1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 650 SDValue &Chain, SDValue *Flag, const Value *V) const; 651 652 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 653 /// operand list. This adds the code marker, matching input operand index 654 /// (if applicable), and includes the number of values added into it. 655 void AddInlineAsmOperands(unsigned Kind, 656 bool HasMatching, unsigned MatchingIdx, 657 SelectionDAG &DAG, 658 std::vector<SDValue> &Ops) const; 659 }; 660 } 661 662 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 663 /// this value and returns the result as a ValueVT value. This uses 664 /// Chain/Flag as the input and updates them for the output Chain/Flag. 665 /// If the Flag pointer is NULL, no flag is used. 666 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 667 FunctionLoweringInfo &FuncInfo, 668 SDLoc dl, 669 SDValue &Chain, SDValue *Flag, 670 const Value *V) const { 671 // A Value with type {} or [0 x %t] needs no registers. 672 if (ValueVTs.empty()) 673 return SDValue(); 674 675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 676 677 // Assemble the legal parts into the final values. 678 SmallVector<SDValue, 4> Values(ValueVTs.size()); 679 SmallVector<SDValue, 8> Parts; 680 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 681 // Copy the legal parts from the registers. 682 EVT ValueVT = ValueVTs[Value]; 683 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 684 MVT RegisterVT = RegVTs[Value]; 685 686 Parts.resize(NumRegs); 687 for (unsigned i = 0; i != NumRegs; ++i) { 688 SDValue P; 689 if (!Flag) { 690 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 691 } else { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 693 *Flag = P.getValue(2); 694 } 695 696 Chain = P.getValue(1); 697 Parts[i] = P; 698 699 // If the source register was virtual and if we know something about it, 700 // add an assert node. 701 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 702 !RegisterVT.isInteger() || RegisterVT.isVector()) 703 continue; 704 705 const FunctionLoweringInfo::LiveOutInfo *LOI = 706 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 707 if (!LOI) 708 continue; 709 710 unsigned RegSize = RegisterVT.getSizeInBits(); 711 unsigned NumSignBits = LOI->NumSignBits; 712 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 713 714 if (NumZeroBits == RegSize) { 715 // The current value is a zero. 716 // Explicitly express that as it would be easier for 717 // optimizations to kick in. 718 Parts[i] = DAG.getConstant(0, RegisterVT); 719 continue; 720 } 721 722 // FIXME: We capture more information than the dag can represent. For 723 // now, just use the tightest assertzext/assertsext possible. 724 bool isSExt = true; 725 EVT FromVT(MVT::Other); 726 if (NumSignBits == RegSize) 727 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 728 else if (NumZeroBits >= RegSize-1) 729 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 730 else if (NumSignBits > RegSize-8) 731 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 732 else if (NumZeroBits >= RegSize-8) 733 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 734 else if (NumSignBits > RegSize-16) 735 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 736 else if (NumZeroBits >= RegSize-16) 737 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 738 else if (NumSignBits > RegSize-32) 739 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 740 else if (NumZeroBits >= RegSize-32) 741 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 742 else 743 continue; 744 745 // Add an assertion node. 746 assert(FromVT != MVT::Other); 747 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 748 RegisterVT, P, DAG.getValueType(FromVT)); 749 } 750 751 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 752 NumRegs, RegisterVT, ValueVT, V); 753 Part += NumRegs; 754 Parts.clear(); 755 } 756 757 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 758 } 759 760 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 761 /// specified value into the registers specified by this object. This uses 762 /// Chain/Flag as the input and updates them for the output Chain/Flag. 763 /// If the Flag pointer is NULL, no flag is used. 764 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 765 SDValue &Chain, SDValue *Flag, 766 const Value *V) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 // Get the list of the values's legal parts. 770 unsigned NumRegs = Regs.size(); 771 SmallVector<SDValue, 8> Parts(NumRegs); 772 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 773 EVT ValueVT = ValueVTs[Value]; 774 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 775 MVT RegisterVT = RegVTs[Value]; 776 ISD::NodeType ExtendKind = 777 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 778 779 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 780 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 781 Part += NumParts; 782 } 783 784 // Copy the parts into the registers. 785 SmallVector<SDValue, 8> Chains(NumRegs); 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 SDValue Part; 788 if (!Flag) { 789 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 790 } else { 791 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 792 *Flag = Part.getValue(1); 793 } 794 795 Chains[i] = Part.getValue(0); 796 } 797 798 if (NumRegs == 1 || Flag) 799 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 800 // flagged to it. That is the CopyToReg nodes and the user are considered 801 // a single scheduling unit. If we create a TokenFactor and return it as 802 // chain, then the TokenFactor is both a predecessor (operand) of the 803 // user as well as a successor (the TF operands are flagged to the user). 804 // c1, f1 = CopyToReg 805 // c2, f2 = CopyToReg 806 // c3 = TokenFactor c1, c2 807 // ... 808 // = op c3, ..., f2 809 Chain = Chains[NumRegs-1]; 810 else 811 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 812 } 813 814 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 815 /// operand list. This adds the code marker and includes the number of 816 /// values added into it. 817 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 818 unsigned MatchingIdx, 819 SelectionDAG &DAG, 820 std::vector<SDValue> &Ops) const { 821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 822 823 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 824 if (HasMatching) 825 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 826 else if (!Regs.empty() && 827 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 828 // Put the register class of the virtual registers in the flag word. That 829 // way, later passes can recompute register class constraints for inline 830 // assembly as well as normal instructions. 831 // Don't do this for tied operands that can use the regclass information 832 // from the def. 833 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 834 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 835 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 836 } 837 838 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 839 Ops.push_back(Res); 840 841 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 842 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 843 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 844 MVT RegisterVT = RegVTs[Value]; 845 for (unsigned i = 0; i != NumRegs; ++i) { 846 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 847 unsigned TheReg = Regs[Reg++]; 848 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 849 850 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 851 // If we clobbered the stack pointer, MFI should know about it. 852 assert(DAG.getMachineFunction().getFrameInfo()-> 853 hasInlineAsmWithSPAdjust()); 854 } 855 } 856 } 857 } 858 859 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 860 const TargetLibraryInfo *li) { 861 AA = &aa; 862 GFI = gfi; 863 LibInfo = li; 864 DL = DAG.getSubtarget().getDataLayout(); 865 Context = DAG.getContext(); 866 LPadToCallSiteMap.clear(); 867 } 868 869 /// clear - Clear out the current SelectionDAG and the associated 870 /// state and prepare this SelectionDAGBuilder object to be used 871 /// for a new block. This doesn't clear out information about 872 /// additional blocks that are needed to complete switch lowering 873 /// or PHI node updating; that information is cleared out as it is 874 /// consumed. 875 void SelectionDAGBuilder::clear() { 876 NodeMap.clear(); 877 UnusedArgNodeMap.clear(); 878 PendingLoads.clear(); 879 PendingExports.clear(); 880 CurInst = nullptr; 881 HasTailCall = false; 882 SDNodeOrder = LowestSDNodeOrder; 883 } 884 885 /// clearDanglingDebugInfo - Clear the dangling debug information 886 /// map. This function is separated from the clear so that debug 887 /// information that is dangling in a basic block can be properly 888 /// resolved in a different basic block. This allows the 889 /// SelectionDAG to resolve dangling debug information attached 890 /// to PHI nodes. 891 void SelectionDAGBuilder::clearDanglingDebugInfo() { 892 DanglingDebugInfoMap.clear(); 893 } 894 895 /// getRoot - Return the current virtual root of the Selection DAG, 896 /// flushing any PendingLoad items. This must be done before emitting 897 /// a store or any other node that may need to be ordered after any 898 /// prior load instructions. 899 /// 900 SDValue SelectionDAGBuilder::getRoot() { 901 if (PendingLoads.empty()) 902 return DAG.getRoot(); 903 904 if (PendingLoads.size() == 1) { 905 SDValue Root = PendingLoads[0]; 906 DAG.setRoot(Root); 907 PendingLoads.clear(); 908 return Root; 909 } 910 911 // Otherwise, we have to make a token factor node. 912 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 PendingLoads); 914 PendingLoads.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 /// getControlRoot - Similar to getRoot, but instead of flushing all the 920 /// PendingLoad items, flush all the PendingExports items. It is necessary 921 /// to do this before emitting a terminator instruction. 922 /// 923 SDValue SelectionDAGBuilder::getControlRoot() { 924 SDValue Root = DAG.getRoot(); 925 926 if (PendingExports.empty()) 927 return Root; 928 929 // Turn all of the CopyToReg chains into one factored node. 930 if (Root.getOpcode() != ISD::EntryToken) { 931 unsigned i = 0, e = PendingExports.size(); 932 for (; i != e; ++i) { 933 assert(PendingExports[i].getNode()->getNumOperands() > 1); 934 if (PendingExports[i].getNode()->getOperand(0) == Root) 935 break; // Don't add the root if we already indirectly depend on it. 936 } 937 938 if (i == e) 939 PendingExports.push_back(Root); 940 } 941 942 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 943 PendingExports); 944 PendingExports.clear(); 945 DAG.setRoot(Root); 946 return Root; 947 } 948 949 void SelectionDAGBuilder::visit(const Instruction &I) { 950 // Set up outgoing PHI node register values before emitting the terminator. 951 if (isa<TerminatorInst>(&I)) 952 HandlePHINodesInSuccessorBlocks(I.getParent()); 953 954 ++SDNodeOrder; 955 956 CurInst = &I; 957 958 visit(I.getOpcode(), I); 959 960 if (!isa<TerminatorInst>(&I) && !HasTailCall) 961 CopyToExportRegsIfNeeded(&I); 962 963 CurInst = nullptr; 964 } 965 966 void SelectionDAGBuilder::visitPHI(const PHINode &) { 967 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 968 } 969 970 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 971 // Note: this doesn't use InstVisitor, because it has to work with 972 // ConstantExpr's in addition to instructions. 973 switch (Opcode) { 974 default: llvm_unreachable("Unknown instruction type encountered!"); 975 // Build the switch statement using the Instruction.def file. 976 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 977 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 978 #include "llvm/IR/Instruction.def" 979 } 980 } 981 982 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 983 // generate the debug data structures now that we've seen its definition. 984 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 985 SDValue Val) { 986 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 987 if (DDI.getDI()) { 988 const DbgValueInst *DI = DDI.getDI(); 989 DebugLoc dl = DDI.getdl(); 990 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 991 MDNode *Variable = DI->getVariable(); 992 uint64_t Offset = DI->getOffset(); 993 // A dbg.value for an alloca is always indirect. 994 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 995 SDDbgValue *SDV; 996 if (Val.getNode()) { 997 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 998 SDV = DAG.getDbgValue(Variable, Val.getNode(), 999 Val.getResNo(), IsIndirect, 1000 Offset, dl, DbgSDNodeOrder); 1001 DAG.AddDbgValue(SDV, Val.getNode(), false); 1002 } 1003 } else 1004 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1005 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1006 } 1007 } 1008 1009 /// getValue - Return an SDValue for the given Value. 1010 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1011 // If we already have an SDValue for this value, use it. It's important 1012 // to do this first, so that we don't create a CopyFromReg if we already 1013 // have a regular SDValue. 1014 SDValue &N = NodeMap[V]; 1015 if (N.getNode()) return N; 1016 1017 // If there's a virtual register allocated and initialized for this 1018 // value, use it. 1019 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1020 if (It != FuncInfo.ValueMap.end()) { 1021 unsigned InReg = It->second; 1022 RegsForValue RFV(*DAG.getContext(), 1023 *TM.getSubtargetImpl()->getTargetLowering(), InReg, 1024 V->getType()); 1025 SDValue Chain = DAG.getEntryNode(); 1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1027 resolveDanglingDebugInfo(V, N); 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getNonRegisterValue - Return an SDValue for the given Value, but 1039 /// don't look in FuncInfo.ValueMap for a virtual register. 1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1041 // If we already have an SDValue for this value, use it. 1042 SDValue &N = NodeMap[V]; 1043 if (N.getNode()) return N; 1044 1045 // Otherwise create a new SDValue and remember it. 1046 SDValue Val = getValueImpl(V); 1047 NodeMap[V] = Val; 1048 resolveDanglingDebugInfo(V, Val); 1049 return Val; 1050 } 1051 1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1053 /// Create an SDValue for the given value. 1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1055 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1056 1057 if (const Constant *C = dyn_cast<Constant>(V)) { 1058 EVT VT = TLI->getValueType(V->getType(), true); 1059 1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1061 return DAG.getConstant(*CI, VT); 1062 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1065 1066 if (isa<ConstantPointerNull>(C)) { 1067 unsigned AS = V->getType()->getPointerAddressSpace(); 1068 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1069 } 1070 1071 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1072 return DAG.getConstantFP(*CFP, VT); 1073 1074 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1075 return DAG.getUNDEF(VT); 1076 1077 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1078 visit(CE->getOpcode(), *CE); 1079 SDValue N1 = NodeMap[V]; 1080 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1081 return N1; 1082 } 1083 1084 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1085 SmallVector<SDValue, 4> Constants; 1086 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1087 OI != OE; ++OI) { 1088 SDNode *Val = getValue(*OI).getNode(); 1089 // If the operand is an empty aggregate, there are no values. 1090 if (!Val) continue; 1091 // Add each leaf value from the operand to the Constants list 1092 // to form a flattened list of all the values. 1093 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1094 Constants.push_back(SDValue(Val, i)); 1095 } 1096 1097 return DAG.getMergeValues(Constants, getCurSDLoc()); 1098 } 1099 1100 if (const ConstantDataSequential *CDS = 1101 dyn_cast<ConstantDataSequential>(C)) { 1102 SmallVector<SDValue, 4> Ops; 1103 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1104 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1105 // Add each leaf value from the operand to the Constants list 1106 // to form a flattened list of all the values. 1107 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1108 Ops.push_back(SDValue(Val, i)); 1109 } 1110 1111 if (isa<ArrayType>(CDS->getType())) 1112 return DAG.getMergeValues(Ops, getCurSDLoc()); 1113 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1114 VT, Ops); 1115 } 1116 1117 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1118 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1119 "Unknown struct or array constant!"); 1120 1121 SmallVector<EVT, 4> ValueVTs; 1122 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1123 unsigned NumElts = ValueVTs.size(); 1124 if (NumElts == 0) 1125 return SDValue(); // empty struct 1126 SmallVector<SDValue, 4> Constants(NumElts); 1127 for (unsigned i = 0; i != NumElts; ++i) { 1128 EVT EltVT = ValueVTs[i]; 1129 if (isa<UndefValue>(C)) 1130 Constants[i] = DAG.getUNDEF(EltVT); 1131 else if (EltVT.isFloatingPoint()) 1132 Constants[i] = DAG.getConstantFP(0, EltVT); 1133 else 1134 Constants[i] = DAG.getConstant(0, EltVT); 1135 } 1136 1137 return DAG.getMergeValues(Constants, getCurSDLoc()); 1138 } 1139 1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1141 return DAG.getBlockAddress(BA, VT); 1142 1143 VectorType *VecTy = cast<VectorType>(V->getType()); 1144 unsigned NumElements = VecTy->getNumElements(); 1145 1146 // Now that we know the number and type of the elements, get that number of 1147 // elements into the Ops array based on what kind of constant it is. 1148 SmallVector<SDValue, 16> Ops; 1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1150 for (unsigned i = 0; i != NumElements; ++i) 1151 Ops.push_back(getValue(CV->getOperand(i))); 1152 } else { 1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1154 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1155 1156 SDValue Op; 1157 if (EltVT.isFloatingPoint()) 1158 Op = DAG.getConstantFP(0, EltVT); 1159 else 1160 Op = DAG.getConstant(0, EltVT); 1161 Ops.assign(NumElements, Op); 1162 } 1163 1164 // Create a BUILD_VECTOR node. 1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1166 } 1167 1168 // If this is a static alloca, generate it as the frameindex instead of 1169 // computation. 1170 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1171 DenseMap<const AllocaInst*, int>::iterator SI = 1172 FuncInfo.StaticAllocaMap.find(AI); 1173 if (SI != FuncInfo.StaticAllocaMap.end()) 1174 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1175 } 1176 1177 // If this is an instruction which fast-isel has deferred, select it now. 1178 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1179 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1180 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1189 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1190 SDValue Chain = getControlRoot(); 1191 SmallVector<ISD::OutputArg, 8> Outs; 1192 SmallVector<SDValue, 8> OutVals; 1193 1194 if (!FuncInfo.CanLowerReturn) { 1195 unsigned DemoteReg = FuncInfo.DemoteRegister; 1196 const Function *F = I.getParent()->getParent(); 1197 1198 // Emit a store of the return value through the virtual register. 1199 // Leave Outs empty so that LowerReturn won't try to load return 1200 // registers the usual way. 1201 SmallVector<EVT, 1> PtrValueVTs; 1202 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1203 PtrValueVTs); 1204 1205 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1206 SDValue RetOp = getValue(I.getOperand(0)); 1207 1208 SmallVector<EVT, 4> ValueVTs; 1209 SmallVector<uint64_t, 4> Offsets; 1210 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1211 unsigned NumValues = ValueVTs.size(); 1212 1213 SmallVector<SDValue, 4> Chains(NumValues); 1214 for (unsigned i = 0; i != NumValues; ++i) { 1215 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1216 RetPtr.getValueType(), RetPtr, 1217 DAG.getIntPtrConstant(Offsets[i])); 1218 Chains[i] = 1219 DAG.getStore(Chain, getCurSDLoc(), 1220 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1221 // FIXME: better loc info would be nice. 1222 Add, MachinePointerInfo(), false, false, 0); 1223 } 1224 1225 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1226 MVT::Other, Chains); 1227 } else if (I.getNumOperands() != 0) { 1228 SmallVector<EVT, 4> ValueVTs; 1229 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1230 unsigned NumValues = ValueVTs.size(); 1231 if (NumValues) { 1232 SDValue RetOp = getValue(I.getOperand(0)); 1233 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1234 EVT VT = ValueVTs[j]; 1235 1236 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1237 1238 const Function *F = I.getParent()->getParent(); 1239 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::SExt)) 1241 ExtendKind = ISD::SIGN_EXTEND; 1242 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1243 Attribute::ZExt)) 1244 ExtendKind = ISD::ZERO_EXTEND; 1245 1246 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1247 VT = TLI->getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1248 1249 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1250 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1251 SmallVector<SDValue, 4> Parts(NumParts); 1252 getCopyToParts(DAG, getCurSDLoc(), 1253 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1254 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1255 1256 // 'inreg' on function refers to return value 1257 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1258 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1259 Attribute::InReg)) 1260 Flags.setInReg(); 1261 1262 // Propagate extension type if any 1263 if (ExtendKind == ISD::SIGN_EXTEND) 1264 Flags.setSExt(); 1265 else if (ExtendKind == ISD::ZERO_EXTEND) 1266 Flags.setZExt(); 1267 1268 for (unsigned i = 0; i < NumParts; ++i) { 1269 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1270 VT, /*isfixed=*/true, 0, 0)); 1271 OutVals.push_back(Parts[i]); 1272 } 1273 } 1274 } 1275 } 1276 1277 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1278 CallingConv::ID CallConv = 1279 DAG.getMachineFunction().getFunction()->getCallingConv(); 1280 Chain = TM.getSubtargetImpl()->getTargetLowering()->LowerReturn( 1281 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1282 1283 // Verify that the target's LowerReturn behaved as expected. 1284 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1285 "LowerReturn didn't return a valid chain!"); 1286 1287 // Update the DAG with the new chain value resulting from return lowering. 1288 DAG.setRoot(Chain); 1289 } 1290 1291 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1292 /// created for it, emit nodes to copy the value into the virtual 1293 /// registers. 1294 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1295 // Skip empty types 1296 if (V->getType()->isEmptyTy()) 1297 return; 1298 1299 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1300 if (VMI != FuncInfo.ValueMap.end()) { 1301 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1302 CopyValueToVirtualRegister(V, VMI->second); 1303 } 1304 } 1305 1306 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1307 /// the current basic block, add it to ValueMap now so that we'll get a 1308 /// CopyTo/FromReg. 1309 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1310 // No need to export constants. 1311 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1312 1313 // Already exported? 1314 if (FuncInfo.isExportedInst(V)) return; 1315 1316 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1317 CopyValueToVirtualRegister(V, Reg); 1318 } 1319 1320 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1321 const BasicBlock *FromBB) { 1322 // The operands of the setcc have to be in this block. We don't know 1323 // how to export them from some other block. 1324 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1325 // Can export from current BB. 1326 if (VI->getParent() == FromBB) 1327 return true; 1328 1329 // Is already exported, noop. 1330 return FuncInfo.isExportedInst(V); 1331 } 1332 1333 // If this is an argument, we can export it if the BB is the entry block or 1334 // if it is already exported. 1335 if (isa<Argument>(V)) { 1336 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1337 return true; 1338 1339 // Otherwise, can only export this if it is already exported. 1340 return FuncInfo.isExportedInst(V); 1341 } 1342 1343 // Otherwise, constants can always be exported. 1344 return true; 1345 } 1346 1347 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1348 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1349 const MachineBasicBlock *Dst) const { 1350 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1351 if (!BPI) 1352 return 0; 1353 const BasicBlock *SrcBB = Src->getBasicBlock(); 1354 const BasicBlock *DstBB = Dst->getBasicBlock(); 1355 return BPI->getEdgeWeight(SrcBB, DstBB); 1356 } 1357 1358 void SelectionDAGBuilder:: 1359 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1360 uint32_t Weight /* = 0 */) { 1361 if (!Weight) 1362 Weight = getEdgeWeight(Src, Dst); 1363 Src->addSuccessor(Dst, Weight); 1364 } 1365 1366 1367 static bool InBlock(const Value *V, const BasicBlock *BB) { 1368 if (const Instruction *I = dyn_cast<Instruction>(V)) 1369 return I->getParent() == BB; 1370 return true; 1371 } 1372 1373 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1374 /// This function emits a branch and is used at the leaves of an OR or an 1375 /// AND operator tree. 1376 /// 1377 void 1378 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1379 MachineBasicBlock *TBB, 1380 MachineBasicBlock *FBB, 1381 MachineBasicBlock *CurBB, 1382 MachineBasicBlock *SwitchBB, 1383 uint32_t TWeight, 1384 uint32_t FWeight) { 1385 const BasicBlock *BB = CurBB->getBasicBlock(); 1386 1387 // If the leaf of the tree is a comparison, merge the condition into 1388 // the caseblock. 1389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1390 // The operands of the cmp have to be in this block. We don't know 1391 // how to export them from some other block. If this is the first block 1392 // of the sequence, no exporting is needed. 1393 if (CurBB == SwitchBB || 1394 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1395 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1396 ISD::CondCode Condition; 1397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1398 Condition = getICmpCondCode(IC->getPredicate()); 1399 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1400 Condition = getFCmpCondCode(FC->getPredicate()); 1401 if (TM.Options.NoNaNsFPMath) 1402 Condition = getFCmpCodeWithoutNaN(Condition); 1403 } else { 1404 Condition = ISD::SETEQ; // silence warning. 1405 llvm_unreachable("Unknown compare instruction"); 1406 } 1407 1408 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1409 TBB, FBB, CurBB, TWeight, FWeight); 1410 SwitchCases.push_back(CB); 1411 return; 1412 } 1413 } 1414 1415 // Create a CaseBlock record representing this branch. 1416 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1417 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1418 SwitchCases.push_back(CB); 1419 } 1420 1421 /// Scale down both weights to fit into uint32_t. 1422 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1423 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1424 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1425 NewTrue = NewTrue / Scale; 1426 NewFalse = NewFalse / Scale; 1427 } 1428 1429 /// FindMergedConditions - If Cond is an expression like 1430 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1431 MachineBasicBlock *TBB, 1432 MachineBasicBlock *FBB, 1433 MachineBasicBlock *CurBB, 1434 MachineBasicBlock *SwitchBB, 1435 unsigned Opc, uint32_t TWeight, 1436 uint32_t FWeight) { 1437 // If this node is not part of the or/and tree, emit it as a branch. 1438 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1439 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1440 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1441 BOp->getParent() != CurBB->getBasicBlock() || 1442 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1443 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1444 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1445 TWeight, FWeight); 1446 return; 1447 } 1448 1449 // Create TmpBB after CurBB. 1450 MachineFunction::iterator BBI = CurBB; 1451 MachineFunction &MF = DAG.getMachineFunction(); 1452 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1453 CurBB->getParent()->insert(++BBI, TmpBB); 1454 1455 if (Opc == Instruction::Or) { 1456 // Codegen X | Y as: 1457 // BB1: 1458 // jmp_if_X TBB 1459 // jmp TmpBB 1460 // TmpBB: 1461 // jmp_if_Y TBB 1462 // jmp FBB 1463 // 1464 1465 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1466 // The requirement is that 1467 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1468 // = TrueProb for orignal BB. 1469 // Assuming the orignal weights are A and B, one choice is to set BB1's 1470 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1471 // assumes that 1472 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1473 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1474 // TmpBB, but the math is more complicated. 1475 1476 uint64_t NewTrueWeight = TWeight; 1477 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1478 ScaleWeights(NewTrueWeight, NewFalseWeight); 1479 // Emit the LHS condition. 1480 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1481 NewTrueWeight, NewFalseWeight); 1482 1483 NewTrueWeight = TWeight; 1484 NewFalseWeight = 2 * (uint64_t)FWeight; 1485 ScaleWeights(NewTrueWeight, NewFalseWeight); 1486 // Emit the RHS condition into TmpBB. 1487 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1488 NewTrueWeight, NewFalseWeight); 1489 } else { 1490 assert(Opc == Instruction::And && "Unknown merge op!"); 1491 // Codegen X & Y as: 1492 // BB1: 1493 // jmp_if_X TmpBB 1494 // jmp FBB 1495 // TmpBB: 1496 // jmp_if_Y TBB 1497 // jmp FBB 1498 // 1499 // This requires creation of TmpBB after CurBB. 1500 1501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1502 // The requirement is that 1503 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1504 // = FalseProb for orignal BB. 1505 // Assuming the orignal weights are A and B, one choice is to set BB1's 1506 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1507 // assumes that 1508 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1509 1510 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1511 uint64_t NewFalseWeight = FWeight; 1512 ScaleWeights(NewTrueWeight, NewFalseWeight); 1513 // Emit the LHS condition. 1514 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1515 NewTrueWeight, NewFalseWeight); 1516 1517 NewTrueWeight = 2 * (uint64_t)TWeight; 1518 NewFalseWeight = FWeight; 1519 ScaleWeights(NewTrueWeight, NewFalseWeight); 1520 // Emit the RHS condition into TmpBB. 1521 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1522 NewTrueWeight, NewFalseWeight); 1523 } 1524 } 1525 1526 /// If the set of cases should be emitted as a series of branches, return true. 1527 /// If we should emit this as a bunch of and/or'd together conditions, return 1528 /// false. 1529 bool 1530 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1531 if (Cases.size() != 2) return true; 1532 1533 // If this is two comparisons of the same values or'd or and'd together, they 1534 // will get folded into a single comparison, so don't emit two blocks. 1535 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1536 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1537 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1538 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1539 return false; 1540 } 1541 1542 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1543 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1544 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1545 Cases[0].CC == Cases[1].CC && 1546 isa<Constant>(Cases[0].CmpRHS) && 1547 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1548 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1549 return false; 1550 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1558 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1559 1560 // Update machine-CFG edges. 1561 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1562 1563 // Figure out which block is immediately after the current one. 1564 MachineBasicBlock *NextBlock = nullptr; 1565 MachineFunction::iterator BBI = BrMBB; 1566 if (++BBI != FuncInfo.MF->end()) 1567 NextBlock = BBI; 1568 1569 if (I.isUnconditional()) { 1570 // Update machine-CFG edges. 1571 BrMBB->addSuccessor(Succ0MBB); 1572 1573 // If this is not a fall-through branch or optimizations are switched off, 1574 // emit the branch. 1575 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1576 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1577 MVT::Other, getControlRoot(), 1578 DAG.getBasicBlock(Succ0MBB))); 1579 1580 return; 1581 } 1582 1583 // If this condition is one of the special cases we handle, do special stuff 1584 // now. 1585 const Value *CondVal = I.getCondition(); 1586 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1587 1588 // If this is a series of conditions that are or'd or and'd together, emit 1589 // this as a sequence of branches instead of setcc's with and/or operations. 1590 // As long as jumps are not expensive, this should improve performance. 1591 // For example, instead of something like: 1592 // cmp A, B 1593 // C = seteq 1594 // cmp D, E 1595 // F = setle 1596 // or C, F 1597 // jnz foo 1598 // Emit: 1599 // cmp A, B 1600 // je foo 1601 // cmp D, E 1602 // jle foo 1603 // 1604 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1605 if (!TM.getSubtargetImpl()->getTargetLowering()->isJumpExpensive() && 1606 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getSubtargetImpl()->getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 1815 SDValue Guard; 1816 1817 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1818 // guard value from the virtual register holding the value. Otherwise, emit a 1819 // volatile load to retrieve the stack guard value. 1820 unsigned GuardReg = SPD.getGuardReg(); 1821 1822 if (GuardReg && TLI->useLoadStackGuardNode()) 1823 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1824 PtrTy); 1825 else 1826 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1827 GuardPtr, MachinePointerInfo(IRGuard, 0), 1828 true, false, false, Align); 1829 1830 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1831 StackSlotPtr, 1832 MachinePointerInfo::getFixedStack(FI), 1833 true, false, false, Align); 1834 1835 // Perform the comparison via a subtract/getsetcc. 1836 EVT VT = Guard.getValueType(); 1837 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1838 1839 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1840 TLI->getSetCCResultType(*DAG.getContext(), 1841 Sub.getValueType()), 1842 Sub, DAG.getConstant(0, VT), 1843 ISD::SETNE); 1844 1845 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1846 // branch to failure MBB. 1847 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1848 MVT::Other, StackSlot.getOperand(0), 1849 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1850 // Otherwise branch to success MBB. 1851 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1852 MVT::Other, BrCond, 1853 DAG.getBasicBlock(SPD.getSuccessMBB())); 1854 1855 DAG.setRoot(Br); 1856 } 1857 1858 /// Codegen the failure basic block for a stack protector check. 1859 /// 1860 /// A failure stack protector machine basic block consists simply of a call to 1861 /// __stack_chk_fail(). 1862 /// 1863 /// For a high level explanation of how this fits into the stack protector 1864 /// generation see the comment on the declaration of class 1865 /// StackProtectorDescriptor. 1866 void 1867 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1868 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1869 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1870 MVT::isVoid, nullptr, 0, false, 1871 getCurSDLoc(), false, false).second; 1872 DAG.setRoot(Chain); 1873 } 1874 1875 /// visitBitTestHeader - This function emits necessary code to produce value 1876 /// suitable for "bit tests" 1877 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1878 MachineBasicBlock *SwitchBB) { 1879 // Subtract the minimum value 1880 SDValue SwitchOp = getValue(B.SValue); 1881 EVT VT = SwitchOp.getValueType(); 1882 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1883 DAG.getConstant(B.First, VT)); 1884 1885 // Check range 1886 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1887 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1888 TLI->getSetCCResultType(*DAG.getContext(), 1889 Sub.getValueType()), 1890 Sub, DAG.getConstant(B.Range, VT), 1891 ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI->isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI->getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC(getCurSDLoc(), 1956 TLI->getSetCCResultType(*DAG.getContext(), VT), 1957 ShiftOp, 1958 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1959 ISD::SETEQ); 1960 } else if (PopCount == BB.Range) { 1961 // There is only one zero bit in the range, test for it directly. 1962 Cmp = DAG.getSetCC(getCurSDLoc(), 1963 TLI->getSetCCResultType(*DAG.getContext(), VT), 1964 ShiftOp, 1965 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1966 ISD::SETNE); 1967 } else { 1968 // Make desired shift 1969 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1970 DAG.getConstant(1, VT), ShiftOp); 1971 1972 // Emit bit tests and jumps 1973 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1974 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1975 Cmp = DAG.getSetCC(getCurSDLoc(), 1976 TLI->getSetCCResultType(*DAG.getContext(), VT), 1977 AndOp, DAG.getConstant(0, VT), 1978 ISD::SETNE); 1979 } 1980 1981 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1982 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1983 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1984 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1985 1986 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1987 MVT::Other, getControlRoot(), 1988 Cmp, DAG.getBasicBlock(B.TargetBB)); 1989 1990 // Set NextBlock to be the MBB immediately after the current one, if any. 1991 // This is used to avoid emitting unnecessary branches to the next block. 1992 MachineBasicBlock *NextBlock = nullptr; 1993 MachineFunction::iterator BBI = SwitchBB; 1994 if (++BBI != FuncInfo.MF->end()) 1995 NextBlock = BBI; 1996 1997 if (NextMBB != NextBlock) 1998 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1999 DAG.getBasicBlock(NextMBB)); 2000 2001 DAG.setRoot(BrAnd); 2002 } 2003 2004 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2005 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2006 2007 // Retrieve successors. 2008 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2009 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2010 2011 const Value *Callee(I.getCalledValue()); 2012 const Function *Fn = dyn_cast<Function>(Callee); 2013 if (isa<InlineAsm>(Callee)) 2014 visitInlineAsm(&I); 2015 else if (Fn && Fn->isIntrinsic()) { 2016 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2017 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2018 } else 2019 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2020 2021 // If the value of the invoke is used outside of its defining block, make it 2022 // available as a virtual register. 2023 CopyToExportRegsIfNeeded(&I); 2024 2025 // Update successor info 2026 addSuccessorWithWeight(InvokeMBB, Return); 2027 addSuccessorWithWeight(InvokeMBB, LandingPad); 2028 2029 // Drop into normal successor. 2030 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2031 MVT::Other, getControlRoot(), 2032 DAG.getBasicBlock(Return))); 2033 } 2034 2035 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2036 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2037 } 2038 2039 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2040 assert(FuncInfo.MBB->isLandingPad() && 2041 "Call to landingpad not in landing pad!"); 2042 2043 MachineBasicBlock *MBB = FuncInfo.MBB; 2044 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2045 AddLandingPadInfo(LP, MMI, MBB); 2046 2047 // If there aren't registers to copy the values into (e.g., during SjLj 2048 // exceptions), then don't bother to create these DAG nodes. 2049 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2050 if (TLI->getExceptionPointerRegister() == 0 && 2051 TLI->getExceptionSelectorRegister() == 0) 2052 return; 2053 2054 SmallVector<EVT, 2> ValueVTs; 2055 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2056 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2057 2058 // Get the two live-in registers as SDValues. The physregs have already been 2059 // copied into virtual registers. 2060 SDValue Ops[2]; 2061 Ops[0] = DAG.getZExtOrTrunc( 2062 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2063 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2064 getCurSDLoc(), ValueVTs[0]); 2065 Ops[1] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2068 getCurSDLoc(), ValueVTs[1]); 2069 2070 // Merge into one. 2071 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2072 DAG.getVTList(ValueVTs), Ops); 2073 setValue(&LP, Res); 2074 } 2075 2076 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2077 /// small case ranges). 2078 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2079 CaseRecVector& WorkList, 2080 const Value* SV, 2081 MachineBasicBlock *Default, 2082 MachineBasicBlock *SwitchBB) { 2083 // Size is the number of Cases represented by this range. 2084 size_t Size = CR.Range.second - CR.Range.first; 2085 if (Size > 3) 2086 return false; 2087 2088 // Get the MachineFunction which holds the current MBB. This is used when 2089 // inserting any additional MBBs necessary to represent the switch. 2090 MachineFunction *CurMF = FuncInfo.MF; 2091 2092 // Figure out which block is immediately after the current one. 2093 MachineBasicBlock *NextBlock = nullptr; 2094 MachineFunction::iterator BBI = CR.CaseBB; 2095 2096 if (++BBI != FuncInfo.MF->end()) 2097 NextBlock = BBI; 2098 2099 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2100 // If any two of the cases has the same destination, and if one value 2101 // is the same as the other, but has one bit unset that the other has set, 2102 // use bit manipulation to do two compares at once. For example: 2103 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2104 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2105 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2106 if (Size == 2 && CR.CaseBB == SwitchBB) { 2107 Case &Small = *CR.Range.first; 2108 Case &Big = *(CR.Range.second-1); 2109 2110 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2111 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2112 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2113 2114 // Check that there is only one bit different. 2115 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2116 (SmallValue | BigValue) == BigValue) { 2117 // Isolate the common bit. 2118 APInt CommonBit = BigValue & ~SmallValue; 2119 assert((SmallValue | CommonBit) == BigValue && 2120 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2121 2122 SDValue CondLHS = getValue(SV); 2123 EVT VT = CondLHS.getValueType(); 2124 SDLoc DL = getCurSDLoc(); 2125 2126 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2127 DAG.getConstant(CommonBit, VT)); 2128 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2129 Or, DAG.getConstant(BigValue, VT), 2130 ISD::SETEQ); 2131 2132 // Update successor info. 2133 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2134 addSuccessorWithWeight(SwitchBB, Small.BB, 2135 Small.ExtraWeight + Big.ExtraWeight); 2136 addSuccessorWithWeight(SwitchBB, Default, 2137 // The default destination is the first successor in IR. 2138 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2139 2140 // Insert the true branch. 2141 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2142 getControlRoot(), Cond, 2143 DAG.getBasicBlock(Small.BB)); 2144 2145 // Insert the false branch. 2146 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2147 DAG.getBasicBlock(Default)); 2148 2149 DAG.setRoot(BrCond); 2150 return true; 2151 } 2152 } 2153 } 2154 2155 // Order cases by weight so the most likely case will be checked first. 2156 uint32_t UnhandledWeights = 0; 2157 if (BPI) { 2158 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2159 uint32_t IWeight = I->ExtraWeight; 2160 UnhandledWeights += IWeight; 2161 for (CaseItr J = CR.Range.first; J < I; ++J) { 2162 uint32_t JWeight = J->ExtraWeight; 2163 if (IWeight > JWeight) 2164 std::swap(*I, *J); 2165 } 2166 } 2167 } 2168 // Rearrange the case blocks so that the last one falls through if possible. 2169 Case &BackCase = *(CR.Range.second-1); 2170 if (Size > 1 && 2171 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2172 // The last case block won't fall through into 'NextBlock' if we emit the 2173 // branches in this order. See if rearranging a case value would help. 2174 // We start at the bottom as it's the case with the least weight. 2175 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2176 if (I->BB == NextBlock) { 2177 std::swap(*I, BackCase); 2178 break; 2179 } 2180 } 2181 2182 // Create a CaseBlock record representing a conditional branch to 2183 // the Case's target mbb if the value being switched on SV is equal 2184 // to C. 2185 MachineBasicBlock *CurBlock = CR.CaseBB; 2186 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2187 MachineBasicBlock *FallThrough; 2188 if (I != E-1) { 2189 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2190 CurMF->insert(BBI, FallThrough); 2191 2192 // Put SV in a virtual register to make it available from the new blocks. 2193 ExportFromCurrentBlock(SV); 2194 } else { 2195 // If the last case doesn't match, go to the default block. 2196 FallThrough = Default; 2197 } 2198 2199 const Value *RHS, *LHS, *MHS; 2200 ISD::CondCode CC; 2201 if (I->High == I->Low) { 2202 // This is just small small case range :) containing exactly 1 case 2203 CC = ISD::SETEQ; 2204 LHS = SV; RHS = I->High; MHS = nullptr; 2205 } else { 2206 CC = ISD::SETLE; 2207 LHS = I->Low; MHS = SV; RHS = I->High; 2208 } 2209 2210 // The false weight should be sum of all un-handled cases. 2211 UnhandledWeights -= I->ExtraWeight; 2212 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2213 /* me */ CurBlock, 2214 /* trueweight */ I->ExtraWeight, 2215 /* falseweight */ UnhandledWeights); 2216 2217 // If emitting the first comparison, just call visitSwitchCase to emit the 2218 // code into the current block. Otherwise, push the CaseBlock onto the 2219 // vector to be later processed by SDISel, and insert the node's MBB 2220 // before the next MBB. 2221 if (CurBlock == SwitchBB) 2222 visitSwitchCase(CB, SwitchBB); 2223 else 2224 SwitchCases.push_back(CB); 2225 2226 CurBlock = FallThrough; 2227 } 2228 2229 return true; 2230 } 2231 2232 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2233 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2234 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2235 } 2236 2237 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2238 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2239 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2240 return (LastExt - FirstExt + 1ULL); 2241 } 2242 2243 /// handleJTSwitchCase - Emit jumptable for current switch case range 2244 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2245 CaseRecVector &WorkList, 2246 const Value *SV, 2247 MachineBasicBlock *Default, 2248 MachineBasicBlock *SwitchBB) { 2249 Case& FrontCase = *CR.Range.first; 2250 Case& BackCase = *(CR.Range.second-1); 2251 2252 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2253 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2254 2255 APInt TSize(First.getBitWidth(), 0); 2256 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2257 TSize += I->size(); 2258 2259 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2260 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2261 return false; 2262 2263 APInt Range = ComputeRange(First, Last); 2264 // The density is TSize / Range. Require at least 40%. 2265 // It should not be possible for IntTSize to saturate for sane code, but make 2266 // sure we handle Range saturation correctly. 2267 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2268 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2269 if (IntTSize * 10 < IntRange * 4) 2270 return false; 2271 2272 DEBUG(dbgs() << "Lowering jump table\n" 2273 << "First entry: " << First << ". Last entry: " << Last << '\n' 2274 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2275 2276 // Get the MachineFunction which holds the current MBB. This is used when 2277 // inserting any additional MBBs necessary to represent the switch. 2278 MachineFunction *CurMF = FuncInfo.MF; 2279 2280 // Figure out which block is immediately after the current one. 2281 MachineFunction::iterator BBI = CR.CaseBB; 2282 ++BBI; 2283 2284 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2285 2286 // Create a new basic block to hold the code for loading the address 2287 // of the jump table, and jumping to it. Update successor information; 2288 // we will either branch to the default case for the switch, or the jump 2289 // table. 2290 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2291 CurMF->insert(BBI, JumpTableBB); 2292 2293 addSuccessorWithWeight(CR.CaseBB, Default); 2294 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2295 2296 // Build a vector of destination BBs, corresponding to each target 2297 // of the jump table. If the value of the jump table slot corresponds to 2298 // a case statement, push the case's BB onto the vector, otherwise, push 2299 // the default BB. 2300 std::vector<MachineBasicBlock*> DestBBs; 2301 APInt TEI = First; 2302 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2303 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2304 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2305 2306 if (Low.sle(TEI) && TEI.sle(High)) { 2307 DestBBs.push_back(I->BB); 2308 if (TEI==High) 2309 ++I; 2310 } else { 2311 DestBBs.push_back(Default); 2312 } 2313 } 2314 2315 // Calculate weight for each unique destination in CR. 2316 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2317 if (FuncInfo.BPI) 2318 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2319 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2320 DestWeights.find(I->BB); 2321 if (Itr != DestWeights.end()) 2322 Itr->second += I->ExtraWeight; 2323 else 2324 DestWeights[I->BB] = I->ExtraWeight; 2325 } 2326 2327 // Update successor info. Add one edge to each unique successor. 2328 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2329 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2330 E = DestBBs.end(); I != E; ++I) { 2331 if (!SuccsHandled[(*I)->getNumber()]) { 2332 SuccsHandled[(*I)->getNumber()] = true; 2333 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2334 DestWeights.find(*I); 2335 addSuccessorWithWeight(JumpTableBB, *I, 2336 Itr != DestWeights.end() ? Itr->second : 0); 2337 } 2338 } 2339 2340 // Create a jump table index for this jump table. 2341 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2342 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2343 ->createJumpTableIndex(DestBBs); 2344 2345 // Set the jump table information so that we can codegen it as a second 2346 // MachineBasicBlock 2347 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2348 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2349 if (CR.CaseBB == SwitchBB) 2350 visitJumpTableHeader(JT, JTH, SwitchBB); 2351 2352 JTCases.push_back(JumpTableBlock(JTH, JT)); 2353 return true; 2354 } 2355 2356 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2357 /// 2 subtrees. 2358 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2359 CaseRecVector& WorkList, 2360 const Value* SV, 2361 MachineBasicBlock* Default, 2362 MachineBasicBlock* SwitchBB) { 2363 // Get the MachineFunction which holds the current MBB. This is used when 2364 // inserting any additional MBBs necessary to represent the switch. 2365 MachineFunction *CurMF = FuncInfo.MF; 2366 2367 // Figure out which block is immediately after the current one. 2368 MachineFunction::iterator BBI = CR.CaseBB; 2369 ++BBI; 2370 2371 Case& FrontCase = *CR.Range.first; 2372 Case& BackCase = *(CR.Range.second-1); 2373 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2374 2375 // Size is the number of Cases represented by this range. 2376 unsigned Size = CR.Range.second - CR.Range.first; 2377 2378 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2379 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2380 double FMetric = 0; 2381 CaseItr Pivot = CR.Range.first + Size/2; 2382 2383 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2384 // (heuristically) allow us to emit JumpTable's later. 2385 APInt TSize(First.getBitWidth(), 0); 2386 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2387 I!=E; ++I) 2388 TSize += I->size(); 2389 2390 APInt LSize = FrontCase.size(); 2391 APInt RSize = TSize-LSize; 2392 DEBUG(dbgs() << "Selecting best pivot: \n" 2393 << "First: " << First << ", Last: " << Last <<'\n' 2394 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2395 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2396 J!=E; ++I, ++J) { 2397 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2398 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2399 APInt Range = ComputeRange(LEnd, RBegin); 2400 assert((Range - 2ULL).isNonNegative() && 2401 "Invalid case distance"); 2402 // Use volatile double here to avoid excess precision issues on some hosts, 2403 // e.g. that use 80-bit X87 registers. 2404 volatile double LDensity = 2405 (double)LSize.roundToDouble() / 2406 (LEnd - First + 1ULL).roundToDouble(); 2407 volatile double RDensity = 2408 (double)RSize.roundToDouble() / 2409 (Last - RBegin + 1ULL).roundToDouble(); 2410 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2411 // Should always split in some non-trivial place 2412 DEBUG(dbgs() <<"=>Step\n" 2413 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2414 << "LDensity: " << LDensity 2415 << ", RDensity: " << RDensity << '\n' 2416 << "Metric: " << Metric << '\n'); 2417 if (FMetric < Metric) { 2418 Pivot = J; 2419 FMetric = Metric; 2420 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2421 } 2422 2423 LSize += J->size(); 2424 RSize -= J->size(); 2425 } 2426 2427 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2428 if (areJTsAllowed(*TLI)) { 2429 // If our case is dense we *really* should handle it earlier! 2430 assert((FMetric > 0) && "Should handle dense range earlier!"); 2431 } else { 2432 Pivot = CR.Range.first + Size/2; 2433 } 2434 2435 CaseRange LHSR(CR.Range.first, Pivot); 2436 CaseRange RHSR(Pivot, CR.Range.second); 2437 const Constant *C = Pivot->Low; 2438 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2439 2440 // We know that we branch to the LHS if the Value being switched on is 2441 // less than the Pivot value, C. We use this to optimize our binary 2442 // tree a bit, by recognizing that if SV is greater than or equal to the 2443 // LHS's Case Value, and that Case Value is exactly one less than the 2444 // Pivot's Value, then we can branch directly to the LHS's Target, 2445 // rather than creating a leaf node for it. 2446 if ((LHSR.second - LHSR.first) == 1 && 2447 LHSR.first->High == CR.GE && 2448 cast<ConstantInt>(C)->getValue() == 2449 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2450 TrueBB = LHSR.first->BB; 2451 } else { 2452 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2453 CurMF->insert(BBI, TrueBB); 2454 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2455 2456 // Put SV in a virtual register to make it available from the new blocks. 2457 ExportFromCurrentBlock(SV); 2458 } 2459 2460 // Similar to the optimization above, if the Value being switched on is 2461 // known to be less than the Constant CR.LT, and the current Case Value 2462 // is CR.LT - 1, then we can branch directly to the target block for 2463 // the current Case Value, rather than emitting a RHS leaf node for it. 2464 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2465 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2466 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2467 FalseBB = RHSR.first->BB; 2468 } else { 2469 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2470 CurMF->insert(BBI, FalseBB); 2471 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2472 2473 // Put SV in a virtual register to make it available from the new blocks. 2474 ExportFromCurrentBlock(SV); 2475 } 2476 2477 // Create a CaseBlock record representing a conditional branch to 2478 // the LHS node if the value being switched on SV is less than C. 2479 // Otherwise, branch to LHS. 2480 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2481 2482 if (CR.CaseBB == SwitchBB) 2483 visitSwitchCase(CB, SwitchBB); 2484 else 2485 SwitchCases.push_back(CB); 2486 2487 return true; 2488 } 2489 2490 /// handleBitTestsSwitchCase - if current case range has few destination and 2491 /// range span less, than machine word bitwidth, encode case range into series 2492 /// of masks and emit bit tests with these masks. 2493 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2494 CaseRecVector& WorkList, 2495 const Value* SV, 2496 MachineBasicBlock* Default, 2497 MachineBasicBlock* SwitchBB) { 2498 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2499 EVT PTy = TLI->getPointerTy(); 2500 unsigned IntPtrBits = PTy.getSizeInBits(); 2501 2502 Case& FrontCase = *CR.Range.first; 2503 Case& BackCase = *(CR.Range.second-1); 2504 2505 // Get the MachineFunction which holds the current MBB. This is used when 2506 // inserting any additional MBBs necessary to represent the switch. 2507 MachineFunction *CurMF = FuncInfo.MF; 2508 2509 // If target does not have legal shift left, do not emit bit tests at all. 2510 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2511 return false; 2512 2513 size_t numCmps = 0; 2514 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2515 I!=E; ++I) { 2516 // Single case counts one, case range - two. 2517 numCmps += (I->Low == I->High ? 1 : 2); 2518 } 2519 2520 // Count unique destinations 2521 SmallSet<MachineBasicBlock*, 4> Dests; 2522 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2523 Dests.insert(I->BB); 2524 if (Dests.size() > 3) 2525 // Don't bother the code below, if there are too much unique destinations 2526 return false; 2527 } 2528 DEBUG(dbgs() << "Total number of unique destinations: " 2529 << Dests.size() << '\n' 2530 << "Total number of comparisons: " << numCmps << '\n'); 2531 2532 // Compute span of values. 2533 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2534 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2535 APInt cmpRange = maxValue - minValue; 2536 2537 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2538 << "Low bound: " << minValue << '\n' 2539 << "High bound: " << maxValue << '\n'); 2540 2541 if (cmpRange.uge(IntPtrBits) || 2542 (!(Dests.size() == 1 && numCmps >= 3) && 2543 !(Dests.size() == 2 && numCmps >= 5) && 2544 !(Dests.size() >= 3 && numCmps >= 6))) 2545 return false; 2546 2547 DEBUG(dbgs() << "Emitting bit tests\n"); 2548 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2549 2550 // Optimize the case where all the case values fit in a 2551 // word without having to subtract minValue. In this case, 2552 // we can optimize away the subtraction. 2553 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2554 cmpRange = maxValue; 2555 } else { 2556 lowBound = minValue; 2557 } 2558 2559 CaseBitsVector CasesBits; 2560 unsigned i, count = 0; 2561 2562 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2563 MachineBasicBlock* Dest = I->BB; 2564 for (i = 0; i < count; ++i) 2565 if (Dest == CasesBits[i].BB) 2566 break; 2567 2568 if (i == count) { 2569 assert((count < 3) && "Too much destinations to test!"); 2570 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2571 count++; 2572 } 2573 2574 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2575 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2576 2577 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2578 uint64_t hi = (highValue - lowBound).getZExtValue(); 2579 CasesBits[i].ExtraWeight += I->ExtraWeight; 2580 2581 for (uint64_t j = lo; j <= hi; j++) { 2582 CasesBits[i].Mask |= 1ULL << j; 2583 CasesBits[i].Bits++; 2584 } 2585 2586 } 2587 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2588 2589 BitTestInfo BTC; 2590 2591 // Figure out which block is immediately after the current one. 2592 MachineFunction::iterator BBI = CR.CaseBB; 2593 ++BBI; 2594 2595 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2596 2597 DEBUG(dbgs() << "Cases:\n"); 2598 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2599 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2600 << ", Bits: " << CasesBits[i].Bits 2601 << ", BB: " << CasesBits[i].BB << '\n'); 2602 2603 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2604 CurMF->insert(BBI, CaseBB); 2605 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2606 CaseBB, 2607 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2608 2609 // Put SV in a virtual register to make it available from the new blocks. 2610 ExportFromCurrentBlock(SV); 2611 } 2612 2613 BitTestBlock BTB(lowBound, cmpRange, SV, 2614 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2615 CR.CaseBB, Default, BTC); 2616 2617 if (CR.CaseBB == SwitchBB) 2618 visitBitTestHeader(BTB, SwitchBB); 2619 2620 BitTestCases.push_back(BTB); 2621 2622 return true; 2623 } 2624 2625 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2626 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2627 const SwitchInst& SI) { 2628 size_t numCmps = 0; 2629 2630 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2631 // Start with "simple" cases 2632 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2633 i != e; ++i) { 2634 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2635 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2636 2637 uint32_t ExtraWeight = 2638 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2639 2640 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2641 SMBB, ExtraWeight)); 2642 } 2643 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2644 2645 // Merge case into clusters 2646 if (Cases.size() >= 2) 2647 // Must recompute end() each iteration because it may be 2648 // invalidated by erase if we hold on to it 2649 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2650 J != Cases.end(); ) { 2651 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2652 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2653 MachineBasicBlock* nextBB = J->BB; 2654 MachineBasicBlock* currentBB = I->BB; 2655 2656 // If the two neighboring cases go to the same destination, merge them 2657 // into a single case. 2658 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2659 I->High = J->High; 2660 I->ExtraWeight += J->ExtraWeight; 2661 J = Cases.erase(J); 2662 } else { 2663 I = J++; 2664 } 2665 } 2666 2667 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2668 if (I->Low != I->High) 2669 // A range counts double, since it requires two compares. 2670 ++numCmps; 2671 } 2672 2673 return numCmps; 2674 } 2675 2676 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2677 MachineBasicBlock *Last) { 2678 // Update JTCases. 2679 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2680 if (JTCases[i].first.HeaderBB == First) 2681 JTCases[i].first.HeaderBB = Last; 2682 2683 // Update BitTestCases. 2684 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2685 if (BitTestCases[i].Parent == First) 2686 BitTestCases[i].Parent = Last; 2687 } 2688 2689 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2690 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2691 2692 // Figure out which block is immediately after the current one. 2693 MachineBasicBlock *NextBlock = nullptr; 2694 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2695 2696 // If there is only the default destination, branch to it if it is not the 2697 // next basic block. Otherwise, just fall through. 2698 if (!SI.getNumCases()) { 2699 // Update machine-CFG edges. 2700 2701 // If this is not a fall-through branch, emit the branch. 2702 SwitchMBB->addSuccessor(Default); 2703 if (Default != NextBlock) 2704 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2705 MVT::Other, getControlRoot(), 2706 DAG.getBasicBlock(Default))); 2707 2708 return; 2709 } 2710 2711 // If there are any non-default case statements, create a vector of Cases 2712 // representing each one, and sort the vector so that we can efficiently 2713 // create a binary search tree from them. 2714 CaseVector Cases; 2715 size_t numCmps = Clusterify(Cases, SI); 2716 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2717 << ". Total compares: " << numCmps << '\n'); 2718 (void)numCmps; 2719 2720 // Get the Value to be switched on and default basic blocks, which will be 2721 // inserted into CaseBlock records, representing basic blocks in the binary 2722 // search tree. 2723 const Value *SV = SI.getCondition(); 2724 2725 // Push the initial CaseRec onto the worklist 2726 CaseRecVector WorkList; 2727 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2728 CaseRange(Cases.begin(),Cases.end()))); 2729 2730 while (!WorkList.empty()) { 2731 // Grab a record representing a case range to process off the worklist 2732 CaseRec CR = WorkList.back(); 2733 WorkList.pop_back(); 2734 2735 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2736 continue; 2737 2738 // If the range has few cases (two or less) emit a series of specific 2739 // tests. 2740 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2741 continue; 2742 2743 // If the switch has more than N blocks, and is at least 40% dense, and the 2744 // target supports indirect branches, then emit a jump table rather than 2745 // lowering the switch to a binary tree of conditional branches. 2746 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2747 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2748 continue; 2749 2750 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2751 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2752 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2753 } 2754 } 2755 2756 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2757 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2758 2759 // Update machine-CFG edges with unique successors. 2760 SmallSet<BasicBlock*, 32> Done; 2761 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2762 BasicBlock *BB = I.getSuccessor(i); 2763 bool Inserted = Done.insert(BB); 2764 if (!Inserted) 2765 continue; 2766 2767 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2768 addSuccessorWithWeight(IndirectBrMBB, Succ); 2769 } 2770 2771 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2772 MVT::Other, getControlRoot(), 2773 getValue(I.getAddress()))); 2774 } 2775 2776 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2777 if (DAG.getTarget().Options.TrapUnreachable) 2778 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2779 } 2780 2781 void SelectionDAGBuilder::visitFSub(const User &I) { 2782 // -0.0 - X --> fneg 2783 Type *Ty = I.getType(); 2784 if (isa<Constant>(I.getOperand(0)) && 2785 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2786 SDValue Op2 = getValue(I.getOperand(1)); 2787 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2788 Op2.getValueType(), Op2)); 2789 return; 2790 } 2791 2792 visitBinary(I, ISD::FSUB); 2793 } 2794 2795 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2796 SDValue Op1 = getValue(I.getOperand(0)); 2797 SDValue Op2 = getValue(I.getOperand(1)); 2798 2799 bool nuw = false; 2800 bool nsw = false; 2801 bool exact = false; 2802 if (const OverflowingBinaryOperator *OFBinOp = 2803 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2804 nuw = OFBinOp->hasNoUnsignedWrap(); 2805 nsw = OFBinOp->hasNoSignedWrap(); 2806 } 2807 if (const PossiblyExactOperator *ExactOp = 2808 dyn_cast<const PossiblyExactOperator>(&I)) 2809 exact = ExactOp->isExact(); 2810 2811 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2812 Op1, Op2, nuw, nsw, exact); 2813 setValue(&I, BinNodeValue); 2814 } 2815 2816 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2817 SDValue Op1 = getValue(I.getOperand(0)); 2818 SDValue Op2 = getValue(I.getOperand(1)); 2819 2820 EVT ShiftTy = TM.getSubtargetImpl()->getTargetLowering()->getShiftAmountTy( 2821 Op2.getValueType()); 2822 2823 // Coerce the shift amount to the right type if we can. 2824 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2825 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2826 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2827 SDLoc DL = getCurSDLoc(); 2828 2829 // If the operand is smaller than the shift count type, promote it. 2830 if (ShiftSize > Op2Size) 2831 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2832 2833 // If the operand is larger than the shift count type but the shift 2834 // count type has enough bits to represent any shift value, truncate 2835 // it now. This is a common case and it exposes the truncate to 2836 // optimization early. 2837 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2838 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2839 // Otherwise we'll need to temporarily settle for some other convenient 2840 // type. Type legalization will make adjustments once the shiftee is split. 2841 else 2842 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2843 } 2844 2845 bool nuw = false; 2846 bool nsw = false; 2847 bool exact = false; 2848 2849 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2850 2851 if (const OverflowingBinaryOperator *OFBinOp = 2852 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2853 nuw = OFBinOp->hasNoUnsignedWrap(); 2854 nsw = OFBinOp->hasNoSignedWrap(); 2855 } 2856 if (const PossiblyExactOperator *ExactOp = 2857 dyn_cast<const PossiblyExactOperator>(&I)) 2858 exact = ExactOp->isExact(); 2859 } 2860 2861 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2862 nuw, nsw, exact); 2863 setValue(&I, Res); 2864 } 2865 2866 void SelectionDAGBuilder::visitSDiv(const User &I) { 2867 SDValue Op1 = getValue(I.getOperand(0)); 2868 SDValue Op2 = getValue(I.getOperand(1)); 2869 2870 // Turn exact SDivs into multiplications. 2871 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2872 // exact bit. 2873 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2874 !isa<ConstantSDNode>(Op1) && 2875 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2876 setValue(&I, TM.getSubtargetImpl()->getTargetLowering()->BuildExactSDIV( 2877 Op1, Op2, getCurSDLoc(), DAG)); 2878 else 2879 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2880 Op1, Op2)); 2881 } 2882 2883 void SelectionDAGBuilder::visitICmp(const User &I) { 2884 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2885 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2886 predicate = IC->getPredicate(); 2887 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2888 predicate = ICmpInst::Predicate(IC->getPredicate()); 2889 SDValue Op1 = getValue(I.getOperand(0)); 2890 SDValue Op2 = getValue(I.getOperand(1)); 2891 ISD::CondCode Opcode = getICmpCondCode(predicate); 2892 2893 EVT DestVT = 2894 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2895 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2896 } 2897 2898 void SelectionDAGBuilder::visitFCmp(const User &I) { 2899 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2900 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2901 predicate = FC->getPredicate(); 2902 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2903 predicate = FCmpInst::Predicate(FC->getPredicate()); 2904 SDValue Op1 = getValue(I.getOperand(0)); 2905 SDValue Op2 = getValue(I.getOperand(1)); 2906 ISD::CondCode Condition = getFCmpCondCode(predicate); 2907 if (TM.Options.NoNaNsFPMath) 2908 Condition = getFCmpCodeWithoutNaN(Condition); 2909 EVT DestVT = 2910 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2911 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2912 } 2913 2914 void SelectionDAGBuilder::visitSelect(const User &I) { 2915 SmallVector<EVT, 4> ValueVTs; 2916 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), I.getType(), 2917 ValueVTs); 2918 unsigned NumValues = ValueVTs.size(); 2919 if (NumValues == 0) return; 2920 2921 SmallVector<SDValue, 4> Values(NumValues); 2922 SDValue Cond = getValue(I.getOperand(0)); 2923 SDValue TrueVal = getValue(I.getOperand(1)); 2924 SDValue FalseVal = getValue(I.getOperand(2)); 2925 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2926 ISD::VSELECT : ISD::SELECT; 2927 2928 for (unsigned i = 0; i != NumValues; ++i) 2929 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2930 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2931 Cond, 2932 SDValue(TrueVal.getNode(), 2933 TrueVal.getResNo() + i), 2934 SDValue(FalseVal.getNode(), 2935 FalseVal.getResNo() + i)); 2936 2937 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2938 DAG.getVTList(ValueVTs), Values)); 2939 } 2940 2941 void SelectionDAGBuilder::visitTrunc(const User &I) { 2942 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2943 SDValue N = getValue(I.getOperand(0)); 2944 EVT DestVT = 2945 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2946 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2947 } 2948 2949 void SelectionDAGBuilder::visitZExt(const User &I) { 2950 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2951 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2952 SDValue N = getValue(I.getOperand(0)); 2953 EVT DestVT = 2954 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2955 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2956 } 2957 2958 void SelectionDAGBuilder::visitSExt(const User &I) { 2959 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2960 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2961 SDValue N = getValue(I.getOperand(0)); 2962 EVT DestVT = 2963 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2964 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2965 } 2966 2967 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2968 // FPTrunc is never a no-op cast, no need to check 2969 SDValue N = getValue(I.getOperand(0)); 2970 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2971 EVT DestVT = TLI->getValueType(I.getType()); 2972 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2973 DestVT, N, 2974 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2975 } 2976 2977 void SelectionDAGBuilder::visitFPExt(const User &I) { 2978 // FPExt is never a no-op cast, no need to check 2979 SDValue N = getValue(I.getOperand(0)); 2980 EVT DestVT = 2981 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2982 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2983 } 2984 2985 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2986 // FPToUI is never a no-op cast, no need to check 2987 SDValue N = getValue(I.getOperand(0)); 2988 EVT DestVT = 2989 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2990 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2991 } 2992 2993 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2994 // FPToSI is never a no-op cast, no need to check 2995 SDValue N = getValue(I.getOperand(0)); 2996 EVT DestVT = 2997 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2998 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2999 } 3000 3001 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3002 // UIToFP is never a no-op cast, no need to check 3003 SDValue N = getValue(I.getOperand(0)); 3004 EVT DestVT = 3005 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3006 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3007 } 3008 3009 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3010 // SIToFP is never a no-op cast, no need to check 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = 3013 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3014 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3015 } 3016 3017 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3018 // What to do depends on the size of the integer and the size of the pointer. 3019 // We can either truncate, zero extend, or no-op, accordingly. 3020 SDValue N = getValue(I.getOperand(0)); 3021 EVT DestVT = 3022 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3023 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3024 } 3025 3026 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3027 // What to do depends on the size of the integer and the size of the pointer. 3028 // We can either truncate, zero extend, or no-op, accordingly. 3029 SDValue N = getValue(I.getOperand(0)); 3030 EVT DestVT = 3031 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3032 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3033 } 3034 3035 void SelectionDAGBuilder::visitBitCast(const User &I) { 3036 SDValue N = getValue(I.getOperand(0)); 3037 EVT DestVT = 3038 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3039 3040 // BitCast assures us that source and destination are the same size so this is 3041 // either a BITCAST or a no-op. 3042 if (DestVT != N.getValueType()) 3043 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3044 DestVT, N)); // convert types. 3045 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3046 // might fold any kind of constant expression to an integer constant and that 3047 // is not what we are looking for. Only regcognize a bitcast of a genuine 3048 // constant integer as an opaque constant. 3049 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3050 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3051 /*isOpaque*/true)); 3052 else 3053 setValue(&I, N); // noop cast. 3054 } 3055 3056 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3058 const Value *SV = I.getOperand(0); 3059 SDValue N = getValue(SV); 3060 EVT DestVT = 3061 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3062 3063 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3064 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3065 3066 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3067 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3068 3069 setValue(&I, N); 3070 } 3071 3072 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3073 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3074 SDValue InVec = getValue(I.getOperand(0)); 3075 SDValue InVal = getValue(I.getOperand(1)); 3076 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3077 getCurSDLoc(), TLI.getVectorIdxTy()); 3078 setValue(&I, 3079 DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3080 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3081 I.getType()), 3082 InVec, InVal, InIdx)); 3083 } 3084 3085 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3087 SDValue InVec = getValue(I.getOperand(0)); 3088 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3089 getCurSDLoc(), TLI.getVectorIdxTy()); 3090 setValue(&I, 3091 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3092 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3093 I.getType()), 3094 InVec, InIdx)); 3095 } 3096 3097 // Utility for visitShuffleVector - Return true if every element in Mask, 3098 // beginning from position Pos and ending in Pos+Size, falls within the 3099 // specified sequential range [L, L+Pos). or is undef. 3100 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3101 unsigned Pos, unsigned Size, int Low) { 3102 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3103 if (Mask[i] >= 0 && Mask[i] != Low) 3104 return false; 3105 return true; 3106 } 3107 3108 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3109 SDValue Src1 = getValue(I.getOperand(0)); 3110 SDValue Src2 = getValue(I.getOperand(1)); 3111 3112 SmallVector<int, 8> Mask; 3113 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3114 unsigned MaskNumElts = Mask.size(); 3115 3116 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3117 EVT VT = TLI->getValueType(I.getType()); 3118 EVT SrcVT = Src1.getValueType(); 3119 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3120 3121 if (SrcNumElts == MaskNumElts) { 3122 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3123 &Mask[0])); 3124 return; 3125 } 3126 3127 // Normalize the shuffle vector since mask and vector length don't match. 3128 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3129 // Mask is longer than the source vectors and is a multiple of the source 3130 // vectors. We can use concatenate vector to make the mask and vectors 3131 // lengths match. 3132 if (SrcNumElts*2 == MaskNumElts) { 3133 // First check for Src1 in low and Src2 in high 3134 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3135 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3136 // The shuffle is concatenating two vectors together. 3137 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3138 VT, Src1, Src2)); 3139 return; 3140 } 3141 // Then check for Src2 in low and Src1 in high 3142 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3143 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3144 // The shuffle is concatenating two vectors together. 3145 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3146 VT, Src2, Src1)); 3147 return; 3148 } 3149 } 3150 3151 // Pad both vectors with undefs to make them the same length as the mask. 3152 unsigned NumConcat = MaskNumElts / SrcNumElts; 3153 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3154 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3155 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3156 3157 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3158 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3159 MOps1[0] = Src1; 3160 MOps2[0] = Src2; 3161 3162 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3163 getCurSDLoc(), VT, MOps1); 3164 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3165 getCurSDLoc(), VT, MOps2); 3166 3167 // Readjust mask for new input vector length. 3168 SmallVector<int, 8> MappedOps; 3169 for (unsigned i = 0; i != MaskNumElts; ++i) { 3170 int Idx = Mask[i]; 3171 if (Idx >= (int)SrcNumElts) 3172 Idx -= SrcNumElts - MaskNumElts; 3173 MappedOps.push_back(Idx); 3174 } 3175 3176 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3177 &MappedOps[0])); 3178 return; 3179 } 3180 3181 if (SrcNumElts > MaskNumElts) { 3182 // Analyze the access pattern of the vector to see if we can extract 3183 // two subvectors and do the shuffle. The analysis is done by calculating 3184 // the range of elements the mask access on both vectors. 3185 int MinRange[2] = { static_cast<int>(SrcNumElts), 3186 static_cast<int>(SrcNumElts)}; 3187 int MaxRange[2] = {-1, -1}; 3188 3189 for (unsigned i = 0; i != MaskNumElts; ++i) { 3190 int Idx = Mask[i]; 3191 unsigned Input = 0; 3192 if (Idx < 0) 3193 continue; 3194 3195 if (Idx >= (int)SrcNumElts) { 3196 Input = 1; 3197 Idx -= SrcNumElts; 3198 } 3199 if (Idx > MaxRange[Input]) 3200 MaxRange[Input] = Idx; 3201 if (Idx < MinRange[Input]) 3202 MinRange[Input] = Idx; 3203 } 3204 3205 // Check if the access is smaller than the vector size and can we find 3206 // a reasonable extract index. 3207 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3208 // Extract. 3209 int StartIdx[2]; // StartIdx to extract from 3210 for (unsigned Input = 0; Input < 2; ++Input) { 3211 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3212 RangeUse[Input] = 0; // Unused 3213 StartIdx[Input] = 0; 3214 continue; 3215 } 3216 3217 // Find a good start index that is a multiple of the mask length. Then 3218 // see if the rest of the elements are in range. 3219 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3220 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3221 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3222 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3223 } 3224 3225 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3226 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3227 return; 3228 } 3229 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3230 // Extract appropriate subvector and generate a vector shuffle 3231 for (unsigned Input = 0; Input < 2; ++Input) { 3232 SDValue &Src = Input == 0 ? Src1 : Src2; 3233 if (RangeUse[Input] == 0) 3234 Src = DAG.getUNDEF(VT); 3235 else 3236 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3237 Src, DAG.getConstant(StartIdx[Input], 3238 TLI->getVectorIdxTy())); 3239 } 3240 3241 // Calculate new mask. 3242 SmallVector<int, 8> MappedOps; 3243 for (unsigned i = 0; i != MaskNumElts; ++i) { 3244 int Idx = Mask[i]; 3245 if (Idx >= 0) { 3246 if (Idx < (int)SrcNumElts) 3247 Idx -= StartIdx[0]; 3248 else 3249 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3250 } 3251 MappedOps.push_back(Idx); 3252 } 3253 3254 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3255 &MappedOps[0])); 3256 return; 3257 } 3258 } 3259 3260 // We can't use either concat vectors or extract subvectors so fall back to 3261 // replacing the shuffle with extract and build vector. 3262 // to insert and build vector. 3263 EVT EltVT = VT.getVectorElementType(); 3264 EVT IdxVT = TLI->getVectorIdxTy(); 3265 SmallVector<SDValue,8> Ops; 3266 for (unsigned i = 0; i != MaskNumElts; ++i) { 3267 int Idx = Mask[i]; 3268 SDValue Res; 3269 3270 if (Idx < 0) { 3271 Res = DAG.getUNDEF(EltVT); 3272 } else { 3273 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3274 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3275 3276 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3277 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3278 } 3279 3280 Ops.push_back(Res); 3281 } 3282 3283 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3284 } 3285 3286 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3287 const Value *Op0 = I.getOperand(0); 3288 const Value *Op1 = I.getOperand(1); 3289 Type *AggTy = I.getType(); 3290 Type *ValTy = Op1->getType(); 3291 bool IntoUndef = isa<UndefValue>(Op0); 3292 bool FromUndef = isa<UndefValue>(Op1); 3293 3294 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3295 3296 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3297 SmallVector<EVT, 4> AggValueVTs; 3298 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3299 SmallVector<EVT, 4> ValValueVTs; 3300 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3301 3302 unsigned NumAggValues = AggValueVTs.size(); 3303 unsigned NumValValues = ValValueVTs.size(); 3304 SmallVector<SDValue, 4> Values(NumAggValues); 3305 3306 SDValue Agg = getValue(Op0); 3307 unsigned i = 0; 3308 // Copy the beginning value(s) from the original aggregate. 3309 for (; i != LinearIndex; ++i) 3310 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3311 SDValue(Agg.getNode(), Agg.getResNo() + i); 3312 // Copy values from the inserted value(s). 3313 if (NumValValues) { 3314 SDValue Val = getValue(Op1); 3315 for (; i != LinearIndex + NumValValues; ++i) 3316 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3317 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3318 } 3319 // Copy remaining value(s) from the original aggregate. 3320 for (; i != NumAggValues; ++i) 3321 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3322 SDValue(Agg.getNode(), Agg.getResNo() + i); 3323 3324 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3325 DAG.getVTList(AggValueVTs), Values)); 3326 } 3327 3328 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3329 const Value *Op0 = I.getOperand(0); 3330 Type *AggTy = Op0->getType(); 3331 Type *ValTy = I.getType(); 3332 bool OutOfUndef = isa<UndefValue>(Op0); 3333 3334 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3335 3336 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3337 SmallVector<EVT, 4> ValValueVTs; 3338 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3339 3340 unsigned NumValValues = ValValueVTs.size(); 3341 3342 // Ignore a extractvalue that produces an empty object 3343 if (!NumValValues) { 3344 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3345 return; 3346 } 3347 3348 SmallVector<SDValue, 4> Values(NumValValues); 3349 3350 SDValue Agg = getValue(Op0); 3351 // Copy out the selected value(s). 3352 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3353 Values[i - LinearIndex] = 3354 OutOfUndef ? 3355 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3356 SDValue(Agg.getNode(), Agg.getResNo() + i); 3357 3358 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3359 DAG.getVTList(ValValueVTs), Values)); 3360 } 3361 3362 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3363 Value *Op0 = I.getOperand(0); 3364 // Note that the pointer operand may be a vector of pointers. Take the scalar 3365 // element which holds a pointer. 3366 Type *Ty = Op0->getType()->getScalarType(); 3367 unsigned AS = Ty->getPointerAddressSpace(); 3368 SDValue N = getValue(Op0); 3369 3370 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3371 OI != E; ++OI) { 3372 const Value *Idx = *OI; 3373 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3374 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3375 if (Field) { 3376 // N = N + Offset 3377 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3378 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3379 DAG.getConstant(Offset, N.getValueType())); 3380 } 3381 3382 Ty = StTy->getElementType(Field); 3383 } else { 3384 Ty = cast<SequentialType>(Ty)->getElementType(); 3385 3386 // If this is a constant subscript, handle it quickly. 3387 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3388 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3389 if (CI->isZero()) continue; 3390 uint64_t Offs = 3391 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3392 SDValue OffsVal; 3393 EVT PTy = TLI->getPointerTy(AS); 3394 unsigned PtrBits = PTy.getSizeInBits(); 3395 if (PtrBits < 64) 3396 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3397 DAG.getConstant(Offs, MVT::i64)); 3398 else 3399 OffsVal = DAG.getConstant(Offs, PTy); 3400 3401 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3402 OffsVal); 3403 continue; 3404 } 3405 3406 // N = N + Idx * ElementSize; 3407 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3408 DL->getTypeAllocSize(Ty)); 3409 SDValue IdxN = getValue(Idx); 3410 3411 // If the index is smaller or larger than intptr_t, truncate or extend 3412 // it. 3413 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3414 3415 // If this is a multiply by a power of two, turn it into a shl 3416 // immediately. This is a very common case. 3417 if (ElementSize != 1) { 3418 if (ElementSize.isPowerOf2()) { 3419 unsigned Amt = ElementSize.logBase2(); 3420 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3421 N.getValueType(), IdxN, 3422 DAG.getConstant(Amt, IdxN.getValueType())); 3423 } else { 3424 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3425 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3426 N.getValueType(), IdxN, Scale); 3427 } 3428 } 3429 3430 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3431 N.getValueType(), N, IdxN); 3432 } 3433 } 3434 3435 setValue(&I, N); 3436 } 3437 3438 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3439 // If this is a fixed sized alloca in the entry block of the function, 3440 // allocate it statically on the stack. 3441 if (FuncInfo.StaticAllocaMap.count(&I)) 3442 return; // getValue will auto-populate this. 3443 3444 Type *Ty = I.getAllocatedType(); 3445 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3446 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3447 unsigned Align = 3448 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3449 I.getAlignment()); 3450 3451 SDValue AllocSize = getValue(I.getArraySize()); 3452 3453 EVT IntPtr = TLI->getPointerTy(); 3454 if (AllocSize.getValueType() != IntPtr) 3455 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3456 3457 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3458 AllocSize, 3459 DAG.getConstant(TySize, IntPtr)); 3460 3461 // Handle alignment. If the requested alignment is less than or equal to 3462 // the stack alignment, ignore it. If the size is greater than or equal to 3463 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3464 unsigned StackAlign = 3465 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 3466 if (Align <= StackAlign) 3467 Align = 0; 3468 3469 // Round the size of the allocation up to the stack alignment size 3470 // by add SA-1 to the size. 3471 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3472 AllocSize.getValueType(), AllocSize, 3473 DAG.getIntPtrConstant(StackAlign-1)); 3474 3475 // Mask out the low bits for alignment purposes. 3476 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3477 AllocSize.getValueType(), AllocSize, 3478 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3479 3480 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3481 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3482 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3483 setValue(&I, DSA); 3484 DAG.setRoot(DSA.getValue(1)); 3485 3486 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3487 } 3488 3489 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3490 if (I.isAtomic()) 3491 return visitAtomicLoad(I); 3492 3493 const Value *SV = I.getOperand(0); 3494 SDValue Ptr = getValue(SV); 3495 3496 Type *Ty = I.getType(); 3497 3498 bool isVolatile = I.isVolatile(); 3499 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3500 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3501 unsigned Alignment = I.getAlignment(); 3502 3503 AAMDNodes AAInfo; 3504 I.getAAMetadata(AAInfo); 3505 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3506 3507 SmallVector<EVT, 4> ValueVTs; 3508 SmallVector<uint64_t, 4> Offsets; 3509 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), Ty, ValueVTs, 3510 &Offsets); 3511 unsigned NumValues = ValueVTs.size(); 3512 if (NumValues == 0) 3513 return; 3514 3515 SDValue Root; 3516 bool ConstantMemory = false; 3517 if (isVolatile || NumValues > MaxParallelChains) 3518 // Serialize volatile loads with other side effects. 3519 Root = getRoot(); 3520 else if (AA->pointsToConstantMemory( 3521 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3522 // Do not serialize (non-volatile) loads of constant memory with anything. 3523 Root = DAG.getEntryNode(); 3524 ConstantMemory = true; 3525 } else { 3526 // Do not serialize non-volatile loads against each other. 3527 Root = DAG.getRoot(); 3528 } 3529 3530 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3531 if (isVolatile) 3532 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3533 3534 SmallVector<SDValue, 4> Values(NumValues); 3535 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3536 NumValues)); 3537 EVT PtrVT = Ptr.getValueType(); 3538 unsigned ChainI = 0; 3539 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3540 // Serializing loads here may result in excessive register pressure, and 3541 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3542 // could recover a bit by hoisting nodes upward in the chain by recognizing 3543 // they are side-effect free or do not alias. The optimizer should really 3544 // avoid this case by converting large object/array copies to llvm.memcpy 3545 // (MaxParallelChains should always remain as failsafe). 3546 if (ChainI == MaxParallelChains) { 3547 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3548 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3549 makeArrayRef(Chains.data(), ChainI)); 3550 Root = Chain; 3551 ChainI = 0; 3552 } 3553 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3554 PtrVT, Ptr, 3555 DAG.getConstant(Offsets[i], PtrVT)); 3556 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3557 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3558 isNonTemporal, isInvariant, Alignment, AAInfo, 3559 Ranges); 3560 3561 Values[i] = L; 3562 Chains[ChainI] = L.getValue(1); 3563 } 3564 3565 if (!ConstantMemory) { 3566 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3567 makeArrayRef(Chains.data(), ChainI)); 3568 if (isVolatile) 3569 DAG.setRoot(Chain); 3570 else 3571 PendingLoads.push_back(Chain); 3572 } 3573 3574 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3575 DAG.getVTList(ValueVTs), Values)); 3576 } 3577 3578 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3579 if (I.isAtomic()) 3580 return visitAtomicStore(I); 3581 3582 const Value *SrcV = I.getOperand(0); 3583 const Value *PtrV = I.getOperand(1); 3584 3585 SmallVector<EVT, 4> ValueVTs; 3586 SmallVector<uint64_t, 4> Offsets; 3587 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), SrcV->getType(), 3588 ValueVTs, &Offsets); 3589 unsigned NumValues = ValueVTs.size(); 3590 if (NumValues == 0) 3591 return; 3592 3593 // Get the lowered operands. Note that we do this after 3594 // checking if NumResults is zero, because with zero results 3595 // the operands won't have values in the map. 3596 SDValue Src = getValue(SrcV); 3597 SDValue Ptr = getValue(PtrV); 3598 3599 SDValue Root = getRoot(); 3600 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3601 NumValues)); 3602 EVT PtrVT = Ptr.getValueType(); 3603 bool isVolatile = I.isVolatile(); 3604 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3605 unsigned Alignment = I.getAlignment(); 3606 3607 AAMDNodes AAInfo; 3608 I.getAAMetadata(AAInfo); 3609 3610 unsigned ChainI = 0; 3611 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3612 // See visitLoad comments. 3613 if (ChainI == MaxParallelChains) { 3614 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3615 makeArrayRef(Chains.data(), ChainI)); 3616 Root = Chain; 3617 ChainI = 0; 3618 } 3619 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3620 DAG.getConstant(Offsets[i], PtrVT)); 3621 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3622 SDValue(Src.getNode(), Src.getResNo() + i), 3623 Add, MachinePointerInfo(PtrV, Offsets[i]), 3624 isVolatile, isNonTemporal, Alignment, AAInfo); 3625 Chains[ChainI] = St; 3626 } 3627 3628 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3629 makeArrayRef(Chains.data(), ChainI)); 3630 DAG.setRoot(StoreNode); 3631 } 3632 3633 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3634 SynchronizationScope Scope, 3635 bool Before, SDLoc dl, 3636 SelectionDAG &DAG, 3637 const TargetLowering &TLI) { 3638 // Fence, if necessary 3639 if (Before) { 3640 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3641 Order = Release; 3642 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3643 return Chain; 3644 } else { 3645 if (Order == AcquireRelease) 3646 Order = Acquire; 3647 else if (Order == Release || Order == Monotonic || Order == Unordered) 3648 return Chain; 3649 } 3650 SDValue Ops[3]; 3651 Ops[0] = Chain; 3652 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3653 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3654 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3655 } 3656 3657 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3658 SDLoc dl = getCurSDLoc(); 3659 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3660 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3661 SynchronizationScope Scope = I.getSynchScope(); 3662 3663 SDValue InChain = getRoot(); 3664 3665 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3666 if (TLI->getInsertFencesForAtomic()) 3667 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3668 DAG, *TLI); 3669 3670 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3671 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3672 SDValue L = DAG.getAtomicCmpSwap( 3673 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3674 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3675 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3676 0 /* Alignment */, 3677 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3678 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3679 3680 SDValue OutChain = L.getValue(2); 3681 3682 if (TLI->getInsertFencesForAtomic()) 3683 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3684 DAG, *TLI); 3685 3686 setValue(&I, L); 3687 DAG.setRoot(OutChain); 3688 } 3689 3690 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3691 SDLoc dl = getCurSDLoc(); 3692 ISD::NodeType NT; 3693 switch (I.getOperation()) { 3694 default: llvm_unreachable("Unknown atomicrmw operation"); 3695 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3696 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3697 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3698 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3699 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3700 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3701 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3702 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3703 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3704 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3705 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3706 } 3707 AtomicOrdering Order = I.getOrdering(); 3708 SynchronizationScope Scope = I.getSynchScope(); 3709 3710 SDValue InChain = getRoot(); 3711 3712 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3713 if (TLI->getInsertFencesForAtomic()) 3714 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3715 DAG, *TLI); 3716 3717 SDValue L = 3718 DAG.getAtomic(NT, dl, 3719 getValue(I.getValOperand()).getSimpleValueType(), 3720 InChain, 3721 getValue(I.getPointerOperand()), 3722 getValue(I.getValOperand()), 3723 I.getPointerOperand(), 0 /* Alignment */, 3724 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3725 Scope); 3726 3727 SDValue OutChain = L.getValue(1); 3728 3729 if (TLI->getInsertFencesForAtomic()) 3730 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3731 DAG, *TLI); 3732 3733 setValue(&I, L); 3734 DAG.setRoot(OutChain); 3735 } 3736 3737 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3738 SDLoc dl = getCurSDLoc(); 3739 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3740 SDValue Ops[3]; 3741 Ops[0] = getRoot(); 3742 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3743 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3744 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3745 } 3746 3747 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3748 SDLoc dl = getCurSDLoc(); 3749 AtomicOrdering Order = I.getOrdering(); 3750 SynchronizationScope Scope = I.getSynchScope(); 3751 3752 SDValue InChain = getRoot(); 3753 3754 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3755 EVT VT = TLI->getValueType(I.getType()); 3756 3757 if (I.getAlignment() < VT.getSizeInBits() / 8) 3758 report_fatal_error("Cannot generate unaligned atomic load"); 3759 3760 MachineMemOperand *MMO = 3761 DAG.getMachineFunction(). 3762 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3763 MachineMemOperand::MOVolatile | 3764 MachineMemOperand::MOLoad, 3765 VT.getStoreSize(), 3766 I.getAlignment() ? I.getAlignment() : 3767 DAG.getEVTAlignment(VT)); 3768 3769 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3770 SDValue L = 3771 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3772 getValue(I.getPointerOperand()), MMO, 3773 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3774 Scope); 3775 3776 SDValue OutChain = L.getValue(1); 3777 3778 if (TLI->getInsertFencesForAtomic()) 3779 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3780 DAG, *TLI); 3781 3782 setValue(&I, L); 3783 DAG.setRoot(OutChain); 3784 } 3785 3786 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3787 SDLoc dl = getCurSDLoc(); 3788 3789 AtomicOrdering Order = I.getOrdering(); 3790 SynchronizationScope Scope = I.getSynchScope(); 3791 3792 SDValue InChain = getRoot(); 3793 3794 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3795 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3796 3797 if (I.getAlignment() < VT.getSizeInBits() / 8) 3798 report_fatal_error("Cannot generate unaligned atomic store"); 3799 3800 if (TLI->getInsertFencesForAtomic()) 3801 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3802 DAG, *TLI); 3803 3804 SDValue OutChain = 3805 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3806 InChain, 3807 getValue(I.getPointerOperand()), 3808 getValue(I.getValueOperand()), 3809 I.getPointerOperand(), I.getAlignment(), 3810 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3811 Scope); 3812 3813 if (TLI->getInsertFencesForAtomic()) 3814 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3815 DAG, *TLI); 3816 3817 DAG.setRoot(OutChain); 3818 } 3819 3820 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3821 /// node. 3822 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3823 unsigned Intrinsic) { 3824 bool HasChain = !I.doesNotAccessMemory(); 3825 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3826 3827 // Build the operand list. 3828 SmallVector<SDValue, 8> Ops; 3829 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3830 if (OnlyLoad) { 3831 // We don't need to serialize loads against other loads. 3832 Ops.push_back(DAG.getRoot()); 3833 } else { 3834 Ops.push_back(getRoot()); 3835 } 3836 } 3837 3838 // Info is set by getTgtMemInstrinsic 3839 TargetLowering::IntrinsicInfo Info; 3840 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3841 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3842 3843 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3844 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3845 Info.opc == ISD::INTRINSIC_W_CHAIN) 3846 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3847 3848 // Add all operands of the call to the operand list. 3849 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3850 SDValue Op = getValue(I.getArgOperand(i)); 3851 Ops.push_back(Op); 3852 } 3853 3854 SmallVector<EVT, 4> ValueVTs; 3855 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3856 3857 if (HasChain) 3858 ValueVTs.push_back(MVT::Other); 3859 3860 SDVTList VTs = DAG.getVTList(ValueVTs); 3861 3862 // Create the node. 3863 SDValue Result; 3864 if (IsTgtIntrinsic) { 3865 // This is target intrinsic that touches memory 3866 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3867 VTs, Ops, Info.memVT, 3868 MachinePointerInfo(Info.ptrVal, Info.offset), 3869 Info.align, Info.vol, 3870 Info.readMem, Info.writeMem, Info.size); 3871 } else if (!HasChain) { 3872 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3873 } else if (!I.getType()->isVoidTy()) { 3874 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3875 } else { 3876 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3877 } 3878 3879 if (HasChain) { 3880 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3881 if (OnlyLoad) 3882 PendingLoads.push_back(Chain); 3883 else 3884 DAG.setRoot(Chain); 3885 } 3886 3887 if (!I.getType()->isVoidTy()) { 3888 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3889 EVT VT = TLI->getValueType(PTy); 3890 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3891 } 3892 3893 setValue(&I, Result); 3894 } 3895 } 3896 3897 /// GetSignificand - Get the significand and build it into a floating-point 3898 /// number with exponent of 1: 3899 /// 3900 /// Op = (Op & 0x007fffff) | 0x3f800000; 3901 /// 3902 /// where Op is the hexadecimal representation of floating point value. 3903 static SDValue 3904 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3905 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3906 DAG.getConstant(0x007fffff, MVT::i32)); 3907 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3908 DAG.getConstant(0x3f800000, MVT::i32)); 3909 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3910 } 3911 3912 /// GetExponent - Get the exponent: 3913 /// 3914 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3915 /// 3916 /// where Op is the hexadecimal representation of floating point value. 3917 static SDValue 3918 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3919 SDLoc dl) { 3920 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3921 DAG.getConstant(0x7f800000, MVT::i32)); 3922 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3923 DAG.getConstant(23, TLI.getPointerTy())); 3924 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3925 DAG.getConstant(127, MVT::i32)); 3926 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3927 } 3928 3929 /// getF32Constant - Get 32-bit floating point constant. 3930 static SDValue 3931 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3932 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3933 MVT::f32); 3934 } 3935 3936 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3937 /// limited-precision mode. 3938 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3939 const TargetLowering &TLI) { 3940 if (Op.getValueType() == MVT::f32 && 3941 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3942 3943 // Put the exponent in the right bit position for later addition to the 3944 // final result: 3945 // 3946 // #define LOG2OFe 1.4426950f 3947 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3948 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3949 getF32Constant(DAG, 0x3fb8aa3b)); 3950 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3951 3952 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3953 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3954 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3955 3956 // IntegerPartOfX <<= 23; 3957 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3958 DAG.getConstant(23, TLI.getPointerTy())); 3959 3960 SDValue TwoToFracPartOfX; 3961 if (LimitFloatPrecision <= 6) { 3962 // For floating-point precision of 6: 3963 // 3964 // TwoToFractionalPartOfX = 3965 // 0.997535578f + 3966 // (0.735607626f + 0.252464424f * x) * x; 3967 // 3968 // error 0.0144103317, which is 6 bits 3969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3970 getF32Constant(DAG, 0x3e814304)); 3971 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3972 getF32Constant(DAG, 0x3f3c50c8)); 3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3974 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3975 getF32Constant(DAG, 0x3f7f5e7e)); 3976 } else if (LimitFloatPrecision <= 12) { 3977 // For floating-point precision of 12: 3978 // 3979 // TwoToFractionalPartOfX = 3980 // 0.999892986f + 3981 // (0.696457318f + 3982 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3983 // 3984 // 0.000107046256 error, which is 13 to 14 bits 3985 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3986 getF32Constant(DAG, 0x3da235e3)); 3987 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3988 getF32Constant(DAG, 0x3e65b8f3)); 3989 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3990 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3991 getF32Constant(DAG, 0x3f324b07)); 3992 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3993 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3994 getF32Constant(DAG, 0x3f7ff8fd)); 3995 } else { // LimitFloatPrecision <= 18 3996 // For floating-point precision of 18: 3997 // 3998 // TwoToFractionalPartOfX = 3999 // 0.999999982f + 4000 // (0.693148872f + 4001 // (0.240227044f + 4002 // (0.554906021e-1f + 4003 // (0.961591928e-2f + 4004 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4005 // 4006 // error 2.47208000*10^(-7), which is better than 18 bits 4007 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4008 getF32Constant(DAG, 0x3924b03e)); 4009 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4010 getF32Constant(DAG, 0x3ab24b87)); 4011 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4012 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4013 getF32Constant(DAG, 0x3c1d8c17)); 4014 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4015 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4016 getF32Constant(DAG, 0x3d634a1d)); 4017 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4018 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4019 getF32Constant(DAG, 0x3e75fe14)); 4020 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4021 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4022 getF32Constant(DAG, 0x3f317234)); 4023 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4024 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4025 getF32Constant(DAG, 0x3f800000)); 4026 } 4027 4028 // Add the exponent into the result in integer domain. 4029 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4030 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4031 DAG.getNode(ISD::ADD, dl, MVT::i32, 4032 t13, IntegerPartOfX)); 4033 } 4034 4035 // No special expansion. 4036 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4037 } 4038 4039 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4040 /// limited-precision mode. 4041 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4042 const TargetLowering &TLI) { 4043 if (Op.getValueType() == MVT::f32 && 4044 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4045 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4046 4047 // Scale the exponent by log(2) [0.69314718f]. 4048 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4049 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4050 getF32Constant(DAG, 0x3f317218)); 4051 4052 // Get the significand and build it into a floating-point number with 4053 // exponent of 1. 4054 SDValue X = GetSignificand(DAG, Op1, dl); 4055 4056 SDValue LogOfMantissa; 4057 if (LimitFloatPrecision <= 6) { 4058 // For floating-point precision of 6: 4059 // 4060 // LogofMantissa = 4061 // -1.1609546f + 4062 // (1.4034025f - 0.23903021f * x) * x; 4063 // 4064 // error 0.0034276066, which is better than 8 bits 4065 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4066 getF32Constant(DAG, 0xbe74c456)); 4067 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4068 getF32Constant(DAG, 0x3fb3a2b1)); 4069 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4070 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4071 getF32Constant(DAG, 0x3f949a29)); 4072 } else if (LimitFloatPrecision <= 12) { 4073 // For floating-point precision of 12: 4074 // 4075 // LogOfMantissa = 4076 // -1.7417939f + 4077 // (2.8212026f + 4078 // (-1.4699568f + 4079 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4080 // 4081 // error 0.000061011436, which is 14 bits 4082 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4083 getF32Constant(DAG, 0xbd67b6d6)); 4084 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4085 getF32Constant(DAG, 0x3ee4f4b8)); 4086 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4087 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4088 getF32Constant(DAG, 0x3fbc278b)); 4089 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4090 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4091 getF32Constant(DAG, 0x40348e95)); 4092 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4093 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4094 getF32Constant(DAG, 0x3fdef31a)); 4095 } else { // LimitFloatPrecision <= 18 4096 // For floating-point precision of 18: 4097 // 4098 // LogOfMantissa = 4099 // -2.1072184f + 4100 // (4.2372794f + 4101 // (-3.7029485f + 4102 // (2.2781945f + 4103 // (-0.87823314f + 4104 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4105 // 4106 // error 0.0000023660568, which is better than 18 bits 4107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4108 getF32Constant(DAG, 0xbc91e5ac)); 4109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4110 getF32Constant(DAG, 0x3e4350aa)); 4111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4112 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3f60d3e3)); 4114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4115 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4116 getF32Constant(DAG, 0x4011cdf0)); 4117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4118 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4119 getF32Constant(DAG, 0x406cfd1c)); 4120 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4121 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4122 getF32Constant(DAG, 0x408797cb)); 4123 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4124 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4125 getF32Constant(DAG, 0x4006dcab)); 4126 } 4127 4128 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4129 } 4130 4131 // No special expansion. 4132 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4133 } 4134 4135 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4136 /// limited-precision mode. 4137 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4138 const TargetLowering &TLI) { 4139 if (Op.getValueType() == MVT::f32 && 4140 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4141 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4142 4143 // Get the exponent. 4144 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4145 4146 // Get the significand and build it into a floating-point number with 4147 // exponent of 1. 4148 SDValue X = GetSignificand(DAG, Op1, dl); 4149 4150 // Different possible minimax approximations of significand in 4151 // floating-point for various degrees of accuracy over [1,2]. 4152 SDValue Log2ofMantissa; 4153 if (LimitFloatPrecision <= 6) { 4154 // For floating-point precision of 6: 4155 // 4156 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4157 // 4158 // error 0.0049451742, which is more than 7 bits 4159 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4160 getF32Constant(DAG, 0xbeb08fe0)); 4161 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4162 getF32Constant(DAG, 0x40019463)); 4163 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4164 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4165 getF32Constant(DAG, 0x3fd6633d)); 4166 } else if (LimitFloatPrecision <= 12) { 4167 // For floating-point precision of 12: 4168 // 4169 // Log2ofMantissa = 4170 // -2.51285454f + 4171 // (4.07009056f + 4172 // (-2.12067489f + 4173 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4174 // 4175 // error 0.0000876136000, which is better than 13 bits 4176 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4177 getF32Constant(DAG, 0xbda7262e)); 4178 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4179 getF32Constant(DAG, 0x3f25280b)); 4180 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4181 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4182 getF32Constant(DAG, 0x4007b923)); 4183 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4184 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4185 getF32Constant(DAG, 0x40823e2f)); 4186 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4187 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4188 getF32Constant(DAG, 0x4020d29c)); 4189 } else { // LimitFloatPrecision <= 18 4190 // For floating-point precision of 18: 4191 // 4192 // Log2ofMantissa = 4193 // -3.0400495f + 4194 // (6.1129976f + 4195 // (-5.3420409f + 4196 // (3.2865683f + 4197 // (-1.2669343f + 4198 // (0.27515199f - 4199 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4200 // 4201 // error 0.0000018516, which is better than 18 bits 4202 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4203 getF32Constant(DAG, 0xbcd2769e)); 4204 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4205 getF32Constant(DAG, 0x3e8ce0b9)); 4206 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4207 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4208 getF32Constant(DAG, 0x3fa22ae7)); 4209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4210 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4211 getF32Constant(DAG, 0x40525723)); 4212 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4213 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4214 getF32Constant(DAG, 0x40aaf200)); 4215 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4216 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4217 getF32Constant(DAG, 0x40c39dad)); 4218 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4219 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4220 getF32Constant(DAG, 0x4042902c)); 4221 } 4222 4223 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4224 } 4225 4226 // No special expansion. 4227 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4228 } 4229 4230 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4231 /// limited-precision mode. 4232 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4233 const TargetLowering &TLI) { 4234 if (Op.getValueType() == MVT::f32 && 4235 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4236 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4237 4238 // Scale the exponent by log10(2) [0.30102999f]. 4239 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4240 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4241 getF32Constant(DAG, 0x3e9a209a)); 4242 4243 // Get the significand and build it into a floating-point number with 4244 // exponent of 1. 4245 SDValue X = GetSignificand(DAG, Op1, dl); 4246 4247 SDValue Log10ofMantissa; 4248 if (LimitFloatPrecision <= 6) { 4249 // For floating-point precision of 6: 4250 // 4251 // Log10ofMantissa = 4252 // -0.50419619f + 4253 // (0.60948995f - 0.10380950f * x) * x; 4254 // 4255 // error 0.0014886165, which is 6 bits 4256 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4257 getF32Constant(DAG, 0xbdd49a13)); 4258 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4259 getF32Constant(DAG, 0x3f1c0789)); 4260 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4261 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4262 getF32Constant(DAG, 0x3f011300)); 4263 } else if (LimitFloatPrecision <= 12) { 4264 // For floating-point precision of 12: 4265 // 4266 // Log10ofMantissa = 4267 // -0.64831180f + 4268 // (0.91751397f + 4269 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4270 // 4271 // error 0.00019228036, which is better than 12 bits 4272 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4273 getF32Constant(DAG, 0x3d431f31)); 4274 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4275 getF32Constant(DAG, 0x3ea21fb2)); 4276 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4277 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4278 getF32Constant(DAG, 0x3f6ae232)); 4279 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4280 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4281 getF32Constant(DAG, 0x3f25f7c3)); 4282 } else { // LimitFloatPrecision <= 18 4283 // For floating-point precision of 18: 4284 // 4285 // Log10ofMantissa = 4286 // -0.84299375f + 4287 // (1.5327582f + 4288 // (-1.0688956f + 4289 // (0.49102474f + 4290 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4291 // 4292 // error 0.0000037995730, which is better than 18 bits 4293 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4294 getF32Constant(DAG, 0x3c5d51ce)); 4295 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4296 getF32Constant(DAG, 0x3e00685a)); 4297 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4298 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4299 getF32Constant(DAG, 0x3efb6798)); 4300 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4301 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4302 getF32Constant(DAG, 0x3f88d192)); 4303 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4304 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4305 getF32Constant(DAG, 0x3fc4316c)); 4306 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4307 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4308 getF32Constant(DAG, 0x3f57ce70)); 4309 } 4310 4311 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4312 } 4313 4314 // No special expansion. 4315 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4316 } 4317 4318 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4319 /// limited-precision mode. 4320 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4321 const TargetLowering &TLI) { 4322 if (Op.getValueType() == MVT::f32 && 4323 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4324 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4325 4326 // FractionalPartOfX = x - (float)IntegerPartOfX; 4327 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4328 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4329 4330 // IntegerPartOfX <<= 23; 4331 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4332 DAG.getConstant(23, TLI.getPointerTy())); 4333 4334 SDValue TwoToFractionalPartOfX; 4335 if (LimitFloatPrecision <= 6) { 4336 // For floating-point precision of 6: 4337 // 4338 // TwoToFractionalPartOfX = 4339 // 0.997535578f + 4340 // (0.735607626f + 0.252464424f * x) * x; 4341 // 4342 // error 0.0144103317, which is 6 bits 4343 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4344 getF32Constant(DAG, 0x3e814304)); 4345 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4346 getF32Constant(DAG, 0x3f3c50c8)); 4347 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4348 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4349 getF32Constant(DAG, 0x3f7f5e7e)); 4350 } else if (LimitFloatPrecision <= 12) { 4351 // For floating-point precision of 12: 4352 // 4353 // TwoToFractionalPartOfX = 4354 // 0.999892986f + 4355 // (0.696457318f + 4356 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4357 // 4358 // error 0.000107046256, which is 13 to 14 bits 4359 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4360 getF32Constant(DAG, 0x3da235e3)); 4361 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4362 getF32Constant(DAG, 0x3e65b8f3)); 4363 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4364 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4365 getF32Constant(DAG, 0x3f324b07)); 4366 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4367 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4368 getF32Constant(DAG, 0x3f7ff8fd)); 4369 } else { // LimitFloatPrecision <= 18 4370 // For floating-point precision of 18: 4371 // 4372 // TwoToFractionalPartOfX = 4373 // 0.999999982f + 4374 // (0.693148872f + 4375 // (0.240227044f + 4376 // (0.554906021e-1f + 4377 // (0.961591928e-2f + 4378 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4379 // error 2.47208000*10^(-7), which is better than 18 bits 4380 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4381 getF32Constant(DAG, 0x3924b03e)); 4382 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4383 getF32Constant(DAG, 0x3ab24b87)); 4384 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4385 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4386 getF32Constant(DAG, 0x3c1d8c17)); 4387 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4388 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4389 getF32Constant(DAG, 0x3d634a1d)); 4390 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4391 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4392 getF32Constant(DAG, 0x3e75fe14)); 4393 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4394 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4395 getF32Constant(DAG, 0x3f317234)); 4396 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4397 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4398 getF32Constant(DAG, 0x3f800000)); 4399 } 4400 4401 // Add the exponent into the result in integer domain. 4402 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4403 TwoToFractionalPartOfX); 4404 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4405 DAG.getNode(ISD::ADD, dl, MVT::i32, 4406 t13, IntegerPartOfX)); 4407 } 4408 4409 // No special expansion. 4410 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4411 } 4412 4413 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4414 /// limited-precision mode with x == 10.0f. 4415 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4416 SelectionDAG &DAG, const TargetLowering &TLI) { 4417 bool IsExp10 = false; 4418 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4419 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4420 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4421 APFloat Ten(10.0f); 4422 IsExp10 = LHSC->isExactlyValue(Ten); 4423 } 4424 } 4425 4426 if (IsExp10) { 4427 // Put the exponent in the right bit position for later addition to the 4428 // final result: 4429 // 4430 // #define LOG2OF10 3.3219281f 4431 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4432 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4433 getF32Constant(DAG, 0x40549a78)); 4434 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4435 4436 // FractionalPartOfX = x - (float)IntegerPartOfX; 4437 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4438 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4439 4440 // IntegerPartOfX <<= 23; 4441 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4442 DAG.getConstant(23, TLI.getPointerTy())); 4443 4444 SDValue TwoToFractionalPartOfX; 4445 if (LimitFloatPrecision <= 6) { 4446 // For floating-point precision of 6: 4447 // 4448 // twoToFractionalPartOfX = 4449 // 0.997535578f + 4450 // (0.735607626f + 0.252464424f * x) * x; 4451 // 4452 // error 0.0144103317, which is 6 bits 4453 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4454 getF32Constant(DAG, 0x3e814304)); 4455 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4456 getF32Constant(DAG, 0x3f3c50c8)); 4457 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4458 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4459 getF32Constant(DAG, 0x3f7f5e7e)); 4460 } else if (LimitFloatPrecision <= 12) { 4461 // For floating-point precision of 12: 4462 // 4463 // TwoToFractionalPartOfX = 4464 // 0.999892986f + 4465 // (0.696457318f + 4466 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4467 // 4468 // error 0.000107046256, which is 13 to 14 bits 4469 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4470 getF32Constant(DAG, 0x3da235e3)); 4471 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4472 getF32Constant(DAG, 0x3e65b8f3)); 4473 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4474 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4475 getF32Constant(DAG, 0x3f324b07)); 4476 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4477 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4478 getF32Constant(DAG, 0x3f7ff8fd)); 4479 } else { // LimitFloatPrecision <= 18 4480 // For floating-point precision of 18: 4481 // 4482 // TwoToFractionalPartOfX = 4483 // 0.999999982f + 4484 // (0.693148872f + 4485 // (0.240227044f + 4486 // (0.554906021e-1f + 4487 // (0.961591928e-2f + 4488 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4489 // error 2.47208000*10^(-7), which is better than 18 bits 4490 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4491 getF32Constant(DAG, 0x3924b03e)); 4492 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4493 getF32Constant(DAG, 0x3ab24b87)); 4494 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4495 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4496 getF32Constant(DAG, 0x3c1d8c17)); 4497 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4498 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4499 getF32Constant(DAG, 0x3d634a1d)); 4500 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4501 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4502 getF32Constant(DAG, 0x3e75fe14)); 4503 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4504 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4505 getF32Constant(DAG, 0x3f317234)); 4506 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4507 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4508 getF32Constant(DAG, 0x3f800000)); 4509 } 4510 4511 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4512 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4513 DAG.getNode(ISD::ADD, dl, MVT::i32, 4514 t13, IntegerPartOfX)); 4515 } 4516 4517 // No special expansion. 4518 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4519 } 4520 4521 4522 /// ExpandPowI - Expand a llvm.powi intrinsic. 4523 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4524 SelectionDAG &DAG) { 4525 // If RHS is a constant, we can expand this out to a multiplication tree, 4526 // otherwise we end up lowering to a call to __powidf2 (for example). When 4527 // optimizing for size, we only want to do this if the expansion would produce 4528 // a small number of multiplies, otherwise we do the full expansion. 4529 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4530 // Get the exponent as a positive value. 4531 unsigned Val = RHSC->getSExtValue(); 4532 if ((int)Val < 0) Val = -Val; 4533 4534 // powi(x, 0) -> 1.0 4535 if (Val == 0) 4536 return DAG.getConstantFP(1.0, LHS.getValueType()); 4537 4538 const Function *F = DAG.getMachineFunction().getFunction(); 4539 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4540 Attribute::OptimizeForSize) || 4541 // If optimizing for size, don't insert too many multiplies. This 4542 // inserts up to 5 multiplies. 4543 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4544 // We use the simple binary decomposition method to generate the multiply 4545 // sequence. There are more optimal ways to do this (for example, 4546 // powi(x,15) generates one more multiply than it should), but this has 4547 // the benefit of being both really simple and much better than a libcall. 4548 SDValue Res; // Logically starts equal to 1.0 4549 SDValue CurSquare = LHS; 4550 while (Val) { 4551 if (Val & 1) { 4552 if (Res.getNode()) 4553 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4554 else 4555 Res = CurSquare; // 1.0*CurSquare. 4556 } 4557 4558 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4559 CurSquare, CurSquare); 4560 Val >>= 1; 4561 } 4562 4563 // If the original was negative, invert the result, producing 1/(x*x*x). 4564 if (RHSC->getSExtValue() < 0) 4565 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4566 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4567 return Res; 4568 } 4569 } 4570 4571 // Otherwise, expand to a libcall. 4572 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4573 } 4574 4575 // getTruncatedArgReg - Find underlying register used for an truncated 4576 // argument. 4577 static unsigned getTruncatedArgReg(const SDValue &N) { 4578 if (N.getOpcode() != ISD::TRUNCATE) 4579 return 0; 4580 4581 const SDValue &Ext = N.getOperand(0); 4582 if (Ext.getOpcode() == ISD::AssertZext || 4583 Ext.getOpcode() == ISD::AssertSext) { 4584 const SDValue &CFR = Ext.getOperand(0); 4585 if (CFR.getOpcode() == ISD::CopyFromReg) 4586 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4587 if (CFR.getOpcode() == ISD::TRUNCATE) 4588 return getTruncatedArgReg(CFR); 4589 } 4590 return 0; 4591 } 4592 4593 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4594 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4595 /// At the end of instruction selection, they will be inserted to the entry BB. 4596 bool 4597 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4598 int64_t Offset, bool IsIndirect, 4599 const SDValue &N) { 4600 const Argument *Arg = dyn_cast<Argument>(V); 4601 if (!Arg) 4602 return false; 4603 4604 MachineFunction &MF = DAG.getMachineFunction(); 4605 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4606 4607 // Ignore inlined function arguments here. 4608 DIVariable DV(Variable); 4609 if (DV.isInlinedFnArgument(MF.getFunction())) 4610 return false; 4611 4612 Optional<MachineOperand> Op; 4613 // Some arguments' frame index is recorded during argument lowering. 4614 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4615 Op = MachineOperand::CreateFI(FI); 4616 4617 if (!Op && N.getNode()) { 4618 unsigned Reg; 4619 if (N.getOpcode() == ISD::CopyFromReg) 4620 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4621 else 4622 Reg = getTruncatedArgReg(N); 4623 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4624 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4625 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4626 if (PR) 4627 Reg = PR; 4628 } 4629 if (Reg) 4630 Op = MachineOperand::CreateReg(Reg, false); 4631 } 4632 4633 if (!Op) { 4634 // Check if ValueMap has reg number. 4635 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4636 if (VMI != FuncInfo.ValueMap.end()) 4637 Op = MachineOperand::CreateReg(VMI->second, false); 4638 } 4639 4640 if (!Op && N.getNode()) 4641 // Check if frame index is available. 4642 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4643 if (FrameIndexSDNode *FINode = 4644 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4645 Op = MachineOperand::CreateFI(FINode->getIndex()); 4646 4647 if (!Op) 4648 return false; 4649 4650 if (Op->isReg()) 4651 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4652 TII->get(TargetOpcode::DBG_VALUE), 4653 IsIndirect, 4654 Op->getReg(), Offset, Variable)); 4655 else 4656 FuncInfo.ArgDbgValues.push_back( 4657 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4658 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4659 4660 return true; 4661 } 4662 4663 // VisualStudio defines setjmp as _setjmp 4664 #if defined(_MSC_VER) && defined(setjmp) && \ 4665 !defined(setjmp_undefined_for_msvc) 4666 # pragma push_macro("setjmp") 4667 # undef setjmp 4668 # define setjmp_undefined_for_msvc 4669 #endif 4670 4671 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4672 /// we want to emit this as a call to a named external function, return the name 4673 /// otherwise lower it and return null. 4674 const char * 4675 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4676 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 4677 SDLoc sdl = getCurSDLoc(); 4678 DebugLoc dl = getCurDebugLoc(); 4679 SDValue Res; 4680 4681 switch (Intrinsic) { 4682 default: 4683 // By default, turn this into a target intrinsic node. 4684 visitTargetIntrinsic(I, Intrinsic); 4685 return nullptr; 4686 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4687 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4688 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4689 case Intrinsic::returnaddress: 4690 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4691 getValue(I.getArgOperand(0)))); 4692 return nullptr; 4693 case Intrinsic::frameaddress: 4694 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4695 getValue(I.getArgOperand(0)))); 4696 return nullptr; 4697 case Intrinsic::read_register: { 4698 Value *Reg = I.getArgOperand(0); 4699 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4700 EVT VT = 4701 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 4702 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4703 return nullptr; 4704 } 4705 case Intrinsic::write_register: { 4706 Value *Reg = I.getArgOperand(0); 4707 Value *RegValue = I.getArgOperand(1); 4708 SDValue Chain = getValue(RegValue).getOperand(0); 4709 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4710 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4711 RegName, getValue(RegValue))); 4712 return nullptr; 4713 } 4714 case Intrinsic::setjmp: 4715 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4716 case Intrinsic::longjmp: 4717 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4718 case Intrinsic::memcpy: { 4719 // Assert for address < 256 since we support only user defined address 4720 // spaces. 4721 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4722 < 256 && 4723 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4724 < 256 && 4725 "Unknown address space"); 4726 SDValue Op1 = getValue(I.getArgOperand(0)); 4727 SDValue Op2 = getValue(I.getArgOperand(1)); 4728 SDValue Op3 = getValue(I.getArgOperand(2)); 4729 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4730 if (!Align) 4731 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4732 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4733 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4734 MachinePointerInfo(I.getArgOperand(0)), 4735 MachinePointerInfo(I.getArgOperand(1)))); 4736 return nullptr; 4737 } 4738 case Intrinsic::memset: { 4739 // Assert for address < 256 since we support only user defined address 4740 // spaces. 4741 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4742 < 256 && 4743 "Unknown address space"); 4744 SDValue Op1 = getValue(I.getArgOperand(0)); 4745 SDValue Op2 = getValue(I.getArgOperand(1)); 4746 SDValue Op3 = getValue(I.getArgOperand(2)); 4747 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4748 if (!Align) 4749 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4750 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4751 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4752 MachinePointerInfo(I.getArgOperand(0)))); 4753 return nullptr; 4754 } 4755 case Intrinsic::memmove: { 4756 // Assert for address < 256 since we support only user defined address 4757 // spaces. 4758 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4759 < 256 && 4760 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4761 < 256 && 4762 "Unknown address space"); 4763 SDValue Op1 = getValue(I.getArgOperand(0)); 4764 SDValue Op2 = getValue(I.getArgOperand(1)); 4765 SDValue Op3 = getValue(I.getArgOperand(2)); 4766 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4767 if (!Align) 4768 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4769 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4770 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4771 MachinePointerInfo(I.getArgOperand(0)), 4772 MachinePointerInfo(I.getArgOperand(1)))); 4773 return nullptr; 4774 } 4775 case Intrinsic::dbg_declare: { 4776 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4777 MDNode *Variable = DI.getVariable(); 4778 const Value *Address = DI.getAddress(); 4779 DIVariable DIVar(Variable); 4780 assert((!DIVar || DIVar.isVariable()) && 4781 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4782 if (!Address || !DIVar) { 4783 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4784 return nullptr; 4785 } 4786 4787 // Check if address has undef value. 4788 if (isa<UndefValue>(Address) || 4789 (Address->use_empty() && !isa<Argument>(Address))) { 4790 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4791 return nullptr; 4792 } 4793 4794 SDValue &N = NodeMap[Address]; 4795 if (!N.getNode() && isa<Argument>(Address)) 4796 // Check unused arguments map. 4797 N = UnusedArgNodeMap[Address]; 4798 SDDbgValue *SDV; 4799 if (N.getNode()) { 4800 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4801 Address = BCI->getOperand(0); 4802 // Parameters are handled specially. 4803 bool isParameter = 4804 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4805 isa<Argument>(Address)); 4806 4807 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4808 4809 if (isParameter && !AI) { 4810 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4811 if (FINode) 4812 // Byval parameter. We have a frame index at this point. 4813 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4814 0, dl, SDNodeOrder); 4815 else { 4816 // Address is an argument, so try to emit its dbg value using 4817 // virtual register info from the FuncInfo.ValueMap. 4818 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4819 return nullptr; 4820 } 4821 } else if (AI) 4822 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4823 true, 0, dl, SDNodeOrder); 4824 else { 4825 // Can't do anything with other non-AI cases yet. 4826 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4827 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4828 DEBUG(Address->dump()); 4829 return nullptr; 4830 } 4831 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4832 } else { 4833 // If Address is an argument then try to emit its dbg value using 4834 // virtual register info from the FuncInfo.ValueMap. 4835 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4836 // If variable is pinned by a alloca in dominating bb then 4837 // use StaticAllocaMap. 4838 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4839 if (AI->getParent() != DI.getParent()) { 4840 DenseMap<const AllocaInst*, int>::iterator SI = 4841 FuncInfo.StaticAllocaMap.find(AI); 4842 if (SI != FuncInfo.StaticAllocaMap.end()) { 4843 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4844 0, dl, SDNodeOrder); 4845 DAG.AddDbgValue(SDV, nullptr, false); 4846 return nullptr; 4847 } 4848 } 4849 } 4850 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4851 } 4852 } 4853 return nullptr; 4854 } 4855 case Intrinsic::dbg_value: { 4856 const DbgValueInst &DI = cast<DbgValueInst>(I); 4857 DIVariable DIVar(DI.getVariable()); 4858 assert((!DIVar || DIVar.isVariable()) && 4859 "Variable in DbgValueInst should be either null or a DIVariable."); 4860 if (!DIVar) 4861 return nullptr; 4862 4863 MDNode *Variable = DI.getVariable(); 4864 uint64_t Offset = DI.getOffset(); 4865 const Value *V = DI.getValue(); 4866 if (!V) 4867 return nullptr; 4868 4869 SDDbgValue *SDV; 4870 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4871 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4872 DAG.AddDbgValue(SDV, nullptr, false); 4873 } else { 4874 // Do not use getValue() in here; we don't want to generate code at 4875 // this point if it hasn't been done yet. 4876 SDValue N = NodeMap[V]; 4877 if (!N.getNode() && isa<Argument>(V)) 4878 // Check unused arguments map. 4879 N = UnusedArgNodeMap[V]; 4880 if (N.getNode()) { 4881 // A dbg.value for an alloca is always indirect. 4882 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4883 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4884 SDV = DAG.getDbgValue(Variable, N.getNode(), 4885 N.getResNo(), IsIndirect, 4886 Offset, dl, SDNodeOrder); 4887 DAG.AddDbgValue(SDV, N.getNode(), false); 4888 } 4889 } else if (!V->use_empty() ) { 4890 // Do not call getValue(V) yet, as we don't want to generate code. 4891 // Remember it for later. 4892 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4893 DanglingDebugInfoMap[V] = DDI; 4894 } else { 4895 // We may expand this to cover more cases. One case where we have no 4896 // data available is an unreferenced parameter. 4897 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4898 } 4899 } 4900 4901 // Build a debug info table entry. 4902 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4903 V = BCI->getOperand(0); 4904 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4905 // Don't handle byval struct arguments or VLAs, for example. 4906 if (!AI) { 4907 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4908 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4909 return nullptr; 4910 } 4911 DenseMap<const AllocaInst*, int>::iterator SI = 4912 FuncInfo.StaticAllocaMap.find(AI); 4913 if (SI == FuncInfo.StaticAllocaMap.end()) 4914 return nullptr; // VLAs. 4915 return nullptr; 4916 } 4917 4918 case Intrinsic::eh_typeid_for: { 4919 // Find the type id for the given typeinfo. 4920 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4921 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4922 Res = DAG.getConstant(TypeID, MVT::i32); 4923 setValue(&I, Res); 4924 return nullptr; 4925 } 4926 4927 case Intrinsic::eh_return_i32: 4928 case Intrinsic::eh_return_i64: 4929 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4930 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4931 MVT::Other, 4932 getControlRoot(), 4933 getValue(I.getArgOperand(0)), 4934 getValue(I.getArgOperand(1)))); 4935 return nullptr; 4936 case Intrinsic::eh_unwind_init: 4937 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4938 return nullptr; 4939 case Intrinsic::eh_dwarf_cfa: { 4940 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4941 TLI->getPointerTy()); 4942 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4943 CfaArg.getValueType(), 4944 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4945 CfaArg.getValueType()), 4946 CfaArg); 4947 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4948 TLI->getPointerTy(), 4949 DAG.getConstant(0, TLI->getPointerTy())); 4950 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4951 FA, Offset)); 4952 return nullptr; 4953 } 4954 case Intrinsic::eh_sjlj_callsite: { 4955 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4956 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4957 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4958 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4959 4960 MMI.setCurrentCallSite(CI->getZExtValue()); 4961 return nullptr; 4962 } 4963 case Intrinsic::eh_sjlj_functioncontext: { 4964 // Get and store the index of the function context. 4965 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4966 AllocaInst *FnCtx = 4967 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4968 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4969 MFI->setFunctionContextIndex(FI); 4970 return nullptr; 4971 } 4972 case Intrinsic::eh_sjlj_setjmp: { 4973 SDValue Ops[2]; 4974 Ops[0] = getRoot(); 4975 Ops[1] = getValue(I.getArgOperand(0)); 4976 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4977 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4978 setValue(&I, Op.getValue(0)); 4979 DAG.setRoot(Op.getValue(1)); 4980 return nullptr; 4981 } 4982 case Intrinsic::eh_sjlj_longjmp: { 4983 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4984 getRoot(), getValue(I.getArgOperand(0)))); 4985 return nullptr; 4986 } 4987 4988 case Intrinsic::x86_mmx_pslli_w: 4989 case Intrinsic::x86_mmx_pslli_d: 4990 case Intrinsic::x86_mmx_pslli_q: 4991 case Intrinsic::x86_mmx_psrli_w: 4992 case Intrinsic::x86_mmx_psrli_d: 4993 case Intrinsic::x86_mmx_psrli_q: 4994 case Intrinsic::x86_mmx_psrai_w: 4995 case Intrinsic::x86_mmx_psrai_d: { 4996 SDValue ShAmt = getValue(I.getArgOperand(1)); 4997 if (isa<ConstantSDNode>(ShAmt)) { 4998 visitTargetIntrinsic(I, Intrinsic); 4999 return nullptr; 5000 } 5001 unsigned NewIntrinsic = 0; 5002 EVT ShAmtVT = MVT::v2i32; 5003 switch (Intrinsic) { 5004 case Intrinsic::x86_mmx_pslli_w: 5005 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5006 break; 5007 case Intrinsic::x86_mmx_pslli_d: 5008 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5009 break; 5010 case Intrinsic::x86_mmx_pslli_q: 5011 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5012 break; 5013 case Intrinsic::x86_mmx_psrli_w: 5014 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5015 break; 5016 case Intrinsic::x86_mmx_psrli_d: 5017 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5018 break; 5019 case Intrinsic::x86_mmx_psrli_q: 5020 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5021 break; 5022 case Intrinsic::x86_mmx_psrai_w: 5023 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5024 break; 5025 case Intrinsic::x86_mmx_psrai_d: 5026 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5027 break; 5028 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5029 } 5030 5031 // The vector shift intrinsics with scalars uses 32b shift amounts but 5032 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5033 // to be zero. 5034 // We must do this early because v2i32 is not a legal type. 5035 SDValue ShOps[2]; 5036 ShOps[0] = ShAmt; 5037 ShOps[1] = DAG.getConstant(0, MVT::i32); 5038 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5039 EVT DestVT = TLI->getValueType(I.getType()); 5040 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5041 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5042 DAG.getConstant(NewIntrinsic, MVT::i32), 5043 getValue(I.getArgOperand(0)), ShAmt); 5044 setValue(&I, Res); 5045 return nullptr; 5046 } 5047 case Intrinsic::x86_avx_vinsertf128_pd_256: 5048 case Intrinsic::x86_avx_vinsertf128_ps_256: 5049 case Intrinsic::x86_avx_vinsertf128_si_256: 5050 case Intrinsic::x86_avx2_vinserti128: { 5051 EVT DestVT = TLI->getValueType(I.getType()); 5052 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5053 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5054 ElVT.getVectorNumElements(); 5055 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5056 getValue(I.getArgOperand(0)), 5057 getValue(I.getArgOperand(1)), 5058 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5059 setValue(&I, Res); 5060 return nullptr; 5061 } 5062 case Intrinsic::x86_avx_vextractf128_pd_256: 5063 case Intrinsic::x86_avx_vextractf128_ps_256: 5064 case Intrinsic::x86_avx_vextractf128_si_256: 5065 case Intrinsic::x86_avx2_vextracti128: { 5066 EVT DestVT = TLI->getValueType(I.getType()); 5067 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5068 DestVT.getVectorNumElements(); 5069 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5070 getValue(I.getArgOperand(0)), 5071 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5072 setValue(&I, Res); 5073 return nullptr; 5074 } 5075 case Intrinsic::convertff: 5076 case Intrinsic::convertfsi: 5077 case Intrinsic::convertfui: 5078 case Intrinsic::convertsif: 5079 case Intrinsic::convertuif: 5080 case Intrinsic::convertss: 5081 case Intrinsic::convertsu: 5082 case Intrinsic::convertus: 5083 case Intrinsic::convertuu: { 5084 ISD::CvtCode Code = ISD::CVT_INVALID; 5085 switch (Intrinsic) { 5086 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5087 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5088 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5089 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5090 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5091 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5092 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5093 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5094 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5095 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5096 } 5097 EVT DestVT = TLI->getValueType(I.getType()); 5098 const Value *Op1 = I.getArgOperand(0); 5099 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5100 DAG.getValueType(DestVT), 5101 DAG.getValueType(getValue(Op1).getValueType()), 5102 getValue(I.getArgOperand(1)), 5103 getValue(I.getArgOperand(2)), 5104 Code); 5105 setValue(&I, Res); 5106 return nullptr; 5107 } 5108 case Intrinsic::powi: 5109 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5110 getValue(I.getArgOperand(1)), DAG)); 5111 return nullptr; 5112 case Intrinsic::log: 5113 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5114 return nullptr; 5115 case Intrinsic::log2: 5116 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5117 return nullptr; 5118 case Intrinsic::log10: 5119 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5120 return nullptr; 5121 case Intrinsic::exp: 5122 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5123 return nullptr; 5124 case Intrinsic::exp2: 5125 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5126 return nullptr; 5127 case Intrinsic::pow: 5128 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5129 getValue(I.getArgOperand(1)), DAG, *TLI)); 5130 return nullptr; 5131 case Intrinsic::sqrt: 5132 case Intrinsic::fabs: 5133 case Intrinsic::sin: 5134 case Intrinsic::cos: 5135 case Intrinsic::floor: 5136 case Intrinsic::ceil: 5137 case Intrinsic::trunc: 5138 case Intrinsic::rint: 5139 case Intrinsic::nearbyint: 5140 case Intrinsic::round: { 5141 unsigned Opcode; 5142 switch (Intrinsic) { 5143 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5144 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5145 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5146 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5147 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5148 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5149 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5150 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5151 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5152 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5153 case Intrinsic::round: Opcode = ISD::FROUND; break; 5154 } 5155 5156 setValue(&I, DAG.getNode(Opcode, sdl, 5157 getValue(I.getArgOperand(0)).getValueType(), 5158 getValue(I.getArgOperand(0)))); 5159 return nullptr; 5160 } 5161 case Intrinsic::copysign: 5162 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5163 getValue(I.getArgOperand(0)).getValueType(), 5164 getValue(I.getArgOperand(0)), 5165 getValue(I.getArgOperand(1)))); 5166 return nullptr; 5167 case Intrinsic::fma: 5168 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5169 getValue(I.getArgOperand(0)).getValueType(), 5170 getValue(I.getArgOperand(0)), 5171 getValue(I.getArgOperand(1)), 5172 getValue(I.getArgOperand(2)))); 5173 return nullptr; 5174 case Intrinsic::fmuladd: { 5175 EVT VT = TLI->getValueType(I.getType()); 5176 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5177 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5178 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5179 getValue(I.getArgOperand(0)).getValueType(), 5180 getValue(I.getArgOperand(0)), 5181 getValue(I.getArgOperand(1)), 5182 getValue(I.getArgOperand(2)))); 5183 } else { 5184 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5185 getValue(I.getArgOperand(0)).getValueType(), 5186 getValue(I.getArgOperand(0)), 5187 getValue(I.getArgOperand(1))); 5188 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5189 getValue(I.getArgOperand(0)).getValueType(), 5190 Mul, 5191 getValue(I.getArgOperand(2))); 5192 setValue(&I, Add); 5193 } 5194 return nullptr; 5195 } 5196 case Intrinsic::convert_to_fp16: 5197 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5198 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5199 getValue(I.getArgOperand(0)), 5200 DAG.getTargetConstant(0, MVT::i32)))); 5201 return nullptr; 5202 case Intrinsic::convert_from_fp16: 5203 setValue(&I, 5204 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5205 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5206 getValue(I.getArgOperand(0))))); 5207 return nullptr; 5208 case Intrinsic::pcmarker: { 5209 SDValue Tmp = getValue(I.getArgOperand(0)); 5210 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5211 return nullptr; 5212 } 5213 case Intrinsic::readcyclecounter: { 5214 SDValue Op = getRoot(); 5215 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5216 DAG.getVTList(MVT::i64, MVT::Other), Op); 5217 setValue(&I, Res); 5218 DAG.setRoot(Res.getValue(1)); 5219 return nullptr; 5220 } 5221 case Intrinsic::bswap: 5222 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5223 getValue(I.getArgOperand(0)).getValueType(), 5224 getValue(I.getArgOperand(0)))); 5225 return nullptr; 5226 case Intrinsic::cttz: { 5227 SDValue Arg = getValue(I.getArgOperand(0)); 5228 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5229 EVT Ty = Arg.getValueType(); 5230 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5231 sdl, Ty, Arg)); 5232 return nullptr; 5233 } 5234 case Intrinsic::ctlz: { 5235 SDValue Arg = getValue(I.getArgOperand(0)); 5236 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5237 EVT Ty = Arg.getValueType(); 5238 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5239 sdl, Ty, Arg)); 5240 return nullptr; 5241 } 5242 case Intrinsic::ctpop: { 5243 SDValue Arg = getValue(I.getArgOperand(0)); 5244 EVT Ty = Arg.getValueType(); 5245 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5246 return nullptr; 5247 } 5248 case Intrinsic::stacksave: { 5249 SDValue Op = getRoot(); 5250 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5251 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5252 setValue(&I, Res); 5253 DAG.setRoot(Res.getValue(1)); 5254 return nullptr; 5255 } 5256 case Intrinsic::stackrestore: { 5257 Res = getValue(I.getArgOperand(0)); 5258 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5259 return nullptr; 5260 } 5261 case Intrinsic::stackprotector: { 5262 // Emit code into the DAG to store the stack guard onto the stack. 5263 MachineFunction &MF = DAG.getMachineFunction(); 5264 MachineFrameInfo *MFI = MF.getFrameInfo(); 5265 EVT PtrTy = TLI->getPointerTy(); 5266 SDValue Src, Chain = getRoot(); 5267 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5268 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5269 5270 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5271 // global variable __stack_chk_guard. 5272 if (!GV) 5273 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5274 if (BC->getOpcode() == Instruction::BitCast) 5275 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5276 5277 if (GV && TLI->useLoadStackGuardNode()) { 5278 // Emit a LOAD_STACK_GUARD node. 5279 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5280 sdl, PtrTy, Chain); 5281 MachinePointerInfo MPInfo(GV); 5282 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5283 unsigned Flags = MachineMemOperand::MOLoad | 5284 MachineMemOperand::MOInvariant; 5285 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5286 PtrTy.getSizeInBits() / 8, 5287 DAG.getEVTAlignment(PtrTy)); 5288 Node->setMemRefs(MemRefs, MemRefs + 1); 5289 5290 // Copy the guard value to a virtual register so that it can be 5291 // retrieved in the epilogue. 5292 Src = SDValue(Node, 0); 5293 const TargetRegisterClass *RC = 5294 TLI->getRegClassFor(Src.getSimpleValueType()); 5295 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5296 5297 SPDescriptor.setGuardReg(Reg); 5298 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5299 } else { 5300 Src = getValue(I.getArgOperand(0)); // The guard's value. 5301 } 5302 5303 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5304 5305 int FI = FuncInfo.StaticAllocaMap[Slot]; 5306 MFI->setStackProtectorIndex(FI); 5307 5308 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5309 5310 // Store the stack protector onto the stack. 5311 Res = DAG.getStore(Chain, sdl, Src, FIN, 5312 MachinePointerInfo::getFixedStack(FI), 5313 true, false, 0); 5314 setValue(&I, Res); 5315 DAG.setRoot(Res); 5316 return nullptr; 5317 } 5318 case Intrinsic::objectsize: { 5319 // If we don't know by now, we're never going to know. 5320 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5321 5322 assert(CI && "Non-constant type in __builtin_object_size?"); 5323 5324 SDValue Arg = getValue(I.getCalledValue()); 5325 EVT Ty = Arg.getValueType(); 5326 5327 if (CI->isZero()) 5328 Res = DAG.getConstant(-1ULL, Ty); 5329 else 5330 Res = DAG.getConstant(0, Ty); 5331 5332 setValue(&I, Res); 5333 return nullptr; 5334 } 5335 case Intrinsic::annotation: 5336 case Intrinsic::ptr_annotation: 5337 // Drop the intrinsic, but forward the value 5338 setValue(&I, getValue(I.getOperand(0))); 5339 return nullptr; 5340 case Intrinsic::assume: 5341 case Intrinsic::var_annotation: 5342 // Discard annotate attributes and assumptions 5343 return nullptr; 5344 5345 case Intrinsic::init_trampoline: { 5346 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5347 5348 SDValue Ops[6]; 5349 Ops[0] = getRoot(); 5350 Ops[1] = getValue(I.getArgOperand(0)); 5351 Ops[2] = getValue(I.getArgOperand(1)); 5352 Ops[3] = getValue(I.getArgOperand(2)); 5353 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5354 Ops[5] = DAG.getSrcValue(F); 5355 5356 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5357 5358 DAG.setRoot(Res); 5359 return nullptr; 5360 } 5361 case Intrinsic::adjust_trampoline: { 5362 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5363 TLI->getPointerTy(), 5364 getValue(I.getArgOperand(0)))); 5365 return nullptr; 5366 } 5367 case Intrinsic::gcroot: 5368 if (GFI) { 5369 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5370 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5371 5372 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5373 GFI->addStackRoot(FI->getIndex(), TypeMap); 5374 } 5375 return nullptr; 5376 case Intrinsic::gcread: 5377 case Intrinsic::gcwrite: 5378 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5379 case Intrinsic::flt_rounds: 5380 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5381 return nullptr; 5382 5383 case Intrinsic::expect: { 5384 // Just replace __builtin_expect(exp, c) with EXP. 5385 setValue(&I, getValue(I.getArgOperand(0))); 5386 return nullptr; 5387 } 5388 5389 case Intrinsic::debugtrap: 5390 case Intrinsic::trap: { 5391 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5392 if (TrapFuncName.empty()) { 5393 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5394 ISD::TRAP : ISD::DEBUGTRAP; 5395 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5396 return nullptr; 5397 } 5398 TargetLowering::ArgListTy Args; 5399 5400 TargetLowering::CallLoweringInfo CLI(DAG); 5401 CLI.setDebugLoc(sdl).setChain(getRoot()) 5402 .setCallee(CallingConv::C, I.getType(), 5403 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5404 std::move(Args), 0); 5405 5406 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5407 DAG.setRoot(Result.second); 5408 return nullptr; 5409 } 5410 5411 case Intrinsic::uadd_with_overflow: 5412 case Intrinsic::sadd_with_overflow: 5413 case Intrinsic::usub_with_overflow: 5414 case Intrinsic::ssub_with_overflow: 5415 case Intrinsic::umul_with_overflow: 5416 case Intrinsic::smul_with_overflow: { 5417 ISD::NodeType Op; 5418 switch (Intrinsic) { 5419 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5420 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5421 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5422 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5423 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5424 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5425 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5426 } 5427 SDValue Op1 = getValue(I.getArgOperand(0)); 5428 SDValue Op2 = getValue(I.getArgOperand(1)); 5429 5430 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5431 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5432 return nullptr; 5433 } 5434 case Intrinsic::prefetch: { 5435 SDValue Ops[5]; 5436 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5437 Ops[0] = getRoot(); 5438 Ops[1] = getValue(I.getArgOperand(0)); 5439 Ops[2] = getValue(I.getArgOperand(1)); 5440 Ops[3] = getValue(I.getArgOperand(2)); 5441 Ops[4] = getValue(I.getArgOperand(3)); 5442 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5443 DAG.getVTList(MVT::Other), Ops, 5444 EVT::getIntegerVT(*Context, 8), 5445 MachinePointerInfo(I.getArgOperand(0)), 5446 0, /* align */ 5447 false, /* volatile */ 5448 rw==0, /* read */ 5449 rw==1)); /* write */ 5450 return nullptr; 5451 } 5452 case Intrinsic::lifetime_start: 5453 case Intrinsic::lifetime_end: { 5454 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5455 // Stack coloring is not enabled in O0, discard region information. 5456 if (TM.getOptLevel() == CodeGenOpt::None) 5457 return nullptr; 5458 5459 SmallVector<Value *, 4> Allocas; 5460 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5461 5462 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5463 E = Allocas.end(); Object != E; ++Object) { 5464 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5465 5466 // Could not find an Alloca. 5467 if (!LifetimeObject) 5468 continue; 5469 5470 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5471 5472 SDValue Ops[2]; 5473 Ops[0] = getRoot(); 5474 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5475 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5476 5477 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5478 DAG.setRoot(Res); 5479 } 5480 return nullptr; 5481 } 5482 case Intrinsic::invariant_start: 5483 // Discard region information. 5484 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5485 return nullptr; 5486 case Intrinsic::invariant_end: 5487 // Discard region information. 5488 return nullptr; 5489 case Intrinsic::stackprotectorcheck: { 5490 // Do not actually emit anything for this basic block. Instead we initialize 5491 // the stack protector descriptor and export the guard variable so we can 5492 // access it in FinishBasicBlock. 5493 const BasicBlock *BB = I.getParent(); 5494 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5495 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5496 5497 // Flush our exports since we are going to process a terminator. 5498 (void)getControlRoot(); 5499 return nullptr; 5500 } 5501 case Intrinsic::clear_cache: 5502 return TLI->getClearCacheBuiltinName(); 5503 case Intrinsic::donothing: 5504 // ignore 5505 return nullptr; 5506 case Intrinsic::experimental_stackmap: { 5507 visitStackmap(I); 5508 return nullptr; 5509 } 5510 case Intrinsic::experimental_patchpoint_void: 5511 case Intrinsic::experimental_patchpoint_i64: { 5512 visitPatchpoint(I); 5513 return nullptr; 5514 } 5515 } 5516 } 5517 5518 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5519 bool isTailCall, 5520 MachineBasicBlock *LandingPad) { 5521 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5522 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5523 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5524 Type *RetTy = FTy->getReturnType(); 5525 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5526 MCSymbol *BeginLabel = nullptr; 5527 5528 TargetLowering::ArgListTy Args; 5529 TargetLowering::ArgListEntry Entry; 5530 Args.reserve(CS.arg_size()); 5531 5532 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5533 i != e; ++i) { 5534 const Value *V = *i; 5535 5536 // Skip empty types 5537 if (V->getType()->isEmptyTy()) 5538 continue; 5539 5540 SDValue ArgNode = getValue(V); 5541 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5542 5543 // Skip the first return-type Attribute to get to params. 5544 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5545 Args.push_back(Entry); 5546 } 5547 5548 if (LandingPad) { 5549 // Insert a label before the invoke call to mark the try range. This can be 5550 // used to detect deletion of the invoke via the MachineModuleInfo. 5551 BeginLabel = MMI.getContext().CreateTempSymbol(); 5552 5553 // For SjLj, keep track of which landing pads go with which invokes 5554 // so as to maintain the ordering of pads in the LSDA. 5555 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5556 if (CallSiteIndex) { 5557 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5558 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5559 5560 // Now that the call site is handled, stop tracking it. 5561 MMI.setCurrentCallSite(0); 5562 } 5563 5564 // Both PendingLoads and PendingExports must be flushed here; 5565 // this call might not return. 5566 (void)getRoot(); 5567 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5568 } 5569 5570 // Check if target-independent constraints permit a tail call here. 5571 // Target-dependent constraints are checked within TLI->LowerCallTo. 5572 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5573 isTailCall = false; 5574 5575 TargetLowering::CallLoweringInfo CLI(DAG); 5576 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5577 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5578 5579 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5580 assert((isTailCall || Result.second.getNode()) && 5581 "Non-null chain expected with non-tail call!"); 5582 assert((Result.second.getNode() || !Result.first.getNode()) && 5583 "Null value expected with tail call!"); 5584 if (Result.first.getNode()) 5585 setValue(CS.getInstruction(), Result.first); 5586 5587 if (!Result.second.getNode()) { 5588 // As a special case, a null chain means that a tail call has been emitted 5589 // and the DAG root is already updated. 5590 HasTailCall = true; 5591 5592 // Since there's no actual continuation from this block, nothing can be 5593 // relying on us setting vregs for them. 5594 PendingExports.clear(); 5595 } else { 5596 DAG.setRoot(Result.second); 5597 } 5598 5599 if (LandingPad) { 5600 // Insert a label at the end of the invoke call to mark the try range. This 5601 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5602 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5603 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5604 5605 // Inform MachineModuleInfo of range. 5606 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5607 } 5608 } 5609 5610 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5611 /// value is equal or not-equal to zero. 5612 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5613 for (const User *U : V->users()) { 5614 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5615 if (IC->isEquality()) 5616 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5617 if (C->isNullValue()) 5618 continue; 5619 // Unknown instruction. 5620 return false; 5621 } 5622 return true; 5623 } 5624 5625 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5626 Type *LoadTy, 5627 SelectionDAGBuilder &Builder) { 5628 5629 // Check to see if this load can be trivially constant folded, e.g. if the 5630 // input is from a string literal. 5631 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5632 // Cast pointer to the type we really want to load. 5633 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5634 PointerType::getUnqual(LoadTy)); 5635 5636 if (const Constant *LoadCst = 5637 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5638 Builder.DL)) 5639 return Builder.getValue(LoadCst); 5640 } 5641 5642 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5643 // still constant memory, the input chain can be the entry node. 5644 SDValue Root; 5645 bool ConstantMemory = false; 5646 5647 // Do not serialize (non-volatile) loads of constant memory with anything. 5648 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5649 Root = Builder.DAG.getEntryNode(); 5650 ConstantMemory = true; 5651 } else { 5652 // Do not serialize non-volatile loads against each other. 5653 Root = Builder.DAG.getRoot(); 5654 } 5655 5656 SDValue Ptr = Builder.getValue(PtrVal); 5657 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5658 Ptr, MachinePointerInfo(PtrVal), 5659 false /*volatile*/, 5660 false /*nontemporal*/, 5661 false /*isinvariant*/, 1 /* align=1 */); 5662 5663 if (!ConstantMemory) 5664 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5665 return LoadVal; 5666 } 5667 5668 /// processIntegerCallValue - Record the value for an instruction that 5669 /// produces an integer result, converting the type where necessary. 5670 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5671 SDValue Value, 5672 bool IsSigned) { 5673 EVT VT = TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType(), 5674 true); 5675 if (IsSigned) 5676 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5677 else 5678 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5679 setValue(&I, Value); 5680 } 5681 5682 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5683 /// If so, return true and lower it, otherwise return false and it will be 5684 /// lowered like a normal call. 5685 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5686 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5687 if (I.getNumArgOperands() != 3) 5688 return false; 5689 5690 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5691 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5692 !I.getArgOperand(2)->getType()->isIntegerTy() || 5693 !I.getType()->isIntegerTy()) 5694 return false; 5695 5696 const Value *Size = I.getArgOperand(2); 5697 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5698 if (CSize && CSize->getZExtValue() == 0) { 5699 EVT CallVT = TM.getSubtargetImpl()->getTargetLowering()->getValueType( 5700 I.getType(), true); 5701 setValue(&I, DAG.getConstant(0, CallVT)); 5702 return true; 5703 } 5704 5705 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5706 std::pair<SDValue, SDValue> Res = 5707 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5708 getValue(LHS), getValue(RHS), getValue(Size), 5709 MachinePointerInfo(LHS), 5710 MachinePointerInfo(RHS)); 5711 if (Res.first.getNode()) { 5712 processIntegerCallValue(I, Res.first, true); 5713 PendingLoads.push_back(Res.second); 5714 return true; 5715 } 5716 5717 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5718 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5719 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5720 bool ActuallyDoIt = true; 5721 MVT LoadVT; 5722 Type *LoadTy; 5723 switch (CSize->getZExtValue()) { 5724 default: 5725 LoadVT = MVT::Other; 5726 LoadTy = nullptr; 5727 ActuallyDoIt = false; 5728 break; 5729 case 2: 5730 LoadVT = MVT::i16; 5731 LoadTy = Type::getInt16Ty(CSize->getContext()); 5732 break; 5733 case 4: 5734 LoadVT = MVT::i32; 5735 LoadTy = Type::getInt32Ty(CSize->getContext()); 5736 break; 5737 case 8: 5738 LoadVT = MVT::i64; 5739 LoadTy = Type::getInt64Ty(CSize->getContext()); 5740 break; 5741 /* 5742 case 16: 5743 LoadVT = MVT::v4i32; 5744 LoadTy = Type::getInt32Ty(CSize->getContext()); 5745 LoadTy = VectorType::get(LoadTy, 4); 5746 break; 5747 */ 5748 } 5749 5750 // This turns into unaligned loads. We only do this if the target natively 5751 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5752 // we'll only produce a small number of byte loads. 5753 5754 // Require that we can find a legal MVT, and only do this if the target 5755 // supports unaligned loads of that type. Expanding into byte loads would 5756 // bloat the code. 5757 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5758 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5759 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5760 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5761 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5762 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5763 // TODO: Check alignment of src and dest ptrs. 5764 if (!TLI->isTypeLegal(LoadVT) || 5765 !TLI->allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5766 !TLI->allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5767 ActuallyDoIt = false; 5768 } 5769 5770 if (ActuallyDoIt) { 5771 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5772 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5773 5774 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5775 ISD::SETNE); 5776 processIntegerCallValue(I, Res, false); 5777 return true; 5778 } 5779 } 5780 5781 5782 return false; 5783 } 5784 5785 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5786 /// form. If so, return true and lower it, otherwise return false and it 5787 /// will be lowered like a normal call. 5788 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5789 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5790 if (I.getNumArgOperands() != 3) 5791 return false; 5792 5793 const Value *Src = I.getArgOperand(0); 5794 const Value *Char = I.getArgOperand(1); 5795 const Value *Length = I.getArgOperand(2); 5796 if (!Src->getType()->isPointerTy() || 5797 !Char->getType()->isIntegerTy() || 5798 !Length->getType()->isIntegerTy() || 5799 !I.getType()->isPointerTy()) 5800 return false; 5801 5802 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5803 std::pair<SDValue, SDValue> Res = 5804 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5805 getValue(Src), getValue(Char), getValue(Length), 5806 MachinePointerInfo(Src)); 5807 if (Res.first.getNode()) { 5808 setValue(&I, Res.first); 5809 PendingLoads.push_back(Res.second); 5810 return true; 5811 } 5812 5813 return false; 5814 } 5815 5816 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5817 /// optimized form. If so, return true and lower it, otherwise return false 5818 /// and it will be lowered like a normal call. 5819 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5820 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5821 if (I.getNumArgOperands() != 2) 5822 return false; 5823 5824 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5825 if (!Arg0->getType()->isPointerTy() || 5826 !Arg1->getType()->isPointerTy() || 5827 !I.getType()->isPointerTy()) 5828 return false; 5829 5830 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5831 std::pair<SDValue, SDValue> Res = 5832 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5833 getValue(Arg0), getValue(Arg1), 5834 MachinePointerInfo(Arg0), 5835 MachinePointerInfo(Arg1), isStpcpy); 5836 if (Res.first.getNode()) { 5837 setValue(&I, Res.first); 5838 DAG.setRoot(Res.second); 5839 return true; 5840 } 5841 5842 return false; 5843 } 5844 5845 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5846 /// If so, return true and lower it, otherwise return false and it will be 5847 /// lowered like a normal call. 5848 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5849 // Verify that the prototype makes sense. int strcmp(void*,void*) 5850 if (I.getNumArgOperands() != 2) 5851 return false; 5852 5853 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5854 if (!Arg0->getType()->isPointerTy() || 5855 !Arg1->getType()->isPointerTy() || 5856 !I.getType()->isIntegerTy()) 5857 return false; 5858 5859 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5860 std::pair<SDValue, SDValue> Res = 5861 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5862 getValue(Arg0), getValue(Arg1), 5863 MachinePointerInfo(Arg0), 5864 MachinePointerInfo(Arg1)); 5865 if (Res.first.getNode()) { 5866 processIntegerCallValue(I, Res.first, true); 5867 PendingLoads.push_back(Res.second); 5868 return true; 5869 } 5870 5871 return false; 5872 } 5873 5874 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5875 /// form. If so, return true and lower it, otherwise return false and it 5876 /// will be lowered like a normal call. 5877 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5878 // Verify that the prototype makes sense. size_t strlen(char *) 5879 if (I.getNumArgOperands() != 1) 5880 return false; 5881 5882 const Value *Arg0 = I.getArgOperand(0); 5883 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5884 return false; 5885 5886 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5887 std::pair<SDValue, SDValue> Res = 5888 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5889 getValue(Arg0), MachinePointerInfo(Arg0)); 5890 if (Res.first.getNode()) { 5891 processIntegerCallValue(I, Res.first, false); 5892 PendingLoads.push_back(Res.second); 5893 return true; 5894 } 5895 5896 return false; 5897 } 5898 5899 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5900 /// form. If so, return true and lower it, otherwise return false and it 5901 /// will be lowered like a normal call. 5902 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5903 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5904 if (I.getNumArgOperands() != 2) 5905 return false; 5906 5907 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5908 if (!Arg0->getType()->isPointerTy() || 5909 !Arg1->getType()->isIntegerTy() || 5910 !I.getType()->isIntegerTy()) 5911 return false; 5912 5913 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5914 std::pair<SDValue, SDValue> Res = 5915 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5916 getValue(Arg0), getValue(Arg1), 5917 MachinePointerInfo(Arg0)); 5918 if (Res.first.getNode()) { 5919 processIntegerCallValue(I, Res.first, false); 5920 PendingLoads.push_back(Res.second); 5921 return true; 5922 } 5923 5924 return false; 5925 } 5926 5927 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5928 /// operation (as expected), translate it to an SDNode with the specified opcode 5929 /// and return true. 5930 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5931 unsigned Opcode) { 5932 // Sanity check that it really is a unary floating-point call. 5933 if (I.getNumArgOperands() != 1 || 5934 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5935 I.getType() != I.getArgOperand(0)->getType() || 5936 !I.onlyReadsMemory()) 5937 return false; 5938 5939 SDValue Tmp = getValue(I.getArgOperand(0)); 5940 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5941 return true; 5942 } 5943 5944 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5945 // Handle inline assembly differently. 5946 if (isa<InlineAsm>(I.getCalledValue())) { 5947 visitInlineAsm(&I); 5948 return; 5949 } 5950 5951 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5952 ComputeUsesVAFloatArgument(I, &MMI); 5953 5954 const char *RenameFn = nullptr; 5955 if (Function *F = I.getCalledFunction()) { 5956 if (F->isDeclaration()) { 5957 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5958 if (unsigned IID = II->getIntrinsicID(F)) { 5959 RenameFn = visitIntrinsicCall(I, IID); 5960 if (!RenameFn) 5961 return; 5962 } 5963 } 5964 if (unsigned IID = F->getIntrinsicID()) { 5965 RenameFn = visitIntrinsicCall(I, IID); 5966 if (!RenameFn) 5967 return; 5968 } 5969 } 5970 5971 // Check for well-known libc/libm calls. If the function is internal, it 5972 // can't be a library call. 5973 LibFunc::Func Func; 5974 if (!F->hasLocalLinkage() && F->hasName() && 5975 LibInfo->getLibFunc(F->getName(), Func) && 5976 LibInfo->hasOptimizedCodeGen(Func)) { 5977 switch (Func) { 5978 default: break; 5979 case LibFunc::copysign: 5980 case LibFunc::copysignf: 5981 case LibFunc::copysignl: 5982 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5983 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5984 I.getType() == I.getArgOperand(0)->getType() && 5985 I.getType() == I.getArgOperand(1)->getType() && 5986 I.onlyReadsMemory()) { 5987 SDValue LHS = getValue(I.getArgOperand(0)); 5988 SDValue RHS = getValue(I.getArgOperand(1)); 5989 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5990 LHS.getValueType(), LHS, RHS)); 5991 return; 5992 } 5993 break; 5994 case LibFunc::fabs: 5995 case LibFunc::fabsf: 5996 case LibFunc::fabsl: 5997 if (visitUnaryFloatCall(I, ISD::FABS)) 5998 return; 5999 break; 6000 case LibFunc::sin: 6001 case LibFunc::sinf: 6002 case LibFunc::sinl: 6003 if (visitUnaryFloatCall(I, ISD::FSIN)) 6004 return; 6005 break; 6006 case LibFunc::cos: 6007 case LibFunc::cosf: 6008 case LibFunc::cosl: 6009 if (visitUnaryFloatCall(I, ISD::FCOS)) 6010 return; 6011 break; 6012 case LibFunc::sqrt: 6013 case LibFunc::sqrtf: 6014 case LibFunc::sqrtl: 6015 case LibFunc::sqrt_finite: 6016 case LibFunc::sqrtf_finite: 6017 case LibFunc::sqrtl_finite: 6018 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6019 return; 6020 break; 6021 case LibFunc::floor: 6022 case LibFunc::floorf: 6023 case LibFunc::floorl: 6024 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6025 return; 6026 break; 6027 case LibFunc::nearbyint: 6028 case LibFunc::nearbyintf: 6029 case LibFunc::nearbyintl: 6030 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6031 return; 6032 break; 6033 case LibFunc::ceil: 6034 case LibFunc::ceilf: 6035 case LibFunc::ceill: 6036 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6037 return; 6038 break; 6039 case LibFunc::rint: 6040 case LibFunc::rintf: 6041 case LibFunc::rintl: 6042 if (visitUnaryFloatCall(I, ISD::FRINT)) 6043 return; 6044 break; 6045 case LibFunc::round: 6046 case LibFunc::roundf: 6047 case LibFunc::roundl: 6048 if (visitUnaryFloatCall(I, ISD::FROUND)) 6049 return; 6050 break; 6051 case LibFunc::trunc: 6052 case LibFunc::truncf: 6053 case LibFunc::truncl: 6054 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6055 return; 6056 break; 6057 case LibFunc::log2: 6058 case LibFunc::log2f: 6059 case LibFunc::log2l: 6060 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6061 return; 6062 break; 6063 case LibFunc::exp2: 6064 case LibFunc::exp2f: 6065 case LibFunc::exp2l: 6066 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6067 return; 6068 break; 6069 case LibFunc::memcmp: 6070 if (visitMemCmpCall(I)) 6071 return; 6072 break; 6073 case LibFunc::memchr: 6074 if (visitMemChrCall(I)) 6075 return; 6076 break; 6077 case LibFunc::strcpy: 6078 if (visitStrCpyCall(I, false)) 6079 return; 6080 break; 6081 case LibFunc::stpcpy: 6082 if (visitStrCpyCall(I, true)) 6083 return; 6084 break; 6085 case LibFunc::strcmp: 6086 if (visitStrCmpCall(I)) 6087 return; 6088 break; 6089 case LibFunc::strlen: 6090 if (visitStrLenCall(I)) 6091 return; 6092 break; 6093 case LibFunc::strnlen: 6094 if (visitStrNLenCall(I)) 6095 return; 6096 break; 6097 } 6098 } 6099 } 6100 6101 SDValue Callee; 6102 if (!RenameFn) 6103 Callee = getValue(I.getCalledValue()); 6104 else 6105 Callee = DAG.getExternalSymbol( 6106 RenameFn, TM.getSubtargetImpl()->getTargetLowering()->getPointerTy()); 6107 6108 // Check if we can potentially perform a tail call. More detailed checking is 6109 // be done within LowerCallTo, after more information about the call is known. 6110 LowerCallTo(&I, Callee, I.isTailCall()); 6111 } 6112 6113 namespace { 6114 6115 /// AsmOperandInfo - This contains information for each constraint that we are 6116 /// lowering. 6117 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6118 public: 6119 /// CallOperand - If this is the result output operand or a clobber 6120 /// this is null, otherwise it is the incoming operand to the CallInst. 6121 /// This gets modified as the asm is processed. 6122 SDValue CallOperand; 6123 6124 /// AssignedRegs - If this is a register or register class operand, this 6125 /// contains the set of register corresponding to the operand. 6126 RegsForValue AssignedRegs; 6127 6128 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6129 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6130 } 6131 6132 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6133 /// corresponds to. If there is no Value* for this operand, it returns 6134 /// MVT::Other. 6135 EVT getCallOperandValEVT(LLVMContext &Context, 6136 const TargetLowering &TLI, 6137 const DataLayout *DL) const { 6138 if (!CallOperandVal) return MVT::Other; 6139 6140 if (isa<BasicBlock>(CallOperandVal)) 6141 return TLI.getPointerTy(); 6142 6143 llvm::Type *OpTy = CallOperandVal->getType(); 6144 6145 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6146 // If this is an indirect operand, the operand is a pointer to the 6147 // accessed type. 6148 if (isIndirect) { 6149 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6150 if (!PtrTy) 6151 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6152 OpTy = PtrTy->getElementType(); 6153 } 6154 6155 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6156 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6157 if (STy->getNumElements() == 1) 6158 OpTy = STy->getElementType(0); 6159 6160 // If OpTy is not a single value, it may be a struct/union that we 6161 // can tile with integers. 6162 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6163 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6164 switch (BitSize) { 6165 default: break; 6166 case 1: 6167 case 8: 6168 case 16: 6169 case 32: 6170 case 64: 6171 case 128: 6172 OpTy = IntegerType::get(Context, BitSize); 6173 break; 6174 } 6175 } 6176 6177 return TLI.getValueType(OpTy, true); 6178 } 6179 }; 6180 6181 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6182 6183 } // end anonymous namespace 6184 6185 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6186 /// specified operand. We prefer to assign virtual registers, to allow the 6187 /// register allocator to handle the assignment process. However, if the asm 6188 /// uses features that we can't model on machineinstrs, we have SDISel do the 6189 /// allocation. This produces generally horrible, but correct, code. 6190 /// 6191 /// OpInfo describes the operand. 6192 /// 6193 static void GetRegistersForValue(SelectionDAG &DAG, 6194 const TargetLowering &TLI, 6195 SDLoc DL, 6196 SDISelAsmOperandInfo &OpInfo) { 6197 LLVMContext &Context = *DAG.getContext(); 6198 6199 MachineFunction &MF = DAG.getMachineFunction(); 6200 SmallVector<unsigned, 4> Regs; 6201 6202 // If this is a constraint for a single physreg, or a constraint for a 6203 // register class, find it. 6204 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6205 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6206 OpInfo.ConstraintVT); 6207 6208 unsigned NumRegs = 1; 6209 if (OpInfo.ConstraintVT != MVT::Other) { 6210 // If this is a FP input in an integer register (or visa versa) insert a bit 6211 // cast of the input value. More generally, handle any case where the input 6212 // value disagrees with the register class we plan to stick this in. 6213 if (OpInfo.Type == InlineAsm::isInput && 6214 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6215 // Try to convert to the first EVT that the reg class contains. If the 6216 // types are identical size, use a bitcast to convert (e.g. two differing 6217 // vector types). 6218 MVT RegVT = *PhysReg.second->vt_begin(); 6219 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6220 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6221 RegVT, OpInfo.CallOperand); 6222 OpInfo.ConstraintVT = RegVT; 6223 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6224 // If the input is a FP value and we want it in FP registers, do a 6225 // bitcast to the corresponding integer type. This turns an f64 value 6226 // into i64, which can be passed with two i32 values on a 32-bit 6227 // machine. 6228 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6229 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6230 RegVT, OpInfo.CallOperand); 6231 OpInfo.ConstraintVT = RegVT; 6232 } 6233 } 6234 6235 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6236 } 6237 6238 MVT RegVT; 6239 EVT ValueVT = OpInfo.ConstraintVT; 6240 6241 // If this is a constraint for a specific physical register, like {r17}, 6242 // assign it now. 6243 if (unsigned AssignedReg = PhysReg.first) { 6244 const TargetRegisterClass *RC = PhysReg.second; 6245 if (OpInfo.ConstraintVT == MVT::Other) 6246 ValueVT = *RC->vt_begin(); 6247 6248 // Get the actual register value type. This is important, because the user 6249 // may have asked for (e.g.) the AX register in i32 type. We need to 6250 // remember that AX is actually i16 to get the right extension. 6251 RegVT = *RC->vt_begin(); 6252 6253 // This is a explicit reference to a physical register. 6254 Regs.push_back(AssignedReg); 6255 6256 // If this is an expanded reference, add the rest of the regs to Regs. 6257 if (NumRegs != 1) { 6258 TargetRegisterClass::iterator I = RC->begin(); 6259 for (; *I != AssignedReg; ++I) 6260 assert(I != RC->end() && "Didn't find reg!"); 6261 6262 // Already added the first reg. 6263 --NumRegs; ++I; 6264 for (; NumRegs; --NumRegs, ++I) { 6265 assert(I != RC->end() && "Ran out of registers to allocate!"); 6266 Regs.push_back(*I); 6267 } 6268 } 6269 6270 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6271 return; 6272 } 6273 6274 // Otherwise, if this was a reference to an LLVM register class, create vregs 6275 // for this reference. 6276 if (const TargetRegisterClass *RC = PhysReg.second) { 6277 RegVT = *RC->vt_begin(); 6278 if (OpInfo.ConstraintVT == MVT::Other) 6279 ValueVT = RegVT; 6280 6281 // Create the appropriate number of virtual registers. 6282 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6283 for (; NumRegs; --NumRegs) 6284 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6285 6286 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6287 return; 6288 } 6289 6290 // Otherwise, we couldn't allocate enough registers for this. 6291 } 6292 6293 /// visitInlineAsm - Handle a call to an InlineAsm object. 6294 /// 6295 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6296 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6297 6298 /// ConstraintOperands - Information about all of the constraints. 6299 SDISelAsmOperandInfoVector ConstraintOperands; 6300 6301 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6302 TargetLowering::AsmOperandInfoVector 6303 TargetConstraints = TLI->ParseConstraints(CS); 6304 6305 bool hasMemory = false; 6306 6307 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6308 unsigned ResNo = 0; // ResNo - The result number of the next output. 6309 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6310 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6311 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6312 6313 MVT OpVT = MVT::Other; 6314 6315 // Compute the value type for each operand. 6316 switch (OpInfo.Type) { 6317 case InlineAsm::isOutput: 6318 // Indirect outputs just consume an argument. 6319 if (OpInfo.isIndirect) { 6320 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6321 break; 6322 } 6323 6324 // The return value of the call is this value. As such, there is no 6325 // corresponding argument. 6326 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6327 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6328 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6329 } else { 6330 assert(ResNo == 0 && "Asm only has one result!"); 6331 OpVT = TLI->getSimpleValueType(CS.getType()); 6332 } 6333 ++ResNo; 6334 break; 6335 case InlineAsm::isInput: 6336 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6337 break; 6338 case InlineAsm::isClobber: 6339 // Nothing to do. 6340 break; 6341 } 6342 6343 // If this is an input or an indirect output, process the call argument. 6344 // BasicBlocks are labels, currently appearing only in asm's. 6345 if (OpInfo.CallOperandVal) { 6346 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6347 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6348 } else { 6349 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6350 } 6351 6352 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6353 getSimpleVT(); 6354 } 6355 6356 OpInfo.ConstraintVT = OpVT; 6357 6358 // Indirect operand accesses access memory. 6359 if (OpInfo.isIndirect) 6360 hasMemory = true; 6361 else { 6362 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6363 TargetLowering::ConstraintType 6364 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6365 if (CType == TargetLowering::C_Memory) { 6366 hasMemory = true; 6367 break; 6368 } 6369 } 6370 } 6371 } 6372 6373 SDValue Chain, Flag; 6374 6375 // We won't need to flush pending loads if this asm doesn't touch 6376 // memory and is nonvolatile. 6377 if (hasMemory || IA->hasSideEffects()) 6378 Chain = getRoot(); 6379 else 6380 Chain = DAG.getRoot(); 6381 6382 // Second pass over the constraints: compute which constraint option to use 6383 // and assign registers to constraints that want a specific physreg. 6384 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6385 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6386 6387 // If this is an output operand with a matching input operand, look up the 6388 // matching input. If their types mismatch, e.g. one is an integer, the 6389 // other is floating point, or their sizes are different, flag it as an 6390 // error. 6391 if (OpInfo.hasMatchingInput()) { 6392 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6393 6394 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6395 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6396 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6397 OpInfo.ConstraintVT); 6398 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6399 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6400 Input.ConstraintVT); 6401 if ((OpInfo.ConstraintVT.isInteger() != 6402 Input.ConstraintVT.isInteger()) || 6403 (MatchRC.second != InputRC.second)) { 6404 report_fatal_error("Unsupported asm: input constraint" 6405 " with a matching output constraint of" 6406 " incompatible type!"); 6407 } 6408 Input.ConstraintVT = OpInfo.ConstraintVT; 6409 } 6410 } 6411 6412 // Compute the constraint code and ConstraintType to use. 6413 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6414 6415 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6416 OpInfo.Type == InlineAsm::isClobber) 6417 continue; 6418 6419 // If this is a memory input, and if the operand is not indirect, do what we 6420 // need to to provide an address for the memory input. 6421 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6422 !OpInfo.isIndirect) { 6423 assert((OpInfo.isMultipleAlternative || 6424 (OpInfo.Type == InlineAsm::isInput)) && 6425 "Can only indirectify direct input operands!"); 6426 6427 // Memory operands really want the address of the value. If we don't have 6428 // an indirect input, put it in the constpool if we can, otherwise spill 6429 // it to a stack slot. 6430 // TODO: This isn't quite right. We need to handle these according to 6431 // the addressing mode that the constraint wants. Also, this may take 6432 // an additional register for the computation and we don't want that 6433 // either. 6434 6435 // If the operand is a float, integer, or vector constant, spill to a 6436 // constant pool entry to get its address. 6437 const Value *OpVal = OpInfo.CallOperandVal; 6438 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6439 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6440 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6441 TLI->getPointerTy()); 6442 } else { 6443 // Otherwise, create a stack slot and emit a store to it before the 6444 // asm. 6445 Type *Ty = OpVal->getType(); 6446 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6447 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6448 MachineFunction &MF = DAG.getMachineFunction(); 6449 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6450 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6451 Chain = DAG.getStore(Chain, getCurSDLoc(), 6452 OpInfo.CallOperand, StackSlot, 6453 MachinePointerInfo::getFixedStack(SSFI), 6454 false, false, 0); 6455 OpInfo.CallOperand = StackSlot; 6456 } 6457 6458 // There is no longer a Value* corresponding to this operand. 6459 OpInfo.CallOperandVal = nullptr; 6460 6461 // It is now an indirect operand. 6462 OpInfo.isIndirect = true; 6463 } 6464 6465 // If this constraint is for a specific register, allocate it before 6466 // anything else. 6467 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6468 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6469 } 6470 6471 // Second pass - Loop over all of the operands, assigning virtual or physregs 6472 // to register class operands. 6473 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6474 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6475 6476 // C_Register operands have already been allocated, Other/Memory don't need 6477 // to be. 6478 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6479 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6480 } 6481 6482 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6483 std::vector<SDValue> AsmNodeOperands; 6484 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6485 AsmNodeOperands.push_back( 6486 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6487 TLI->getPointerTy())); 6488 6489 // If we have a !srcloc metadata node associated with it, we want to attach 6490 // this to the ultimately generated inline asm machineinstr. To do this, we 6491 // pass in the third operand as this (potentially null) inline asm MDNode. 6492 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6493 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6494 6495 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6496 // bits as operand 3. 6497 unsigned ExtraInfo = 0; 6498 if (IA->hasSideEffects()) 6499 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6500 if (IA->isAlignStack()) 6501 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6502 // Set the asm dialect. 6503 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6504 6505 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6506 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6507 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6508 6509 // Compute the constraint code and ConstraintType to use. 6510 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6511 6512 // Ideally, we would only check against memory constraints. However, the 6513 // meaning of an other constraint can be target-specific and we can't easily 6514 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6515 // for other constriants as well. 6516 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6517 OpInfo.ConstraintType == TargetLowering::C_Other) { 6518 if (OpInfo.Type == InlineAsm::isInput) 6519 ExtraInfo |= InlineAsm::Extra_MayLoad; 6520 else if (OpInfo.Type == InlineAsm::isOutput) 6521 ExtraInfo |= InlineAsm::Extra_MayStore; 6522 else if (OpInfo.Type == InlineAsm::isClobber) 6523 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6524 } 6525 } 6526 6527 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6528 TLI->getPointerTy())); 6529 6530 // Loop over all of the inputs, copying the operand values into the 6531 // appropriate registers and processing the output regs. 6532 RegsForValue RetValRegs; 6533 6534 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6535 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6536 6537 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6538 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6539 6540 switch (OpInfo.Type) { 6541 case InlineAsm::isOutput: { 6542 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6543 OpInfo.ConstraintType != TargetLowering::C_Register) { 6544 // Memory output, or 'other' output (e.g. 'X' constraint). 6545 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6546 6547 // Add information to the INLINEASM node to know about this output. 6548 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6549 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6550 TLI->getPointerTy())); 6551 AsmNodeOperands.push_back(OpInfo.CallOperand); 6552 break; 6553 } 6554 6555 // Otherwise, this is a register or register class output. 6556 6557 // Copy the output from the appropriate register. Find a register that 6558 // we can use. 6559 if (OpInfo.AssignedRegs.Regs.empty()) { 6560 LLVMContext &Ctx = *DAG.getContext(); 6561 Ctx.emitError(CS.getInstruction(), 6562 "couldn't allocate output register for constraint '" + 6563 Twine(OpInfo.ConstraintCode) + "'"); 6564 return; 6565 } 6566 6567 // If this is an indirect operand, store through the pointer after the 6568 // asm. 6569 if (OpInfo.isIndirect) { 6570 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6571 OpInfo.CallOperandVal)); 6572 } else { 6573 // This is the result value of the call. 6574 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6575 // Concatenate this output onto the outputs list. 6576 RetValRegs.append(OpInfo.AssignedRegs); 6577 } 6578 6579 // Add information to the INLINEASM node to know that this register is 6580 // set. 6581 OpInfo.AssignedRegs 6582 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6583 ? InlineAsm::Kind_RegDefEarlyClobber 6584 : InlineAsm::Kind_RegDef, 6585 false, 0, DAG, AsmNodeOperands); 6586 break; 6587 } 6588 case InlineAsm::isInput: { 6589 SDValue InOperandVal = OpInfo.CallOperand; 6590 6591 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6592 // If this is required to match an output register we have already set, 6593 // just use its register. 6594 unsigned OperandNo = OpInfo.getMatchedOperand(); 6595 6596 // Scan until we find the definition we already emitted of this operand. 6597 // When we find it, create a RegsForValue operand. 6598 unsigned CurOp = InlineAsm::Op_FirstOperand; 6599 for (; OperandNo; --OperandNo) { 6600 // Advance to the next operand. 6601 unsigned OpFlag = 6602 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6603 assert((InlineAsm::isRegDefKind(OpFlag) || 6604 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6605 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6606 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6607 } 6608 6609 unsigned OpFlag = 6610 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6611 if (InlineAsm::isRegDefKind(OpFlag) || 6612 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6613 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6614 if (OpInfo.isIndirect) { 6615 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6616 LLVMContext &Ctx = *DAG.getContext(); 6617 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6618 " don't know how to handle tied " 6619 "indirect register inputs"); 6620 return; 6621 } 6622 6623 RegsForValue MatchedRegs; 6624 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6625 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6626 MatchedRegs.RegVTs.push_back(RegVT); 6627 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6628 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6629 i != e; ++i) { 6630 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6631 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6632 else { 6633 LLVMContext &Ctx = *DAG.getContext(); 6634 Ctx.emitError(CS.getInstruction(), 6635 "inline asm error: This value" 6636 " type register class is not natively supported!"); 6637 return; 6638 } 6639 } 6640 // Use the produced MatchedRegs object to 6641 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6642 Chain, &Flag, CS.getInstruction()); 6643 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6644 true, OpInfo.getMatchedOperand(), 6645 DAG, AsmNodeOperands); 6646 break; 6647 } 6648 6649 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6650 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6651 "Unexpected number of operands"); 6652 // Add information to the INLINEASM node to know about this input. 6653 // See InlineAsm.h isUseOperandTiedToDef. 6654 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6655 OpInfo.getMatchedOperand()); 6656 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6657 TLI->getPointerTy())); 6658 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6659 break; 6660 } 6661 6662 // Treat indirect 'X' constraint as memory. 6663 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6664 OpInfo.isIndirect) 6665 OpInfo.ConstraintType = TargetLowering::C_Memory; 6666 6667 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6668 std::vector<SDValue> Ops; 6669 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6670 Ops, DAG); 6671 if (Ops.empty()) { 6672 LLVMContext &Ctx = *DAG.getContext(); 6673 Ctx.emitError(CS.getInstruction(), 6674 "invalid operand for inline asm constraint '" + 6675 Twine(OpInfo.ConstraintCode) + "'"); 6676 return; 6677 } 6678 6679 // Add information to the INLINEASM node to know about this input. 6680 unsigned ResOpType = 6681 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6682 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6683 TLI->getPointerTy())); 6684 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6685 break; 6686 } 6687 6688 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6689 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6690 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6691 "Memory operands expect pointer values"); 6692 6693 // Add information to the INLINEASM node to know about this input. 6694 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6695 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6696 TLI->getPointerTy())); 6697 AsmNodeOperands.push_back(InOperandVal); 6698 break; 6699 } 6700 6701 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6702 OpInfo.ConstraintType == TargetLowering::C_Register) && 6703 "Unknown constraint type!"); 6704 6705 // TODO: Support this. 6706 if (OpInfo.isIndirect) { 6707 LLVMContext &Ctx = *DAG.getContext(); 6708 Ctx.emitError(CS.getInstruction(), 6709 "Don't know how to handle indirect register inputs yet " 6710 "for constraint '" + 6711 Twine(OpInfo.ConstraintCode) + "'"); 6712 return; 6713 } 6714 6715 // Copy the input into the appropriate registers. 6716 if (OpInfo.AssignedRegs.Regs.empty()) { 6717 LLVMContext &Ctx = *DAG.getContext(); 6718 Ctx.emitError(CS.getInstruction(), 6719 "couldn't allocate input reg for constraint '" + 6720 Twine(OpInfo.ConstraintCode) + "'"); 6721 return; 6722 } 6723 6724 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6725 Chain, &Flag, CS.getInstruction()); 6726 6727 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6728 DAG, AsmNodeOperands); 6729 break; 6730 } 6731 case InlineAsm::isClobber: { 6732 // Add the clobbered value to the operand list, so that the register 6733 // allocator is aware that the physreg got clobbered. 6734 if (!OpInfo.AssignedRegs.Regs.empty()) 6735 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6736 false, 0, DAG, 6737 AsmNodeOperands); 6738 break; 6739 } 6740 } 6741 } 6742 6743 // Finish up input operands. Set the input chain and add the flag last. 6744 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6745 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6746 6747 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6748 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6749 Flag = Chain.getValue(1); 6750 6751 // If this asm returns a register value, copy the result from that register 6752 // and set it as the value of the call. 6753 if (!RetValRegs.Regs.empty()) { 6754 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6755 Chain, &Flag, CS.getInstruction()); 6756 6757 // FIXME: Why don't we do this for inline asms with MRVs? 6758 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6759 EVT ResultType = TLI->getValueType(CS.getType()); 6760 6761 // If any of the results of the inline asm is a vector, it may have the 6762 // wrong width/num elts. This can happen for register classes that can 6763 // contain multiple different value types. The preg or vreg allocated may 6764 // not have the same VT as was expected. Convert it to the right type 6765 // with bit_convert. 6766 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6767 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6768 ResultType, Val); 6769 6770 } else if (ResultType != Val.getValueType() && 6771 ResultType.isInteger() && Val.getValueType().isInteger()) { 6772 // If a result value was tied to an input value, the computed result may 6773 // have a wider width than the expected result. Extract the relevant 6774 // portion. 6775 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6776 } 6777 6778 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6779 } 6780 6781 setValue(CS.getInstruction(), Val); 6782 // Don't need to use this as a chain in this case. 6783 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6784 return; 6785 } 6786 6787 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6788 6789 // Process indirect outputs, first output all of the flagged copies out of 6790 // physregs. 6791 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6792 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6793 const Value *Ptr = IndirectStoresToEmit[i].second; 6794 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6795 Chain, &Flag, IA); 6796 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6797 } 6798 6799 // Emit the non-flagged stores from the physregs. 6800 SmallVector<SDValue, 8> OutChains; 6801 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6802 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6803 StoresToEmit[i].first, 6804 getValue(StoresToEmit[i].second), 6805 MachinePointerInfo(StoresToEmit[i].second), 6806 false, false, 0); 6807 OutChains.push_back(Val); 6808 } 6809 6810 if (!OutChains.empty()) 6811 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6812 6813 DAG.setRoot(Chain); 6814 } 6815 6816 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6817 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6818 MVT::Other, getRoot(), 6819 getValue(I.getArgOperand(0)), 6820 DAG.getSrcValue(I.getArgOperand(0)))); 6821 } 6822 6823 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6824 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6825 const DataLayout &DL = *TLI->getDataLayout(); 6826 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6827 getRoot(), getValue(I.getOperand(0)), 6828 DAG.getSrcValue(I.getOperand(0)), 6829 DL.getABITypeAlignment(I.getType())); 6830 setValue(&I, V); 6831 DAG.setRoot(V.getValue(1)); 6832 } 6833 6834 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6835 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6836 MVT::Other, getRoot(), 6837 getValue(I.getArgOperand(0)), 6838 DAG.getSrcValue(I.getArgOperand(0)))); 6839 } 6840 6841 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6842 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6843 MVT::Other, getRoot(), 6844 getValue(I.getArgOperand(0)), 6845 getValue(I.getArgOperand(1)), 6846 DAG.getSrcValue(I.getArgOperand(0)), 6847 DAG.getSrcValue(I.getArgOperand(1)))); 6848 } 6849 6850 /// \brief Lower an argument list according to the target calling convention. 6851 /// 6852 /// \return A tuple of <return-value, token-chain> 6853 /// 6854 /// This is a helper for lowering intrinsics that follow a target calling 6855 /// convention or require stack pointer adjustment. Only a subset of the 6856 /// intrinsic's operands need to participate in the calling convention. 6857 std::pair<SDValue, SDValue> 6858 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6859 unsigned NumArgs, SDValue Callee, 6860 bool useVoidTy) { 6861 TargetLowering::ArgListTy Args; 6862 Args.reserve(NumArgs); 6863 6864 // Populate the argument list. 6865 // Attributes for args start at offset 1, after the return attribute. 6866 ImmutableCallSite CS(&CI); 6867 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6868 ArgI != ArgE; ++ArgI) { 6869 const Value *V = CI.getOperand(ArgI); 6870 6871 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6872 6873 TargetLowering::ArgListEntry Entry; 6874 Entry.Node = getValue(V); 6875 Entry.Ty = V->getType(); 6876 Entry.setAttributes(&CS, AttrI); 6877 Args.push_back(Entry); 6878 } 6879 6880 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6881 TargetLowering::CallLoweringInfo CLI(DAG); 6882 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6883 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6884 .setDiscardResult(!CI.use_empty()); 6885 6886 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6887 return TLI->LowerCallTo(CLI); 6888 } 6889 6890 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6891 /// or patchpoint target node's operand list. 6892 /// 6893 /// Constants are converted to TargetConstants purely as an optimization to 6894 /// avoid constant materialization and register allocation. 6895 /// 6896 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6897 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6898 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6899 /// address materialization and register allocation, but may also be required 6900 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6901 /// alloca in the entry block, then the runtime may assume that the alloca's 6902 /// StackMap location can be read immediately after compilation and that the 6903 /// location is valid at any point during execution (this is similar to the 6904 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6905 /// only available in a register, then the runtime would need to trap when 6906 /// execution reaches the StackMap in order to read the alloca's location. 6907 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6908 SmallVectorImpl<SDValue> &Ops, 6909 SelectionDAGBuilder &Builder) { 6910 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6911 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6912 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6913 Ops.push_back( 6914 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6915 Ops.push_back( 6916 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6917 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6918 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6919 Ops.push_back( 6920 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6921 } else 6922 Ops.push_back(OpVal); 6923 } 6924 } 6925 6926 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6927 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6928 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6929 // [live variables...]) 6930 6931 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6932 6933 SDValue Chain, InFlag, Callee, NullPtr; 6934 SmallVector<SDValue, 32> Ops; 6935 6936 SDLoc DL = getCurSDLoc(); 6937 Callee = getValue(CI.getCalledValue()); 6938 NullPtr = DAG.getIntPtrConstant(0, true); 6939 6940 // The stackmap intrinsic only records the live variables (the arguemnts 6941 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6942 // intrinsic, this won't be lowered to a function call. This means we don't 6943 // have to worry about calling conventions and target specific lowering code. 6944 // Instead we perform the call lowering right here. 6945 // 6946 // chain, flag = CALLSEQ_START(chain, 0) 6947 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6948 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6949 // 6950 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6951 InFlag = Chain.getValue(1); 6952 6953 // Add the <id> and <numBytes> constants. 6954 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6955 Ops.push_back(DAG.getTargetConstant( 6956 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6957 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6958 Ops.push_back(DAG.getTargetConstant( 6959 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6960 6961 // Push live variables for the stack map. 6962 addStackMapLiveVars(CI, 2, Ops, *this); 6963 6964 // We are not pushing any register mask info here on the operands list, 6965 // because the stackmap doesn't clobber anything. 6966 6967 // Push the chain and the glue flag. 6968 Ops.push_back(Chain); 6969 Ops.push_back(InFlag); 6970 6971 // Create the STACKMAP node. 6972 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6973 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6974 Chain = SDValue(SM, 0); 6975 InFlag = Chain.getValue(1); 6976 6977 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6978 6979 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6980 6981 // Set the root to the target-lowered call chain. 6982 DAG.setRoot(Chain); 6983 6984 // Inform the Frame Information that we have a stackmap in this function. 6985 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6986 } 6987 6988 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6989 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6990 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6991 // i32 <numBytes>, 6992 // i8* <target>, 6993 // i32 <numArgs>, 6994 // [Args...], 6995 // [live variables...]) 6996 6997 CallingConv::ID CC = CI.getCallingConv(); 6998 bool isAnyRegCC = CC == CallingConv::AnyReg; 6999 bool hasDef = !CI.getType()->isVoidTy(); 7000 SDValue Callee = getValue(CI.getOperand(2)); // <target> 7001 7002 // Get the real number of arguments participating in the call <numArgs> 7003 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 7004 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7005 7006 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7007 // Intrinsics include all meta-operands up to but not including CC. 7008 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7009 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 7010 "Not enough arguments provided to the patchpoint intrinsic"); 7011 7012 // For AnyRegCC the arguments are lowered later on manually. 7013 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 7014 std::pair<SDValue, SDValue> Result = 7015 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 7016 7017 // Set the root to the target-lowered call chain. 7018 SDValue Chain = Result.second; 7019 DAG.setRoot(Chain); 7020 7021 SDNode *CallEnd = Chain.getNode(); 7022 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7023 CallEnd = CallEnd->getOperand(0).getNode(); 7024 7025 /// Get a call instruction from the call sequence chain. 7026 /// Tail calls are not allowed. 7027 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7028 "Expected a callseq node."); 7029 SDNode *Call = CallEnd->getOperand(0).getNode(); 7030 bool hasGlue = Call->getGluedNode(); 7031 7032 // Replace the target specific call node with the patchable intrinsic. 7033 SmallVector<SDValue, 8> Ops; 7034 7035 // Add the <id> and <numBytes> constants. 7036 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7037 Ops.push_back(DAG.getTargetConstant( 7038 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7039 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7040 Ops.push_back(DAG.getTargetConstant( 7041 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7042 7043 // Assume that the Callee is a constant address. 7044 // FIXME: handle function symbols in the future. 7045 Ops.push_back( 7046 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7047 /*isTarget=*/true)); 7048 7049 // Adjust <numArgs> to account for any arguments that have been passed on the 7050 // stack instead. 7051 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7052 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7053 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7054 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7055 7056 // Add the calling convention 7057 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7058 7059 // Add the arguments we omitted previously. The register allocator should 7060 // place these in any free register. 7061 if (isAnyRegCC) 7062 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7063 Ops.push_back(getValue(CI.getArgOperand(i))); 7064 7065 // Push the arguments from the call instruction up to the register mask. 7066 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7067 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7068 Ops.push_back(*i); 7069 7070 // Push live variables for the stack map. 7071 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7072 7073 // Push the register mask info. 7074 if (hasGlue) 7075 Ops.push_back(*(Call->op_end()-2)); 7076 else 7077 Ops.push_back(*(Call->op_end()-1)); 7078 7079 // Push the chain (this is originally the first operand of the call, but 7080 // becomes now the last or second to last operand). 7081 Ops.push_back(*(Call->op_begin())); 7082 7083 // Push the glue flag (last operand). 7084 if (hasGlue) 7085 Ops.push_back(*(Call->op_end()-1)); 7086 7087 SDVTList NodeTys; 7088 if (isAnyRegCC && hasDef) { 7089 // Create the return types based on the intrinsic definition 7090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7091 SmallVector<EVT, 3> ValueVTs; 7092 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7093 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7094 7095 // There is always a chain and a glue type at the end 7096 ValueVTs.push_back(MVT::Other); 7097 ValueVTs.push_back(MVT::Glue); 7098 NodeTys = DAG.getVTList(ValueVTs); 7099 } else 7100 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7101 7102 // Replace the target specific call node with a PATCHPOINT node. 7103 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7104 getCurSDLoc(), NodeTys, Ops); 7105 7106 // Update the NodeMap. 7107 if (hasDef) { 7108 if (isAnyRegCC) 7109 setValue(&CI, SDValue(MN, 0)); 7110 else 7111 setValue(&CI, Result.first); 7112 } 7113 7114 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7115 // call sequence. Furthermore the location of the chain and glue can change 7116 // when the AnyReg calling convention is used and the intrinsic returns a 7117 // value. 7118 if (isAnyRegCC && hasDef) { 7119 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7120 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7121 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7122 } else 7123 DAG.ReplaceAllUsesWith(Call, MN); 7124 DAG.DeleteNode(Call); 7125 7126 // Inform the Frame Information that we have a patchpoint in this function. 7127 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7128 } 7129 7130 /// Returns an AttributeSet representing the attributes applied to the return 7131 /// value of the given call. 7132 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7133 SmallVector<Attribute::AttrKind, 2> Attrs; 7134 if (CLI.RetSExt) 7135 Attrs.push_back(Attribute::SExt); 7136 if (CLI.RetZExt) 7137 Attrs.push_back(Attribute::ZExt); 7138 if (CLI.IsInReg) 7139 Attrs.push_back(Attribute::InReg); 7140 7141 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7142 Attrs); 7143 } 7144 7145 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7146 /// implementation, which just calls LowerCall. 7147 /// FIXME: When all targets are 7148 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7149 std::pair<SDValue, SDValue> 7150 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7151 // Handle the incoming return values from the call. 7152 CLI.Ins.clear(); 7153 Type *OrigRetTy = CLI.RetTy; 7154 SmallVector<EVT, 4> RetTys; 7155 SmallVector<uint64_t, 4> Offsets; 7156 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7157 7158 SmallVector<ISD::OutputArg, 4> Outs; 7159 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7160 7161 bool CanLowerReturn = 7162 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7163 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7164 7165 SDValue DemoteStackSlot; 7166 int DemoteStackIdx = -100; 7167 if (!CanLowerReturn) { 7168 // FIXME: equivalent assert? 7169 // assert(!CS.hasInAllocaArgument() && 7170 // "sret demotion is incompatible with inalloca"); 7171 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7172 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7173 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7174 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7175 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7176 7177 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7178 ArgListEntry Entry; 7179 Entry.Node = DemoteStackSlot; 7180 Entry.Ty = StackSlotPtrType; 7181 Entry.isSExt = false; 7182 Entry.isZExt = false; 7183 Entry.isInReg = false; 7184 Entry.isSRet = true; 7185 Entry.isNest = false; 7186 Entry.isByVal = false; 7187 Entry.isReturned = false; 7188 Entry.Alignment = Align; 7189 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7190 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7191 } else { 7192 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7193 EVT VT = RetTys[I]; 7194 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7195 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7196 for (unsigned i = 0; i != NumRegs; ++i) { 7197 ISD::InputArg MyFlags; 7198 MyFlags.VT = RegisterVT; 7199 MyFlags.ArgVT = VT; 7200 MyFlags.Used = CLI.IsReturnValueUsed; 7201 if (CLI.RetSExt) 7202 MyFlags.Flags.setSExt(); 7203 if (CLI.RetZExt) 7204 MyFlags.Flags.setZExt(); 7205 if (CLI.IsInReg) 7206 MyFlags.Flags.setInReg(); 7207 CLI.Ins.push_back(MyFlags); 7208 } 7209 } 7210 } 7211 7212 // Handle all of the outgoing arguments. 7213 CLI.Outs.clear(); 7214 CLI.OutVals.clear(); 7215 ArgListTy &Args = CLI.getArgs(); 7216 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7217 SmallVector<EVT, 4> ValueVTs; 7218 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7219 Type *FinalType = Args[i].Ty; 7220 if (Args[i].isByVal) 7221 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7222 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7223 FinalType, CLI.CallConv, CLI.IsVarArg); 7224 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7225 ++Value) { 7226 EVT VT = ValueVTs[Value]; 7227 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7228 SDValue Op = SDValue(Args[i].Node.getNode(), 7229 Args[i].Node.getResNo() + Value); 7230 ISD::ArgFlagsTy Flags; 7231 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7232 7233 if (Args[i].isZExt) 7234 Flags.setZExt(); 7235 if (Args[i].isSExt) 7236 Flags.setSExt(); 7237 if (Args[i].isInReg) 7238 Flags.setInReg(); 7239 if (Args[i].isSRet) 7240 Flags.setSRet(); 7241 if (Args[i].isByVal) 7242 Flags.setByVal(); 7243 if (Args[i].isInAlloca) { 7244 Flags.setInAlloca(); 7245 // Set the byval flag for CCAssignFn callbacks that don't know about 7246 // inalloca. This way we can know how many bytes we should've allocated 7247 // and how many bytes a callee cleanup function will pop. If we port 7248 // inalloca to more targets, we'll have to add custom inalloca handling 7249 // in the various CC lowering callbacks. 7250 Flags.setByVal(); 7251 } 7252 if (Args[i].isByVal || Args[i].isInAlloca) { 7253 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7254 Type *ElementTy = Ty->getElementType(); 7255 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7256 // For ByVal, alignment should come from FE. BE will guess if this 7257 // info is not there but there are cases it cannot get right. 7258 unsigned FrameAlign; 7259 if (Args[i].Alignment) 7260 FrameAlign = Args[i].Alignment; 7261 else 7262 FrameAlign = getByValTypeAlignment(ElementTy); 7263 Flags.setByValAlign(FrameAlign); 7264 } 7265 if (Args[i].isNest) 7266 Flags.setNest(); 7267 if (NeedsRegBlock) { 7268 Flags.setInConsecutiveRegs(); 7269 if (Value == NumValues - 1) 7270 Flags.setInConsecutiveRegsLast(); 7271 } 7272 Flags.setOrigAlign(OriginalAlignment); 7273 7274 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7275 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7276 SmallVector<SDValue, 4> Parts(NumParts); 7277 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7278 7279 if (Args[i].isSExt) 7280 ExtendKind = ISD::SIGN_EXTEND; 7281 else if (Args[i].isZExt) 7282 ExtendKind = ISD::ZERO_EXTEND; 7283 7284 // Conservatively only handle 'returned' on non-vectors for now 7285 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7286 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7287 "unexpected use of 'returned'"); 7288 // Before passing 'returned' to the target lowering code, ensure that 7289 // either the register MVT and the actual EVT are the same size or that 7290 // the return value and argument are extended in the same way; in these 7291 // cases it's safe to pass the argument register value unchanged as the 7292 // return register value (although it's at the target's option whether 7293 // to do so) 7294 // TODO: allow code generation to take advantage of partially preserved 7295 // registers rather than clobbering the entire register when the 7296 // parameter extension method is not compatible with the return 7297 // extension method 7298 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7299 (ExtendKind != ISD::ANY_EXTEND && 7300 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7301 Flags.setReturned(); 7302 } 7303 7304 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7305 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7306 7307 for (unsigned j = 0; j != NumParts; ++j) { 7308 // if it isn't first piece, alignment must be 1 7309 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7310 i < CLI.NumFixedArgs, 7311 i, j*Parts[j].getValueType().getStoreSize()); 7312 if (NumParts > 1 && j == 0) 7313 MyFlags.Flags.setSplit(); 7314 else if (j != 0) 7315 MyFlags.Flags.setOrigAlign(1); 7316 7317 CLI.Outs.push_back(MyFlags); 7318 CLI.OutVals.push_back(Parts[j]); 7319 } 7320 } 7321 } 7322 7323 SmallVector<SDValue, 4> InVals; 7324 CLI.Chain = LowerCall(CLI, InVals); 7325 7326 // Verify that the target's LowerCall behaved as expected. 7327 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7328 "LowerCall didn't return a valid chain!"); 7329 assert((!CLI.IsTailCall || InVals.empty()) && 7330 "LowerCall emitted a return value for a tail call!"); 7331 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7332 "LowerCall didn't emit the correct number of values!"); 7333 7334 // For a tail call, the return value is merely live-out and there aren't 7335 // any nodes in the DAG representing it. Return a special value to 7336 // indicate that a tail call has been emitted and no more Instructions 7337 // should be processed in the current block. 7338 if (CLI.IsTailCall) { 7339 CLI.DAG.setRoot(CLI.Chain); 7340 return std::make_pair(SDValue(), SDValue()); 7341 } 7342 7343 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7344 assert(InVals[i].getNode() && 7345 "LowerCall emitted a null value!"); 7346 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7347 "LowerCall emitted a value with the wrong type!"); 7348 }); 7349 7350 SmallVector<SDValue, 4> ReturnValues; 7351 if (!CanLowerReturn) { 7352 // The instruction result is the result of loading from the 7353 // hidden sret parameter. 7354 SmallVector<EVT, 1> PVTs; 7355 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7356 7357 ComputeValueVTs(*this, PtrRetTy, PVTs); 7358 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7359 EVT PtrVT = PVTs[0]; 7360 7361 unsigned NumValues = RetTys.size(); 7362 ReturnValues.resize(NumValues); 7363 SmallVector<SDValue, 4> Chains(NumValues); 7364 7365 for (unsigned i = 0; i < NumValues; ++i) { 7366 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7367 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7368 SDValue L = CLI.DAG.getLoad( 7369 RetTys[i], CLI.DL, CLI.Chain, Add, 7370 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7371 false, false, 1); 7372 ReturnValues[i] = L; 7373 Chains[i] = L.getValue(1); 7374 } 7375 7376 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7377 } else { 7378 // Collect the legal value parts into potentially illegal values 7379 // that correspond to the original function's return values. 7380 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7381 if (CLI.RetSExt) 7382 AssertOp = ISD::AssertSext; 7383 else if (CLI.RetZExt) 7384 AssertOp = ISD::AssertZext; 7385 unsigned CurReg = 0; 7386 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7387 EVT VT = RetTys[I]; 7388 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7389 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7390 7391 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7392 NumRegs, RegisterVT, VT, nullptr, 7393 AssertOp)); 7394 CurReg += NumRegs; 7395 } 7396 7397 // For a function returning void, there is no return value. We can't create 7398 // such a node, so we just return a null return value in that case. In 7399 // that case, nothing will actually look at the value. 7400 if (ReturnValues.empty()) 7401 return std::make_pair(SDValue(), CLI.Chain); 7402 } 7403 7404 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7405 CLI.DAG.getVTList(RetTys), ReturnValues); 7406 return std::make_pair(Res, CLI.Chain); 7407 } 7408 7409 void TargetLowering::LowerOperationWrapper(SDNode *N, 7410 SmallVectorImpl<SDValue> &Results, 7411 SelectionDAG &DAG) const { 7412 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7413 if (Res.getNode()) 7414 Results.push_back(Res); 7415 } 7416 7417 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7418 llvm_unreachable("LowerOperation not implemented for this target!"); 7419 } 7420 7421 void 7422 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7423 SDValue Op = getNonRegisterValue(V); 7424 assert((Op.getOpcode() != ISD::CopyFromReg || 7425 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7426 "Copy from a reg to the same reg!"); 7427 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7428 7429 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7430 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7431 SDValue Chain = DAG.getEntryNode(); 7432 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7433 PendingExports.push_back(Chain); 7434 } 7435 7436 #include "llvm/CodeGen/SelectionDAGISel.h" 7437 7438 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7439 /// entry block, return true. This includes arguments used by switches, since 7440 /// the switch may expand into multiple basic blocks. 7441 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7442 // With FastISel active, we may be splitting blocks, so force creation 7443 // of virtual registers for all non-dead arguments. 7444 if (FastISel) 7445 return A->use_empty(); 7446 7447 const BasicBlock *Entry = A->getParent()->begin(); 7448 for (const User *U : A->users()) 7449 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7450 return false; // Use not in entry block. 7451 7452 return true; 7453 } 7454 7455 void SelectionDAGISel::LowerArguments(const Function &F) { 7456 SelectionDAG &DAG = SDB->DAG; 7457 SDLoc dl = SDB->getCurSDLoc(); 7458 const TargetLowering *TLI = getTargetLowering(); 7459 const DataLayout *DL = TLI->getDataLayout(); 7460 SmallVector<ISD::InputArg, 16> Ins; 7461 7462 if (!FuncInfo->CanLowerReturn) { 7463 // Put in an sret pointer parameter before all the other parameters. 7464 SmallVector<EVT, 1> ValueVTs; 7465 ComputeValueVTs(*getTargetLowering(), 7466 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7467 7468 // NOTE: Assuming that a pointer will never break down to more than one VT 7469 // or one register. 7470 ISD::ArgFlagsTy Flags; 7471 Flags.setSRet(); 7472 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7473 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7474 Ins.push_back(RetArg); 7475 } 7476 7477 // Set up the incoming argument description vector. 7478 unsigned Idx = 1; 7479 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7480 I != E; ++I, ++Idx) { 7481 SmallVector<EVT, 4> ValueVTs; 7482 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7483 bool isArgValueUsed = !I->use_empty(); 7484 unsigned PartBase = 0; 7485 Type *FinalType = I->getType(); 7486 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7487 FinalType = cast<PointerType>(FinalType)->getElementType(); 7488 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7489 FinalType, F.getCallingConv(), F.isVarArg()); 7490 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7491 Value != NumValues; ++Value) { 7492 EVT VT = ValueVTs[Value]; 7493 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7494 ISD::ArgFlagsTy Flags; 7495 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7496 7497 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7498 Flags.setZExt(); 7499 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7500 Flags.setSExt(); 7501 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7502 Flags.setInReg(); 7503 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7504 Flags.setSRet(); 7505 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7506 Flags.setByVal(); 7507 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7508 Flags.setInAlloca(); 7509 // Set the byval flag for CCAssignFn callbacks that don't know about 7510 // inalloca. This way we can know how many bytes we should've allocated 7511 // and how many bytes a callee cleanup function will pop. If we port 7512 // inalloca to more targets, we'll have to add custom inalloca handling 7513 // in the various CC lowering callbacks. 7514 Flags.setByVal(); 7515 } 7516 if (Flags.isByVal() || Flags.isInAlloca()) { 7517 PointerType *Ty = cast<PointerType>(I->getType()); 7518 Type *ElementTy = Ty->getElementType(); 7519 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7520 // For ByVal, alignment should be passed from FE. BE will guess if 7521 // this info is not there but there are cases it cannot get right. 7522 unsigned FrameAlign; 7523 if (F.getParamAlignment(Idx)) 7524 FrameAlign = F.getParamAlignment(Idx); 7525 else 7526 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7527 Flags.setByValAlign(FrameAlign); 7528 } 7529 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7530 Flags.setNest(); 7531 if (NeedsRegBlock) { 7532 Flags.setInConsecutiveRegs(); 7533 if (Value == NumValues - 1) 7534 Flags.setInConsecutiveRegsLast(); 7535 } 7536 Flags.setOrigAlign(OriginalAlignment); 7537 7538 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7539 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7540 for (unsigned i = 0; i != NumRegs; ++i) { 7541 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7542 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7543 if (NumRegs > 1 && i == 0) 7544 MyFlags.Flags.setSplit(); 7545 // if it isn't first piece, alignment must be 1 7546 else if (i > 0) 7547 MyFlags.Flags.setOrigAlign(1); 7548 Ins.push_back(MyFlags); 7549 } 7550 PartBase += VT.getStoreSize(); 7551 } 7552 } 7553 7554 // Call the target to set up the argument values. 7555 SmallVector<SDValue, 8> InVals; 7556 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7557 F.isVarArg(), Ins, 7558 dl, DAG, InVals); 7559 7560 // Verify that the target's LowerFormalArguments behaved as expected. 7561 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7562 "LowerFormalArguments didn't return a valid chain!"); 7563 assert(InVals.size() == Ins.size() && 7564 "LowerFormalArguments didn't emit the correct number of values!"); 7565 DEBUG({ 7566 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7567 assert(InVals[i].getNode() && 7568 "LowerFormalArguments emitted a null value!"); 7569 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7570 "LowerFormalArguments emitted a value with the wrong type!"); 7571 } 7572 }); 7573 7574 // Update the DAG with the new chain value resulting from argument lowering. 7575 DAG.setRoot(NewRoot); 7576 7577 // Set up the argument values. 7578 unsigned i = 0; 7579 Idx = 1; 7580 if (!FuncInfo->CanLowerReturn) { 7581 // Create a virtual register for the sret pointer, and put in a copy 7582 // from the sret argument into it. 7583 SmallVector<EVT, 1> ValueVTs; 7584 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7585 MVT VT = ValueVTs[0].getSimpleVT(); 7586 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7587 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7588 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7589 RegVT, VT, nullptr, AssertOp); 7590 7591 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7592 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7593 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7594 FuncInfo->DemoteRegister = SRetReg; 7595 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7596 SRetReg, ArgValue); 7597 DAG.setRoot(NewRoot); 7598 7599 // i indexes lowered arguments. Bump it past the hidden sret argument. 7600 // Idx indexes LLVM arguments. Don't touch it. 7601 ++i; 7602 } 7603 7604 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7605 ++I, ++Idx) { 7606 SmallVector<SDValue, 4> ArgValues; 7607 SmallVector<EVT, 4> ValueVTs; 7608 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7609 unsigned NumValues = ValueVTs.size(); 7610 7611 // If this argument is unused then remember its value. It is used to generate 7612 // debugging information. 7613 if (I->use_empty() && NumValues) { 7614 SDB->setUnusedArgValue(I, InVals[i]); 7615 7616 // Also remember any frame index for use in FastISel. 7617 if (FrameIndexSDNode *FI = 7618 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7619 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7620 } 7621 7622 for (unsigned Val = 0; Val != NumValues; ++Val) { 7623 EVT VT = ValueVTs[Val]; 7624 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7625 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7626 7627 if (!I->use_empty()) { 7628 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7629 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7630 AssertOp = ISD::AssertSext; 7631 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7632 AssertOp = ISD::AssertZext; 7633 7634 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7635 NumParts, PartVT, VT, 7636 nullptr, AssertOp)); 7637 } 7638 7639 i += NumParts; 7640 } 7641 7642 // We don't need to do anything else for unused arguments. 7643 if (ArgValues.empty()) 7644 continue; 7645 7646 // Note down frame index. 7647 if (FrameIndexSDNode *FI = 7648 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7649 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7650 7651 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7652 SDB->getCurSDLoc()); 7653 7654 SDB->setValue(I, Res); 7655 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7656 if (LoadSDNode *LNode = 7657 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7658 if (FrameIndexSDNode *FI = 7659 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7660 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7661 } 7662 7663 // If this argument is live outside of the entry block, insert a copy from 7664 // wherever we got it to the vreg that other BB's will reference it as. 7665 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7666 // If we can, though, try to skip creating an unnecessary vreg. 7667 // FIXME: This isn't very clean... it would be nice to make this more 7668 // general. It's also subtly incompatible with the hacks FastISel 7669 // uses with vregs. 7670 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7671 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7672 FuncInfo->ValueMap[I] = Reg; 7673 continue; 7674 } 7675 } 7676 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7677 FuncInfo->InitializeRegForValue(I); 7678 SDB->CopyToExportRegsIfNeeded(I); 7679 } 7680 } 7681 7682 assert(i == InVals.size() && "Argument register count mismatch!"); 7683 7684 // Finally, if the target has anything special to do, allow it to do so. 7685 // FIXME: this should insert code into the DAG! 7686 EmitFunctionEntryCode(); 7687 } 7688 7689 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7690 /// ensure constants are generated when needed. Remember the virtual registers 7691 /// that need to be added to the Machine PHI nodes as input. We cannot just 7692 /// directly add them, because expansion might result in multiple MBB's for one 7693 /// BB. As such, the start of the BB might correspond to a different MBB than 7694 /// the end. 7695 /// 7696 void 7697 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7698 const TerminatorInst *TI = LLVMBB->getTerminator(); 7699 7700 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7701 7702 // Check successor nodes' PHI nodes that expect a constant to be available 7703 // from this block. 7704 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7705 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7706 if (!isa<PHINode>(SuccBB->begin())) continue; 7707 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7708 7709 // If this terminator has multiple identical successors (common for 7710 // switches), only handle each succ once. 7711 if (!SuccsHandled.insert(SuccMBB)) continue; 7712 7713 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7714 7715 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7716 // nodes and Machine PHI nodes, but the incoming operands have not been 7717 // emitted yet. 7718 for (BasicBlock::const_iterator I = SuccBB->begin(); 7719 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7720 // Ignore dead phi's. 7721 if (PN->use_empty()) continue; 7722 7723 // Skip empty types 7724 if (PN->getType()->isEmptyTy()) 7725 continue; 7726 7727 unsigned Reg; 7728 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7729 7730 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7731 unsigned &RegOut = ConstantsOut[C]; 7732 if (RegOut == 0) { 7733 RegOut = FuncInfo.CreateRegs(C->getType()); 7734 CopyValueToVirtualRegister(C, RegOut); 7735 } 7736 Reg = RegOut; 7737 } else { 7738 DenseMap<const Value *, unsigned>::iterator I = 7739 FuncInfo.ValueMap.find(PHIOp); 7740 if (I != FuncInfo.ValueMap.end()) 7741 Reg = I->second; 7742 else { 7743 assert(isa<AllocaInst>(PHIOp) && 7744 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7745 "Didn't codegen value into a register!??"); 7746 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7747 CopyValueToVirtualRegister(PHIOp, Reg); 7748 } 7749 } 7750 7751 // Remember that this register needs to added to the machine PHI node as 7752 // the input for this MBB. 7753 SmallVector<EVT, 4> ValueVTs; 7754 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7755 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7756 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7757 EVT VT = ValueVTs[vti]; 7758 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7759 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7760 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7761 Reg += NumRegisters; 7762 } 7763 } 7764 } 7765 7766 ConstantsOut.clear(); 7767 } 7768 7769 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7770 /// is 0. 7771 MachineBasicBlock * 7772 SelectionDAGBuilder::StackProtectorDescriptor:: 7773 AddSuccessorMBB(const BasicBlock *BB, 7774 MachineBasicBlock *ParentMBB, 7775 MachineBasicBlock *SuccMBB) { 7776 // If SuccBB has not been created yet, create it. 7777 if (!SuccMBB) { 7778 MachineFunction *MF = ParentMBB->getParent(); 7779 MachineFunction::iterator BBI = ParentMBB; 7780 SuccMBB = MF->CreateMachineBasicBlock(BB); 7781 MF->insert(++BBI, SuccMBB); 7782 } 7783 // Add it as a successor of ParentMBB. 7784 ParentMBB->addSuccessor(SuccMBB); 7785 return SuccMBB; 7786 } 7787