xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7993e18e804dbc02f9b6a1bdaefd1193abe0e095)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <utility>
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "isel"
71 
72 /// LimitFloatPrecision - Generate low-precision inline sequences for
73 /// some float libcalls (6, 8 or 12 bits).
74 static unsigned LimitFloatPrecision;
75 
76 static cl::opt<unsigned, true>
77 LimitFPPrecision("limit-float-precision",
78                  cl::desc("Generate low-precision inline sequences "
79                           "for some float libcalls"),
80                  cl::location(LimitFloatPrecision),
81                  cl::init(0));
82 
83 static cl::opt<bool>
84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
85                 cl::desc("Enable fast-math-flags for DAG nodes"));
86 
87 // Limit the width of DAG chains. This is important in general to prevent
88 // DAG-based analysis from blowing up. For example, alias analysis and
89 // load clustering may not complete in reasonable time. It is difficult to
90 // recognize and avoid this situation within each individual analysis, and
91 // future analyses are likely to have the same behavior. Limiting DAG width is
92 // the safe approach and will be especially important with global DAGs.
93 //
94 // MaxParallelChains default is arbitrarily high to avoid affecting
95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
96 // sequence over this should have been converted to llvm.memcpy by the
97 // frontend. It easy to induce this behavior with .ll code such as:
98 // %buffer = alloca [4096 x i8]
99 // %data = load [4096 x i8]* %argPtr
100 // store [4096 x i8] %data, [4096 x i8]* %buffer
101 static const unsigned MaxParallelChains = 64;
102 
103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
104                                       const SDValue *Parts, unsigned NumParts,
105                                       MVT PartVT, EVT ValueVT, const Value *V);
106 
107 /// getCopyFromParts - Create a value that contains the specified legal parts
108 /// combined into the value they represent.  If the parts combine to a type
109 /// larger then ValueVT then AssertOp can be used to specify whether the extra
110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
111 /// (ISD::AssertSext).
112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
113                                 const SDValue *Parts,
114                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
115                                 const Value *V,
116                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
117   if (ValueVT.isVector())
118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
119                                   PartVT, ValueVT, V);
120 
121   assert(NumParts > 0 && "No parts to assemble!");
122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
123   SDValue Val = Parts[0];
124 
125   if (NumParts > 1) {
126     // Assemble the value from multiple parts.
127     if (ValueVT.isInteger()) {
128       unsigned PartBits = PartVT.getSizeInBits();
129       unsigned ValueBits = ValueVT.getSizeInBits();
130 
131       // Assemble the power of 2 part.
132       unsigned RoundParts = NumParts & (NumParts - 1) ?
133         1 << Log2_32(NumParts) : NumParts;
134       unsigned RoundBits = PartBits * RoundParts;
135       EVT RoundVT = RoundBits == ValueBits ?
136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
137       SDValue Lo, Hi;
138 
139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
140 
141       if (RoundParts > 2) {
142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
143                               PartVT, HalfVT, V);
144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
145                               RoundParts / 2, PartVT, HalfVT, V);
146       } else {
147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
149       }
150 
151       if (DAG.getDataLayout().isBigEndian())
152         std::swap(Lo, Hi);
153 
154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
155 
156       if (RoundParts < NumParts) {
157         // Assemble the trailing non-power-of-2 part.
158         unsigned OddParts = NumParts - RoundParts;
159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
160         Hi = getCopyFromParts(DAG, DL,
161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
162 
163         // Combine the round and odd parts.
164         Lo = Val;
165         if (DAG.getDataLayout().isBigEndian())
166           std::swap(Lo, Hi);
167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
169         Hi =
170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
171                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
172                                         TLI.getPointerTy(DAG.getDataLayout())));
173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
175       }
176     } else if (PartVT.isFloatingPoint()) {
177       // FP split into multiple FP parts (for ppcf128)
178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
179              "Unexpected split");
180       SDValue Lo, Hi;
181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
184         std::swap(Lo, Hi);
185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
186     } else {
187       // FP split into integer parts (soft fp)
188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
189              !PartVT.isVector() && "Unexpected split");
190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
192     }
193   }
194 
195   // There is now one part, held in Val.  Correct it to match ValueVT.
196   EVT PartEVT = Val.getValueType();
197 
198   if (PartEVT == ValueVT)
199     return Val;
200 
201   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
202       ValueVT.bitsLT(PartEVT)) {
203     // For an FP value in an integer part, we need to truncate to the right
204     // width first.
205     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
206     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
207   }
208 
209   if (PartEVT.isInteger() && ValueVT.isInteger()) {
210     if (ValueVT.bitsLT(PartEVT)) {
211       // For a truncate, see if we have any information to
212       // indicate whether the truncated bits will always be
213       // zero or sign-extension.
214       if (AssertOp != ISD::DELETED_NODE)
215         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
216                           DAG.getValueType(ValueVT));
217       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
218     }
219     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
220   }
221 
222   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
223     // FP_ROUND's are always exact here.
224     if (ValueVT.bitsLT(Val.getValueType()))
225       return DAG.getNode(
226           ISD::FP_ROUND, DL, ValueVT, Val,
227           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
228 
229     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
230   }
231 
232   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
233     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
234 
235   llvm_unreachable("Unknown mismatch!");
236 }
237 
238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
239                                               const Twine &ErrMsg) {
240   const Instruction *I = dyn_cast_or_null<Instruction>(V);
241   if (!V)
242     return Ctx.emitError(ErrMsg);
243 
244   const char *AsmError = ", possible invalid constraint for vector type";
245   if (const CallInst *CI = dyn_cast<CallInst>(I))
246     if (isa<InlineAsm>(CI->getCalledValue()))
247       return Ctx.emitError(I, ErrMsg + AsmError);
248 
249   return Ctx.emitError(I, ErrMsg);
250 }
251 
252 /// getCopyFromPartsVector - Create a value that contains the specified legal
253 /// parts combined into the value they represent.  If the parts combine to a
254 /// type larger then ValueVT then AssertOp can be used to specify whether the
255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
256 /// ValueVT (ISD::AssertSext).
257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
258                                       const SDValue *Parts, unsigned NumParts,
259                                       MVT PartVT, EVT ValueVT, const Value *V) {
260   assert(ValueVT.isVector() && "Not a vector value");
261   assert(NumParts > 0 && "No parts to assemble!");
262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
263   SDValue Val = Parts[0];
264 
265   // Handle a multi-element vector.
266   if (NumParts > 1) {
267     EVT IntermediateVT;
268     MVT RegisterVT;
269     unsigned NumIntermediates;
270     unsigned NumRegs =
271     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
272                                NumIntermediates, RegisterVT);
273     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
274     NumParts = NumRegs; // Silence a compiler warning.
275     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
276     assert(RegisterVT.getSizeInBits() ==
277            Parts[0].getSimpleValueType().getSizeInBits() &&
278            "Part type sizes don't match!");
279 
280     // Assemble the parts into intermediate operands.
281     SmallVector<SDValue, 8> Ops(NumIntermediates);
282     if (NumIntermediates == NumParts) {
283       // If the register was not expanded, truncate or copy the value,
284       // as appropriate.
285       for (unsigned i = 0; i != NumParts; ++i)
286         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
287                                   PartVT, IntermediateVT, V);
288     } else if (NumParts > 0) {
289       // If the intermediate type was expanded, build the intermediate
290       // operands from the parts.
291       assert(NumParts % NumIntermediates == 0 &&
292              "Must expand into a divisible number of parts!");
293       unsigned Factor = NumParts / NumIntermediates;
294       for (unsigned i = 0; i != NumIntermediates; ++i)
295         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
296                                   PartVT, IntermediateVT, V);
297     }
298 
299     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
300     // intermediate operands.
301     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
302                                                 : ISD::BUILD_VECTOR,
303                       DL, ValueVT, Ops);
304   }
305 
306   // There is now one part, held in Val.  Correct it to match ValueVT.
307   EVT PartEVT = Val.getValueType();
308 
309   if (PartEVT == ValueVT)
310     return Val;
311 
312   if (PartEVT.isVector()) {
313     // If the element type of the source/dest vectors are the same, but the
314     // parts vector has more elements than the value vector, then we have a
315     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
316     // elements we want.
317     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
318       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
319              "Cannot narrow, it would be a lossy transformation");
320       return DAG.getNode(
321           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
322           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
323     }
324 
325     // Vector/Vector bitcast.
326     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
327       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
328 
329     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
330       "Cannot handle this kind of promotion");
331     // Promoted vector extract
332     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
333 
334   }
335 
336   // Trivial bitcast if the types are the same size and the destination
337   // vector type is legal.
338   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
339       TLI.isTypeLegal(ValueVT))
340     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
341 
342   // Handle cases such as i8 -> <1 x i1>
343   if (ValueVT.getVectorNumElements() != 1) {
344     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
345                                       "non-trivial scalar-to-vector conversion");
346     return DAG.getUNDEF(ValueVT);
347   }
348 
349   if (ValueVT.getVectorNumElements() == 1 &&
350       ValueVT.getVectorElementType() != PartEVT)
351     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
352 
353   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
354 }
355 
356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
357                                  SDValue Val, SDValue *Parts, unsigned NumParts,
358                                  MVT PartVT, const Value *V);
359 
360 /// getCopyToParts - Create a series of nodes that contain the specified value
361 /// split into legal parts.  If the parts contain more bits than Val, then, for
362 /// integers, ExtendKind can be used to specify how to generate the extra bits.
363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
364                            SDValue Val, SDValue *Parts, unsigned NumParts,
365                            MVT PartVT, const Value *V,
366                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
367   EVT ValueVT = Val.getValueType();
368 
369   // Handle the vector case separately.
370   if (ValueVT.isVector())
371     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
372 
373   unsigned PartBits = PartVT.getSizeInBits();
374   unsigned OrigNumParts = NumParts;
375   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
376          "Copying to an illegal type!");
377 
378   if (NumParts == 0)
379     return;
380 
381   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
382   EVT PartEVT = PartVT;
383   if (PartEVT == ValueVT) {
384     assert(NumParts == 1 && "No-op copy with multiple parts!");
385     Parts[0] = Val;
386     return;
387   }
388 
389   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
390     // If the parts cover more bits than the value has, promote the value.
391     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
392       assert(NumParts == 1 && "Do not know what to promote to!");
393       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
394     } else {
395       if (ValueVT.isFloatingPoint()) {
396         // FP values need to be bitcast, then extended if they are being put
397         // into a larger container.
398         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
399         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400       }
401       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
402              ValueVT.isInteger() &&
403              "Unknown mismatch!");
404       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
405       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
406       if (PartVT == MVT::x86mmx)
407         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
408     }
409   } else if (PartBits == ValueVT.getSizeInBits()) {
410     // Different types of the same size.
411     assert(NumParts == 1 && PartEVT != ValueVT);
412     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
413   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
414     // If the parts cover less bits than value has, truncate the value.
415     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
416            ValueVT.isInteger() &&
417            "Unknown mismatch!");
418     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
419     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
420     if (PartVT == MVT::x86mmx)
421       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
422   }
423 
424   // The value may have changed - recompute ValueVT.
425   ValueVT = Val.getValueType();
426   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
427          "Failed to tile the value with PartVT!");
428 
429   if (NumParts == 1) {
430     if (PartEVT != ValueVT)
431       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
432                                         "scalar-to-vector conversion failed");
433 
434     Parts[0] = Val;
435     return;
436   }
437 
438   // Expand the value into multiple parts.
439   if (NumParts & (NumParts - 1)) {
440     // The number of parts is not a power of 2.  Split off and copy the tail.
441     assert(PartVT.isInteger() && ValueVT.isInteger() &&
442            "Do not know what to expand to!");
443     unsigned RoundParts = 1 << Log2_32(NumParts);
444     unsigned RoundBits = RoundParts * PartBits;
445     unsigned OddParts = NumParts - RoundParts;
446     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
447                                  DAG.getIntPtrConstant(RoundBits, DL));
448     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
449 
450     if (DAG.getDataLayout().isBigEndian())
451       // The odd parts were reversed by getCopyToParts - unreverse them.
452       std::reverse(Parts + RoundParts, Parts + NumParts);
453 
454     NumParts = RoundParts;
455     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
456     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
457   }
458 
459   // The number of parts is a power of 2.  Repeatedly bisect the value using
460   // EXTRACT_ELEMENT.
461   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
462                          EVT::getIntegerVT(*DAG.getContext(),
463                                            ValueVT.getSizeInBits()),
464                          Val);
465 
466   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
467     for (unsigned i = 0; i < NumParts; i += StepSize) {
468       unsigned ThisBits = StepSize * PartBits / 2;
469       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
470       SDValue &Part0 = Parts[i];
471       SDValue &Part1 = Parts[i+StepSize/2];
472 
473       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
474                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
475       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
476                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
477 
478       if (ThisBits == PartBits && ThisVT != PartVT) {
479         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
480         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
481       }
482     }
483   }
484 
485   if (DAG.getDataLayout().isBigEndian())
486     std::reverse(Parts, Parts + OrigNumParts);
487 }
488 
489 
490 /// getCopyToPartsVector - Create a series of nodes that contain the specified
491 /// value split into legal parts.
492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V) {
495   EVT ValueVT = Val.getValueType();
496   assert(ValueVT.isVector() && "Not a vector");
497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
498 
499   if (NumParts == 1) {
500     EVT PartEVT = PartVT;
501     if (PartEVT == ValueVT) {
502       // Nothing to do.
503     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
504       // Bitconvert vector->vector case.
505       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
506     } else if (PartVT.isVector() &&
507                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
508                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
509       EVT ElementVT = PartVT.getVectorElementType();
510       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
511       // undef elements.
512       SmallVector<SDValue, 16> Ops;
513       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
514         Ops.push_back(DAG.getNode(
515             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
516             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
517 
518       for (unsigned i = ValueVT.getVectorNumElements(),
519            e = PartVT.getVectorNumElements(); i != e; ++i)
520         Ops.push_back(DAG.getUNDEF(ElementVT));
521 
522       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
523 
524       // FIXME: Use CONCAT for 2x -> 4x.
525 
526       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
527       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
528     } else if (PartVT.isVector() &&
529                PartEVT.getVectorElementType().bitsGE(
530                  ValueVT.getVectorElementType()) &&
531                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
532 
533       // Promoted vector extract
534       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
535     } else{
536       // Vector -> scalar conversion.
537       assert(ValueVT.getVectorNumElements() == 1 &&
538              "Only trivial vector-to-scalar conversions should get here!");
539       Val = DAG.getNode(
540           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
541           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
542 
543       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
544     }
545 
546     Parts[0] = Val;
547     return;
548   }
549 
550   // Handle a multi-element vector.
551   EVT IntermediateVT;
552   MVT RegisterVT;
553   unsigned NumIntermediates;
554   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
555                                                 IntermediateVT,
556                                                 NumIntermediates, RegisterVT);
557   unsigned NumElements = ValueVT.getVectorNumElements();
558 
559   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
560   NumParts = NumRegs; // Silence a compiler warning.
561   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
562 
563   // Split the vector into intermediate operands.
564   SmallVector<SDValue, 8> Ops(NumIntermediates);
565   for (unsigned i = 0; i != NumIntermediates; ++i) {
566     if (IntermediateVT.isVector())
567       Ops[i] =
568           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
569                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
570                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
571     else
572       Ops[i] = DAG.getNode(
573           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
574           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
575   }
576 
577   // Split the intermediate operands into legal parts.
578   if (NumParts == NumIntermediates) {
579     // If the register was not expanded, promote or copy the value,
580     // as appropriate.
581     for (unsigned i = 0; i != NumParts; ++i)
582       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
583   } else if (NumParts > 0) {
584     // If the intermediate type was expanded, split each the value into
585     // legal parts.
586     assert(NumIntermediates != 0 && "division by zero");
587     assert(NumParts % NumIntermediates == 0 &&
588            "Must expand into a divisible number of parts!");
589     unsigned Factor = NumParts / NumIntermediates;
590     for (unsigned i = 0; i != NumIntermediates; ++i)
591       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
592   }
593 }
594 
595 RegsForValue::RegsForValue() {}
596 
597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
598                            EVT valuevt)
599     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
600 
601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
602                            const DataLayout &DL, unsigned Reg, Type *Ty) {
603   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
604 
605   for (EVT ValueVT : ValueVTs) {
606     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
607     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
608     for (unsigned i = 0; i != NumRegs; ++i)
609       Regs.push_back(Reg + i);
610     RegVTs.push_back(RegisterVT);
611     Reg += NumRegs;
612   }
613 }
614 
615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
616 /// this value and returns the result as a ValueVT value.  This uses
617 /// Chain/Flag as the input and updates them for the output Chain/Flag.
618 /// If the Flag pointer is NULL, no flag is used.
619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
620                                       FunctionLoweringInfo &FuncInfo,
621                                       SDLoc dl,
622                                       SDValue &Chain, SDValue *Flag,
623                                       const Value *V) const {
624   // A Value with type {} or [0 x %t] needs no registers.
625   if (ValueVTs.empty())
626     return SDValue();
627 
628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
629 
630   // Assemble the legal parts into the final values.
631   SmallVector<SDValue, 4> Values(ValueVTs.size());
632   SmallVector<SDValue, 8> Parts;
633   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
634     // Copy the legal parts from the registers.
635     EVT ValueVT = ValueVTs[Value];
636     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
637     MVT RegisterVT = RegVTs[Value];
638 
639     Parts.resize(NumRegs);
640     for (unsigned i = 0; i != NumRegs; ++i) {
641       SDValue P;
642       if (!Flag) {
643         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
644       } else {
645         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
646         *Flag = P.getValue(2);
647       }
648 
649       Chain = P.getValue(1);
650       Parts[i] = P;
651 
652       // If the source register was virtual and if we know something about it,
653       // add an assert node.
654       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
655           !RegisterVT.isInteger() || RegisterVT.isVector())
656         continue;
657 
658       const FunctionLoweringInfo::LiveOutInfo *LOI =
659         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
660       if (!LOI)
661         continue;
662 
663       unsigned RegSize = RegisterVT.getSizeInBits();
664       unsigned NumSignBits = LOI->NumSignBits;
665       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
666 
667       if (NumZeroBits == RegSize) {
668         // The current value is a zero.
669         // Explicitly express that as it would be easier for
670         // optimizations to kick in.
671         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
672         continue;
673       }
674 
675       // FIXME: We capture more information than the dag can represent.  For
676       // now, just use the tightest assertzext/assertsext possible.
677       bool isSExt = true;
678       EVT FromVT(MVT::Other);
679       if (NumSignBits == RegSize)
680         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
681       else if (NumZeroBits >= RegSize-1)
682         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
683       else if (NumSignBits > RegSize-8)
684         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
685       else if (NumZeroBits >= RegSize-8)
686         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
687       else if (NumSignBits > RegSize-16)
688         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
689       else if (NumZeroBits >= RegSize-16)
690         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
691       else if (NumSignBits > RegSize-32)
692         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
693       else if (NumZeroBits >= RegSize-32)
694         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
695       else
696         continue;
697 
698       // Add an assertion node.
699       assert(FromVT != MVT::Other);
700       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
701                              RegisterVT, P, DAG.getValueType(FromVT));
702     }
703 
704     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
705                                      NumRegs, RegisterVT, ValueVT, V);
706     Part += NumRegs;
707     Parts.clear();
708   }
709 
710   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
711 }
712 
713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
714 /// specified value into the registers specified by this object.  This uses
715 /// Chain/Flag as the input and updates them for the output Chain/Flag.
716 /// If the Flag pointer is NULL, no flag is used.
717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
718                                  SDValue &Chain, SDValue *Flag, const Value *V,
719                                  ISD::NodeType PreferredExtendType) const {
720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
721   ISD::NodeType ExtendKind = PreferredExtendType;
722 
723   // Get the list of the values's legal parts.
724   unsigned NumRegs = Regs.size();
725   SmallVector<SDValue, 8> Parts(NumRegs);
726   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
727     EVT ValueVT = ValueVTs[Value];
728     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
729     MVT RegisterVT = RegVTs[Value];
730 
731     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
732       ExtendKind = ISD::ZERO_EXTEND;
733 
734     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
735                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
736     Part += NumParts;
737   }
738 
739   // Copy the parts into the registers.
740   SmallVector<SDValue, 8> Chains(NumRegs);
741   for (unsigned i = 0; i != NumRegs; ++i) {
742     SDValue Part;
743     if (!Flag) {
744       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
745     } else {
746       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
747       *Flag = Part.getValue(1);
748     }
749 
750     Chains[i] = Part.getValue(0);
751   }
752 
753   if (NumRegs == 1 || Flag)
754     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
755     // flagged to it. That is the CopyToReg nodes and the user are considered
756     // a single scheduling unit. If we create a TokenFactor and return it as
757     // chain, then the TokenFactor is both a predecessor (operand) of the
758     // user as well as a successor (the TF operands are flagged to the user).
759     // c1, f1 = CopyToReg
760     // c2, f2 = CopyToReg
761     // c3     = TokenFactor c1, c2
762     // ...
763     //        = op c3, ..., f2
764     Chain = Chains[NumRegs-1];
765   else
766     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
767 }
768 
769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
770 /// operand list.  This adds the code marker and includes the number of
771 /// values added into it.
772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
773                                         unsigned MatchingIdx, SDLoc dl,
774                                         SelectionDAG &DAG,
775                                         std::vector<SDValue> &Ops) const {
776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777 
778   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
779   if (HasMatching)
780     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
781   else if (!Regs.empty() &&
782            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
783     // Put the register class of the virtual registers in the flag word.  That
784     // way, later passes can recompute register class constraints for inline
785     // assembly as well as normal instructions.
786     // Don't do this for tied operands that can use the regclass information
787     // from the def.
788     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
789     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
790     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
791   }
792 
793   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
794   Ops.push_back(Res);
795 
796   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
797   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
798     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
799     MVT RegisterVT = RegVTs[Value];
800     for (unsigned i = 0; i != NumRegs; ++i) {
801       assert(Reg < Regs.size() && "Mismatch in # registers expected");
802       unsigned TheReg = Regs[Reg++];
803       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
804 
805       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
806         // If we clobbered the stack pointer, MFI should know about it.
807         assert(DAG.getMachineFunction().getFrameInfo()->
808             hasOpaqueSPAdjustment());
809       }
810     }
811   }
812 }
813 
814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
815                                const TargetLibraryInfo *li) {
816   AA = &aa;
817   GFI = gfi;
818   LibInfo = li;
819   DL = &DAG.getDataLayout();
820   Context = DAG.getContext();
821   LPadToCallSiteMap.clear();
822 }
823 
824 /// clear - Clear out the current SelectionDAG and the associated
825 /// state and prepare this SelectionDAGBuilder object to be used
826 /// for a new block. This doesn't clear out information about
827 /// additional blocks that are needed to complete switch lowering
828 /// or PHI node updating; that information is cleared out as it is
829 /// consumed.
830 void SelectionDAGBuilder::clear() {
831   NodeMap.clear();
832   UnusedArgNodeMap.clear();
833   PendingLoads.clear();
834   PendingExports.clear();
835   CurInst = nullptr;
836   HasTailCall = false;
837   SDNodeOrder = LowestSDNodeOrder;
838   StatepointLowering.clear();
839 }
840 
841 /// clearDanglingDebugInfo - Clear the dangling debug information
842 /// map. This function is separated from the clear so that debug
843 /// information that is dangling in a basic block can be properly
844 /// resolved in a different basic block. This allows the
845 /// SelectionDAG to resolve dangling debug information attached
846 /// to PHI nodes.
847 void SelectionDAGBuilder::clearDanglingDebugInfo() {
848   DanglingDebugInfoMap.clear();
849 }
850 
851 /// getRoot - Return the current virtual root of the Selection DAG,
852 /// flushing any PendingLoad items. This must be done before emitting
853 /// a store or any other node that may need to be ordered after any
854 /// prior load instructions.
855 ///
856 SDValue SelectionDAGBuilder::getRoot() {
857   if (PendingLoads.empty())
858     return DAG.getRoot();
859 
860   if (PendingLoads.size() == 1) {
861     SDValue Root = PendingLoads[0];
862     DAG.setRoot(Root);
863     PendingLoads.clear();
864     return Root;
865   }
866 
867   // Otherwise, we have to make a token factor node.
868   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
869                              PendingLoads);
870   PendingLoads.clear();
871   DAG.setRoot(Root);
872   return Root;
873 }
874 
875 /// getControlRoot - Similar to getRoot, but instead of flushing all the
876 /// PendingLoad items, flush all the PendingExports items. It is necessary
877 /// to do this before emitting a terminator instruction.
878 ///
879 SDValue SelectionDAGBuilder::getControlRoot() {
880   SDValue Root = DAG.getRoot();
881 
882   if (PendingExports.empty())
883     return Root;
884 
885   // Turn all of the CopyToReg chains into one factored node.
886   if (Root.getOpcode() != ISD::EntryToken) {
887     unsigned i = 0, e = PendingExports.size();
888     for (; i != e; ++i) {
889       assert(PendingExports[i].getNode()->getNumOperands() > 1);
890       if (PendingExports[i].getNode()->getOperand(0) == Root)
891         break;  // Don't add the root if we already indirectly depend on it.
892     }
893 
894     if (i == e)
895       PendingExports.push_back(Root);
896   }
897 
898   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
899                      PendingExports);
900   PendingExports.clear();
901   DAG.setRoot(Root);
902   return Root;
903 }
904 
905 void SelectionDAGBuilder::visit(const Instruction &I) {
906   // Set up outgoing PHI node register values before emitting the terminator.
907   if (isa<TerminatorInst>(&I))
908     HandlePHINodesInSuccessorBlocks(I.getParent());
909 
910   ++SDNodeOrder;
911 
912   CurInst = &I;
913 
914   visit(I.getOpcode(), I);
915 
916   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
917       !isStatepoint(&I)) // statepoints handle their exports internally
918     CopyToExportRegsIfNeeded(&I);
919 
920   CurInst = nullptr;
921 }
922 
923 void SelectionDAGBuilder::visitPHI(const PHINode &) {
924   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
925 }
926 
927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
928   // Note: this doesn't use InstVisitor, because it has to work with
929   // ConstantExpr's in addition to instructions.
930   switch (Opcode) {
931   default: llvm_unreachable("Unknown instruction type encountered!");
932     // Build the switch statement using the Instruction.def file.
933 #define HANDLE_INST(NUM, OPCODE, CLASS) \
934     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
935 #include "llvm/IR/Instruction.def"
936   }
937 }
938 
939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
940 // generate the debug data structures now that we've seen its definition.
941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
942                                                    SDValue Val) {
943   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
944   if (DDI.getDI()) {
945     const DbgValueInst *DI = DDI.getDI();
946     DebugLoc dl = DDI.getdl();
947     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
948     DILocalVariable *Variable = DI->getVariable();
949     DIExpression *Expr = DI->getExpression();
950     assert(Variable->isValidLocationForIntrinsic(dl) &&
951            "Expected inlined-at fields to agree");
952     uint64_t Offset = DI->getOffset();
953     // A dbg.value for an alloca is always indirect.
954     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
955     SDDbgValue *SDV;
956     if (Val.getNode()) {
957       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
958                                     Val)) {
959         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
960                               IsIndirect, Offset, dl, DbgSDNodeOrder);
961         DAG.AddDbgValue(SDV, Val.getNode(), false);
962       }
963     } else
964       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
965     DanglingDebugInfoMap[V] = DanglingDebugInfo();
966   }
967 }
968 
969 /// getCopyFromRegs - If there was virtual register allocated for the value V
970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
972   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
973   SDValue Result;
974 
975   if (It != FuncInfo.ValueMap.end()) {
976     unsigned InReg = It->second;
977     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
978                      DAG.getDataLayout(), InReg, Ty);
979     SDValue Chain = DAG.getEntryNode();
980     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
981     resolveDanglingDebugInfo(V, Result);
982   }
983 
984   return Result;
985 }
986 
987 /// getValue - Return an SDValue for the given Value.
988 SDValue SelectionDAGBuilder::getValue(const Value *V) {
989   // If we already have an SDValue for this value, use it. It's important
990   // to do this first, so that we don't create a CopyFromReg if we already
991   // have a regular SDValue.
992   SDValue &N = NodeMap[V];
993   if (N.getNode()) return N;
994 
995   // If there's a virtual register allocated and initialized for this
996   // value, use it.
997   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
998   if (copyFromReg.getNode()) {
999     return copyFromReg;
1000   }
1001 
1002   // Otherwise create a new SDValue and remember it.
1003   SDValue Val = getValueImpl(V);
1004   NodeMap[V] = Val;
1005   resolveDanglingDebugInfo(V, Val);
1006   return Val;
1007 }
1008 
1009 // Return true if SDValue exists for the given Value
1010 bool SelectionDAGBuilder::findValue(const Value *V) const {
1011   return (NodeMap.find(V) != NodeMap.end()) ||
1012     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1013 }
1014 
1015 /// getNonRegisterValue - Return an SDValue for the given Value, but
1016 /// don't look in FuncInfo.ValueMap for a virtual register.
1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1018   // If we already have an SDValue for this value, use it.
1019   SDValue &N = NodeMap[V];
1020   if (N.getNode()) {
1021     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1022       // Remove the debug location from the node as the node is about to be used
1023       // in a location which may differ from the original debug location.  This
1024       // is relevant to Constant and ConstantFP nodes because they can appear
1025       // as constant expressions inside PHI nodes.
1026       N->setDebugLoc(DebugLoc());
1027     }
1028     return N;
1029   }
1030 
1031   // Otherwise create a new SDValue and remember it.
1032   SDValue Val = getValueImpl(V);
1033   NodeMap[V] = Val;
1034   resolveDanglingDebugInfo(V, Val);
1035   return Val;
1036 }
1037 
1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1039 /// Create an SDValue for the given value.
1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1042 
1043   if (const Constant *C = dyn_cast<Constant>(V)) {
1044     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1045 
1046     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1047       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1048 
1049     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1050       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1051 
1052     if (isa<ConstantPointerNull>(C)) {
1053       unsigned AS = V->getType()->getPointerAddressSpace();
1054       return DAG.getConstant(0, getCurSDLoc(),
1055                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1056     }
1057 
1058     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1059       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1060 
1061     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1062       return DAG.getUNDEF(VT);
1063 
1064     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1065       visit(CE->getOpcode(), *CE);
1066       SDValue N1 = NodeMap[V];
1067       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1068       return N1;
1069     }
1070 
1071     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1072       SmallVector<SDValue, 4> Constants;
1073       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1074            OI != OE; ++OI) {
1075         SDNode *Val = getValue(*OI).getNode();
1076         // If the operand is an empty aggregate, there are no values.
1077         if (!Val) continue;
1078         // Add each leaf value from the operand to the Constants list
1079         // to form a flattened list of all the values.
1080         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1081           Constants.push_back(SDValue(Val, i));
1082       }
1083 
1084       return DAG.getMergeValues(Constants, getCurSDLoc());
1085     }
1086 
1087     if (const ConstantDataSequential *CDS =
1088           dyn_cast<ConstantDataSequential>(C)) {
1089       SmallVector<SDValue, 4> Ops;
1090       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1091         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1092         // Add each leaf value from the operand to the Constants list
1093         // to form a flattened list of all the values.
1094         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1095           Ops.push_back(SDValue(Val, i));
1096       }
1097 
1098       if (isa<ArrayType>(CDS->getType()))
1099         return DAG.getMergeValues(Ops, getCurSDLoc());
1100       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1101                                       VT, Ops);
1102     }
1103 
1104     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1105       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1106              "Unknown struct or array constant!");
1107 
1108       SmallVector<EVT, 4> ValueVTs;
1109       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1110       unsigned NumElts = ValueVTs.size();
1111       if (NumElts == 0)
1112         return SDValue(); // empty struct
1113       SmallVector<SDValue, 4> Constants(NumElts);
1114       for (unsigned i = 0; i != NumElts; ++i) {
1115         EVT EltVT = ValueVTs[i];
1116         if (isa<UndefValue>(C))
1117           Constants[i] = DAG.getUNDEF(EltVT);
1118         else if (EltVT.isFloatingPoint())
1119           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1120         else
1121           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1122       }
1123 
1124       return DAG.getMergeValues(Constants, getCurSDLoc());
1125     }
1126 
1127     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1128       return DAG.getBlockAddress(BA, VT);
1129 
1130     VectorType *VecTy = cast<VectorType>(V->getType());
1131     unsigned NumElements = VecTy->getNumElements();
1132 
1133     // Now that we know the number and type of the elements, get that number of
1134     // elements into the Ops array based on what kind of constant it is.
1135     SmallVector<SDValue, 16> Ops;
1136     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1137       for (unsigned i = 0; i != NumElements; ++i)
1138         Ops.push_back(getValue(CV->getOperand(i)));
1139     } else {
1140       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1141       EVT EltVT =
1142           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1143 
1144       SDValue Op;
1145       if (EltVT.isFloatingPoint())
1146         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1147       else
1148         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1149       Ops.assign(NumElements, Op);
1150     }
1151 
1152     // Create a BUILD_VECTOR node.
1153     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1154   }
1155 
1156   // If this is a static alloca, generate it as the frameindex instead of
1157   // computation.
1158   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1159     DenseMap<const AllocaInst*, int>::iterator SI =
1160       FuncInfo.StaticAllocaMap.find(AI);
1161     if (SI != FuncInfo.StaticAllocaMap.end())
1162       return DAG.getFrameIndex(SI->second,
1163                                TLI.getPointerTy(DAG.getDataLayout()));
1164   }
1165 
1166   // If this is an instruction which fast-isel has deferred, select it now.
1167   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1168     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1169     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1170                      Inst->getType());
1171     SDValue Chain = DAG.getEntryNode();
1172     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1173   }
1174 
1175   llvm_unreachable("Can't get register for value!");
1176 }
1177 
1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1179   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1180   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1181   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1182   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1183   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1184   if (IsMSVCCXX || IsCoreCLR)
1185     CatchPadMBB->setIsEHFuncletEntry();
1186 
1187   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1188 }
1189 
1190 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1191   // Update machine-CFG edge.
1192   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1193   FuncInfo.MBB->addSuccessor(TargetMBB);
1194 
1195   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1196   bool IsSEH = isAsynchronousEHPersonality(Pers);
1197   if (IsSEH) {
1198     // If this is not a fall-through branch or optimizations are switched off,
1199     // emit the branch.
1200     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1201         TM.getOptLevel() == CodeGenOpt::None)
1202       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1203                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1204     return;
1205   }
1206 
1207   // Figure out the funclet membership for the catchret's successor.
1208   // This will be used by the FuncletLayout pass to determine how to order the
1209   // BB's.
1210   WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
1211   const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I];
1212   assert(SuccessorColor && "No parent funclet for catchret!");
1213   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1214   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1215 
1216   // Create the terminator node.
1217   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1218                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1219                             DAG.getBasicBlock(SuccessorColorMBB));
1220   DAG.setRoot(Ret);
1221 }
1222 
1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1224   // Don't emit any special code for the cleanuppad instruction. It just marks
1225   // the start of a funclet.
1226   FuncInfo.MBB->setIsEHFuncletEntry();
1227   FuncInfo.MBB->setIsCleanupFuncletEntry();
1228 }
1229 
1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1231 /// many places it could ultimately go. In the IR, we have a single unwind
1232 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1233 /// This function skips over imaginary basic blocks that hold catchswitch
1234 /// instructions, and finds all the "real" machine
1235 /// basic block destinations. As those destinations may not be successors of
1236 /// EHPadBB, here we also calculate the edge probability to those destinations.
1237 /// The passed-in Prob is the edge probability to EHPadBB.
1238 static void findUnwindDestinations(
1239     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1240     BranchProbability Prob,
1241     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1242         &UnwindDests) {
1243   EHPersonality Personality =
1244     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1245   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1246   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1247 
1248   while (EHPadBB) {
1249     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1250     BasicBlock *NewEHPadBB = nullptr;
1251     if (isa<LandingPadInst>(Pad)) {
1252       // Stop on landingpads. They are not funclets.
1253       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1254       break;
1255     } else if (isa<CleanupPadInst>(Pad)) {
1256       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1257       // personalities.
1258       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1259       UnwindDests.back().first->setIsEHFuncletEntry();
1260       break;
1261     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1262       // Add the catchpad handlers to the possible destinations.
1263       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1264         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1265         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1266         if (IsMSVCCXX || IsCoreCLR)
1267           UnwindDests.back().first->setIsEHFuncletEntry();
1268       }
1269       NewEHPadBB = CatchSwitch->getUnwindDest();
1270     } else {
1271       continue;
1272     }
1273 
1274     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1275     if (BPI && NewEHPadBB)
1276       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1277     EHPadBB = NewEHPadBB;
1278   }
1279 }
1280 
1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1282   // Update successor info.
1283   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1284   auto UnwindDest = I.getUnwindDest();
1285   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1286   BranchProbability UnwindDestProb =
1287       (BPI && UnwindDest)
1288           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1289           : BranchProbability::getZero();
1290   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1291   for (auto &UnwindDest : UnwindDests) {
1292     UnwindDest.first->setIsEHPad();
1293     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1294   }
1295   FuncInfo.MBB->normalizeSuccProbs();
1296 
1297   // Create the terminator node.
1298   SDValue Ret =
1299       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1300   DAG.setRoot(Ret);
1301 }
1302 
1303 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1304   report_fatal_error("visitCatchSwitch not yet implemented!");
1305 }
1306 
1307 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1308   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1309   auto &DL = DAG.getDataLayout();
1310   SDValue Chain = getControlRoot();
1311   SmallVector<ISD::OutputArg, 8> Outs;
1312   SmallVector<SDValue, 8> OutVals;
1313 
1314   if (!FuncInfo.CanLowerReturn) {
1315     unsigned DemoteReg = FuncInfo.DemoteRegister;
1316     const Function *F = I.getParent()->getParent();
1317 
1318     // Emit a store of the return value through the virtual register.
1319     // Leave Outs empty so that LowerReturn won't try to load return
1320     // registers the usual way.
1321     SmallVector<EVT, 1> PtrValueVTs;
1322     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1323                     PtrValueVTs);
1324 
1325     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1326                                         DemoteReg, PtrValueVTs[0]);
1327     SDValue RetOp = getValue(I.getOperand(0));
1328 
1329     SmallVector<EVT, 4> ValueVTs;
1330     SmallVector<uint64_t, 4> Offsets;
1331     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1332     unsigned NumValues = ValueVTs.size();
1333 
1334     SmallVector<SDValue, 4> Chains(NumValues);
1335     for (unsigned i = 0; i != NumValues; ++i) {
1336       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1337                                 RetPtr.getValueType(), RetPtr,
1338                                 DAG.getIntPtrConstant(Offsets[i],
1339                                                       getCurSDLoc()));
1340       Chains[i] =
1341         DAG.getStore(Chain, getCurSDLoc(),
1342                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1343                      // FIXME: better loc info would be nice.
1344                      Add, MachinePointerInfo(), false, false, 0);
1345     }
1346 
1347     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1348                         MVT::Other, Chains);
1349   } else if (I.getNumOperands() != 0) {
1350     SmallVector<EVT, 4> ValueVTs;
1351     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1352     unsigned NumValues = ValueVTs.size();
1353     if (NumValues) {
1354       SDValue RetOp = getValue(I.getOperand(0));
1355 
1356       const Function *F = I.getParent()->getParent();
1357 
1358       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1359       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1360                                           Attribute::SExt))
1361         ExtendKind = ISD::SIGN_EXTEND;
1362       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1363                                                Attribute::ZExt))
1364         ExtendKind = ISD::ZERO_EXTEND;
1365 
1366       LLVMContext &Context = F->getContext();
1367       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1368                                                       Attribute::InReg);
1369 
1370       for (unsigned j = 0; j != NumValues; ++j) {
1371         EVT VT = ValueVTs[j];
1372 
1373         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1374           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1375 
1376         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1377         MVT PartVT = TLI.getRegisterType(Context, VT);
1378         SmallVector<SDValue, 4> Parts(NumParts);
1379         getCopyToParts(DAG, getCurSDLoc(),
1380                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1381                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1382 
1383         // 'inreg' on function refers to return value
1384         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1385         if (RetInReg)
1386           Flags.setInReg();
1387 
1388         // Propagate extension type if any
1389         if (ExtendKind == ISD::SIGN_EXTEND)
1390           Flags.setSExt();
1391         else if (ExtendKind == ISD::ZERO_EXTEND)
1392           Flags.setZExt();
1393 
1394         for (unsigned i = 0; i < NumParts; ++i) {
1395           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1396                                         VT, /*isfixed=*/true, 0, 0));
1397           OutVals.push_back(Parts[i]);
1398         }
1399       }
1400     }
1401   }
1402 
1403   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1404   CallingConv::ID CallConv =
1405     DAG.getMachineFunction().getFunction()->getCallingConv();
1406   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1407       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1408 
1409   // Verify that the target's LowerReturn behaved as expected.
1410   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1411          "LowerReturn didn't return a valid chain!");
1412 
1413   // Update the DAG with the new chain value resulting from return lowering.
1414   DAG.setRoot(Chain);
1415 }
1416 
1417 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1418 /// created for it, emit nodes to copy the value into the virtual
1419 /// registers.
1420 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1421   // Skip empty types
1422   if (V->getType()->isEmptyTy())
1423     return;
1424 
1425   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1426   if (VMI != FuncInfo.ValueMap.end()) {
1427     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1428     CopyValueToVirtualRegister(V, VMI->second);
1429   }
1430 }
1431 
1432 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1433 /// the current basic block, add it to ValueMap now so that we'll get a
1434 /// CopyTo/FromReg.
1435 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1436   // No need to export constants.
1437   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1438 
1439   // Already exported?
1440   if (FuncInfo.isExportedInst(V)) return;
1441 
1442   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1443   CopyValueToVirtualRegister(V, Reg);
1444 }
1445 
1446 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1447                                                      const BasicBlock *FromBB) {
1448   // The operands of the setcc have to be in this block.  We don't know
1449   // how to export them from some other block.
1450   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1451     // Can export from current BB.
1452     if (VI->getParent() == FromBB)
1453       return true;
1454 
1455     // Is already exported, noop.
1456     return FuncInfo.isExportedInst(V);
1457   }
1458 
1459   // If this is an argument, we can export it if the BB is the entry block or
1460   // if it is already exported.
1461   if (isa<Argument>(V)) {
1462     if (FromBB == &FromBB->getParent()->getEntryBlock())
1463       return true;
1464 
1465     // Otherwise, can only export this if it is already exported.
1466     return FuncInfo.isExportedInst(V);
1467   }
1468 
1469   // Otherwise, constants can always be exported.
1470   return true;
1471 }
1472 
1473 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1474 BranchProbability
1475 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1476                                         const MachineBasicBlock *Dst) const {
1477   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1478   const BasicBlock *SrcBB = Src->getBasicBlock();
1479   const BasicBlock *DstBB = Dst->getBasicBlock();
1480   if (!BPI) {
1481     // If BPI is not available, set the default probability as 1 / N, where N is
1482     // the number of successors.
1483     auto SuccSize = std::max<uint32_t>(
1484         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1485     return BranchProbability(1, SuccSize);
1486   }
1487   return BPI->getEdgeProbability(SrcBB, DstBB);
1488 }
1489 
1490 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1491                                                MachineBasicBlock *Dst,
1492                                                BranchProbability Prob) {
1493   if (!FuncInfo.BPI)
1494     Src->addSuccessorWithoutProb(Dst);
1495   else {
1496     if (Prob.isUnknown())
1497       Prob = getEdgeProbability(Src, Dst);
1498     Src->addSuccessor(Dst, Prob);
1499   }
1500 }
1501 
1502 static bool InBlock(const Value *V, const BasicBlock *BB) {
1503   if (const Instruction *I = dyn_cast<Instruction>(V))
1504     return I->getParent() == BB;
1505   return true;
1506 }
1507 
1508 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1509 /// This function emits a branch and is used at the leaves of an OR or an
1510 /// AND operator tree.
1511 ///
1512 void
1513 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1514                                                   MachineBasicBlock *TBB,
1515                                                   MachineBasicBlock *FBB,
1516                                                   MachineBasicBlock *CurBB,
1517                                                   MachineBasicBlock *SwitchBB,
1518                                                   BranchProbability TProb,
1519                                                   BranchProbability FProb) {
1520   const BasicBlock *BB = CurBB->getBasicBlock();
1521 
1522   // If the leaf of the tree is a comparison, merge the condition into
1523   // the caseblock.
1524   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1525     // The operands of the cmp have to be in this block.  We don't know
1526     // how to export them from some other block.  If this is the first block
1527     // of the sequence, no exporting is needed.
1528     if (CurBB == SwitchBB ||
1529         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1530          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1531       ISD::CondCode Condition;
1532       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1533         Condition = getICmpCondCode(IC->getPredicate());
1534       } else {
1535         const FCmpInst *FC = cast<FCmpInst>(Cond);
1536         Condition = getFCmpCondCode(FC->getPredicate());
1537         if (TM.Options.NoNaNsFPMath)
1538           Condition = getFCmpCodeWithoutNaN(Condition);
1539       }
1540 
1541       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1542                    TBB, FBB, CurBB, TProb, FProb);
1543       SwitchCases.push_back(CB);
1544       return;
1545     }
1546   }
1547 
1548   // Create a CaseBlock record representing this branch.
1549   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1550                nullptr, TBB, FBB, CurBB, TProb, FProb);
1551   SwitchCases.push_back(CB);
1552 }
1553 
1554 /// FindMergedConditions - If Cond is an expression like
1555 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1556                                                MachineBasicBlock *TBB,
1557                                                MachineBasicBlock *FBB,
1558                                                MachineBasicBlock *CurBB,
1559                                                MachineBasicBlock *SwitchBB,
1560                                                Instruction::BinaryOps Opc,
1561                                                BranchProbability TProb,
1562                                                BranchProbability FProb) {
1563   // If this node is not part of the or/and tree, emit it as a branch.
1564   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1565   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1566       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1567       BOp->getParent() != CurBB->getBasicBlock() ||
1568       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1569       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1570     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1571                                  TProb, FProb);
1572     return;
1573   }
1574 
1575   //  Create TmpBB after CurBB.
1576   MachineFunction::iterator BBI(CurBB);
1577   MachineFunction &MF = DAG.getMachineFunction();
1578   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1579   CurBB->getParent()->insert(++BBI, TmpBB);
1580 
1581   if (Opc == Instruction::Or) {
1582     // Codegen X | Y as:
1583     // BB1:
1584     //   jmp_if_X TBB
1585     //   jmp TmpBB
1586     // TmpBB:
1587     //   jmp_if_Y TBB
1588     //   jmp FBB
1589     //
1590 
1591     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1592     // The requirement is that
1593     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1594     //     = TrueProb for original BB.
1595     // Assuming the original probabilities are A and B, one choice is to set
1596     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1597     // A/(1+B) and 2B/(1+B). This choice assumes that
1598     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1599     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1600     // TmpBB, but the math is more complicated.
1601 
1602     auto NewTrueProb = TProb / 2;
1603     auto NewFalseProb = TProb / 2 + FProb;
1604     // Emit the LHS condition.
1605     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1606                          NewTrueProb, NewFalseProb);
1607 
1608     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1609     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1610     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1611     // Emit the RHS condition into TmpBB.
1612     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1613                          Probs[0], Probs[1]);
1614   } else {
1615     assert(Opc == Instruction::And && "Unknown merge op!");
1616     // Codegen X & Y as:
1617     // BB1:
1618     //   jmp_if_X TmpBB
1619     //   jmp FBB
1620     // TmpBB:
1621     //   jmp_if_Y TBB
1622     //   jmp FBB
1623     //
1624     //  This requires creation of TmpBB after CurBB.
1625 
1626     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1627     // The requirement is that
1628     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1629     //     = FalseProb for original BB.
1630     // Assuming the original probabilities are A and B, one choice is to set
1631     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1632     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1633     // TrueProb for BB1 * FalseProb for TmpBB.
1634 
1635     auto NewTrueProb = TProb + FProb / 2;
1636     auto NewFalseProb = FProb / 2;
1637     // Emit the LHS condition.
1638     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1639                          NewTrueProb, NewFalseProb);
1640 
1641     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1642     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1643     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1644     // Emit the RHS condition into TmpBB.
1645     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1646                          Probs[0], Probs[1]);
1647   }
1648 }
1649 
1650 /// If the set of cases should be emitted as a series of branches, return true.
1651 /// If we should emit this as a bunch of and/or'd together conditions, return
1652 /// false.
1653 bool
1654 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1655   if (Cases.size() != 2) return true;
1656 
1657   // If this is two comparisons of the same values or'd or and'd together, they
1658   // will get folded into a single comparison, so don't emit two blocks.
1659   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1660        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1661       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1662        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1663     return false;
1664   }
1665 
1666   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1667   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1668   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1669       Cases[0].CC == Cases[1].CC &&
1670       isa<Constant>(Cases[0].CmpRHS) &&
1671       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1672     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1673       return false;
1674     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1675       return false;
1676   }
1677 
1678   return true;
1679 }
1680 
1681 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1682   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1683 
1684   // Update machine-CFG edges.
1685   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1686 
1687   if (I.isUnconditional()) {
1688     // Update machine-CFG edges.
1689     BrMBB->addSuccessor(Succ0MBB);
1690 
1691     // If this is not a fall-through branch or optimizations are switched off,
1692     // emit the branch.
1693     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1694       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1695                               MVT::Other, getControlRoot(),
1696                               DAG.getBasicBlock(Succ0MBB)));
1697 
1698     return;
1699   }
1700 
1701   // If this condition is one of the special cases we handle, do special stuff
1702   // now.
1703   const Value *CondVal = I.getCondition();
1704   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1705 
1706   // If this is a series of conditions that are or'd or and'd together, emit
1707   // this as a sequence of branches instead of setcc's with and/or operations.
1708   // As long as jumps are not expensive, this should improve performance.
1709   // For example, instead of something like:
1710   //     cmp A, B
1711   //     C = seteq
1712   //     cmp D, E
1713   //     F = setle
1714   //     or C, F
1715   //     jnz foo
1716   // Emit:
1717   //     cmp A, B
1718   //     je foo
1719   //     cmp D, E
1720   //     jle foo
1721   //
1722   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1723     Instruction::BinaryOps Opcode = BOp->getOpcode();
1724     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1725         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1726         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1727       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1728                            Opcode,
1729                            getEdgeProbability(BrMBB, Succ0MBB),
1730                            getEdgeProbability(BrMBB, Succ1MBB));
1731       // If the compares in later blocks need to use values not currently
1732       // exported from this block, export them now.  This block should always
1733       // be the first entry.
1734       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1735 
1736       // Allow some cases to be rejected.
1737       if (ShouldEmitAsBranches(SwitchCases)) {
1738         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1739           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1740           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1741         }
1742 
1743         // Emit the branch for this block.
1744         visitSwitchCase(SwitchCases[0], BrMBB);
1745         SwitchCases.erase(SwitchCases.begin());
1746         return;
1747       }
1748 
1749       // Okay, we decided not to do this, remove any inserted MBB's and clear
1750       // SwitchCases.
1751       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1752         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1753 
1754       SwitchCases.clear();
1755     }
1756   }
1757 
1758   // Create a CaseBlock record representing this branch.
1759   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1760                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1761 
1762   // Use visitSwitchCase to actually insert the fast branch sequence for this
1763   // cond branch.
1764   visitSwitchCase(CB, BrMBB);
1765 }
1766 
1767 /// visitSwitchCase - Emits the necessary code to represent a single node in
1768 /// the binary search tree resulting from lowering a switch instruction.
1769 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1770                                           MachineBasicBlock *SwitchBB) {
1771   SDValue Cond;
1772   SDValue CondLHS = getValue(CB.CmpLHS);
1773   SDLoc dl = getCurSDLoc();
1774 
1775   // Build the setcc now.
1776   if (!CB.CmpMHS) {
1777     // Fold "(X == true)" to X and "(X == false)" to !X to
1778     // handle common cases produced by branch lowering.
1779     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1780         CB.CC == ISD::SETEQ)
1781       Cond = CondLHS;
1782     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1783              CB.CC == ISD::SETEQ) {
1784       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1785       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1786     } else
1787       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1788   } else {
1789     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1790 
1791     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1792     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1793 
1794     SDValue CmpOp = getValue(CB.CmpMHS);
1795     EVT VT = CmpOp.getValueType();
1796 
1797     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1798       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1799                           ISD::SETLE);
1800     } else {
1801       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1802                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1803       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1804                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1805     }
1806   }
1807 
1808   // Update successor info
1809   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1810   // TrueBB and FalseBB are always different unless the incoming IR is
1811   // degenerate. This only happens when running llc on weird IR.
1812   if (CB.TrueBB != CB.FalseBB)
1813     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1814   SwitchBB->normalizeSuccProbs();
1815 
1816   // If the lhs block is the next block, invert the condition so that we can
1817   // fall through to the lhs instead of the rhs block.
1818   if (CB.TrueBB == NextBlock(SwitchBB)) {
1819     std::swap(CB.TrueBB, CB.FalseBB);
1820     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1821     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1822   }
1823 
1824   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1825                                MVT::Other, getControlRoot(), Cond,
1826                                DAG.getBasicBlock(CB.TrueBB));
1827 
1828   // Insert the false branch. Do this even if it's a fall through branch,
1829   // this makes it easier to do DAG optimizations which require inverting
1830   // the branch condition.
1831   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1832                        DAG.getBasicBlock(CB.FalseBB));
1833 
1834   DAG.setRoot(BrCond);
1835 }
1836 
1837 /// visitJumpTable - Emit JumpTable node in the current MBB
1838 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1839   // Emit the code for the jump table
1840   assert(JT.Reg != -1U && "Should lower JT Header first!");
1841   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1842   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1843                                      JT.Reg, PTy);
1844   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1845   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1846                                     MVT::Other, Index.getValue(1),
1847                                     Table, Index);
1848   DAG.setRoot(BrJumpTable);
1849 }
1850 
1851 /// visitJumpTableHeader - This function emits necessary code to produce index
1852 /// in the JumpTable from switch case.
1853 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1854                                                JumpTableHeader &JTH,
1855                                                MachineBasicBlock *SwitchBB) {
1856   SDLoc dl = getCurSDLoc();
1857 
1858   // Subtract the lowest switch case value from the value being switched on and
1859   // conditional branch to default mbb if the result is greater than the
1860   // difference between smallest and largest cases.
1861   SDValue SwitchOp = getValue(JTH.SValue);
1862   EVT VT = SwitchOp.getValueType();
1863   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1864                             DAG.getConstant(JTH.First, dl, VT));
1865 
1866   // The SDNode we just created, which holds the value being switched on minus
1867   // the smallest case value, needs to be copied to a virtual register so it
1868   // can be used as an index into the jump table in a subsequent basic block.
1869   // This value may be smaller or larger than the target's pointer type, and
1870   // therefore require extension or truncating.
1871   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1872   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1873 
1874   unsigned JumpTableReg =
1875       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1876   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1877                                     JumpTableReg, SwitchOp);
1878   JT.Reg = JumpTableReg;
1879 
1880   // Emit the range check for the jump table, and branch to the default block
1881   // for the switch statement if the value being switched on exceeds the largest
1882   // case in the switch.
1883   SDValue CMP = DAG.getSetCC(
1884       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1885                                  Sub.getValueType()),
1886       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1887 
1888   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1889                                MVT::Other, CopyTo, CMP,
1890                                DAG.getBasicBlock(JT.Default));
1891 
1892   // Avoid emitting unnecessary branches to the next block.
1893   if (JT.MBB != NextBlock(SwitchBB))
1894     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1895                          DAG.getBasicBlock(JT.MBB));
1896 
1897   DAG.setRoot(BrCond);
1898 }
1899 
1900 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1901 /// tail spliced into a stack protector check success bb.
1902 ///
1903 /// For a high level explanation of how this fits into the stack protector
1904 /// generation see the comment on the declaration of class
1905 /// StackProtectorDescriptor.
1906 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1907                                                   MachineBasicBlock *ParentBB) {
1908 
1909   // First create the loads to the guard/stack slot for the comparison.
1910   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1911   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1912 
1913   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1914   int FI = MFI->getStackProtectorIndex();
1915 
1916   const Value *IRGuard = SPD.getGuard();
1917   SDValue GuardPtr = getValue(IRGuard);
1918   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1919 
1920   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1921 
1922   SDValue Guard;
1923   SDLoc dl = getCurSDLoc();
1924 
1925   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1926   // guard value from the virtual register holding the value. Otherwise, emit a
1927   // volatile load to retrieve the stack guard value.
1928   unsigned GuardReg = SPD.getGuardReg();
1929 
1930   if (GuardReg && TLI.useLoadStackGuardNode())
1931     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1932                                PtrTy);
1933   else
1934     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1935                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1936                         true, false, false, Align);
1937 
1938   SDValue StackSlot = DAG.getLoad(
1939       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1940       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1941       false, false, Align);
1942 
1943   // Perform the comparison via a subtract/getsetcc.
1944   EVT VT = Guard.getValueType();
1945   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1946 
1947   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1948                                                         *DAG.getContext(),
1949                                                         Sub.getValueType()),
1950                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1951 
1952   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1953   // branch to failure MBB.
1954   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1955                                MVT::Other, StackSlot.getOperand(0),
1956                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1957   // Otherwise branch to success MBB.
1958   SDValue Br = DAG.getNode(ISD::BR, dl,
1959                            MVT::Other, BrCond,
1960                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1961 
1962   DAG.setRoot(Br);
1963 }
1964 
1965 /// Codegen the failure basic block for a stack protector check.
1966 ///
1967 /// A failure stack protector machine basic block consists simply of a call to
1968 /// __stack_chk_fail().
1969 ///
1970 /// For a high level explanation of how this fits into the stack protector
1971 /// generation see the comment on the declaration of class
1972 /// StackProtectorDescriptor.
1973 void
1974 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1975   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1976   SDValue Chain =
1977       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1978                       None, false, getCurSDLoc(), false, false).second;
1979   DAG.setRoot(Chain);
1980 }
1981 
1982 /// visitBitTestHeader - This function emits necessary code to produce value
1983 /// suitable for "bit tests"
1984 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1985                                              MachineBasicBlock *SwitchBB) {
1986   SDLoc dl = getCurSDLoc();
1987 
1988   // Subtract the minimum value
1989   SDValue SwitchOp = getValue(B.SValue);
1990   EVT VT = SwitchOp.getValueType();
1991   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1992                             DAG.getConstant(B.First, dl, VT));
1993 
1994   // Check range
1995   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1996   SDValue RangeCmp = DAG.getSetCC(
1997       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1998                                  Sub.getValueType()),
1999       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2000 
2001   // Determine the type of the test operands.
2002   bool UsePtrType = false;
2003   if (!TLI.isTypeLegal(VT))
2004     UsePtrType = true;
2005   else {
2006     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2007       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2008         // Switch table case range are encoded into series of masks.
2009         // Just use pointer type, it's guaranteed to fit.
2010         UsePtrType = true;
2011         break;
2012       }
2013   }
2014   if (UsePtrType) {
2015     VT = TLI.getPointerTy(DAG.getDataLayout());
2016     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2017   }
2018 
2019   B.RegVT = VT.getSimpleVT();
2020   B.Reg = FuncInfo.CreateReg(B.RegVT);
2021   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2022 
2023   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2024 
2025   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2026   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2027   SwitchBB->normalizeSuccProbs();
2028 
2029   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2030                                 MVT::Other, CopyTo, RangeCmp,
2031                                 DAG.getBasicBlock(B.Default));
2032 
2033   // Avoid emitting unnecessary branches to the next block.
2034   if (MBB != NextBlock(SwitchBB))
2035     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2036                           DAG.getBasicBlock(MBB));
2037 
2038   DAG.setRoot(BrRange);
2039 }
2040 
2041 /// visitBitTestCase - this function produces one "bit test"
2042 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2043                                            MachineBasicBlock* NextMBB,
2044                                            BranchProbability BranchProbToNext,
2045                                            unsigned Reg,
2046                                            BitTestCase &B,
2047                                            MachineBasicBlock *SwitchBB) {
2048   SDLoc dl = getCurSDLoc();
2049   MVT VT = BB.RegVT;
2050   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2051   SDValue Cmp;
2052   unsigned PopCount = countPopulation(B.Mask);
2053   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2054   if (PopCount == 1) {
2055     // Testing for a single bit; just compare the shift count with what it
2056     // would need to be to shift a 1 bit in that position.
2057     Cmp = DAG.getSetCC(
2058         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2059         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2060         ISD::SETEQ);
2061   } else if (PopCount == BB.Range) {
2062     // There is only one zero bit in the range, test for it directly.
2063     Cmp = DAG.getSetCC(
2064         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2065         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2066         ISD::SETNE);
2067   } else {
2068     // Make desired shift
2069     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2070                                     DAG.getConstant(1, dl, VT), ShiftOp);
2071 
2072     // Emit bit tests and jumps
2073     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2074                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2075     Cmp = DAG.getSetCC(
2076         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2077         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2078   }
2079 
2080   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2081   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2082   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2083   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2084   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2085   // one as they are relative probabilities (and thus work more like weights),
2086   // and hence we need to normalize them to let the sum of them become one.
2087   SwitchBB->normalizeSuccProbs();
2088 
2089   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2090                               MVT::Other, getControlRoot(),
2091                               Cmp, DAG.getBasicBlock(B.TargetBB));
2092 
2093   // Avoid emitting unnecessary branches to the next block.
2094   if (NextMBB != NextBlock(SwitchBB))
2095     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2096                         DAG.getBasicBlock(NextMBB));
2097 
2098   DAG.setRoot(BrAnd);
2099 }
2100 
2101 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2102   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2103 
2104   // Retrieve successors. Look through artificial IR level blocks like
2105   // catchswitch for successors.
2106   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2107   const BasicBlock *EHPadBB = I.getSuccessor(1);
2108 
2109   const Value *Callee(I.getCalledValue());
2110   const Function *Fn = dyn_cast<Function>(Callee);
2111   if (isa<InlineAsm>(Callee))
2112     visitInlineAsm(&I);
2113   else if (Fn && Fn->isIntrinsic()) {
2114     switch (Fn->getIntrinsicID()) {
2115     default:
2116       llvm_unreachable("Cannot invoke this intrinsic");
2117     case Intrinsic::donothing:
2118       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2119       break;
2120     case Intrinsic::experimental_patchpoint_void:
2121     case Intrinsic::experimental_patchpoint_i64:
2122       visitPatchpoint(&I, EHPadBB);
2123       break;
2124     case Intrinsic::experimental_gc_statepoint:
2125       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2126       break;
2127     }
2128   } else
2129     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2130 
2131   // If the value of the invoke is used outside of its defining block, make it
2132   // available as a virtual register.
2133   // We already took care of the exported value for the statepoint instruction
2134   // during call to the LowerStatepoint.
2135   if (!isStatepoint(I)) {
2136     CopyToExportRegsIfNeeded(&I);
2137   }
2138 
2139   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2140   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2141   BranchProbability EHPadBBProb =
2142       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2143           : BranchProbability::getZero();
2144   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2145 
2146   // Update successor info.
2147   addSuccessorWithProb(InvokeMBB, Return);
2148   for (auto &UnwindDest : UnwindDests) {
2149     UnwindDest.first->setIsEHPad();
2150     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2151   }
2152   InvokeMBB->normalizeSuccProbs();
2153 
2154   // Drop into normal successor.
2155   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2156                           MVT::Other, getControlRoot(),
2157                           DAG.getBasicBlock(Return)));
2158 }
2159 
2160 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2161   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2162 }
2163 
2164 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2165   assert(FuncInfo.MBB->isEHPad() &&
2166          "Call to landingpad not in landing pad!");
2167 
2168   MachineBasicBlock *MBB = FuncInfo.MBB;
2169   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2170   AddLandingPadInfo(LP, MMI, MBB);
2171 
2172   // If there aren't registers to copy the values into (e.g., during SjLj
2173   // exceptions), then don't bother to create these DAG nodes.
2174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2175   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2176   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2177       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2178     return;
2179 
2180   SmallVector<EVT, 2> ValueVTs;
2181   SDLoc dl = getCurSDLoc();
2182   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2183   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2184 
2185   // Get the two live-in registers as SDValues. The physregs have already been
2186   // copied into virtual registers.
2187   SDValue Ops[2];
2188   if (FuncInfo.ExceptionPointerVirtReg) {
2189     Ops[0] = DAG.getZExtOrTrunc(
2190         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2191                            FuncInfo.ExceptionPointerVirtReg,
2192                            TLI.getPointerTy(DAG.getDataLayout())),
2193         dl, ValueVTs[0]);
2194   } else {
2195     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2196   }
2197   Ops[1] = DAG.getZExtOrTrunc(
2198       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2199                          FuncInfo.ExceptionSelectorVirtReg,
2200                          TLI.getPointerTy(DAG.getDataLayout())),
2201       dl, ValueVTs[1]);
2202 
2203   // Merge into one.
2204   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2205                             DAG.getVTList(ValueVTs), Ops);
2206   setValue(&LP, Res);
2207 }
2208 
2209 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2210 #ifndef NDEBUG
2211   for (const CaseCluster &CC : Clusters)
2212     assert(CC.Low == CC.High && "Input clusters must be single-case");
2213 #endif
2214 
2215   std::sort(Clusters.begin(), Clusters.end(),
2216             [](const CaseCluster &a, const CaseCluster &b) {
2217     return a.Low->getValue().slt(b.Low->getValue());
2218   });
2219 
2220   // Merge adjacent clusters with the same destination.
2221   const unsigned N = Clusters.size();
2222   unsigned DstIndex = 0;
2223   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2224     CaseCluster &CC = Clusters[SrcIndex];
2225     const ConstantInt *CaseVal = CC.Low;
2226     MachineBasicBlock *Succ = CC.MBB;
2227 
2228     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2229         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2230       // If this case has the same successor and is a neighbour, merge it into
2231       // the previous cluster.
2232       Clusters[DstIndex - 1].High = CaseVal;
2233       Clusters[DstIndex - 1].Prob += CC.Prob;
2234     } else {
2235       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2236                    sizeof(Clusters[SrcIndex]));
2237     }
2238   }
2239   Clusters.resize(DstIndex);
2240 }
2241 
2242 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2243                                            MachineBasicBlock *Last) {
2244   // Update JTCases.
2245   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2246     if (JTCases[i].first.HeaderBB == First)
2247       JTCases[i].first.HeaderBB = Last;
2248 
2249   // Update BitTestCases.
2250   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2251     if (BitTestCases[i].Parent == First)
2252       BitTestCases[i].Parent = Last;
2253 }
2254 
2255 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2256   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2257 
2258   // Update machine-CFG edges with unique successors.
2259   SmallSet<BasicBlock*, 32> Done;
2260   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2261     BasicBlock *BB = I.getSuccessor(i);
2262     bool Inserted = Done.insert(BB).second;
2263     if (!Inserted)
2264         continue;
2265 
2266     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2267     addSuccessorWithProb(IndirectBrMBB, Succ);
2268   }
2269   IndirectBrMBB->normalizeSuccProbs();
2270 
2271   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2272                           MVT::Other, getControlRoot(),
2273                           getValue(I.getAddress())));
2274 }
2275 
2276 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2277   if (DAG.getTarget().Options.TrapUnreachable)
2278     DAG.setRoot(
2279         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2280 }
2281 
2282 void SelectionDAGBuilder::visitFSub(const User &I) {
2283   // -0.0 - X --> fneg
2284   Type *Ty = I.getType();
2285   if (isa<Constant>(I.getOperand(0)) &&
2286       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2287     SDValue Op2 = getValue(I.getOperand(1));
2288     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2289                              Op2.getValueType(), Op2));
2290     return;
2291   }
2292 
2293   visitBinary(I, ISD::FSUB);
2294 }
2295 
2296 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2297   SDValue Op1 = getValue(I.getOperand(0));
2298   SDValue Op2 = getValue(I.getOperand(1));
2299 
2300   bool nuw = false;
2301   bool nsw = false;
2302   bool exact = false;
2303   FastMathFlags FMF;
2304 
2305   if (const OverflowingBinaryOperator *OFBinOp =
2306           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2307     nuw = OFBinOp->hasNoUnsignedWrap();
2308     nsw = OFBinOp->hasNoSignedWrap();
2309   }
2310   if (const PossiblyExactOperator *ExactOp =
2311           dyn_cast<const PossiblyExactOperator>(&I))
2312     exact = ExactOp->isExact();
2313   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2314     FMF = FPOp->getFastMathFlags();
2315 
2316   SDNodeFlags Flags;
2317   Flags.setExact(exact);
2318   Flags.setNoSignedWrap(nsw);
2319   Flags.setNoUnsignedWrap(nuw);
2320   if (EnableFMFInDAG) {
2321     Flags.setAllowReciprocal(FMF.allowReciprocal());
2322     Flags.setNoInfs(FMF.noInfs());
2323     Flags.setNoNaNs(FMF.noNaNs());
2324     Flags.setNoSignedZeros(FMF.noSignedZeros());
2325     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2326   }
2327   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2328                                      Op1, Op2, &Flags);
2329   setValue(&I, BinNodeValue);
2330 }
2331 
2332 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2333   SDValue Op1 = getValue(I.getOperand(0));
2334   SDValue Op2 = getValue(I.getOperand(1));
2335 
2336   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2337       Op2.getValueType(), DAG.getDataLayout());
2338 
2339   // Coerce the shift amount to the right type if we can.
2340   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2341     unsigned ShiftSize = ShiftTy.getSizeInBits();
2342     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2343     SDLoc DL = getCurSDLoc();
2344 
2345     // If the operand is smaller than the shift count type, promote it.
2346     if (ShiftSize > Op2Size)
2347       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2348 
2349     // If the operand is larger than the shift count type but the shift
2350     // count type has enough bits to represent any shift value, truncate
2351     // it now. This is a common case and it exposes the truncate to
2352     // optimization early.
2353     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2354       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2355     // Otherwise we'll need to temporarily settle for some other convenient
2356     // type.  Type legalization will make adjustments once the shiftee is split.
2357     else
2358       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2359   }
2360 
2361   bool nuw = false;
2362   bool nsw = false;
2363   bool exact = false;
2364 
2365   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2366 
2367     if (const OverflowingBinaryOperator *OFBinOp =
2368             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2369       nuw = OFBinOp->hasNoUnsignedWrap();
2370       nsw = OFBinOp->hasNoSignedWrap();
2371     }
2372     if (const PossiblyExactOperator *ExactOp =
2373             dyn_cast<const PossiblyExactOperator>(&I))
2374       exact = ExactOp->isExact();
2375   }
2376   SDNodeFlags Flags;
2377   Flags.setExact(exact);
2378   Flags.setNoSignedWrap(nsw);
2379   Flags.setNoUnsignedWrap(nuw);
2380   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2381                             &Flags);
2382   setValue(&I, Res);
2383 }
2384 
2385 void SelectionDAGBuilder::visitSDiv(const User &I) {
2386   SDValue Op1 = getValue(I.getOperand(0));
2387   SDValue Op2 = getValue(I.getOperand(1));
2388 
2389   SDNodeFlags Flags;
2390   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2391                  cast<PossiblyExactOperator>(&I)->isExact());
2392   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2393                            Op2, &Flags));
2394 }
2395 
2396 void SelectionDAGBuilder::visitICmp(const User &I) {
2397   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2398   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2399     predicate = IC->getPredicate();
2400   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2401     predicate = ICmpInst::Predicate(IC->getPredicate());
2402   SDValue Op1 = getValue(I.getOperand(0));
2403   SDValue Op2 = getValue(I.getOperand(1));
2404   ISD::CondCode Opcode = getICmpCondCode(predicate);
2405 
2406   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2407                                                         I.getType());
2408   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2409 }
2410 
2411 void SelectionDAGBuilder::visitFCmp(const User &I) {
2412   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2413   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2414     predicate = FC->getPredicate();
2415   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2416     predicate = FCmpInst::Predicate(FC->getPredicate());
2417   SDValue Op1 = getValue(I.getOperand(0));
2418   SDValue Op2 = getValue(I.getOperand(1));
2419   ISD::CondCode Condition = getFCmpCondCode(predicate);
2420 
2421   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2422   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2423   // further optimization, but currently FMF is only applicable to binary nodes.
2424   if (TM.Options.NoNaNsFPMath)
2425     Condition = getFCmpCodeWithoutNaN(Condition);
2426   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2427                                                         I.getType());
2428   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2429 }
2430 
2431 void SelectionDAGBuilder::visitSelect(const User &I) {
2432   SmallVector<EVT, 4> ValueVTs;
2433   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2434                   ValueVTs);
2435   unsigned NumValues = ValueVTs.size();
2436   if (NumValues == 0) return;
2437 
2438   SmallVector<SDValue, 4> Values(NumValues);
2439   SDValue Cond     = getValue(I.getOperand(0));
2440   SDValue LHSVal   = getValue(I.getOperand(1));
2441   SDValue RHSVal   = getValue(I.getOperand(2));
2442   auto BaseOps = {Cond};
2443   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2444     ISD::VSELECT : ISD::SELECT;
2445 
2446   // Min/max matching is only viable if all output VTs are the same.
2447   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2448     EVT VT = ValueVTs[0];
2449     LLVMContext &Ctx = *DAG.getContext();
2450     auto &TLI = DAG.getTargetLoweringInfo();
2451 
2452     // We care about the legality of the operation after it has been type
2453     // legalized.
2454     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2455            VT != TLI.getTypeToTransformTo(Ctx, VT))
2456       VT = TLI.getTypeToTransformTo(Ctx, VT);
2457 
2458     // If the vselect is legal, assume we want to leave this as a vector setcc +
2459     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2460     // min/max is legal on the scalar type.
2461     bool UseScalarMinMax = VT.isVector() &&
2462       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2463 
2464     Value *LHS, *RHS;
2465     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2466     ISD::NodeType Opc = ISD::DELETED_NODE;
2467     switch (SPR.Flavor) {
2468     case SPF_UMAX:    Opc = ISD::UMAX; break;
2469     case SPF_UMIN:    Opc = ISD::UMIN; break;
2470     case SPF_SMAX:    Opc = ISD::SMAX; break;
2471     case SPF_SMIN:    Opc = ISD::SMIN; break;
2472     case SPF_FMINNUM:
2473       switch (SPR.NaNBehavior) {
2474       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2475       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2476       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2477       case SPNB_RETURNS_ANY: {
2478         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2479           Opc = ISD::FMINNUM;
2480         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2481           Opc = ISD::FMINNAN;
2482         else if (UseScalarMinMax)
2483           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2484             ISD::FMINNUM : ISD::FMINNAN;
2485         break;
2486       }
2487       }
2488       break;
2489     case SPF_FMAXNUM:
2490       switch (SPR.NaNBehavior) {
2491       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2492       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2493       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2494       case SPNB_RETURNS_ANY:
2495 
2496         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2497           Opc = ISD::FMAXNUM;
2498         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2499           Opc = ISD::FMAXNAN;
2500         else if (UseScalarMinMax)
2501           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2502             ISD::FMAXNUM : ISD::FMAXNAN;
2503         break;
2504       }
2505       break;
2506     default: break;
2507     }
2508 
2509     if (Opc != ISD::DELETED_NODE &&
2510         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2511          (UseScalarMinMax &&
2512           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2513         // If the underlying comparison instruction is used by any other
2514         // instruction, the consumed instructions won't be destroyed, so it is
2515         // not profitable to convert to a min/max.
2516         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2517       OpCode = Opc;
2518       LHSVal = getValue(LHS);
2519       RHSVal = getValue(RHS);
2520       BaseOps = {};
2521     }
2522   }
2523 
2524   for (unsigned i = 0; i != NumValues; ++i) {
2525     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2526     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2527     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2528     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2529                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2530                             Ops);
2531   }
2532 
2533   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2534                            DAG.getVTList(ValueVTs), Values));
2535 }
2536 
2537 void SelectionDAGBuilder::visitTrunc(const User &I) {
2538   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2539   SDValue N = getValue(I.getOperand(0));
2540   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2541                                                         I.getType());
2542   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2543 }
2544 
2545 void SelectionDAGBuilder::visitZExt(const User &I) {
2546   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2547   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2548   SDValue N = getValue(I.getOperand(0));
2549   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2550                                                         I.getType());
2551   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2552 }
2553 
2554 void SelectionDAGBuilder::visitSExt(const User &I) {
2555   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2556   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2557   SDValue N = getValue(I.getOperand(0));
2558   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2559                                                         I.getType());
2560   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2561 }
2562 
2563 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2564   // FPTrunc is never a no-op cast, no need to check
2565   SDValue N = getValue(I.getOperand(0));
2566   SDLoc dl = getCurSDLoc();
2567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2568   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2569   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2570                            DAG.getTargetConstant(
2571                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2572 }
2573 
2574 void SelectionDAGBuilder::visitFPExt(const User &I) {
2575   // FPExt is never a no-op cast, no need to check
2576   SDValue N = getValue(I.getOperand(0));
2577   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2578                                                         I.getType());
2579   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2580 }
2581 
2582 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2583   // FPToUI is never a no-op cast, no need to check
2584   SDValue N = getValue(I.getOperand(0));
2585   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2586                                                         I.getType());
2587   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2588 }
2589 
2590 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2591   // FPToSI is never a no-op cast, no need to check
2592   SDValue N = getValue(I.getOperand(0));
2593   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2594                                                         I.getType());
2595   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2596 }
2597 
2598 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2599   // UIToFP is never a no-op cast, no need to check
2600   SDValue N = getValue(I.getOperand(0));
2601   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2602                                                         I.getType());
2603   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2604 }
2605 
2606 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2607   // SIToFP is never a no-op cast, no need to check
2608   SDValue N = getValue(I.getOperand(0));
2609   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2610                                                         I.getType());
2611   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2612 }
2613 
2614 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2615   // What to do depends on the size of the integer and the size of the pointer.
2616   // We can either truncate, zero extend, or no-op, accordingly.
2617   SDValue N = getValue(I.getOperand(0));
2618   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2619                                                         I.getType());
2620   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2621 }
2622 
2623 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2624   // What to do depends on the size of the integer and the size of the pointer.
2625   // We can either truncate, zero extend, or no-op, accordingly.
2626   SDValue N = getValue(I.getOperand(0));
2627   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2628                                                         I.getType());
2629   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2630 }
2631 
2632 void SelectionDAGBuilder::visitBitCast(const User &I) {
2633   SDValue N = getValue(I.getOperand(0));
2634   SDLoc dl = getCurSDLoc();
2635   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2636                                                         I.getType());
2637 
2638   // BitCast assures us that source and destination are the same size so this is
2639   // either a BITCAST or a no-op.
2640   if (DestVT != N.getValueType())
2641     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2642                              DestVT, N)); // convert types.
2643   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2644   // might fold any kind of constant expression to an integer constant and that
2645   // is not what we are looking for. Only regcognize a bitcast of a genuine
2646   // constant integer as an opaque constant.
2647   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2648     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2649                                  /*isOpaque*/true));
2650   else
2651     setValue(&I, N);            // noop cast.
2652 }
2653 
2654 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2656   const Value *SV = I.getOperand(0);
2657   SDValue N = getValue(SV);
2658   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2659 
2660   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2661   unsigned DestAS = I.getType()->getPointerAddressSpace();
2662 
2663   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2664     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2665 
2666   setValue(&I, N);
2667 }
2668 
2669 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2671   SDValue InVec = getValue(I.getOperand(0));
2672   SDValue InVal = getValue(I.getOperand(1));
2673   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2674                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2675   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2676                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2677                            InVec, InVal, InIdx));
2678 }
2679 
2680 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2682   SDValue InVec = getValue(I.getOperand(0));
2683   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2684                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2685   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2686                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2687                            InVec, InIdx));
2688 }
2689 
2690 // Utility for visitShuffleVector - Return true if every element in Mask,
2691 // beginning from position Pos and ending in Pos+Size, falls within the
2692 // specified sequential range [L, L+Pos). or is undef.
2693 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2694                                 unsigned Pos, unsigned Size, int Low) {
2695   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2696     if (Mask[i] >= 0 && Mask[i] != Low)
2697       return false;
2698   return true;
2699 }
2700 
2701 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2702   SDValue Src1 = getValue(I.getOperand(0));
2703   SDValue Src2 = getValue(I.getOperand(1));
2704 
2705   SmallVector<int, 8> Mask;
2706   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2707   unsigned MaskNumElts = Mask.size();
2708 
2709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2710   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2711   EVT SrcVT = Src1.getValueType();
2712   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2713 
2714   if (SrcNumElts == MaskNumElts) {
2715     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2716                                       &Mask[0]));
2717     return;
2718   }
2719 
2720   // Normalize the shuffle vector since mask and vector length don't match.
2721   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2722     // Mask is longer than the source vectors and is a multiple of the source
2723     // vectors.  We can use concatenate vector to make the mask and vectors
2724     // lengths match.
2725     if (SrcNumElts*2 == MaskNumElts) {
2726       // First check for Src1 in low and Src2 in high
2727       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2728           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2729         // The shuffle is concatenating two vectors together.
2730         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2731                                  VT, Src1, Src2));
2732         return;
2733       }
2734       // Then check for Src2 in low and Src1 in high
2735       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2736           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2737         // The shuffle is concatenating two vectors together.
2738         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2739                                  VT, Src2, Src1));
2740         return;
2741       }
2742     }
2743 
2744     // Pad both vectors with undefs to make them the same length as the mask.
2745     unsigned NumConcat = MaskNumElts / SrcNumElts;
2746     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2747     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2748     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2749 
2750     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2751     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2752     MOps1[0] = Src1;
2753     MOps2[0] = Src2;
2754 
2755     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2756                                                   getCurSDLoc(), VT, MOps1);
2757     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2758                                                   getCurSDLoc(), VT, MOps2);
2759 
2760     // Readjust mask for new input vector length.
2761     SmallVector<int, 8> MappedOps;
2762     for (unsigned i = 0; i != MaskNumElts; ++i) {
2763       int Idx = Mask[i];
2764       if (Idx >= (int)SrcNumElts)
2765         Idx -= SrcNumElts - MaskNumElts;
2766       MappedOps.push_back(Idx);
2767     }
2768 
2769     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2770                                       &MappedOps[0]));
2771     return;
2772   }
2773 
2774   if (SrcNumElts > MaskNumElts) {
2775     // Analyze the access pattern of the vector to see if we can extract
2776     // two subvectors and do the shuffle. The analysis is done by calculating
2777     // the range of elements the mask access on both vectors.
2778     int MinRange[2] = { static_cast<int>(SrcNumElts),
2779                         static_cast<int>(SrcNumElts)};
2780     int MaxRange[2] = {-1, -1};
2781 
2782     for (unsigned i = 0; i != MaskNumElts; ++i) {
2783       int Idx = Mask[i];
2784       unsigned Input = 0;
2785       if (Idx < 0)
2786         continue;
2787 
2788       if (Idx >= (int)SrcNumElts) {
2789         Input = 1;
2790         Idx -= SrcNumElts;
2791       }
2792       if (Idx > MaxRange[Input])
2793         MaxRange[Input] = Idx;
2794       if (Idx < MinRange[Input])
2795         MinRange[Input] = Idx;
2796     }
2797 
2798     // Check if the access is smaller than the vector size and can we find
2799     // a reasonable extract index.
2800     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2801                                    // Extract.
2802     int StartIdx[2];  // StartIdx to extract from
2803     for (unsigned Input = 0; Input < 2; ++Input) {
2804       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2805         RangeUse[Input] = 0; // Unused
2806         StartIdx[Input] = 0;
2807         continue;
2808       }
2809 
2810       // Find a good start index that is a multiple of the mask length. Then
2811       // see if the rest of the elements are in range.
2812       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2813       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2814           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2815         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2816     }
2817 
2818     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2819       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2820       return;
2821     }
2822     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2823       // Extract appropriate subvector and generate a vector shuffle
2824       for (unsigned Input = 0; Input < 2; ++Input) {
2825         SDValue &Src = Input == 0 ? Src1 : Src2;
2826         if (RangeUse[Input] == 0)
2827           Src = DAG.getUNDEF(VT);
2828         else {
2829           SDLoc dl = getCurSDLoc();
2830           Src = DAG.getNode(
2831               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2832               DAG.getConstant(StartIdx[Input], dl,
2833                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2834         }
2835       }
2836 
2837       // Calculate new mask.
2838       SmallVector<int, 8> MappedOps;
2839       for (unsigned i = 0; i != MaskNumElts; ++i) {
2840         int Idx = Mask[i];
2841         if (Idx >= 0) {
2842           if (Idx < (int)SrcNumElts)
2843             Idx -= StartIdx[0];
2844           else
2845             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2846         }
2847         MappedOps.push_back(Idx);
2848       }
2849 
2850       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2851                                         &MappedOps[0]));
2852       return;
2853     }
2854   }
2855 
2856   // We can't use either concat vectors or extract subvectors so fall back to
2857   // replacing the shuffle with extract and build vector.
2858   // to insert and build vector.
2859   EVT EltVT = VT.getVectorElementType();
2860   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2861   SDLoc dl = getCurSDLoc();
2862   SmallVector<SDValue,8> Ops;
2863   for (unsigned i = 0; i != MaskNumElts; ++i) {
2864     int Idx = Mask[i];
2865     SDValue Res;
2866 
2867     if (Idx < 0) {
2868       Res = DAG.getUNDEF(EltVT);
2869     } else {
2870       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2871       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2872 
2873       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2874                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2875     }
2876 
2877     Ops.push_back(Res);
2878   }
2879 
2880   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2881 }
2882 
2883 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2884   const Value *Op0 = I.getOperand(0);
2885   const Value *Op1 = I.getOperand(1);
2886   Type *AggTy = I.getType();
2887   Type *ValTy = Op1->getType();
2888   bool IntoUndef = isa<UndefValue>(Op0);
2889   bool FromUndef = isa<UndefValue>(Op1);
2890 
2891   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2892 
2893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2894   SmallVector<EVT, 4> AggValueVTs;
2895   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2896   SmallVector<EVT, 4> ValValueVTs;
2897   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2898 
2899   unsigned NumAggValues = AggValueVTs.size();
2900   unsigned NumValValues = ValValueVTs.size();
2901   SmallVector<SDValue, 4> Values(NumAggValues);
2902 
2903   // Ignore an insertvalue that produces an empty object
2904   if (!NumAggValues) {
2905     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2906     return;
2907   }
2908 
2909   SDValue Agg = getValue(Op0);
2910   unsigned i = 0;
2911   // Copy the beginning value(s) from the original aggregate.
2912   for (; i != LinearIndex; ++i)
2913     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2914                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2915   // Copy values from the inserted value(s).
2916   if (NumValValues) {
2917     SDValue Val = getValue(Op1);
2918     for (; i != LinearIndex + NumValValues; ++i)
2919       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2920                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2921   }
2922   // Copy remaining value(s) from the original aggregate.
2923   for (; i != NumAggValues; ++i)
2924     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2925                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2926 
2927   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2928                            DAG.getVTList(AggValueVTs), Values));
2929 }
2930 
2931 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2932   const Value *Op0 = I.getOperand(0);
2933   Type *AggTy = Op0->getType();
2934   Type *ValTy = I.getType();
2935   bool OutOfUndef = isa<UndefValue>(Op0);
2936 
2937   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2938 
2939   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2940   SmallVector<EVT, 4> ValValueVTs;
2941   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2942 
2943   unsigned NumValValues = ValValueVTs.size();
2944 
2945   // Ignore a extractvalue that produces an empty object
2946   if (!NumValValues) {
2947     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2948     return;
2949   }
2950 
2951   SmallVector<SDValue, 4> Values(NumValValues);
2952 
2953   SDValue Agg = getValue(Op0);
2954   // Copy out the selected value(s).
2955   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2956     Values[i - LinearIndex] =
2957       OutOfUndef ?
2958         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2959         SDValue(Agg.getNode(), Agg.getResNo() + i);
2960 
2961   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2962                            DAG.getVTList(ValValueVTs), Values));
2963 }
2964 
2965 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2966   Value *Op0 = I.getOperand(0);
2967   // Note that the pointer operand may be a vector of pointers. Take the scalar
2968   // element which holds a pointer.
2969   Type *Ty = Op0->getType()->getScalarType();
2970   unsigned AS = Ty->getPointerAddressSpace();
2971   SDValue N = getValue(Op0);
2972   SDLoc dl = getCurSDLoc();
2973 
2974   // Normalize Vector GEP - all scalar operands should be converted to the
2975   // splat vector.
2976   unsigned VectorWidth = I.getType()->isVectorTy() ?
2977     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2978 
2979   if (VectorWidth && !N.getValueType().isVector()) {
2980     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2981     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2982     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2983   }
2984   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2985        OI != E; ++OI) {
2986     const Value *Idx = *OI;
2987     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2988       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
2989       if (Field) {
2990         // N = N + Offset
2991         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
2992         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
2993                         DAG.getConstant(Offset, dl, N.getValueType()));
2994       }
2995 
2996       Ty = StTy->getElementType(Field);
2997     } else {
2998       Ty = cast<SequentialType>(Ty)->getElementType();
2999       MVT PtrTy =
3000           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3001       unsigned PtrSize = PtrTy.getSizeInBits();
3002       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3003 
3004       // If this is a scalar constant or a splat vector of constants,
3005       // handle it quickly.
3006       const auto *CI = dyn_cast<ConstantInt>(Idx);
3007       if (!CI && isa<ConstantDataVector>(Idx) &&
3008           cast<ConstantDataVector>(Idx)->getSplatValue())
3009         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3010 
3011       if (CI) {
3012         if (CI->isZero())
3013           continue;
3014         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3015         SDValue OffsVal = VectorWidth ?
3016           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3017           DAG.getConstant(Offs, dl, PtrTy);
3018         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
3019         continue;
3020       }
3021 
3022       // N = N + Idx * ElementSize;
3023       SDValue IdxN = getValue(Idx);
3024 
3025       if (!IdxN.getValueType().isVector() && VectorWidth) {
3026         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3027         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3028         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3029       }
3030       // If the index is smaller or larger than intptr_t, truncate or extend
3031       // it.
3032       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3033 
3034       // If this is a multiply by a power of two, turn it into a shl
3035       // immediately.  This is a very common case.
3036       if (ElementSize != 1) {
3037         if (ElementSize.isPowerOf2()) {
3038           unsigned Amt = ElementSize.logBase2();
3039           IdxN = DAG.getNode(ISD::SHL, dl,
3040                              N.getValueType(), IdxN,
3041                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3042         } else {
3043           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3044           IdxN = DAG.getNode(ISD::MUL, dl,
3045                              N.getValueType(), IdxN, Scale);
3046         }
3047       }
3048 
3049       N = DAG.getNode(ISD::ADD, dl,
3050                       N.getValueType(), N, IdxN);
3051     }
3052   }
3053 
3054   setValue(&I, N);
3055 }
3056 
3057 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3058   // If this is a fixed sized alloca in the entry block of the function,
3059   // allocate it statically on the stack.
3060   if (FuncInfo.StaticAllocaMap.count(&I))
3061     return;   // getValue will auto-populate this.
3062 
3063   SDLoc dl = getCurSDLoc();
3064   Type *Ty = I.getAllocatedType();
3065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3066   auto &DL = DAG.getDataLayout();
3067   uint64_t TySize = DL.getTypeAllocSize(Ty);
3068   unsigned Align =
3069       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3070 
3071   SDValue AllocSize = getValue(I.getArraySize());
3072 
3073   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3074   if (AllocSize.getValueType() != IntPtr)
3075     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3076 
3077   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3078                           AllocSize,
3079                           DAG.getConstant(TySize, dl, IntPtr));
3080 
3081   // Handle alignment.  If the requested alignment is less than or equal to
3082   // the stack alignment, ignore it.  If the size is greater than or equal to
3083   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3084   unsigned StackAlign =
3085       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3086   if (Align <= StackAlign)
3087     Align = 0;
3088 
3089   // Round the size of the allocation up to the stack alignment size
3090   // by add SA-1 to the size.
3091   AllocSize = DAG.getNode(ISD::ADD, dl,
3092                           AllocSize.getValueType(), AllocSize,
3093                           DAG.getIntPtrConstant(StackAlign - 1, dl));
3094 
3095   // Mask out the low bits for alignment purposes.
3096   AllocSize = DAG.getNode(ISD::AND, dl,
3097                           AllocSize.getValueType(), AllocSize,
3098                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3099                                                 dl));
3100 
3101   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3102   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3103   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3104   setValue(&I, DSA);
3105   DAG.setRoot(DSA.getValue(1));
3106 
3107   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3108 }
3109 
3110 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3111   if (I.isAtomic())
3112     return visitAtomicLoad(I);
3113 
3114   const Value *SV = I.getOperand(0);
3115   SDValue Ptr = getValue(SV);
3116 
3117   Type *Ty = I.getType();
3118 
3119   bool isVolatile = I.isVolatile();
3120   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3121 
3122   // The IR notion of invariant_load only guarantees that all *non-faulting*
3123   // invariant loads result in the same value.  The MI notion of invariant load
3124   // guarantees that the load can be legally moved to any location within its
3125   // containing function.  The MI notion of invariant_load is stronger than the
3126   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3127   // with a guarantee that the location being loaded from is dereferenceable
3128   // throughout the function's lifetime.
3129 
3130   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3131                      isDereferenceablePointer(SV, DAG.getDataLayout());
3132   unsigned Alignment = I.getAlignment();
3133 
3134   AAMDNodes AAInfo;
3135   I.getAAMetadata(AAInfo);
3136   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3137 
3138   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3139   SmallVector<EVT, 4> ValueVTs;
3140   SmallVector<uint64_t, 4> Offsets;
3141   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3142   unsigned NumValues = ValueVTs.size();
3143   if (NumValues == 0)
3144     return;
3145 
3146   SDValue Root;
3147   bool ConstantMemory = false;
3148   if (isVolatile || NumValues > MaxParallelChains)
3149     // Serialize volatile loads with other side effects.
3150     Root = getRoot();
3151   else if (AA->pointsToConstantMemory(MemoryLocation(
3152                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3153     // Do not serialize (non-volatile) loads of constant memory with anything.
3154     Root = DAG.getEntryNode();
3155     ConstantMemory = true;
3156   } else {
3157     // Do not serialize non-volatile loads against each other.
3158     Root = DAG.getRoot();
3159   }
3160 
3161   SDLoc dl = getCurSDLoc();
3162 
3163   if (isVolatile)
3164     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3165 
3166   SmallVector<SDValue, 4> Values(NumValues);
3167   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3168   EVT PtrVT = Ptr.getValueType();
3169   unsigned ChainI = 0;
3170   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3171     // Serializing loads here may result in excessive register pressure, and
3172     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3173     // could recover a bit by hoisting nodes upward in the chain by recognizing
3174     // they are side-effect free or do not alias. The optimizer should really
3175     // avoid this case by converting large object/array copies to llvm.memcpy
3176     // (MaxParallelChains should always remain as failsafe).
3177     if (ChainI == MaxParallelChains) {
3178       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3179       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3180                                   makeArrayRef(Chains.data(), ChainI));
3181       Root = Chain;
3182       ChainI = 0;
3183     }
3184     SDValue A = DAG.getNode(ISD::ADD, dl,
3185                             PtrVT, Ptr,
3186                             DAG.getConstant(Offsets[i], dl, PtrVT));
3187     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3188                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3189                             isNonTemporal, isInvariant, Alignment, AAInfo,
3190                             Ranges);
3191 
3192     Values[i] = L;
3193     Chains[ChainI] = L.getValue(1);
3194   }
3195 
3196   if (!ConstantMemory) {
3197     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3198                                 makeArrayRef(Chains.data(), ChainI));
3199     if (isVolatile)
3200       DAG.setRoot(Chain);
3201     else
3202       PendingLoads.push_back(Chain);
3203   }
3204 
3205   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3206                            DAG.getVTList(ValueVTs), Values));
3207 }
3208 
3209 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3210   if (I.isAtomic())
3211     return visitAtomicStore(I);
3212 
3213   const Value *SrcV = I.getOperand(0);
3214   const Value *PtrV = I.getOperand(1);
3215 
3216   SmallVector<EVT, 4> ValueVTs;
3217   SmallVector<uint64_t, 4> Offsets;
3218   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3219                   SrcV->getType(), ValueVTs, &Offsets);
3220   unsigned NumValues = ValueVTs.size();
3221   if (NumValues == 0)
3222     return;
3223 
3224   // Get the lowered operands. Note that we do this after
3225   // checking if NumResults is zero, because with zero results
3226   // the operands won't have values in the map.
3227   SDValue Src = getValue(SrcV);
3228   SDValue Ptr = getValue(PtrV);
3229 
3230   SDValue Root = getRoot();
3231   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3232   EVT PtrVT = Ptr.getValueType();
3233   bool isVolatile = I.isVolatile();
3234   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3235   unsigned Alignment = I.getAlignment();
3236   SDLoc dl = getCurSDLoc();
3237 
3238   AAMDNodes AAInfo;
3239   I.getAAMetadata(AAInfo);
3240 
3241   unsigned ChainI = 0;
3242   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3243     // See visitLoad comments.
3244     if (ChainI == MaxParallelChains) {
3245       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3246                                   makeArrayRef(Chains.data(), ChainI));
3247       Root = Chain;
3248       ChainI = 0;
3249     }
3250     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3251                               DAG.getConstant(Offsets[i], dl, PtrVT));
3252     SDValue St = DAG.getStore(Root, dl,
3253                               SDValue(Src.getNode(), Src.getResNo() + i),
3254                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3255                               isVolatile, isNonTemporal, Alignment, AAInfo);
3256     Chains[ChainI] = St;
3257   }
3258 
3259   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3260                                   makeArrayRef(Chains.data(), ChainI));
3261   DAG.setRoot(StoreNode);
3262 }
3263 
3264 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3265   SDLoc sdl = getCurSDLoc();
3266 
3267   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3268   Value  *PtrOperand = I.getArgOperand(1);
3269   SDValue Ptr = getValue(PtrOperand);
3270   SDValue Src0 = getValue(I.getArgOperand(0));
3271   SDValue Mask = getValue(I.getArgOperand(3));
3272   EVT VT = Src0.getValueType();
3273   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3274   if (!Alignment)
3275     Alignment = DAG.getEVTAlignment(VT);
3276 
3277   AAMDNodes AAInfo;
3278   I.getAAMetadata(AAInfo);
3279 
3280   MachineMemOperand *MMO =
3281     DAG.getMachineFunction().
3282     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3283                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3284                           Alignment, AAInfo);
3285   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3286                                          MMO, false);
3287   DAG.setRoot(StoreNode);
3288   setValue(&I, StoreNode);
3289 }
3290 
3291 // Get a uniform base for the Gather/Scatter intrinsic.
3292 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3293 // We try to represent it as a base pointer + vector of indices.
3294 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3295 // The first operand of the GEP may be a single pointer or a vector of pointers
3296 // Example:
3297 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3298 //  or
3299 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3300 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3301 //
3302 // When the first GEP operand is a single pointer - it is the uniform base we
3303 // are looking for. If first operand of the GEP is a splat vector - we
3304 // extract the spalt value and use it as a uniform base.
3305 // In all other cases the function returns 'false'.
3306 //
3307 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3308                            SelectionDAGBuilder* SDB) {
3309 
3310   SelectionDAG& DAG = SDB->DAG;
3311   LLVMContext &Context = *DAG.getContext();
3312 
3313   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3314   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3315   if (!GEP || GEP->getNumOperands() > 2)
3316     return false;
3317 
3318   const Value *GEPPtr = GEP->getPointerOperand();
3319   if (!GEPPtr->getType()->isVectorTy())
3320     Ptr = GEPPtr;
3321   else if (!(Ptr = getSplatValue(GEPPtr)))
3322     return false;
3323 
3324   Value *IndexVal = GEP->getOperand(1);
3325 
3326   // The operands of the GEP may be defined in another basic block.
3327   // In this case we'll not find nodes for the operands.
3328   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3329     return false;
3330 
3331   Base = SDB->getValue(Ptr);
3332   Index = SDB->getValue(IndexVal);
3333 
3334   // Suppress sign extension.
3335   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3336     if (SDB->findValue(Sext->getOperand(0))) {
3337       IndexVal = Sext->getOperand(0);
3338       Index = SDB->getValue(IndexVal);
3339     }
3340   }
3341   if (!Index.getValueType().isVector()) {
3342     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3343     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3344     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3345     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3346   }
3347   return true;
3348 }
3349 
3350 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3351   SDLoc sdl = getCurSDLoc();
3352 
3353   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3354   const Value *Ptr = I.getArgOperand(1);
3355   SDValue Src0 = getValue(I.getArgOperand(0));
3356   SDValue Mask = getValue(I.getArgOperand(3));
3357   EVT VT = Src0.getValueType();
3358   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3359   if (!Alignment)
3360     Alignment = DAG.getEVTAlignment(VT);
3361   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3362 
3363   AAMDNodes AAInfo;
3364   I.getAAMetadata(AAInfo);
3365 
3366   SDValue Base;
3367   SDValue Index;
3368   const Value *BasePtr = Ptr;
3369   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3370 
3371   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3372   MachineMemOperand *MMO = DAG.getMachineFunction().
3373     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3374                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3375                          Alignment, AAInfo);
3376   if (!UniformBase) {
3377     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3378     Index = getValue(Ptr);
3379   }
3380   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3381   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3382                                          Ops, MMO);
3383   DAG.setRoot(Scatter);
3384   setValue(&I, Scatter);
3385 }
3386 
3387 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3388   SDLoc sdl = getCurSDLoc();
3389 
3390   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3391   Value  *PtrOperand = I.getArgOperand(0);
3392   SDValue Ptr = getValue(PtrOperand);
3393   SDValue Src0 = getValue(I.getArgOperand(3));
3394   SDValue Mask = getValue(I.getArgOperand(2));
3395 
3396   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3397   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3398   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3399   if (!Alignment)
3400     Alignment = DAG.getEVTAlignment(VT);
3401 
3402   AAMDNodes AAInfo;
3403   I.getAAMetadata(AAInfo);
3404   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3405 
3406   SDValue InChain = DAG.getRoot();
3407   if (AA->pointsToConstantMemory(MemoryLocation(
3408           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3409           AAInfo))) {
3410     // Do not serialize (non-volatile) loads of constant memory with anything.
3411     InChain = DAG.getEntryNode();
3412   }
3413 
3414   MachineMemOperand *MMO =
3415     DAG.getMachineFunction().
3416     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3417                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3418                           Alignment, AAInfo, Ranges);
3419 
3420   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3421                                    ISD::NON_EXTLOAD);
3422   SDValue OutChain = Load.getValue(1);
3423   DAG.setRoot(OutChain);
3424   setValue(&I, Load);
3425 }
3426 
3427 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3428   SDLoc sdl = getCurSDLoc();
3429 
3430   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3431   const Value *Ptr = I.getArgOperand(0);
3432   SDValue Src0 = getValue(I.getArgOperand(3));
3433   SDValue Mask = getValue(I.getArgOperand(2));
3434 
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3437   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3438   if (!Alignment)
3439     Alignment = DAG.getEVTAlignment(VT);
3440 
3441   AAMDNodes AAInfo;
3442   I.getAAMetadata(AAInfo);
3443   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3444 
3445   SDValue Root = DAG.getRoot();
3446   SDValue Base;
3447   SDValue Index;
3448   const Value *BasePtr = Ptr;
3449   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3450   bool ConstantMemory = false;
3451   if (UniformBase &&
3452       AA->pointsToConstantMemory(MemoryLocation(
3453           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3454           AAInfo))) {
3455     // Do not serialize (non-volatile) loads of constant memory with anything.
3456     Root = DAG.getEntryNode();
3457     ConstantMemory = true;
3458   }
3459 
3460   MachineMemOperand *MMO =
3461     DAG.getMachineFunction().
3462     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3463                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3464                          Alignment, AAInfo, Ranges);
3465 
3466   if (!UniformBase) {
3467     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3468     Index = getValue(Ptr);
3469   }
3470   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3471   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3472                                        Ops, MMO);
3473 
3474   SDValue OutChain = Gather.getValue(1);
3475   if (!ConstantMemory)
3476     PendingLoads.push_back(OutChain);
3477   setValue(&I, Gather);
3478 }
3479 
3480 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3481   SDLoc dl = getCurSDLoc();
3482   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3483   AtomicOrdering FailureOrder = I.getFailureOrdering();
3484   SynchronizationScope Scope = I.getSynchScope();
3485 
3486   SDValue InChain = getRoot();
3487 
3488   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3489   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3490   SDValue L = DAG.getAtomicCmpSwap(
3491       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3492       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3493       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3494       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3495 
3496   SDValue OutChain = L.getValue(2);
3497 
3498   setValue(&I, L);
3499   DAG.setRoot(OutChain);
3500 }
3501 
3502 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3503   SDLoc dl = getCurSDLoc();
3504   ISD::NodeType NT;
3505   switch (I.getOperation()) {
3506   default: llvm_unreachable("Unknown atomicrmw operation");
3507   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3508   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3509   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3510   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3511   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3512   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3513   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3514   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3515   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3516   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3517   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3518   }
3519   AtomicOrdering Order = I.getOrdering();
3520   SynchronizationScope Scope = I.getSynchScope();
3521 
3522   SDValue InChain = getRoot();
3523 
3524   SDValue L =
3525     DAG.getAtomic(NT, dl,
3526                   getValue(I.getValOperand()).getSimpleValueType(),
3527                   InChain,
3528                   getValue(I.getPointerOperand()),
3529                   getValue(I.getValOperand()),
3530                   I.getPointerOperand(),
3531                   /* Alignment=*/ 0, Order, Scope);
3532 
3533   SDValue OutChain = L.getValue(1);
3534 
3535   setValue(&I, L);
3536   DAG.setRoot(OutChain);
3537 }
3538 
3539 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3540   SDLoc dl = getCurSDLoc();
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   SDValue Ops[3];
3543   Ops[0] = getRoot();
3544   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3545                            TLI.getPointerTy(DAG.getDataLayout()));
3546   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3547                            TLI.getPointerTy(DAG.getDataLayout()));
3548   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3549 }
3550 
3551 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3552   SDLoc dl = getCurSDLoc();
3553   AtomicOrdering Order = I.getOrdering();
3554   SynchronizationScope Scope = I.getSynchScope();
3555 
3556   SDValue InChain = getRoot();
3557 
3558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3559   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3560 
3561   if (I.getAlignment() < VT.getSizeInBits() / 8)
3562     report_fatal_error("Cannot generate unaligned atomic load");
3563 
3564   MachineMemOperand *MMO =
3565       DAG.getMachineFunction().
3566       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3567                            MachineMemOperand::MOVolatile |
3568                            MachineMemOperand::MOLoad,
3569                            VT.getStoreSize(),
3570                            I.getAlignment() ? I.getAlignment() :
3571                                               DAG.getEVTAlignment(VT));
3572 
3573   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3574   SDValue L =
3575       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3576                     getValue(I.getPointerOperand()), MMO,
3577                     Order, Scope);
3578 
3579   SDValue OutChain = L.getValue(1);
3580 
3581   setValue(&I, L);
3582   DAG.setRoot(OutChain);
3583 }
3584 
3585 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3586   SDLoc dl = getCurSDLoc();
3587 
3588   AtomicOrdering Order = I.getOrdering();
3589   SynchronizationScope Scope = I.getSynchScope();
3590 
3591   SDValue InChain = getRoot();
3592 
3593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3594   EVT VT =
3595       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3596 
3597   if (I.getAlignment() < VT.getSizeInBits() / 8)
3598     report_fatal_error("Cannot generate unaligned atomic store");
3599 
3600   SDValue OutChain =
3601     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3602                   InChain,
3603                   getValue(I.getPointerOperand()),
3604                   getValue(I.getValueOperand()),
3605                   I.getPointerOperand(), I.getAlignment(),
3606                   Order, Scope);
3607 
3608   DAG.setRoot(OutChain);
3609 }
3610 
3611 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3612 /// node.
3613 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3614                                                unsigned Intrinsic) {
3615   bool HasChain = !I.doesNotAccessMemory();
3616   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3617 
3618   // Build the operand list.
3619   SmallVector<SDValue, 8> Ops;
3620   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3621     if (OnlyLoad) {
3622       // We don't need to serialize loads against other loads.
3623       Ops.push_back(DAG.getRoot());
3624     } else {
3625       Ops.push_back(getRoot());
3626     }
3627   }
3628 
3629   // Info is set by getTgtMemInstrinsic
3630   TargetLowering::IntrinsicInfo Info;
3631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3632   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3633 
3634   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3635   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3636       Info.opc == ISD::INTRINSIC_W_CHAIN)
3637     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3638                                         TLI.getPointerTy(DAG.getDataLayout())));
3639 
3640   // Add all operands of the call to the operand list.
3641   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3642     SDValue Op = getValue(I.getArgOperand(i));
3643     Ops.push_back(Op);
3644   }
3645 
3646   SmallVector<EVT, 4> ValueVTs;
3647   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3648 
3649   if (HasChain)
3650     ValueVTs.push_back(MVT::Other);
3651 
3652   SDVTList VTs = DAG.getVTList(ValueVTs);
3653 
3654   // Create the node.
3655   SDValue Result;
3656   if (IsTgtIntrinsic) {
3657     // This is target intrinsic that touches memory
3658     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3659                                      VTs, Ops, Info.memVT,
3660                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3661                                      Info.align, Info.vol,
3662                                      Info.readMem, Info.writeMem, Info.size);
3663   } else if (!HasChain) {
3664     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3665   } else if (!I.getType()->isVoidTy()) {
3666     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3667   } else {
3668     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3669   }
3670 
3671   if (HasChain) {
3672     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3673     if (OnlyLoad)
3674       PendingLoads.push_back(Chain);
3675     else
3676       DAG.setRoot(Chain);
3677   }
3678 
3679   if (!I.getType()->isVoidTy()) {
3680     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3681       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3682       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3683     }
3684 
3685     setValue(&I, Result);
3686   }
3687 }
3688 
3689 /// GetSignificand - Get the significand and build it into a floating-point
3690 /// number with exponent of 1:
3691 ///
3692 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3693 ///
3694 /// where Op is the hexadecimal representation of floating point value.
3695 static SDValue
3696 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3697   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3698                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3699   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3700                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3701   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3702 }
3703 
3704 /// GetExponent - Get the exponent:
3705 ///
3706 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3707 ///
3708 /// where Op is the hexadecimal representation of floating point value.
3709 static SDValue
3710 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3711             SDLoc dl) {
3712   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3713                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3714   SDValue t1 = DAG.getNode(
3715       ISD::SRL, dl, MVT::i32, t0,
3716       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3717   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3718                            DAG.getConstant(127, dl, MVT::i32));
3719   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3720 }
3721 
3722 /// getF32Constant - Get 32-bit floating point constant.
3723 static SDValue
3724 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3725   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3726                            MVT::f32);
3727 }
3728 
3729 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3730                                        SelectionDAG &DAG) {
3731   // TODO: What fast-math-flags should be set on the floating-point nodes?
3732 
3733   //   IntegerPartOfX = ((int32_t)(t0);
3734   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3735 
3736   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3737   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3738   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3739 
3740   //   IntegerPartOfX <<= 23;
3741   IntegerPartOfX = DAG.getNode(
3742       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3743       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3744                                   DAG.getDataLayout())));
3745 
3746   SDValue TwoToFractionalPartOfX;
3747   if (LimitFloatPrecision <= 6) {
3748     // For floating-point precision of 6:
3749     //
3750     //   TwoToFractionalPartOfX =
3751     //     0.997535578f +
3752     //       (0.735607626f + 0.252464424f * x) * x;
3753     //
3754     // error 0.0144103317, which is 6 bits
3755     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3756                              getF32Constant(DAG, 0x3e814304, dl));
3757     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3758                              getF32Constant(DAG, 0x3f3c50c8, dl));
3759     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3760     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3761                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3762   } else if (LimitFloatPrecision <= 12) {
3763     // For floating-point precision of 12:
3764     //
3765     //   TwoToFractionalPartOfX =
3766     //     0.999892986f +
3767     //       (0.696457318f +
3768     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3769     //
3770     // error 0.000107046256, which is 13 to 14 bits
3771     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3772                              getF32Constant(DAG, 0x3da235e3, dl));
3773     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3774                              getF32Constant(DAG, 0x3e65b8f3, dl));
3775     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3776     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3777                              getF32Constant(DAG, 0x3f324b07, dl));
3778     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3779     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3780                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3781   } else { // LimitFloatPrecision <= 18
3782     // For floating-point precision of 18:
3783     //
3784     //   TwoToFractionalPartOfX =
3785     //     0.999999982f +
3786     //       (0.693148872f +
3787     //         (0.240227044f +
3788     //           (0.554906021e-1f +
3789     //             (0.961591928e-2f +
3790     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3791     // error 2.47208000*10^(-7), which is better than 18 bits
3792     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3793                              getF32Constant(DAG, 0x3924b03e, dl));
3794     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3795                              getF32Constant(DAG, 0x3ab24b87, dl));
3796     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3797     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3798                              getF32Constant(DAG, 0x3c1d8c17, dl));
3799     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3800     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3801                              getF32Constant(DAG, 0x3d634a1d, dl));
3802     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3803     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3804                              getF32Constant(DAG, 0x3e75fe14, dl));
3805     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3806     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3807                               getF32Constant(DAG, 0x3f317234, dl));
3808     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3809     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3810                                          getF32Constant(DAG, 0x3f800000, dl));
3811   }
3812 
3813   // Add the exponent into the result in integer domain.
3814   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3815   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3816                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3817 }
3818 
3819 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3820 /// limited-precision mode.
3821 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3822                          const TargetLowering &TLI) {
3823   if (Op.getValueType() == MVT::f32 &&
3824       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3825 
3826     // Put the exponent in the right bit position for later addition to the
3827     // final result:
3828     //
3829     //   #define LOG2OFe 1.4426950f
3830     //   t0 = Op * LOG2OFe
3831 
3832     // TODO: What fast-math-flags should be set here?
3833     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3834                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3835     return getLimitedPrecisionExp2(t0, dl, DAG);
3836   }
3837 
3838   // No special expansion.
3839   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3840 }
3841 
3842 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3843 /// limited-precision mode.
3844 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3845                          const TargetLowering &TLI) {
3846 
3847   // TODO: What fast-math-flags should be set on the floating-point nodes?
3848 
3849   if (Op.getValueType() == MVT::f32 &&
3850       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3851     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3852 
3853     // Scale the exponent by log(2) [0.69314718f].
3854     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3855     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3856                                         getF32Constant(DAG, 0x3f317218, dl));
3857 
3858     // Get the significand and build it into a floating-point number with
3859     // exponent of 1.
3860     SDValue X = GetSignificand(DAG, Op1, dl);
3861 
3862     SDValue LogOfMantissa;
3863     if (LimitFloatPrecision <= 6) {
3864       // For floating-point precision of 6:
3865       //
3866       //   LogofMantissa =
3867       //     -1.1609546f +
3868       //       (1.4034025f - 0.23903021f * x) * x;
3869       //
3870       // error 0.0034276066, which is better than 8 bits
3871       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3872                                getF32Constant(DAG, 0xbe74c456, dl));
3873       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3874                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3875       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3876       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3877                                   getF32Constant(DAG, 0x3f949a29, dl));
3878     } else if (LimitFloatPrecision <= 12) {
3879       // For floating-point precision of 12:
3880       //
3881       //   LogOfMantissa =
3882       //     -1.7417939f +
3883       //       (2.8212026f +
3884       //         (-1.4699568f +
3885       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3886       //
3887       // error 0.000061011436, which is 14 bits
3888       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3889                                getF32Constant(DAG, 0xbd67b6d6, dl));
3890       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3891                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3892       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3893       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3894                                getF32Constant(DAG, 0x3fbc278b, dl));
3895       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3896       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3897                                getF32Constant(DAG, 0x40348e95, dl));
3898       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3899       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3900                                   getF32Constant(DAG, 0x3fdef31a, dl));
3901     } else { // LimitFloatPrecision <= 18
3902       // For floating-point precision of 18:
3903       //
3904       //   LogOfMantissa =
3905       //     -2.1072184f +
3906       //       (4.2372794f +
3907       //         (-3.7029485f +
3908       //           (2.2781945f +
3909       //             (-0.87823314f +
3910       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3911       //
3912       // error 0.0000023660568, which is better than 18 bits
3913       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3914                                getF32Constant(DAG, 0xbc91e5ac, dl));
3915       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3916                                getF32Constant(DAG, 0x3e4350aa, dl));
3917       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3918       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3919                                getF32Constant(DAG, 0x3f60d3e3, dl));
3920       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3921       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3922                                getF32Constant(DAG, 0x4011cdf0, dl));
3923       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3924       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3925                                getF32Constant(DAG, 0x406cfd1c, dl));
3926       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3927       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3928                                getF32Constant(DAG, 0x408797cb, dl));
3929       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3930       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3931                                   getF32Constant(DAG, 0x4006dcab, dl));
3932     }
3933 
3934     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3935   }
3936 
3937   // No special expansion.
3938   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3939 }
3940 
3941 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3942 /// limited-precision mode.
3943 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3944                           const TargetLowering &TLI) {
3945 
3946   // TODO: What fast-math-flags should be set on the floating-point nodes?
3947 
3948   if (Op.getValueType() == MVT::f32 &&
3949       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3950     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3951 
3952     // Get the exponent.
3953     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3954 
3955     // Get the significand and build it into a floating-point number with
3956     // exponent of 1.
3957     SDValue X = GetSignificand(DAG, Op1, dl);
3958 
3959     // Different possible minimax approximations of significand in
3960     // floating-point for various degrees of accuracy over [1,2].
3961     SDValue Log2ofMantissa;
3962     if (LimitFloatPrecision <= 6) {
3963       // For floating-point precision of 6:
3964       //
3965       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3966       //
3967       // error 0.0049451742, which is more than 7 bits
3968       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3969                                getF32Constant(DAG, 0xbeb08fe0, dl));
3970       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3971                                getF32Constant(DAG, 0x40019463, dl));
3972       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3973       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3974                                    getF32Constant(DAG, 0x3fd6633d, dl));
3975     } else if (LimitFloatPrecision <= 12) {
3976       // For floating-point precision of 12:
3977       //
3978       //   Log2ofMantissa =
3979       //     -2.51285454f +
3980       //       (4.07009056f +
3981       //         (-2.12067489f +
3982       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3983       //
3984       // error 0.0000876136000, which is better than 13 bits
3985       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3986                                getF32Constant(DAG, 0xbda7262e, dl));
3987       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3988                                getF32Constant(DAG, 0x3f25280b, dl));
3989       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3990       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3991                                getF32Constant(DAG, 0x4007b923, dl));
3992       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3993       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3994                                getF32Constant(DAG, 0x40823e2f, dl));
3995       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3996       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3997                                    getF32Constant(DAG, 0x4020d29c, dl));
3998     } else { // LimitFloatPrecision <= 18
3999       // For floating-point precision of 18:
4000       //
4001       //   Log2ofMantissa =
4002       //     -3.0400495f +
4003       //       (6.1129976f +
4004       //         (-5.3420409f +
4005       //           (3.2865683f +
4006       //             (-1.2669343f +
4007       //               (0.27515199f -
4008       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4009       //
4010       // error 0.0000018516, which is better than 18 bits
4011       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4012                                getF32Constant(DAG, 0xbcd2769e, dl));
4013       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4014                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4015       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4016       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4017                                getF32Constant(DAG, 0x3fa22ae7, dl));
4018       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4019       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4020                                getF32Constant(DAG, 0x40525723, dl));
4021       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4022       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4023                                getF32Constant(DAG, 0x40aaf200, dl));
4024       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4025       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4026                                getF32Constant(DAG, 0x40c39dad, dl));
4027       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4028       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4029                                    getF32Constant(DAG, 0x4042902c, dl));
4030     }
4031 
4032     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4033   }
4034 
4035   // No special expansion.
4036   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4037 }
4038 
4039 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4040 /// limited-precision mode.
4041 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4042                            const TargetLowering &TLI) {
4043 
4044   // TODO: What fast-math-flags should be set on the floating-point nodes?
4045 
4046   if (Op.getValueType() == MVT::f32 &&
4047       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4048     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4049 
4050     // Scale the exponent by log10(2) [0.30102999f].
4051     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4052     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4053                                         getF32Constant(DAG, 0x3e9a209a, dl));
4054 
4055     // Get the significand and build it into a floating-point number with
4056     // exponent of 1.
4057     SDValue X = GetSignificand(DAG, Op1, dl);
4058 
4059     SDValue Log10ofMantissa;
4060     if (LimitFloatPrecision <= 6) {
4061       // For floating-point precision of 6:
4062       //
4063       //   Log10ofMantissa =
4064       //     -0.50419619f +
4065       //       (0.60948995f - 0.10380950f * x) * x;
4066       //
4067       // error 0.0014886165, which is 6 bits
4068       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4069                                getF32Constant(DAG, 0xbdd49a13, dl));
4070       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4071                                getF32Constant(DAG, 0x3f1c0789, dl));
4072       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4073       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4074                                     getF32Constant(DAG, 0x3f011300, dl));
4075     } else if (LimitFloatPrecision <= 12) {
4076       // For floating-point precision of 12:
4077       //
4078       //   Log10ofMantissa =
4079       //     -0.64831180f +
4080       //       (0.91751397f +
4081       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4082       //
4083       // error 0.00019228036, which is better than 12 bits
4084       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4085                                getF32Constant(DAG, 0x3d431f31, dl));
4086       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4087                                getF32Constant(DAG, 0x3ea21fb2, dl));
4088       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4089       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4090                                getF32Constant(DAG, 0x3f6ae232, dl));
4091       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4092       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4093                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4094     } else { // LimitFloatPrecision <= 18
4095       // For floating-point precision of 18:
4096       //
4097       //   Log10ofMantissa =
4098       //     -0.84299375f +
4099       //       (1.5327582f +
4100       //         (-1.0688956f +
4101       //           (0.49102474f +
4102       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4103       //
4104       // error 0.0000037995730, which is better than 18 bits
4105       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4106                                getF32Constant(DAG, 0x3c5d51ce, dl));
4107       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4108                                getF32Constant(DAG, 0x3e00685a, dl));
4109       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4110       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4111                                getF32Constant(DAG, 0x3efb6798, dl));
4112       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4113       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4114                                getF32Constant(DAG, 0x3f88d192, dl));
4115       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4116       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4117                                getF32Constant(DAG, 0x3fc4316c, dl));
4118       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4119       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4120                                     getF32Constant(DAG, 0x3f57ce70, dl));
4121     }
4122 
4123     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4124   }
4125 
4126   // No special expansion.
4127   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4128 }
4129 
4130 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4131 /// limited-precision mode.
4132 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4133                           const TargetLowering &TLI) {
4134   if (Op.getValueType() == MVT::f32 &&
4135       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4136     return getLimitedPrecisionExp2(Op, dl, DAG);
4137 
4138   // No special expansion.
4139   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4140 }
4141 
4142 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4143 /// limited-precision mode with x == 10.0f.
4144 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4145                          SelectionDAG &DAG, const TargetLowering &TLI) {
4146   bool IsExp10 = false;
4147   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4148       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4149     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4150       APFloat Ten(10.0f);
4151       IsExp10 = LHSC->isExactlyValue(Ten);
4152     }
4153   }
4154 
4155   // TODO: What fast-math-flags should be set on the FMUL node?
4156   if (IsExp10) {
4157     // Put the exponent in the right bit position for later addition to the
4158     // final result:
4159     //
4160     //   #define LOG2OF10 3.3219281f
4161     //   t0 = Op * LOG2OF10;
4162     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4163                              getF32Constant(DAG, 0x40549a78, dl));
4164     return getLimitedPrecisionExp2(t0, dl, DAG);
4165   }
4166 
4167   // No special expansion.
4168   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4169 }
4170 
4171 
4172 /// ExpandPowI - Expand a llvm.powi intrinsic.
4173 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4174                           SelectionDAG &DAG) {
4175   // If RHS is a constant, we can expand this out to a multiplication tree,
4176   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4177   // optimizing for size, we only want to do this if the expansion would produce
4178   // a small number of multiplies, otherwise we do the full expansion.
4179   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4180     // Get the exponent as a positive value.
4181     unsigned Val = RHSC->getSExtValue();
4182     if ((int)Val < 0) Val = -Val;
4183 
4184     // powi(x, 0) -> 1.0
4185     if (Val == 0)
4186       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4187 
4188     const Function *F = DAG.getMachineFunction().getFunction();
4189     if (!F->optForSize() ||
4190         // If optimizing for size, don't insert too many multiplies.
4191         // This inserts up to 5 multiplies.
4192         countPopulation(Val) + Log2_32(Val) < 7) {
4193       // We use the simple binary decomposition method to generate the multiply
4194       // sequence.  There are more optimal ways to do this (for example,
4195       // powi(x,15) generates one more multiply than it should), but this has
4196       // the benefit of being both really simple and much better than a libcall.
4197       SDValue Res;  // Logically starts equal to 1.0
4198       SDValue CurSquare = LHS;
4199       // TODO: Intrinsics should have fast-math-flags that propagate to these
4200       // nodes.
4201       while (Val) {
4202         if (Val & 1) {
4203           if (Res.getNode())
4204             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4205           else
4206             Res = CurSquare;  // 1.0*CurSquare.
4207         }
4208 
4209         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4210                                 CurSquare, CurSquare);
4211         Val >>= 1;
4212       }
4213 
4214       // If the original was negative, invert the result, producing 1/(x*x*x).
4215       if (RHSC->getSExtValue() < 0)
4216         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4217                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4218       return Res;
4219     }
4220   }
4221 
4222   // Otherwise, expand to a libcall.
4223   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4224 }
4225 
4226 // getUnderlyingArgReg - Find underlying register used for a truncated or
4227 // bitcasted argument.
4228 static unsigned getUnderlyingArgReg(const SDValue &N) {
4229   switch (N.getOpcode()) {
4230   case ISD::CopyFromReg:
4231     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4232   case ISD::BITCAST:
4233   case ISD::AssertZext:
4234   case ISD::AssertSext:
4235   case ISD::TRUNCATE:
4236     return getUnderlyingArgReg(N.getOperand(0));
4237   default:
4238     return 0;
4239   }
4240 }
4241 
4242 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4243 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4244 /// At the end of instruction selection, they will be inserted to the entry BB.
4245 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4246     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4247     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4248   const Argument *Arg = dyn_cast<Argument>(V);
4249   if (!Arg)
4250     return false;
4251 
4252   MachineFunction &MF = DAG.getMachineFunction();
4253   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4254 
4255   // Ignore inlined function arguments here.
4256   //
4257   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4258   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4259     return false;
4260 
4261   Optional<MachineOperand> Op;
4262   // Some arguments' frame index is recorded during argument lowering.
4263   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4264     Op = MachineOperand::CreateFI(FI);
4265 
4266   if (!Op && N.getNode()) {
4267     unsigned Reg = getUnderlyingArgReg(N);
4268     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4269       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4270       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4271       if (PR)
4272         Reg = PR;
4273     }
4274     if (Reg)
4275       Op = MachineOperand::CreateReg(Reg, false);
4276   }
4277 
4278   if (!Op) {
4279     // Check if ValueMap has reg number.
4280     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4281     if (VMI != FuncInfo.ValueMap.end())
4282       Op = MachineOperand::CreateReg(VMI->second, false);
4283   }
4284 
4285   if (!Op && N.getNode())
4286     // Check if frame index is available.
4287     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4288       if (FrameIndexSDNode *FINode =
4289           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4290         Op = MachineOperand::CreateFI(FINode->getIndex());
4291 
4292   if (!Op)
4293     return false;
4294 
4295   assert(Variable->isValidLocationForIntrinsic(DL) &&
4296          "Expected inlined-at fields to agree");
4297   if (Op->isReg())
4298     FuncInfo.ArgDbgValues.push_back(
4299         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4300                 Op->getReg(), Offset, Variable, Expr));
4301   else
4302     FuncInfo.ArgDbgValues.push_back(
4303         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4304             .addOperand(*Op)
4305             .addImm(Offset)
4306             .addMetadata(Variable)
4307             .addMetadata(Expr));
4308 
4309   return true;
4310 }
4311 
4312 // VisualStudio defines setjmp as _setjmp
4313 #if defined(_MSC_VER) && defined(setjmp) && \
4314                          !defined(setjmp_undefined_for_msvc)
4315 #  pragma push_macro("setjmp")
4316 #  undef setjmp
4317 #  define setjmp_undefined_for_msvc
4318 #endif
4319 
4320 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4321 /// we want to emit this as a call to a named external function, return the name
4322 /// otherwise lower it and return null.
4323 const char *
4324 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4325   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4326   SDLoc sdl = getCurSDLoc();
4327   DebugLoc dl = getCurDebugLoc();
4328   SDValue Res;
4329 
4330   switch (Intrinsic) {
4331   default:
4332     // By default, turn this into a target intrinsic node.
4333     visitTargetIntrinsic(I, Intrinsic);
4334     return nullptr;
4335   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4336   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4337   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4338   case Intrinsic::returnaddress:
4339     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4340                              TLI.getPointerTy(DAG.getDataLayout()),
4341                              getValue(I.getArgOperand(0))));
4342     return nullptr;
4343   case Intrinsic::frameaddress:
4344     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4345                              TLI.getPointerTy(DAG.getDataLayout()),
4346                              getValue(I.getArgOperand(0))));
4347     return nullptr;
4348   case Intrinsic::read_register: {
4349     Value *Reg = I.getArgOperand(0);
4350     SDValue Chain = getRoot();
4351     SDValue RegName =
4352         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4353     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4354     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4355       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4356     setValue(&I, Res);
4357     DAG.setRoot(Res.getValue(1));
4358     return nullptr;
4359   }
4360   case Intrinsic::write_register: {
4361     Value *Reg = I.getArgOperand(0);
4362     Value *RegValue = I.getArgOperand(1);
4363     SDValue Chain = getRoot();
4364     SDValue RegName =
4365         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4366     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4367                             RegName, getValue(RegValue)));
4368     return nullptr;
4369   }
4370   case Intrinsic::setjmp:
4371     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4372   case Intrinsic::longjmp:
4373     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4374   case Intrinsic::memcpy: {
4375     SDValue Op1 = getValue(I.getArgOperand(0));
4376     SDValue Op2 = getValue(I.getArgOperand(1));
4377     SDValue Op3 = getValue(I.getArgOperand(2));
4378     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4379     if (!Align)
4380       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4381     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4382     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4383     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4384                                false, isTC,
4385                                MachinePointerInfo(I.getArgOperand(0)),
4386                                MachinePointerInfo(I.getArgOperand(1)));
4387     updateDAGForMaybeTailCall(MC);
4388     return nullptr;
4389   }
4390   case Intrinsic::memset: {
4391     SDValue Op1 = getValue(I.getArgOperand(0));
4392     SDValue Op2 = getValue(I.getArgOperand(1));
4393     SDValue Op3 = getValue(I.getArgOperand(2));
4394     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4395     if (!Align)
4396       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4397     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4398     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4399     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4400                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4401     updateDAGForMaybeTailCall(MS);
4402     return nullptr;
4403   }
4404   case Intrinsic::memmove: {
4405     SDValue Op1 = getValue(I.getArgOperand(0));
4406     SDValue Op2 = getValue(I.getArgOperand(1));
4407     SDValue Op3 = getValue(I.getArgOperand(2));
4408     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4409     if (!Align)
4410       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4411     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4412     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4413     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4414                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4415                                 MachinePointerInfo(I.getArgOperand(1)));
4416     updateDAGForMaybeTailCall(MM);
4417     return nullptr;
4418   }
4419   case Intrinsic::dbg_declare: {
4420     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4421     DILocalVariable *Variable = DI.getVariable();
4422     DIExpression *Expression = DI.getExpression();
4423     const Value *Address = DI.getAddress();
4424     assert(Variable && "Missing variable");
4425     if (!Address) {
4426       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4427       return nullptr;
4428     }
4429 
4430     // Check if address has undef value.
4431     if (isa<UndefValue>(Address) ||
4432         (Address->use_empty() && !isa<Argument>(Address))) {
4433       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4434       return nullptr;
4435     }
4436 
4437     SDValue &N = NodeMap[Address];
4438     if (!N.getNode() && isa<Argument>(Address))
4439       // Check unused arguments map.
4440       N = UnusedArgNodeMap[Address];
4441     SDDbgValue *SDV;
4442     if (N.getNode()) {
4443       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4444         Address = BCI->getOperand(0);
4445       // Parameters are handled specially.
4446       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4447       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4448       if (isParameter && FINode) {
4449         // Byval parameter. We have a frame index at this point.
4450         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4451                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4452       } else if (isa<Argument>(Address)) {
4453         // Address is an argument, so try to emit its dbg value using
4454         // virtual register info from the FuncInfo.ValueMap.
4455         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4456                                  N);
4457         return nullptr;
4458       } else {
4459         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4460                               true, 0, dl, SDNodeOrder);
4461       }
4462       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4463     } else {
4464       // If Address is an argument then try to emit its dbg value using
4465       // virtual register info from the FuncInfo.ValueMap.
4466       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4467                                     N)) {
4468         // If variable is pinned by a alloca in dominating bb then
4469         // use StaticAllocaMap.
4470         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4471           if (AI->getParent() != DI.getParent()) {
4472             DenseMap<const AllocaInst*, int>::iterator SI =
4473               FuncInfo.StaticAllocaMap.find(AI);
4474             if (SI != FuncInfo.StaticAllocaMap.end()) {
4475               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4476                                               0, dl, SDNodeOrder);
4477               DAG.AddDbgValue(SDV, nullptr, false);
4478               return nullptr;
4479             }
4480           }
4481         }
4482         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4483       }
4484     }
4485     return nullptr;
4486   }
4487   case Intrinsic::dbg_value: {
4488     const DbgValueInst &DI = cast<DbgValueInst>(I);
4489     assert(DI.getVariable() && "Missing variable");
4490 
4491     DILocalVariable *Variable = DI.getVariable();
4492     DIExpression *Expression = DI.getExpression();
4493     uint64_t Offset = DI.getOffset();
4494     const Value *V = DI.getValue();
4495     if (!V)
4496       return nullptr;
4497 
4498     SDDbgValue *SDV;
4499     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4500       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4501                                     SDNodeOrder);
4502       DAG.AddDbgValue(SDV, nullptr, false);
4503     } else {
4504       // Do not use getValue() in here; we don't want to generate code at
4505       // this point if it hasn't been done yet.
4506       SDValue N = NodeMap[V];
4507       if (!N.getNode() && isa<Argument>(V))
4508         // Check unused arguments map.
4509         N = UnusedArgNodeMap[V];
4510       if (N.getNode()) {
4511         // A dbg.value for an alloca is always indirect.
4512         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4513         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4514                                       IsIndirect, N)) {
4515           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4516                                 IsIndirect, Offset, dl, SDNodeOrder);
4517           DAG.AddDbgValue(SDV, N.getNode(), false);
4518         }
4519       } else if (!V->use_empty() ) {
4520         // Do not call getValue(V) yet, as we don't want to generate code.
4521         // Remember it for later.
4522         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4523         DanglingDebugInfoMap[V] = DDI;
4524       } else {
4525         // We may expand this to cover more cases.  One case where we have no
4526         // data available is an unreferenced parameter.
4527         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4528       }
4529     }
4530 
4531     // Build a debug info table entry.
4532     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4533       V = BCI->getOperand(0);
4534     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4535     // Don't handle byval struct arguments or VLAs, for example.
4536     if (!AI) {
4537       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4538       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4539       return nullptr;
4540     }
4541     DenseMap<const AllocaInst*, int>::iterator SI =
4542       FuncInfo.StaticAllocaMap.find(AI);
4543     if (SI == FuncInfo.StaticAllocaMap.end())
4544       return nullptr; // VLAs.
4545     return nullptr;
4546   }
4547 
4548   case Intrinsic::eh_typeid_for: {
4549     // Find the type id for the given typeinfo.
4550     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4551     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4552     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4553     setValue(&I, Res);
4554     return nullptr;
4555   }
4556 
4557   case Intrinsic::eh_return_i32:
4558   case Intrinsic::eh_return_i64:
4559     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4560     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4561                             MVT::Other,
4562                             getControlRoot(),
4563                             getValue(I.getArgOperand(0)),
4564                             getValue(I.getArgOperand(1))));
4565     return nullptr;
4566   case Intrinsic::eh_unwind_init:
4567     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4568     return nullptr;
4569   case Intrinsic::eh_dwarf_cfa: {
4570     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4571                                         TLI.getPointerTy(DAG.getDataLayout()));
4572     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4573                                  CfaArg.getValueType(),
4574                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4575                                              CfaArg.getValueType()),
4576                                  CfaArg);
4577     SDValue FA = DAG.getNode(
4578         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4579         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4580     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4581                              FA, Offset));
4582     return nullptr;
4583   }
4584   case Intrinsic::eh_sjlj_callsite: {
4585     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4586     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4587     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4588     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4589 
4590     MMI.setCurrentCallSite(CI->getZExtValue());
4591     return nullptr;
4592   }
4593   case Intrinsic::eh_sjlj_functioncontext: {
4594     // Get and store the index of the function context.
4595     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4596     AllocaInst *FnCtx =
4597       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4598     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4599     MFI->setFunctionContextIndex(FI);
4600     return nullptr;
4601   }
4602   case Intrinsic::eh_sjlj_setjmp: {
4603     SDValue Ops[2];
4604     Ops[0] = getRoot();
4605     Ops[1] = getValue(I.getArgOperand(0));
4606     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4607                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4608     setValue(&I, Op.getValue(0));
4609     DAG.setRoot(Op.getValue(1));
4610     return nullptr;
4611   }
4612   case Intrinsic::eh_sjlj_longjmp: {
4613     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4614                             getRoot(), getValue(I.getArgOperand(0))));
4615     return nullptr;
4616   }
4617   case Intrinsic::eh_sjlj_setup_dispatch: {
4618     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4619                             getRoot()));
4620     return nullptr;
4621   }
4622 
4623   case Intrinsic::masked_gather:
4624     visitMaskedGather(I);
4625     return nullptr;
4626   case Intrinsic::masked_load:
4627     visitMaskedLoad(I);
4628     return nullptr;
4629   case Intrinsic::masked_scatter:
4630     visitMaskedScatter(I);
4631     return nullptr;
4632   case Intrinsic::masked_store:
4633     visitMaskedStore(I);
4634     return nullptr;
4635   case Intrinsic::x86_mmx_pslli_w:
4636   case Intrinsic::x86_mmx_pslli_d:
4637   case Intrinsic::x86_mmx_pslli_q:
4638   case Intrinsic::x86_mmx_psrli_w:
4639   case Intrinsic::x86_mmx_psrli_d:
4640   case Intrinsic::x86_mmx_psrli_q:
4641   case Intrinsic::x86_mmx_psrai_w:
4642   case Intrinsic::x86_mmx_psrai_d: {
4643     SDValue ShAmt = getValue(I.getArgOperand(1));
4644     if (isa<ConstantSDNode>(ShAmt)) {
4645       visitTargetIntrinsic(I, Intrinsic);
4646       return nullptr;
4647     }
4648     unsigned NewIntrinsic = 0;
4649     EVT ShAmtVT = MVT::v2i32;
4650     switch (Intrinsic) {
4651     case Intrinsic::x86_mmx_pslli_w:
4652       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4653       break;
4654     case Intrinsic::x86_mmx_pslli_d:
4655       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4656       break;
4657     case Intrinsic::x86_mmx_pslli_q:
4658       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4659       break;
4660     case Intrinsic::x86_mmx_psrli_w:
4661       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4662       break;
4663     case Intrinsic::x86_mmx_psrli_d:
4664       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4665       break;
4666     case Intrinsic::x86_mmx_psrli_q:
4667       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4668       break;
4669     case Intrinsic::x86_mmx_psrai_w:
4670       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4671       break;
4672     case Intrinsic::x86_mmx_psrai_d:
4673       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4674       break;
4675     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4676     }
4677 
4678     // The vector shift intrinsics with scalars uses 32b shift amounts but
4679     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4680     // to be zero.
4681     // We must do this early because v2i32 is not a legal type.
4682     SDValue ShOps[2];
4683     ShOps[0] = ShAmt;
4684     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4685     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4686     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4687     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4688     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4689                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4690                        getValue(I.getArgOperand(0)), ShAmt);
4691     setValue(&I, Res);
4692     return nullptr;
4693   }
4694   case Intrinsic::convertff:
4695   case Intrinsic::convertfsi:
4696   case Intrinsic::convertfui:
4697   case Intrinsic::convertsif:
4698   case Intrinsic::convertuif:
4699   case Intrinsic::convertss:
4700   case Intrinsic::convertsu:
4701   case Intrinsic::convertus:
4702   case Intrinsic::convertuu: {
4703     ISD::CvtCode Code = ISD::CVT_INVALID;
4704     switch (Intrinsic) {
4705     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4706     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4707     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4708     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4709     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4710     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4711     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4712     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4713     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4714     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4715     }
4716     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4717     const Value *Op1 = I.getArgOperand(0);
4718     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4719                                DAG.getValueType(DestVT),
4720                                DAG.getValueType(getValue(Op1).getValueType()),
4721                                getValue(I.getArgOperand(1)),
4722                                getValue(I.getArgOperand(2)),
4723                                Code);
4724     setValue(&I, Res);
4725     return nullptr;
4726   }
4727   case Intrinsic::powi:
4728     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4729                             getValue(I.getArgOperand(1)), DAG));
4730     return nullptr;
4731   case Intrinsic::log:
4732     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4733     return nullptr;
4734   case Intrinsic::log2:
4735     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4736     return nullptr;
4737   case Intrinsic::log10:
4738     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4739     return nullptr;
4740   case Intrinsic::exp:
4741     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4742     return nullptr;
4743   case Intrinsic::exp2:
4744     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4745     return nullptr;
4746   case Intrinsic::pow:
4747     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4748                            getValue(I.getArgOperand(1)), DAG, TLI));
4749     return nullptr;
4750   case Intrinsic::sqrt:
4751   case Intrinsic::fabs:
4752   case Intrinsic::sin:
4753   case Intrinsic::cos:
4754   case Intrinsic::floor:
4755   case Intrinsic::ceil:
4756   case Intrinsic::trunc:
4757   case Intrinsic::rint:
4758   case Intrinsic::nearbyint:
4759   case Intrinsic::round: {
4760     unsigned Opcode;
4761     switch (Intrinsic) {
4762     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4763     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4764     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4765     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4766     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4767     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4768     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4769     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4770     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4771     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4772     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4773     }
4774 
4775     setValue(&I, DAG.getNode(Opcode, sdl,
4776                              getValue(I.getArgOperand(0)).getValueType(),
4777                              getValue(I.getArgOperand(0))));
4778     return nullptr;
4779   }
4780   case Intrinsic::minnum:
4781     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4782                              getValue(I.getArgOperand(0)).getValueType(),
4783                              getValue(I.getArgOperand(0)),
4784                              getValue(I.getArgOperand(1))));
4785     return nullptr;
4786   case Intrinsic::maxnum:
4787     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4788                              getValue(I.getArgOperand(0)).getValueType(),
4789                              getValue(I.getArgOperand(0)),
4790                              getValue(I.getArgOperand(1))));
4791     return nullptr;
4792   case Intrinsic::copysign:
4793     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4794                              getValue(I.getArgOperand(0)).getValueType(),
4795                              getValue(I.getArgOperand(0)),
4796                              getValue(I.getArgOperand(1))));
4797     return nullptr;
4798   case Intrinsic::fma:
4799     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4800                              getValue(I.getArgOperand(0)).getValueType(),
4801                              getValue(I.getArgOperand(0)),
4802                              getValue(I.getArgOperand(1)),
4803                              getValue(I.getArgOperand(2))));
4804     return nullptr;
4805   case Intrinsic::fmuladd: {
4806     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4807     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4808         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4809       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4810                                getValue(I.getArgOperand(0)).getValueType(),
4811                                getValue(I.getArgOperand(0)),
4812                                getValue(I.getArgOperand(1)),
4813                                getValue(I.getArgOperand(2))));
4814     } else {
4815       // TODO: Intrinsic calls should have fast-math-flags.
4816       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4817                                 getValue(I.getArgOperand(0)).getValueType(),
4818                                 getValue(I.getArgOperand(0)),
4819                                 getValue(I.getArgOperand(1)));
4820       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4821                                 getValue(I.getArgOperand(0)).getValueType(),
4822                                 Mul,
4823                                 getValue(I.getArgOperand(2)));
4824       setValue(&I, Add);
4825     }
4826     return nullptr;
4827   }
4828   case Intrinsic::convert_to_fp16:
4829     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4830                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4831                                          getValue(I.getArgOperand(0)),
4832                                          DAG.getTargetConstant(0, sdl,
4833                                                                MVT::i32))));
4834     return nullptr;
4835   case Intrinsic::convert_from_fp16:
4836     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4837                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4838                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4839                                          getValue(I.getArgOperand(0)))));
4840     return nullptr;
4841   case Intrinsic::pcmarker: {
4842     SDValue Tmp = getValue(I.getArgOperand(0));
4843     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4844     return nullptr;
4845   }
4846   case Intrinsic::readcyclecounter: {
4847     SDValue Op = getRoot();
4848     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4849                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4850     setValue(&I, Res);
4851     DAG.setRoot(Res.getValue(1));
4852     return nullptr;
4853   }
4854   case Intrinsic::bitreverse:
4855     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
4856                              getValue(I.getArgOperand(0)).getValueType(),
4857                              getValue(I.getArgOperand(0))));
4858     return nullptr;
4859   case Intrinsic::bswap:
4860     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4861                              getValue(I.getArgOperand(0)).getValueType(),
4862                              getValue(I.getArgOperand(0))));
4863     return nullptr;
4864   case Intrinsic::cttz: {
4865     SDValue Arg = getValue(I.getArgOperand(0));
4866     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4867     EVT Ty = Arg.getValueType();
4868     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4869                              sdl, Ty, Arg));
4870     return nullptr;
4871   }
4872   case Intrinsic::ctlz: {
4873     SDValue Arg = getValue(I.getArgOperand(0));
4874     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4875     EVT Ty = Arg.getValueType();
4876     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4877                              sdl, Ty, Arg));
4878     return nullptr;
4879   }
4880   case Intrinsic::ctpop: {
4881     SDValue Arg = getValue(I.getArgOperand(0));
4882     EVT Ty = Arg.getValueType();
4883     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4884     return nullptr;
4885   }
4886   case Intrinsic::stacksave: {
4887     SDValue Op = getRoot();
4888     Res = DAG.getNode(
4889         ISD::STACKSAVE, sdl,
4890         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4891     setValue(&I, Res);
4892     DAG.setRoot(Res.getValue(1));
4893     return nullptr;
4894   }
4895   case Intrinsic::stackrestore: {
4896     Res = getValue(I.getArgOperand(0));
4897     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4898     return nullptr;
4899   }
4900   case Intrinsic::get_dynamic_area_offset: {
4901     SDValue Op = getRoot();
4902     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4903     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
4904     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
4905     // target.
4906     if (PtrTy != ResTy)
4907       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
4908                          " intrinsic!");
4909     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
4910                       Op);
4911     DAG.setRoot(Op);
4912     setValue(&I, Res);
4913     return nullptr;
4914   }
4915   case Intrinsic::stackprotector: {
4916     // Emit code into the DAG to store the stack guard onto the stack.
4917     MachineFunction &MF = DAG.getMachineFunction();
4918     MachineFrameInfo *MFI = MF.getFrameInfo();
4919     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4920     SDValue Src, Chain = getRoot();
4921     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4922     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4923 
4924     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4925     // global variable __stack_chk_guard.
4926     if (!GV)
4927       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4928         if (BC->getOpcode() == Instruction::BitCast)
4929           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4930 
4931     if (GV && TLI.useLoadStackGuardNode()) {
4932       // Emit a LOAD_STACK_GUARD node.
4933       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4934                                                sdl, PtrTy, Chain);
4935       MachinePointerInfo MPInfo(GV);
4936       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4937       unsigned Flags = MachineMemOperand::MOLoad |
4938                        MachineMemOperand::MOInvariant;
4939       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4940                                          PtrTy.getSizeInBits() / 8,
4941                                          DAG.getEVTAlignment(PtrTy));
4942       Node->setMemRefs(MemRefs, MemRefs + 1);
4943 
4944       // Copy the guard value to a virtual register so that it can be
4945       // retrieved in the epilogue.
4946       Src = SDValue(Node, 0);
4947       const TargetRegisterClass *RC =
4948           TLI.getRegClassFor(Src.getSimpleValueType());
4949       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4950 
4951       SPDescriptor.setGuardReg(Reg);
4952       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4953     } else {
4954       Src = getValue(I.getArgOperand(0));   // The guard's value.
4955     }
4956 
4957     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4958 
4959     int FI = FuncInfo.StaticAllocaMap[Slot];
4960     MFI->setStackProtectorIndex(FI);
4961 
4962     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4963 
4964     // Store the stack protector onto the stack.
4965     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
4966                                                  DAG.getMachineFunction(), FI),
4967                        true, false, 0);
4968     setValue(&I, Res);
4969     DAG.setRoot(Res);
4970     return nullptr;
4971   }
4972   case Intrinsic::objectsize: {
4973     // If we don't know by now, we're never going to know.
4974     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4975 
4976     assert(CI && "Non-constant type in __builtin_object_size?");
4977 
4978     SDValue Arg = getValue(I.getCalledValue());
4979     EVT Ty = Arg.getValueType();
4980 
4981     if (CI->isZero())
4982       Res = DAG.getConstant(-1ULL, sdl, Ty);
4983     else
4984       Res = DAG.getConstant(0, sdl, Ty);
4985 
4986     setValue(&I, Res);
4987     return nullptr;
4988   }
4989   case Intrinsic::annotation:
4990   case Intrinsic::ptr_annotation:
4991     // Drop the intrinsic, but forward the value
4992     setValue(&I, getValue(I.getOperand(0)));
4993     return nullptr;
4994   case Intrinsic::assume:
4995   case Intrinsic::var_annotation:
4996     // Discard annotate attributes and assumptions
4997     return nullptr;
4998 
4999   case Intrinsic::init_trampoline: {
5000     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5001 
5002     SDValue Ops[6];
5003     Ops[0] = getRoot();
5004     Ops[1] = getValue(I.getArgOperand(0));
5005     Ops[2] = getValue(I.getArgOperand(1));
5006     Ops[3] = getValue(I.getArgOperand(2));
5007     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5008     Ops[5] = DAG.getSrcValue(F);
5009 
5010     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5011 
5012     DAG.setRoot(Res);
5013     return nullptr;
5014   }
5015   case Intrinsic::adjust_trampoline: {
5016     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5017                              TLI.getPointerTy(DAG.getDataLayout()),
5018                              getValue(I.getArgOperand(0))));
5019     return nullptr;
5020   }
5021   case Intrinsic::gcroot:
5022     if (GFI) {
5023       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5024       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5025 
5026       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5027       GFI->addStackRoot(FI->getIndex(), TypeMap);
5028     }
5029     return nullptr;
5030   case Intrinsic::gcread:
5031   case Intrinsic::gcwrite:
5032     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5033   case Intrinsic::flt_rounds:
5034     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5035     return nullptr;
5036 
5037   case Intrinsic::expect: {
5038     // Just replace __builtin_expect(exp, c) with EXP.
5039     setValue(&I, getValue(I.getArgOperand(0)));
5040     return nullptr;
5041   }
5042 
5043   case Intrinsic::debugtrap:
5044   case Intrinsic::trap: {
5045     StringRef TrapFuncName =
5046         I.getAttributes()
5047             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5048             .getValueAsString();
5049     if (TrapFuncName.empty()) {
5050       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5051         ISD::TRAP : ISD::DEBUGTRAP;
5052       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5053       return nullptr;
5054     }
5055     TargetLowering::ArgListTy Args;
5056 
5057     TargetLowering::CallLoweringInfo CLI(DAG);
5058     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5059         CallingConv::C, I.getType(),
5060         DAG.getExternalSymbol(TrapFuncName.data(),
5061                               TLI.getPointerTy(DAG.getDataLayout())),
5062         std::move(Args), 0);
5063 
5064     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5065     DAG.setRoot(Result.second);
5066     return nullptr;
5067   }
5068 
5069   case Intrinsic::uadd_with_overflow:
5070   case Intrinsic::sadd_with_overflow:
5071   case Intrinsic::usub_with_overflow:
5072   case Intrinsic::ssub_with_overflow:
5073   case Intrinsic::umul_with_overflow:
5074   case Intrinsic::smul_with_overflow: {
5075     ISD::NodeType Op;
5076     switch (Intrinsic) {
5077     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5078     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5079     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5080     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5081     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5082     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5083     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5084     }
5085     SDValue Op1 = getValue(I.getArgOperand(0));
5086     SDValue Op2 = getValue(I.getArgOperand(1));
5087 
5088     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5089     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5090     return nullptr;
5091   }
5092   case Intrinsic::prefetch: {
5093     SDValue Ops[5];
5094     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5095     Ops[0] = getRoot();
5096     Ops[1] = getValue(I.getArgOperand(0));
5097     Ops[2] = getValue(I.getArgOperand(1));
5098     Ops[3] = getValue(I.getArgOperand(2));
5099     Ops[4] = getValue(I.getArgOperand(3));
5100     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5101                                         DAG.getVTList(MVT::Other), Ops,
5102                                         EVT::getIntegerVT(*Context, 8),
5103                                         MachinePointerInfo(I.getArgOperand(0)),
5104                                         0, /* align */
5105                                         false, /* volatile */
5106                                         rw==0, /* read */
5107                                         rw==1)); /* write */
5108     return nullptr;
5109   }
5110   case Intrinsic::lifetime_start:
5111   case Intrinsic::lifetime_end: {
5112     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5113     // Stack coloring is not enabled in O0, discard region information.
5114     if (TM.getOptLevel() == CodeGenOpt::None)
5115       return nullptr;
5116 
5117     SmallVector<Value *, 4> Allocas;
5118     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5119 
5120     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5121            E = Allocas.end(); Object != E; ++Object) {
5122       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5123 
5124       // Could not find an Alloca.
5125       if (!LifetimeObject)
5126         continue;
5127 
5128       // First check that the Alloca is static, otherwise it won't have a
5129       // valid frame index.
5130       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5131       if (SI == FuncInfo.StaticAllocaMap.end())
5132         return nullptr;
5133 
5134       int FI = SI->second;
5135 
5136       SDValue Ops[2];
5137       Ops[0] = getRoot();
5138       Ops[1] =
5139           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5140       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5141 
5142       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5143       DAG.setRoot(Res);
5144     }
5145     return nullptr;
5146   }
5147   case Intrinsic::invariant_start:
5148     // Discard region information.
5149     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5150     return nullptr;
5151   case Intrinsic::invariant_end:
5152     // Discard region information.
5153     return nullptr;
5154   case Intrinsic::stackprotectorcheck: {
5155     // Do not actually emit anything for this basic block. Instead we initialize
5156     // the stack protector descriptor and export the guard variable so we can
5157     // access it in FinishBasicBlock.
5158     const BasicBlock *BB = I.getParent();
5159     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5160     ExportFromCurrentBlock(SPDescriptor.getGuard());
5161 
5162     // Flush our exports since we are going to process a terminator.
5163     (void)getControlRoot();
5164     return nullptr;
5165   }
5166   case Intrinsic::clear_cache:
5167     return TLI.getClearCacheBuiltinName();
5168   case Intrinsic::donothing:
5169     // ignore
5170     return nullptr;
5171   case Intrinsic::experimental_stackmap: {
5172     visitStackmap(I);
5173     return nullptr;
5174   }
5175   case Intrinsic::experimental_patchpoint_void:
5176   case Intrinsic::experimental_patchpoint_i64: {
5177     visitPatchpoint(&I);
5178     return nullptr;
5179   }
5180   case Intrinsic::experimental_gc_statepoint: {
5181     visitStatepoint(I);
5182     return nullptr;
5183   }
5184   case Intrinsic::experimental_gc_result_int:
5185   case Intrinsic::experimental_gc_result_float:
5186   case Intrinsic::experimental_gc_result_ptr:
5187   case Intrinsic::experimental_gc_result: {
5188     visitGCResult(I);
5189     return nullptr;
5190   }
5191   case Intrinsic::experimental_gc_relocate: {
5192     visitGCRelocate(I);
5193     return nullptr;
5194   }
5195   case Intrinsic::instrprof_increment:
5196     llvm_unreachable("instrprof failed to lower an increment");
5197   case Intrinsic::instrprof_value_profile:
5198     llvm_unreachable("instrprof failed to lower a value profiling call");
5199   case Intrinsic::localescape: {
5200     MachineFunction &MF = DAG.getMachineFunction();
5201     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5202 
5203     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5204     // is the same on all targets.
5205     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5206       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5207       if (isa<ConstantPointerNull>(Arg))
5208         continue; // Skip null pointers. They represent a hole in index space.
5209       AllocaInst *Slot = cast<AllocaInst>(Arg);
5210       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5211              "can only escape static allocas");
5212       int FI = FuncInfo.StaticAllocaMap[Slot];
5213       MCSymbol *FrameAllocSym =
5214           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5215               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5216       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5217               TII->get(TargetOpcode::LOCAL_ESCAPE))
5218           .addSym(FrameAllocSym)
5219           .addFrameIndex(FI);
5220     }
5221 
5222     return nullptr;
5223   }
5224 
5225   case Intrinsic::localrecover: {
5226     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5227     MachineFunction &MF = DAG.getMachineFunction();
5228     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5229 
5230     // Get the symbol that defines the frame offset.
5231     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5232     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5233     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5234     MCSymbol *FrameAllocSym =
5235         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5236             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5237 
5238     // Create a MCSymbol for the label to avoid any target lowering
5239     // that would make this PC relative.
5240     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5241     SDValue OffsetVal =
5242         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5243 
5244     // Add the offset to the FP.
5245     Value *FP = I.getArgOperand(1);
5246     SDValue FPVal = getValue(FP);
5247     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5248     setValue(&I, Add);
5249 
5250     return nullptr;
5251   }
5252 
5253   case Intrinsic::eh_exceptionpointer:
5254   case Intrinsic::eh_exceptioncode: {
5255     // Get the exception pointer vreg, copy from it, and resize it to fit.
5256     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5257     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5258     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5259     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5260     SDValue N =
5261         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5262     if (Intrinsic == Intrinsic::eh_exceptioncode)
5263       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5264     setValue(&I, N);
5265     return nullptr;
5266   }
5267   }
5268 }
5269 
5270 std::pair<SDValue, SDValue>
5271 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5272                                     const BasicBlock *EHPadBB) {
5273   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5274   MCSymbol *BeginLabel = nullptr;
5275 
5276   if (EHPadBB) {
5277     // Insert a label before the invoke call to mark the try range.  This can be
5278     // used to detect deletion of the invoke via the MachineModuleInfo.
5279     BeginLabel = MMI.getContext().createTempSymbol();
5280 
5281     // For SjLj, keep track of which landing pads go with which invokes
5282     // so as to maintain the ordering of pads in the LSDA.
5283     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5284     if (CallSiteIndex) {
5285       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5286       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5287 
5288       // Now that the call site is handled, stop tracking it.
5289       MMI.setCurrentCallSite(0);
5290     }
5291 
5292     // Both PendingLoads and PendingExports must be flushed here;
5293     // this call might not return.
5294     (void)getRoot();
5295     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5296 
5297     CLI.setChain(getRoot());
5298   }
5299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5300   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5301 
5302   assert((CLI.IsTailCall || Result.second.getNode()) &&
5303          "Non-null chain expected with non-tail call!");
5304   assert((Result.second.getNode() || !Result.first.getNode()) &&
5305          "Null value expected with tail call!");
5306 
5307   if (!Result.second.getNode()) {
5308     // As a special case, a null chain means that a tail call has been emitted
5309     // and the DAG root is already updated.
5310     HasTailCall = true;
5311 
5312     // Since there's no actual continuation from this block, nothing can be
5313     // relying on us setting vregs for them.
5314     PendingExports.clear();
5315   } else {
5316     DAG.setRoot(Result.second);
5317   }
5318 
5319   if (EHPadBB) {
5320     // Insert a label at the end of the invoke call to mark the try range.  This
5321     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5322     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5323     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5324 
5325     // Inform MachineModuleInfo of range.
5326     if (MMI.hasEHFunclets()) {
5327       assert(CLI.CS);
5328       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5329       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5330                                 BeginLabel, EndLabel);
5331     } else {
5332       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5333     }
5334   }
5335 
5336   return Result;
5337 }
5338 
5339 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5340                                       bool isTailCall,
5341                                       const BasicBlock *EHPadBB) {
5342   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5343   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5344   Type *RetTy = FTy->getReturnType();
5345 
5346   TargetLowering::ArgListTy Args;
5347   TargetLowering::ArgListEntry Entry;
5348   Args.reserve(CS.arg_size());
5349 
5350   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5351        i != e; ++i) {
5352     const Value *V = *i;
5353 
5354     // Skip empty types
5355     if (V->getType()->isEmptyTy())
5356       continue;
5357 
5358     SDValue ArgNode = getValue(V);
5359     Entry.Node = ArgNode; Entry.Ty = V->getType();
5360 
5361     // Skip the first return-type Attribute to get to params.
5362     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5363     Args.push_back(Entry);
5364 
5365     // If we have an explicit sret argument that is an Instruction, (i.e., it
5366     // might point to function-local memory), we can't meaningfully tail-call.
5367     if (Entry.isSRet && isa<Instruction>(V))
5368       isTailCall = false;
5369   }
5370 
5371   // Check if target-independent constraints permit a tail call here.
5372   // Target-dependent constraints are checked within TLI->LowerCallTo.
5373   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5374     isTailCall = false;
5375 
5376   TargetLowering::CallLoweringInfo CLI(DAG);
5377   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5378     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5379     .setTailCall(isTailCall);
5380   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5381 
5382   if (Result.first.getNode())
5383     setValue(CS.getInstruction(), Result.first);
5384 }
5385 
5386 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5387 /// value is equal or not-equal to zero.
5388 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5389   for (const User *U : V->users()) {
5390     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5391       if (IC->isEquality())
5392         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5393           if (C->isNullValue())
5394             continue;
5395     // Unknown instruction.
5396     return false;
5397   }
5398   return true;
5399 }
5400 
5401 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5402                              Type *LoadTy,
5403                              SelectionDAGBuilder &Builder) {
5404 
5405   // Check to see if this load can be trivially constant folded, e.g. if the
5406   // input is from a string literal.
5407   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5408     // Cast pointer to the type we really want to load.
5409     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5410                                          PointerType::getUnqual(LoadTy));
5411 
5412     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5413             const_cast<Constant *>(LoadInput), *Builder.DL))
5414       return Builder.getValue(LoadCst);
5415   }
5416 
5417   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5418   // still constant memory, the input chain can be the entry node.
5419   SDValue Root;
5420   bool ConstantMemory = false;
5421 
5422   // Do not serialize (non-volatile) loads of constant memory with anything.
5423   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5424     Root = Builder.DAG.getEntryNode();
5425     ConstantMemory = true;
5426   } else {
5427     // Do not serialize non-volatile loads against each other.
5428     Root = Builder.DAG.getRoot();
5429   }
5430 
5431   SDValue Ptr = Builder.getValue(PtrVal);
5432   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5433                                         Ptr, MachinePointerInfo(PtrVal),
5434                                         false /*volatile*/,
5435                                         false /*nontemporal*/,
5436                                         false /*isinvariant*/, 1 /* align=1 */);
5437 
5438   if (!ConstantMemory)
5439     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5440   return LoadVal;
5441 }
5442 
5443 /// processIntegerCallValue - Record the value for an instruction that
5444 /// produces an integer result, converting the type where necessary.
5445 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5446                                                   SDValue Value,
5447                                                   bool IsSigned) {
5448   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5449                                                     I.getType(), true);
5450   if (IsSigned)
5451     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5452   else
5453     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5454   setValue(&I, Value);
5455 }
5456 
5457 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5458 /// If so, return true and lower it, otherwise return false and it will be
5459 /// lowered like a normal call.
5460 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5461   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5462   if (I.getNumArgOperands() != 3)
5463     return false;
5464 
5465   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5466   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5467       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5468       !I.getType()->isIntegerTy())
5469     return false;
5470 
5471   const Value *Size = I.getArgOperand(2);
5472   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5473   if (CSize && CSize->getZExtValue() == 0) {
5474     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5475                                                           I.getType(), true);
5476     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5477     return true;
5478   }
5479 
5480   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5481   std::pair<SDValue, SDValue> Res =
5482     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5483                                 getValue(LHS), getValue(RHS), getValue(Size),
5484                                 MachinePointerInfo(LHS),
5485                                 MachinePointerInfo(RHS));
5486   if (Res.first.getNode()) {
5487     processIntegerCallValue(I, Res.first, true);
5488     PendingLoads.push_back(Res.second);
5489     return true;
5490   }
5491 
5492   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5493   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5494   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5495     bool ActuallyDoIt = true;
5496     MVT LoadVT;
5497     Type *LoadTy;
5498     switch (CSize->getZExtValue()) {
5499     default:
5500       LoadVT = MVT::Other;
5501       LoadTy = nullptr;
5502       ActuallyDoIt = false;
5503       break;
5504     case 2:
5505       LoadVT = MVT::i16;
5506       LoadTy = Type::getInt16Ty(CSize->getContext());
5507       break;
5508     case 4:
5509       LoadVT = MVT::i32;
5510       LoadTy = Type::getInt32Ty(CSize->getContext());
5511       break;
5512     case 8:
5513       LoadVT = MVT::i64;
5514       LoadTy = Type::getInt64Ty(CSize->getContext());
5515       break;
5516         /*
5517     case 16:
5518       LoadVT = MVT::v4i32;
5519       LoadTy = Type::getInt32Ty(CSize->getContext());
5520       LoadTy = VectorType::get(LoadTy, 4);
5521       break;
5522          */
5523     }
5524 
5525     // This turns into unaligned loads.  We only do this if the target natively
5526     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5527     // we'll only produce a small number of byte loads.
5528 
5529     // Require that we can find a legal MVT, and only do this if the target
5530     // supports unaligned loads of that type.  Expanding into byte loads would
5531     // bloat the code.
5532     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5533     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5534       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5535       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5536       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5537       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5538       // TODO: Check alignment of src and dest ptrs.
5539       if (!TLI.isTypeLegal(LoadVT) ||
5540           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5541           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5542         ActuallyDoIt = false;
5543     }
5544 
5545     if (ActuallyDoIt) {
5546       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5547       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5548 
5549       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5550                                  ISD::SETNE);
5551       processIntegerCallValue(I, Res, false);
5552       return true;
5553     }
5554   }
5555 
5556 
5557   return false;
5558 }
5559 
5560 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5561 /// form.  If so, return true and lower it, otherwise return false and it
5562 /// will be lowered like a normal call.
5563 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5564   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5565   if (I.getNumArgOperands() != 3)
5566     return false;
5567 
5568   const Value *Src = I.getArgOperand(0);
5569   const Value *Char = I.getArgOperand(1);
5570   const Value *Length = I.getArgOperand(2);
5571   if (!Src->getType()->isPointerTy() ||
5572       !Char->getType()->isIntegerTy() ||
5573       !Length->getType()->isIntegerTy() ||
5574       !I.getType()->isPointerTy())
5575     return false;
5576 
5577   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5578   std::pair<SDValue, SDValue> Res =
5579     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5580                                 getValue(Src), getValue(Char), getValue(Length),
5581                                 MachinePointerInfo(Src));
5582   if (Res.first.getNode()) {
5583     setValue(&I, Res.first);
5584     PendingLoads.push_back(Res.second);
5585     return true;
5586   }
5587 
5588   return false;
5589 }
5590 
5591 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5592 /// optimized form.  If so, return true and lower it, otherwise return false
5593 /// and it will be lowered like a normal call.
5594 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5595   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5596   if (I.getNumArgOperands() != 2)
5597     return false;
5598 
5599   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5600   if (!Arg0->getType()->isPointerTy() ||
5601       !Arg1->getType()->isPointerTy() ||
5602       !I.getType()->isPointerTy())
5603     return false;
5604 
5605   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5606   std::pair<SDValue, SDValue> Res =
5607     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5608                                 getValue(Arg0), getValue(Arg1),
5609                                 MachinePointerInfo(Arg0),
5610                                 MachinePointerInfo(Arg1), isStpcpy);
5611   if (Res.first.getNode()) {
5612     setValue(&I, Res.first);
5613     DAG.setRoot(Res.second);
5614     return true;
5615   }
5616 
5617   return false;
5618 }
5619 
5620 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5621 /// If so, return true and lower it, otherwise return false and it will be
5622 /// lowered like a normal call.
5623 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5624   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5625   if (I.getNumArgOperands() != 2)
5626     return false;
5627 
5628   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5629   if (!Arg0->getType()->isPointerTy() ||
5630       !Arg1->getType()->isPointerTy() ||
5631       !I.getType()->isIntegerTy())
5632     return false;
5633 
5634   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5635   std::pair<SDValue, SDValue> Res =
5636     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5637                                 getValue(Arg0), getValue(Arg1),
5638                                 MachinePointerInfo(Arg0),
5639                                 MachinePointerInfo(Arg1));
5640   if (Res.first.getNode()) {
5641     processIntegerCallValue(I, Res.first, true);
5642     PendingLoads.push_back(Res.second);
5643     return true;
5644   }
5645 
5646   return false;
5647 }
5648 
5649 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5650 /// form.  If so, return true and lower it, otherwise return false and it
5651 /// will be lowered like a normal call.
5652 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5653   // Verify that the prototype makes sense.  size_t strlen(char *)
5654   if (I.getNumArgOperands() != 1)
5655     return false;
5656 
5657   const Value *Arg0 = I.getArgOperand(0);
5658   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5659     return false;
5660 
5661   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5662   std::pair<SDValue, SDValue> Res =
5663     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5664                                 getValue(Arg0), MachinePointerInfo(Arg0));
5665   if (Res.first.getNode()) {
5666     processIntegerCallValue(I, Res.first, false);
5667     PendingLoads.push_back(Res.second);
5668     return true;
5669   }
5670 
5671   return false;
5672 }
5673 
5674 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5675 /// form.  If so, return true and lower it, otherwise return false and it
5676 /// will be lowered like a normal call.
5677 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5678   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5679   if (I.getNumArgOperands() != 2)
5680     return false;
5681 
5682   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5683   if (!Arg0->getType()->isPointerTy() ||
5684       !Arg1->getType()->isIntegerTy() ||
5685       !I.getType()->isIntegerTy())
5686     return false;
5687 
5688   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5689   std::pair<SDValue, SDValue> Res =
5690     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5691                                  getValue(Arg0), getValue(Arg1),
5692                                  MachinePointerInfo(Arg0));
5693   if (Res.first.getNode()) {
5694     processIntegerCallValue(I, Res.first, false);
5695     PendingLoads.push_back(Res.second);
5696     return true;
5697   }
5698 
5699   return false;
5700 }
5701 
5702 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5703 /// operation (as expected), translate it to an SDNode with the specified opcode
5704 /// and return true.
5705 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5706                                               unsigned Opcode) {
5707   // Sanity check that it really is a unary floating-point call.
5708   if (I.getNumArgOperands() != 1 ||
5709       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5710       I.getType() != I.getArgOperand(0)->getType() ||
5711       !I.onlyReadsMemory())
5712     return false;
5713 
5714   SDValue Tmp = getValue(I.getArgOperand(0));
5715   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5716   return true;
5717 }
5718 
5719 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5720 /// operation (as expected), translate it to an SDNode with the specified opcode
5721 /// and return true.
5722 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5723                                                unsigned Opcode) {
5724   // Sanity check that it really is a binary floating-point call.
5725   if (I.getNumArgOperands() != 2 ||
5726       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5727       I.getType() != I.getArgOperand(0)->getType() ||
5728       I.getType() != I.getArgOperand(1)->getType() ||
5729       !I.onlyReadsMemory())
5730     return false;
5731 
5732   SDValue Tmp0 = getValue(I.getArgOperand(0));
5733   SDValue Tmp1 = getValue(I.getArgOperand(1));
5734   EVT VT = Tmp0.getValueType();
5735   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5736   return true;
5737 }
5738 
5739 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5740   // Handle inline assembly differently.
5741   if (isa<InlineAsm>(I.getCalledValue())) {
5742     visitInlineAsm(&I);
5743     return;
5744   }
5745 
5746   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5747   ComputeUsesVAFloatArgument(I, &MMI);
5748 
5749   const char *RenameFn = nullptr;
5750   if (Function *F = I.getCalledFunction()) {
5751     if (F->isDeclaration()) {
5752       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5753         if (unsigned IID = II->getIntrinsicID(F)) {
5754           RenameFn = visitIntrinsicCall(I, IID);
5755           if (!RenameFn)
5756             return;
5757         }
5758       }
5759       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5760         RenameFn = visitIntrinsicCall(I, IID);
5761         if (!RenameFn)
5762           return;
5763       }
5764     }
5765 
5766     // Check for well-known libc/libm calls.  If the function is internal, it
5767     // can't be a library call.
5768     LibFunc::Func Func;
5769     if (!F->hasLocalLinkage() && F->hasName() &&
5770         LibInfo->getLibFunc(F->getName(), Func) &&
5771         LibInfo->hasOptimizedCodeGen(Func)) {
5772       switch (Func) {
5773       default: break;
5774       case LibFunc::copysign:
5775       case LibFunc::copysignf:
5776       case LibFunc::copysignl:
5777         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5778             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5779             I.getType() == I.getArgOperand(0)->getType() &&
5780             I.getType() == I.getArgOperand(1)->getType() &&
5781             I.onlyReadsMemory()) {
5782           SDValue LHS = getValue(I.getArgOperand(0));
5783           SDValue RHS = getValue(I.getArgOperand(1));
5784           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5785                                    LHS.getValueType(), LHS, RHS));
5786           return;
5787         }
5788         break;
5789       case LibFunc::fabs:
5790       case LibFunc::fabsf:
5791       case LibFunc::fabsl:
5792         if (visitUnaryFloatCall(I, ISD::FABS))
5793           return;
5794         break;
5795       case LibFunc::fmin:
5796       case LibFunc::fminf:
5797       case LibFunc::fminl:
5798         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5799           return;
5800         break;
5801       case LibFunc::fmax:
5802       case LibFunc::fmaxf:
5803       case LibFunc::fmaxl:
5804         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5805           return;
5806         break;
5807       case LibFunc::sin:
5808       case LibFunc::sinf:
5809       case LibFunc::sinl:
5810         if (visitUnaryFloatCall(I, ISD::FSIN))
5811           return;
5812         break;
5813       case LibFunc::cos:
5814       case LibFunc::cosf:
5815       case LibFunc::cosl:
5816         if (visitUnaryFloatCall(I, ISD::FCOS))
5817           return;
5818         break;
5819       case LibFunc::sqrt:
5820       case LibFunc::sqrtf:
5821       case LibFunc::sqrtl:
5822       case LibFunc::sqrt_finite:
5823       case LibFunc::sqrtf_finite:
5824       case LibFunc::sqrtl_finite:
5825         if (visitUnaryFloatCall(I, ISD::FSQRT))
5826           return;
5827         break;
5828       case LibFunc::floor:
5829       case LibFunc::floorf:
5830       case LibFunc::floorl:
5831         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5832           return;
5833         break;
5834       case LibFunc::nearbyint:
5835       case LibFunc::nearbyintf:
5836       case LibFunc::nearbyintl:
5837         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5838           return;
5839         break;
5840       case LibFunc::ceil:
5841       case LibFunc::ceilf:
5842       case LibFunc::ceill:
5843         if (visitUnaryFloatCall(I, ISD::FCEIL))
5844           return;
5845         break;
5846       case LibFunc::rint:
5847       case LibFunc::rintf:
5848       case LibFunc::rintl:
5849         if (visitUnaryFloatCall(I, ISD::FRINT))
5850           return;
5851         break;
5852       case LibFunc::round:
5853       case LibFunc::roundf:
5854       case LibFunc::roundl:
5855         if (visitUnaryFloatCall(I, ISD::FROUND))
5856           return;
5857         break;
5858       case LibFunc::trunc:
5859       case LibFunc::truncf:
5860       case LibFunc::truncl:
5861         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5862           return;
5863         break;
5864       case LibFunc::log2:
5865       case LibFunc::log2f:
5866       case LibFunc::log2l:
5867         if (visitUnaryFloatCall(I, ISD::FLOG2))
5868           return;
5869         break;
5870       case LibFunc::exp2:
5871       case LibFunc::exp2f:
5872       case LibFunc::exp2l:
5873         if (visitUnaryFloatCall(I, ISD::FEXP2))
5874           return;
5875         break;
5876       case LibFunc::memcmp:
5877         if (visitMemCmpCall(I))
5878           return;
5879         break;
5880       case LibFunc::memchr:
5881         if (visitMemChrCall(I))
5882           return;
5883         break;
5884       case LibFunc::strcpy:
5885         if (visitStrCpyCall(I, false))
5886           return;
5887         break;
5888       case LibFunc::stpcpy:
5889         if (visitStrCpyCall(I, true))
5890           return;
5891         break;
5892       case LibFunc::strcmp:
5893         if (visitStrCmpCall(I))
5894           return;
5895         break;
5896       case LibFunc::strlen:
5897         if (visitStrLenCall(I))
5898           return;
5899         break;
5900       case LibFunc::strnlen:
5901         if (visitStrNLenCall(I))
5902           return;
5903         break;
5904       }
5905     }
5906   }
5907 
5908   SDValue Callee;
5909   if (!RenameFn)
5910     Callee = getValue(I.getCalledValue());
5911   else
5912     Callee = DAG.getExternalSymbol(
5913         RenameFn,
5914         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5915 
5916   // Check if we can potentially perform a tail call. More detailed checking is
5917   // be done within LowerCallTo, after more information about the call is known.
5918   LowerCallTo(&I, Callee, I.isTailCall());
5919 }
5920 
5921 namespace {
5922 
5923 /// AsmOperandInfo - This contains information for each constraint that we are
5924 /// lowering.
5925 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5926 public:
5927   /// CallOperand - If this is the result output operand or a clobber
5928   /// this is null, otherwise it is the incoming operand to the CallInst.
5929   /// This gets modified as the asm is processed.
5930   SDValue CallOperand;
5931 
5932   /// AssignedRegs - If this is a register or register class operand, this
5933   /// contains the set of register corresponding to the operand.
5934   RegsForValue AssignedRegs;
5935 
5936   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5937     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5938   }
5939 
5940   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5941   /// corresponds to.  If there is no Value* for this operand, it returns
5942   /// MVT::Other.
5943   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5944                            const DataLayout &DL) const {
5945     if (!CallOperandVal) return MVT::Other;
5946 
5947     if (isa<BasicBlock>(CallOperandVal))
5948       return TLI.getPointerTy(DL);
5949 
5950     llvm::Type *OpTy = CallOperandVal->getType();
5951 
5952     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5953     // If this is an indirect operand, the operand is a pointer to the
5954     // accessed type.
5955     if (isIndirect) {
5956       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5957       if (!PtrTy)
5958         report_fatal_error("Indirect operand for inline asm not a pointer!");
5959       OpTy = PtrTy->getElementType();
5960     }
5961 
5962     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5963     if (StructType *STy = dyn_cast<StructType>(OpTy))
5964       if (STy->getNumElements() == 1)
5965         OpTy = STy->getElementType(0);
5966 
5967     // If OpTy is not a single value, it may be a struct/union that we
5968     // can tile with integers.
5969     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5970       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5971       switch (BitSize) {
5972       default: break;
5973       case 1:
5974       case 8:
5975       case 16:
5976       case 32:
5977       case 64:
5978       case 128:
5979         OpTy = IntegerType::get(Context, BitSize);
5980         break;
5981       }
5982     }
5983 
5984     return TLI.getValueType(DL, OpTy, true);
5985   }
5986 };
5987 
5988 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5989 
5990 } // end anonymous namespace
5991 
5992 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5993 /// specified operand.  We prefer to assign virtual registers, to allow the
5994 /// register allocator to handle the assignment process.  However, if the asm
5995 /// uses features that we can't model on machineinstrs, we have SDISel do the
5996 /// allocation.  This produces generally horrible, but correct, code.
5997 ///
5998 ///   OpInfo describes the operand.
5999 ///
6000 static void GetRegistersForValue(SelectionDAG &DAG,
6001                                  const TargetLowering &TLI,
6002                                  SDLoc DL,
6003                                  SDISelAsmOperandInfo &OpInfo) {
6004   LLVMContext &Context = *DAG.getContext();
6005 
6006   MachineFunction &MF = DAG.getMachineFunction();
6007   SmallVector<unsigned, 4> Regs;
6008 
6009   // If this is a constraint for a single physreg, or a constraint for a
6010   // register class, find it.
6011   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6012       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6013                                        OpInfo.ConstraintCode,
6014                                        OpInfo.ConstraintVT);
6015 
6016   unsigned NumRegs = 1;
6017   if (OpInfo.ConstraintVT != MVT::Other) {
6018     // If this is a FP input in an integer register (or visa versa) insert a bit
6019     // cast of the input value.  More generally, handle any case where the input
6020     // value disagrees with the register class we plan to stick this in.
6021     if (OpInfo.Type == InlineAsm::isInput &&
6022         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6023       // Try to convert to the first EVT that the reg class contains.  If the
6024       // types are identical size, use a bitcast to convert (e.g. two differing
6025       // vector types).
6026       MVT RegVT = *PhysReg.second->vt_begin();
6027       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6028         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6029                                          RegVT, OpInfo.CallOperand);
6030         OpInfo.ConstraintVT = RegVT;
6031       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6032         // If the input is a FP value and we want it in FP registers, do a
6033         // bitcast to the corresponding integer type.  This turns an f64 value
6034         // into i64, which can be passed with two i32 values on a 32-bit
6035         // machine.
6036         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6037         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6038                                          RegVT, OpInfo.CallOperand);
6039         OpInfo.ConstraintVT = RegVT;
6040       }
6041     }
6042 
6043     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6044   }
6045 
6046   MVT RegVT;
6047   EVT ValueVT = OpInfo.ConstraintVT;
6048 
6049   // If this is a constraint for a specific physical register, like {r17},
6050   // assign it now.
6051   if (unsigned AssignedReg = PhysReg.first) {
6052     const TargetRegisterClass *RC = PhysReg.second;
6053     if (OpInfo.ConstraintVT == MVT::Other)
6054       ValueVT = *RC->vt_begin();
6055 
6056     // Get the actual register value type.  This is important, because the user
6057     // may have asked for (e.g.) the AX register in i32 type.  We need to
6058     // remember that AX is actually i16 to get the right extension.
6059     RegVT = *RC->vt_begin();
6060 
6061     // This is a explicit reference to a physical register.
6062     Regs.push_back(AssignedReg);
6063 
6064     // If this is an expanded reference, add the rest of the regs to Regs.
6065     if (NumRegs != 1) {
6066       TargetRegisterClass::iterator I = RC->begin();
6067       for (; *I != AssignedReg; ++I)
6068         assert(I != RC->end() && "Didn't find reg!");
6069 
6070       // Already added the first reg.
6071       --NumRegs; ++I;
6072       for (; NumRegs; --NumRegs, ++I) {
6073         assert(I != RC->end() && "Ran out of registers to allocate!");
6074         Regs.push_back(*I);
6075       }
6076     }
6077 
6078     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6079     return;
6080   }
6081 
6082   // Otherwise, if this was a reference to an LLVM register class, create vregs
6083   // for this reference.
6084   if (const TargetRegisterClass *RC = PhysReg.second) {
6085     RegVT = *RC->vt_begin();
6086     if (OpInfo.ConstraintVT == MVT::Other)
6087       ValueVT = RegVT;
6088 
6089     // Create the appropriate number of virtual registers.
6090     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6091     for (; NumRegs; --NumRegs)
6092       Regs.push_back(RegInfo.createVirtualRegister(RC));
6093 
6094     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6095     return;
6096   }
6097 
6098   // Otherwise, we couldn't allocate enough registers for this.
6099 }
6100 
6101 /// visitInlineAsm - Handle a call to an InlineAsm object.
6102 ///
6103 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6104   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6105 
6106   /// ConstraintOperands - Information about all of the constraints.
6107   SDISelAsmOperandInfoVector ConstraintOperands;
6108 
6109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6110   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6111       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6112 
6113   bool hasMemory = false;
6114 
6115   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6116   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6117   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6118     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6119     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6120 
6121     MVT OpVT = MVT::Other;
6122 
6123     // Compute the value type for each operand.
6124     switch (OpInfo.Type) {
6125     case InlineAsm::isOutput:
6126       // Indirect outputs just consume an argument.
6127       if (OpInfo.isIndirect) {
6128         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6129         break;
6130       }
6131 
6132       // The return value of the call is this value.  As such, there is no
6133       // corresponding argument.
6134       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6135       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6136         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6137                                       STy->getElementType(ResNo));
6138       } else {
6139         assert(ResNo == 0 && "Asm only has one result!");
6140         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6141       }
6142       ++ResNo;
6143       break;
6144     case InlineAsm::isInput:
6145       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6146       break;
6147     case InlineAsm::isClobber:
6148       // Nothing to do.
6149       break;
6150     }
6151 
6152     // If this is an input or an indirect output, process the call argument.
6153     // BasicBlocks are labels, currently appearing only in asm's.
6154     if (OpInfo.CallOperandVal) {
6155       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6156         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6157       } else {
6158         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6159       }
6160 
6161       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6162                                          DAG.getDataLayout()).getSimpleVT();
6163     }
6164 
6165     OpInfo.ConstraintVT = OpVT;
6166 
6167     // Indirect operand accesses access memory.
6168     if (OpInfo.isIndirect)
6169       hasMemory = true;
6170     else {
6171       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6172         TargetLowering::ConstraintType
6173           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6174         if (CType == TargetLowering::C_Memory) {
6175           hasMemory = true;
6176           break;
6177         }
6178       }
6179     }
6180   }
6181 
6182   SDValue Chain, Flag;
6183 
6184   // We won't need to flush pending loads if this asm doesn't touch
6185   // memory and is nonvolatile.
6186   if (hasMemory || IA->hasSideEffects())
6187     Chain = getRoot();
6188   else
6189     Chain = DAG.getRoot();
6190 
6191   // Second pass over the constraints: compute which constraint option to use
6192   // and assign registers to constraints that want a specific physreg.
6193   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6194     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6195 
6196     // If this is an output operand with a matching input operand, look up the
6197     // matching input. If their types mismatch, e.g. one is an integer, the
6198     // other is floating point, or their sizes are different, flag it as an
6199     // error.
6200     if (OpInfo.hasMatchingInput()) {
6201       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6202 
6203       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6204         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6205         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6206             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6207                                              OpInfo.ConstraintVT);
6208         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6209             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6210                                              Input.ConstraintVT);
6211         if ((OpInfo.ConstraintVT.isInteger() !=
6212              Input.ConstraintVT.isInteger()) ||
6213             (MatchRC.second != InputRC.second)) {
6214           report_fatal_error("Unsupported asm: input constraint"
6215                              " with a matching output constraint of"
6216                              " incompatible type!");
6217         }
6218         Input.ConstraintVT = OpInfo.ConstraintVT;
6219       }
6220     }
6221 
6222     // Compute the constraint code and ConstraintType to use.
6223     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6224 
6225     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6226         OpInfo.Type == InlineAsm::isClobber)
6227       continue;
6228 
6229     // If this is a memory input, and if the operand is not indirect, do what we
6230     // need to to provide an address for the memory input.
6231     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6232         !OpInfo.isIndirect) {
6233       assert((OpInfo.isMultipleAlternative ||
6234               (OpInfo.Type == InlineAsm::isInput)) &&
6235              "Can only indirectify direct input operands!");
6236 
6237       // Memory operands really want the address of the value.  If we don't have
6238       // an indirect input, put it in the constpool if we can, otherwise spill
6239       // it to a stack slot.
6240       // TODO: This isn't quite right. We need to handle these according to
6241       // the addressing mode that the constraint wants. Also, this may take
6242       // an additional register for the computation and we don't want that
6243       // either.
6244 
6245       // If the operand is a float, integer, or vector constant, spill to a
6246       // constant pool entry to get its address.
6247       const Value *OpVal = OpInfo.CallOperandVal;
6248       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6249           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6250         OpInfo.CallOperand = DAG.getConstantPool(
6251             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6252       } else {
6253         // Otherwise, create a stack slot and emit a store to it before the
6254         // asm.
6255         Type *Ty = OpVal->getType();
6256         auto &DL = DAG.getDataLayout();
6257         uint64_t TySize = DL.getTypeAllocSize(Ty);
6258         unsigned Align = DL.getPrefTypeAlignment(Ty);
6259         MachineFunction &MF = DAG.getMachineFunction();
6260         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6261         SDValue StackSlot =
6262             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6263         Chain = DAG.getStore(
6264             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6265             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6266             false, false, 0);
6267         OpInfo.CallOperand = StackSlot;
6268       }
6269 
6270       // There is no longer a Value* corresponding to this operand.
6271       OpInfo.CallOperandVal = nullptr;
6272 
6273       // It is now an indirect operand.
6274       OpInfo.isIndirect = true;
6275     }
6276 
6277     // If this constraint is for a specific register, allocate it before
6278     // anything else.
6279     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6280       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6281   }
6282 
6283   // Second pass - Loop over all of the operands, assigning virtual or physregs
6284   // to register class operands.
6285   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6286     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6287 
6288     // C_Register operands have already been allocated, Other/Memory don't need
6289     // to be.
6290     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6291       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6292   }
6293 
6294   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6295   std::vector<SDValue> AsmNodeOperands;
6296   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6297   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6298       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6299 
6300   // If we have a !srcloc metadata node associated with it, we want to attach
6301   // this to the ultimately generated inline asm machineinstr.  To do this, we
6302   // pass in the third operand as this (potentially null) inline asm MDNode.
6303   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6304   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6305 
6306   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6307   // bits as operand 3.
6308   unsigned ExtraInfo = 0;
6309   if (IA->hasSideEffects())
6310     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6311   if (IA->isAlignStack())
6312     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6313   // Set the asm dialect.
6314   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6315 
6316   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6317   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6318     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6319 
6320     // Compute the constraint code and ConstraintType to use.
6321     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6322 
6323     // Ideally, we would only check against memory constraints.  However, the
6324     // meaning of an other constraint can be target-specific and we can't easily
6325     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6326     // for other constriants as well.
6327     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6328         OpInfo.ConstraintType == TargetLowering::C_Other) {
6329       if (OpInfo.Type == InlineAsm::isInput)
6330         ExtraInfo |= InlineAsm::Extra_MayLoad;
6331       else if (OpInfo.Type == InlineAsm::isOutput)
6332         ExtraInfo |= InlineAsm::Extra_MayStore;
6333       else if (OpInfo.Type == InlineAsm::isClobber)
6334         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6335     }
6336   }
6337 
6338   AsmNodeOperands.push_back(DAG.getTargetConstant(
6339       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6340 
6341   // Loop over all of the inputs, copying the operand values into the
6342   // appropriate registers and processing the output regs.
6343   RegsForValue RetValRegs;
6344 
6345   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6346   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6347 
6348   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6349     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6350 
6351     switch (OpInfo.Type) {
6352     case InlineAsm::isOutput: {
6353       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6354           OpInfo.ConstraintType != TargetLowering::C_Register) {
6355         // Memory output, or 'other' output (e.g. 'X' constraint).
6356         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6357 
6358         unsigned ConstraintID =
6359             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6360         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6361                "Failed to convert memory constraint code to constraint id.");
6362 
6363         // Add information to the INLINEASM node to know about this output.
6364         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6365         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6366         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6367                                                         MVT::i32));
6368         AsmNodeOperands.push_back(OpInfo.CallOperand);
6369         break;
6370       }
6371 
6372       // Otherwise, this is a register or register class output.
6373 
6374       // Copy the output from the appropriate register.  Find a register that
6375       // we can use.
6376       if (OpInfo.AssignedRegs.Regs.empty()) {
6377         LLVMContext &Ctx = *DAG.getContext();
6378         Ctx.emitError(CS.getInstruction(),
6379                       "couldn't allocate output register for constraint '" +
6380                           Twine(OpInfo.ConstraintCode) + "'");
6381         return;
6382       }
6383 
6384       // If this is an indirect operand, store through the pointer after the
6385       // asm.
6386       if (OpInfo.isIndirect) {
6387         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6388                                                       OpInfo.CallOperandVal));
6389       } else {
6390         // This is the result value of the call.
6391         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6392         // Concatenate this output onto the outputs list.
6393         RetValRegs.append(OpInfo.AssignedRegs);
6394       }
6395 
6396       // Add information to the INLINEASM node to know that this register is
6397       // set.
6398       OpInfo.AssignedRegs
6399           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6400                                     ? InlineAsm::Kind_RegDefEarlyClobber
6401                                     : InlineAsm::Kind_RegDef,
6402                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6403       break;
6404     }
6405     case InlineAsm::isInput: {
6406       SDValue InOperandVal = OpInfo.CallOperand;
6407 
6408       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6409         // If this is required to match an output register we have already set,
6410         // just use its register.
6411         unsigned OperandNo = OpInfo.getMatchedOperand();
6412 
6413         // Scan until we find the definition we already emitted of this operand.
6414         // When we find it, create a RegsForValue operand.
6415         unsigned CurOp = InlineAsm::Op_FirstOperand;
6416         for (; OperandNo; --OperandNo) {
6417           // Advance to the next operand.
6418           unsigned OpFlag =
6419             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6420           assert((InlineAsm::isRegDefKind(OpFlag) ||
6421                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6422                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6423           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6424         }
6425 
6426         unsigned OpFlag =
6427           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6428         if (InlineAsm::isRegDefKind(OpFlag) ||
6429             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6430           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6431           if (OpInfo.isIndirect) {
6432             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6433             LLVMContext &Ctx = *DAG.getContext();
6434             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6435                                                " don't know how to handle tied "
6436                                                "indirect register inputs");
6437             return;
6438           }
6439 
6440           RegsForValue MatchedRegs;
6441           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6442           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6443           MatchedRegs.RegVTs.push_back(RegVT);
6444           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6445           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6446                i != e; ++i) {
6447             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6448               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6449             else {
6450               LLVMContext &Ctx = *DAG.getContext();
6451               Ctx.emitError(CS.getInstruction(),
6452                             "inline asm error: This value"
6453                             " type register class is not natively supported!");
6454               return;
6455             }
6456           }
6457           SDLoc dl = getCurSDLoc();
6458           // Use the produced MatchedRegs object to
6459           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6460                                     Chain, &Flag, CS.getInstruction());
6461           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6462                                            true, OpInfo.getMatchedOperand(), dl,
6463                                            DAG, AsmNodeOperands);
6464           break;
6465         }
6466 
6467         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6468         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6469                "Unexpected number of operands");
6470         // Add information to the INLINEASM node to know about this input.
6471         // See InlineAsm.h isUseOperandTiedToDef.
6472         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6473         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6474                                                     OpInfo.getMatchedOperand());
6475         AsmNodeOperands.push_back(DAG.getTargetConstant(
6476             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6477         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6478         break;
6479       }
6480 
6481       // Treat indirect 'X' constraint as memory.
6482       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6483           OpInfo.isIndirect)
6484         OpInfo.ConstraintType = TargetLowering::C_Memory;
6485 
6486       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6487         std::vector<SDValue> Ops;
6488         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6489                                           Ops, DAG);
6490         if (Ops.empty()) {
6491           LLVMContext &Ctx = *DAG.getContext();
6492           Ctx.emitError(CS.getInstruction(),
6493                         "invalid operand for inline asm constraint '" +
6494                             Twine(OpInfo.ConstraintCode) + "'");
6495           return;
6496         }
6497 
6498         // Add information to the INLINEASM node to know about this input.
6499         unsigned ResOpType =
6500           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6501         AsmNodeOperands.push_back(DAG.getTargetConstant(
6502             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6503         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6504         break;
6505       }
6506 
6507       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6508         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6509         assert(InOperandVal.getValueType() ==
6510                    TLI.getPointerTy(DAG.getDataLayout()) &&
6511                "Memory operands expect pointer values");
6512 
6513         unsigned ConstraintID =
6514             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6515         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6516                "Failed to convert memory constraint code to constraint id.");
6517 
6518         // Add information to the INLINEASM node to know about this input.
6519         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6520         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6521         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6522                                                         getCurSDLoc(),
6523                                                         MVT::i32));
6524         AsmNodeOperands.push_back(InOperandVal);
6525         break;
6526       }
6527 
6528       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6529               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6530              "Unknown constraint type!");
6531 
6532       // TODO: Support this.
6533       if (OpInfo.isIndirect) {
6534         LLVMContext &Ctx = *DAG.getContext();
6535         Ctx.emitError(CS.getInstruction(),
6536                       "Don't know how to handle indirect register inputs yet "
6537                       "for constraint '" +
6538                           Twine(OpInfo.ConstraintCode) + "'");
6539         return;
6540       }
6541 
6542       // Copy the input into the appropriate registers.
6543       if (OpInfo.AssignedRegs.Regs.empty()) {
6544         LLVMContext &Ctx = *DAG.getContext();
6545         Ctx.emitError(CS.getInstruction(),
6546                       "couldn't allocate input reg for constraint '" +
6547                           Twine(OpInfo.ConstraintCode) + "'");
6548         return;
6549       }
6550 
6551       SDLoc dl = getCurSDLoc();
6552 
6553       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6554                                         Chain, &Flag, CS.getInstruction());
6555 
6556       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6557                                                dl, DAG, AsmNodeOperands);
6558       break;
6559     }
6560     case InlineAsm::isClobber: {
6561       // Add the clobbered value to the operand list, so that the register
6562       // allocator is aware that the physreg got clobbered.
6563       if (!OpInfo.AssignedRegs.Regs.empty())
6564         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6565                                                  false, 0, getCurSDLoc(), DAG,
6566                                                  AsmNodeOperands);
6567       break;
6568     }
6569     }
6570   }
6571 
6572   // Finish up input operands.  Set the input chain and add the flag last.
6573   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6574   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6575 
6576   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6577                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6578   Flag = Chain.getValue(1);
6579 
6580   // If this asm returns a register value, copy the result from that register
6581   // and set it as the value of the call.
6582   if (!RetValRegs.Regs.empty()) {
6583     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6584                                              Chain, &Flag, CS.getInstruction());
6585 
6586     // FIXME: Why don't we do this for inline asms with MRVs?
6587     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6588       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6589 
6590       // If any of the results of the inline asm is a vector, it may have the
6591       // wrong width/num elts.  This can happen for register classes that can
6592       // contain multiple different value types.  The preg or vreg allocated may
6593       // not have the same VT as was expected.  Convert it to the right type
6594       // with bit_convert.
6595       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6596         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6597                           ResultType, Val);
6598 
6599       } else if (ResultType != Val.getValueType() &&
6600                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6601         // If a result value was tied to an input value, the computed result may
6602         // have a wider width than the expected result.  Extract the relevant
6603         // portion.
6604         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6605       }
6606 
6607       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6608     }
6609 
6610     setValue(CS.getInstruction(), Val);
6611     // Don't need to use this as a chain in this case.
6612     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6613       return;
6614   }
6615 
6616   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6617 
6618   // Process indirect outputs, first output all of the flagged copies out of
6619   // physregs.
6620   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6621     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6622     const Value *Ptr = IndirectStoresToEmit[i].second;
6623     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6624                                              Chain, &Flag, IA);
6625     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6626   }
6627 
6628   // Emit the non-flagged stores from the physregs.
6629   SmallVector<SDValue, 8> OutChains;
6630   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6631     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6632                                StoresToEmit[i].first,
6633                                getValue(StoresToEmit[i].second),
6634                                MachinePointerInfo(StoresToEmit[i].second),
6635                                false, false, 0);
6636     OutChains.push_back(Val);
6637   }
6638 
6639   if (!OutChains.empty())
6640     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6641 
6642   DAG.setRoot(Chain);
6643 }
6644 
6645 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6646   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6647                           MVT::Other, getRoot(),
6648                           getValue(I.getArgOperand(0)),
6649                           DAG.getSrcValue(I.getArgOperand(0))));
6650 }
6651 
6652 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6654   const DataLayout &DL = DAG.getDataLayout();
6655   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6656                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6657                            DAG.getSrcValue(I.getOperand(0)),
6658                            DL.getABITypeAlignment(I.getType()));
6659   setValue(&I, V);
6660   DAG.setRoot(V.getValue(1));
6661 }
6662 
6663 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6664   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6665                           MVT::Other, getRoot(),
6666                           getValue(I.getArgOperand(0)),
6667                           DAG.getSrcValue(I.getArgOperand(0))));
6668 }
6669 
6670 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6671   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6672                           MVT::Other, getRoot(),
6673                           getValue(I.getArgOperand(0)),
6674                           getValue(I.getArgOperand(1)),
6675                           DAG.getSrcValue(I.getArgOperand(0)),
6676                           DAG.getSrcValue(I.getArgOperand(1))));
6677 }
6678 
6679 /// \brief Lower an argument list according to the target calling convention.
6680 ///
6681 /// \return A tuple of <return-value, token-chain>
6682 ///
6683 /// This is a helper for lowering intrinsics that follow a target calling
6684 /// convention or require stack pointer adjustment. Only a subset of the
6685 /// intrinsic's operands need to participate in the calling convention.
6686 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6687     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6688     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6689   TargetLowering::ArgListTy Args;
6690   Args.reserve(NumArgs);
6691 
6692   // Populate the argument list.
6693   // Attributes for args start at offset 1, after the return attribute.
6694   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6695        ArgI != ArgE; ++ArgI) {
6696     const Value *V = CS->getOperand(ArgI);
6697 
6698     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6699 
6700     TargetLowering::ArgListEntry Entry;
6701     Entry.Node = getValue(V);
6702     Entry.Ty = V->getType();
6703     Entry.setAttributes(&CS, AttrI);
6704     Args.push_back(Entry);
6705   }
6706 
6707   TargetLowering::CallLoweringInfo CLI(DAG);
6708   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6709     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6710     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6711 
6712   return lowerInvokable(CLI, EHPadBB);
6713 }
6714 
6715 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6716 /// or patchpoint target node's operand list.
6717 ///
6718 /// Constants are converted to TargetConstants purely as an optimization to
6719 /// avoid constant materialization and register allocation.
6720 ///
6721 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6722 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6723 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6724 /// address materialization and register allocation, but may also be required
6725 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6726 /// alloca in the entry block, then the runtime may assume that the alloca's
6727 /// StackMap location can be read immediately after compilation and that the
6728 /// location is valid at any point during execution (this is similar to the
6729 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6730 /// only available in a register, then the runtime would need to trap when
6731 /// execution reaches the StackMap in order to read the alloca's location.
6732 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6733                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6734                                 SelectionDAGBuilder &Builder) {
6735   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6736     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6737     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6738       Ops.push_back(
6739         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6740       Ops.push_back(
6741         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6742     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6743       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6744       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6745           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6746     } else
6747       Ops.push_back(OpVal);
6748   }
6749 }
6750 
6751 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6752 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6753   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6754   //                                  [live variables...])
6755 
6756   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6757 
6758   SDValue Chain, InFlag, Callee, NullPtr;
6759   SmallVector<SDValue, 32> Ops;
6760 
6761   SDLoc DL = getCurSDLoc();
6762   Callee = getValue(CI.getCalledValue());
6763   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6764 
6765   // The stackmap intrinsic only records the live variables (the arguemnts
6766   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6767   // intrinsic, this won't be lowered to a function call. This means we don't
6768   // have to worry about calling conventions and target specific lowering code.
6769   // Instead we perform the call lowering right here.
6770   //
6771   // chain, flag = CALLSEQ_START(chain, 0)
6772   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6773   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6774   //
6775   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6776   InFlag = Chain.getValue(1);
6777 
6778   // Add the <id> and <numBytes> constants.
6779   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6780   Ops.push_back(DAG.getTargetConstant(
6781                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6782   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6783   Ops.push_back(DAG.getTargetConstant(
6784                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6785                   MVT::i32));
6786 
6787   // Push live variables for the stack map.
6788   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6789 
6790   // We are not pushing any register mask info here on the operands list,
6791   // because the stackmap doesn't clobber anything.
6792 
6793   // Push the chain and the glue flag.
6794   Ops.push_back(Chain);
6795   Ops.push_back(InFlag);
6796 
6797   // Create the STACKMAP node.
6798   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6799   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6800   Chain = SDValue(SM, 0);
6801   InFlag = Chain.getValue(1);
6802 
6803   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6804 
6805   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6806 
6807   // Set the root to the target-lowered call chain.
6808   DAG.setRoot(Chain);
6809 
6810   // Inform the Frame Information that we have a stackmap in this function.
6811   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6812 }
6813 
6814 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6815 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6816                                           const BasicBlock *EHPadBB) {
6817   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6818   //                                                 i32 <numBytes>,
6819   //                                                 i8* <target>,
6820   //                                                 i32 <numArgs>,
6821   //                                                 [Args...],
6822   //                                                 [live variables...])
6823 
6824   CallingConv::ID CC = CS.getCallingConv();
6825   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6826   bool HasDef = !CS->getType()->isVoidTy();
6827   SDLoc dl = getCurSDLoc();
6828   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6829 
6830   // Handle immediate and symbolic callees.
6831   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6832     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6833                                    /*isTarget=*/true);
6834   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6835     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6836                                          SDLoc(SymbolicCallee),
6837                                          SymbolicCallee->getValueType(0));
6838 
6839   // Get the real number of arguments participating in the call <numArgs>
6840   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6841   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6842 
6843   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6844   // Intrinsics include all meta-operands up to but not including CC.
6845   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6846   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6847          "Not enough arguments provided to the patchpoint intrinsic");
6848 
6849   // For AnyRegCC the arguments are lowered later on manually.
6850   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6851   Type *ReturnTy =
6852     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6853   std::pair<SDValue, SDValue> Result = lowerCallOperands(
6854       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
6855 
6856   SDNode *CallEnd = Result.second.getNode();
6857   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6858     CallEnd = CallEnd->getOperand(0).getNode();
6859 
6860   /// Get a call instruction from the call sequence chain.
6861   /// Tail calls are not allowed.
6862   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6863          "Expected a callseq node.");
6864   SDNode *Call = CallEnd->getOperand(0).getNode();
6865   bool HasGlue = Call->getGluedNode();
6866 
6867   // Replace the target specific call node with the patchable intrinsic.
6868   SmallVector<SDValue, 8> Ops;
6869 
6870   // Add the <id> and <numBytes> constants.
6871   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6872   Ops.push_back(DAG.getTargetConstant(
6873                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6874   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6875   Ops.push_back(DAG.getTargetConstant(
6876                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6877                   MVT::i32));
6878 
6879   // Add the callee.
6880   Ops.push_back(Callee);
6881 
6882   // Adjust <numArgs> to account for any arguments that have been passed on the
6883   // stack instead.
6884   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6885   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6886   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6887   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6888 
6889   // Add the calling convention
6890   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6891 
6892   // Add the arguments we omitted previously. The register allocator should
6893   // place these in any free register.
6894   if (IsAnyRegCC)
6895     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6896       Ops.push_back(getValue(CS.getArgument(i)));
6897 
6898   // Push the arguments from the call instruction up to the register mask.
6899   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6900   Ops.append(Call->op_begin() + 2, e);
6901 
6902   // Push live variables for the stack map.
6903   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6904 
6905   // Push the register mask info.
6906   if (HasGlue)
6907     Ops.push_back(*(Call->op_end()-2));
6908   else
6909     Ops.push_back(*(Call->op_end()-1));
6910 
6911   // Push the chain (this is originally the first operand of the call, but
6912   // becomes now the last or second to last operand).
6913   Ops.push_back(*(Call->op_begin()));
6914 
6915   // Push the glue flag (last operand).
6916   if (HasGlue)
6917     Ops.push_back(*(Call->op_end()-1));
6918 
6919   SDVTList NodeTys;
6920   if (IsAnyRegCC && HasDef) {
6921     // Create the return types based on the intrinsic definition
6922     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6923     SmallVector<EVT, 3> ValueVTs;
6924     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
6925     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6926 
6927     // There is always a chain and a glue type at the end
6928     ValueVTs.push_back(MVT::Other);
6929     ValueVTs.push_back(MVT::Glue);
6930     NodeTys = DAG.getVTList(ValueVTs);
6931   } else
6932     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6933 
6934   // Replace the target specific call node with a PATCHPOINT node.
6935   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6936                                          dl, NodeTys, Ops);
6937 
6938   // Update the NodeMap.
6939   if (HasDef) {
6940     if (IsAnyRegCC)
6941       setValue(CS.getInstruction(), SDValue(MN, 0));
6942     else
6943       setValue(CS.getInstruction(), Result.first);
6944   }
6945 
6946   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6947   // call sequence. Furthermore the location of the chain and glue can change
6948   // when the AnyReg calling convention is used and the intrinsic returns a
6949   // value.
6950   if (IsAnyRegCC && HasDef) {
6951     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6952     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6953     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6954   } else
6955     DAG.ReplaceAllUsesWith(Call, MN);
6956   DAG.DeleteNode(Call);
6957 
6958   // Inform the Frame Information that we have a patchpoint in this function.
6959   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
6960 }
6961 
6962 /// Returns an AttributeSet representing the attributes applied to the return
6963 /// value of the given call.
6964 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
6965   SmallVector<Attribute::AttrKind, 2> Attrs;
6966   if (CLI.RetSExt)
6967     Attrs.push_back(Attribute::SExt);
6968   if (CLI.RetZExt)
6969     Attrs.push_back(Attribute::ZExt);
6970   if (CLI.IsInReg)
6971     Attrs.push_back(Attribute::InReg);
6972 
6973   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
6974                            Attrs);
6975 }
6976 
6977 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6978 /// implementation, which just calls LowerCall.
6979 /// FIXME: When all targets are
6980 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6981 std::pair<SDValue, SDValue>
6982 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6983   // Handle the incoming return values from the call.
6984   CLI.Ins.clear();
6985   Type *OrigRetTy = CLI.RetTy;
6986   SmallVector<EVT, 4> RetTys;
6987   SmallVector<uint64_t, 4> Offsets;
6988   auto &DL = CLI.DAG.getDataLayout();
6989   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
6990 
6991   SmallVector<ISD::OutputArg, 4> Outs;
6992   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
6993 
6994   bool CanLowerReturn =
6995       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
6996                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
6997 
6998   SDValue DemoteStackSlot;
6999   int DemoteStackIdx = -100;
7000   if (!CanLowerReturn) {
7001     // FIXME: equivalent assert?
7002     // assert(!CS.hasInAllocaArgument() &&
7003     //        "sret demotion is incompatible with inalloca");
7004     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7005     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7006     MachineFunction &MF = CLI.DAG.getMachineFunction();
7007     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7008     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7009 
7010     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7011     ArgListEntry Entry;
7012     Entry.Node = DemoteStackSlot;
7013     Entry.Ty = StackSlotPtrType;
7014     Entry.isSExt = false;
7015     Entry.isZExt = false;
7016     Entry.isInReg = false;
7017     Entry.isSRet = true;
7018     Entry.isNest = false;
7019     Entry.isByVal = false;
7020     Entry.isReturned = false;
7021     Entry.Alignment = Align;
7022     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7023     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7024 
7025     // sret demotion isn't compatible with tail-calls, since the sret argument
7026     // points into the callers stack frame.
7027     CLI.IsTailCall = false;
7028   } else {
7029     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7030       EVT VT = RetTys[I];
7031       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7032       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7033       for (unsigned i = 0; i != NumRegs; ++i) {
7034         ISD::InputArg MyFlags;
7035         MyFlags.VT = RegisterVT;
7036         MyFlags.ArgVT = VT;
7037         MyFlags.Used = CLI.IsReturnValueUsed;
7038         if (CLI.RetSExt)
7039           MyFlags.Flags.setSExt();
7040         if (CLI.RetZExt)
7041           MyFlags.Flags.setZExt();
7042         if (CLI.IsInReg)
7043           MyFlags.Flags.setInReg();
7044         CLI.Ins.push_back(MyFlags);
7045       }
7046     }
7047   }
7048 
7049   // Handle all of the outgoing arguments.
7050   CLI.Outs.clear();
7051   CLI.OutVals.clear();
7052   ArgListTy &Args = CLI.getArgs();
7053   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7054     SmallVector<EVT, 4> ValueVTs;
7055     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7056     Type *FinalType = Args[i].Ty;
7057     if (Args[i].isByVal)
7058       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7059     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7060         FinalType, CLI.CallConv, CLI.IsVarArg);
7061     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7062          ++Value) {
7063       EVT VT = ValueVTs[Value];
7064       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7065       SDValue Op = SDValue(Args[i].Node.getNode(),
7066                            Args[i].Node.getResNo() + Value);
7067       ISD::ArgFlagsTy Flags;
7068       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7069 
7070       if (Args[i].isZExt)
7071         Flags.setZExt();
7072       if (Args[i].isSExt)
7073         Flags.setSExt();
7074       if (Args[i].isInReg)
7075         Flags.setInReg();
7076       if (Args[i].isSRet)
7077         Flags.setSRet();
7078       if (Args[i].isByVal)
7079         Flags.setByVal();
7080       if (Args[i].isInAlloca) {
7081         Flags.setInAlloca();
7082         // Set the byval flag for CCAssignFn callbacks that don't know about
7083         // inalloca.  This way we can know how many bytes we should've allocated
7084         // and how many bytes a callee cleanup function will pop.  If we port
7085         // inalloca to more targets, we'll have to add custom inalloca handling
7086         // in the various CC lowering callbacks.
7087         Flags.setByVal();
7088       }
7089       if (Args[i].isByVal || Args[i].isInAlloca) {
7090         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7091         Type *ElementTy = Ty->getElementType();
7092         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7093         // For ByVal, alignment should come from FE.  BE will guess if this
7094         // info is not there but there are cases it cannot get right.
7095         unsigned FrameAlign;
7096         if (Args[i].Alignment)
7097           FrameAlign = Args[i].Alignment;
7098         else
7099           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7100         Flags.setByValAlign(FrameAlign);
7101       }
7102       if (Args[i].isNest)
7103         Flags.setNest();
7104       if (NeedsRegBlock)
7105         Flags.setInConsecutiveRegs();
7106       Flags.setOrigAlign(OriginalAlignment);
7107 
7108       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7109       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7110       SmallVector<SDValue, 4> Parts(NumParts);
7111       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7112 
7113       if (Args[i].isSExt)
7114         ExtendKind = ISD::SIGN_EXTEND;
7115       else if (Args[i].isZExt)
7116         ExtendKind = ISD::ZERO_EXTEND;
7117 
7118       // Conservatively only handle 'returned' on non-vectors for now
7119       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7120         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7121                "unexpected use of 'returned'");
7122         // Before passing 'returned' to the target lowering code, ensure that
7123         // either the register MVT and the actual EVT are the same size or that
7124         // the return value and argument are extended in the same way; in these
7125         // cases it's safe to pass the argument register value unchanged as the
7126         // return register value (although it's at the target's option whether
7127         // to do so)
7128         // TODO: allow code generation to take advantage of partially preserved
7129         // registers rather than clobbering the entire register when the
7130         // parameter extension method is not compatible with the return
7131         // extension method
7132         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7133             (ExtendKind != ISD::ANY_EXTEND &&
7134              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7135         Flags.setReturned();
7136       }
7137 
7138       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7139                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7140 
7141       for (unsigned j = 0; j != NumParts; ++j) {
7142         // if it isn't first piece, alignment must be 1
7143         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7144                                i < CLI.NumFixedArgs,
7145                                i, j*Parts[j].getValueType().getStoreSize());
7146         if (NumParts > 1 && j == 0)
7147           MyFlags.Flags.setSplit();
7148         else if (j != 0)
7149           MyFlags.Flags.setOrigAlign(1);
7150 
7151         CLI.Outs.push_back(MyFlags);
7152         CLI.OutVals.push_back(Parts[j]);
7153       }
7154 
7155       if (NeedsRegBlock && Value == NumValues - 1)
7156         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7157     }
7158   }
7159 
7160   SmallVector<SDValue, 4> InVals;
7161   CLI.Chain = LowerCall(CLI, InVals);
7162 
7163   // Verify that the target's LowerCall behaved as expected.
7164   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7165          "LowerCall didn't return a valid chain!");
7166   assert((!CLI.IsTailCall || InVals.empty()) &&
7167          "LowerCall emitted a return value for a tail call!");
7168   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7169          "LowerCall didn't emit the correct number of values!");
7170 
7171   // For a tail call, the return value is merely live-out and there aren't
7172   // any nodes in the DAG representing it. Return a special value to
7173   // indicate that a tail call has been emitted and no more Instructions
7174   // should be processed in the current block.
7175   if (CLI.IsTailCall) {
7176     CLI.DAG.setRoot(CLI.Chain);
7177     return std::make_pair(SDValue(), SDValue());
7178   }
7179 
7180   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7181           assert(InVals[i].getNode() &&
7182                  "LowerCall emitted a null value!");
7183           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7184                  "LowerCall emitted a value with the wrong type!");
7185         });
7186 
7187   SmallVector<SDValue, 4> ReturnValues;
7188   if (!CanLowerReturn) {
7189     // The instruction result is the result of loading from the
7190     // hidden sret parameter.
7191     SmallVector<EVT, 1> PVTs;
7192     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7193 
7194     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7195     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7196     EVT PtrVT = PVTs[0];
7197 
7198     unsigned NumValues = RetTys.size();
7199     ReturnValues.resize(NumValues);
7200     SmallVector<SDValue, 4> Chains(NumValues);
7201 
7202     for (unsigned i = 0; i < NumValues; ++i) {
7203       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7204                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7205                                                         PtrVT));
7206       SDValue L = CLI.DAG.getLoad(
7207           RetTys[i], CLI.DL, CLI.Chain, Add,
7208           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7209                                             DemoteStackIdx, Offsets[i]),
7210           false, false, false, 1);
7211       ReturnValues[i] = L;
7212       Chains[i] = L.getValue(1);
7213     }
7214 
7215     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7216   } else {
7217     // Collect the legal value parts into potentially illegal values
7218     // that correspond to the original function's return values.
7219     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7220     if (CLI.RetSExt)
7221       AssertOp = ISD::AssertSext;
7222     else if (CLI.RetZExt)
7223       AssertOp = ISD::AssertZext;
7224     unsigned CurReg = 0;
7225     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7226       EVT VT = RetTys[I];
7227       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7228       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7229 
7230       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7231                                               NumRegs, RegisterVT, VT, nullptr,
7232                                               AssertOp));
7233       CurReg += NumRegs;
7234     }
7235 
7236     // For a function returning void, there is no return value. We can't create
7237     // such a node, so we just return a null return value in that case. In
7238     // that case, nothing will actually look at the value.
7239     if (ReturnValues.empty())
7240       return std::make_pair(SDValue(), CLI.Chain);
7241   }
7242 
7243   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7244                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7245   return std::make_pair(Res, CLI.Chain);
7246 }
7247 
7248 void TargetLowering::LowerOperationWrapper(SDNode *N,
7249                                            SmallVectorImpl<SDValue> &Results,
7250                                            SelectionDAG &DAG) const {
7251   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7252   if (Res.getNode())
7253     Results.push_back(Res);
7254 }
7255 
7256 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7257   llvm_unreachable("LowerOperation not implemented for this target!");
7258 }
7259 
7260 void
7261 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7262   SDValue Op = getNonRegisterValue(V);
7263   assert((Op.getOpcode() != ISD::CopyFromReg ||
7264           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7265          "Copy from a reg to the same reg!");
7266   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7267 
7268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7269   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7270                    V->getType());
7271   SDValue Chain = DAG.getEntryNode();
7272 
7273   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7274                               FuncInfo.PreferredExtendType.end())
7275                                  ? ISD::ANY_EXTEND
7276                                  : FuncInfo.PreferredExtendType[V];
7277   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7278   PendingExports.push_back(Chain);
7279 }
7280 
7281 #include "llvm/CodeGen/SelectionDAGISel.h"
7282 
7283 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7284 /// entry block, return true.  This includes arguments used by switches, since
7285 /// the switch may expand into multiple basic blocks.
7286 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7287   // With FastISel active, we may be splitting blocks, so force creation
7288   // of virtual registers for all non-dead arguments.
7289   if (FastISel)
7290     return A->use_empty();
7291 
7292   const BasicBlock &Entry = A->getParent()->front();
7293   for (const User *U : A->users())
7294     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7295       return false;  // Use not in entry block.
7296 
7297   return true;
7298 }
7299 
7300 void SelectionDAGISel::LowerArguments(const Function &F) {
7301   SelectionDAG &DAG = SDB->DAG;
7302   SDLoc dl = SDB->getCurSDLoc();
7303   const DataLayout &DL = DAG.getDataLayout();
7304   SmallVector<ISD::InputArg, 16> Ins;
7305 
7306   if (!FuncInfo->CanLowerReturn) {
7307     // Put in an sret pointer parameter before all the other parameters.
7308     SmallVector<EVT, 1> ValueVTs;
7309     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7310                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7311 
7312     // NOTE: Assuming that a pointer will never break down to more than one VT
7313     // or one register.
7314     ISD::ArgFlagsTy Flags;
7315     Flags.setSRet();
7316     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7317     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7318                          ISD::InputArg::NoArgIndex, 0);
7319     Ins.push_back(RetArg);
7320   }
7321 
7322   // Set up the incoming argument description vector.
7323   unsigned Idx = 1;
7324   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7325        I != E; ++I, ++Idx) {
7326     SmallVector<EVT, 4> ValueVTs;
7327     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7328     bool isArgValueUsed = !I->use_empty();
7329     unsigned PartBase = 0;
7330     Type *FinalType = I->getType();
7331     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7332       FinalType = cast<PointerType>(FinalType)->getElementType();
7333     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7334         FinalType, F.getCallingConv(), F.isVarArg());
7335     for (unsigned Value = 0, NumValues = ValueVTs.size();
7336          Value != NumValues; ++Value) {
7337       EVT VT = ValueVTs[Value];
7338       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7339       ISD::ArgFlagsTy Flags;
7340       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7341 
7342       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7343         Flags.setZExt();
7344       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7345         Flags.setSExt();
7346       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7347         Flags.setInReg();
7348       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7349         Flags.setSRet();
7350       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7351         Flags.setByVal();
7352       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7353         Flags.setInAlloca();
7354         // Set the byval flag for CCAssignFn callbacks that don't know about
7355         // inalloca.  This way we can know how many bytes we should've allocated
7356         // and how many bytes a callee cleanup function will pop.  If we port
7357         // inalloca to more targets, we'll have to add custom inalloca handling
7358         // in the various CC lowering callbacks.
7359         Flags.setByVal();
7360       }
7361       if (Flags.isByVal() || Flags.isInAlloca()) {
7362         PointerType *Ty = cast<PointerType>(I->getType());
7363         Type *ElementTy = Ty->getElementType();
7364         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7365         // For ByVal, alignment should be passed from FE.  BE will guess if
7366         // this info is not there but there are cases it cannot get right.
7367         unsigned FrameAlign;
7368         if (F.getParamAlignment(Idx))
7369           FrameAlign = F.getParamAlignment(Idx);
7370         else
7371           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7372         Flags.setByValAlign(FrameAlign);
7373       }
7374       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7375         Flags.setNest();
7376       if (NeedsRegBlock)
7377         Flags.setInConsecutiveRegs();
7378       Flags.setOrigAlign(OriginalAlignment);
7379 
7380       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7381       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7382       for (unsigned i = 0; i != NumRegs; ++i) {
7383         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7384                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7385         if (NumRegs > 1 && i == 0)
7386           MyFlags.Flags.setSplit();
7387         // if it isn't first piece, alignment must be 1
7388         else if (i > 0)
7389           MyFlags.Flags.setOrigAlign(1);
7390         Ins.push_back(MyFlags);
7391       }
7392       if (NeedsRegBlock && Value == NumValues - 1)
7393         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7394       PartBase += VT.getStoreSize();
7395     }
7396   }
7397 
7398   // Call the target to set up the argument values.
7399   SmallVector<SDValue, 8> InVals;
7400   SDValue NewRoot = TLI->LowerFormalArguments(
7401       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7402 
7403   // Verify that the target's LowerFormalArguments behaved as expected.
7404   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7405          "LowerFormalArguments didn't return a valid chain!");
7406   assert(InVals.size() == Ins.size() &&
7407          "LowerFormalArguments didn't emit the correct number of values!");
7408   DEBUG({
7409       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7410         assert(InVals[i].getNode() &&
7411                "LowerFormalArguments emitted a null value!");
7412         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7413                "LowerFormalArguments emitted a value with the wrong type!");
7414       }
7415     });
7416 
7417   // Update the DAG with the new chain value resulting from argument lowering.
7418   DAG.setRoot(NewRoot);
7419 
7420   // Set up the argument values.
7421   unsigned i = 0;
7422   Idx = 1;
7423   if (!FuncInfo->CanLowerReturn) {
7424     // Create a virtual register for the sret pointer, and put in a copy
7425     // from the sret argument into it.
7426     SmallVector<EVT, 1> ValueVTs;
7427     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7428                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7429     MVT VT = ValueVTs[0].getSimpleVT();
7430     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7431     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7432     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7433                                         RegVT, VT, nullptr, AssertOp);
7434 
7435     MachineFunction& MF = SDB->DAG.getMachineFunction();
7436     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7437     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7438     FuncInfo->DemoteRegister = SRetReg;
7439     NewRoot =
7440         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7441     DAG.setRoot(NewRoot);
7442 
7443     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7444     // Idx indexes LLVM arguments.  Don't touch it.
7445     ++i;
7446   }
7447 
7448   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7449       ++I, ++Idx) {
7450     SmallVector<SDValue, 4> ArgValues;
7451     SmallVector<EVT, 4> ValueVTs;
7452     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7453     unsigned NumValues = ValueVTs.size();
7454 
7455     // If this argument is unused then remember its value. It is used to generate
7456     // debugging information.
7457     if (I->use_empty() && NumValues) {
7458       SDB->setUnusedArgValue(&*I, InVals[i]);
7459 
7460       // Also remember any frame index for use in FastISel.
7461       if (FrameIndexSDNode *FI =
7462           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7463         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7464     }
7465 
7466     for (unsigned Val = 0; Val != NumValues; ++Val) {
7467       EVT VT = ValueVTs[Val];
7468       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7469       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7470 
7471       if (!I->use_empty()) {
7472         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7473         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7474           AssertOp = ISD::AssertSext;
7475         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7476           AssertOp = ISD::AssertZext;
7477 
7478         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7479                                              NumParts, PartVT, VT,
7480                                              nullptr, AssertOp));
7481       }
7482 
7483       i += NumParts;
7484     }
7485 
7486     // We don't need to do anything else for unused arguments.
7487     if (ArgValues.empty())
7488       continue;
7489 
7490     // Note down frame index.
7491     if (FrameIndexSDNode *FI =
7492         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7493       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7494 
7495     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7496                                      SDB->getCurSDLoc());
7497 
7498     SDB->setValue(&*I, Res);
7499     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7500       if (LoadSDNode *LNode =
7501           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7502         if (FrameIndexSDNode *FI =
7503             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7504         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7505     }
7506 
7507     // If this argument is live outside of the entry block, insert a copy from
7508     // wherever we got it to the vreg that other BB's will reference it as.
7509     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7510       // If we can, though, try to skip creating an unnecessary vreg.
7511       // FIXME: This isn't very clean... it would be nice to make this more
7512       // general.  It's also subtly incompatible with the hacks FastISel
7513       // uses with vregs.
7514       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7515       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7516         FuncInfo->ValueMap[&*I] = Reg;
7517         continue;
7518       }
7519     }
7520     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7521       FuncInfo->InitializeRegForValue(&*I);
7522       SDB->CopyToExportRegsIfNeeded(&*I);
7523     }
7524   }
7525 
7526   assert(i == InVals.size() && "Argument register count mismatch!");
7527 
7528   // Finally, if the target has anything special to do, allow it to do so.
7529   EmitFunctionEntryCode();
7530 }
7531 
7532 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7533 /// ensure constants are generated when needed.  Remember the virtual registers
7534 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7535 /// directly add them, because expansion might result in multiple MBB's for one
7536 /// BB.  As such, the start of the BB might correspond to a different MBB than
7537 /// the end.
7538 ///
7539 void
7540 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7541   const TerminatorInst *TI = LLVMBB->getTerminator();
7542 
7543   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7544 
7545   // Check PHI nodes in successors that expect a value to be available from this
7546   // block.
7547   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7548     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7549     if (!isa<PHINode>(SuccBB->begin())) continue;
7550     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7551 
7552     // If this terminator has multiple identical successors (common for
7553     // switches), only handle each succ once.
7554     if (!SuccsHandled.insert(SuccMBB).second)
7555       continue;
7556 
7557     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7558 
7559     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7560     // nodes and Machine PHI nodes, but the incoming operands have not been
7561     // emitted yet.
7562     for (BasicBlock::const_iterator I = SuccBB->begin();
7563          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7564       // Ignore dead phi's.
7565       if (PN->use_empty()) continue;
7566 
7567       // Skip empty types
7568       if (PN->getType()->isEmptyTy())
7569         continue;
7570 
7571       unsigned Reg;
7572       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7573 
7574       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7575         unsigned &RegOut = ConstantsOut[C];
7576         if (RegOut == 0) {
7577           RegOut = FuncInfo.CreateRegs(C->getType());
7578           CopyValueToVirtualRegister(C, RegOut);
7579         }
7580         Reg = RegOut;
7581       } else {
7582         DenseMap<const Value *, unsigned>::iterator I =
7583           FuncInfo.ValueMap.find(PHIOp);
7584         if (I != FuncInfo.ValueMap.end())
7585           Reg = I->second;
7586         else {
7587           assert(isa<AllocaInst>(PHIOp) &&
7588                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7589                  "Didn't codegen value into a register!??");
7590           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7591           CopyValueToVirtualRegister(PHIOp, Reg);
7592         }
7593       }
7594 
7595       // Remember that this register needs to added to the machine PHI node as
7596       // the input for this MBB.
7597       SmallVector<EVT, 4> ValueVTs;
7598       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7599       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7600       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7601         EVT VT = ValueVTs[vti];
7602         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7603         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7604           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7605         Reg += NumRegisters;
7606       }
7607     }
7608   }
7609 
7610   ConstantsOut.clear();
7611 }
7612 
7613 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7614 /// is 0.
7615 MachineBasicBlock *
7616 SelectionDAGBuilder::StackProtectorDescriptor::
7617 AddSuccessorMBB(const BasicBlock *BB,
7618                 MachineBasicBlock *ParentMBB,
7619                 bool IsLikely,
7620                 MachineBasicBlock *SuccMBB) {
7621   // If SuccBB has not been created yet, create it.
7622   if (!SuccMBB) {
7623     MachineFunction *MF = ParentMBB->getParent();
7624     MachineFunction::iterator BBI(ParentMBB);
7625     SuccMBB = MF->CreateMachineBasicBlock(BB);
7626     MF->insert(++BBI, SuccMBB);
7627   }
7628   // Add it as a successor of ParentMBB.
7629   ParentMBB->addSuccessor(
7630       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7631   return SuccMBB;
7632 }
7633 
7634 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7635   MachineFunction::iterator I(MBB);
7636   if (++I == FuncInfo.MF->end())
7637     return nullptr;
7638   return &*I;
7639 }
7640 
7641 /// During lowering new call nodes can be created (such as memset, etc.).
7642 /// Those will become new roots of the current DAG, but complications arise
7643 /// when they are tail calls. In such cases, the call lowering will update
7644 /// the root, but the builder still needs to know that a tail call has been
7645 /// lowered in order to avoid generating an additional return.
7646 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7647   // If the node is null, we do have a tail call.
7648   if (MaybeTC.getNode() != nullptr)
7649     DAG.setRoot(MaybeTC);
7650   else
7651     HasTailCall = true;
7652 }
7653 
7654 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7655                                   unsigned *TotalCases, unsigned First,
7656                                   unsigned Last) {
7657   assert(Last >= First);
7658   assert(TotalCases[Last] >= TotalCases[First]);
7659 
7660   APInt LowCase = Clusters[First].Low->getValue();
7661   APInt HighCase = Clusters[Last].High->getValue();
7662   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7663 
7664   // FIXME: A range of consecutive cases has 100% density, but only requires one
7665   // comparison to lower. We should discriminate against such consecutive ranges
7666   // in jump tables.
7667 
7668   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7669   uint64_t Range = Diff + 1;
7670 
7671   uint64_t NumCases =
7672       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7673 
7674   assert(NumCases < UINT64_MAX / 100);
7675   assert(Range >= NumCases);
7676 
7677   return NumCases * 100 >= Range * MinJumpTableDensity;
7678 }
7679 
7680 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7681   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7682          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7683 }
7684 
7685 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7686                                          unsigned First, unsigned Last,
7687                                          const SwitchInst *SI,
7688                                          MachineBasicBlock *DefaultMBB,
7689                                          CaseCluster &JTCluster) {
7690   assert(First <= Last);
7691 
7692   auto Prob = BranchProbability::getZero();
7693   unsigned NumCmps = 0;
7694   std::vector<MachineBasicBlock*> Table;
7695   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7696 
7697   // Initialize probabilities in JTProbs.
7698   for (unsigned I = First; I <= Last; ++I)
7699     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7700 
7701   for (unsigned I = First; I <= Last; ++I) {
7702     assert(Clusters[I].Kind == CC_Range);
7703     Prob += Clusters[I].Prob;
7704     APInt Low = Clusters[I].Low->getValue();
7705     APInt High = Clusters[I].High->getValue();
7706     NumCmps += (Low == High) ? 1 : 2;
7707     if (I != First) {
7708       // Fill the gap between this and the previous cluster.
7709       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7710       assert(PreviousHigh.slt(Low));
7711       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7712       for (uint64_t J = 0; J < Gap; J++)
7713         Table.push_back(DefaultMBB);
7714     }
7715     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7716     for (uint64_t J = 0; J < ClusterSize; ++J)
7717       Table.push_back(Clusters[I].MBB);
7718     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7719   }
7720 
7721   unsigned NumDests = JTProbs.size();
7722   if (isSuitableForBitTests(NumDests, NumCmps,
7723                             Clusters[First].Low->getValue(),
7724                             Clusters[Last].High->getValue())) {
7725     // Clusters[First..Last] should be lowered as bit tests instead.
7726     return false;
7727   }
7728 
7729   // Create the MBB that will load from and jump through the table.
7730   // Note: We create it here, but it's not inserted into the function yet.
7731   MachineFunction *CurMF = FuncInfo.MF;
7732   MachineBasicBlock *JumpTableMBB =
7733       CurMF->CreateMachineBasicBlock(SI->getParent());
7734 
7735   // Add successors. Note: use table order for determinism.
7736   SmallPtrSet<MachineBasicBlock *, 8> Done;
7737   for (MachineBasicBlock *Succ : Table) {
7738     if (Done.count(Succ))
7739       continue;
7740     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7741     Done.insert(Succ);
7742   }
7743   JumpTableMBB->normalizeSuccProbs();
7744 
7745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7746   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7747                      ->createJumpTableIndex(Table);
7748 
7749   // Set up the jump table info.
7750   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7751   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7752                       Clusters[Last].High->getValue(), SI->getCondition(),
7753                       nullptr, false);
7754   JTCases.emplace_back(std::move(JTH), std::move(JT));
7755 
7756   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7757                                      JTCases.size() - 1, Prob);
7758   return true;
7759 }
7760 
7761 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7762                                          const SwitchInst *SI,
7763                                          MachineBasicBlock *DefaultMBB) {
7764 #ifndef NDEBUG
7765   // Clusters must be non-empty, sorted, and only contain Range clusters.
7766   assert(!Clusters.empty());
7767   for (CaseCluster &C : Clusters)
7768     assert(C.Kind == CC_Range);
7769   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7770     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7771 #endif
7772 
7773   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7774   if (!areJTsAllowed(TLI))
7775     return;
7776 
7777   const int64_t N = Clusters.size();
7778   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7779 
7780   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7781   SmallVector<unsigned, 8> TotalCases(N);
7782 
7783   for (unsigned i = 0; i < N; ++i) {
7784     APInt Hi = Clusters[i].High->getValue();
7785     APInt Lo = Clusters[i].Low->getValue();
7786     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7787     if (i != 0)
7788       TotalCases[i] += TotalCases[i - 1];
7789   }
7790 
7791   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7792     // Cheap case: the whole range might be suitable for jump table.
7793     CaseCluster JTCluster;
7794     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7795       Clusters[0] = JTCluster;
7796       Clusters.resize(1);
7797       return;
7798     }
7799   }
7800 
7801   // The algorithm below is not suitable for -O0.
7802   if (TM.getOptLevel() == CodeGenOpt::None)
7803     return;
7804 
7805   // Split Clusters into minimum number of dense partitions. The algorithm uses
7806   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7807   // for the Case Statement'" (1994), but builds the MinPartitions array in
7808   // reverse order to make it easier to reconstruct the partitions in ascending
7809   // order. In the choice between two optimal partitionings, it picks the one
7810   // which yields more jump tables.
7811 
7812   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7813   SmallVector<unsigned, 8> MinPartitions(N);
7814   // LastElement[i] is the last element of the partition starting at i.
7815   SmallVector<unsigned, 8> LastElement(N);
7816   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7817   SmallVector<unsigned, 8> NumTables(N);
7818 
7819   // Base case: There is only one way to partition Clusters[N-1].
7820   MinPartitions[N - 1] = 1;
7821   LastElement[N - 1] = N - 1;
7822   assert(MinJumpTableSize > 1);
7823   NumTables[N - 1] = 0;
7824 
7825   // Note: loop indexes are signed to avoid underflow.
7826   for (int64_t i = N - 2; i >= 0; i--) {
7827     // Find optimal partitioning of Clusters[i..N-1].
7828     // Baseline: Put Clusters[i] into a partition on its own.
7829     MinPartitions[i] = MinPartitions[i + 1] + 1;
7830     LastElement[i] = i;
7831     NumTables[i] = NumTables[i + 1];
7832 
7833     // Search for a solution that results in fewer partitions.
7834     for (int64_t j = N - 1; j > i; j--) {
7835       // Try building a partition from Clusters[i..j].
7836       if (isDense(Clusters, &TotalCases[0], i, j)) {
7837         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7838         bool IsTable = j - i + 1 >= MinJumpTableSize;
7839         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7840 
7841         // If this j leads to fewer partitions, or same number of partitions
7842         // with more lookup tables, it is a better partitioning.
7843         if (NumPartitions < MinPartitions[i] ||
7844             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7845           MinPartitions[i] = NumPartitions;
7846           LastElement[i] = j;
7847           NumTables[i] = Tables;
7848         }
7849       }
7850     }
7851   }
7852 
7853   // Iterate over the partitions, replacing some with jump tables in-place.
7854   unsigned DstIndex = 0;
7855   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7856     Last = LastElement[First];
7857     assert(Last >= First);
7858     assert(DstIndex <= First);
7859     unsigned NumClusters = Last - First + 1;
7860 
7861     CaseCluster JTCluster;
7862     if (NumClusters >= MinJumpTableSize &&
7863         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7864       Clusters[DstIndex++] = JTCluster;
7865     } else {
7866       for (unsigned I = First; I <= Last; ++I)
7867         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7868     }
7869   }
7870   Clusters.resize(DstIndex);
7871 }
7872 
7873 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7874   // FIXME: Using the pointer type doesn't seem ideal.
7875   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7876   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7877   return Range <= BW;
7878 }
7879 
7880 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7881                                                 unsigned NumCmps,
7882                                                 const APInt &Low,
7883                                                 const APInt &High) {
7884   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7885   // range of cases both require only one branch to lower. Just looking at the
7886   // number of clusters and destinations should be enough to decide whether to
7887   // build bit tests.
7888 
7889   // To lower a range with bit tests, the range must fit the bitwidth of a
7890   // machine word.
7891   if (!rangeFitsInWord(Low, High))
7892     return false;
7893 
7894   // Decide whether it's profitable to lower this range with bit tests. Each
7895   // destination requires a bit test and branch, and there is an overall range
7896   // check branch. For a small number of clusters, separate comparisons might be
7897   // cheaper, and for many destinations, splitting the range might be better.
7898   return (NumDests == 1 && NumCmps >= 3) ||
7899          (NumDests == 2 && NumCmps >= 5) ||
7900          (NumDests == 3 && NumCmps >= 6);
7901 }
7902 
7903 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7904                                         unsigned First, unsigned Last,
7905                                         const SwitchInst *SI,
7906                                         CaseCluster &BTCluster) {
7907   assert(First <= Last);
7908   if (First == Last)
7909     return false;
7910 
7911   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7912   unsigned NumCmps = 0;
7913   for (int64_t I = First; I <= Last; ++I) {
7914     assert(Clusters[I].Kind == CC_Range);
7915     Dests.set(Clusters[I].MBB->getNumber());
7916     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7917   }
7918   unsigned NumDests = Dests.count();
7919 
7920   APInt Low = Clusters[First].Low->getValue();
7921   APInt High = Clusters[Last].High->getValue();
7922   assert(Low.slt(High));
7923 
7924   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7925     return false;
7926 
7927   APInt LowBound;
7928   APInt CmpRange;
7929 
7930   const int BitWidth = DAG.getTargetLoweringInfo()
7931                            .getPointerTy(DAG.getDataLayout())
7932                            .getSizeInBits();
7933   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
7934 
7935   // Check if the clusters cover a contiguous range such that no value in the
7936   // range will jump to the default statement.
7937   bool ContiguousRange = true;
7938   for (int64_t I = First + 1; I <= Last; ++I) {
7939     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
7940       ContiguousRange = false;
7941       break;
7942     }
7943   }
7944 
7945   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
7946     // Optimize the case where all the case values fit in a word without having
7947     // to subtract minValue. In this case, we can optimize away the subtraction.
7948     LowBound = APInt::getNullValue(Low.getBitWidth());
7949     CmpRange = High;
7950     ContiguousRange = false;
7951   } else {
7952     LowBound = Low;
7953     CmpRange = High - Low;
7954   }
7955 
7956   CaseBitsVector CBV;
7957   auto TotalProb = BranchProbability::getZero();
7958   for (unsigned i = First; i <= Last; ++i) {
7959     // Find the CaseBits for this destination.
7960     unsigned j;
7961     for (j = 0; j < CBV.size(); ++j)
7962       if (CBV[j].BB == Clusters[i].MBB)
7963         break;
7964     if (j == CBV.size())
7965       CBV.push_back(
7966           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
7967     CaseBits *CB = &CBV[j];
7968 
7969     // Update Mask, Bits and ExtraProb.
7970     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
7971     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
7972     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
7973     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
7974     CB->Bits += Hi - Lo + 1;
7975     CB->ExtraProb += Clusters[i].Prob;
7976     TotalProb += Clusters[i].Prob;
7977   }
7978 
7979   BitTestInfo BTI;
7980   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
7981     // Sort by probability first, number of bits second.
7982     if (a.ExtraProb != b.ExtraProb)
7983       return a.ExtraProb > b.ExtraProb;
7984     return a.Bits > b.Bits;
7985   });
7986 
7987   for (auto &CB : CBV) {
7988     MachineBasicBlock *BitTestBB =
7989         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
7990     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
7991   }
7992   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
7993                             SI->getCondition(), -1U, MVT::Other, false,
7994                             ContiguousRange, nullptr, nullptr, std::move(BTI),
7995                             TotalProb);
7996 
7997   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
7998                                     BitTestCases.size() - 1, TotalProb);
7999   return true;
8000 }
8001 
8002 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8003                                               const SwitchInst *SI) {
8004 // Partition Clusters into as few subsets as possible, where each subset has a
8005 // range that fits in a machine word and has <= 3 unique destinations.
8006 
8007 #ifndef NDEBUG
8008   // Clusters must be sorted and contain Range or JumpTable clusters.
8009   assert(!Clusters.empty());
8010   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8011   for (const CaseCluster &C : Clusters)
8012     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8013   for (unsigned i = 1; i < Clusters.size(); ++i)
8014     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8015 #endif
8016 
8017   // The algorithm below is not suitable for -O0.
8018   if (TM.getOptLevel() == CodeGenOpt::None)
8019     return;
8020 
8021   // If target does not have legal shift left, do not emit bit tests at all.
8022   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8023   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8024   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8025     return;
8026 
8027   int BitWidth = PTy.getSizeInBits();
8028   const int64_t N = Clusters.size();
8029 
8030   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8031   SmallVector<unsigned, 8> MinPartitions(N);
8032   // LastElement[i] is the last element of the partition starting at i.
8033   SmallVector<unsigned, 8> LastElement(N);
8034 
8035   // FIXME: This might not be the best algorithm for finding bit test clusters.
8036 
8037   // Base case: There is only one way to partition Clusters[N-1].
8038   MinPartitions[N - 1] = 1;
8039   LastElement[N - 1] = N - 1;
8040 
8041   // Note: loop indexes are signed to avoid underflow.
8042   for (int64_t i = N - 2; i >= 0; --i) {
8043     // Find optimal partitioning of Clusters[i..N-1].
8044     // Baseline: Put Clusters[i] into a partition on its own.
8045     MinPartitions[i] = MinPartitions[i + 1] + 1;
8046     LastElement[i] = i;
8047 
8048     // Search for a solution that results in fewer partitions.
8049     // Note: the search is limited by BitWidth, reducing time complexity.
8050     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8051       // Try building a partition from Clusters[i..j].
8052 
8053       // Check the range.
8054       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8055                            Clusters[j].High->getValue()))
8056         continue;
8057 
8058       // Check nbr of destinations and cluster types.
8059       // FIXME: This works, but doesn't seem very efficient.
8060       bool RangesOnly = true;
8061       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8062       for (int64_t k = i; k <= j; k++) {
8063         if (Clusters[k].Kind != CC_Range) {
8064           RangesOnly = false;
8065           break;
8066         }
8067         Dests.set(Clusters[k].MBB->getNumber());
8068       }
8069       if (!RangesOnly || Dests.count() > 3)
8070         break;
8071 
8072       // Check if it's a better partition.
8073       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8074       if (NumPartitions < MinPartitions[i]) {
8075         // Found a better partition.
8076         MinPartitions[i] = NumPartitions;
8077         LastElement[i] = j;
8078       }
8079     }
8080   }
8081 
8082   // Iterate over the partitions, replacing with bit-test clusters in-place.
8083   unsigned DstIndex = 0;
8084   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8085     Last = LastElement[First];
8086     assert(First <= Last);
8087     assert(DstIndex <= First);
8088 
8089     CaseCluster BitTestCluster;
8090     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8091       Clusters[DstIndex++] = BitTestCluster;
8092     } else {
8093       size_t NumClusters = Last - First + 1;
8094       std::memmove(&Clusters[DstIndex], &Clusters[First],
8095                    sizeof(Clusters[0]) * NumClusters);
8096       DstIndex += NumClusters;
8097     }
8098   }
8099   Clusters.resize(DstIndex);
8100 }
8101 
8102 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8103                                         MachineBasicBlock *SwitchMBB,
8104                                         MachineBasicBlock *DefaultMBB) {
8105   MachineFunction *CurMF = FuncInfo.MF;
8106   MachineBasicBlock *NextMBB = nullptr;
8107   MachineFunction::iterator BBI(W.MBB);
8108   if (++BBI != FuncInfo.MF->end())
8109     NextMBB = &*BBI;
8110 
8111   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8112 
8113   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8114 
8115   if (Size == 2 && W.MBB == SwitchMBB) {
8116     // If any two of the cases has the same destination, and if one value
8117     // is the same as the other, but has one bit unset that the other has set,
8118     // use bit manipulation to do two compares at once.  For example:
8119     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8120     // TODO: This could be extended to merge any 2 cases in switches with 3
8121     // cases.
8122     // TODO: Handle cases where W.CaseBB != SwitchBB.
8123     CaseCluster &Small = *W.FirstCluster;
8124     CaseCluster &Big = *W.LastCluster;
8125 
8126     if (Small.Low == Small.High && Big.Low == Big.High &&
8127         Small.MBB == Big.MBB) {
8128       const APInt &SmallValue = Small.Low->getValue();
8129       const APInt &BigValue = Big.Low->getValue();
8130 
8131       // Check that there is only one bit different.
8132       APInt CommonBit = BigValue ^ SmallValue;
8133       if (CommonBit.isPowerOf2()) {
8134         SDValue CondLHS = getValue(Cond);
8135         EVT VT = CondLHS.getValueType();
8136         SDLoc DL = getCurSDLoc();
8137 
8138         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8139                                  DAG.getConstant(CommonBit, DL, VT));
8140         SDValue Cond = DAG.getSetCC(
8141             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8142             ISD::SETEQ);
8143 
8144         // Update successor info.
8145         // Both Small and Big will jump to Small.BB, so we sum up the
8146         // probabilities.
8147         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8148         if (BPI)
8149           addSuccessorWithProb(
8150               SwitchMBB, DefaultMBB,
8151               // The default destination is the first successor in IR.
8152               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8153         else
8154           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8155 
8156         // Insert the true branch.
8157         SDValue BrCond =
8158             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8159                         DAG.getBasicBlock(Small.MBB));
8160         // Insert the false branch.
8161         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8162                              DAG.getBasicBlock(DefaultMBB));
8163 
8164         DAG.setRoot(BrCond);
8165         return;
8166       }
8167     }
8168   }
8169 
8170   if (TM.getOptLevel() != CodeGenOpt::None) {
8171     // Order cases by probability so the most likely case will be checked first.
8172     std::sort(W.FirstCluster, W.LastCluster + 1,
8173               [](const CaseCluster &a, const CaseCluster &b) {
8174       return a.Prob > b.Prob;
8175     });
8176 
8177     // Rearrange the case blocks so that the last one falls through if possible
8178     // without without changing the order of probabilities.
8179     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8180       --I;
8181       if (I->Prob > W.LastCluster->Prob)
8182         break;
8183       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8184         std::swap(*I, *W.LastCluster);
8185         break;
8186       }
8187     }
8188   }
8189 
8190   // Compute total probability.
8191   BranchProbability DefaultProb = W.DefaultProb;
8192   BranchProbability UnhandledProbs = DefaultProb;
8193   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8194     UnhandledProbs += I->Prob;
8195 
8196   MachineBasicBlock *CurMBB = W.MBB;
8197   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8198     MachineBasicBlock *Fallthrough;
8199     if (I == W.LastCluster) {
8200       // For the last cluster, fall through to the default destination.
8201       Fallthrough = DefaultMBB;
8202     } else {
8203       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8204       CurMF->insert(BBI, Fallthrough);
8205       // Put Cond in a virtual register to make it available from the new blocks.
8206       ExportFromCurrentBlock(Cond);
8207     }
8208     UnhandledProbs -= I->Prob;
8209 
8210     switch (I->Kind) {
8211       case CC_JumpTable: {
8212         // FIXME: Optimize away range check based on pivot comparisons.
8213         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8214         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8215 
8216         // The jump block hasn't been inserted yet; insert it here.
8217         MachineBasicBlock *JumpMBB = JT->MBB;
8218         CurMF->insert(BBI, JumpMBB);
8219 
8220         auto JumpProb = I->Prob;
8221         auto FallthroughProb = UnhandledProbs;
8222 
8223         // If the default statement is a target of the jump table, we evenly
8224         // distribute the default probability to successors of CurMBB. Also
8225         // update the probability on the edge from JumpMBB to Fallthrough.
8226         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8227                                               SE = JumpMBB->succ_end();
8228              SI != SE; ++SI) {
8229           if (*SI == DefaultMBB) {
8230             JumpProb += DefaultProb / 2;
8231             FallthroughProb -= DefaultProb / 2;
8232             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8233             JumpMBB->normalizeSuccProbs();
8234             break;
8235           }
8236         }
8237 
8238         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8239         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8240         CurMBB->normalizeSuccProbs();
8241 
8242         // The jump table header will be inserted in our current block, do the
8243         // range check, and fall through to our fallthrough block.
8244         JTH->HeaderBB = CurMBB;
8245         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8246 
8247         // If we're in the right place, emit the jump table header right now.
8248         if (CurMBB == SwitchMBB) {
8249           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8250           JTH->Emitted = true;
8251         }
8252         break;
8253       }
8254       case CC_BitTests: {
8255         // FIXME: Optimize away range check based on pivot comparisons.
8256         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8257 
8258         // The bit test blocks haven't been inserted yet; insert them here.
8259         for (BitTestCase &BTC : BTB->Cases)
8260           CurMF->insert(BBI, BTC.ThisBB);
8261 
8262         // Fill in fields of the BitTestBlock.
8263         BTB->Parent = CurMBB;
8264         BTB->Default = Fallthrough;
8265 
8266         BTB->DefaultProb = UnhandledProbs;
8267         // If the cases in bit test don't form a contiguous range, we evenly
8268         // distribute the probability on the edge to Fallthrough to two
8269         // successors of CurMBB.
8270         if (!BTB->ContiguousRange) {
8271           BTB->Prob += DefaultProb / 2;
8272           BTB->DefaultProb -= DefaultProb / 2;
8273         }
8274 
8275         // If we're in the right place, emit the bit test header right now.
8276         if (CurMBB == SwitchMBB) {
8277           visitBitTestHeader(*BTB, SwitchMBB);
8278           BTB->Emitted = true;
8279         }
8280         break;
8281       }
8282       case CC_Range: {
8283         const Value *RHS, *LHS, *MHS;
8284         ISD::CondCode CC;
8285         if (I->Low == I->High) {
8286           // Check Cond == I->Low.
8287           CC = ISD::SETEQ;
8288           LHS = Cond;
8289           RHS=I->Low;
8290           MHS = nullptr;
8291         } else {
8292           // Check I->Low <= Cond <= I->High.
8293           CC = ISD::SETLE;
8294           LHS = I->Low;
8295           MHS = Cond;
8296           RHS = I->High;
8297         }
8298 
8299         // The false probability is the sum of all unhandled cases.
8300         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8301                      UnhandledProbs);
8302 
8303         if (CurMBB == SwitchMBB)
8304           visitSwitchCase(CB, SwitchMBB);
8305         else
8306           SwitchCases.push_back(CB);
8307 
8308         break;
8309       }
8310     }
8311     CurMBB = Fallthrough;
8312   }
8313 }
8314 
8315 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8316                                               CaseClusterIt First,
8317                                               CaseClusterIt Last) {
8318   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8319     if (X.Prob != CC.Prob)
8320       return X.Prob > CC.Prob;
8321 
8322     // Ties are broken by comparing the case value.
8323     return X.Low->getValue().slt(CC.Low->getValue());
8324   });
8325 }
8326 
8327 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8328                                         const SwitchWorkListItem &W,
8329                                         Value *Cond,
8330                                         MachineBasicBlock *SwitchMBB) {
8331   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8332          "Clusters not sorted?");
8333 
8334   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8335 
8336   // Balance the tree based on branch probabilities to create a near-optimal (in
8337   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8338   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8339   CaseClusterIt LastLeft = W.FirstCluster;
8340   CaseClusterIt FirstRight = W.LastCluster;
8341   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8342   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8343 
8344   // Move LastLeft and FirstRight towards each other from opposite directions to
8345   // find a partitioning of the clusters which balances the probability on both
8346   // sides. If LeftProb and RightProb are equal, alternate which side is
8347   // taken to ensure 0-probability nodes are distributed evenly.
8348   unsigned I = 0;
8349   while (LastLeft + 1 < FirstRight) {
8350     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8351       LeftProb += (++LastLeft)->Prob;
8352     else
8353       RightProb += (--FirstRight)->Prob;
8354     I++;
8355   }
8356 
8357   for (;;) {
8358     // Our binary search tree differs from a typical BST in that ours can have up
8359     // to three values in each leaf. The pivot selection above doesn't take that
8360     // into account, which means the tree might require more nodes and be less
8361     // efficient. We compensate for this here.
8362 
8363     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8364     unsigned NumRight = W.LastCluster - FirstRight + 1;
8365 
8366     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8367       // If one side has less than 3 clusters, and the other has more than 3,
8368       // consider taking a cluster from the other side.
8369 
8370       if (NumLeft < NumRight) {
8371         // Consider moving the first cluster on the right to the left side.
8372         CaseCluster &CC = *FirstRight;
8373         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8374         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8375         if (LeftSideRank <= RightSideRank) {
8376           // Moving the cluster to the left does not demote it.
8377           ++LastLeft;
8378           ++FirstRight;
8379           continue;
8380         }
8381       } else {
8382         assert(NumRight < NumLeft);
8383         // Consider moving the last element on the left to the right side.
8384         CaseCluster &CC = *LastLeft;
8385         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8386         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8387         if (RightSideRank <= LeftSideRank) {
8388           // Moving the cluster to the right does not demot it.
8389           --LastLeft;
8390           --FirstRight;
8391           continue;
8392         }
8393       }
8394     }
8395     break;
8396   }
8397 
8398   assert(LastLeft + 1 == FirstRight);
8399   assert(LastLeft >= W.FirstCluster);
8400   assert(FirstRight <= W.LastCluster);
8401 
8402   // Use the first element on the right as pivot since we will make less-than
8403   // comparisons against it.
8404   CaseClusterIt PivotCluster = FirstRight;
8405   assert(PivotCluster > W.FirstCluster);
8406   assert(PivotCluster <= W.LastCluster);
8407 
8408   CaseClusterIt FirstLeft = W.FirstCluster;
8409   CaseClusterIt LastRight = W.LastCluster;
8410 
8411   const ConstantInt *Pivot = PivotCluster->Low;
8412 
8413   // New blocks will be inserted immediately after the current one.
8414   MachineFunction::iterator BBI(W.MBB);
8415   ++BBI;
8416 
8417   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8418   // we can branch to its destination directly if it's squeezed exactly in
8419   // between the known lower bound and Pivot - 1.
8420   MachineBasicBlock *LeftMBB;
8421   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8422       FirstLeft->Low == W.GE &&
8423       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8424     LeftMBB = FirstLeft->MBB;
8425   } else {
8426     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8427     FuncInfo.MF->insert(BBI, LeftMBB);
8428     WorkList.push_back(
8429         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8430     // Put Cond in a virtual register to make it available from the new blocks.
8431     ExportFromCurrentBlock(Cond);
8432   }
8433 
8434   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8435   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8436   // directly if RHS.High equals the current upper bound.
8437   MachineBasicBlock *RightMBB;
8438   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8439       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8440     RightMBB = FirstRight->MBB;
8441   } else {
8442     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8443     FuncInfo.MF->insert(BBI, RightMBB);
8444     WorkList.push_back(
8445         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8446     // Put Cond in a virtual register to make it available from the new blocks.
8447     ExportFromCurrentBlock(Cond);
8448   }
8449 
8450   // Create the CaseBlock record that will be used to lower the branch.
8451   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8452                LeftProb, RightProb);
8453 
8454   if (W.MBB == SwitchMBB)
8455     visitSwitchCase(CB, SwitchMBB);
8456   else
8457     SwitchCases.push_back(CB);
8458 }
8459 
8460 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8461   // Extract cases from the switch.
8462   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8463   CaseClusterVector Clusters;
8464   Clusters.reserve(SI.getNumCases());
8465   for (auto I : SI.cases()) {
8466     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8467     const ConstantInt *CaseVal = I.getCaseValue();
8468     BranchProbability Prob =
8469         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8470             : BranchProbability(1, SI.getNumCases() + 1);
8471     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8472   }
8473 
8474   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8475 
8476   // Cluster adjacent cases with the same destination. We do this at all
8477   // optimization levels because it's cheap to do and will make codegen faster
8478   // if there are many clusters.
8479   sortAndRangeify(Clusters);
8480 
8481   if (TM.getOptLevel() != CodeGenOpt::None) {
8482     // Replace an unreachable default with the most popular destination.
8483     // FIXME: Exploit unreachable default more aggressively.
8484     bool UnreachableDefault =
8485         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8486     if (UnreachableDefault && !Clusters.empty()) {
8487       DenseMap<const BasicBlock *, unsigned> Popularity;
8488       unsigned MaxPop = 0;
8489       const BasicBlock *MaxBB = nullptr;
8490       for (auto I : SI.cases()) {
8491         const BasicBlock *BB = I.getCaseSuccessor();
8492         if (++Popularity[BB] > MaxPop) {
8493           MaxPop = Popularity[BB];
8494           MaxBB = BB;
8495         }
8496       }
8497       // Set new default.
8498       assert(MaxPop > 0 && MaxBB);
8499       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8500 
8501       // Remove cases that were pointing to the destination that is now the
8502       // default.
8503       CaseClusterVector New;
8504       New.reserve(Clusters.size());
8505       for (CaseCluster &CC : Clusters) {
8506         if (CC.MBB != DefaultMBB)
8507           New.push_back(CC);
8508       }
8509       Clusters = std::move(New);
8510     }
8511   }
8512 
8513   // If there is only the default destination, jump there directly.
8514   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8515   if (Clusters.empty()) {
8516     SwitchMBB->addSuccessor(DefaultMBB);
8517     if (DefaultMBB != NextBlock(SwitchMBB)) {
8518       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8519                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8520     }
8521     return;
8522   }
8523 
8524   findJumpTables(Clusters, &SI, DefaultMBB);
8525   findBitTestClusters(Clusters, &SI);
8526 
8527   DEBUG({
8528     dbgs() << "Case clusters: ";
8529     for (const CaseCluster &C : Clusters) {
8530       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8531       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8532 
8533       C.Low->getValue().print(dbgs(), true);
8534       if (C.Low != C.High) {
8535         dbgs() << '-';
8536         C.High->getValue().print(dbgs(), true);
8537       }
8538       dbgs() << ' ';
8539     }
8540     dbgs() << '\n';
8541   });
8542 
8543   assert(!Clusters.empty());
8544   SwitchWorkList WorkList;
8545   CaseClusterIt First = Clusters.begin();
8546   CaseClusterIt Last = Clusters.end() - 1;
8547   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8548   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8549 
8550   while (!WorkList.empty()) {
8551     SwitchWorkListItem W = WorkList.back();
8552     WorkList.pop_back();
8553     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8554 
8555     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8556       // For optimized builds, lower large range as a balanced binary tree.
8557       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8558       continue;
8559     }
8560 
8561     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8562   }
8563 }
8564