(TrapFuncName.data(), 5112 TLI.getPointerTy(DAG.getDataLayout())), 5113 std::move(Args), 0); 5114 5115 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5116 DAG.setRoot(Result.second); 5117 return nullptr; 5118 } 5119 5120 case Intrinsic::uadd_with_overflow: 5121 case Intrinsic::sadd_with_overflow: 5122 case Intrinsic::usub_with_overflow: 5123 case Intrinsic::ssub_with_overflow: 5124 case Intrinsic::umul_with_overflow: 5125 case Intrinsic::smul_with_overflow: { 5126 ISD::NodeType Op; 5127 switch (Intrinsic) { 5128 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5129 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5130 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5131 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5132 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5133 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5134 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5135 } 5136 SDValue Op1 = getValue(I.getArgOperand(0)); 5137 SDValue Op2 = getValue(I.getArgOperand(1)); 5138 5139 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5140 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5141 return nullptr; 5142 } 5143 case Intrinsic::prefetch: { 5144 SDValue Ops[5]; 5145 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5146 Ops[0] = getRoot(); 5147 Ops[1] = getValue(I.getArgOperand(0)); 5148 Ops[2] = getValue(I.getArgOperand(1)); 5149 Ops[3] = getValue(I.getArgOperand(2)); 5150 Ops[4] = getValue(I.getArgOperand(3)); 5151 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5152 DAG.getVTList(MVT::Other), Ops, 5153 EVT::getIntegerVT(*Context, 8), 5154 MachinePointerInfo(I.getArgOperand(0)), 5155 0, /* align */ 5156 false, /* volatile */ 5157 rw==0, /* read */ 5158 rw==1)); /* write */ 5159 return nullptr; 5160 } 5161 case Intrinsic::lifetime_start: 5162 case Intrinsic::lifetime_end: { 5163 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5164 // Stack coloring is not enabled in O0, discard region information. 5165 if (TM.getOptLevel() == CodeGenOpt::None) 5166 return nullptr; 5167 5168 SmallVector<Value *, 4> Allocas; 5169 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5170 5171 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5172 E = Allocas.end(); Object != E; ++Object) { 5173 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5174 5175 // Could not find an Alloca. 5176 if (!LifetimeObject) 5177 continue; 5178 5179 // First check that the Alloca is static, otherwise it won't have a 5180 // valid frame index. 5181 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5182 if (SI == FuncInfo.StaticAllocaMap.end()) 5183 return nullptr; 5184 5185 int FI = SI->second; 5186 5187 SDValue Ops[2]; 5188 Ops[0] = getRoot(); 5189 Ops[1] = 5190 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5191 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5192 5193 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5194 DAG.setRoot(Res); 5195 } 5196 return nullptr; 5197 } 5198 case Intrinsic::invariant_start: 5199 // Discard region information. 5200 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5201 return nullptr; 5202 case Intrinsic::invariant_end: 5203 // Discard region information. 5204 return nullptr; 5205 case Intrinsic::stackprotectorcheck: { 5206 // Do not actually emit anything for this basic block. Instead we initialize 5207 // the stack protector descriptor and export the guard variable so we can 5208 // access it in FinishBasicBlock. 5209 const BasicBlock *BB = I.getParent(); 5210 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5211 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5212 5213 // Flush our exports since we are going to process a terminator. 5214 (void)getControlRoot(); 5215 return nullptr; 5216 } 5217 case Intrinsic::clear_cache: 5218 return TLI.getClearCacheBuiltinName(); 5219 case Intrinsic::donothing: 5220 // ignore 5221 return nullptr; 5222 case Intrinsic::experimental_stackmap: { 5223 visitStackmap(I); 5224 return nullptr; 5225 } 5226 case Intrinsic::experimental_patchpoint_void: 5227 case Intrinsic::experimental_patchpoint_i64: { 5228 visitPatchpoint(&I); 5229 return nullptr; 5230 } 5231 case Intrinsic::experimental_gc_statepoint: { 5232 visitStatepoint(I); 5233 return nullptr; 5234 } 5235 case Intrinsic::experimental_gc_result: { 5236 visitGCResult(I); 5237 return nullptr; 5238 } 5239 case Intrinsic::experimental_gc_relocate: { 5240 visitGCRelocate(cast<GCRelocateInst>(I)); 5241 return nullptr; 5242 } 5243 case Intrinsic::instrprof_increment: 5244 llvm_unreachable("instrprof failed to lower an increment"); 5245 case Intrinsic::instrprof_value_profile: 5246 llvm_unreachable("instrprof failed to lower a value profiling call"); 5247 case Intrinsic::localescape: { 5248 MachineFunction &MF = DAG.getMachineFunction(); 5249 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5250 5251 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5252 // is the same on all targets. 5253 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5254 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5255 if (isa<ConstantPointerNull>(Arg)) 5256 continue; // Skip null pointers. They represent a hole in index space. 5257 AllocaInst *Slot = cast<AllocaInst>(Arg); 5258 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5259 "can only escape static allocas"); 5260 int FI = FuncInfo.StaticAllocaMap[Slot]; 5261 MCSymbol *FrameAllocSym = 5262 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5263 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5265 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5266 .addSym(FrameAllocSym) 5267 .addFrameIndex(FI); 5268 } 5269 5270 return nullptr; 5271 } 5272 5273 case Intrinsic::localrecover: { 5274 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5275 MachineFunction &MF = DAG.getMachineFunction(); 5276 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5277 5278 // Get the symbol that defines the frame offset. 5279 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5280 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5281 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5282 MCSymbol *FrameAllocSym = 5283 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5284 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5285 5286 // Create a MCSymbol for the label to avoid any target lowering 5287 // that would make this PC relative. 5288 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5289 SDValue OffsetVal = 5290 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5291 5292 // Add the offset to the FP. 5293 Value *FP = I.getArgOperand(1); 5294 SDValue FPVal = getValue(FP); 5295 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5296 setValue(&I, Add); 5297 5298 return nullptr; 5299 } 5300 5301 case Intrinsic::eh_exceptionpointer: 5302 case Intrinsic::eh_exceptioncode: { 5303 // Get the exception pointer vreg, copy from it, and resize it to fit. 5304 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5305 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5306 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5307 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5308 SDValue N = 5309 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5310 if (Intrinsic == Intrinsic::eh_exceptioncode) 5311 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5312 setValue(&I, N); 5313 return nullptr; 5314 } 5315 } 5316 } 5317 5318 std::pair<SDValue, SDValue> 5319 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5320 const BasicBlock *EHPadBB) { 5321 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5322 MCSymbol *BeginLabel = nullptr; 5323 5324 if (EHPadBB) { 5325 // Insert a label before the invoke call to mark the try range. This can be 5326 // used to detect deletion of the invoke via the MachineModuleInfo. 5327 BeginLabel = MMI.getContext().createTempSymbol(); 5328 5329 // For SjLj, keep track of which landing pads go with which invokes 5330 // so as to maintain the ordering of pads in the LSDA. 5331 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5332 if (CallSiteIndex) { 5333 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5334 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5335 5336 // Now that the call site is handled, stop tracking it. 5337 MMI.setCurrentCallSite(0); 5338 } 5339 5340 // Both PendingLoads and PendingExports must be flushed here; 5341 // this call might not return. 5342 (void)getRoot(); 5343 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5344 5345 CLI.setChain(getRoot()); 5346 } 5347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5348 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5349 5350 assert((CLI.IsTailCall || Result.second.getNode()) && 5351 "Non-null chain expected with non-tail call!"); 5352 assert((Result.second.getNode() || !Result.first.getNode()) && 5353 "Null value expected with tail call!"); 5354 5355 if (!Result.second.getNode()) { 5356 // As a special case, a null chain means that a tail call has been emitted 5357 // and the DAG root is already updated. 5358 HasTailCall = true; 5359 5360 // Since there's no actual continuation from this block, nothing can be 5361 // relying on us setting vregs for them. 5362 PendingExports.clear(); 5363 } else { 5364 DAG.setRoot(Result.second); 5365 } 5366 5367 if (EHPadBB) { 5368 // Insert a label at the end of the invoke call to mark the try range. This 5369 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5370 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5371 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5372 5373 // Inform MachineModuleInfo of range. 5374 if (MMI.hasEHFunclets()) { 5375 assert(CLI.CS); 5376 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5377 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5378 BeginLabel, EndLabel); 5379 } else { 5380 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5381 } 5382 } 5383 5384 return Result; 5385 } 5386 5387 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5388 bool isTailCall, 5389 const BasicBlock *EHPadBB) { 5390 FunctionType *FTy = CS.getFunctionType(); 5391 Type *RetTy = CS.getType(); 5392 5393 TargetLowering::ArgListTy Args; 5394 TargetLowering::ArgListEntry Entry; 5395 Args.reserve(CS.arg_size()); 5396 5397 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5398 i != e; ++i) { 5399 const Value *V = *i; 5400 5401 // Skip empty types 5402 if (V->getType()->isEmptyTy()) 5403 continue; 5404 5405 SDValue ArgNode = getValue(V); 5406 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5407 5408 // Skip the first return-type Attribute to get to params. 5409 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5410 Args.push_back(Entry); 5411 5412 // If we have an explicit sret argument that is an Instruction, (i.e., it 5413 // might point to function-local memory), we can't meaningfully tail-call. 5414 if (Entry.isSRet && isa<Instruction>(V)) 5415 isTailCall = false; 5416 } 5417 5418 // Check if target-independent constraints permit a tail call here. 5419 // Target-dependent constraints are checked within TLI->LowerCallTo. 5420 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5421 isTailCall = false; 5422 5423 TargetLowering::CallLoweringInfo CLI(DAG); 5424 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5425 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5426 .setTailCall(isTailCall); 5427 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5428 5429 if (Result.first.getNode()) { 5430 const Instruction *Inst = CS.getInstruction(); 5431 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5432 setValue(Inst, Result.first); 5433 } 5434 } 5435 5436 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5437 /// value is equal or not-equal to zero. 5438 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5439 for (const User *U : V->users()) { 5440 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5441 if (IC->isEquality()) 5442 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5443 if (C->isNullValue()) 5444 continue; 5445 // Unknown instruction. 5446 return false; 5447 } 5448 return true; 5449 } 5450 5451 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5452 Type *LoadTy, 5453 SelectionDAGBuilder &Builder) { 5454 5455 // Check to see if this load can be trivially constant folded, e.g. if the 5456 // input is from a string literal. 5457 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5458 // Cast pointer to the type we really want to load. 5459 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5460 PointerType::getUnqual(LoadTy)); 5461 5462 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5463 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5464 return Builder.getValue(LoadCst); 5465 } 5466 5467 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5468 // still constant memory, the input chain can be the entry node. 5469 SDValue Root; 5470 bool ConstantMemory = false; 5471 5472 // Do not serialize (non-volatile) loads of constant memory with anything. 5473 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5474 Root = Builder.DAG.getEntryNode(); 5475 ConstantMemory = true; 5476 } else { 5477 // Do not serialize non-volatile loads against each other. 5478 Root = Builder.DAG.getRoot(); 5479 } 5480 5481 SDValue Ptr = Builder.getValue(PtrVal); 5482 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5483 Ptr, MachinePointerInfo(PtrVal), 5484 false /*volatile*/, 5485 false /*nontemporal*/, 5486 false /*isinvariant*/, 1 /* align=1 */); 5487 5488 if (!ConstantMemory) 5489 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5490 return LoadVal; 5491 } 5492 5493 /// processIntegerCallValue - Record the value for an instruction that 5494 /// produces an integer result, converting the type where necessary. 5495 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5496 SDValue Value, 5497 bool IsSigned) { 5498 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5499 I.getType(), true); 5500 if (IsSigned) 5501 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5502 else 5503 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5504 setValue(&I, Value); 5505 } 5506 5507 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5508 /// If so, return true and lower it, otherwise return false and it will be 5509 /// lowered like a normal call. 5510 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5511 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5512 if (I.getNumArgOperands() != 3) 5513 return false; 5514 5515 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5516 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5517 !I.getArgOperand(2)->getType()->isIntegerTy() || 5518 !I.getType()->isIntegerTy()) 5519 return false; 5520 5521 const Value *Size = I.getArgOperand(2); 5522 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5523 if (CSize && CSize->getZExtValue() == 0) { 5524 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5525 I.getType(), true); 5526 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5527 return true; 5528 } 5529 5530 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5531 std::pair<SDValue, SDValue> Res = 5532 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5533 getValue(LHS), getValue(RHS), getValue(Size), 5534 MachinePointerInfo(LHS), 5535 MachinePointerInfo(RHS)); 5536 if (Res.first.getNode()) { 5537 processIntegerCallValue(I, Res.first, true); 5538 PendingLoads.push_back(Res.second); 5539 return true; 5540 } 5541 5542 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5543 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5544 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5545 bool ActuallyDoIt = true; 5546 MVT LoadVT; 5547 Type *LoadTy; 5548 switch (CSize->getZExtValue()) { 5549 default: 5550 LoadVT = MVT::Other; 5551 LoadTy = nullptr; 5552 ActuallyDoIt = false; 5553 break; 5554 case 2: 5555 LoadVT = MVT::i16; 5556 LoadTy = Type::getInt16Ty(CSize->getContext()); 5557 break; 5558 case 4: 5559 LoadVT = MVT::i32; 5560 LoadTy = Type::getInt32Ty(CSize->getContext()); 5561 break; 5562 case 8: 5563 LoadVT = MVT::i64; 5564 LoadTy = Type::getInt64Ty(CSize->getContext()); 5565 break; 5566 /* 5567 case 16: 5568 LoadVT = MVT::v4i32; 5569 LoadTy = Type::getInt32Ty(CSize->getContext()); 5570 LoadTy = VectorType::get(LoadTy, 4); 5571 break; 5572 */ 5573 } 5574 5575 // This turns into unaligned loads. We only do this if the target natively 5576 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5577 // we'll only produce a small number of byte loads. 5578 5579 // Require that we can find a legal MVT, and only do this if the target 5580 // supports unaligned loads of that type. Expanding into byte loads would 5581 // bloat the code. 5582 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5583 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5584 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5585 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5586 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5587 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5588 // TODO: Check alignment of src and dest ptrs. 5589 if (!TLI.isTypeLegal(LoadVT) || 5590 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5591 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5592 ActuallyDoIt = false; 5593 } 5594 5595 if (ActuallyDoIt) { 5596 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5597 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5598 5599 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5600 ISD::SETNE); 5601 processIntegerCallValue(I, Res, false); 5602 return true; 5603 } 5604 } 5605 5606 5607 return false; 5608 } 5609 5610 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5611 /// form. If so, return true and lower it, otherwise return false and it 5612 /// will be lowered like a normal call. 5613 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5614 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5615 if (I.getNumArgOperands() != 3) 5616 return false; 5617 5618 const Value *Src = I.getArgOperand(0); 5619 const Value *Char = I.getArgOperand(1); 5620 const Value *Length = I.getArgOperand(2); 5621 if (!Src->getType()->isPointerTy() || 5622 !Char->getType()->isIntegerTy() || 5623 !Length->getType()->isIntegerTy() || 5624 !I.getType()->isPointerTy()) 5625 return false; 5626 5627 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5628 std::pair<SDValue, SDValue> Res = 5629 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5630 getValue(Src), getValue(Char), getValue(Length), 5631 MachinePointerInfo(Src)); 5632 if (Res.first.getNode()) { 5633 setValue(&I, Res.first); 5634 PendingLoads.push_back(Res.second); 5635 return true; 5636 } 5637 5638 return false; 5639 } 5640 5641 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5642 /// optimized form. If so, return true and lower it, otherwise return false 5643 /// and it will be lowered like a normal call. 5644 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5645 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5646 if (I.getNumArgOperands() != 2) 5647 return false; 5648 5649 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5650 if (!Arg0->getType()->isPointerTy() || 5651 !Arg1->getType()->isPointerTy() || 5652 !I.getType()->isPointerTy()) 5653 return false; 5654 5655 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5656 std::pair<SDValue, SDValue> Res = 5657 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5658 getValue(Arg0), getValue(Arg1), 5659 MachinePointerInfo(Arg0), 5660 MachinePointerInfo(Arg1), isStpcpy); 5661 if (Res.first.getNode()) { 5662 setValue(&I, Res.first); 5663 DAG.setRoot(Res.second); 5664 return true; 5665 } 5666 5667 return false; 5668 } 5669 5670 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5671 /// If so, return true and lower it, otherwise return false and it will be 5672 /// lowered like a normal call. 5673 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5674 // Verify that the prototype makes sense. int strcmp(void*,void*) 5675 if (I.getNumArgOperands() != 2) 5676 return false; 5677 5678 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5679 if (!Arg0->getType()->isPointerTy() || 5680 !Arg1->getType()->isPointerTy() || 5681 !I.getType()->isIntegerTy()) 5682 return false; 5683 5684 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5685 std::pair<SDValue, SDValue> Res = 5686 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5687 getValue(Arg0), getValue(Arg1), 5688 MachinePointerInfo(Arg0), 5689 MachinePointerInfo(Arg1)); 5690 if (Res.first.getNode()) { 5691 processIntegerCallValue(I, Res.first, true); 5692 PendingLoads.push_back(Res.second); 5693 return true; 5694 } 5695 5696 return false; 5697 } 5698 5699 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5700 /// form. If so, return true and lower it, otherwise return false and it 5701 /// will be lowered like a normal call. 5702 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5703 // Verify that the prototype makes sense. size_t strlen(char *) 5704 if (I.getNumArgOperands() != 1) 5705 return false; 5706 5707 const Value *Arg0 = I.getArgOperand(0); 5708 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5709 return false; 5710 5711 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5712 std::pair<SDValue, SDValue> Res = 5713 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5714 getValue(Arg0), MachinePointerInfo(Arg0)); 5715 if (Res.first.getNode()) { 5716 processIntegerCallValue(I, Res.first, false); 5717 PendingLoads.push_back(Res.second); 5718 return true; 5719 } 5720 5721 return false; 5722 } 5723 5724 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5725 /// form. If so, return true and lower it, otherwise return false and it 5726 /// will be lowered like a normal call. 5727 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5728 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5729 if (I.getNumArgOperands() != 2) 5730 return false; 5731 5732 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5733 if (!Arg0->getType()->isPointerTy() || 5734 !Arg1->getType()->isIntegerTy() || 5735 !I.getType()->isIntegerTy()) 5736 return false; 5737 5738 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5739 std::pair<SDValue, SDValue> Res = 5740 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5741 getValue(Arg0), getValue(Arg1), 5742 MachinePointerInfo(Arg0)); 5743 if (Res.first.getNode()) { 5744 processIntegerCallValue(I, Res.first, false); 5745 PendingLoads.push_back(Res.second); 5746 return true; 5747 } 5748 5749 return false; 5750 } 5751 5752 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5753 /// operation (as expected), translate it to an SDNode with the specified opcode 5754 /// and return true. 5755 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5756 unsigned Opcode) { 5757 // Sanity check that it really is a unary floating-point call. 5758 if (I.getNumArgOperands() != 1 || 5759 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5760 I.getType() != I.getArgOperand(0)->getType() || 5761 !I.onlyReadsMemory()) 5762 return false; 5763 5764 SDValue Tmp = getValue(I.getArgOperand(0)); 5765 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5766 return true; 5767 } 5768 5769 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5770 /// operation (as expected), translate it to an SDNode with the specified opcode 5771 /// and return true. 5772 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5773 unsigned Opcode) { 5774 // Sanity check that it really is a binary floating-point call. 5775 if (I.getNumArgOperands() != 2 || 5776 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5777 I.getType() != I.getArgOperand(0)->getType() || 5778 I.getType() != I.getArgOperand(1)->getType() || 5779 !I.onlyReadsMemory()) 5780 return false; 5781 5782 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5783 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5784 EVT VT = Tmp0.getValueType(); 5785 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5786 return true; 5787 } 5788 5789 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5790 // Handle inline assembly differently. 5791 if (isa<InlineAsm>(I.getCalledValue())) { 5792 visitInlineAsm(&I); 5793 return; 5794 } 5795 5796 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5797 ComputeUsesVAFloatArgument(I, &MMI); 5798 5799 const char *RenameFn = nullptr; 5800 if (Function *F = I.getCalledFunction()) { 5801 if (F->isDeclaration()) { 5802 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5803 if (unsigned IID = II->getIntrinsicID(F)) { 5804 RenameFn = visitIntrinsicCall(I, IID); 5805 if (!RenameFn) 5806 return; 5807 } 5808 } 5809 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5810 RenameFn = visitIntrinsicCall(I, IID); 5811 if (!RenameFn) 5812 return; 5813 } 5814 } 5815 5816 // Check for well-known libc/libm calls. If the function is internal, it 5817 // can't be a library call. 5818 LibFunc::Func Func; 5819 if (!F->hasLocalLinkage() && F->hasName() && 5820 LibInfo->getLibFunc(F->getName(), Func) && 5821 LibInfo->hasOptimizedCodeGen(Func)) { 5822 switch (Func) { 5823 default: break; 5824 case LibFunc::copysign: 5825 case LibFunc::copysignf: 5826 case LibFunc::copysignl: 5827 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5828 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5829 I.getType() == I.getArgOperand(0)->getType() && 5830 I.getType() == I.getArgOperand(1)->getType() && 5831 I.onlyReadsMemory()) { 5832 SDValue LHS = getValue(I.getArgOperand(0)); 5833 SDValue RHS = getValue(I.getArgOperand(1)); 5834 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5835 LHS.getValueType(), LHS, RHS)); 5836 return; 5837 } 5838 break; 5839 case LibFunc::fabs: 5840 case LibFunc::fabsf: 5841 case LibFunc::fabsl: 5842 if (visitUnaryFloatCall(I, ISD::FABS)) 5843 return; 5844 break; 5845 case LibFunc::fmin: 5846 case LibFunc::fminf: 5847 case LibFunc::fminl: 5848 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5849 return; 5850 break; 5851 case LibFunc::fmax: 5852 case LibFunc::fmaxf: 5853 case LibFunc::fmaxl: 5854 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5855 return; 5856 break; 5857 case LibFunc::sin: 5858 case LibFunc::sinf: 5859 case LibFunc::sinl: 5860 if (visitUnaryFloatCall(I, ISD::FSIN)) 5861 return; 5862 break; 5863 case LibFunc::cos: 5864 case LibFunc::cosf: 5865 case LibFunc::cosl: 5866 if (visitUnaryFloatCall(I, ISD::FCOS)) 5867 return; 5868 break; 5869 case LibFunc::sqrt: 5870 case LibFunc::sqrtf: 5871 case LibFunc::sqrtl: 5872 case LibFunc::sqrt_finite: 5873 case LibFunc::sqrtf_finite: 5874 case LibFunc::sqrtl_finite: 5875 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5876 return; 5877 break; 5878 case LibFunc::floor: 5879 case LibFunc::floorf: 5880 case LibFunc::floorl: 5881 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5882 return; 5883 break; 5884 case LibFunc::nearbyint: 5885 case LibFunc::nearbyintf: 5886 case LibFunc::nearbyintl: 5887 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5888 return; 5889 break; 5890 case LibFunc::ceil: 5891 case LibFunc::ceilf: 5892 case LibFunc::ceill: 5893 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5894 return; 5895 break; 5896 case LibFunc::rint: 5897 case LibFunc::rintf: 5898 case LibFunc::rintl: 5899 if (visitUnaryFloatCall(I, ISD::FRINT)) 5900 return; 5901 break; 5902 case LibFunc::round: 5903 case LibFunc::roundf: 5904 case LibFunc::roundl: 5905 if (visitUnaryFloatCall(I, ISD::FROUND)) 5906 return; 5907 break; 5908 case LibFunc::trunc: 5909 case LibFunc::truncf: 5910 case LibFunc::truncl: 5911 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5912 return; 5913 break; 5914 case LibFunc::log2: 5915 case LibFunc::log2f: 5916 case LibFunc::log2l: 5917 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5918 return; 5919 break; 5920 case LibFunc::exp2: 5921 case LibFunc::exp2f: 5922 case LibFunc::exp2l: 5923 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5924 return; 5925 break; 5926 case LibFunc::memcmp: 5927 if (visitMemCmpCall(I)) 5928 return; 5929 break; 5930 case LibFunc::memchr: 5931 if (visitMemChrCall(I)) 5932 return; 5933 break; 5934 case LibFunc::strcpy: 5935 if (visitStrCpyCall(I, false)) 5936 return; 5937 break; 5938 case LibFunc::stpcpy: 5939 if (visitStrCpyCall(I, true)) 5940 return; 5941 break; 5942 case LibFunc::strcmp: 5943 if (visitStrCmpCall(I)) 5944 return; 5945 break; 5946 case LibFunc::strlen: 5947 if (visitStrLenCall(I)) 5948 return; 5949 break; 5950 case LibFunc::strnlen: 5951 if (visitStrNLenCall(I)) 5952 return; 5953 break; 5954 } 5955 } 5956 } 5957 5958 SDValue Callee; 5959 if (!RenameFn) 5960 Callee = getValue(I.getCalledValue()); 5961 else 5962 Callee = DAG.getExternalSymbol( 5963 RenameFn, 5964 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5965 5966 // Check if we can potentially perform a tail call. More detailed checking is 5967 // be done within LowerCallTo, after more information about the call is known. 5968 LowerCallTo(&I, Callee, I.isTailCall()); 5969 } 5970 5971 namespace { 5972 5973 /// AsmOperandInfo - This contains information for each constraint that we are 5974 /// lowering. 5975 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5976 public: 5977 /// CallOperand - If this is the result output operand or a clobber 5978 /// this is null, otherwise it is the incoming operand to the CallInst. 5979 /// This gets modified as the asm is processed. 5980 SDValue CallOperand; 5981 5982 /// AssignedRegs - If this is a register or register class operand, this 5983 /// contains the set of register corresponding to the operand. 5984 RegsForValue AssignedRegs; 5985 5986 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5987 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5988 } 5989 5990 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5991 /// corresponds to. If there is no Value* for this operand, it returns 5992 /// MVT::Other. 5993 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5994 const DataLayout &DL) const { 5995 if (!CallOperandVal) return MVT::Other; 5996 5997 if (isa<BasicBlock>(CallOperandVal)) 5998 return TLI.getPointerTy(DL); 5999 6000 llvm::Type *OpTy = CallOperandVal->getType(); 6001 6002 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6003 // If this is an indirect operand, the operand is a pointer to the 6004 // accessed type. 6005 if (isIndirect) { 6006 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6007 if (!PtrTy) 6008 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6009 OpTy = PtrTy->getElementType(); 6010 } 6011 6012 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6013 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6014 if (STy->getNumElements() == 1) 6015 OpTy = STy->getElementType(0); 6016 6017 // If OpTy is not a single value, it may be a struct/union that we 6018 // can tile with integers. 6019 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6020 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6021 switch (BitSize) { 6022 default: break; 6023 case 1: 6024 case 8: 6025 case 16: 6026 case 32: 6027 case 64: 6028 case 128: 6029 OpTy = IntegerType::get(Context, BitSize); 6030 break; 6031 } 6032 } 6033 6034 return TLI.getValueType(DL, OpTy, true); 6035 } 6036 }; 6037 6038 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6039 6040 } // end anonymous namespace 6041 6042 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6043 /// specified operand. We prefer to assign virtual registers, to allow the 6044 /// register allocator to handle the assignment process. However, if the asm 6045 /// uses features that we can't model on machineinstrs, we have SDISel do the 6046 /// allocation. This produces generally horrible, but correct, code. 6047 /// 6048 /// OpInfo describes the operand. 6049 /// 6050 static void GetRegistersForValue(SelectionDAG &DAG, 6051 const TargetLowering &TLI, 6052 SDLoc DL, 6053 SDISelAsmOperandInfo &OpInfo) { 6054 LLVMContext &Context = *DAG.getContext(); 6055 6056 MachineFunction &MF = DAG.getMachineFunction(); 6057 SmallVector<unsigned, 4> Regs; 6058 6059 // If this is a constraint for a single physreg, or a constraint for a 6060 // register class, find it. 6061 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6062 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6063 OpInfo.ConstraintCode, 6064 OpInfo.ConstraintVT); 6065 6066 unsigned NumRegs = 1; 6067 if (OpInfo.ConstraintVT != MVT::Other) { 6068 // If this is a FP input in an integer register (or visa versa) insert a bit 6069 // cast of the input value. More generally, handle any case where the input 6070 // value disagrees with the register class we plan to stick this in. 6071 if (OpInfo.Type == InlineAsm::isInput && 6072 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6073 // Try to convert to the first EVT that the reg class contains. If the 6074 // types are identical size, use a bitcast to convert (e.g. two differing 6075 // vector types). 6076 MVT RegVT = *PhysReg.second->vt_begin(); 6077 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6078 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6079 RegVT, OpInfo.CallOperand); 6080 OpInfo.ConstraintVT = RegVT; 6081 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6082 // If the input is a FP value and we want it in FP registers, do a 6083 // bitcast to the corresponding integer type. This turns an f64 value 6084 // into i64, which can be passed with two i32 values on a 32-bit 6085 // machine. 6086 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6087 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6088 RegVT, OpInfo.CallOperand); 6089 OpInfo.ConstraintVT = RegVT; 6090 } 6091 } 6092 6093 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6094 } 6095 6096 MVT RegVT; 6097 EVT ValueVT = OpInfo.ConstraintVT; 6098 6099 // If this is a constraint for a specific physical register, like {r17}, 6100 // assign it now. 6101 if (unsigned AssignedReg = PhysReg.first) { 6102 const TargetRegisterClass *RC = PhysReg.second; 6103 if (OpInfo.ConstraintVT == MVT::Other) 6104 ValueVT = *RC->vt_begin(); 6105 6106 // Get the actual register value type. This is important, because the user 6107 // may have asked for (e.g.) the AX register in i32 type. We need to 6108 // remember that AX is actually i16 to get the right extension. 6109 RegVT = *RC->vt_begin(); 6110 6111 // This is a explicit reference to a physical register. 6112 Regs.push_back(AssignedReg); 6113 6114 // If this is an expanded reference, add the rest of the regs to Regs. 6115 if (NumRegs != 1) { 6116 TargetRegisterClass::iterator I = RC->begin(); 6117 for (; *I != AssignedReg; ++I) 6118 assert(I != RC->end() && "Didn't find reg!"); 6119 6120 // Already added the first reg. 6121 --NumRegs; ++I; 6122 for (; NumRegs; --NumRegs, ++I) { 6123 assert(I != RC->end() && "Ran out of registers to allocate!"); 6124 Regs.push_back(*I); 6125 } 6126 } 6127 6128 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6129 return; 6130 } 6131 6132 // Otherwise, if this was a reference to an LLVM register class, create vregs 6133 // for this reference. 6134 if (const TargetRegisterClass *RC = PhysReg.second) { 6135 RegVT = *RC->vt_begin(); 6136 if (OpInfo.ConstraintVT == MVT::Other) 6137 ValueVT = RegVT; 6138 6139 // Create the appropriate number of virtual registers. 6140 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6141 for (; NumRegs; --NumRegs) 6142 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6143 6144 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6145 return; 6146 } 6147 6148 // Otherwise, we couldn't allocate enough registers for this. 6149 } 6150 6151 /// visitInlineAsm - Handle a call to an InlineAsm object. 6152 /// 6153 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6154 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6155 6156 /// ConstraintOperands - Information about all of the constraints. 6157 SDISelAsmOperandInfoVector ConstraintOperands; 6158 6159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6160 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6161 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6162 6163 bool hasMemory = false; 6164 6165 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6166 unsigned ResNo = 0; // ResNo - The result number of the next output. 6167 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6168 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6169 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6170 6171 MVT OpVT = MVT::Other; 6172 6173 // Compute the value type for each operand. 6174 switch (OpInfo.Type) { 6175 case InlineAsm::isOutput: 6176 // Indirect outputs just consume an argument. 6177 if (OpInfo.isIndirect) { 6178 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6179 break; 6180 } 6181 6182 // The return value of the call is this value. As such, there is no 6183 // corresponding argument. 6184 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6185 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6186 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6187 STy->getElementType(ResNo)); 6188 } else { 6189 assert(ResNo == 0 && "Asm only has one result!"); 6190 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6191 } 6192 ++ResNo; 6193 break; 6194 case InlineAsm::isInput: 6195 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6196 break; 6197 case InlineAsm::isClobber: 6198 // Nothing to do. 6199 break; 6200 } 6201 6202 // If this is an input or an indirect output, process the call argument. 6203 // BasicBlocks are labels, currently appearing only in asm's. 6204 if (OpInfo.CallOperandVal) { 6205 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6206 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6207 } else { 6208 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6209 } 6210 6211 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6212 DAG.getDataLayout()).getSimpleVT(); 6213 } 6214 6215 OpInfo.ConstraintVT = OpVT; 6216 6217 // Indirect operand accesses access memory. 6218 if (OpInfo.isIndirect) 6219 hasMemory = true; 6220 else { 6221 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6222 TargetLowering::ConstraintType 6223 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6224 if (CType == TargetLowering::C_Memory) { 6225 hasMemory = true; 6226 break; 6227 } 6228 } 6229 } 6230 } 6231 6232 SDValue Chain, Flag; 6233 6234 // We won't need to flush pending loads if this asm doesn't touch 6235 // memory and is nonvolatile. 6236 if (hasMemory || IA->hasSideEffects()) 6237 Chain = getRoot(); 6238 else 6239 Chain = DAG.getRoot(); 6240 6241 // Second pass over the constraints: compute which constraint option to use 6242 // and assign registers to constraints that want a specific physreg. 6243 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6244 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6245 6246 // If this is an output operand with a matching input operand, look up the 6247 // matching input. If their types mismatch, e.g. one is an integer, the 6248 // other is floating point, or their sizes are different, flag it as an 6249 // error. 6250 if (OpInfo.hasMatchingInput()) { 6251 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6252 6253 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6254 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6255 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6256 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6257 OpInfo.ConstraintVT); 6258 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6259 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6260 Input.ConstraintVT); 6261 if ((OpInfo.ConstraintVT.isInteger() != 6262 Input.ConstraintVT.isInteger()) || 6263 (MatchRC.second != InputRC.second)) { 6264 report_fatal_error("Unsupported asm: input constraint" 6265 " with a matching output constraint of" 6266 " incompatible type!"); 6267 } 6268 Input.ConstraintVT = OpInfo.ConstraintVT; 6269 } 6270 } 6271 6272 // Compute the constraint code and ConstraintType to use. 6273 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6274 6275 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6276 OpInfo.Type == InlineAsm::isClobber) 6277 continue; 6278 6279 // If this is a memory input, and if the operand is not indirect, do what we 6280 // need to to provide an address for the memory input. 6281 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6282 !OpInfo.isIndirect) { 6283 assert((OpInfo.isMultipleAlternative || 6284 (OpInfo.Type == InlineAsm::isInput)) && 6285 "Can only indirectify direct input operands!"); 6286 6287 // Memory operands really want the address of the value. If we don't have 6288 // an indirect input, put it in the constpool if we can, otherwise spill 6289 // it to a stack slot. 6290 // TODO: This isn't quite right. We need to handle these according to 6291 // the addressing mode that the constraint wants. Also, this may take 6292 // an additional register for the computation and we don't want that 6293 // either. 6294 6295 // If the operand is a float, integer, or vector constant, spill to a 6296 // constant pool entry to get its address. 6297 const Value *OpVal = OpInfo.CallOperandVal; 6298 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6299 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6300 OpInfo.CallOperand = DAG.getConstantPool( 6301 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6302 } else { 6303 // Otherwise, create a stack slot and emit a store to it before the 6304 // asm. 6305 Type *Ty = OpVal->getType(); 6306 auto &DL = DAG.getDataLayout(); 6307 uint64_t TySize = DL.getTypeAllocSize(Ty); 6308 unsigned Align = DL.getPrefTypeAlignment(Ty); 6309 MachineFunction &MF = DAG.getMachineFunction(); 6310 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6311 SDValue StackSlot = 6312 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6313 Chain = DAG.getStore( 6314 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6315 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6316 false, false, 0); 6317 OpInfo.CallOperand = StackSlot; 6318 } 6319 6320 // There is no longer a Value* corresponding to this operand. 6321 OpInfo.CallOperandVal = nullptr; 6322 6323 // It is now an indirect operand. 6324 OpInfo.isIndirect = true; 6325 } 6326 6327 // If this constraint is for a specific register, allocate it before 6328 // anything else. 6329 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6330 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6331 } 6332 6333 // Second pass - Loop over all of the operands, assigning virtual or physregs 6334 // to register class operands. 6335 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6336 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6337 6338 // C_Register operands have already been allocated, Other/Memory don't need 6339 // to be. 6340 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6341 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6342 } 6343 6344 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6345 std::vector<SDValue> AsmNodeOperands; 6346 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6347 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6348 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6349 6350 // If we have a !srcloc metadata node associated with it, we want to attach 6351 // this to the ultimately generated inline asm machineinstr. To do this, we 6352 // pass in the third operand as this (potentially null) inline asm MDNode. 6353 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6354 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6355 6356 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6357 // bits as operand 3. 6358 unsigned ExtraInfo = 0; 6359 if (IA->hasSideEffects()) 6360 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6361 if (IA->isAlignStack()) 6362 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6363 // Set the asm dialect. 6364 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6365 6366 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6367 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6368 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6369 6370 // Compute the constraint code and ConstraintType to use. 6371 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6372 6373 // Ideally, we would only check against memory constraints. However, the 6374 // meaning of an other constraint can be target-specific and we can't easily 6375 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6376 // for other constriants as well. 6377 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6378 OpInfo.ConstraintType == TargetLowering::C_Other) { 6379 if (OpInfo.Type == InlineAsm::isInput) 6380 ExtraInfo |= InlineAsm::Extra_MayLoad; 6381 else if (OpInfo.Type == InlineAsm::isOutput) 6382 ExtraInfo |= InlineAsm::Extra_MayStore; 6383 else if (OpInfo.Type == InlineAsm::isClobber) 6384 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6385 } 6386 } 6387 6388 AsmNodeOperands.push_back(DAG.getTargetConstant( 6389 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6390 6391 // Loop over all of the inputs, copying the operand values into the 6392 // appropriate registers and processing the output regs. 6393 RegsForValue RetValRegs; 6394 6395 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6396 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6397 6398 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6399 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6400 6401 switch (OpInfo.Type) { 6402 case InlineAsm::isOutput: { 6403 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6404 OpInfo.ConstraintType != TargetLowering::C_Register) { 6405 // Memory output, or 'other' output (e.g. 'X' constraint). 6406 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6407 6408 unsigned ConstraintID = 6409 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6410 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6411 "Failed to convert memory constraint code to constraint id."); 6412 6413 // Add information to the INLINEASM node to know about this output. 6414 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6415 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6416 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6417 MVT::i32)); 6418 AsmNodeOperands.push_back(OpInfo.CallOperand); 6419 break; 6420 } 6421 6422 // Otherwise, this is a register or register class output. 6423 6424 // Copy the output from the appropriate register. Find a register that 6425 // we can use. 6426 if (OpInfo.AssignedRegs.Regs.empty()) { 6427 LLVMContext &Ctx = *DAG.getContext(); 6428 Ctx.emitError(CS.getInstruction(), 6429 "couldn't allocate output register for constraint '" + 6430 Twine(OpInfo.ConstraintCode) + "'"); 6431 return; 6432 } 6433 6434 // If this is an indirect operand, store through the pointer after the 6435 // asm. 6436 if (OpInfo.isIndirect) { 6437 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6438 OpInfo.CallOperandVal)); 6439 } else { 6440 // This is the result value of the call. 6441 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6442 // Concatenate this output onto the outputs list. 6443 RetValRegs.append(OpInfo.AssignedRegs); 6444 } 6445 6446 // Add information to the INLINEASM node to know that this register is 6447 // set. 6448 OpInfo.AssignedRegs 6449 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6450 ? InlineAsm::Kind_RegDefEarlyClobber 6451 : InlineAsm::Kind_RegDef, 6452 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6453 break; 6454 } 6455 case InlineAsm::isInput: { 6456 SDValue InOperandVal = OpInfo.CallOperand; 6457 6458 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6459 // If this is required to match an output register we have already set, 6460 // just use its register. 6461 unsigned OperandNo = OpInfo.getMatchedOperand(); 6462 6463 // Scan until we find the definition we already emitted of this operand. 6464 // When we find it, create a RegsForValue operand. 6465 unsigned CurOp = InlineAsm::Op_FirstOperand; 6466 for (; OperandNo; --OperandNo) { 6467 // Advance to the next operand. 6468 unsigned OpFlag = 6469 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6470 assert((InlineAsm::isRegDefKind(OpFlag) || 6471 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6472 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6473 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6474 } 6475 6476 unsigned OpFlag = 6477 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6478 if (InlineAsm::isRegDefKind(OpFlag) || 6479 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6480 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6481 if (OpInfo.isIndirect) { 6482 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6483 LLVMContext &Ctx = *DAG.getContext(); 6484 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6485 " don't know how to handle tied " 6486 "indirect register inputs"); 6487 return; 6488 } 6489 6490 RegsForValue MatchedRegs; 6491 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6492 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6493 MatchedRegs.RegVTs.push_back(RegVT); 6494 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6495 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6496 i != e; ++i) { 6497 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6498 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6499 else { 6500 LLVMContext &Ctx = *DAG.getContext(); 6501 Ctx.emitError(CS.getInstruction(), 6502 "inline asm error: This value" 6503 " type register class is not natively supported!"); 6504 return; 6505 } 6506 } 6507 SDLoc dl = getCurSDLoc(); 6508 // Use the produced MatchedRegs object to 6509 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6510 Chain, &Flag, CS.getInstruction()); 6511 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6512 true, OpInfo.getMatchedOperand(), dl, 6513 DAG, AsmNodeOperands); 6514 break; 6515 } 6516 6517 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6518 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6519 "Unexpected number of operands"); 6520 // Add information to the INLINEASM node to know about this input. 6521 // See InlineAsm.h isUseOperandTiedToDef. 6522 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6523 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6524 OpInfo.getMatchedOperand()); 6525 AsmNodeOperands.push_back(DAG.getTargetConstant( 6526 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6527 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6528 break; 6529 } 6530 6531 // Treat indirect 'X' constraint as memory. 6532 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6533 OpInfo.isIndirect) 6534 OpInfo.ConstraintType = TargetLowering::C_Memory; 6535 6536 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6537 std::vector<SDValue> Ops; 6538 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6539 Ops, DAG); 6540 if (Ops.empty()) { 6541 LLVMContext &Ctx = *DAG.getContext(); 6542 Ctx.emitError(CS.getInstruction(), 6543 "invalid operand for inline asm constraint '" + 6544 Twine(OpInfo.ConstraintCode) + "'"); 6545 return; 6546 } 6547 6548 // Add information to the INLINEASM node to know about this input. 6549 unsigned ResOpType = 6550 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6551 AsmNodeOperands.push_back(DAG.getTargetConstant( 6552 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6553 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6554 break; 6555 } 6556 6557 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6558 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6559 assert(InOperandVal.getValueType() == 6560 TLI.getPointerTy(DAG.getDataLayout()) && 6561 "Memory operands expect pointer values"); 6562 6563 unsigned ConstraintID = 6564 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6565 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6566 "Failed to convert memory constraint code to constraint id."); 6567 6568 // Add information to the INLINEASM node to know about this input. 6569 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6570 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6571 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6572 getCurSDLoc(), 6573 MVT::i32)); 6574 AsmNodeOperands.push_back(InOperandVal); 6575 break; 6576 } 6577 6578 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6579 OpInfo.ConstraintType == TargetLowering::C_Register) && 6580 "Unknown constraint type!"); 6581 6582 // TODO: Support this. 6583 if (OpInfo.isIndirect) { 6584 LLVMContext &Ctx = *DAG.getContext(); 6585 Ctx.emitError(CS.getInstruction(), 6586 "Don't know how to handle indirect register inputs yet " 6587 "for constraint '" + 6588 Twine(OpInfo.ConstraintCode) + "'"); 6589 return; 6590 } 6591 6592 // Copy the input into the appropriate registers. 6593 if (OpInfo.AssignedRegs.Regs.empty()) { 6594 LLVMContext &Ctx = *DAG.getContext(); 6595 Ctx.emitError(CS.getInstruction(), 6596 "couldn't allocate input reg for constraint '" + 6597 Twine(OpInfo.ConstraintCode) + "'"); 6598 return; 6599 } 6600 6601 SDLoc dl = getCurSDLoc(); 6602 6603 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6604 Chain, &Flag, CS.getInstruction()); 6605 6606 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6607 dl, DAG, AsmNodeOperands); 6608 break; 6609 } 6610 case InlineAsm::isClobber: { 6611 // Add the clobbered value to the operand list, so that the register 6612 // allocator is aware that the physreg got clobbered. 6613 if (!OpInfo.AssignedRegs.Regs.empty()) 6614 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6615 false, 0, getCurSDLoc(), DAG, 6616 AsmNodeOperands); 6617 break; 6618 } 6619 } 6620 } 6621 6622 // Finish up input operands. Set the input chain and add the flag last. 6623 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6624 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6625 6626 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6627 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6628 Flag = Chain.getValue(1); 6629 6630 // If this asm returns a register value, copy the result from that register 6631 // and set it as the value of the call. 6632 if (!RetValRegs.Regs.empty()) { 6633 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6634 Chain, &Flag, CS.getInstruction()); 6635 6636 // FIXME: Why don't we do this for inline asms with MRVs? 6637 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6638 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6639 6640 // If any of the results of the inline asm is a vector, it may have the 6641 // wrong width/num elts. This can happen for register classes that can 6642 // contain multiple different value types. The preg or vreg allocated may 6643 // not have the same VT as was expected. Convert it to the right type 6644 // with bit_convert. 6645 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6646 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6647 ResultType, Val); 6648 6649 } else if (ResultType != Val.getValueType() && 6650 ResultType.isInteger() && Val.getValueType().isInteger()) { 6651 // If a result value was tied to an input value, the computed result may 6652 // have a wider width than the expected result. Extract the relevant 6653 // portion. 6654 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6655 } 6656 6657 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6658 } 6659 6660 setValue(CS.getInstruction(), Val); 6661 // Don't need to use this as a chain in this case. 6662 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6663 return; 6664 } 6665 6666 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6667 6668 // Process indirect outputs, first output all of the flagged copies out of 6669 // physregs. 6670 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6671 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6672 const Value *Ptr = IndirectStoresToEmit[i].second; 6673 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6674 Chain, &Flag, IA); 6675 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6676 } 6677 6678 // Emit the non-flagged stores from the physregs. 6679 SmallVector<SDValue, 8> OutChains; 6680 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6681 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6682 StoresToEmit[i].first, 6683 getValue(StoresToEmit[i].second), 6684 MachinePointerInfo(StoresToEmit[i].second), 6685 false, false, 0); 6686 OutChains.push_back(Val); 6687 } 6688 6689 if (!OutChains.empty()) 6690 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6691 6692 DAG.setRoot(Chain); 6693 } 6694 6695 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6696 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6697 MVT::Other, getRoot(), 6698 getValue(I.getArgOperand(0)), 6699 DAG.getSrcValue(I.getArgOperand(0)))); 6700 } 6701 6702 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6704 const DataLayout &DL = DAG.getDataLayout(); 6705 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6706 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6707 DAG.getSrcValue(I.getOperand(0)), 6708 DL.getABITypeAlignment(I.getType())); 6709 setValue(&I, V); 6710 DAG.setRoot(V.getValue(1)); 6711 } 6712 6713 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6714 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6715 MVT::Other, getRoot(), 6716 getValue(I.getArgOperand(0)), 6717 DAG.getSrcValue(I.getArgOperand(0)))); 6718 } 6719 6720 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6721 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6722 MVT::Other, getRoot(), 6723 getValue(I.getArgOperand(0)), 6724 getValue(I.getArgOperand(1)), 6725 DAG.getSrcValue(I.getArgOperand(0)), 6726 DAG.getSrcValue(I.getArgOperand(1)))); 6727 } 6728 6729 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 6730 const Instruction &I, 6731 SDValue Op) { 6732 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 6733 if (!Range) 6734 return Op; 6735 6736 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 6737 if (!Lo->isNullValue()) 6738 return Op; 6739 6740 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 6741 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 6742 6743 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 6744 6745 SDLoc SL = getCurSDLoc(); 6746 6747 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 6748 Op, DAG.getValueType(SmallVT)); 6749 unsigned NumVals = Op.getNode()->getNumValues(); 6750 if (NumVals == 1) 6751 return ZExt; 6752 6753 SmallVector<SDValue, 4> Ops; 6754 6755 Ops.push_back(ZExt); 6756 for (unsigned I = 1; I != NumVals; ++I) 6757 Ops.push_back(Op.getValue(I)); 6758 6759 return DAG.getMergeValues(Ops, SL); 6760 } 6761 6762 /// \brief Lower an argument list according to the target calling convention. 6763 /// 6764 /// \return A tuple of <return-value, token-chain> 6765 /// 6766 /// This is a helper for lowering intrinsics that follow a target calling 6767 /// convention or require stack pointer adjustment. Only a subset of the 6768 /// intrinsic's operands need to participate in the calling convention. 6769 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6770 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6771 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6772 TargetLowering::ArgListTy Args; 6773 Args.reserve(NumArgs); 6774 6775 // Populate the argument list. 6776 // Attributes for args start at offset 1, after the return attribute. 6777 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6778 ArgI != ArgE; ++ArgI) { 6779 const Value *V = CS->getOperand(ArgI); 6780 6781 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6782 6783 TargetLowering::ArgListEntry Entry; 6784 Entry.Node = getValue(V); 6785 Entry.Ty = V->getType(); 6786 Entry.setAttributes(&CS, AttrI); 6787 Args.push_back(Entry); 6788 } 6789 6790 TargetLowering::CallLoweringInfo CLI(DAG); 6791 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6792 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6793 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6794 6795 return lowerInvokable(CLI, EHPadBB); 6796 } 6797 6798 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6799 /// or patchpoint target node's operand list. 6800 /// 6801 /// Constants are converted to TargetConstants purely as an optimization to 6802 /// avoid constant materialization and register allocation. 6803 /// 6804 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6805 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6806 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6807 /// address materialization and register allocation, but may also be required 6808 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6809 /// alloca in the entry block, then the runtime may assume that the alloca's 6810 /// StackMap location can be read immediately after compilation and that the 6811 /// location is valid at any point during execution (this is similar to the 6812 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6813 /// only available in a register, then the runtime would need to trap when 6814 /// execution reaches the StackMap in order to read the alloca's location. 6815 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6816 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6817 SelectionDAGBuilder &Builder) { 6818 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6819 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6820 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6821 Ops.push_back( 6822 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6823 Ops.push_back( 6824 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6825 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6826 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6827 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6828 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6829 } else 6830 Ops.push_back(OpVal); 6831 } 6832 } 6833 6834 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6835 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6836 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6837 // [live variables...]) 6838 6839 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6840 6841 SDValue Chain, InFlag, Callee, NullPtr; 6842 SmallVector<SDValue, 32> Ops; 6843 6844 SDLoc DL = getCurSDLoc(); 6845 Callee = getValue(CI.getCalledValue()); 6846 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6847 6848 // The stackmap intrinsic only records the live variables (the arguemnts 6849 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6850 // intrinsic, this won't be lowered to a function call. This means we don't 6851 // have to worry about calling conventions and target specific lowering code. 6852 // Instead we perform the call lowering right here. 6853 // 6854 // chain, flag = CALLSEQ_START(chain, 0) 6855 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6856 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6857 // 6858 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6859 InFlag = Chain.getValue(1); 6860 6861 // Add the <id> and <numBytes> constants. 6862 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6863 Ops.push_back(DAG.getTargetConstant( 6864 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6865 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6866 Ops.push_back(DAG.getTargetConstant( 6867 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6868 MVT::i32)); 6869 6870 // Push live variables for the stack map. 6871 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6872 6873 // We are not pushing any register mask info here on the operands list, 6874 // because the stackmap doesn't clobber anything. 6875 6876 // Push the chain and the glue flag. 6877 Ops.push_back(Chain); 6878 Ops.push_back(InFlag); 6879 6880 // Create the STACKMAP node. 6881 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6882 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6883 Chain = SDValue(SM, 0); 6884 InFlag = Chain.getValue(1); 6885 6886 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6887 6888 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6889 6890 // Set the root to the target-lowered call chain. 6891 DAG.setRoot(Chain); 6892 6893 // Inform the Frame Information that we have a stackmap in this function. 6894 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6895 } 6896 6897 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6898 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6899 const BasicBlock *EHPadBB) { 6900 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6901 // i32 <numBytes>, 6902 // i8* <target>, 6903 // i32 <numArgs>, 6904 // [Args...], 6905 // [live variables...]) 6906 6907 CallingConv::ID CC = CS.getCallingConv(); 6908 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6909 bool HasDef = !CS->getType()->isVoidTy(); 6910 SDLoc dl = getCurSDLoc(); 6911 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6912 6913 // Handle immediate and symbolic callees. 6914 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6915 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6916 /*isTarget=*/true); 6917 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6918 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6919 SDLoc(SymbolicCallee), 6920 SymbolicCallee->getValueType(0)); 6921 6922 // Get the real number of arguments participating in the call <numArgs> 6923 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6924 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6925 6926 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6927 // Intrinsics include all meta-operands up to but not including CC. 6928 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6929 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6930 "Not enough arguments provided to the patchpoint intrinsic"); 6931 6932 // For AnyRegCC the arguments are lowered later on manually. 6933 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6934 Type *ReturnTy = 6935 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6936 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6937 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6938 6939 SDNode *CallEnd = Result.second.getNode(); 6940 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6941 CallEnd = CallEnd->getOperand(0).getNode(); 6942 6943 /// Get a call instruction from the call sequence chain. 6944 /// Tail calls are not allowed. 6945 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6946 "Expected a callseq node."); 6947 SDNode *Call = CallEnd->getOperand(0).getNode(); 6948 bool HasGlue = Call->getGluedNode(); 6949 6950 // Replace the target specific call node with the patchable intrinsic. 6951 SmallVector<SDValue, 8> Ops; 6952 6953 // Add the <id> and <numBytes> constants. 6954 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6955 Ops.push_back(DAG.getTargetConstant( 6956 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6957 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6958 Ops.push_back(DAG.getTargetConstant( 6959 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6960 MVT::i32)); 6961 6962 // Add the callee. 6963 Ops.push_back(Callee); 6964 6965 // Adjust <numArgs> to account for any arguments that have been passed on the 6966 // stack instead. 6967 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6968 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6969 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6970 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6971 6972 // Add the calling convention 6973 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6974 6975 // Add the arguments we omitted previously. The register allocator should 6976 // place these in any free register. 6977 if (IsAnyRegCC) 6978 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6979 Ops.push_back(getValue(CS.getArgument(i))); 6980 6981 // Push the arguments from the call instruction up to the register mask. 6982 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6983 Ops.append(Call->op_begin() + 2, e); 6984 6985 // Push live variables for the stack map. 6986 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6987 6988 // Push the register mask info. 6989 if (HasGlue) 6990 Ops.push_back(*(Call->op_end()-2)); 6991 else 6992 Ops.push_back(*(Call->op_end()-1)); 6993 6994 // Push the chain (this is originally the first operand of the call, but 6995 // becomes now the last or second to last operand). 6996 Ops.push_back(*(Call->op_begin())); 6997 6998 // Push the glue flag (last operand). 6999 if (HasGlue) 7000 Ops.push_back(*(Call->op_end()-1)); 7001 7002 SDVTList NodeTys; 7003 if (IsAnyRegCC && HasDef) { 7004 // Create the return types based on the intrinsic definition 7005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7006 SmallVector<EVT, 3> ValueVTs; 7007 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7008 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7009 7010 // There is always a chain and a glue type at the end 7011 ValueVTs.push_back(MVT::Other); 7012 ValueVTs.push_back(MVT::Glue); 7013 NodeTys = DAG.getVTList(ValueVTs); 7014 } else 7015 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7016 7017 // Replace the target specific call node with a PATCHPOINT node. 7018 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7019 dl, NodeTys, Ops); 7020 7021 // Update the NodeMap. 7022 if (HasDef) { 7023 if (IsAnyRegCC) 7024 setValue(CS.getInstruction(), SDValue(MN, 0)); 7025 else 7026 setValue(CS.getInstruction(), Result.first); 7027 } 7028 7029 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7030 // call sequence. Furthermore the location of the chain and glue can change 7031 // when the AnyReg calling convention is used and the intrinsic returns a 7032 // value. 7033 if (IsAnyRegCC && HasDef) { 7034 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7035 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7036 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7037 } else 7038 DAG.ReplaceAllUsesWith(Call, MN); 7039 DAG.DeleteNode(Call); 7040 7041 // Inform the Frame Information that we have a patchpoint in this function. 7042 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7043 } 7044 7045 /// Returns an AttributeSet representing the attributes applied to the return 7046 /// value of the given call. 7047 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7048 SmallVector<Attribute::AttrKind, 2> Attrs; 7049 if (CLI.RetSExt) 7050 Attrs.push_back(Attribute::SExt); 7051 if (CLI.RetZExt) 7052 Attrs.push_back(Attribute::ZExt); 7053 if (CLI.IsInReg) 7054 Attrs.push_back(Attribute::InReg); 7055 7056 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7057 Attrs); 7058 } 7059 7060 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7061 /// implementation, which just calls LowerCall. 7062 /// FIXME: When all targets are 7063 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7064 std::pair<SDValue, SDValue> 7065 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7066 // Handle the incoming return values from the call. 7067 CLI.Ins.clear(); 7068 Type *OrigRetTy = CLI.RetTy; 7069 SmallVector<EVT, 4> RetTys; 7070 SmallVector<uint64_t, 4> Offsets; 7071 auto &DL = CLI.DAG.getDataLayout(); 7072 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7073 7074 SmallVector<ISD::OutputArg, 4> Outs; 7075 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7076 7077 bool CanLowerReturn = 7078 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7079 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7080 7081 SDValue DemoteStackSlot; 7082 int DemoteStackIdx = -100; 7083 if (!CanLowerReturn) { 7084 // FIXME: equivalent assert? 7085 // assert(!CS.hasInAllocaArgument() && 7086 // "sret demotion is incompatible with inalloca"); 7087 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7088 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7089 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7090 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7091 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7092 7093 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7094 ArgListEntry Entry; 7095 Entry.Node = DemoteStackSlot; 7096 Entry.Ty = StackSlotPtrType; 7097 Entry.isSExt = false; 7098 Entry.isZExt = false; 7099 Entry.isInReg = false; 7100 Entry.isSRet = true; 7101 Entry.isNest = false; 7102 Entry.isByVal = false; 7103 Entry.isReturned = false; 7104 Entry.Alignment = Align; 7105 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7106 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7107 7108 // sret demotion isn't compatible with tail-calls, since the sret argument 7109 // points into the callers stack frame. 7110 CLI.IsTailCall = false; 7111 } else { 7112 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7113 EVT VT = RetTys[I]; 7114 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7115 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7116 for (unsigned i = 0; i != NumRegs; ++i) { 7117 ISD::InputArg MyFlags; 7118 MyFlags.VT = RegisterVT; 7119 MyFlags.ArgVT = VT; 7120 MyFlags.Used = CLI.IsReturnValueUsed; 7121 if (CLI.RetSExt) 7122 MyFlags.Flags.setSExt(); 7123 if (CLI.RetZExt) 7124 MyFlags.Flags.setZExt(); 7125 if (CLI.IsInReg) 7126 MyFlags.Flags.setInReg(); 7127 CLI.Ins.push_back(MyFlags); 7128 } 7129 } 7130 } 7131 7132 // Handle all of the outgoing arguments. 7133 CLI.Outs.clear(); 7134 CLI.OutVals.clear(); 7135 ArgListTy &Args = CLI.getArgs(); 7136 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7137 SmallVector<EVT, 4> ValueVTs; 7138 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7139 Type *FinalType = Args[i].Ty; 7140 if (Args[i].isByVal) 7141 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7142 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7143 FinalType, CLI.CallConv, CLI.IsVarArg); 7144 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7145 ++Value) { 7146 EVT VT = ValueVTs[Value]; 7147 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7148 SDValue Op = SDValue(Args[i].Node.getNode(), 7149 Args[i].Node.getResNo() + Value); 7150 ISD::ArgFlagsTy Flags; 7151 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7152 7153 if (Args[i].isZExt) 7154 Flags.setZExt(); 7155 if (Args[i].isSExt) 7156 Flags.setSExt(); 7157 if (Args[i].isInReg) 7158 Flags.setInReg(); 7159 if (Args[i].isSRet) 7160 Flags.setSRet(); 7161 if (Args[i].isByVal) 7162 Flags.setByVal(); 7163 if (Args[i].isInAlloca) { 7164 Flags.setInAlloca(); 7165 // Set the byval flag for CCAssignFn callbacks that don't know about 7166 // inalloca. This way we can know how many bytes we should've allocated 7167 // and how many bytes a callee cleanup function will pop. If we port 7168 // inalloca to more targets, we'll have to add custom inalloca handling 7169 // in the various CC lowering callbacks. 7170 Flags.setByVal(); 7171 } 7172 if (Args[i].isByVal || Args[i].isInAlloca) { 7173 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7174 Type *ElementTy = Ty->getElementType(); 7175 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7176 // For ByVal, alignment should come from FE. BE will guess if this 7177 // info is not there but there are cases it cannot get right. 7178 unsigned FrameAlign; 7179 if (Args[i].Alignment) 7180 FrameAlign = Args[i].Alignment; 7181 else 7182 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7183 Flags.setByValAlign(FrameAlign); 7184 } 7185 if (Args[i].isNest) 7186 Flags.setNest(); 7187 if (NeedsRegBlock) 7188 Flags.setInConsecutiveRegs(); 7189 Flags.setOrigAlign(OriginalAlignment); 7190 7191 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7192 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7193 SmallVector<SDValue, 4> Parts(NumParts); 7194 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7195 7196 if (Args[i].isSExt) 7197 ExtendKind = ISD::SIGN_EXTEND; 7198 else if (Args[i].isZExt) 7199 ExtendKind = ISD::ZERO_EXTEND; 7200 7201 // Conservatively only handle 'returned' on non-vectors for now 7202 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7203 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7204 "unexpected use of 'returned'"); 7205 // Before passing 'returned' to the target lowering code, ensure that 7206 // either the register MVT and the actual EVT are the same size or that 7207 // the return value and argument are extended in the same way; in these 7208 // cases it's safe to pass the argument register value unchanged as the 7209 // return register value (although it's at the target's option whether 7210 // to do so) 7211 // TODO: allow code generation to take advantage of partially preserved 7212 // registers rather than clobbering the entire register when the 7213 // parameter extension method is not compatible with the return 7214 // extension method 7215 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7216 (ExtendKind != ISD::ANY_EXTEND && 7217 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7218 Flags.setReturned(); 7219 } 7220 7221 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7222 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7223 7224 for (unsigned j = 0; j != NumParts; ++j) { 7225 // if it isn't first piece, alignment must be 1 7226 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7227 i < CLI.NumFixedArgs, 7228 i, j*Parts[j].getValueType().getStoreSize()); 7229 if (NumParts > 1 && j == 0) 7230 MyFlags.Flags.setSplit(); 7231 else if (j != 0) { 7232 MyFlags.Flags.setOrigAlign(1); 7233 if (j == NumParts - 1) 7234 MyFlags.Flags.setSplitEnd(); 7235 } 7236 7237 CLI.Outs.push_back(MyFlags); 7238 CLI.OutVals.push_back(Parts[j]); 7239 } 7240 7241 if (NeedsRegBlock && Value == NumValues - 1) 7242 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7243 } 7244 } 7245 7246 SmallVector<SDValue, 4> InVals; 7247 CLI.Chain = LowerCall(CLI, InVals); 7248 7249 // Verify that the target's LowerCall behaved as expected. 7250 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7251 "LowerCall didn't return a valid chain!"); 7252 assert((!CLI.IsTailCall || InVals.empty()) && 7253 "LowerCall emitted a return value for a tail call!"); 7254 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7255 "LowerCall didn't emit the correct number of values!"); 7256 7257 // For a tail call, the return value is merely live-out and there aren't 7258 // any nodes in the DAG representing it. Return a special value to 7259 // indicate that a tail call has been emitted and no more Instructions 7260 // should be processed in the current block. 7261 if (CLI.IsTailCall) { 7262 CLI.DAG.setRoot(CLI.Chain); 7263 return std::make_pair(SDValue(), SDValue()); 7264 } 7265 7266 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7267 assert(InVals[i].getNode() && 7268 "LowerCall emitted a null value!"); 7269 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7270 "LowerCall emitted a value with the wrong type!"); 7271 }); 7272 7273 SmallVector<SDValue, 4> ReturnValues; 7274 if (!CanLowerReturn) { 7275 // The instruction result is the result of loading from the 7276 // hidden sret parameter. 7277 SmallVector<EVT, 1> PVTs; 7278 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7279 7280 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7281 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7282 EVT PtrVT = PVTs[0]; 7283 7284 unsigned NumValues = RetTys.size(); 7285 ReturnValues.resize(NumValues); 7286 SmallVector<SDValue, 4> Chains(NumValues); 7287 7288 // An aggregate return value cannot wrap around the address space, so 7289 // offsets to its parts don't wrap either. 7290 SDNodeFlags Flags; 7291 Flags.setNoUnsignedWrap(true); 7292 7293 for (unsigned i = 0; i < NumValues; ++i) { 7294 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7295 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7296 PtrVT), &Flags); 7297 SDValue L = CLI.DAG.getLoad( 7298 RetTys[i], CLI.DL, CLI.Chain, Add, 7299 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7300 DemoteStackIdx, Offsets[i]), 7301 false, false, false, 1); 7302 ReturnValues[i] = L; 7303 Chains[i] = L.getValue(1); 7304 } 7305 7306 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7307 } else { 7308 // Collect the legal value parts into potentially illegal values 7309 // that correspond to the original function's return values. 7310 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7311 if (CLI.RetSExt) 7312 AssertOp = ISD::AssertSext; 7313 else if (CLI.RetZExt) 7314 AssertOp = ISD::AssertZext; 7315 unsigned CurReg = 0; 7316 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7317 EVT VT = RetTys[I]; 7318 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7319 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7320 7321 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7322 NumRegs, RegisterVT, VT, nullptr, 7323 AssertOp)); 7324 CurReg += NumRegs; 7325 } 7326 7327 // For a function returning void, there is no return value. We can't create 7328 // such a node, so we just return a null return value in that case. In 7329 // that case, nothing will actually look at the value. 7330 if (ReturnValues.empty()) 7331 return std::make_pair(SDValue(), CLI.Chain); 7332 } 7333 7334 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7335 CLI.DAG.getVTList(RetTys), ReturnValues); 7336 return std::make_pair(Res, CLI.Chain); 7337 } 7338 7339 void TargetLowering::LowerOperationWrapper(SDNode *N, 7340 SmallVectorImpl<SDValue> &Results, 7341 SelectionDAG &DAG) const { 7342 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7343 Results.push_back(Res); 7344 } 7345 7346 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7347 llvm_unreachable("LowerOperation not implemented for this target!"); 7348 } 7349 7350 void 7351 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7352 SDValue Op = getNonRegisterValue(V); 7353 assert((Op.getOpcode() != ISD::CopyFromReg || 7354 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7355 "Copy from a reg to the same reg!"); 7356 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7357 7358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7359 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7360 V->getType()); 7361 SDValue Chain = DAG.getEntryNode(); 7362 7363 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7364 FuncInfo.PreferredExtendType.end()) 7365 ? ISD::ANY_EXTEND 7366 : FuncInfo.PreferredExtendType[V]; 7367 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7368 PendingExports.push_back(Chain); 7369 } 7370 7371 #include "llvm/CodeGen/SelectionDAGISel.h" 7372 7373 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7374 /// entry block, return true. This includes arguments used by switches, since 7375 /// the switch may expand into multiple basic blocks. 7376 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7377 // With FastISel active, we may be splitting blocks, so force creation 7378 // of virtual registers for all non-dead arguments. 7379 if (FastISel) 7380 return A->use_empty(); 7381 7382 const BasicBlock &Entry = A->getParent()->front(); 7383 for (const User *U : A->users()) 7384 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7385 return false; // Use not in entry block. 7386 7387 return true; 7388 } 7389 7390 void SelectionDAGISel::LowerArguments(const Function &F) { 7391 SelectionDAG &DAG = SDB->DAG; 7392 SDLoc dl = SDB->getCurSDLoc(); 7393 const DataLayout &DL = DAG.getDataLayout(); 7394 SmallVector<ISD::InputArg, 16> Ins; 7395 7396 if (!FuncInfo->CanLowerReturn) { 7397 // Put in an sret pointer parameter before all the other parameters. 7398 SmallVector<EVT, 1> ValueVTs; 7399 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7400 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7401 7402 // NOTE: Assuming that a pointer will never break down to more than one VT 7403 // or one register. 7404 ISD::ArgFlagsTy Flags; 7405 Flags.setSRet(); 7406 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7407 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7408 ISD::InputArg::NoArgIndex, 0); 7409 Ins.push_back(RetArg); 7410 } 7411 7412 // Set up the incoming argument description vector. 7413 unsigned Idx = 1; 7414 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7415 I != E; ++I, ++Idx) { 7416 SmallVector<EVT, 4> ValueVTs; 7417 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7418 bool isArgValueUsed = !I->use_empty(); 7419 unsigned PartBase = 0; 7420 Type *FinalType = I->getType(); 7421 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7422 FinalType = cast<PointerType>(FinalType)->getElementType(); 7423 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7424 FinalType, F.getCallingConv(), F.isVarArg()); 7425 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7426 Value != NumValues; ++Value) { 7427 EVT VT = ValueVTs[Value]; 7428 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7429 ISD::ArgFlagsTy Flags; 7430 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7431 7432 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7433 Flags.setZExt(); 7434 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7435 Flags.setSExt(); 7436 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7437 Flags.setInReg(); 7438 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7439 Flags.setSRet(); 7440 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7441 Flags.setByVal(); 7442 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7443 Flags.setInAlloca(); 7444 // Set the byval flag for CCAssignFn callbacks that don't know about 7445 // inalloca. This way we can know how many bytes we should've allocated 7446 // and how many bytes a callee cleanup function will pop. If we port 7447 // inalloca to more targets, we'll have to add custom inalloca handling 7448 // in the various CC lowering callbacks. 7449 Flags.setByVal(); 7450 } 7451 if (F.getCallingConv() == CallingConv::X86_INTR) { 7452 // IA Interrupt passes frame (1st parameter) by value in the stack. 7453 if (Idx == 1) 7454 Flags.setByVal(); 7455 } 7456 if (Flags.isByVal() || Flags.isInAlloca()) { 7457 PointerType *Ty = cast<PointerType>(I->getType()); 7458 Type *ElementTy = Ty->getElementType(); 7459 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7460 // For ByVal, alignment should be passed from FE. BE will guess if 7461 // this info is not there but there are cases it cannot get right. 7462 unsigned FrameAlign; 7463 if (F.getParamAlignment(Idx)) 7464 FrameAlign = F.getParamAlignment(Idx); 7465 else 7466 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7467 Flags.setByValAlign(FrameAlign); 7468 } 7469 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7470 Flags.setNest(); 7471 if (NeedsRegBlock) 7472 Flags.setInConsecutiveRegs(); 7473 Flags.setOrigAlign(OriginalAlignment); 7474 7475 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7476 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7477 for (unsigned i = 0; i != NumRegs; ++i) { 7478 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7479 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7480 if (NumRegs > 1 && i == 0) 7481 MyFlags.Flags.setSplit(); 7482 // if it isn't first piece, alignment must be 1 7483 else if (i > 0) { 7484 MyFlags.Flags.setOrigAlign(1); 7485 if (i == NumRegs - 1) 7486 MyFlags.Flags.setSplitEnd(); 7487 } 7488 Ins.push_back(MyFlags); 7489 } 7490 if (NeedsRegBlock && Value == NumValues - 1) 7491 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7492 PartBase += VT.getStoreSize(); 7493 } 7494 } 7495 7496 // Call the target to set up the argument values. 7497 SmallVector<SDValue, 8> InVals; 7498 SDValue NewRoot = TLI->LowerFormalArguments( 7499 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7500 7501 // Verify that the target's LowerFormalArguments behaved as expected. 7502 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7503 "LowerFormalArguments didn't return a valid chain!"); 7504 assert(InVals.size() == Ins.size() && 7505 "LowerFormalArguments didn't emit the correct number of values!"); 7506 DEBUG({ 7507 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7508 assert(InVals[i].getNode() && 7509 "LowerFormalArguments emitted a null value!"); 7510 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7511 "LowerFormalArguments emitted a value with the wrong type!"); 7512 } 7513 }); 7514 7515 // Update the DAG with the new chain value resulting from argument lowering. 7516 DAG.setRoot(NewRoot); 7517 7518 // Set up the argument values. 7519 unsigned i = 0; 7520 Idx = 1; 7521 if (!FuncInfo->CanLowerReturn) { 7522 // Create a virtual register for the sret pointer, and put in a copy 7523 // from the sret argument into it. 7524 SmallVector<EVT, 1> ValueVTs; 7525 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7526 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7527 MVT VT = ValueVTs[0].getSimpleVT(); 7528 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7529 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7530 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7531 RegVT, VT, nullptr, AssertOp); 7532 7533 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7534 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7535 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7536 FuncInfo->DemoteRegister = SRetReg; 7537 NewRoot = 7538 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7539 DAG.setRoot(NewRoot); 7540 7541 // i indexes lowered arguments. Bump it past the hidden sret argument. 7542 // Idx indexes LLVM arguments. Don't touch it. 7543 ++i; 7544 } 7545 7546 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7547 ++I, ++Idx) { 7548 SmallVector<SDValue, 4> ArgValues; 7549 SmallVector<EVT, 4> ValueVTs; 7550 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7551 unsigned NumValues = ValueVTs.size(); 7552 7553 // If this argument is unused then remember its value. It is used to generate 7554 // debugging information. 7555 if (I->use_empty() && NumValues) { 7556 SDB->setUnusedArgValue(&*I, InVals[i]); 7557 7558 // Also remember any frame index for use in FastISel. 7559 if (FrameIndexSDNode *FI = 7560 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7561 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7562 } 7563 7564 for (unsigned Val = 0; Val != NumValues; ++Val) { 7565 EVT VT = ValueVTs[Val]; 7566 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7567 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7568 7569 if (!I->use_empty()) { 7570 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7571 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7572 AssertOp = ISD::AssertSext; 7573 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7574 AssertOp = ISD::AssertZext; 7575 7576 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7577 NumParts, PartVT, VT, 7578 nullptr, AssertOp)); 7579 } 7580 7581 i += NumParts; 7582 } 7583 7584 // We don't need to do anything else for unused arguments. 7585 if (ArgValues.empty()) 7586 continue; 7587 7588 // Note down frame index. 7589 if (FrameIndexSDNode *FI = 7590 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7591 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7592 7593 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7594 SDB->getCurSDLoc()); 7595 7596 SDB->setValue(&*I, Res); 7597 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7598 if (LoadSDNode *LNode = 7599 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7600 if (FrameIndexSDNode *FI = 7601 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7602 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7603 } 7604 7605 // If this argument is live outside of the entry block, insert a copy from 7606 // wherever we got it to the vreg that other BB's will reference it as. 7607 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7608 // If we can, though, try to skip creating an unnecessary vreg. 7609 // FIXME: This isn't very clean... it would be nice to make this more 7610 // general. It's also subtly incompatible with the hacks FastISel 7611 // uses with vregs. 7612 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7613 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7614 FuncInfo->ValueMap[&*I] = Reg; 7615 continue; 7616 } 7617 } 7618 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7619 FuncInfo->InitializeRegForValue(&*I); 7620 SDB->CopyToExportRegsIfNeeded(&*I); 7621 } 7622 } 7623 7624 assert(i == InVals.size() && "Argument register count mismatch!"); 7625 7626 // Finally, if the target has anything special to do, allow it to do so. 7627 EmitFunctionEntryCode(); 7628 } 7629 7630 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7631 /// ensure constants are generated when needed. Remember the virtual registers 7632 /// that need to be added to the Machine PHI nodes as input. We cannot just 7633 /// directly add them, because expansion might result in multiple MBB's for one 7634 /// BB. As such, the start of the BB might correspond to a different MBB than 7635 /// the end. 7636 /// 7637 void 7638 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7639 const TerminatorInst *TI = LLVMBB->getTerminator(); 7640 7641 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7642 7643 // Check PHI nodes in successors that expect a value to be available from this 7644 // block. 7645 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7646 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7647 if (!isa<PHINode>(SuccBB->begin())) continue; 7648 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7649 7650 // If this terminator has multiple identical successors (common for 7651 // switches), only handle each succ once. 7652 if (!SuccsHandled.insert(SuccMBB).second) 7653 continue; 7654 7655 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7656 7657 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7658 // nodes and Machine PHI nodes, but the incoming operands have not been 7659 // emitted yet. 7660 for (BasicBlock::const_iterator I = SuccBB->begin(); 7661 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7662 // Ignore dead phi's. 7663 if (PN->use_empty()) continue; 7664 7665 // Skip empty types 7666 if (PN->getType()->isEmptyTy()) 7667 continue; 7668 7669 unsigned Reg; 7670 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7671 7672 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7673 unsigned &RegOut = ConstantsOut[C]; 7674 if (RegOut == 0) { 7675 RegOut = FuncInfo.CreateRegs(C->getType()); 7676 CopyValueToVirtualRegister(C, RegOut); 7677 } 7678 Reg = RegOut; 7679 } else { 7680 DenseMap<const Value *, unsigned>::iterator I = 7681 FuncInfo.ValueMap.find(PHIOp); 7682 if (I != FuncInfo.ValueMap.end()) 7683 Reg = I->second; 7684 else { 7685 assert(isa<AllocaInst>(PHIOp) && 7686 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7687 "Didn't codegen value into a register!??"); 7688 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7689 CopyValueToVirtualRegister(PHIOp, Reg); 7690 } 7691 } 7692 7693 // Remember that this register needs to added to the machine PHI node as 7694 // the input for this MBB. 7695 SmallVector<EVT, 4> ValueVTs; 7696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7697 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7698 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7699 EVT VT = ValueVTs[vti]; 7700 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7701 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7702 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7703 Reg += NumRegisters; 7704 } 7705 } 7706 } 7707 7708 ConstantsOut.clear(); 7709 } 7710 7711 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7712 /// is 0. 7713 MachineBasicBlock * 7714 SelectionDAGBuilder::StackProtectorDescriptor:: 7715 AddSuccessorMBB(const BasicBlock *BB, 7716 MachineBasicBlock *ParentMBB, 7717 bool IsLikely, 7718 MachineBasicBlock *SuccMBB) { 7719 // If SuccBB has not been created yet, create it. 7720 if (!SuccMBB) { 7721 MachineFunction *MF = ParentMBB->getParent(); 7722 MachineFunction::iterator BBI(ParentMBB); 7723 SuccMBB = MF->CreateMachineBasicBlock(BB); 7724 MF->insert(++BBI, SuccMBB); 7725 } 7726 // Add it as a successor of ParentMBB. 7727 ParentMBB->addSuccessor( 7728 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7729 return SuccMBB; 7730 } 7731 7732 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7733 MachineFunction::iterator I(MBB); 7734 if (++I == FuncInfo.MF->end()) 7735 return nullptr; 7736 return &*I; 7737 } 7738 7739 /// During lowering new call nodes can be created (such as memset, etc.). 7740 /// Those will become new roots of the current DAG, but complications arise 7741 /// when they are tail calls. In such cases, the call lowering will update 7742 /// the root, but the builder still needs to know that a tail call has been 7743 /// lowered in order to avoid generating an additional return. 7744 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7745 // If the node is null, we do have a tail call. 7746 if (MaybeTC.getNode() != nullptr) 7747 DAG.setRoot(MaybeTC); 7748 else 7749 HasTailCall = true; 7750 } 7751 7752 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7753 unsigned *TotalCases, unsigned First, 7754 unsigned Last) { 7755 assert(Last >= First); 7756 assert(TotalCases[Last] >= TotalCases[First]); 7757 7758 APInt LowCase = Clusters[First].Low->getValue(); 7759 APInt HighCase = Clusters[Last].High->getValue(); 7760 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7761 7762 // FIXME: A range of consecutive cases has 100% density, but only requires one 7763 // comparison to lower. We should discriminate against such consecutive ranges 7764 // in jump tables. 7765 7766 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7767 uint64_t Range = Diff + 1; 7768 7769 uint64_t NumCases = 7770 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7771 7772 assert(NumCases < UINT64_MAX / 100); 7773 assert(Range >= NumCases); 7774 7775 return NumCases * 100 >= Range * MinJumpTableDensity; 7776 } 7777 7778 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7779 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7780 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7781 } 7782 7783 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7784 unsigned First, unsigned Last, 7785 const SwitchInst *SI, 7786 MachineBasicBlock *DefaultMBB, 7787 CaseCluster &JTCluster) { 7788 assert(First <= Last); 7789 7790 auto Prob = BranchProbability::getZero(); 7791 unsigned NumCmps = 0; 7792 std::vector<MachineBasicBlock*> Table; 7793 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7794 7795 // Initialize probabilities in JTProbs. 7796 for (unsigned I = First; I <= Last; ++I) 7797 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7798 7799 for (unsigned I = First; I <= Last; ++I) { 7800 assert(Clusters[I].Kind == CC_Range); 7801 Prob += Clusters[I].Prob; 7802 APInt Low = Clusters[I].Low->getValue(); 7803 APInt High = Clusters[I].High->getValue(); 7804 NumCmps += (Low == High) ? 1 : 2; 7805 if (I != First) { 7806 // Fill the gap between this and the previous cluster. 7807 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7808 assert(PreviousHigh.slt(Low)); 7809 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7810 for (uint64_t J = 0; J < Gap; J++) 7811 Table.push_back(DefaultMBB); 7812 } 7813 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7814 for (uint64_t J = 0; J < ClusterSize; ++J) 7815 Table.push_back(Clusters[I].MBB); 7816 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7817 } 7818 7819 unsigned NumDests = JTProbs.size(); 7820 if (isSuitableForBitTests(NumDests, NumCmps, 7821 Clusters[First].Low->getValue(), 7822 Clusters[Last].High->getValue())) { 7823 // Clusters[First..Last] should be lowered as bit tests instead. 7824 return false; 7825 } 7826 7827 // Create the MBB that will load from and jump through the table. 7828 // Note: We create it here, but it's not inserted into the function yet. 7829 MachineFunction *CurMF = FuncInfo.MF; 7830 MachineBasicBlock *JumpTableMBB = 7831 CurMF->CreateMachineBasicBlock(SI->getParent()); 7832 7833 // Add successors. Note: use table order for determinism. 7834 SmallPtrSet<MachineBasicBlock *, 8> Done; 7835 for (MachineBasicBlock *Succ : Table) { 7836 if (Done.count(Succ)) 7837 continue; 7838 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7839 Done.insert(Succ); 7840 } 7841 JumpTableMBB->normalizeSuccProbs(); 7842 7843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7844 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7845 ->createJumpTableIndex(Table); 7846 7847 // Set up the jump table info. 7848 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7849 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7850 Clusters[Last].High->getValue(), SI->getCondition(), 7851 nullptr, false); 7852 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7853 7854 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7855 JTCases.size() - 1, Prob); 7856 return true; 7857 } 7858 7859 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7860 const SwitchInst *SI, 7861 MachineBasicBlock *DefaultMBB) { 7862 #ifndef NDEBUG 7863 // Clusters must be non-empty, sorted, and only contain Range clusters. 7864 assert(!Clusters.empty()); 7865 for (CaseCluster &C : Clusters) 7866 assert(C.Kind == CC_Range); 7867 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7868 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7869 #endif 7870 7871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7872 if (!areJTsAllowed(TLI)) 7873 return; 7874 7875 const int64_t N = Clusters.size(); 7876 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7877 7878 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7879 SmallVector<unsigned, 8> TotalCases(N); 7880 7881 for (unsigned i = 0; i < N; ++i) { 7882 APInt Hi = Clusters[i].High->getValue(); 7883 APInt Lo = Clusters[i].Low->getValue(); 7884 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7885 if (i != 0) 7886 TotalCases[i] += TotalCases[i - 1]; 7887 } 7888 7889 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7890 // Cheap case: the whole range might be suitable for jump table. 7891 CaseCluster JTCluster; 7892 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7893 Clusters[0] = JTCluster; 7894 Clusters.resize(1); 7895 return; 7896 } 7897 } 7898 7899 // The algorithm below is not suitable for -O0. 7900 if (TM.getOptLevel() == CodeGenOpt::None) 7901 return; 7902 7903 // Split Clusters into minimum number of dense partitions. The algorithm uses 7904 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7905 // for the Case Statement'" (1994), but builds the MinPartitions array in 7906 // reverse order to make it easier to reconstruct the partitions in ascending 7907 // order. In the choice between two optimal partitionings, it picks the one 7908 // which yields more jump tables. 7909 7910 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7911 SmallVector<unsigned, 8> MinPartitions(N); 7912 // LastElement[i] is the last element of the partition starting at i. 7913 SmallVector<unsigned, 8> LastElement(N); 7914 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7915 SmallVector<unsigned, 8> NumTables(N); 7916 7917 // Base case: There is only one way to partition Clusters[N-1]. 7918 MinPartitions[N - 1] = 1; 7919 LastElement[N - 1] = N - 1; 7920 assert(MinJumpTableSize > 1); 7921 NumTables[N - 1] = 0; 7922 7923 // Note: loop indexes are signed to avoid underflow. 7924 for (int64_t i = N - 2; i >= 0; i--) { 7925 // Find optimal partitioning of Clusters[i..N-1]. 7926 // Baseline: Put Clusters[i] into a partition on its own. 7927 MinPartitions[i] = MinPartitions[i + 1] + 1; 7928 LastElement[i] = i; 7929 NumTables[i] = NumTables[i + 1]; 7930 7931 // Search for a solution that results in fewer partitions. 7932 for (int64_t j = N - 1; j > i; j--) { 7933 // Try building a partition from Clusters[i..j]. 7934 if (isDense(Clusters, &TotalCases[0], i, j)) { 7935 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7936 bool IsTable = j - i + 1 >= MinJumpTableSize; 7937 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7938 7939 // If this j leads to fewer partitions, or same number of partitions 7940 // with more lookup tables, it is a better partitioning. 7941 if (NumPartitions < MinPartitions[i] || 7942 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7943 MinPartitions[i] = NumPartitions; 7944 LastElement[i] = j; 7945 NumTables[i] = Tables; 7946 } 7947 } 7948 } 7949 } 7950 7951 // Iterate over the partitions, replacing some with jump tables in-place. 7952 unsigned DstIndex = 0; 7953 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7954 Last = LastElement[First]; 7955 assert(Last >= First); 7956 assert(DstIndex <= First); 7957 unsigned NumClusters = Last - First + 1; 7958 7959 CaseCluster JTCluster; 7960 if (NumClusters >= MinJumpTableSize && 7961 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7962 Clusters[DstIndex++] = JTCluster; 7963 } else { 7964 for (unsigned I = First; I <= Last; ++I) 7965 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7966 } 7967 } 7968 Clusters.resize(DstIndex); 7969 } 7970 7971 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7972 // FIXME: Using the pointer type doesn't seem ideal. 7973 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7974 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7975 return Range <= BW; 7976 } 7977 7978 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7979 unsigned NumCmps, 7980 const APInt &Low, 7981 const APInt &High) { 7982 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7983 // range of cases both require only one branch to lower. Just looking at the 7984 // number of clusters and destinations should be enough to decide whether to 7985 // build bit tests. 7986 7987 // To lower a range with bit tests, the range must fit the bitwidth of a 7988 // machine word. 7989 if (!rangeFitsInWord(Low, High)) 7990 return false; 7991 7992 // Decide whether it's profitable to lower this range with bit tests. Each 7993 // destination requires a bit test and branch, and there is an overall range 7994 // check branch. For a small number of clusters, separate comparisons might be 7995 // cheaper, and for many destinations, splitting the range might be better. 7996 return (NumDests == 1 && NumCmps >= 3) || 7997 (NumDests == 2 && NumCmps >= 5) || 7998 (NumDests == 3 && NumCmps >= 6); 7999 } 8000 8001 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8002 unsigned First, unsigned Last, 8003 const SwitchInst *SI, 8004 CaseCluster &BTCluster) { 8005 assert(First <= Last); 8006 if (First == Last) 8007 return false; 8008 8009 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8010 unsigned NumCmps = 0; 8011 for (int64_t I = First; I <= Last; ++I) { 8012 assert(Clusters[I].Kind == CC_Range); 8013 Dests.set(Clusters[I].MBB->getNumber()); 8014 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8015 } 8016 unsigned NumDests = Dests.count(); 8017 8018 APInt Low = Clusters[First].Low->getValue(); 8019 APInt High = Clusters[Last].High->getValue(); 8020 assert(Low.slt(High)); 8021 8022 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8023 return false; 8024 8025 APInt LowBound; 8026 APInt CmpRange; 8027 8028 const int BitWidth = DAG.getTargetLoweringInfo() 8029 .getPointerTy(DAG.getDataLayout()) 8030 .getSizeInBits(); 8031 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8032 8033 // Check if the clusters cover a contiguous range such that no value in the 8034 // range will jump to the default statement. 8035 bool ContiguousRange = true; 8036 for (int64_t I = First + 1; I <= Last; ++I) { 8037 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8038 ContiguousRange = false; 8039 break; 8040 } 8041 } 8042 8043 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8044 // Optimize the case where all the case values fit in a word without having 8045 // to subtract minValue. In this case, we can optimize away the subtraction. 8046 LowBound = APInt::getNullValue(Low.getBitWidth()); 8047 CmpRange = High; 8048 ContiguousRange = false; 8049 } else { 8050 LowBound = Low; 8051 CmpRange = High - Low; 8052 } 8053 8054 CaseBitsVector CBV; 8055 auto TotalProb = BranchProbability::getZero(); 8056 for (unsigned i = First; i <= Last; ++i) { 8057 // Find the CaseBits for this destination. 8058 unsigned j; 8059 for (j = 0; j < CBV.size(); ++j) 8060 if (CBV[j].BB == Clusters[i].MBB) 8061 break; 8062 if (j == CBV.size()) 8063 CBV.push_back( 8064 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8065 CaseBits *CB = &CBV[j]; 8066 8067 // Update Mask, Bits and ExtraProb. 8068 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8069 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8070 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8071 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8072 CB->Bits += Hi - Lo + 1; 8073 CB->ExtraProb += Clusters[i].Prob; 8074 TotalProb += Clusters[i].Prob; 8075 } 8076 8077 BitTestInfo BTI; 8078 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8079 // Sort by probability first, number of bits second. 8080 if (a.ExtraProb != b.ExtraProb) 8081 return a.ExtraProb > b.ExtraProb; 8082 return a.Bits > b.Bits; 8083 }); 8084 8085 for (auto &CB : CBV) { 8086 MachineBasicBlock *BitTestBB = 8087 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8088 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8089 } 8090 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8091 SI->getCondition(), -1U, MVT::Other, false, 8092 ContiguousRange, nullptr, nullptr, std::move(BTI), 8093 TotalProb); 8094 8095 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8096 BitTestCases.size() - 1, TotalProb); 8097 return true; 8098 } 8099 8100 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8101 const SwitchInst *SI) { 8102 // Partition Clusters into as few subsets as possible, where each subset has a 8103 // range that fits in a machine word and has <= 3 unique destinations. 8104 8105 #ifndef NDEBUG 8106 // Clusters must be sorted and contain Range or JumpTable clusters. 8107 assert(!Clusters.empty()); 8108 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8109 for (const CaseCluster &C : Clusters) 8110 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8111 for (unsigned i = 1; i < Clusters.size(); ++i) 8112 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8113 #endif 8114 8115 // The algorithm below is not suitable for -O0. 8116 if (TM.getOptLevel() == CodeGenOpt::None) 8117 return; 8118 8119 // If target does not have legal shift left, do not emit bit tests at all. 8120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8121 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8122 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8123 return; 8124 8125 int BitWidth = PTy.getSizeInBits(); 8126 const int64_t N = Clusters.size(); 8127 8128 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8129 SmallVector<unsigned, 8> MinPartitions(N); 8130 // LastElement[i] is the last element of the partition starting at i. 8131 SmallVector<unsigned, 8> LastElement(N); 8132 8133 // FIXME: This might not be the best algorithm for finding bit test clusters. 8134 8135 // Base case: There is only one way to partition Clusters[N-1]. 8136 MinPartitions[N - 1] = 1; 8137 LastElement[N - 1] = N - 1; 8138 8139 // Note: loop indexes are signed to avoid underflow. 8140 for (int64_t i = N - 2; i >= 0; --i) { 8141 // Find optimal partitioning of Clusters[i..N-1]. 8142 // Baseline: Put Clusters[i] into a partition on its own. 8143 MinPartitions[i] = MinPartitions[i + 1] + 1; 8144 LastElement[i] = i; 8145 8146 // Search for a solution that results in fewer partitions. 8147 // Note: the search is limited by BitWidth, reducing time complexity. 8148 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8149 // Try building a partition from Clusters[i..j]. 8150 8151 // Check the range. 8152 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8153 Clusters[j].High->getValue())) 8154 continue; 8155 8156 // Check nbr of destinations and cluster types. 8157 // FIXME: This works, but doesn't seem very efficient. 8158 bool RangesOnly = true; 8159 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8160 for (int64_t k = i; k <= j; k++) { 8161 if (Clusters[k].Kind != CC_Range) { 8162 RangesOnly = false; 8163 break; 8164 } 8165 Dests.set(Clusters[k].MBB->getNumber()); 8166 } 8167 if (!RangesOnly || Dests.count() > 3) 8168 break; 8169 8170 // Check if it's a better partition. 8171 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8172 if (NumPartitions < MinPartitions[i]) { 8173 // Found a better partition. 8174 MinPartitions[i] = NumPartitions; 8175 LastElement[i] = j; 8176 } 8177 } 8178 } 8179 8180 // Iterate over the partitions, replacing with bit-test clusters in-place. 8181 unsigned DstIndex = 0; 8182 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8183 Last = LastElement[First]; 8184 assert(First <= Last); 8185 assert(DstIndex <= First); 8186 8187 CaseCluster BitTestCluster; 8188 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8189 Clusters[DstIndex++] = BitTestCluster; 8190 } else { 8191 size_t NumClusters = Last - First + 1; 8192 std::memmove(&Clusters[DstIndex], &Clusters[First], 8193 sizeof(Clusters[0]) * NumClusters); 8194 DstIndex += NumClusters; 8195 } 8196 } 8197 Clusters.resize(DstIndex); 8198 } 8199 8200 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8201 MachineBasicBlock *SwitchMBB, 8202 MachineBasicBlock *DefaultMBB) { 8203 MachineFunction *CurMF = FuncInfo.MF; 8204 MachineBasicBlock *NextMBB = nullptr; 8205 MachineFunction::iterator BBI(W.MBB); 8206 if (++BBI != FuncInfo.MF->end()) 8207 NextMBB = &*BBI; 8208 8209 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8210 8211 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8212 8213 if (Size == 2 && W.MBB == SwitchMBB) { 8214 // If any two of the cases has the same destination, and if one value 8215 // is the same as the other, but has one bit unset that the other has set, 8216 // use bit manipulation to do two compares at once. For example: 8217 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8218 // TODO: This could be extended to merge any 2 cases in switches with 3 8219 // cases. 8220 // TODO: Handle cases where W.CaseBB != SwitchBB. 8221 CaseCluster &Small = *W.FirstCluster; 8222 CaseCluster &Big = *W.LastCluster; 8223 8224 if (Small.Low == Small.High && Big.Low == Big.High && 8225 Small.MBB == Big.MBB) { 8226 const APInt &SmallValue = Small.Low->getValue(); 8227 const APInt &BigValue = Big.Low->getValue(); 8228 8229 // Check that there is only one bit different. 8230 APInt CommonBit = BigValue ^ SmallValue; 8231 if (CommonBit.isPowerOf2()) { 8232 SDValue CondLHS = getValue(Cond); 8233 EVT VT = CondLHS.getValueType(); 8234 SDLoc DL = getCurSDLoc(); 8235 8236 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8237 DAG.getConstant(CommonBit, DL, VT)); 8238 SDValue Cond = DAG.getSetCC( 8239 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8240 ISD::SETEQ); 8241 8242 // Update successor info. 8243 // Both Small and Big will jump to Small.BB, so we sum up the 8244 // probabilities. 8245 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8246 if (BPI) 8247 addSuccessorWithProb( 8248 SwitchMBB, DefaultMBB, 8249 // The default destination is the first successor in IR. 8250 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8251 else 8252 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8253 8254 // Insert the true branch. 8255 SDValue BrCond = 8256 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8257 DAG.getBasicBlock(Small.MBB)); 8258 // Insert the false branch. 8259 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8260 DAG.getBasicBlock(DefaultMBB)); 8261 8262 DAG.setRoot(BrCond); 8263 return; 8264 } 8265 } 8266 } 8267 8268 if (TM.getOptLevel() != CodeGenOpt::None) { 8269 // Order cases by probability so the most likely case will be checked first. 8270 std::sort(W.FirstCluster, W.LastCluster + 1, 8271 [](const CaseCluster &a, const CaseCluster &b) { 8272 return a.Prob > b.Prob; 8273 }); 8274 8275 // Rearrange the case blocks so that the last one falls through if possible 8276 // without without changing the order of probabilities. 8277 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8278 --I; 8279 if (I->Prob > W.LastCluster->Prob) 8280 break; 8281 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8282 std::swap(*I, *W.LastCluster); 8283 break; 8284 } 8285 } 8286 } 8287 8288 // Compute total probability. 8289 BranchProbability DefaultProb = W.DefaultProb; 8290 BranchProbability UnhandledProbs = DefaultProb; 8291 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8292 UnhandledProbs += I->Prob; 8293 8294 MachineBasicBlock *CurMBB = W.MBB; 8295 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8296 MachineBasicBlock *Fallthrough; 8297 if (I == W.LastCluster) { 8298 // For the last cluster, fall through to the default destination. 8299 Fallthrough = DefaultMBB; 8300 } else { 8301 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8302 CurMF->insert(BBI, Fallthrough); 8303 // Put Cond in a virtual register to make it available from the new blocks. 8304 ExportFromCurrentBlock(Cond); 8305 } 8306 UnhandledProbs -= I->Prob; 8307 8308 switch (I->Kind) { 8309 case CC_JumpTable: { 8310 // FIXME: Optimize away range check based on pivot comparisons. 8311 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8312 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8313 8314 // The jump block hasn't been inserted yet; insert it here. 8315 MachineBasicBlock *JumpMBB = JT->MBB; 8316 CurMF->insert(BBI, JumpMBB); 8317 8318 auto JumpProb = I->Prob; 8319 auto FallthroughProb = UnhandledProbs; 8320 8321 // If the default statement is a target of the jump table, we evenly 8322 // distribute the default probability to successors of CurMBB. Also 8323 // update the probability on the edge from JumpMBB to Fallthrough. 8324 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8325 SE = JumpMBB->succ_end(); 8326 SI != SE; ++SI) { 8327 if (*SI == DefaultMBB) { 8328 JumpProb += DefaultProb / 2; 8329 FallthroughProb -= DefaultProb / 2; 8330 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8331 JumpMBB->normalizeSuccProbs(); 8332 break; 8333 } 8334 } 8335 8336 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8337 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8338 CurMBB->normalizeSuccProbs(); 8339 8340 // The jump table header will be inserted in our current block, do the 8341 // range check, and fall through to our fallthrough block. 8342 JTH->HeaderBB = CurMBB; 8343 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8344 8345 // If we're in the right place, emit the jump table header right now. 8346 if (CurMBB == SwitchMBB) { 8347 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8348 JTH->Emitted = true; 8349 } 8350 break; 8351 } 8352 case CC_BitTests: { 8353 // FIXME: Optimize away range check based on pivot comparisons. 8354 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8355 8356 // The bit test blocks haven't been inserted yet; insert them here. 8357 for (BitTestCase &BTC : BTB->Cases) 8358 CurMF->insert(BBI, BTC.ThisBB); 8359 8360 // Fill in fields of the BitTestBlock. 8361 BTB->Parent = CurMBB; 8362 BTB->Default = Fallthrough; 8363 8364 BTB->DefaultProb = UnhandledProbs; 8365 // If the cases in bit test don't form a contiguous range, we evenly 8366 // distribute the probability on the edge to Fallthrough to two 8367 // successors of CurMBB. 8368 if (!BTB->ContiguousRange) { 8369 BTB->Prob += DefaultProb / 2; 8370 BTB->DefaultProb -= DefaultProb / 2; 8371 } 8372 8373 // If we're in the right place, emit the bit test header right now. 8374 if (CurMBB == SwitchMBB) { 8375 visitBitTestHeader(*BTB, SwitchMBB); 8376 BTB->Emitted = true; 8377 } 8378 break; 8379 } 8380 case CC_Range: { 8381 const Value *RHS, *LHS, *MHS; 8382 ISD::CondCode CC; 8383 if (I->Low == I->High) { 8384 // Check Cond == I->Low. 8385 CC = ISD::SETEQ; 8386 LHS = Cond; 8387 RHS=I->Low; 8388 MHS = nullptr; 8389 } else { 8390 // Check I->Low <= Cond <= I->High. 8391 CC = ISD::SETLE; 8392 LHS = I->Low; 8393 MHS = Cond; 8394 RHS = I->High; 8395 } 8396 8397 // The false probability is the sum of all unhandled cases. 8398 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8399 UnhandledProbs); 8400 8401 if (CurMBB == SwitchMBB) 8402 visitSwitchCase(CB, SwitchMBB); 8403 else 8404 SwitchCases.push_back(CB); 8405 8406 break; 8407 } 8408 } 8409 CurMBB = Fallthrough; 8410 } 8411 } 8412 8413 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8414 CaseClusterIt First, 8415 CaseClusterIt Last) { 8416 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8417 if (X.Prob != CC.Prob) 8418 return X.Prob > CC.Prob; 8419 8420 // Ties are broken by comparing the case value. 8421 return X.Low->getValue().slt(CC.Low->getValue()); 8422 }); 8423 } 8424 8425 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8426 const SwitchWorkListItem &W, 8427 Value *Cond, 8428 MachineBasicBlock *SwitchMBB) { 8429 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8430 "Clusters not sorted?"); 8431 8432 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8433 8434 // Balance the tree based on branch probabilities to create a near-optimal (in 8435 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8436 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8437 CaseClusterIt LastLeft = W.FirstCluster; 8438 CaseClusterIt FirstRight = W.LastCluster; 8439 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8440 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8441 8442 // Move LastLeft and FirstRight towards each other from opposite directions to 8443 // find a partitioning of the clusters which balances the probability on both 8444 // sides. If LeftProb and RightProb are equal, alternate which side is 8445 // taken to ensure 0-probability nodes are distributed evenly. 8446 unsigned I = 0; 8447 while (LastLeft + 1 < FirstRight) { 8448 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8449 LeftProb += (++LastLeft)->Prob; 8450 else 8451 RightProb += (--FirstRight)->Prob; 8452 I++; 8453 } 8454 8455 for (;;) { 8456 // Our binary search tree differs from a typical BST in that ours can have up 8457 // to three values in each leaf. The pivot selection above doesn't take that 8458 // into account, which means the tree might require more nodes and be less 8459 // efficient. We compensate for this here. 8460 8461 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8462 unsigned NumRight = W.LastCluster - FirstRight + 1; 8463 8464 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8465 // If one side has less than 3 clusters, and the other has more than 3, 8466 // consider taking a cluster from the other side. 8467 8468 if (NumLeft < NumRight) { 8469 // Consider moving the first cluster on the right to the left side. 8470 CaseCluster &CC = *FirstRight; 8471 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8472 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8473 if (LeftSideRank <= RightSideRank) { 8474 // Moving the cluster to the left does not demote it. 8475 ++LastLeft; 8476 ++FirstRight; 8477 continue; 8478 } 8479 } else { 8480 assert(NumRight < NumLeft); 8481 // Consider moving the last element on the left to the right side. 8482 CaseCluster &CC = *LastLeft; 8483 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8484 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8485 if (RightSideRank <= LeftSideRank) { 8486 // Moving the cluster to the right does not demot it. 8487 --LastLeft; 8488 --FirstRight; 8489 continue; 8490 } 8491 } 8492 } 8493 break; 8494 } 8495 8496 assert(LastLeft + 1 == FirstRight); 8497 assert(LastLeft >= W.FirstCluster); 8498 assert(FirstRight <= W.LastCluster); 8499 8500 // Use the first element on the right as pivot since we will make less-than 8501 // comparisons against it. 8502 CaseClusterIt PivotCluster = FirstRight; 8503 assert(PivotCluster > W.FirstCluster); 8504 assert(PivotCluster <= W.LastCluster); 8505 8506 CaseClusterIt FirstLeft = W.FirstCluster; 8507 CaseClusterIt LastRight = W.LastCluster; 8508 8509 const ConstantInt *Pivot = PivotCluster->Low; 8510 8511 // New blocks will be inserted immediately after the current one. 8512 MachineFunction::iterator BBI(W.MBB); 8513 ++BBI; 8514 8515 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8516 // we can branch to its destination directly if it's squeezed exactly in 8517 // between the known lower bound and Pivot - 1. 8518 MachineBasicBlock *LeftMBB; 8519 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8520 FirstLeft->Low == W.GE && 8521 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8522 LeftMBB = FirstLeft->MBB; 8523 } else { 8524 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8525 FuncInfo.MF->insert(BBI, LeftMBB); 8526 WorkList.push_back( 8527 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8528 // Put Cond in a virtual register to make it available from the new blocks. 8529 ExportFromCurrentBlock(Cond); 8530 } 8531 8532 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8533 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8534 // directly if RHS.High equals the current upper bound. 8535 MachineBasicBlock *RightMBB; 8536 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8537 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8538 RightMBB = FirstRight->MBB; 8539 } else { 8540 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8541 FuncInfo.MF->insert(BBI, RightMBB); 8542 WorkList.push_back( 8543 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8544 // Put Cond in a virtual register to make it available from the new blocks. 8545 ExportFromCurrentBlock(Cond); 8546 } 8547 8548 // Create the CaseBlock record that will be used to lower the branch. 8549 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8550 LeftProb, RightProb); 8551 8552 if (W.MBB == SwitchMBB) 8553 visitSwitchCase(CB, SwitchMBB); 8554 else 8555 SwitchCases.push_back(CB); 8556 } 8557 8558 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8559 // Extract cases from the switch. 8560 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8561 CaseClusterVector Clusters; 8562 Clusters.reserve(SI.getNumCases()); 8563 for (auto I : SI.cases()) { 8564 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8565 const ConstantInt *CaseVal = I.getCaseValue(); 8566 BranchProbability Prob = 8567 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8568 : BranchProbability(1, SI.getNumCases() + 1); 8569 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8570 } 8571 8572 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8573 8574 // Cluster adjacent cases with the same destination. We do this at all 8575 // optimization levels because it's cheap to do and will make codegen faster 8576 // if there are many clusters. 8577 sortAndRangeify(Clusters); 8578 8579 if (TM.getOptLevel() != CodeGenOpt::None) { 8580 // Replace an unreachable default with the most popular destination. 8581 // FIXME: Exploit unreachable default more aggressively. 8582 bool UnreachableDefault = 8583 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8584 if (UnreachableDefault && !Clusters.empty()) { 8585 DenseMap<const BasicBlock *, unsigned> Popularity; 8586 unsigned MaxPop = 0; 8587 const BasicBlock *MaxBB = nullptr; 8588 for (auto I : SI.cases()) { 8589 const BasicBlock *BB = I.getCaseSuccessor(); 8590 if (++Popularity[BB] > MaxPop) { 8591 MaxPop = Popularity[BB]; 8592 MaxBB = BB; 8593 } 8594 } 8595 // Set new default. 8596 assert(MaxPop > 0 && MaxBB); 8597 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8598 8599 // Remove cases that were pointing to the destination that is now the 8600 // default. 8601 CaseClusterVector New; 8602 New.reserve(Clusters.size()); 8603 for (CaseCluster &CC : Clusters) { 8604 if (CC.MBB != DefaultMBB) 8605 New.push_back(CC); 8606 } 8607 Clusters = std::move(New); 8608 } 8609 } 8610 8611 // If there is only the default destination, jump there directly. 8612 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8613 if (Clusters.empty()) { 8614 SwitchMBB->addSuccessor(DefaultMBB); 8615 if (DefaultMBB != NextBlock(SwitchMBB)) { 8616 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8617 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8618 } 8619 return; 8620 } 8621 8622 findJumpTables(Clusters, &SI, DefaultMBB); 8623 findBitTestClusters(Clusters, &SI); 8624 8625 DEBUG({ 8626 dbgs() << "Case clusters: "; 8627 for (const CaseCluster &C : Clusters) { 8628 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8629 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8630 8631 C.Low->getValue().print(dbgs(), true); 8632 if (C.Low != C.High) { 8633 dbgs() << '-'; 8634 C.High->getValue().print(dbgs(), true); 8635 } 8636 dbgs() << ' '; 8637 } 8638 dbgs() << '\n'; 8639 }); 8640 8641 assert(!Clusters.empty()); 8642 SwitchWorkList WorkList; 8643 CaseClusterIt First = Clusters.begin(); 8644 CaseClusterIt Last = Clusters.end() - 1; 8645 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8646 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8647 8648 while (!WorkList.empty()) { 8649 SwitchWorkListItem W = WorkList.back(); 8650 WorkList.pop_back(); 8651 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8652 8653 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8654 // For optimized builds, lower large range as a balanced binary tree. 8655 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8656 continue; 8657 } 8658 8659 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8660 } 8661 } 8662