xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 79889734b940356ab3381423c93ae06f22e772c9)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsAMDGPU.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CommandLine.h"
94 #include "llvm/Support/Compiler.h"
95 #include "llvm/Support/Debug.h"
96 #include "llvm/Support/MathExtras.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Target/TargetIntrinsicInfo.h"
99 #include "llvm/Target/TargetMachine.h"
100 #include "llvm/Target/TargetOptions.h"
101 #include "llvm/TargetParser/Triple.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <iterator>
105 #include <limits>
106 #include <optional>
107 #include <tuple>
108 
109 using namespace llvm;
110 using namespace PatternMatch;
111 using namespace SwitchCG;
112 
113 #define DEBUG_TYPE "isel"
114 
115 /// LimitFloatPrecision - Generate low-precision inline sequences for
116 /// some float libcalls (6, 8 or 12 bits).
117 static unsigned LimitFloatPrecision;
118 
119 static cl::opt<bool>
120     InsertAssertAlign("insert-assert-align", cl::init(true),
121                       cl::desc("Insert the experimental `assertalign` node."),
122                       cl::ReallyHidden);
123 
124 static cl::opt<unsigned, true>
125     LimitFPPrecision("limit-float-precision",
126                      cl::desc("Generate low-precision inline sequences "
127                               "for some float libcalls"),
128                      cl::location(LimitFloatPrecision), cl::Hidden,
129                      cl::init(0));
130 
131 static cl::opt<unsigned> SwitchPeelThreshold(
132     "switch-peel-threshold", cl::Hidden, cl::init(66),
133     cl::desc("Set the case probability threshold for peeling the case from a "
134              "switch statement. A value greater than 100 will void this "
135              "optimization"));
136 
137 // Limit the width of DAG chains. This is important in general to prevent
138 // DAG-based analysis from blowing up. For example, alias analysis and
139 // load clustering may not complete in reasonable time. It is difficult to
140 // recognize and avoid this situation within each individual analysis, and
141 // future analyses are likely to have the same behavior. Limiting DAG width is
142 // the safe approach and will be especially important with global DAGs.
143 //
144 // MaxParallelChains default is arbitrarily high to avoid affecting
145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
146 // sequence over this should have been converted to llvm.memcpy by the
147 // frontend. It is easy to induce this behavior with .ll code such as:
148 // %buffer = alloca [4096 x i8]
149 // %data = load [4096 x i8]* %argPtr
150 // store [4096 x i8] %data, [4096 x i8]* %buffer
151 static const unsigned MaxParallelChains = 64;
152 
153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
154                                       const SDValue *Parts, unsigned NumParts,
155                                       MVT PartVT, EVT ValueVT, const Value *V,
156                                       SDValue InChain,
157                                       std::optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue
165 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
166                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
167                  SDValue InChain,
168                  std::optional<CallingConv::ID> CC = std::nullopt,
169                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
170   // Let the target assemble the parts if it wants to
171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
172   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
173                                                    PartVT, ValueVT, CC))
174     return Val;
175 
176   if (ValueVT.isVector())
177     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
178                                   InChain, CC);
179 
180   assert(NumParts > 0 && "No parts to assemble!");
181   SDValue Val = Parts[0];
182 
183   if (NumParts > 1) {
184     // Assemble the value from multiple parts.
185     if (ValueVT.isInteger()) {
186       unsigned PartBits = PartVT.getSizeInBits();
187       unsigned ValueBits = ValueVT.getSizeInBits();
188 
189       // Assemble the power of 2 part.
190       unsigned RoundParts = llvm::bit_floor(NumParts);
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
200                               InChain);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
202                               PartVT, HalfVT, V, InChain);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, InChain, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
227                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
228                                          TLI.getShiftAmountTy(
229                                              TotalVT, DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249                              InChain, CC);
250     }
251   }
252 
253   // There is now one part, held in Val.  Correct it to match ValueVT.
254   // PartEVT is the type of the register class that holds the value.
255   // ValueVT is the type of the inline asm operation.
256   EVT PartEVT = Val.getValueType();
257 
258   if (PartEVT == ValueVT)
259     return Val;
260 
261   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262       ValueVT.bitsLT(PartEVT)) {
263     // For an FP value in an integer part, we need to truncate to the right
264     // width first.
265     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
266     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267   }
268 
269   // Handle types that have the same size.
270   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 
273   // Handle types with different sizes.
274   if (PartEVT.isInteger() && ValueVT.isInteger()) {
275     if (ValueVT.bitsLT(PartEVT)) {
276       // For a truncate, see if we have any information to
277       // indicate whether the truncated bits will always be
278       // zero or sign-extension.
279       if (AssertOp)
280         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281                           DAG.getValueType(ValueVT));
282       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283     }
284     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285   }
286 
287   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288     // FP_ROUND's are always exact here.
289     if (ValueVT.bitsLT(Val.getValueType())) {
290 
291       SDValue NoChange =
292           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
293 
294       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295               llvm::Attribute::StrictFP)) {
296         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298                            NoChange);
299       }
300 
301       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302     }
303 
304     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305   }
306 
307   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308   // then truncating.
309   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310       ValueVT.bitsLT(PartEVT)) {
311     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313   }
314 
315   report_fatal_error("Unknown mismatch in getCopyFromParts!");
316 }
317 
318 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
319                                               const Twine &ErrMsg) {
320   const Instruction *I = dyn_cast_or_null<Instruction>(V);
321   if (!V)
322     return Ctx.emitError(ErrMsg);
323 
324   const char *AsmError = ", possible invalid constraint for vector type";
325   if (const CallInst *CI = dyn_cast<CallInst>(I))
326     if (CI->isInlineAsm())
327       return Ctx.emitError(I, ErrMsg + AsmError);
328 
329   return Ctx.emitError(I, ErrMsg);
330 }
331 
332 /// getCopyFromPartsVector - Create a value that contains the specified legal
333 /// parts combined into the value they represent.  If the parts combine to a
334 /// type larger than ValueVT then AssertOp can be used to specify whether the
335 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
336 /// ValueVT (ISD::AssertSext).
337 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
338                                       const SDValue *Parts, unsigned NumParts,
339                                       MVT PartVT, EVT ValueVT, const Value *V,
340                                       SDValue InChain,
341                                       std::optional<CallingConv::ID> CallConv) {
342   assert(ValueVT.isVector() && "Not a vector value");
343   assert(NumParts > 0 && "No parts to assemble!");
344   const bool IsABIRegCopy = CallConv.has_value();
345 
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
359           NumIntermediates, RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
380                                   V, InChain, CallConv);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
389                                   IntermediateVT, V, InChain, CallConv);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         IntermediateVT.isVector()
396             ? EVT::getVectorVT(
397                   *DAG.getContext(), IntermediateVT.getScalarType(),
398                   IntermediateVT.getVectorElementCount() * NumParts)
399             : EVT::getVectorVT(*DAG.getContext(),
400                                IntermediateVT.getScalarType(),
401                                NumIntermediates);
402     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
403                                                 : ISD::BUILD_VECTOR,
404                       DL, BuiltVectorTy, Ops);
405   }
406 
407   // There is now one part, held in Val.  Correct it to match ValueVT.
408   EVT PartEVT = Val.getValueType();
409 
410   if (PartEVT == ValueVT)
411     return Val;
412 
413   if (PartEVT.isVector()) {
414     // Vector/Vector bitcast.
415     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
416       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
417 
418     // If the parts vector has more elements than the value vector, then we
419     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
420     // Extract the elements we want.
421     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
422       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
423               ValueVT.getVectorElementCount().getKnownMinValue()) &&
424              (PartEVT.getVectorElementCount().isScalable() ==
425               ValueVT.getVectorElementCount().isScalable()) &&
426              "Cannot narrow, it would be a lossy transformation");
427       PartEVT =
428           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
429                            ValueVT.getVectorElementCount());
430       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
431                         DAG.getVectorIdxConstant(0, DL));
432       if (PartEVT == ValueVT)
433         return Val;
434       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
435         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
438       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
439         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440     }
441 
442     // Promoted vector extract
443     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
444   }
445 
446   // Trivial bitcast if the types are the same size and the destination
447   // vector type is legal.
448   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
449       TLI.isTypeLegal(ValueVT))
450     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
451 
452   if (ValueVT.getVectorNumElements() != 1) {
453      // Certain ABIs require that vectors are passed as integers. For vectors
454      // are the same size, this is an obvious bitcast.
455      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
456        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
457      } else if (ValueVT.bitsLT(PartEVT)) {
458        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
459        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
460        // Drop the extra bits.
461        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462        return DAG.getBitcast(ValueVT, Val);
463      }
464 
465      diagnosePossiblyInvalidConstraint(
466          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
467      return DAG.getUNDEF(ValueVT);
468   }
469 
470   // Handle cases such as i8 -> <1 x i1>
471   EVT ValueSVT = ValueVT.getVectorElementType();
472   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
473     unsigned ValueSize = ValueSVT.getSizeInBits();
474     if (ValueSize == PartEVT.getSizeInBits()) {
475       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
476     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
477       // It's possible a scalar floating point type gets softened to integer and
478       // then promoted to a larger integer. If PartEVT is the larger integer
479       // we need to truncate it and then bitcast to the FP type.
480       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
481       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
482       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
483       Val = DAG.getBitcast(ValueSVT, Val);
484     } else {
485       Val = ValueVT.isFloatingPoint()
486                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
487                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
488     }
489   }
490 
491   return DAG.getBuildVector(ValueVT, DL, Val);
492 }
493 
494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                  SDValue Val, SDValue *Parts, unsigned NumParts,
496                                  MVT PartVT, const Value *V,
497                                  std::optional<CallingConv::ID> CallConv);
498 
499 /// getCopyToParts - Create a series of nodes that contain the specified value
500 /// split into legal parts.  If the parts contain more bits than Val, then, for
501 /// integers, ExtendKind can be used to specify how to generate the extra bits.
502 static void
503 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
504                unsigned NumParts, MVT PartVT, const Value *V,
505                std::optional<CallingConv::ID> CallConv = std::nullopt,
506                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507   // Let the target split the parts if it wants to
508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
509   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
510                                       CallConv))
511     return;
512   EVT ValueVT = Val.getValueType();
513 
514   // Handle the vector case separately.
515   if (ValueVT.isVector())
516     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
517                                 CallConv);
518 
519   unsigned OrigNumParts = NumParts;
520   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
521          "Copying to an illegal type!");
522 
523   if (NumParts == 0)
524     return;
525 
526   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
527   EVT PartEVT = PartVT;
528   if (PartEVT == ValueVT) {
529     assert(NumParts == 1 && "No-op copy with multiple parts!");
530     Parts[0] = Val;
531     return;
532   }
533 
534   unsigned PartBits = PartVT.getSizeInBits();
535   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536     // If the parts cover more bits than the value has, promote the value.
537     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538       assert(NumParts == 1 && "Do not know what to promote to!");
539       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
540     } else {
541       if (ValueVT.isFloatingPoint()) {
542         // FP values need to be bitcast, then extended if they are being put
543         // into a larger container.
544         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
545         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
546       }
547       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548              ValueVT.isInteger() &&
549              "Unknown mismatch!");
550       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
552       if (PartVT == MVT::x86mmx)
553         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555   } else if (PartBits == ValueVT.getSizeInBits()) {
556     // Different types of the same size.
557     assert(NumParts == 1 && PartEVT != ValueVT);
558     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
560     // If the parts cover less bits than value has, truncate the value.
561     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
562            ValueVT.isInteger() &&
563            "Unknown mismatch!");
564     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
565     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
566     if (PartVT == MVT::x86mmx)
567       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
568   }
569 
570   // The value may have changed - recompute ValueVT.
571   ValueVT = Val.getValueType();
572   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573          "Failed to tile the value with PartVT!");
574 
575   if (NumParts == 1) {
576     if (PartEVT != ValueVT) {
577       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
578                                         "scalar-to-vector conversion failed");
579       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
580     }
581 
582     Parts[0] = Val;
583     return;
584   }
585 
586   // Expand the value into multiple parts.
587   if (NumParts & (NumParts - 1)) {
588     // The number of parts is not a power of 2.  Split off and copy the tail.
589     assert(PartVT.isInteger() && ValueVT.isInteger() &&
590            "Do not know what to expand to!");
591     unsigned RoundParts = llvm::bit_floor(NumParts);
592     unsigned RoundBits = RoundParts * PartBits;
593     unsigned OddParts = NumParts - RoundParts;
594     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
595       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
596 
597     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
598                    CallConv);
599 
600     if (DAG.getDataLayout().isBigEndian())
601       // The odd parts were reversed by getCopyToParts - unreverse them.
602       std::reverse(Parts + RoundParts, Parts + NumParts);
603 
604     NumParts = RoundParts;
605     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
606     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
607   }
608 
609   // The number of parts is a power of 2.  Repeatedly bisect the value using
610   // EXTRACT_ELEMENT.
611   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
612                          EVT::getIntegerVT(*DAG.getContext(),
613                                            ValueVT.getSizeInBits()),
614                          Val);
615 
616   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617     for (unsigned i = 0; i < NumParts; i += StepSize) {
618       unsigned ThisBits = StepSize * PartBits / 2;
619       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
620       SDValue &Part0 = Parts[i];
621       SDValue &Part1 = Parts[i+StepSize/2];
622 
623       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
625       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
627 
628       if (ThisBits == PartBits && ThisVT != PartVT) {
629         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
630         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
631       }
632     }
633   }
634 
635   if (DAG.getDataLayout().isBigEndian())
636     std::reverse(Parts, Parts + OrigNumParts);
637 }
638 
639 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
640                                      const SDLoc &DL, EVT PartVT) {
641   if (!PartVT.isVector())
642     return SDValue();
643 
644   EVT ValueVT = Val.getValueType();
645   EVT PartEVT = PartVT.getVectorElementType();
646   EVT ValueEVT = ValueVT.getVectorElementType();
647   ElementCount PartNumElts = PartVT.getVectorElementCount();
648   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
649 
650   // We only support widening vectors with equivalent element types and
651   // fixed/scalable properties. If a target needs to widen a fixed-length type
652   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
653   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
654       PartNumElts.isScalable() != ValueNumElts.isScalable())
655     return SDValue();
656 
657   // Have a try for bf16 because some targets share its ABI with fp16.
658   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
659     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
660            "Cannot widen to illegal type");
661     Val = DAG.getNode(ISD::BITCAST, DL,
662                       ValueVT.changeVectorElementType(MVT::f16), Val);
663   } else if (PartEVT != ValueEVT) {
664     return SDValue();
665   }
666 
667   // Widening a scalable vector to another scalable vector is done by inserting
668   // the vector into a larger undef one.
669   if (PartNumElts.isScalable())
670     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
671                        Val, DAG.getVectorIdxConstant(0, DL));
672 
673   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
674   // undef elements.
675   SmallVector<SDValue, 16> Ops;
676   DAG.ExtractVectorElements(Val, Ops);
677   SDValue EltUndef = DAG.getUNDEF(PartEVT);
678   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
679 
680   // FIXME: Use CONCAT for 2x -> 4x.
681   return DAG.getBuildVector(PartVT, DL, Ops);
682 }
683 
684 /// getCopyToPartsVector - Create a series of nodes that contain the specified
685 /// value split into legal parts.
686 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
687                                  SDValue Val, SDValue *Parts, unsigned NumParts,
688                                  MVT PartVT, const Value *V,
689                                  std::optional<CallingConv::ID> CallConv) {
690   EVT ValueVT = Val.getValueType();
691   assert(ValueVT.isVector() && "Not a vector");
692   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
693   const bool IsABIRegCopy = CallConv.has_value();
694 
695   if (NumParts == 1) {
696     EVT PartEVT = PartVT;
697     if (PartEVT == ValueVT) {
698       // Nothing to do.
699     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
700       // Bitconvert vector->vector case.
701       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
702     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
703       Val = Widened;
704     } else if (PartVT.isVector() &&
705                PartEVT.getVectorElementType().bitsGE(
706                    ValueVT.getVectorElementType()) &&
707                PartEVT.getVectorElementCount() ==
708                    ValueVT.getVectorElementCount()) {
709 
710       // Promoted vector extract
711       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
712     } else if (PartEVT.isVector() &&
713                PartEVT.getVectorElementType() !=
714                    ValueVT.getVectorElementType() &&
715                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
716                    TargetLowering::TypeWidenVector) {
717       // Combination of widening and promotion.
718       EVT WidenVT =
719           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
720                            PartVT.getVectorElementCount());
721       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
722       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
723     } else {
724       // Don't extract an integer from a float vector. This can happen if the
725       // FP type gets softened to integer and then promoted. The promotion
726       // prevents it from being picked up by the earlier bitcast case.
727       if (ValueVT.getVectorElementCount().isScalar() &&
728           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
729         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
730                           DAG.getVectorIdxConstant(0, DL));
731       } else {
732         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
733         assert(PartVT.getFixedSizeInBits() > ValueSize &&
734                "lossy conversion of vector to scalar type");
735         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
736         Val = DAG.getBitcast(IntermediateType, Val);
737         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
738       }
739     }
740 
741     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
742     Parts[0] = Val;
743     return;
744   }
745 
746   // Handle a multi-element vector.
747   EVT IntermediateVT;
748   MVT RegisterVT;
749   unsigned NumIntermediates;
750   unsigned NumRegs;
751   if (IsABIRegCopy) {
752     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
753         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
754         RegisterVT);
755   } else {
756     NumRegs =
757         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
758                                    NumIntermediates, RegisterVT);
759   }
760 
761   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
762   NumParts = NumRegs; // Silence a compiler warning.
763   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
764 
765   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
766          "Mixing scalable and fixed vectors when copying in parts");
767 
768   std::optional<ElementCount> DestEltCnt;
769 
770   if (IntermediateVT.isVector())
771     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
772   else
773     DestEltCnt = ElementCount::getFixed(NumIntermediates);
774 
775   EVT BuiltVectorTy = EVT::getVectorVT(
776       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
777 
778   if (ValueVT == BuiltVectorTy) {
779     // Nothing to do.
780   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
781     // Bitconvert vector->vector case.
782     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
783   } else {
784     if (BuiltVectorTy.getVectorElementType().bitsGT(
785             ValueVT.getVectorElementType())) {
786       // Integer promotion.
787       ValueVT = EVT::getVectorVT(*DAG.getContext(),
788                                  BuiltVectorTy.getVectorElementType(),
789                                  ValueVT.getVectorElementCount());
790       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
791     }
792 
793     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
794       Val = Widened;
795     }
796   }
797 
798   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
799 
800   // Split the vector into intermediate operands.
801   SmallVector<SDValue, 8> Ops(NumIntermediates);
802   for (unsigned i = 0; i != NumIntermediates; ++i) {
803     if (IntermediateVT.isVector()) {
804       // This does something sensible for scalable vectors - see the
805       // definition of EXTRACT_SUBVECTOR for further details.
806       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
807       Ops[i] =
808           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
809                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
810     } else {
811       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
812                            DAG.getVectorIdxConstant(i, DL));
813     }
814   }
815 
816   // Split the intermediate operands into legal parts.
817   if (NumParts == NumIntermediates) {
818     // If the register was not expanded, promote or copy the value,
819     // as appropriate.
820     for (unsigned i = 0; i != NumParts; ++i)
821       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
822   } else if (NumParts > 0) {
823     // If the intermediate type was expanded, split each the value into
824     // legal parts.
825     assert(NumIntermediates != 0 && "division by zero");
826     assert(NumParts % NumIntermediates == 0 &&
827            "Must expand into a divisible number of parts!");
828     unsigned Factor = NumParts / NumIntermediates;
829     for (unsigned i = 0; i != NumIntermediates; ++i)
830       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
831                      CallConv);
832   }
833 }
834 
835 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
836                            EVT valuevt, std::optional<CallingConv::ID> CC)
837     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
838       RegCount(1, regs.size()), CallConv(CC) {}
839 
840 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
841                            const DataLayout &DL, unsigned Reg, Type *Ty,
842                            std::optional<CallingConv::ID> CC) {
843   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
844 
845   CallConv = CC;
846 
847   for (EVT ValueVT : ValueVTs) {
848     unsigned NumRegs =
849         isABIMangled()
850             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
851             : TLI.getNumRegisters(Context, ValueVT);
852     MVT RegisterVT =
853         isABIMangled()
854             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
855             : TLI.getRegisterType(Context, ValueVT);
856     for (unsigned i = 0; i != NumRegs; ++i)
857       Regs.push_back(Reg + i);
858     RegVTs.push_back(RegisterVT);
859     RegCount.push_back(NumRegs);
860     Reg += NumRegs;
861   }
862 }
863 
864 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
865                                       FunctionLoweringInfo &FuncInfo,
866                                       const SDLoc &dl, SDValue &Chain,
867                                       SDValue *Glue, const Value *V) const {
868   // A Value with type {} or [0 x %t] needs no registers.
869   if (ValueVTs.empty())
870     return SDValue();
871 
872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
873 
874   // Assemble the legal parts into the final values.
875   SmallVector<SDValue, 4> Values(ValueVTs.size());
876   SmallVector<SDValue, 8> Parts;
877   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
878     // Copy the legal parts from the registers.
879     EVT ValueVT = ValueVTs[Value];
880     unsigned NumRegs = RegCount[Value];
881     MVT RegisterVT = isABIMangled()
882                          ? TLI.getRegisterTypeForCallingConv(
883                                *DAG.getContext(), *CallConv, RegVTs[Value])
884                          : RegVTs[Value];
885 
886     Parts.resize(NumRegs);
887     for (unsigned i = 0; i != NumRegs; ++i) {
888       SDValue P;
889       if (!Glue) {
890         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
891       } else {
892         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
893         *Glue = P.getValue(2);
894       }
895 
896       Chain = P.getValue(1);
897       Parts[i] = P;
898 
899       // If the source register was virtual and if we know something about it,
900       // add an assert node.
901       if (!Register::isVirtualRegister(Regs[Part + i]) ||
902           !RegisterVT.isInteger())
903         continue;
904 
905       const FunctionLoweringInfo::LiveOutInfo *LOI =
906         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
907       if (!LOI)
908         continue;
909 
910       unsigned RegSize = RegisterVT.getScalarSizeInBits();
911       unsigned NumSignBits = LOI->NumSignBits;
912       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
913 
914       if (NumZeroBits == RegSize) {
915         // The current value is a zero.
916         // Explicitly express that as it would be easier for
917         // optimizations to kick in.
918         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
919         continue;
920       }
921 
922       // FIXME: We capture more information than the dag can represent.  For
923       // now, just use the tightest assertzext/assertsext possible.
924       bool isSExt;
925       EVT FromVT(MVT::Other);
926       if (NumZeroBits) {
927         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
928         isSExt = false;
929       } else if (NumSignBits > 1) {
930         FromVT =
931             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
932         isSExt = true;
933       } else {
934         continue;
935       }
936       // Add an assertion node.
937       assert(FromVT != MVT::Other);
938       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
939                              RegisterVT, P, DAG.getValueType(FromVT));
940     }
941 
942     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
943                                      RegisterVT, ValueVT, V, Chain, CallConv);
944     Part += NumRegs;
945     Parts.clear();
946   }
947 
948   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
949 }
950 
951 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
952                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
953                                  const Value *V,
954                                  ISD::NodeType PreferredExtendType) const {
955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
956   ISD::NodeType ExtendKind = PreferredExtendType;
957 
958   // Get the list of the values's legal parts.
959   unsigned NumRegs = Regs.size();
960   SmallVector<SDValue, 8> Parts(NumRegs);
961   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
962     unsigned NumParts = RegCount[Value];
963 
964     MVT RegisterVT = isABIMangled()
965                          ? TLI.getRegisterTypeForCallingConv(
966                                *DAG.getContext(), *CallConv, RegVTs[Value])
967                          : RegVTs[Value];
968 
969     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
970       ExtendKind = ISD::ZERO_EXTEND;
971 
972     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
973                    NumParts, RegisterVT, V, CallConv, ExtendKind);
974     Part += NumParts;
975   }
976 
977   // Copy the parts into the registers.
978   SmallVector<SDValue, 8> Chains(NumRegs);
979   for (unsigned i = 0; i != NumRegs; ++i) {
980     SDValue Part;
981     if (!Glue) {
982       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
983     } else {
984       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
985       *Glue = Part.getValue(1);
986     }
987 
988     Chains[i] = Part.getValue(0);
989   }
990 
991   if (NumRegs == 1 || Glue)
992     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
993     // flagged to it. That is the CopyToReg nodes and the user are considered
994     // a single scheduling unit. If we create a TokenFactor and return it as
995     // chain, then the TokenFactor is both a predecessor (operand) of the
996     // user as well as a successor (the TF operands are flagged to the user).
997     // c1, f1 = CopyToReg
998     // c2, f2 = CopyToReg
999     // c3     = TokenFactor c1, c2
1000     // ...
1001     //        = op c3, ..., f2
1002     Chain = Chains[NumRegs-1];
1003   else
1004     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1005 }
1006 
1007 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1008                                         unsigned MatchingIdx, const SDLoc &dl,
1009                                         SelectionDAG &DAG,
1010                                         std::vector<SDValue> &Ops) const {
1011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1012 
1013   InlineAsm::Flag Flag(Code, Regs.size());
1014   if (HasMatching)
1015     Flag.setMatchingOp(MatchingIdx);
1016   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1017     // Put the register class of the virtual registers in the flag word.  That
1018     // way, later passes can recompute register class constraints for inline
1019     // assembly as well as normal instructions.
1020     // Don't do this for tied operands that can use the regclass information
1021     // from the def.
1022     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1023     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1024     Flag.setRegClass(RC->getID());
1025   }
1026 
1027   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1028   Ops.push_back(Res);
1029 
1030   if (Code == InlineAsm::Kind::Clobber) {
1031     // Clobbers should always have a 1:1 mapping with registers, and may
1032     // reference registers that have illegal (e.g. vector) types. Hence, we
1033     // shouldn't try to apply any sort of splitting logic to them.
1034     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1035            "No 1:1 mapping from clobbers to regs?");
1036     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1037     (void)SP;
1038     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1039       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1040       assert(
1041           (Regs[I] != SP ||
1042            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1043           "If we clobbered the stack pointer, MFI should know about it.");
1044     }
1045     return;
1046   }
1047 
1048   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1049     MVT RegisterVT = RegVTs[Value];
1050     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1051                                            RegisterVT);
1052     for (unsigned i = 0; i != NumRegs; ++i) {
1053       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1054       unsigned TheReg = Regs[Reg++];
1055       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1056     }
1057   }
1058 }
1059 
1060 SmallVector<std::pair<unsigned, TypeSize>, 4>
1061 RegsForValue::getRegsAndSizes() const {
1062   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1063   unsigned I = 0;
1064   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1065     unsigned RegCount = std::get<0>(CountAndVT);
1066     MVT RegisterVT = std::get<1>(CountAndVT);
1067     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1068     for (unsigned E = I + RegCount; I != E; ++I)
1069       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1070   }
1071   return OutVec;
1072 }
1073 
1074 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1075                                AssumptionCache *ac,
1076                                const TargetLibraryInfo *li) {
1077   AA = aa;
1078   AC = ac;
1079   GFI = gfi;
1080   LibInfo = li;
1081   Context = DAG.getContext();
1082   LPadToCallSiteMap.clear();
1083   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1084   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1085       *DAG.getMachineFunction().getFunction().getParent());
1086 }
1087 
1088 void SelectionDAGBuilder::clear() {
1089   NodeMap.clear();
1090   UnusedArgNodeMap.clear();
1091   PendingLoads.clear();
1092   PendingExports.clear();
1093   PendingConstrainedFP.clear();
1094   PendingConstrainedFPStrict.clear();
1095   CurInst = nullptr;
1096   HasTailCall = false;
1097   SDNodeOrder = LowestSDNodeOrder;
1098   StatepointLowering.clear();
1099 }
1100 
1101 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1102   DanglingDebugInfoMap.clear();
1103 }
1104 
1105 // Update DAG root to include dependencies on Pending chains.
1106 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1107   SDValue Root = DAG.getRoot();
1108 
1109   if (Pending.empty())
1110     return Root;
1111 
1112   // Add current root to PendingChains, unless we already indirectly
1113   // depend on it.
1114   if (Root.getOpcode() != ISD::EntryToken) {
1115     unsigned i = 0, e = Pending.size();
1116     for (; i != e; ++i) {
1117       assert(Pending[i].getNode()->getNumOperands() > 1);
1118       if (Pending[i].getNode()->getOperand(0) == Root)
1119         break;  // Don't add the root if we already indirectly depend on it.
1120     }
1121 
1122     if (i == e)
1123       Pending.push_back(Root);
1124   }
1125 
1126   if (Pending.size() == 1)
1127     Root = Pending[0];
1128   else
1129     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1130 
1131   DAG.setRoot(Root);
1132   Pending.clear();
1133   return Root;
1134 }
1135 
1136 SDValue SelectionDAGBuilder::getMemoryRoot() {
1137   return updateRoot(PendingLoads);
1138 }
1139 
1140 SDValue SelectionDAGBuilder::getRoot() {
1141   // Chain up all pending constrained intrinsics together with all
1142   // pending loads, by simply appending them to PendingLoads and
1143   // then calling getMemoryRoot().
1144   PendingLoads.reserve(PendingLoads.size() +
1145                        PendingConstrainedFP.size() +
1146                        PendingConstrainedFPStrict.size());
1147   PendingLoads.append(PendingConstrainedFP.begin(),
1148                       PendingConstrainedFP.end());
1149   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1150                       PendingConstrainedFPStrict.end());
1151   PendingConstrainedFP.clear();
1152   PendingConstrainedFPStrict.clear();
1153   return getMemoryRoot();
1154 }
1155 
1156 SDValue SelectionDAGBuilder::getControlRoot() {
1157   // We need to emit pending fpexcept.strict constrained intrinsics,
1158   // so append them to the PendingExports list.
1159   PendingExports.append(PendingConstrainedFPStrict.begin(),
1160                         PendingConstrainedFPStrict.end());
1161   PendingConstrainedFPStrict.clear();
1162   return updateRoot(PendingExports);
1163 }
1164 
1165 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1166                                              DILocalVariable *Variable,
1167                                              DIExpression *Expression,
1168                                              DebugLoc DL) {
1169   assert(Variable && "Missing variable");
1170 
1171   // Check if address has undef value.
1172   if (!Address || isa<UndefValue>(Address) ||
1173       (Address->use_empty() && !isa<Argument>(Address))) {
1174     LLVM_DEBUG(
1175         dbgs()
1176         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1177     return;
1178   }
1179 
1180   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1181 
1182   SDValue &N = NodeMap[Address];
1183   if (!N.getNode() && isa<Argument>(Address))
1184     // Check unused arguments map.
1185     N = UnusedArgNodeMap[Address];
1186   SDDbgValue *SDV;
1187   if (N.getNode()) {
1188     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1189       Address = BCI->getOperand(0);
1190     // Parameters are handled specially.
1191     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1192     if (IsParameter && FINode) {
1193       // Byval parameter. We have a frame index at this point.
1194       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1195                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1196     } else if (isa<Argument>(Address)) {
1197       // Address is an argument, so try to emit its dbg value using
1198       // virtual register info from the FuncInfo.ValueMap.
1199       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1200                                FuncArgumentDbgValueKind::Declare, N);
1201       return;
1202     } else {
1203       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1204                             true, DL, SDNodeOrder);
1205     }
1206     DAG.AddDbgValue(SDV, IsParameter);
1207   } else {
1208     // If Address is an argument then try to emit its dbg value using
1209     // virtual register info from the FuncInfo.ValueMap.
1210     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1211                                   FuncArgumentDbgValueKind::Declare, N)) {
1212       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1213                         << " (could not emit func-arg dbg_value)\n");
1214     }
1215   }
1216   return;
1217 }
1218 
1219 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1220   // Add SDDbgValue nodes for any var locs here. Do so before updating
1221   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1222   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1223     // Add SDDbgValue nodes for any var locs here. Do so before updating
1224     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1225     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1226          It != End; ++It) {
1227       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1228       dropDanglingDebugInfo(Var, It->Expr);
1229       if (It->Values.isKillLocation(It->Expr)) {
1230         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1231         continue;
1232       }
1233       SmallVector<Value *> Values(It->Values.location_ops());
1234       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1235                             It->Values.hasArgList())) {
1236         SmallVector<Value *, 4> Vals;
1237         for (Value *V : It->Values.location_ops())
1238           Vals.push_back(V);
1239         addDanglingDebugInfo(Vals,
1240                              FnVarLocs->getDILocalVariable(It->VariableID),
1241                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1242       }
1243     }
1244     // We must early-exit here to prevent any DPValues from being emitted below,
1245     // as we have just emitted the debug values resulting from assignment
1246     // tracking analysis, making any existing DPValues redundant (and probably
1247     // less correct).
1248     return;
1249   }
1250 
1251   // Is there is any debug-info attached to this instruction, in the form of
1252   // DPValue non-instruction debug-info records.
1253   for (DbgRecord &DPR : I.getDbgValueRange()) {
1254     DPValue &DPV = cast<DPValue>(DPR);
1255     DILocalVariable *Variable = DPV.getVariable();
1256     DIExpression *Expression = DPV.getExpression();
1257     dropDanglingDebugInfo(Variable, Expression);
1258 
1259     if (DPV.getType() == DPValue::LocationType::Declare) {
1260       if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV))
1261         continue;
1262       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV
1263                         << "\n");
1264       handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression,
1265                          DPV.getDebugLoc());
1266       continue;
1267     }
1268 
1269     // A DPValue with no locations is a kill location.
1270     SmallVector<Value *, 4> Values(DPV.location_ops());
1271     if (Values.empty()) {
1272       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1273                            SDNodeOrder);
1274       continue;
1275     }
1276 
1277     // A DPValue with an undef or absent location is also a kill location.
1278     if (llvm::any_of(Values,
1279                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1280       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1281                            SDNodeOrder);
1282       continue;
1283     }
1284 
1285     bool IsVariadic = DPV.hasArgList();
1286     if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(),
1287                           SDNodeOrder, IsVariadic)) {
1288       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1289                            DPV.getDebugLoc(), SDNodeOrder);
1290     }
1291   }
1292 }
1293 
1294 void SelectionDAGBuilder::visit(const Instruction &I) {
1295   visitDbgInfo(I);
1296 
1297   // Set up outgoing PHI node register values before emitting the terminator.
1298   if (I.isTerminator()) {
1299     HandlePHINodesInSuccessorBlocks(I.getParent());
1300   }
1301 
1302   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1303   if (!isa<DbgInfoIntrinsic>(I))
1304     ++SDNodeOrder;
1305 
1306   CurInst = &I;
1307 
1308   // Set inserted listener only if required.
1309   bool NodeInserted = false;
1310   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1311   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1312   if (PCSectionsMD) {
1313     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1314         DAG, [&](SDNode *) { NodeInserted = true; });
1315   }
1316 
1317   visit(I.getOpcode(), I);
1318 
1319   if (!I.isTerminator() && !HasTailCall &&
1320       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1321     CopyToExportRegsIfNeeded(&I);
1322 
1323   // Handle metadata.
1324   if (PCSectionsMD) {
1325     auto It = NodeMap.find(&I);
1326     if (It != NodeMap.end()) {
1327       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1328     } else if (NodeInserted) {
1329       // This should not happen; if it does, don't let it go unnoticed so we can
1330       // fix it. Relevant visit*() function is probably missing a setValue().
1331       errs() << "warning: loosing !pcsections metadata ["
1332              << I.getModule()->getName() << "]\n";
1333       LLVM_DEBUG(I.dump());
1334       assert(false);
1335     }
1336   }
1337 
1338   CurInst = nullptr;
1339 }
1340 
1341 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1342   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1343 }
1344 
1345 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1346   // Note: this doesn't use InstVisitor, because it has to work with
1347   // ConstantExpr's in addition to instructions.
1348   switch (Opcode) {
1349   default: llvm_unreachable("Unknown instruction type encountered!");
1350     // Build the switch statement using the Instruction.def file.
1351 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1352     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1353 #include "llvm/IR/Instruction.def"
1354   }
1355 }
1356 
1357 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1358                                             DILocalVariable *Variable,
1359                                             DebugLoc DL, unsigned Order,
1360                                             SmallVectorImpl<Value *> &Values,
1361                                             DIExpression *Expression) {
1362   // For variadic dbg_values we will now insert an undef.
1363   // FIXME: We can potentially recover these!
1364   SmallVector<SDDbgOperand, 2> Locs;
1365   for (const Value *V : Values) {
1366     auto *Undef = UndefValue::get(V->getType());
1367     Locs.push_back(SDDbgOperand::fromConst(Undef));
1368   }
1369   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1370                                         /*IsIndirect=*/false, DL, Order,
1371                                         /*IsVariadic=*/true);
1372   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1373   return true;
1374 }
1375 
1376 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1377                                                DILocalVariable *Var,
1378                                                DIExpression *Expr,
1379                                                bool IsVariadic, DebugLoc DL,
1380                                                unsigned Order) {
1381   if (IsVariadic) {
1382     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1383     return;
1384   }
1385   // TODO: Dangling debug info will eventually either be resolved or produce
1386   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1387   // between the original dbg.value location and its resolved DBG_VALUE,
1388   // which we should ideally fill with an extra Undef DBG_VALUE.
1389   assert(Values.size() == 1);
1390   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1391 }
1392 
1393 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1394                                                 const DIExpression *Expr) {
1395   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1396     DIVariable *DanglingVariable = DDI.getVariable();
1397     DIExpression *DanglingExpr = DDI.getExpression();
1398     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1399       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1400                         << printDDI(nullptr, DDI) << "\n");
1401       return true;
1402     }
1403     return false;
1404   };
1405 
1406   for (auto &DDIMI : DanglingDebugInfoMap) {
1407     DanglingDebugInfoVector &DDIV = DDIMI.second;
1408 
1409     // If debug info is to be dropped, run it through final checks to see
1410     // whether it can be salvaged.
1411     for (auto &DDI : DDIV)
1412       if (isMatchingDbgValue(DDI))
1413         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1414 
1415     erase_if(DDIV, isMatchingDbgValue);
1416   }
1417 }
1418 
1419 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1420 // generate the debug data structures now that we've seen its definition.
1421 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1422                                                    SDValue Val) {
1423   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1424   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1425     return;
1426 
1427   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1428   for (auto &DDI : DDIV) {
1429     DebugLoc DL = DDI.getDebugLoc();
1430     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1431     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1432     DILocalVariable *Variable = DDI.getVariable();
1433     DIExpression *Expr = DDI.getExpression();
1434     assert(Variable->isValidLocationForIntrinsic(DL) &&
1435            "Expected inlined-at fields to agree");
1436     SDDbgValue *SDV;
1437     if (Val.getNode()) {
1438       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1439       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1440       // we couldn't resolve it directly when examining the DbgValue intrinsic
1441       // in the first place we should not be more successful here). Unless we
1442       // have some test case that prove this to be correct we should avoid
1443       // calling EmitFuncArgumentDbgValue here.
1444       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1445                                     FuncArgumentDbgValueKind::Value, Val)) {
1446         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1447                           << printDDI(V, DDI) << "\n");
1448         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1449         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1450         // inserted after the definition of Val when emitting the instructions
1451         // after ISel. An alternative could be to teach
1452         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1453         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1454                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1455                    << ValSDNodeOrder << "\n");
1456         SDV = getDbgValue(Val, Variable, Expr, DL,
1457                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1458         DAG.AddDbgValue(SDV, false);
1459       } else
1460         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1461                           << printDDI(V, DDI)
1462                           << " in EmitFuncArgumentDbgValue\n");
1463     } else {
1464       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1465                         << "\n");
1466       auto Undef = UndefValue::get(V->getType());
1467       auto SDV =
1468           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1469       DAG.AddDbgValue(SDV, false);
1470     }
1471   }
1472   DDIV.clear();
1473 }
1474 
1475 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1476                                                     DanglingDebugInfo &DDI) {
1477   // TODO: For the variadic implementation, instead of only checking the fail
1478   // state of `handleDebugValue`, we need know specifically which values were
1479   // invalid, so that we attempt to salvage only those values when processing
1480   // a DIArgList.
1481   const Value *OrigV = V;
1482   DILocalVariable *Var = DDI.getVariable();
1483   DIExpression *Expr = DDI.getExpression();
1484   DebugLoc DL = DDI.getDebugLoc();
1485   unsigned SDOrder = DDI.getSDNodeOrder();
1486 
1487   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1488   // that DW_OP_stack_value is desired.
1489   bool StackValue = true;
1490 
1491   // Can this Value can be encoded without any further work?
1492   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1493     return;
1494 
1495   // Attempt to salvage back through as many instructions as possible. Bail if
1496   // a non-instruction is seen, such as a constant expression or global
1497   // variable. FIXME: Further work could recover those too.
1498   while (isa<Instruction>(V)) {
1499     const Instruction &VAsInst = *cast<const Instruction>(V);
1500     // Temporary "0", awaiting real implementation.
1501     SmallVector<uint64_t, 16> Ops;
1502     SmallVector<Value *, 4> AdditionalValues;
1503     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1504                              Expr->getNumLocationOperands(), Ops,
1505                              AdditionalValues);
1506     // If we cannot salvage any further, and haven't yet found a suitable debug
1507     // expression, bail out.
1508     if (!V)
1509       break;
1510 
1511     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1512     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1513     // here for variadic dbg_values, remove that condition.
1514     if (!AdditionalValues.empty())
1515       break;
1516 
1517     // New value and expr now represent this debuginfo.
1518     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1519 
1520     // Some kind of simplification occurred: check whether the operand of the
1521     // salvaged debug expression can be encoded in this DAG.
1522     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1523       LLVM_DEBUG(
1524           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1525                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1526       return;
1527     }
1528   }
1529 
1530   // This was the final opportunity to salvage this debug information, and it
1531   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1532   // any earlier variable location.
1533   assert(OrigV && "V shouldn't be null");
1534   auto *Undef = UndefValue::get(OrigV->getType());
1535   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1536   DAG.AddDbgValue(SDV, false);
1537   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1538                     << printDDI(OrigV, DDI) << "\n");
1539 }
1540 
1541 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1542                                                DIExpression *Expr,
1543                                                DebugLoc DbgLoc,
1544                                                unsigned Order) {
1545   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1546   DIExpression *NewExpr =
1547       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1548   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1549                    /*IsVariadic*/ false);
1550 }
1551 
1552 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1553                                            DILocalVariable *Var,
1554                                            DIExpression *Expr, DebugLoc DbgLoc,
1555                                            unsigned Order, bool IsVariadic) {
1556   if (Values.empty())
1557     return true;
1558 
1559   // Filter EntryValue locations out early.
1560   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1561     return true;
1562 
1563   SmallVector<SDDbgOperand> LocationOps;
1564   SmallVector<SDNode *> Dependencies;
1565   for (const Value *V : Values) {
1566     // Constant value.
1567     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1568         isa<ConstantPointerNull>(V)) {
1569       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1570       continue;
1571     }
1572 
1573     // Look through IntToPtr constants.
1574     if (auto *CE = dyn_cast<ConstantExpr>(V))
1575       if (CE->getOpcode() == Instruction::IntToPtr) {
1576         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1577         continue;
1578       }
1579 
1580     // If the Value is a frame index, we can create a FrameIndex debug value
1581     // without relying on the DAG at all.
1582     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1583       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1584       if (SI != FuncInfo.StaticAllocaMap.end()) {
1585         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1586         continue;
1587       }
1588     }
1589 
1590     // Do not use getValue() in here; we don't want to generate code at
1591     // this point if it hasn't been done yet.
1592     SDValue N = NodeMap[V];
1593     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1594       N = UnusedArgNodeMap[V];
1595     if (N.getNode()) {
1596       // Only emit func arg dbg value for non-variadic dbg.values for now.
1597       if (!IsVariadic &&
1598           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1599                                    FuncArgumentDbgValueKind::Value, N))
1600         return true;
1601       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1602         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1603         // describe stack slot locations.
1604         //
1605         // Consider "int x = 0; int *px = &x;". There are two kinds of
1606         // interesting debug values here after optimization:
1607         //
1608         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1609         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1610         //
1611         // Both describe the direct values of their associated variables.
1612         Dependencies.push_back(N.getNode());
1613         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1614         continue;
1615       }
1616       LocationOps.emplace_back(
1617           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1618       continue;
1619     }
1620 
1621     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1622     // Special rules apply for the first dbg.values of parameter variables in a
1623     // function. Identify them by the fact they reference Argument Values, that
1624     // they're parameters, and they are parameters of the current function. We
1625     // need to let them dangle until they get an SDNode.
1626     bool IsParamOfFunc =
1627         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1628     if (IsParamOfFunc)
1629       return false;
1630 
1631     // The value is not used in this block yet (or it would have an SDNode).
1632     // We still want the value to appear for the user if possible -- if it has
1633     // an associated VReg, we can refer to that instead.
1634     auto VMI = FuncInfo.ValueMap.find(V);
1635     if (VMI != FuncInfo.ValueMap.end()) {
1636       unsigned Reg = VMI->second;
1637       // If this is a PHI node, it may be split up into several MI PHI nodes
1638       // (in FunctionLoweringInfo::set).
1639       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1640                        V->getType(), std::nullopt);
1641       if (RFV.occupiesMultipleRegs()) {
1642         // FIXME: We could potentially support variadic dbg_values here.
1643         if (IsVariadic)
1644           return false;
1645         unsigned Offset = 0;
1646         unsigned BitsToDescribe = 0;
1647         if (auto VarSize = Var->getSizeInBits())
1648           BitsToDescribe = *VarSize;
1649         if (auto Fragment = Expr->getFragmentInfo())
1650           BitsToDescribe = Fragment->SizeInBits;
1651         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1652           // Bail out if all bits are described already.
1653           if (Offset >= BitsToDescribe)
1654             break;
1655           // TODO: handle scalable vectors.
1656           unsigned RegisterSize = RegAndSize.second;
1657           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1658                                       ? BitsToDescribe - Offset
1659                                       : RegisterSize;
1660           auto FragmentExpr = DIExpression::createFragmentExpression(
1661               Expr, Offset, FragmentSize);
1662           if (!FragmentExpr)
1663             continue;
1664           SDDbgValue *SDV = DAG.getVRegDbgValue(
1665               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1666           DAG.AddDbgValue(SDV, false);
1667           Offset += RegisterSize;
1668         }
1669         return true;
1670       }
1671       // We can use simple vreg locations for variadic dbg_values as well.
1672       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1673       continue;
1674     }
1675     // We failed to create a SDDbgOperand for V.
1676     return false;
1677   }
1678 
1679   // We have created a SDDbgOperand for each Value in Values.
1680   // Should use Order instead of SDNodeOrder?
1681   assert(!LocationOps.empty());
1682   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1683                                         /*IsIndirect=*/false, DbgLoc,
1684                                         SDNodeOrder, IsVariadic);
1685   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1686   return true;
1687 }
1688 
1689 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1690   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1691   for (auto &Pair : DanglingDebugInfoMap)
1692     for (auto &DDI : Pair.second)
1693       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1694   clearDanglingDebugInfo();
1695 }
1696 
1697 /// getCopyFromRegs - If there was virtual register allocated for the value V
1698 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1699 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1700   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1701   SDValue Result;
1702 
1703   if (It != FuncInfo.ValueMap.end()) {
1704     Register InReg = It->second;
1705 
1706     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1707                      DAG.getDataLayout(), InReg, Ty,
1708                      std::nullopt); // This is not an ABI copy.
1709     SDValue Chain = DAG.getEntryNode();
1710     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1711                                  V);
1712     resolveDanglingDebugInfo(V, Result);
1713   }
1714 
1715   return Result;
1716 }
1717 
1718 /// getValue - Return an SDValue for the given Value.
1719 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1720   // If we already have an SDValue for this value, use it. It's important
1721   // to do this first, so that we don't create a CopyFromReg if we already
1722   // have a regular SDValue.
1723   SDValue &N = NodeMap[V];
1724   if (N.getNode()) return N;
1725 
1726   // If there's a virtual register allocated and initialized for this
1727   // value, use it.
1728   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1729     return copyFromReg;
1730 
1731   // Otherwise create a new SDValue and remember it.
1732   SDValue Val = getValueImpl(V);
1733   NodeMap[V] = Val;
1734   resolveDanglingDebugInfo(V, Val);
1735   return Val;
1736 }
1737 
1738 /// getNonRegisterValue - Return an SDValue for the given Value, but
1739 /// don't look in FuncInfo.ValueMap for a virtual register.
1740 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1741   // If we already have an SDValue for this value, use it.
1742   SDValue &N = NodeMap[V];
1743   if (N.getNode()) {
1744     if (isIntOrFPConstant(N)) {
1745       // Remove the debug location from the node as the node is about to be used
1746       // in a location which may differ from the original debug location.  This
1747       // is relevant to Constant and ConstantFP nodes because they can appear
1748       // as constant expressions inside PHI nodes.
1749       N->setDebugLoc(DebugLoc());
1750     }
1751     return N;
1752   }
1753 
1754   // Otherwise create a new SDValue and remember it.
1755   SDValue Val = getValueImpl(V);
1756   NodeMap[V] = Val;
1757   resolveDanglingDebugInfo(V, Val);
1758   return Val;
1759 }
1760 
1761 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1762 /// Create an SDValue for the given value.
1763 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1765 
1766   if (const Constant *C = dyn_cast<Constant>(V)) {
1767     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1768 
1769     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1770       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1771 
1772     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1773       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1774 
1775     if (isa<ConstantPointerNull>(C)) {
1776       unsigned AS = V->getType()->getPointerAddressSpace();
1777       return DAG.getConstant(0, getCurSDLoc(),
1778                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1779     }
1780 
1781     if (match(C, m_VScale()))
1782       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1783 
1784     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1785       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1786 
1787     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1788       return DAG.getUNDEF(VT);
1789 
1790     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1791       visit(CE->getOpcode(), *CE);
1792       SDValue N1 = NodeMap[V];
1793       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1794       return N1;
1795     }
1796 
1797     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1798       SmallVector<SDValue, 4> Constants;
1799       for (const Use &U : C->operands()) {
1800         SDNode *Val = getValue(U).getNode();
1801         // If the operand is an empty aggregate, there are no values.
1802         if (!Val) continue;
1803         // Add each leaf value from the operand to the Constants list
1804         // to form a flattened list of all the values.
1805         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1806           Constants.push_back(SDValue(Val, i));
1807       }
1808 
1809       return DAG.getMergeValues(Constants, getCurSDLoc());
1810     }
1811 
1812     if (const ConstantDataSequential *CDS =
1813           dyn_cast<ConstantDataSequential>(C)) {
1814       SmallVector<SDValue, 4> Ops;
1815       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1816         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1817         // Add each leaf value from the operand to the Constants list
1818         // to form a flattened list of all the values.
1819         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1820           Ops.push_back(SDValue(Val, i));
1821       }
1822 
1823       if (isa<ArrayType>(CDS->getType()))
1824         return DAG.getMergeValues(Ops, getCurSDLoc());
1825       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1826     }
1827 
1828     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1829       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1830              "Unknown struct or array constant!");
1831 
1832       SmallVector<EVT, 4> ValueVTs;
1833       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1834       unsigned NumElts = ValueVTs.size();
1835       if (NumElts == 0)
1836         return SDValue(); // empty struct
1837       SmallVector<SDValue, 4> Constants(NumElts);
1838       for (unsigned i = 0; i != NumElts; ++i) {
1839         EVT EltVT = ValueVTs[i];
1840         if (isa<UndefValue>(C))
1841           Constants[i] = DAG.getUNDEF(EltVT);
1842         else if (EltVT.isFloatingPoint())
1843           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1844         else
1845           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1846       }
1847 
1848       return DAG.getMergeValues(Constants, getCurSDLoc());
1849     }
1850 
1851     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1852       return DAG.getBlockAddress(BA, VT);
1853 
1854     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1855       return getValue(Equiv->getGlobalValue());
1856 
1857     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1858       return getValue(NC->getGlobalValue());
1859 
1860     if (VT == MVT::aarch64svcount) {
1861       assert(C->isNullValue() && "Can only zero this target type!");
1862       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1863                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1864     }
1865 
1866     VectorType *VecTy = cast<VectorType>(V->getType());
1867 
1868     // Now that we know the number and type of the elements, get that number of
1869     // elements into the Ops array based on what kind of constant it is.
1870     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1871       SmallVector<SDValue, 16> Ops;
1872       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1873       for (unsigned i = 0; i != NumElements; ++i)
1874         Ops.push_back(getValue(CV->getOperand(i)));
1875 
1876       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1877     }
1878 
1879     if (isa<ConstantAggregateZero>(C)) {
1880       EVT EltVT =
1881           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1882 
1883       SDValue Op;
1884       if (EltVT.isFloatingPoint())
1885         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1886       else
1887         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1888 
1889       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1890     }
1891 
1892     llvm_unreachable("Unknown vector constant");
1893   }
1894 
1895   // If this is a static alloca, generate it as the frameindex instead of
1896   // computation.
1897   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1898     DenseMap<const AllocaInst*, int>::iterator SI =
1899       FuncInfo.StaticAllocaMap.find(AI);
1900     if (SI != FuncInfo.StaticAllocaMap.end())
1901       return DAG.getFrameIndex(
1902           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1903   }
1904 
1905   // If this is an instruction which fast-isel has deferred, select it now.
1906   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1907     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1908 
1909     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1910                      Inst->getType(), std::nullopt);
1911     SDValue Chain = DAG.getEntryNode();
1912     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1913   }
1914 
1915   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1916     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1917 
1918   if (const auto *BB = dyn_cast<BasicBlock>(V))
1919     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1920 
1921   llvm_unreachable("Can't get register for value!");
1922 }
1923 
1924 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1925   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1926   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1927   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1928   bool IsSEH = isAsynchronousEHPersonality(Pers);
1929   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1930   if (!IsSEH)
1931     CatchPadMBB->setIsEHScopeEntry();
1932   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1933   if (IsMSVCCXX || IsCoreCLR)
1934     CatchPadMBB->setIsEHFuncletEntry();
1935 }
1936 
1937 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1938   // Update machine-CFG edge.
1939   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1940   FuncInfo.MBB->addSuccessor(TargetMBB);
1941   TargetMBB->setIsEHCatchretTarget(true);
1942   DAG.getMachineFunction().setHasEHCatchret(true);
1943 
1944   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1945   bool IsSEH = isAsynchronousEHPersonality(Pers);
1946   if (IsSEH) {
1947     // If this is not a fall-through branch or optimizations are switched off,
1948     // emit the branch.
1949     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1950         TM.getOptLevel() == CodeGenOptLevel::None)
1951       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1952                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1953     return;
1954   }
1955 
1956   // Figure out the funclet membership for the catchret's successor.
1957   // This will be used by the FuncletLayout pass to determine how to order the
1958   // BB's.
1959   // A 'catchret' returns to the outer scope's color.
1960   Value *ParentPad = I.getCatchSwitchParentPad();
1961   const BasicBlock *SuccessorColor;
1962   if (isa<ConstantTokenNone>(ParentPad))
1963     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1964   else
1965     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1966   assert(SuccessorColor && "No parent funclet for catchret!");
1967   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1968   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1969 
1970   // Create the terminator node.
1971   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1972                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1973                             DAG.getBasicBlock(SuccessorColorMBB));
1974   DAG.setRoot(Ret);
1975 }
1976 
1977 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1978   // Don't emit any special code for the cleanuppad instruction. It just marks
1979   // the start of an EH scope/funclet.
1980   FuncInfo.MBB->setIsEHScopeEntry();
1981   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1982   if (Pers != EHPersonality::Wasm_CXX) {
1983     FuncInfo.MBB->setIsEHFuncletEntry();
1984     FuncInfo.MBB->setIsCleanupFuncletEntry();
1985   }
1986 }
1987 
1988 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1989 // not match, it is OK to add only the first unwind destination catchpad to the
1990 // successors, because there will be at least one invoke instruction within the
1991 // catch scope that points to the next unwind destination, if one exists, so
1992 // CFGSort cannot mess up with BB sorting order.
1993 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1994 // call within them, and catchpads only consisting of 'catch (...)' have a
1995 // '__cxa_end_catch' call within them, both of which generate invokes in case
1996 // the next unwind destination exists, i.e., the next unwind destination is not
1997 // the caller.)
1998 //
1999 // Having at most one EH pad successor is also simpler and helps later
2000 // transformations.
2001 //
2002 // For example,
2003 // current:
2004 //   invoke void @foo to ... unwind label %catch.dispatch
2005 // catch.dispatch:
2006 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2007 // catch.start:
2008 //   ...
2009 //   ... in this BB or some other child BB dominated by this BB there will be an
2010 //   invoke that points to 'next' BB as an unwind destination
2011 //
2012 // next: ; We don't need to add this to 'current' BB's successor
2013 //   ...
2014 static void findWasmUnwindDestinations(
2015     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2016     BranchProbability Prob,
2017     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2018         &UnwindDests) {
2019   while (EHPadBB) {
2020     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2021     if (isa<CleanupPadInst>(Pad)) {
2022       // Stop on cleanup pads.
2023       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2024       UnwindDests.back().first->setIsEHScopeEntry();
2025       break;
2026     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2027       // Add the catchpad handlers to the possible destinations. We don't
2028       // continue to the unwind destination of the catchswitch for wasm.
2029       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2030         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2031         UnwindDests.back().first->setIsEHScopeEntry();
2032       }
2033       break;
2034     } else {
2035       continue;
2036     }
2037   }
2038 }
2039 
2040 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2041 /// many places it could ultimately go. In the IR, we have a single unwind
2042 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2043 /// This function skips over imaginary basic blocks that hold catchswitch
2044 /// instructions, and finds all the "real" machine
2045 /// basic block destinations. As those destinations may not be successors of
2046 /// EHPadBB, here we also calculate the edge probability to those destinations.
2047 /// The passed-in Prob is the edge probability to EHPadBB.
2048 static void findUnwindDestinations(
2049     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2050     BranchProbability Prob,
2051     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2052         &UnwindDests) {
2053   EHPersonality Personality =
2054     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2055   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2056   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2057   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2058   bool IsSEH = isAsynchronousEHPersonality(Personality);
2059 
2060   if (IsWasmCXX) {
2061     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2062     assert(UnwindDests.size() <= 1 &&
2063            "There should be at most one unwind destination for wasm");
2064     return;
2065   }
2066 
2067   while (EHPadBB) {
2068     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2069     BasicBlock *NewEHPadBB = nullptr;
2070     if (isa<LandingPadInst>(Pad)) {
2071       // Stop on landingpads. They are not funclets.
2072       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2073       break;
2074     } else if (isa<CleanupPadInst>(Pad)) {
2075       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2076       // personalities.
2077       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2078       UnwindDests.back().first->setIsEHScopeEntry();
2079       UnwindDests.back().first->setIsEHFuncletEntry();
2080       break;
2081     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2082       // Add the catchpad handlers to the possible destinations.
2083       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2084         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2085         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2086         if (IsMSVCCXX || IsCoreCLR)
2087           UnwindDests.back().first->setIsEHFuncletEntry();
2088         if (!IsSEH)
2089           UnwindDests.back().first->setIsEHScopeEntry();
2090       }
2091       NewEHPadBB = CatchSwitch->getUnwindDest();
2092     } else {
2093       continue;
2094     }
2095 
2096     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2097     if (BPI && NewEHPadBB)
2098       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2099     EHPadBB = NewEHPadBB;
2100   }
2101 }
2102 
2103 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2104   // Update successor info.
2105   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2106   auto UnwindDest = I.getUnwindDest();
2107   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2108   BranchProbability UnwindDestProb =
2109       (BPI && UnwindDest)
2110           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2111           : BranchProbability::getZero();
2112   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2113   for (auto &UnwindDest : UnwindDests) {
2114     UnwindDest.first->setIsEHPad();
2115     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2116   }
2117   FuncInfo.MBB->normalizeSuccProbs();
2118 
2119   // Create the terminator node.
2120   SDValue Ret =
2121       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2122   DAG.setRoot(Ret);
2123 }
2124 
2125 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2126   report_fatal_error("visitCatchSwitch not yet implemented!");
2127 }
2128 
2129 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2130   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2131   auto &DL = DAG.getDataLayout();
2132   SDValue Chain = getControlRoot();
2133   SmallVector<ISD::OutputArg, 8> Outs;
2134   SmallVector<SDValue, 8> OutVals;
2135 
2136   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2137   // lower
2138   //
2139   //   %val = call <ty> @llvm.experimental.deoptimize()
2140   //   ret <ty> %val
2141   //
2142   // differently.
2143   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2144     LowerDeoptimizingReturn();
2145     return;
2146   }
2147 
2148   if (!FuncInfo.CanLowerReturn) {
2149     unsigned DemoteReg = FuncInfo.DemoteRegister;
2150     const Function *F = I.getParent()->getParent();
2151 
2152     // Emit a store of the return value through the virtual register.
2153     // Leave Outs empty so that LowerReturn won't try to load return
2154     // registers the usual way.
2155     SmallVector<EVT, 1> PtrValueVTs;
2156     ComputeValueVTs(TLI, DL,
2157                     PointerType::get(F->getContext(),
2158                                      DAG.getDataLayout().getAllocaAddrSpace()),
2159                     PtrValueVTs);
2160 
2161     SDValue RetPtr =
2162         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2163     SDValue RetOp = getValue(I.getOperand(0));
2164 
2165     SmallVector<EVT, 4> ValueVTs, MemVTs;
2166     SmallVector<uint64_t, 4> Offsets;
2167     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2168                     &Offsets, 0);
2169     unsigned NumValues = ValueVTs.size();
2170 
2171     SmallVector<SDValue, 4> Chains(NumValues);
2172     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2173     for (unsigned i = 0; i != NumValues; ++i) {
2174       // An aggregate return value cannot wrap around the address space, so
2175       // offsets to its parts don't wrap either.
2176       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2177                                            TypeSize::getFixed(Offsets[i]));
2178 
2179       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2180       if (MemVTs[i] != ValueVTs[i])
2181         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2182       Chains[i] = DAG.getStore(
2183           Chain, getCurSDLoc(), Val,
2184           // FIXME: better loc info would be nice.
2185           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2186           commonAlignment(BaseAlign, Offsets[i]));
2187     }
2188 
2189     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2190                         MVT::Other, Chains);
2191   } else if (I.getNumOperands() != 0) {
2192     SmallVector<EVT, 4> ValueVTs;
2193     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2194     unsigned NumValues = ValueVTs.size();
2195     if (NumValues) {
2196       SDValue RetOp = getValue(I.getOperand(0));
2197 
2198       const Function *F = I.getParent()->getParent();
2199 
2200       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2201           I.getOperand(0)->getType(), F->getCallingConv(),
2202           /*IsVarArg*/ false, DL);
2203 
2204       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2205       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2206         ExtendKind = ISD::SIGN_EXTEND;
2207       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2208         ExtendKind = ISD::ZERO_EXTEND;
2209 
2210       LLVMContext &Context = F->getContext();
2211       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2212 
2213       for (unsigned j = 0; j != NumValues; ++j) {
2214         EVT VT = ValueVTs[j];
2215 
2216         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2217           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2218 
2219         CallingConv::ID CC = F->getCallingConv();
2220 
2221         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2222         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2223         SmallVector<SDValue, 4> Parts(NumParts);
2224         getCopyToParts(DAG, getCurSDLoc(),
2225                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2226                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2227 
2228         // 'inreg' on function refers to return value
2229         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2230         if (RetInReg)
2231           Flags.setInReg();
2232 
2233         if (I.getOperand(0)->getType()->isPointerTy()) {
2234           Flags.setPointer();
2235           Flags.setPointerAddrSpace(
2236               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2237         }
2238 
2239         if (NeedsRegBlock) {
2240           Flags.setInConsecutiveRegs();
2241           if (j == NumValues - 1)
2242             Flags.setInConsecutiveRegsLast();
2243         }
2244 
2245         // Propagate extension type if any
2246         if (ExtendKind == ISD::SIGN_EXTEND)
2247           Flags.setSExt();
2248         else if (ExtendKind == ISD::ZERO_EXTEND)
2249           Flags.setZExt();
2250 
2251         for (unsigned i = 0; i < NumParts; ++i) {
2252           Outs.push_back(ISD::OutputArg(Flags,
2253                                         Parts[i].getValueType().getSimpleVT(),
2254                                         VT, /*isfixed=*/true, 0, 0));
2255           OutVals.push_back(Parts[i]);
2256         }
2257       }
2258     }
2259   }
2260 
2261   // Push in swifterror virtual register as the last element of Outs. This makes
2262   // sure swifterror virtual register will be returned in the swifterror
2263   // physical register.
2264   const Function *F = I.getParent()->getParent();
2265   if (TLI.supportSwiftError() &&
2266       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2267     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2268     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2269     Flags.setSwiftError();
2270     Outs.push_back(ISD::OutputArg(
2271         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2272         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2273     // Create SDNode for the swifterror virtual register.
2274     OutVals.push_back(
2275         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2276                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2277                         EVT(TLI.getPointerTy(DL))));
2278   }
2279 
2280   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2281   CallingConv::ID CallConv =
2282     DAG.getMachineFunction().getFunction().getCallingConv();
2283   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2284       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2285 
2286   // Verify that the target's LowerReturn behaved as expected.
2287   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2288          "LowerReturn didn't return a valid chain!");
2289 
2290   // Update the DAG with the new chain value resulting from return lowering.
2291   DAG.setRoot(Chain);
2292 }
2293 
2294 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2295 /// created for it, emit nodes to copy the value into the virtual
2296 /// registers.
2297 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2298   // Skip empty types
2299   if (V->getType()->isEmptyTy())
2300     return;
2301 
2302   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2303   if (VMI != FuncInfo.ValueMap.end()) {
2304     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2305            "Unused value assigned virtual registers!");
2306     CopyValueToVirtualRegister(V, VMI->second);
2307   }
2308 }
2309 
2310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2311 /// the current basic block, add it to ValueMap now so that we'll get a
2312 /// CopyTo/FromReg.
2313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2314   // No need to export constants.
2315   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2316 
2317   // Already exported?
2318   if (FuncInfo.isExportedInst(V)) return;
2319 
2320   Register Reg = FuncInfo.InitializeRegForValue(V);
2321   CopyValueToVirtualRegister(V, Reg);
2322 }
2323 
2324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2325                                                      const BasicBlock *FromBB) {
2326   // The operands of the setcc have to be in this block.  We don't know
2327   // how to export them from some other block.
2328   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2329     // Can export from current BB.
2330     if (VI->getParent() == FromBB)
2331       return true;
2332 
2333     // Is already exported, noop.
2334     return FuncInfo.isExportedInst(V);
2335   }
2336 
2337   // If this is an argument, we can export it if the BB is the entry block or
2338   // if it is already exported.
2339   if (isa<Argument>(V)) {
2340     if (FromBB->isEntryBlock())
2341       return true;
2342 
2343     // Otherwise, can only export this if it is already exported.
2344     return FuncInfo.isExportedInst(V);
2345   }
2346 
2347   // Otherwise, constants can always be exported.
2348   return true;
2349 }
2350 
2351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2352 BranchProbability
2353 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2354                                         const MachineBasicBlock *Dst) const {
2355   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2356   const BasicBlock *SrcBB = Src->getBasicBlock();
2357   const BasicBlock *DstBB = Dst->getBasicBlock();
2358   if (!BPI) {
2359     // If BPI is not available, set the default probability as 1 / N, where N is
2360     // the number of successors.
2361     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2362     return BranchProbability(1, SuccSize);
2363   }
2364   return BPI->getEdgeProbability(SrcBB, DstBB);
2365 }
2366 
2367 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2368                                                MachineBasicBlock *Dst,
2369                                                BranchProbability Prob) {
2370   if (!FuncInfo.BPI)
2371     Src->addSuccessorWithoutProb(Dst);
2372   else {
2373     if (Prob.isUnknown())
2374       Prob = getEdgeProbability(Src, Dst);
2375     Src->addSuccessor(Dst, Prob);
2376   }
2377 }
2378 
2379 static bool InBlock(const Value *V, const BasicBlock *BB) {
2380   if (const Instruction *I = dyn_cast<Instruction>(V))
2381     return I->getParent() == BB;
2382   return true;
2383 }
2384 
2385 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2386 /// This function emits a branch and is used at the leaves of an OR or an
2387 /// AND operator tree.
2388 void
2389 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2390                                                   MachineBasicBlock *TBB,
2391                                                   MachineBasicBlock *FBB,
2392                                                   MachineBasicBlock *CurBB,
2393                                                   MachineBasicBlock *SwitchBB,
2394                                                   BranchProbability TProb,
2395                                                   BranchProbability FProb,
2396                                                   bool InvertCond) {
2397   const BasicBlock *BB = CurBB->getBasicBlock();
2398 
2399   // If the leaf of the tree is a comparison, merge the condition into
2400   // the caseblock.
2401   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2402     // The operands of the cmp have to be in this block.  We don't know
2403     // how to export them from some other block.  If this is the first block
2404     // of the sequence, no exporting is needed.
2405     if (CurBB == SwitchBB ||
2406         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2407          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2408       ISD::CondCode Condition;
2409       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2410         ICmpInst::Predicate Pred =
2411             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2412         Condition = getICmpCondCode(Pred);
2413       } else {
2414         const FCmpInst *FC = cast<FCmpInst>(Cond);
2415         FCmpInst::Predicate Pred =
2416             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2417         Condition = getFCmpCondCode(Pred);
2418         if (TM.Options.NoNaNsFPMath)
2419           Condition = getFCmpCodeWithoutNaN(Condition);
2420       }
2421 
2422       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2423                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2424       SL->SwitchCases.push_back(CB);
2425       return;
2426     }
2427   }
2428 
2429   // Create a CaseBlock record representing this branch.
2430   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2431   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2432                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2433   SL->SwitchCases.push_back(CB);
2434 }
2435 
2436 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2437                                                MachineBasicBlock *TBB,
2438                                                MachineBasicBlock *FBB,
2439                                                MachineBasicBlock *CurBB,
2440                                                MachineBasicBlock *SwitchBB,
2441                                                Instruction::BinaryOps Opc,
2442                                                BranchProbability TProb,
2443                                                BranchProbability FProb,
2444                                                bool InvertCond) {
2445   // Skip over not part of the tree and remember to invert op and operands at
2446   // next level.
2447   Value *NotCond;
2448   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2449       InBlock(NotCond, CurBB->getBasicBlock())) {
2450     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2451                          !InvertCond);
2452     return;
2453   }
2454 
2455   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2456   const Value *BOpOp0, *BOpOp1;
2457   // Compute the effective opcode for Cond, taking into account whether it needs
2458   // to be inverted, e.g.
2459   //   and (not (or A, B)), C
2460   // gets lowered as
2461   //   and (and (not A, not B), C)
2462   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2463   if (BOp) {
2464     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2465                ? Instruction::And
2466                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2467                       ? Instruction::Or
2468                       : (Instruction::BinaryOps)0);
2469     if (InvertCond) {
2470       if (BOpc == Instruction::And)
2471         BOpc = Instruction::Or;
2472       else if (BOpc == Instruction::Or)
2473         BOpc = Instruction::And;
2474     }
2475   }
2476 
2477   // If this node is not part of the or/and tree, emit it as a branch.
2478   // Note that all nodes in the tree should have same opcode.
2479   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2480   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2481       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2482       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2483     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2484                                  TProb, FProb, InvertCond);
2485     return;
2486   }
2487 
2488   //  Create TmpBB after CurBB.
2489   MachineFunction::iterator BBI(CurBB);
2490   MachineFunction &MF = DAG.getMachineFunction();
2491   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2492   CurBB->getParent()->insert(++BBI, TmpBB);
2493 
2494   if (Opc == Instruction::Or) {
2495     // Codegen X | Y as:
2496     // BB1:
2497     //   jmp_if_X TBB
2498     //   jmp TmpBB
2499     // TmpBB:
2500     //   jmp_if_Y TBB
2501     //   jmp FBB
2502     //
2503 
2504     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2505     // The requirement is that
2506     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2507     //     = TrueProb for original BB.
2508     // Assuming the original probabilities are A and B, one choice is to set
2509     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2510     // A/(1+B) and 2B/(1+B). This choice assumes that
2511     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2512     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2513     // TmpBB, but the math is more complicated.
2514 
2515     auto NewTrueProb = TProb / 2;
2516     auto NewFalseProb = TProb / 2 + FProb;
2517     // Emit the LHS condition.
2518     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2519                          NewFalseProb, InvertCond);
2520 
2521     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2522     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2523     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2524     // Emit the RHS condition into TmpBB.
2525     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2526                          Probs[1], InvertCond);
2527   } else {
2528     assert(Opc == Instruction::And && "Unknown merge op!");
2529     // Codegen X & Y as:
2530     // BB1:
2531     //   jmp_if_X TmpBB
2532     //   jmp FBB
2533     // TmpBB:
2534     //   jmp_if_Y TBB
2535     //   jmp FBB
2536     //
2537     //  This requires creation of TmpBB after CurBB.
2538 
2539     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2540     // The requirement is that
2541     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2542     //     = FalseProb for original BB.
2543     // Assuming the original probabilities are A and B, one choice is to set
2544     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2545     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2546     // TrueProb for BB1 * FalseProb for TmpBB.
2547 
2548     auto NewTrueProb = TProb + FProb / 2;
2549     auto NewFalseProb = FProb / 2;
2550     // Emit the LHS condition.
2551     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2552                          NewFalseProb, InvertCond);
2553 
2554     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2555     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2556     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2557     // Emit the RHS condition into TmpBB.
2558     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2559                          Probs[1], InvertCond);
2560   }
2561 }
2562 
2563 /// If the set of cases should be emitted as a series of branches, return true.
2564 /// If we should emit this as a bunch of and/or'd together conditions, return
2565 /// false.
2566 bool
2567 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2568   if (Cases.size() != 2) return true;
2569 
2570   // If this is two comparisons of the same values or'd or and'd together, they
2571   // will get folded into a single comparison, so don't emit two blocks.
2572   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2573        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2574       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2575        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2576     return false;
2577   }
2578 
2579   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2580   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2581   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2582       Cases[0].CC == Cases[1].CC &&
2583       isa<Constant>(Cases[0].CmpRHS) &&
2584       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2585     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2586       return false;
2587     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2588       return false;
2589   }
2590 
2591   return true;
2592 }
2593 
2594 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2595   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2596 
2597   // Update machine-CFG edges.
2598   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2599 
2600   if (I.isUnconditional()) {
2601     // Update machine-CFG edges.
2602     BrMBB->addSuccessor(Succ0MBB);
2603 
2604     // If this is not a fall-through branch or optimizations are switched off,
2605     // emit the branch.
2606     if (Succ0MBB != NextBlock(BrMBB) ||
2607         TM.getOptLevel() == CodeGenOptLevel::None) {
2608       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2609                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2610       setValue(&I, Br);
2611       DAG.setRoot(Br);
2612     }
2613 
2614     return;
2615   }
2616 
2617   // If this condition is one of the special cases we handle, do special stuff
2618   // now.
2619   const Value *CondVal = I.getCondition();
2620   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2621 
2622   // If this is a series of conditions that are or'd or and'd together, emit
2623   // this as a sequence of branches instead of setcc's with and/or operations.
2624   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2625   // unpredictable branches, and vector extracts because those jumps are likely
2626   // expensive for any target), this should improve performance.
2627   // For example, instead of something like:
2628   //     cmp A, B
2629   //     C = seteq
2630   //     cmp D, E
2631   //     F = setle
2632   //     or C, F
2633   //     jnz foo
2634   // Emit:
2635   //     cmp A, B
2636   //     je foo
2637   //     cmp D, E
2638   //     jle foo
2639   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2640   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2641       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2642     Value *Vec;
2643     const Value *BOp0, *BOp1;
2644     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2645     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2646       Opcode = Instruction::And;
2647     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2648       Opcode = Instruction::Or;
2649 
2650     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2651                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2652       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2653                            getEdgeProbability(BrMBB, Succ0MBB),
2654                            getEdgeProbability(BrMBB, Succ1MBB),
2655                            /*InvertCond=*/false);
2656       // If the compares in later blocks need to use values not currently
2657       // exported from this block, export them now.  This block should always
2658       // be the first entry.
2659       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2660 
2661       // Allow some cases to be rejected.
2662       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2663         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2664           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2665           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2666         }
2667 
2668         // Emit the branch for this block.
2669         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2670         SL->SwitchCases.erase(SL->SwitchCases.begin());
2671         return;
2672       }
2673 
2674       // Okay, we decided not to do this, remove any inserted MBB's and clear
2675       // SwitchCases.
2676       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2677         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2678 
2679       SL->SwitchCases.clear();
2680     }
2681   }
2682 
2683   // Create a CaseBlock record representing this branch.
2684   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2685                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2686 
2687   // Use visitSwitchCase to actually insert the fast branch sequence for this
2688   // cond branch.
2689   visitSwitchCase(CB, BrMBB);
2690 }
2691 
2692 /// visitSwitchCase - Emits the necessary code to represent a single node in
2693 /// the binary search tree resulting from lowering a switch instruction.
2694 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2695                                           MachineBasicBlock *SwitchBB) {
2696   SDValue Cond;
2697   SDValue CondLHS = getValue(CB.CmpLHS);
2698   SDLoc dl = CB.DL;
2699 
2700   if (CB.CC == ISD::SETTRUE) {
2701     // Branch or fall through to TrueBB.
2702     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2703     SwitchBB->normalizeSuccProbs();
2704     if (CB.TrueBB != NextBlock(SwitchBB)) {
2705       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2706                               DAG.getBasicBlock(CB.TrueBB)));
2707     }
2708     return;
2709   }
2710 
2711   auto &TLI = DAG.getTargetLoweringInfo();
2712   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2713 
2714   // Build the setcc now.
2715   if (!CB.CmpMHS) {
2716     // Fold "(X == true)" to X and "(X == false)" to !X to
2717     // handle common cases produced by branch lowering.
2718     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2719         CB.CC == ISD::SETEQ)
2720       Cond = CondLHS;
2721     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2722              CB.CC == ISD::SETEQ) {
2723       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2724       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2725     } else {
2726       SDValue CondRHS = getValue(CB.CmpRHS);
2727 
2728       // If a pointer's DAG type is larger than its memory type then the DAG
2729       // values are zero-extended. This breaks signed comparisons so truncate
2730       // back to the underlying type before doing the compare.
2731       if (CondLHS.getValueType() != MemVT) {
2732         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2733         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2734       }
2735       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2736     }
2737   } else {
2738     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2739 
2740     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2741     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2742 
2743     SDValue CmpOp = getValue(CB.CmpMHS);
2744     EVT VT = CmpOp.getValueType();
2745 
2746     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2747       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2748                           ISD::SETLE);
2749     } else {
2750       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2751                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2752       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2753                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2754     }
2755   }
2756 
2757   // Update successor info
2758   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2759   // TrueBB and FalseBB are always different unless the incoming IR is
2760   // degenerate. This only happens when running llc on weird IR.
2761   if (CB.TrueBB != CB.FalseBB)
2762     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2763   SwitchBB->normalizeSuccProbs();
2764 
2765   // If the lhs block is the next block, invert the condition so that we can
2766   // fall through to the lhs instead of the rhs block.
2767   if (CB.TrueBB == NextBlock(SwitchBB)) {
2768     std::swap(CB.TrueBB, CB.FalseBB);
2769     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2770     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2771   }
2772 
2773   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2774                                MVT::Other, getControlRoot(), Cond,
2775                                DAG.getBasicBlock(CB.TrueBB));
2776 
2777   setValue(CurInst, BrCond);
2778 
2779   // Insert the false branch. Do this even if it's a fall through branch,
2780   // this makes it easier to do DAG optimizations which require inverting
2781   // the branch condition.
2782   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2783                        DAG.getBasicBlock(CB.FalseBB));
2784 
2785   DAG.setRoot(BrCond);
2786 }
2787 
2788 /// visitJumpTable - Emit JumpTable node in the current MBB
2789 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2790   // Emit the code for the jump table
2791   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2792   assert(JT.Reg != -1U && "Should lower JT Header first!");
2793   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2794   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2795   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2796   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2797                                     Index.getValue(1), Table, Index);
2798   DAG.setRoot(BrJumpTable);
2799 }
2800 
2801 /// visitJumpTableHeader - This function emits necessary code to produce index
2802 /// in the JumpTable from switch case.
2803 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2804                                                JumpTableHeader &JTH,
2805                                                MachineBasicBlock *SwitchBB) {
2806   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2807   const SDLoc &dl = *JT.SL;
2808 
2809   // Subtract the lowest switch case value from the value being switched on.
2810   SDValue SwitchOp = getValue(JTH.SValue);
2811   EVT VT = SwitchOp.getValueType();
2812   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2813                             DAG.getConstant(JTH.First, dl, VT));
2814 
2815   // The SDNode we just created, which holds the value being switched on minus
2816   // the smallest case value, needs to be copied to a virtual register so it
2817   // can be used as an index into the jump table in a subsequent basic block.
2818   // This value may be smaller or larger than the target's pointer type, and
2819   // therefore require extension or truncating.
2820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2821   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2822 
2823   unsigned JumpTableReg =
2824       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2825   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2826                                     JumpTableReg, SwitchOp);
2827   JT.Reg = JumpTableReg;
2828 
2829   if (!JTH.FallthroughUnreachable) {
2830     // Emit the range check for the jump table, and branch to the default block
2831     // for the switch statement if the value being switched on exceeds the
2832     // largest case in the switch.
2833     SDValue CMP = DAG.getSetCC(
2834         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2835                                    Sub.getValueType()),
2836         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2837 
2838     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2839                                  MVT::Other, CopyTo, CMP,
2840                                  DAG.getBasicBlock(JT.Default));
2841 
2842     // Avoid emitting unnecessary branches to the next block.
2843     if (JT.MBB != NextBlock(SwitchBB))
2844       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2845                            DAG.getBasicBlock(JT.MBB));
2846 
2847     DAG.setRoot(BrCond);
2848   } else {
2849     // Avoid emitting unnecessary branches to the next block.
2850     if (JT.MBB != NextBlock(SwitchBB))
2851       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2852                               DAG.getBasicBlock(JT.MBB)));
2853     else
2854       DAG.setRoot(CopyTo);
2855   }
2856 }
2857 
2858 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2859 /// variable if there exists one.
2860 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2861                                  SDValue &Chain) {
2862   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2863   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2864   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2865   MachineFunction &MF = DAG.getMachineFunction();
2866   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2867   MachineSDNode *Node =
2868       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2869   if (Global) {
2870     MachinePointerInfo MPInfo(Global);
2871     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2872                  MachineMemOperand::MODereferenceable;
2873     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2874         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2875     DAG.setNodeMemRefs(Node, {MemRef});
2876   }
2877   if (PtrTy != PtrMemTy)
2878     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2879   return SDValue(Node, 0);
2880 }
2881 
2882 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2883 /// tail spliced into a stack protector check success bb.
2884 ///
2885 /// For a high level explanation of how this fits into the stack protector
2886 /// generation see the comment on the declaration of class
2887 /// StackProtectorDescriptor.
2888 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2889                                                   MachineBasicBlock *ParentBB) {
2890 
2891   // First create the loads to the guard/stack slot for the comparison.
2892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2893   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2894   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2895 
2896   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2897   int FI = MFI.getStackProtectorIndex();
2898 
2899   SDValue Guard;
2900   SDLoc dl = getCurSDLoc();
2901   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2902   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2903   Align Align =
2904       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
2905 
2906   // Generate code to load the content of the guard slot.
2907   SDValue GuardVal = DAG.getLoad(
2908       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2909       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2910       MachineMemOperand::MOVolatile);
2911 
2912   if (TLI.useStackGuardXorFP())
2913     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2914 
2915   // Retrieve guard check function, nullptr if instrumentation is inlined.
2916   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2917     // The target provides a guard check function to validate the guard value.
2918     // Generate a call to that function with the content of the guard slot as
2919     // argument.
2920     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2921     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2922 
2923     TargetLowering::ArgListTy Args;
2924     TargetLowering::ArgListEntry Entry;
2925     Entry.Node = GuardVal;
2926     Entry.Ty = FnTy->getParamType(0);
2927     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2928       Entry.IsInReg = true;
2929     Args.push_back(Entry);
2930 
2931     TargetLowering::CallLoweringInfo CLI(DAG);
2932     CLI.setDebugLoc(getCurSDLoc())
2933         .setChain(DAG.getEntryNode())
2934         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2935                    getValue(GuardCheckFn), std::move(Args));
2936 
2937     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2938     DAG.setRoot(Result.second);
2939     return;
2940   }
2941 
2942   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2943   // Otherwise, emit a volatile load to retrieve the stack guard value.
2944   SDValue Chain = DAG.getEntryNode();
2945   if (TLI.useLoadStackGuardNode()) {
2946     Guard = getLoadStackGuard(DAG, dl, Chain);
2947   } else {
2948     const Value *IRGuard = TLI.getSDagStackGuard(M);
2949     SDValue GuardPtr = getValue(IRGuard);
2950 
2951     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2952                         MachinePointerInfo(IRGuard, 0), Align,
2953                         MachineMemOperand::MOVolatile);
2954   }
2955 
2956   // Perform the comparison via a getsetcc.
2957   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2958                                                         *DAG.getContext(),
2959                                                         Guard.getValueType()),
2960                              Guard, GuardVal, ISD::SETNE);
2961 
2962   // If the guard/stackslot do not equal, branch to failure MBB.
2963   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2964                                MVT::Other, GuardVal.getOperand(0),
2965                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2966   // Otherwise branch to success MBB.
2967   SDValue Br = DAG.getNode(ISD::BR, dl,
2968                            MVT::Other, BrCond,
2969                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2970 
2971   DAG.setRoot(Br);
2972 }
2973 
2974 /// Codegen the failure basic block for a stack protector check.
2975 ///
2976 /// A failure stack protector machine basic block consists simply of a call to
2977 /// __stack_chk_fail().
2978 ///
2979 /// For a high level explanation of how this fits into the stack protector
2980 /// generation see the comment on the declaration of class
2981 /// StackProtectorDescriptor.
2982 void
2983 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2985   TargetLowering::MakeLibCallOptions CallOptions;
2986   CallOptions.setDiscardResult(true);
2987   SDValue Chain =
2988       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2989                       std::nullopt, CallOptions, getCurSDLoc())
2990           .second;
2991   // On PS4/PS5, the "return address" must still be within the calling
2992   // function, even if it's at the very end, so emit an explicit TRAP here.
2993   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2994   if (TM.getTargetTriple().isPS())
2995     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2996   // WebAssembly needs an unreachable instruction after a non-returning call,
2997   // because the function return type can be different from __stack_chk_fail's
2998   // return type (void).
2999   if (TM.getTargetTriple().isWasm())
3000     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3001 
3002   DAG.setRoot(Chain);
3003 }
3004 
3005 /// visitBitTestHeader - This function emits necessary code to produce value
3006 /// suitable for "bit tests"
3007 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3008                                              MachineBasicBlock *SwitchBB) {
3009   SDLoc dl = getCurSDLoc();
3010 
3011   // Subtract the minimum value.
3012   SDValue SwitchOp = getValue(B.SValue);
3013   EVT VT = SwitchOp.getValueType();
3014   SDValue RangeSub =
3015       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3016 
3017   // Determine the type of the test operands.
3018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3019   bool UsePtrType = false;
3020   if (!TLI.isTypeLegal(VT)) {
3021     UsePtrType = true;
3022   } else {
3023     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3024       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3025         // Switch table case range are encoded into series of masks.
3026         // Just use pointer type, it's guaranteed to fit.
3027         UsePtrType = true;
3028         break;
3029       }
3030   }
3031   SDValue Sub = RangeSub;
3032   if (UsePtrType) {
3033     VT = TLI.getPointerTy(DAG.getDataLayout());
3034     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3035   }
3036 
3037   B.RegVT = VT.getSimpleVT();
3038   B.Reg = FuncInfo.CreateReg(B.RegVT);
3039   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3040 
3041   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3042 
3043   if (!B.FallthroughUnreachable)
3044     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3045   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3046   SwitchBB->normalizeSuccProbs();
3047 
3048   SDValue Root = CopyTo;
3049   if (!B.FallthroughUnreachable) {
3050     // Conditional branch to the default block.
3051     SDValue RangeCmp = DAG.getSetCC(dl,
3052         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3053                                RangeSub.getValueType()),
3054         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3055         ISD::SETUGT);
3056 
3057     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3058                        DAG.getBasicBlock(B.Default));
3059   }
3060 
3061   // Avoid emitting unnecessary branches to the next block.
3062   if (MBB != NextBlock(SwitchBB))
3063     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3064 
3065   DAG.setRoot(Root);
3066 }
3067 
3068 /// visitBitTestCase - this function produces one "bit test"
3069 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3070                                            MachineBasicBlock* NextMBB,
3071                                            BranchProbability BranchProbToNext,
3072                                            unsigned Reg,
3073                                            BitTestCase &B,
3074                                            MachineBasicBlock *SwitchBB) {
3075   SDLoc dl = getCurSDLoc();
3076   MVT VT = BB.RegVT;
3077   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3078   SDValue Cmp;
3079   unsigned PopCount = llvm::popcount(B.Mask);
3080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081   if (PopCount == 1) {
3082     // Testing for a single bit; just compare the shift count with what it
3083     // would need to be to shift a 1 bit in that position.
3084     Cmp = DAG.getSetCC(
3085         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3086         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3087         ISD::SETEQ);
3088   } else if (PopCount == BB.Range) {
3089     // There is only one zero bit in the range, test for it directly.
3090     Cmp = DAG.getSetCC(
3091         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3092         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3093   } else {
3094     // Make desired shift
3095     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3096                                     DAG.getConstant(1, dl, VT), ShiftOp);
3097 
3098     // Emit bit tests and jumps
3099     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3100                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3101     Cmp = DAG.getSetCC(
3102         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3103         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3104   }
3105 
3106   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3107   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3108   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3109   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3110   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3111   // one as they are relative probabilities (and thus work more like weights),
3112   // and hence we need to normalize them to let the sum of them become one.
3113   SwitchBB->normalizeSuccProbs();
3114 
3115   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3116                               MVT::Other, getControlRoot(),
3117                               Cmp, DAG.getBasicBlock(B.TargetBB));
3118 
3119   // Avoid emitting unnecessary branches to the next block.
3120   if (NextMBB != NextBlock(SwitchBB))
3121     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3122                         DAG.getBasicBlock(NextMBB));
3123 
3124   DAG.setRoot(BrAnd);
3125 }
3126 
3127 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3128   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3129 
3130   // Retrieve successors. Look through artificial IR level blocks like
3131   // catchswitch for successors.
3132   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3133   const BasicBlock *EHPadBB = I.getSuccessor(1);
3134   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3135 
3136   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3137   // have to do anything here to lower funclet bundles.
3138   assert(!I.hasOperandBundlesOtherThan(
3139              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3140               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3141               LLVMContext::OB_cfguardtarget,
3142               LLVMContext::OB_clang_arc_attachedcall}) &&
3143          "Cannot lower invokes with arbitrary operand bundles yet!");
3144 
3145   const Value *Callee(I.getCalledOperand());
3146   const Function *Fn = dyn_cast<Function>(Callee);
3147   if (isa<InlineAsm>(Callee))
3148     visitInlineAsm(I, EHPadBB);
3149   else if (Fn && Fn->isIntrinsic()) {
3150     switch (Fn->getIntrinsicID()) {
3151     default:
3152       llvm_unreachable("Cannot invoke this intrinsic");
3153     case Intrinsic::donothing:
3154       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3155     case Intrinsic::seh_try_begin:
3156     case Intrinsic::seh_scope_begin:
3157     case Intrinsic::seh_try_end:
3158     case Intrinsic::seh_scope_end:
3159       if (EHPadMBB)
3160           // a block referenced by EH table
3161           // so dtor-funclet not removed by opts
3162           EHPadMBB->setMachineBlockAddressTaken();
3163       break;
3164     case Intrinsic::experimental_patchpoint_void:
3165     case Intrinsic::experimental_patchpoint_i64:
3166       visitPatchpoint(I, EHPadBB);
3167       break;
3168     case Intrinsic::experimental_gc_statepoint:
3169       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3170       break;
3171     case Intrinsic::wasm_rethrow: {
3172       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3173       // special because it can be invoked, so we manually lower it to a DAG
3174       // node here.
3175       SmallVector<SDValue, 8> Ops;
3176       Ops.push_back(getRoot()); // inchain
3177       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3178       Ops.push_back(
3179           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3180                                 TLI.getPointerTy(DAG.getDataLayout())));
3181       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3182       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3183       break;
3184     }
3185     }
3186   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3187     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3188     // Eventually we will support lowering the @llvm.experimental.deoptimize
3189     // intrinsic, and right now there are no plans to support other intrinsics
3190     // with deopt state.
3191     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3192   } else {
3193     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3194   }
3195 
3196   // If the value of the invoke is used outside of its defining block, make it
3197   // available as a virtual register.
3198   // We already took care of the exported value for the statepoint instruction
3199   // during call to the LowerStatepoint.
3200   if (!isa<GCStatepointInst>(I)) {
3201     CopyToExportRegsIfNeeded(&I);
3202   }
3203 
3204   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3205   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3206   BranchProbability EHPadBBProb =
3207       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3208           : BranchProbability::getZero();
3209   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3210 
3211   // Update successor info.
3212   addSuccessorWithProb(InvokeMBB, Return);
3213   for (auto &UnwindDest : UnwindDests) {
3214     UnwindDest.first->setIsEHPad();
3215     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3216   }
3217   InvokeMBB->normalizeSuccProbs();
3218 
3219   // Drop into normal successor.
3220   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3221                           DAG.getBasicBlock(Return)));
3222 }
3223 
3224 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3225   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3226 
3227   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3228   // have to do anything here to lower funclet bundles.
3229   assert(!I.hasOperandBundlesOtherThan(
3230              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3231          "Cannot lower callbrs with arbitrary operand bundles yet!");
3232 
3233   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3234   visitInlineAsm(I);
3235   CopyToExportRegsIfNeeded(&I);
3236 
3237   // Retrieve successors.
3238   SmallPtrSet<BasicBlock *, 8> Dests;
3239   Dests.insert(I.getDefaultDest());
3240   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3241 
3242   // Update successor info.
3243   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3244   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3245     BasicBlock *Dest = I.getIndirectDest(i);
3246     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3247     Target->setIsInlineAsmBrIndirectTarget();
3248     Target->setMachineBlockAddressTaken();
3249     Target->setLabelMustBeEmitted();
3250     // Don't add duplicate machine successors.
3251     if (Dests.insert(Dest).second)
3252       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3253   }
3254   CallBrMBB->normalizeSuccProbs();
3255 
3256   // Drop into default successor.
3257   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3258                           MVT::Other, getControlRoot(),
3259                           DAG.getBasicBlock(Return)));
3260 }
3261 
3262 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3263   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3264 }
3265 
3266 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3267   assert(FuncInfo.MBB->isEHPad() &&
3268          "Call to landingpad not in landing pad!");
3269 
3270   // If there aren't registers to copy the values into (e.g., during SjLj
3271   // exceptions), then don't bother to create these DAG nodes.
3272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3273   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3274   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3275       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3276     return;
3277 
3278   // If landingpad's return type is token type, we don't create DAG nodes
3279   // for its exception pointer and selector value. The extraction of exception
3280   // pointer or selector value from token type landingpads is not currently
3281   // supported.
3282   if (LP.getType()->isTokenTy())
3283     return;
3284 
3285   SmallVector<EVT, 2> ValueVTs;
3286   SDLoc dl = getCurSDLoc();
3287   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3288   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3289 
3290   // Get the two live-in registers as SDValues. The physregs have already been
3291   // copied into virtual registers.
3292   SDValue Ops[2];
3293   if (FuncInfo.ExceptionPointerVirtReg) {
3294     Ops[0] = DAG.getZExtOrTrunc(
3295         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3296                            FuncInfo.ExceptionPointerVirtReg,
3297                            TLI.getPointerTy(DAG.getDataLayout())),
3298         dl, ValueVTs[0]);
3299   } else {
3300     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3301   }
3302   Ops[1] = DAG.getZExtOrTrunc(
3303       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3304                          FuncInfo.ExceptionSelectorVirtReg,
3305                          TLI.getPointerTy(DAG.getDataLayout())),
3306       dl, ValueVTs[1]);
3307 
3308   // Merge into one.
3309   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3310                             DAG.getVTList(ValueVTs), Ops);
3311   setValue(&LP, Res);
3312 }
3313 
3314 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3315                                            MachineBasicBlock *Last) {
3316   // Update JTCases.
3317   for (JumpTableBlock &JTB : SL->JTCases)
3318     if (JTB.first.HeaderBB == First)
3319       JTB.first.HeaderBB = Last;
3320 
3321   // Update BitTestCases.
3322   for (BitTestBlock &BTB : SL->BitTestCases)
3323     if (BTB.Parent == First)
3324       BTB.Parent = Last;
3325 }
3326 
3327 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3328   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3329 
3330   // Update machine-CFG edges with unique successors.
3331   SmallSet<BasicBlock*, 32> Done;
3332   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3333     BasicBlock *BB = I.getSuccessor(i);
3334     bool Inserted = Done.insert(BB).second;
3335     if (!Inserted)
3336         continue;
3337 
3338     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3339     addSuccessorWithProb(IndirectBrMBB, Succ);
3340   }
3341   IndirectBrMBB->normalizeSuccProbs();
3342 
3343   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3344                           MVT::Other, getControlRoot(),
3345                           getValue(I.getAddress())));
3346 }
3347 
3348 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3349   if (!DAG.getTarget().Options.TrapUnreachable)
3350     return;
3351 
3352   // We may be able to ignore unreachable behind a noreturn call.
3353   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3354     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3355       if (Call->doesNotReturn())
3356         return;
3357     }
3358   }
3359 
3360   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3361 }
3362 
3363 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3364   SDNodeFlags Flags;
3365   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3366     Flags.copyFMF(*FPOp);
3367 
3368   SDValue Op = getValue(I.getOperand(0));
3369   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3370                                     Op, Flags);
3371   setValue(&I, UnNodeValue);
3372 }
3373 
3374 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3375   SDNodeFlags Flags;
3376   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3377     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3378     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3379   }
3380   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3381     Flags.setExact(ExactOp->isExact());
3382   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3383     Flags.setDisjoint(DisjointOp->isDisjoint());
3384   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3385     Flags.copyFMF(*FPOp);
3386 
3387   SDValue Op1 = getValue(I.getOperand(0));
3388   SDValue Op2 = getValue(I.getOperand(1));
3389   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3390                                      Op1, Op2, Flags);
3391   setValue(&I, BinNodeValue);
3392 }
3393 
3394 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3395   SDValue Op1 = getValue(I.getOperand(0));
3396   SDValue Op2 = getValue(I.getOperand(1));
3397 
3398   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3399       Op1.getValueType(), DAG.getDataLayout());
3400 
3401   // Coerce the shift amount to the right type if we can. This exposes the
3402   // truncate or zext to optimization early.
3403   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3404     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3405            "Unexpected shift type");
3406     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3407   }
3408 
3409   bool nuw = false;
3410   bool nsw = false;
3411   bool exact = false;
3412 
3413   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3414 
3415     if (const OverflowingBinaryOperator *OFBinOp =
3416             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3417       nuw = OFBinOp->hasNoUnsignedWrap();
3418       nsw = OFBinOp->hasNoSignedWrap();
3419     }
3420     if (const PossiblyExactOperator *ExactOp =
3421             dyn_cast<const PossiblyExactOperator>(&I))
3422       exact = ExactOp->isExact();
3423   }
3424   SDNodeFlags Flags;
3425   Flags.setExact(exact);
3426   Flags.setNoSignedWrap(nsw);
3427   Flags.setNoUnsignedWrap(nuw);
3428   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3429                             Flags);
3430   setValue(&I, Res);
3431 }
3432 
3433 void SelectionDAGBuilder::visitSDiv(const User &I) {
3434   SDValue Op1 = getValue(I.getOperand(0));
3435   SDValue Op2 = getValue(I.getOperand(1));
3436 
3437   SDNodeFlags Flags;
3438   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3439                  cast<PossiblyExactOperator>(&I)->isExact());
3440   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3441                            Op2, Flags));
3442 }
3443 
3444 void SelectionDAGBuilder::visitICmp(const User &I) {
3445   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3446   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3447     predicate = IC->getPredicate();
3448   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3449     predicate = ICmpInst::Predicate(IC->getPredicate());
3450   SDValue Op1 = getValue(I.getOperand(0));
3451   SDValue Op2 = getValue(I.getOperand(1));
3452   ISD::CondCode Opcode = getICmpCondCode(predicate);
3453 
3454   auto &TLI = DAG.getTargetLoweringInfo();
3455   EVT MemVT =
3456       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3457 
3458   // If a pointer's DAG type is larger than its memory type then the DAG values
3459   // are zero-extended. This breaks signed comparisons so truncate back to the
3460   // underlying type before doing the compare.
3461   if (Op1.getValueType() != MemVT) {
3462     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3463     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3464   }
3465 
3466   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3467                                                         I.getType());
3468   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3469 }
3470 
3471 void SelectionDAGBuilder::visitFCmp(const User &I) {
3472   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3473   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3474     predicate = FC->getPredicate();
3475   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3476     predicate = FCmpInst::Predicate(FC->getPredicate());
3477   SDValue Op1 = getValue(I.getOperand(0));
3478   SDValue Op2 = getValue(I.getOperand(1));
3479 
3480   ISD::CondCode Condition = getFCmpCondCode(predicate);
3481   auto *FPMO = cast<FPMathOperator>(&I);
3482   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3483     Condition = getFCmpCodeWithoutNaN(Condition);
3484 
3485   SDNodeFlags Flags;
3486   Flags.copyFMF(*FPMO);
3487   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3488 
3489   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3490                                                         I.getType());
3491   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3492 }
3493 
3494 // Check if the condition of the select has one use or two users that are both
3495 // selects with the same condition.
3496 static bool hasOnlySelectUsers(const Value *Cond) {
3497   return llvm::all_of(Cond->users(), [](const Value *V) {
3498     return isa<SelectInst>(V);
3499   });
3500 }
3501 
3502 void SelectionDAGBuilder::visitSelect(const User &I) {
3503   SmallVector<EVT, 4> ValueVTs;
3504   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3505                   ValueVTs);
3506   unsigned NumValues = ValueVTs.size();
3507   if (NumValues == 0) return;
3508 
3509   SmallVector<SDValue, 4> Values(NumValues);
3510   SDValue Cond     = getValue(I.getOperand(0));
3511   SDValue LHSVal   = getValue(I.getOperand(1));
3512   SDValue RHSVal   = getValue(I.getOperand(2));
3513   SmallVector<SDValue, 1> BaseOps(1, Cond);
3514   ISD::NodeType OpCode =
3515       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3516 
3517   bool IsUnaryAbs = false;
3518   bool Negate = false;
3519 
3520   SDNodeFlags Flags;
3521   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3522     Flags.copyFMF(*FPOp);
3523 
3524   Flags.setUnpredictable(
3525       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3526 
3527   // Min/max matching is only viable if all output VTs are the same.
3528   if (all_equal(ValueVTs)) {
3529     EVT VT = ValueVTs[0];
3530     LLVMContext &Ctx = *DAG.getContext();
3531     auto &TLI = DAG.getTargetLoweringInfo();
3532 
3533     // We care about the legality of the operation after it has been type
3534     // legalized.
3535     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3536       VT = TLI.getTypeToTransformTo(Ctx, VT);
3537 
3538     // If the vselect is legal, assume we want to leave this as a vector setcc +
3539     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3540     // min/max is legal on the scalar type.
3541     bool UseScalarMinMax = VT.isVector() &&
3542       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3543 
3544     // ValueTracking's select pattern matching does not account for -0.0,
3545     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3546     // -0.0 is less than +0.0.
3547     Value *LHS, *RHS;
3548     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3549     ISD::NodeType Opc = ISD::DELETED_NODE;
3550     switch (SPR.Flavor) {
3551     case SPF_UMAX:    Opc = ISD::UMAX; break;
3552     case SPF_UMIN:    Opc = ISD::UMIN; break;
3553     case SPF_SMAX:    Opc = ISD::SMAX; break;
3554     case SPF_SMIN:    Opc = ISD::SMIN; break;
3555     case SPF_FMINNUM:
3556       switch (SPR.NaNBehavior) {
3557       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3558       case SPNB_RETURNS_NAN: break;
3559       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3560       case SPNB_RETURNS_ANY:
3561         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3562             (UseScalarMinMax &&
3563              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3564           Opc = ISD::FMINNUM;
3565         break;
3566       }
3567       break;
3568     case SPF_FMAXNUM:
3569       switch (SPR.NaNBehavior) {
3570       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3571       case SPNB_RETURNS_NAN: break;
3572       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3573       case SPNB_RETURNS_ANY:
3574         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3575             (UseScalarMinMax &&
3576              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3577           Opc = ISD::FMAXNUM;
3578         break;
3579       }
3580       break;
3581     case SPF_NABS:
3582       Negate = true;
3583       [[fallthrough]];
3584     case SPF_ABS:
3585       IsUnaryAbs = true;
3586       Opc = ISD::ABS;
3587       break;
3588     default: break;
3589     }
3590 
3591     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3592         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3593          (UseScalarMinMax &&
3594           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3595         // If the underlying comparison instruction is used by any other
3596         // instruction, the consumed instructions won't be destroyed, so it is
3597         // not profitable to convert to a min/max.
3598         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3599       OpCode = Opc;
3600       LHSVal = getValue(LHS);
3601       RHSVal = getValue(RHS);
3602       BaseOps.clear();
3603     }
3604 
3605     if (IsUnaryAbs) {
3606       OpCode = Opc;
3607       LHSVal = getValue(LHS);
3608       BaseOps.clear();
3609     }
3610   }
3611 
3612   if (IsUnaryAbs) {
3613     for (unsigned i = 0; i != NumValues; ++i) {
3614       SDLoc dl = getCurSDLoc();
3615       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3616       Values[i] =
3617           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3618       if (Negate)
3619         Values[i] = DAG.getNegative(Values[i], dl, VT);
3620     }
3621   } else {
3622     for (unsigned i = 0; i != NumValues; ++i) {
3623       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3624       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3625       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3626       Values[i] = DAG.getNode(
3627           OpCode, getCurSDLoc(),
3628           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3629     }
3630   }
3631 
3632   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3633                            DAG.getVTList(ValueVTs), Values));
3634 }
3635 
3636 void SelectionDAGBuilder::visitTrunc(const User &I) {
3637   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3638   SDValue N = getValue(I.getOperand(0));
3639   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3640                                                         I.getType());
3641   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3642 }
3643 
3644 void SelectionDAGBuilder::visitZExt(const User &I) {
3645   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3646   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3647   SDValue N = getValue(I.getOperand(0));
3648   auto &TLI = DAG.getTargetLoweringInfo();
3649   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3650 
3651   SDNodeFlags Flags;
3652   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3653     Flags.setNonNeg(PNI->hasNonNeg());
3654 
3655   // Eagerly use nonneg information to canonicalize towards sign_extend if
3656   // that is the target's preference.
3657   // TODO: Let the target do this later.
3658   if (Flags.hasNonNeg() &&
3659       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3660     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3661     return;
3662   }
3663 
3664   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3665 }
3666 
3667 void SelectionDAGBuilder::visitSExt(const User &I) {
3668   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3669   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3670   SDValue N = getValue(I.getOperand(0));
3671   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3672                                                         I.getType());
3673   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3674 }
3675 
3676 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3677   // FPTrunc is never a no-op cast, no need to check
3678   SDValue N = getValue(I.getOperand(0));
3679   SDLoc dl = getCurSDLoc();
3680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3681   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3682   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3683                            DAG.getTargetConstant(
3684                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3685 }
3686 
3687 void SelectionDAGBuilder::visitFPExt(const User &I) {
3688   // FPExt is never a no-op cast, no need to check
3689   SDValue N = getValue(I.getOperand(0));
3690   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3691                                                         I.getType());
3692   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3693 }
3694 
3695 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3696   // FPToUI is never a no-op cast, no need to check
3697   SDValue N = getValue(I.getOperand(0));
3698   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3699                                                         I.getType());
3700   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3701 }
3702 
3703 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3704   // FPToSI is never a no-op cast, no need to check
3705   SDValue N = getValue(I.getOperand(0));
3706   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3707                                                         I.getType());
3708   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3709 }
3710 
3711 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3712   // UIToFP is never a no-op cast, no need to check
3713   SDValue N = getValue(I.getOperand(0));
3714   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3715                                                         I.getType());
3716   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3717 }
3718 
3719 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3720   // SIToFP is never a no-op cast, no need to check
3721   SDValue N = getValue(I.getOperand(0));
3722   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3723                                                         I.getType());
3724   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3725 }
3726 
3727 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3728   // What to do depends on the size of the integer and the size of the pointer.
3729   // We can either truncate, zero extend, or no-op, accordingly.
3730   SDValue N = getValue(I.getOperand(0));
3731   auto &TLI = DAG.getTargetLoweringInfo();
3732   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3733                                                         I.getType());
3734   EVT PtrMemVT =
3735       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3736   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3737   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3738   setValue(&I, N);
3739 }
3740 
3741 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3742   // What to do depends on the size of the integer and the size of the pointer.
3743   // We can either truncate, zero extend, or no-op, accordingly.
3744   SDValue N = getValue(I.getOperand(0));
3745   auto &TLI = DAG.getTargetLoweringInfo();
3746   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3747   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3748   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3749   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3750   setValue(&I, N);
3751 }
3752 
3753 void SelectionDAGBuilder::visitBitCast(const User &I) {
3754   SDValue N = getValue(I.getOperand(0));
3755   SDLoc dl = getCurSDLoc();
3756   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3757                                                         I.getType());
3758 
3759   // BitCast assures us that source and destination are the same size so this is
3760   // either a BITCAST or a no-op.
3761   if (DestVT != N.getValueType())
3762     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3763                              DestVT, N)); // convert types.
3764   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3765   // might fold any kind of constant expression to an integer constant and that
3766   // is not what we are looking for. Only recognize a bitcast of a genuine
3767   // constant integer as an opaque constant.
3768   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3769     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3770                                  /*isOpaque*/true));
3771   else
3772     setValue(&I, N);            // noop cast.
3773 }
3774 
3775 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3777   const Value *SV = I.getOperand(0);
3778   SDValue N = getValue(SV);
3779   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3780 
3781   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3782   unsigned DestAS = I.getType()->getPointerAddressSpace();
3783 
3784   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3785     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3786 
3787   setValue(&I, N);
3788 }
3789 
3790 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3792   SDValue InVec = getValue(I.getOperand(0));
3793   SDValue InVal = getValue(I.getOperand(1));
3794   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3795                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3796   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3797                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3798                            InVec, InVal, InIdx));
3799 }
3800 
3801 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3803   SDValue InVec = getValue(I.getOperand(0));
3804   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3805                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3806   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3807                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3808                            InVec, InIdx));
3809 }
3810 
3811 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3812   SDValue Src1 = getValue(I.getOperand(0));
3813   SDValue Src2 = getValue(I.getOperand(1));
3814   ArrayRef<int> Mask;
3815   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3816     Mask = SVI->getShuffleMask();
3817   else
3818     Mask = cast<ConstantExpr>(I).getShuffleMask();
3819   SDLoc DL = getCurSDLoc();
3820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3821   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3822   EVT SrcVT = Src1.getValueType();
3823 
3824   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3825       VT.isScalableVector()) {
3826     // Canonical splat form of first element of first input vector.
3827     SDValue FirstElt =
3828         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3829                     DAG.getVectorIdxConstant(0, DL));
3830     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3831     return;
3832   }
3833 
3834   // For now, we only handle splats for scalable vectors.
3835   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3836   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3837   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3838 
3839   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3840   unsigned MaskNumElts = Mask.size();
3841 
3842   if (SrcNumElts == MaskNumElts) {
3843     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3844     return;
3845   }
3846 
3847   // Normalize the shuffle vector since mask and vector length don't match.
3848   if (SrcNumElts < MaskNumElts) {
3849     // Mask is longer than the source vectors. We can use concatenate vector to
3850     // make the mask and vectors lengths match.
3851 
3852     if (MaskNumElts % SrcNumElts == 0) {
3853       // Mask length is a multiple of the source vector length.
3854       // Check if the shuffle is some kind of concatenation of the input
3855       // vectors.
3856       unsigned NumConcat = MaskNumElts / SrcNumElts;
3857       bool IsConcat = true;
3858       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3859       for (unsigned i = 0; i != MaskNumElts; ++i) {
3860         int Idx = Mask[i];
3861         if (Idx < 0)
3862           continue;
3863         // Ensure the indices in each SrcVT sized piece are sequential and that
3864         // the same source is used for the whole piece.
3865         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3866             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3867              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3868           IsConcat = false;
3869           break;
3870         }
3871         // Remember which source this index came from.
3872         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3873       }
3874 
3875       // The shuffle is concatenating multiple vectors together. Just emit
3876       // a CONCAT_VECTORS operation.
3877       if (IsConcat) {
3878         SmallVector<SDValue, 8> ConcatOps;
3879         for (auto Src : ConcatSrcs) {
3880           if (Src < 0)
3881             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3882           else if (Src == 0)
3883             ConcatOps.push_back(Src1);
3884           else
3885             ConcatOps.push_back(Src2);
3886         }
3887         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3888         return;
3889       }
3890     }
3891 
3892     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3893     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3894     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3895                                     PaddedMaskNumElts);
3896 
3897     // Pad both vectors with undefs to make them the same length as the mask.
3898     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3899 
3900     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3901     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3902     MOps1[0] = Src1;
3903     MOps2[0] = Src2;
3904 
3905     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3906     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3907 
3908     // Readjust mask for new input vector length.
3909     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3910     for (unsigned i = 0; i != MaskNumElts; ++i) {
3911       int Idx = Mask[i];
3912       if (Idx >= (int)SrcNumElts)
3913         Idx -= SrcNumElts - PaddedMaskNumElts;
3914       MappedOps[i] = Idx;
3915     }
3916 
3917     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3918 
3919     // If the concatenated vector was padded, extract a subvector with the
3920     // correct number of elements.
3921     if (MaskNumElts != PaddedMaskNumElts)
3922       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3923                            DAG.getVectorIdxConstant(0, DL));
3924 
3925     setValue(&I, Result);
3926     return;
3927   }
3928 
3929   if (SrcNumElts > MaskNumElts) {
3930     // Analyze the access pattern of the vector to see if we can extract
3931     // two subvectors and do the shuffle.
3932     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3933     bool CanExtract = true;
3934     for (int Idx : Mask) {
3935       unsigned Input = 0;
3936       if (Idx < 0)
3937         continue;
3938 
3939       if (Idx >= (int)SrcNumElts) {
3940         Input = 1;
3941         Idx -= SrcNumElts;
3942       }
3943 
3944       // If all the indices come from the same MaskNumElts sized portion of
3945       // the sources we can use extract. Also make sure the extract wouldn't
3946       // extract past the end of the source.
3947       int NewStartIdx = alignDown(Idx, MaskNumElts);
3948       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3949           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3950         CanExtract = false;
3951       // Make sure we always update StartIdx as we use it to track if all
3952       // elements are undef.
3953       StartIdx[Input] = NewStartIdx;
3954     }
3955 
3956     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3957       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3958       return;
3959     }
3960     if (CanExtract) {
3961       // Extract appropriate subvector and generate a vector shuffle
3962       for (unsigned Input = 0; Input < 2; ++Input) {
3963         SDValue &Src = Input == 0 ? Src1 : Src2;
3964         if (StartIdx[Input] < 0)
3965           Src = DAG.getUNDEF(VT);
3966         else {
3967           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3968                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3969         }
3970       }
3971 
3972       // Calculate new mask.
3973       SmallVector<int, 8> MappedOps(Mask);
3974       for (int &Idx : MappedOps) {
3975         if (Idx >= (int)SrcNumElts)
3976           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3977         else if (Idx >= 0)
3978           Idx -= StartIdx[0];
3979       }
3980 
3981       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3982       return;
3983     }
3984   }
3985 
3986   // We can't use either concat vectors or extract subvectors so fall back to
3987   // replacing the shuffle with extract and build vector.
3988   // to insert and build vector.
3989   EVT EltVT = VT.getVectorElementType();
3990   SmallVector<SDValue,8> Ops;
3991   for (int Idx : Mask) {
3992     SDValue Res;
3993 
3994     if (Idx < 0) {
3995       Res = DAG.getUNDEF(EltVT);
3996     } else {
3997       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3998       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3999 
4000       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4001                         DAG.getVectorIdxConstant(Idx, DL));
4002     }
4003 
4004     Ops.push_back(Res);
4005   }
4006 
4007   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4008 }
4009 
4010 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4011   ArrayRef<unsigned> Indices = I.getIndices();
4012   const Value *Op0 = I.getOperand(0);
4013   const Value *Op1 = I.getOperand(1);
4014   Type *AggTy = I.getType();
4015   Type *ValTy = Op1->getType();
4016   bool IntoUndef = isa<UndefValue>(Op0);
4017   bool FromUndef = isa<UndefValue>(Op1);
4018 
4019   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4020 
4021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4022   SmallVector<EVT, 4> AggValueVTs;
4023   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4024   SmallVector<EVT, 4> ValValueVTs;
4025   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4026 
4027   unsigned NumAggValues = AggValueVTs.size();
4028   unsigned NumValValues = ValValueVTs.size();
4029   SmallVector<SDValue, 4> Values(NumAggValues);
4030 
4031   // Ignore an insertvalue that produces an empty object
4032   if (!NumAggValues) {
4033     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4034     return;
4035   }
4036 
4037   SDValue Agg = getValue(Op0);
4038   unsigned i = 0;
4039   // Copy the beginning value(s) from the original aggregate.
4040   for (; i != LinearIndex; ++i)
4041     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4042                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4043   // Copy values from the inserted value(s).
4044   if (NumValValues) {
4045     SDValue Val = getValue(Op1);
4046     for (; i != LinearIndex + NumValValues; ++i)
4047       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4048                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4049   }
4050   // Copy remaining value(s) from the original aggregate.
4051   for (; i != NumAggValues; ++i)
4052     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4053                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4054 
4055   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4056                            DAG.getVTList(AggValueVTs), Values));
4057 }
4058 
4059 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4060   ArrayRef<unsigned> Indices = I.getIndices();
4061   const Value *Op0 = I.getOperand(0);
4062   Type *AggTy = Op0->getType();
4063   Type *ValTy = I.getType();
4064   bool OutOfUndef = isa<UndefValue>(Op0);
4065 
4066   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4067 
4068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4069   SmallVector<EVT, 4> ValValueVTs;
4070   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4071 
4072   unsigned NumValValues = ValValueVTs.size();
4073 
4074   // Ignore a extractvalue that produces an empty object
4075   if (!NumValValues) {
4076     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4077     return;
4078   }
4079 
4080   SmallVector<SDValue, 4> Values(NumValValues);
4081 
4082   SDValue Agg = getValue(Op0);
4083   // Copy out the selected value(s).
4084   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4085     Values[i - LinearIndex] =
4086       OutOfUndef ?
4087         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4088         SDValue(Agg.getNode(), Agg.getResNo() + i);
4089 
4090   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4091                            DAG.getVTList(ValValueVTs), Values));
4092 }
4093 
4094 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4095   Value *Op0 = I.getOperand(0);
4096   // Note that the pointer operand may be a vector of pointers. Take the scalar
4097   // element which holds a pointer.
4098   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4099   SDValue N = getValue(Op0);
4100   SDLoc dl = getCurSDLoc();
4101   auto &TLI = DAG.getTargetLoweringInfo();
4102 
4103   // Normalize Vector GEP - all scalar operands should be converted to the
4104   // splat vector.
4105   bool IsVectorGEP = I.getType()->isVectorTy();
4106   ElementCount VectorElementCount =
4107       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4108                   : ElementCount::getFixed(0);
4109 
4110   if (IsVectorGEP && !N.getValueType().isVector()) {
4111     LLVMContext &Context = *DAG.getContext();
4112     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4113     N = DAG.getSplat(VT, dl, N);
4114   }
4115 
4116   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4117        GTI != E; ++GTI) {
4118     const Value *Idx = GTI.getOperand();
4119     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4120       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4121       if (Field) {
4122         // N = N + Offset
4123         uint64_t Offset =
4124             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4125 
4126         // In an inbounds GEP with an offset that is nonnegative even when
4127         // interpreted as signed, assume there is no unsigned overflow.
4128         SDNodeFlags Flags;
4129         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4130           Flags.setNoUnsignedWrap(true);
4131 
4132         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4133                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4134       }
4135     } else {
4136       // IdxSize is the width of the arithmetic according to IR semantics.
4137       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4138       // (and fix up the result later).
4139       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4140       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4141       TypeSize ElementSize =
4142           GTI.getSequentialElementStride(DAG.getDataLayout());
4143       // We intentionally mask away the high bits here; ElementSize may not
4144       // fit in IdxTy.
4145       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4146       bool ElementScalable = ElementSize.isScalable();
4147 
4148       // If this is a scalar constant or a splat vector of constants,
4149       // handle it quickly.
4150       const auto *C = dyn_cast<Constant>(Idx);
4151       if (C && isa<VectorType>(C->getType()))
4152         C = C->getSplatValue();
4153 
4154       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4155       if (CI && CI->isZero())
4156         continue;
4157       if (CI && !ElementScalable) {
4158         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4159         LLVMContext &Context = *DAG.getContext();
4160         SDValue OffsVal;
4161         if (IsVectorGEP)
4162           OffsVal = DAG.getConstant(
4163               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4164         else
4165           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4166 
4167         // In an inbounds GEP with an offset that is nonnegative even when
4168         // interpreted as signed, assume there is no unsigned overflow.
4169         SDNodeFlags Flags;
4170         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4171           Flags.setNoUnsignedWrap(true);
4172 
4173         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4174 
4175         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4176         continue;
4177       }
4178 
4179       // N = N + Idx * ElementMul;
4180       SDValue IdxN = getValue(Idx);
4181 
4182       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4183         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4184                                   VectorElementCount);
4185         IdxN = DAG.getSplat(VT, dl, IdxN);
4186       }
4187 
4188       // If the index is smaller or larger than intptr_t, truncate or extend
4189       // it.
4190       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4191 
4192       if (ElementScalable) {
4193         EVT VScaleTy = N.getValueType().getScalarType();
4194         SDValue VScale = DAG.getNode(
4195             ISD::VSCALE, dl, VScaleTy,
4196             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4197         if (IsVectorGEP)
4198           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4199         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4200       } else {
4201         // If this is a multiply by a power of two, turn it into a shl
4202         // immediately.  This is a very common case.
4203         if (ElementMul != 1) {
4204           if (ElementMul.isPowerOf2()) {
4205             unsigned Amt = ElementMul.logBase2();
4206             IdxN = DAG.getNode(ISD::SHL, dl,
4207                                N.getValueType(), IdxN,
4208                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4209           } else {
4210             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4211                                             IdxN.getValueType());
4212             IdxN = DAG.getNode(ISD::MUL, dl,
4213                                N.getValueType(), IdxN, Scale);
4214           }
4215         }
4216       }
4217 
4218       N = DAG.getNode(ISD::ADD, dl,
4219                       N.getValueType(), N, IdxN);
4220     }
4221   }
4222 
4223   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4224   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4225   if (IsVectorGEP) {
4226     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4227     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4228   }
4229 
4230   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4231     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4232 
4233   setValue(&I, N);
4234 }
4235 
4236 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4237   // If this is a fixed sized alloca in the entry block of the function,
4238   // allocate it statically on the stack.
4239   if (FuncInfo.StaticAllocaMap.count(&I))
4240     return;   // getValue will auto-populate this.
4241 
4242   SDLoc dl = getCurSDLoc();
4243   Type *Ty = I.getAllocatedType();
4244   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4245   auto &DL = DAG.getDataLayout();
4246   TypeSize TySize = DL.getTypeAllocSize(Ty);
4247   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4248 
4249   SDValue AllocSize = getValue(I.getArraySize());
4250 
4251   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4252   if (AllocSize.getValueType() != IntPtr)
4253     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4254 
4255   if (TySize.isScalable())
4256     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4257                             DAG.getVScale(dl, IntPtr,
4258                                           APInt(IntPtr.getScalarSizeInBits(),
4259                                                 TySize.getKnownMinValue())));
4260   else {
4261     SDValue TySizeValue =
4262         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4263     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4264                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4265   }
4266 
4267   // Handle alignment.  If the requested alignment is less than or equal to
4268   // the stack alignment, ignore it.  If the size is greater than or equal to
4269   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4270   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4271   if (*Alignment <= StackAlign)
4272     Alignment = std::nullopt;
4273 
4274   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4275   // Round the size of the allocation up to the stack alignment size
4276   // by add SA-1 to the size. This doesn't overflow because we're computing
4277   // an address inside an alloca.
4278   SDNodeFlags Flags;
4279   Flags.setNoUnsignedWrap(true);
4280   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4281                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4282 
4283   // Mask out the low bits for alignment purposes.
4284   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4285                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4286 
4287   SDValue Ops[] = {
4288       getRoot(), AllocSize,
4289       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4290   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4291   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4292   setValue(&I, DSA);
4293   DAG.setRoot(DSA.getValue(1));
4294 
4295   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4296 }
4297 
4298 static const MDNode *getRangeMetadata(const Instruction &I) {
4299   // If !noundef is not present, then !range violation results in a poison
4300   // value rather than immediate undefined behavior. In theory, transferring
4301   // these annotations to SDAG is fine, but in practice there are key SDAG
4302   // transforms that are known not to be poison-safe, such as folding logical
4303   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4304   // also present.
4305   if (!I.hasMetadata(LLVMContext::MD_noundef))
4306     return nullptr;
4307   return I.getMetadata(LLVMContext::MD_range);
4308 }
4309 
4310 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4311   if (I.isAtomic())
4312     return visitAtomicLoad(I);
4313 
4314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4315   const Value *SV = I.getOperand(0);
4316   if (TLI.supportSwiftError()) {
4317     // Swifterror values can come from either a function parameter with
4318     // swifterror attribute or an alloca with swifterror attribute.
4319     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4320       if (Arg->hasSwiftErrorAttr())
4321         return visitLoadFromSwiftError(I);
4322     }
4323 
4324     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4325       if (Alloca->isSwiftError())
4326         return visitLoadFromSwiftError(I);
4327     }
4328   }
4329 
4330   SDValue Ptr = getValue(SV);
4331 
4332   Type *Ty = I.getType();
4333   SmallVector<EVT, 4> ValueVTs, MemVTs;
4334   SmallVector<TypeSize, 4> Offsets;
4335   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4336   unsigned NumValues = ValueVTs.size();
4337   if (NumValues == 0)
4338     return;
4339 
4340   Align Alignment = I.getAlign();
4341   AAMDNodes AAInfo = I.getAAMetadata();
4342   const MDNode *Ranges = getRangeMetadata(I);
4343   bool isVolatile = I.isVolatile();
4344   MachineMemOperand::Flags MMOFlags =
4345       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4346 
4347   SDValue Root;
4348   bool ConstantMemory = false;
4349   if (isVolatile)
4350     // Serialize volatile loads with other side effects.
4351     Root = getRoot();
4352   else if (NumValues > MaxParallelChains)
4353     Root = getMemoryRoot();
4354   else if (AA &&
4355            AA->pointsToConstantMemory(MemoryLocation(
4356                SV,
4357                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4358                AAInfo))) {
4359     // Do not serialize (non-volatile) loads of constant memory with anything.
4360     Root = DAG.getEntryNode();
4361     ConstantMemory = true;
4362     MMOFlags |= MachineMemOperand::MOInvariant;
4363   } else {
4364     // Do not serialize non-volatile loads against each other.
4365     Root = DAG.getRoot();
4366   }
4367 
4368   SDLoc dl = getCurSDLoc();
4369 
4370   if (isVolatile)
4371     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4372 
4373   SmallVector<SDValue, 4> Values(NumValues);
4374   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4375 
4376   unsigned ChainI = 0;
4377   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4378     // Serializing loads here may result in excessive register pressure, and
4379     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4380     // could recover a bit by hoisting nodes upward in the chain by recognizing
4381     // they are side-effect free or do not alias. The optimizer should really
4382     // avoid this case by converting large object/array copies to llvm.memcpy
4383     // (MaxParallelChains should always remain as failsafe).
4384     if (ChainI == MaxParallelChains) {
4385       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4386       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4387                                   ArrayRef(Chains.data(), ChainI));
4388       Root = Chain;
4389       ChainI = 0;
4390     }
4391 
4392     // TODO: MachinePointerInfo only supports a fixed length offset.
4393     MachinePointerInfo PtrInfo =
4394         !Offsets[i].isScalable() || Offsets[i].isZero()
4395             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4396             : MachinePointerInfo();
4397 
4398     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4399     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4400                             MMOFlags, AAInfo, Ranges);
4401     Chains[ChainI] = L.getValue(1);
4402 
4403     if (MemVTs[i] != ValueVTs[i])
4404       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4405 
4406     Values[i] = L;
4407   }
4408 
4409   if (!ConstantMemory) {
4410     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4411                                 ArrayRef(Chains.data(), ChainI));
4412     if (isVolatile)
4413       DAG.setRoot(Chain);
4414     else
4415       PendingLoads.push_back(Chain);
4416   }
4417 
4418   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4419                            DAG.getVTList(ValueVTs), Values));
4420 }
4421 
4422 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4423   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4424          "call visitStoreToSwiftError when backend supports swifterror");
4425 
4426   SmallVector<EVT, 4> ValueVTs;
4427   SmallVector<uint64_t, 4> Offsets;
4428   const Value *SrcV = I.getOperand(0);
4429   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4430                   SrcV->getType(), ValueVTs, &Offsets, 0);
4431   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4432          "expect a single EVT for swifterror");
4433 
4434   SDValue Src = getValue(SrcV);
4435   // Create a virtual register, then update the virtual register.
4436   Register VReg =
4437       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4438   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4439   // Chain can be getRoot or getControlRoot.
4440   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4441                                       SDValue(Src.getNode(), Src.getResNo()));
4442   DAG.setRoot(CopyNode);
4443 }
4444 
4445 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4446   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4447          "call visitLoadFromSwiftError when backend supports swifterror");
4448 
4449   assert(!I.isVolatile() &&
4450          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4451          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4452          "Support volatile, non temporal, invariant for load_from_swift_error");
4453 
4454   const Value *SV = I.getOperand(0);
4455   Type *Ty = I.getType();
4456   assert(
4457       (!AA ||
4458        !AA->pointsToConstantMemory(MemoryLocation(
4459            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4460            I.getAAMetadata()))) &&
4461       "load_from_swift_error should not be constant memory");
4462 
4463   SmallVector<EVT, 4> ValueVTs;
4464   SmallVector<uint64_t, 4> Offsets;
4465   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4466                   ValueVTs, &Offsets, 0);
4467   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4468          "expect a single EVT for swifterror");
4469 
4470   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4471   SDValue L = DAG.getCopyFromReg(
4472       getRoot(), getCurSDLoc(),
4473       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4474 
4475   setValue(&I, L);
4476 }
4477 
4478 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4479   if (I.isAtomic())
4480     return visitAtomicStore(I);
4481 
4482   const Value *SrcV = I.getOperand(0);
4483   const Value *PtrV = I.getOperand(1);
4484 
4485   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4486   if (TLI.supportSwiftError()) {
4487     // Swifterror values can come from either a function parameter with
4488     // swifterror attribute or an alloca with swifterror attribute.
4489     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4490       if (Arg->hasSwiftErrorAttr())
4491         return visitStoreToSwiftError(I);
4492     }
4493 
4494     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4495       if (Alloca->isSwiftError())
4496         return visitStoreToSwiftError(I);
4497     }
4498   }
4499 
4500   SmallVector<EVT, 4> ValueVTs, MemVTs;
4501   SmallVector<TypeSize, 4> Offsets;
4502   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4503                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4504   unsigned NumValues = ValueVTs.size();
4505   if (NumValues == 0)
4506     return;
4507 
4508   // Get the lowered operands. Note that we do this after
4509   // checking if NumResults is zero, because with zero results
4510   // the operands won't have values in the map.
4511   SDValue Src = getValue(SrcV);
4512   SDValue Ptr = getValue(PtrV);
4513 
4514   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4515   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4516   SDLoc dl = getCurSDLoc();
4517   Align Alignment = I.getAlign();
4518   AAMDNodes AAInfo = I.getAAMetadata();
4519 
4520   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4521 
4522   unsigned ChainI = 0;
4523   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4524     // See visitLoad comments.
4525     if (ChainI == MaxParallelChains) {
4526       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4527                                   ArrayRef(Chains.data(), ChainI));
4528       Root = Chain;
4529       ChainI = 0;
4530     }
4531 
4532     // TODO: MachinePointerInfo only supports a fixed length offset.
4533     MachinePointerInfo PtrInfo =
4534         !Offsets[i].isScalable() || Offsets[i].isZero()
4535             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4536             : MachinePointerInfo();
4537 
4538     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4539     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4540     if (MemVTs[i] != ValueVTs[i])
4541       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4542     SDValue St =
4543         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4544     Chains[ChainI] = St;
4545   }
4546 
4547   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4548                                   ArrayRef(Chains.data(), ChainI));
4549   setValue(&I, StoreNode);
4550   DAG.setRoot(StoreNode);
4551 }
4552 
4553 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4554                                            bool IsCompressing) {
4555   SDLoc sdl = getCurSDLoc();
4556 
4557   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4558                                MaybeAlign &Alignment) {
4559     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4560     Src0 = I.getArgOperand(0);
4561     Ptr = I.getArgOperand(1);
4562     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4563     Mask = I.getArgOperand(3);
4564   };
4565   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4566                                     MaybeAlign &Alignment) {
4567     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4568     Src0 = I.getArgOperand(0);
4569     Ptr = I.getArgOperand(1);
4570     Mask = I.getArgOperand(2);
4571     Alignment = std::nullopt;
4572   };
4573 
4574   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4575   MaybeAlign Alignment;
4576   if (IsCompressing)
4577     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4578   else
4579     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4580 
4581   SDValue Ptr = getValue(PtrOperand);
4582   SDValue Src0 = getValue(Src0Operand);
4583   SDValue Mask = getValue(MaskOperand);
4584   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4585 
4586   EVT VT = Src0.getValueType();
4587   if (!Alignment)
4588     Alignment = DAG.getEVTAlign(VT);
4589 
4590   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4591       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4592       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4593   SDValue StoreNode =
4594       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4595                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4596   DAG.setRoot(StoreNode);
4597   setValue(&I, StoreNode);
4598 }
4599 
4600 // Get a uniform base for the Gather/Scatter intrinsic.
4601 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4602 // We try to represent it as a base pointer + vector of indices.
4603 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4604 // The first operand of the GEP may be a single pointer or a vector of pointers
4605 // Example:
4606 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4607 //  or
4608 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4609 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4610 //
4611 // When the first GEP operand is a single pointer - it is the uniform base we
4612 // are looking for. If first operand of the GEP is a splat vector - we
4613 // extract the splat value and use it as a uniform base.
4614 // In all other cases the function returns 'false'.
4615 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4616                            ISD::MemIndexType &IndexType, SDValue &Scale,
4617                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4618                            uint64_t ElemSize) {
4619   SelectionDAG& DAG = SDB->DAG;
4620   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4621   const DataLayout &DL = DAG.getDataLayout();
4622 
4623   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4624 
4625   // Handle splat constant pointer.
4626   if (auto *C = dyn_cast<Constant>(Ptr)) {
4627     C = C->getSplatValue();
4628     if (!C)
4629       return false;
4630 
4631     Base = SDB->getValue(C);
4632 
4633     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4634     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4635     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4636     IndexType = ISD::SIGNED_SCALED;
4637     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4638     return true;
4639   }
4640 
4641   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4642   if (!GEP || GEP->getParent() != CurBB)
4643     return false;
4644 
4645   if (GEP->getNumOperands() != 2)
4646     return false;
4647 
4648   const Value *BasePtr = GEP->getPointerOperand();
4649   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4650 
4651   // Make sure the base is scalar and the index is a vector.
4652   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4653     return false;
4654 
4655   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4656   if (ScaleVal.isScalable())
4657     return false;
4658 
4659   // Target may not support the required addressing mode.
4660   if (ScaleVal != 1 &&
4661       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4662     return false;
4663 
4664   Base = SDB->getValue(BasePtr);
4665   Index = SDB->getValue(IndexVal);
4666   IndexType = ISD::SIGNED_SCALED;
4667 
4668   Scale =
4669       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4670   return true;
4671 }
4672 
4673 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4674   SDLoc sdl = getCurSDLoc();
4675 
4676   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4677   const Value *Ptr = I.getArgOperand(1);
4678   SDValue Src0 = getValue(I.getArgOperand(0));
4679   SDValue Mask = getValue(I.getArgOperand(3));
4680   EVT VT = Src0.getValueType();
4681   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4682                         ->getMaybeAlignValue()
4683                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4685 
4686   SDValue Base;
4687   SDValue Index;
4688   ISD::MemIndexType IndexType;
4689   SDValue Scale;
4690   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4691                                     I.getParent(), VT.getScalarStoreSize());
4692 
4693   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4694   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4695       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4696       // TODO: Make MachineMemOperands aware of scalable
4697       // vectors.
4698       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4699   if (!UniformBase) {
4700     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4701     Index = getValue(Ptr);
4702     IndexType = ISD::SIGNED_SCALED;
4703     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4704   }
4705 
4706   EVT IdxVT = Index.getValueType();
4707   EVT EltTy = IdxVT.getVectorElementType();
4708   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4709     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4710     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4711   }
4712 
4713   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4714   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4715                                          Ops, MMO, IndexType, false);
4716   DAG.setRoot(Scatter);
4717   setValue(&I, Scatter);
4718 }
4719 
4720 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4721   SDLoc sdl = getCurSDLoc();
4722 
4723   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4724                               MaybeAlign &Alignment) {
4725     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4726     Ptr = I.getArgOperand(0);
4727     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4728     Mask = I.getArgOperand(2);
4729     Src0 = I.getArgOperand(3);
4730   };
4731   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4732                                  MaybeAlign &Alignment) {
4733     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4734     Ptr = I.getArgOperand(0);
4735     Alignment = std::nullopt;
4736     Mask = I.getArgOperand(1);
4737     Src0 = I.getArgOperand(2);
4738   };
4739 
4740   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4741   MaybeAlign Alignment;
4742   if (IsExpanding)
4743     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4744   else
4745     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4746 
4747   SDValue Ptr = getValue(PtrOperand);
4748   SDValue Src0 = getValue(Src0Operand);
4749   SDValue Mask = getValue(MaskOperand);
4750   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4751 
4752   EVT VT = Src0.getValueType();
4753   if (!Alignment)
4754     Alignment = DAG.getEVTAlign(VT);
4755 
4756   AAMDNodes AAInfo = I.getAAMetadata();
4757   const MDNode *Ranges = getRangeMetadata(I);
4758 
4759   // Do not serialize masked loads of constant memory with anything.
4760   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4761   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4762 
4763   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4764 
4765   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4766       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4767       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4768 
4769   SDValue Load =
4770       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4771                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4772   if (AddToChain)
4773     PendingLoads.push_back(Load.getValue(1));
4774   setValue(&I, Load);
4775 }
4776 
4777 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4778   SDLoc sdl = getCurSDLoc();
4779 
4780   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4781   const Value *Ptr = I.getArgOperand(0);
4782   SDValue Src0 = getValue(I.getArgOperand(3));
4783   SDValue Mask = getValue(I.getArgOperand(2));
4784 
4785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4786   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4787   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4788                         ->getMaybeAlignValue()
4789                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4790 
4791   const MDNode *Ranges = getRangeMetadata(I);
4792 
4793   SDValue Root = DAG.getRoot();
4794   SDValue Base;
4795   SDValue Index;
4796   ISD::MemIndexType IndexType;
4797   SDValue Scale;
4798   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4799                                     I.getParent(), VT.getScalarStoreSize());
4800   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4801   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4802       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4803       // TODO: Make MachineMemOperands aware of scalable
4804       // vectors.
4805       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4806 
4807   if (!UniformBase) {
4808     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4809     Index = getValue(Ptr);
4810     IndexType = ISD::SIGNED_SCALED;
4811     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4812   }
4813 
4814   EVT IdxVT = Index.getValueType();
4815   EVT EltTy = IdxVT.getVectorElementType();
4816   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4817     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4818     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4819   }
4820 
4821   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4822   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4823                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4824 
4825   PendingLoads.push_back(Gather.getValue(1));
4826   setValue(&I, Gather);
4827 }
4828 
4829 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4830   SDLoc dl = getCurSDLoc();
4831   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4832   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4833   SyncScope::ID SSID = I.getSyncScopeID();
4834 
4835   SDValue InChain = getRoot();
4836 
4837   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4838   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4839 
4840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4841   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4842 
4843   MachineFunction &MF = DAG.getMachineFunction();
4844   MachineMemOperand *MMO = MF.getMachineMemOperand(
4845       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4846       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4847       FailureOrdering);
4848 
4849   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4850                                    dl, MemVT, VTs, InChain,
4851                                    getValue(I.getPointerOperand()),
4852                                    getValue(I.getCompareOperand()),
4853                                    getValue(I.getNewValOperand()), MMO);
4854 
4855   SDValue OutChain = L.getValue(2);
4856 
4857   setValue(&I, L);
4858   DAG.setRoot(OutChain);
4859 }
4860 
4861 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4862   SDLoc dl = getCurSDLoc();
4863   ISD::NodeType NT;
4864   switch (I.getOperation()) {
4865   default: llvm_unreachable("Unknown atomicrmw operation");
4866   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4867   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4868   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4869   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4870   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4871   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4872   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4873   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4874   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4875   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4876   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4877   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4878   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4879   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4880   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4881   case AtomicRMWInst::UIncWrap:
4882     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4883     break;
4884   case AtomicRMWInst::UDecWrap:
4885     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4886     break;
4887   }
4888   AtomicOrdering Ordering = I.getOrdering();
4889   SyncScope::ID SSID = I.getSyncScopeID();
4890 
4891   SDValue InChain = getRoot();
4892 
4893   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4895   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4896 
4897   MachineFunction &MF = DAG.getMachineFunction();
4898   MachineMemOperand *MMO = MF.getMachineMemOperand(
4899       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4900       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4901 
4902   SDValue L =
4903     DAG.getAtomic(NT, dl, MemVT, InChain,
4904                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4905                   MMO);
4906 
4907   SDValue OutChain = L.getValue(1);
4908 
4909   setValue(&I, L);
4910   DAG.setRoot(OutChain);
4911 }
4912 
4913 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4914   SDLoc dl = getCurSDLoc();
4915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4916   SDValue Ops[3];
4917   Ops[0] = getRoot();
4918   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4919                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4920   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4921                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4922   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4923   setValue(&I, N);
4924   DAG.setRoot(N);
4925 }
4926 
4927 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4928   SDLoc dl = getCurSDLoc();
4929   AtomicOrdering Order = I.getOrdering();
4930   SyncScope::ID SSID = I.getSyncScopeID();
4931 
4932   SDValue InChain = getRoot();
4933 
4934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4935   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4936   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4937 
4938   if (!TLI.supportsUnalignedAtomics() &&
4939       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4940     report_fatal_error("Cannot generate unaligned atomic load");
4941 
4942   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4943 
4944   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4945       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4946       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4947 
4948   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4949 
4950   SDValue Ptr = getValue(I.getPointerOperand());
4951   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4952                             Ptr, MMO);
4953 
4954   SDValue OutChain = L.getValue(1);
4955   if (MemVT != VT)
4956     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4957 
4958   setValue(&I, L);
4959   DAG.setRoot(OutChain);
4960 }
4961 
4962 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4963   SDLoc dl = getCurSDLoc();
4964 
4965   AtomicOrdering Ordering = I.getOrdering();
4966   SyncScope::ID SSID = I.getSyncScopeID();
4967 
4968   SDValue InChain = getRoot();
4969 
4970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4971   EVT MemVT =
4972       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4973 
4974   if (!TLI.supportsUnalignedAtomics() &&
4975       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4976     report_fatal_error("Cannot generate unaligned atomic store");
4977 
4978   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4979 
4980   MachineFunction &MF = DAG.getMachineFunction();
4981   MachineMemOperand *MMO = MF.getMachineMemOperand(
4982       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4983       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4984 
4985   SDValue Val = getValue(I.getValueOperand());
4986   if (Val.getValueType() != MemVT)
4987     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4988   SDValue Ptr = getValue(I.getPointerOperand());
4989 
4990   SDValue OutChain =
4991       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
4992 
4993   setValue(&I, OutChain);
4994   DAG.setRoot(OutChain);
4995 }
4996 
4997 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4998 /// node.
4999 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5000                                                unsigned Intrinsic) {
5001   // Ignore the callsite's attributes. A specific call site may be marked with
5002   // readnone, but the lowering code will expect the chain based on the
5003   // definition.
5004   const Function *F = I.getCalledFunction();
5005   bool HasChain = !F->doesNotAccessMemory();
5006   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5007 
5008   // Build the operand list.
5009   SmallVector<SDValue, 8> Ops;
5010   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5011     if (OnlyLoad) {
5012       // We don't need to serialize loads against other loads.
5013       Ops.push_back(DAG.getRoot());
5014     } else {
5015       Ops.push_back(getRoot());
5016     }
5017   }
5018 
5019   // Info is set by getTgtMemIntrinsic
5020   TargetLowering::IntrinsicInfo Info;
5021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5022   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5023                                                DAG.getMachineFunction(),
5024                                                Intrinsic);
5025 
5026   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5027   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5028       Info.opc == ISD::INTRINSIC_W_CHAIN)
5029     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5030                                         TLI.getPointerTy(DAG.getDataLayout())));
5031 
5032   // Add all operands of the call to the operand list.
5033   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5034     const Value *Arg = I.getArgOperand(i);
5035     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5036       Ops.push_back(getValue(Arg));
5037       continue;
5038     }
5039 
5040     // Use TargetConstant instead of a regular constant for immarg.
5041     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5042     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5043       assert(CI->getBitWidth() <= 64 &&
5044              "large intrinsic immediates not handled");
5045       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5046     } else {
5047       Ops.push_back(
5048           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5049     }
5050   }
5051 
5052   SmallVector<EVT, 4> ValueVTs;
5053   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5054 
5055   if (HasChain)
5056     ValueVTs.push_back(MVT::Other);
5057 
5058   SDVTList VTs = DAG.getVTList(ValueVTs);
5059 
5060   // Propagate fast-math-flags from IR to node(s).
5061   SDNodeFlags Flags;
5062   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5063     Flags.copyFMF(*FPMO);
5064   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5065 
5066   // Create the node.
5067   SDValue Result;
5068 
5069   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5070     auto *Token = Bundle->Inputs[0].get();
5071     SDValue ConvControlToken = getValue(Token);
5072     assert(Ops.back().getValueType() != MVT::Glue &&
5073            "Did not expected another glue node here.");
5074     ConvControlToken =
5075         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5076     Ops.push_back(ConvControlToken);
5077   }
5078 
5079   // In some cases, custom collection of operands from CallInst I may be needed.
5080   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5081   if (IsTgtIntrinsic) {
5082     // This is target intrinsic that touches memory
5083     //
5084     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5085     //       didn't yield anything useful.
5086     MachinePointerInfo MPI;
5087     if (Info.ptrVal)
5088       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5089     else if (Info.fallbackAddressSpace)
5090       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5091     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5092                                      Info.memVT, MPI, Info.align, Info.flags,
5093                                      Info.size, I.getAAMetadata());
5094   } else if (!HasChain) {
5095     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5096   } else if (!I.getType()->isVoidTy()) {
5097     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5098   } else {
5099     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5100   }
5101 
5102   if (HasChain) {
5103     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5104     if (OnlyLoad)
5105       PendingLoads.push_back(Chain);
5106     else
5107       DAG.setRoot(Chain);
5108   }
5109 
5110   if (!I.getType()->isVoidTy()) {
5111     if (!isa<VectorType>(I.getType()))
5112       Result = lowerRangeToAssertZExt(DAG, I, Result);
5113 
5114     MaybeAlign Alignment = I.getRetAlign();
5115 
5116     // Insert `assertalign` node if there's an alignment.
5117     if (InsertAssertAlign && Alignment) {
5118       Result =
5119           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5120     }
5121 
5122     setValue(&I, Result);
5123   }
5124 }
5125 
5126 /// GetSignificand - Get the significand and build it into a floating-point
5127 /// number with exponent of 1:
5128 ///
5129 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5130 ///
5131 /// where Op is the hexadecimal representation of floating point value.
5132 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5133   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5134                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5135   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5136                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5137   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5138 }
5139 
5140 /// GetExponent - Get the exponent:
5141 ///
5142 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5143 ///
5144 /// where Op is the hexadecimal representation of floating point value.
5145 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5146                            const TargetLowering &TLI, const SDLoc &dl) {
5147   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5148                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5149   SDValue t1 = DAG.getNode(
5150       ISD::SRL, dl, MVT::i32, t0,
5151       DAG.getConstant(23, dl,
5152                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5153   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5154                            DAG.getConstant(127, dl, MVT::i32));
5155   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5156 }
5157 
5158 /// getF32Constant - Get 32-bit floating point constant.
5159 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5160                               const SDLoc &dl) {
5161   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5162                            MVT::f32);
5163 }
5164 
5165 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5166                                        SelectionDAG &DAG) {
5167   // TODO: What fast-math-flags should be set on the floating-point nodes?
5168 
5169   //   IntegerPartOfX = ((int32_t)(t0);
5170   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5171 
5172   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5173   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5174   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5175 
5176   //   IntegerPartOfX <<= 23;
5177   IntegerPartOfX =
5178       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5179                   DAG.getConstant(23, dl,
5180                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5181                                       MVT::i32, DAG.getDataLayout())));
5182 
5183   SDValue TwoToFractionalPartOfX;
5184   if (LimitFloatPrecision <= 6) {
5185     // For floating-point precision of 6:
5186     //
5187     //   TwoToFractionalPartOfX =
5188     //     0.997535578f +
5189     //       (0.735607626f + 0.252464424f * x) * x;
5190     //
5191     // error 0.0144103317, which is 6 bits
5192     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5193                              getF32Constant(DAG, 0x3e814304, dl));
5194     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5195                              getF32Constant(DAG, 0x3f3c50c8, dl));
5196     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5197     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5198                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5199   } else if (LimitFloatPrecision <= 12) {
5200     // For floating-point precision of 12:
5201     //
5202     //   TwoToFractionalPartOfX =
5203     //     0.999892986f +
5204     //       (0.696457318f +
5205     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5206     //
5207     // error 0.000107046256, which is 13 to 14 bits
5208     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5209                              getF32Constant(DAG, 0x3da235e3, dl));
5210     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5211                              getF32Constant(DAG, 0x3e65b8f3, dl));
5212     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5213     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5214                              getF32Constant(DAG, 0x3f324b07, dl));
5215     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5216     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5217                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5218   } else { // LimitFloatPrecision <= 18
5219     // For floating-point precision of 18:
5220     //
5221     //   TwoToFractionalPartOfX =
5222     //     0.999999982f +
5223     //       (0.693148872f +
5224     //         (0.240227044f +
5225     //           (0.554906021e-1f +
5226     //             (0.961591928e-2f +
5227     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5228     // error 2.47208000*10^(-7), which is better than 18 bits
5229     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5230                              getF32Constant(DAG, 0x3924b03e, dl));
5231     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5232                              getF32Constant(DAG, 0x3ab24b87, dl));
5233     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5234     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5235                              getF32Constant(DAG, 0x3c1d8c17, dl));
5236     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5237     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5238                              getF32Constant(DAG, 0x3d634a1d, dl));
5239     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5240     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5241                              getF32Constant(DAG, 0x3e75fe14, dl));
5242     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5243     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5244                               getF32Constant(DAG, 0x3f317234, dl));
5245     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5246     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5247                                          getF32Constant(DAG, 0x3f800000, dl));
5248   }
5249 
5250   // Add the exponent into the result in integer domain.
5251   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5252   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5253                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5254 }
5255 
5256 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5257 /// limited-precision mode.
5258 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5259                          const TargetLowering &TLI, SDNodeFlags Flags) {
5260   if (Op.getValueType() == MVT::f32 &&
5261       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5262 
5263     // Put the exponent in the right bit position for later addition to the
5264     // final result:
5265     //
5266     // t0 = Op * log2(e)
5267 
5268     // TODO: What fast-math-flags should be set here?
5269     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5270                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5271     return getLimitedPrecisionExp2(t0, dl, DAG);
5272   }
5273 
5274   // No special expansion.
5275   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5276 }
5277 
5278 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5279 /// limited-precision mode.
5280 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5281                          const TargetLowering &TLI, SDNodeFlags Flags) {
5282   // TODO: What fast-math-flags should be set on the floating-point nodes?
5283 
5284   if (Op.getValueType() == MVT::f32 &&
5285       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5286     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5287 
5288     // Scale the exponent by log(2).
5289     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5290     SDValue LogOfExponent =
5291         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5292                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5293 
5294     // Get the significand and build it into a floating-point number with
5295     // exponent of 1.
5296     SDValue X = GetSignificand(DAG, Op1, dl);
5297 
5298     SDValue LogOfMantissa;
5299     if (LimitFloatPrecision <= 6) {
5300       // For floating-point precision of 6:
5301       //
5302       //   LogofMantissa =
5303       //     -1.1609546f +
5304       //       (1.4034025f - 0.23903021f * x) * x;
5305       //
5306       // error 0.0034276066, which is better than 8 bits
5307       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5308                                getF32Constant(DAG, 0xbe74c456, dl));
5309       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5310                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5311       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5312       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5313                                   getF32Constant(DAG, 0x3f949a29, dl));
5314     } else if (LimitFloatPrecision <= 12) {
5315       // For floating-point precision of 12:
5316       //
5317       //   LogOfMantissa =
5318       //     -1.7417939f +
5319       //       (2.8212026f +
5320       //         (-1.4699568f +
5321       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5322       //
5323       // error 0.000061011436, which is 14 bits
5324       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5325                                getF32Constant(DAG, 0xbd67b6d6, dl));
5326       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5327                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5328       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5329       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5330                                getF32Constant(DAG, 0x3fbc278b, dl));
5331       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5332       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5333                                getF32Constant(DAG, 0x40348e95, dl));
5334       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5335       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5336                                   getF32Constant(DAG, 0x3fdef31a, dl));
5337     } else { // LimitFloatPrecision <= 18
5338       // For floating-point precision of 18:
5339       //
5340       //   LogOfMantissa =
5341       //     -2.1072184f +
5342       //       (4.2372794f +
5343       //         (-3.7029485f +
5344       //           (2.2781945f +
5345       //             (-0.87823314f +
5346       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5347       //
5348       // error 0.0000023660568, which is better than 18 bits
5349       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5350                                getF32Constant(DAG, 0xbc91e5ac, dl));
5351       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5352                                getF32Constant(DAG, 0x3e4350aa, dl));
5353       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5354       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5355                                getF32Constant(DAG, 0x3f60d3e3, dl));
5356       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5357       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5358                                getF32Constant(DAG, 0x4011cdf0, dl));
5359       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5360       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5361                                getF32Constant(DAG, 0x406cfd1c, dl));
5362       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5363       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5364                                getF32Constant(DAG, 0x408797cb, dl));
5365       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5366       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5367                                   getF32Constant(DAG, 0x4006dcab, dl));
5368     }
5369 
5370     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5371   }
5372 
5373   // No special expansion.
5374   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5375 }
5376 
5377 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5378 /// limited-precision mode.
5379 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5380                           const TargetLowering &TLI, SDNodeFlags Flags) {
5381   // TODO: What fast-math-flags should be set on the floating-point nodes?
5382 
5383   if (Op.getValueType() == MVT::f32 &&
5384       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5385     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5386 
5387     // Get the exponent.
5388     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5389 
5390     // Get the significand and build it into a floating-point number with
5391     // exponent of 1.
5392     SDValue X = GetSignificand(DAG, Op1, dl);
5393 
5394     // Different possible minimax approximations of significand in
5395     // floating-point for various degrees of accuracy over [1,2].
5396     SDValue Log2ofMantissa;
5397     if (LimitFloatPrecision <= 6) {
5398       // For floating-point precision of 6:
5399       //
5400       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5401       //
5402       // error 0.0049451742, which is more than 7 bits
5403       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5404                                getF32Constant(DAG, 0xbeb08fe0, dl));
5405       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5406                                getF32Constant(DAG, 0x40019463, dl));
5407       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5408       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5409                                    getF32Constant(DAG, 0x3fd6633d, dl));
5410     } else if (LimitFloatPrecision <= 12) {
5411       // For floating-point precision of 12:
5412       //
5413       //   Log2ofMantissa =
5414       //     -2.51285454f +
5415       //       (4.07009056f +
5416       //         (-2.12067489f +
5417       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5418       //
5419       // error 0.0000876136000, which is better than 13 bits
5420       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5421                                getF32Constant(DAG, 0xbda7262e, dl));
5422       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5423                                getF32Constant(DAG, 0x3f25280b, dl));
5424       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5425       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5426                                getF32Constant(DAG, 0x4007b923, dl));
5427       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5428       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5429                                getF32Constant(DAG, 0x40823e2f, dl));
5430       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5431       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5432                                    getF32Constant(DAG, 0x4020d29c, dl));
5433     } else { // LimitFloatPrecision <= 18
5434       // For floating-point precision of 18:
5435       //
5436       //   Log2ofMantissa =
5437       //     -3.0400495f +
5438       //       (6.1129976f +
5439       //         (-5.3420409f +
5440       //           (3.2865683f +
5441       //             (-1.2669343f +
5442       //               (0.27515199f -
5443       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5444       //
5445       // error 0.0000018516, which is better than 18 bits
5446       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5447                                getF32Constant(DAG, 0xbcd2769e, dl));
5448       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5449                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5450       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5451       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5452                                getF32Constant(DAG, 0x3fa22ae7, dl));
5453       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5454       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5455                                getF32Constant(DAG, 0x40525723, dl));
5456       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5457       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5458                                getF32Constant(DAG, 0x40aaf200, dl));
5459       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5460       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5461                                getF32Constant(DAG, 0x40c39dad, dl));
5462       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5463       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5464                                    getF32Constant(DAG, 0x4042902c, dl));
5465     }
5466 
5467     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5468   }
5469 
5470   // No special expansion.
5471   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5472 }
5473 
5474 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5475 /// limited-precision mode.
5476 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5477                            const TargetLowering &TLI, SDNodeFlags Flags) {
5478   // TODO: What fast-math-flags should be set on the floating-point nodes?
5479 
5480   if (Op.getValueType() == MVT::f32 &&
5481       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5482     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5483 
5484     // Scale the exponent by log10(2) [0.30102999f].
5485     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5486     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5487                                         getF32Constant(DAG, 0x3e9a209a, dl));
5488 
5489     // Get the significand and build it into a floating-point number with
5490     // exponent of 1.
5491     SDValue X = GetSignificand(DAG, Op1, dl);
5492 
5493     SDValue Log10ofMantissa;
5494     if (LimitFloatPrecision <= 6) {
5495       // For floating-point precision of 6:
5496       //
5497       //   Log10ofMantissa =
5498       //     -0.50419619f +
5499       //       (0.60948995f - 0.10380950f * x) * x;
5500       //
5501       // error 0.0014886165, which is 6 bits
5502       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5503                                getF32Constant(DAG, 0xbdd49a13, dl));
5504       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5505                                getF32Constant(DAG, 0x3f1c0789, dl));
5506       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5507       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5508                                     getF32Constant(DAG, 0x3f011300, dl));
5509     } else if (LimitFloatPrecision <= 12) {
5510       // For floating-point precision of 12:
5511       //
5512       //   Log10ofMantissa =
5513       //     -0.64831180f +
5514       //       (0.91751397f +
5515       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5516       //
5517       // error 0.00019228036, which is better than 12 bits
5518       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5519                                getF32Constant(DAG, 0x3d431f31, dl));
5520       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5521                                getF32Constant(DAG, 0x3ea21fb2, dl));
5522       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5523       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5524                                getF32Constant(DAG, 0x3f6ae232, dl));
5525       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5526       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5527                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5528     } else { // LimitFloatPrecision <= 18
5529       // For floating-point precision of 18:
5530       //
5531       //   Log10ofMantissa =
5532       //     -0.84299375f +
5533       //       (1.5327582f +
5534       //         (-1.0688956f +
5535       //           (0.49102474f +
5536       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5537       //
5538       // error 0.0000037995730, which is better than 18 bits
5539       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5540                                getF32Constant(DAG, 0x3c5d51ce, dl));
5541       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5542                                getF32Constant(DAG, 0x3e00685a, dl));
5543       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5544       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5545                                getF32Constant(DAG, 0x3efb6798, dl));
5546       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5547       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5548                                getF32Constant(DAG, 0x3f88d192, dl));
5549       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5550       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5551                                getF32Constant(DAG, 0x3fc4316c, dl));
5552       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5553       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5554                                     getF32Constant(DAG, 0x3f57ce70, dl));
5555     }
5556 
5557     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5558   }
5559 
5560   // No special expansion.
5561   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5562 }
5563 
5564 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5565 /// limited-precision mode.
5566 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5567                           const TargetLowering &TLI, SDNodeFlags Flags) {
5568   if (Op.getValueType() == MVT::f32 &&
5569       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5570     return getLimitedPrecisionExp2(Op, dl, DAG);
5571 
5572   // No special expansion.
5573   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5574 }
5575 
5576 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5577 /// limited-precision mode with x == 10.0f.
5578 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5579                          SelectionDAG &DAG, const TargetLowering &TLI,
5580                          SDNodeFlags Flags) {
5581   bool IsExp10 = false;
5582   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5583       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5584     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5585       APFloat Ten(10.0f);
5586       IsExp10 = LHSC->isExactlyValue(Ten);
5587     }
5588   }
5589 
5590   // TODO: What fast-math-flags should be set on the FMUL node?
5591   if (IsExp10) {
5592     // Put the exponent in the right bit position for later addition to the
5593     // final result:
5594     //
5595     //   #define LOG2OF10 3.3219281f
5596     //   t0 = Op * LOG2OF10;
5597     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5598                              getF32Constant(DAG, 0x40549a78, dl));
5599     return getLimitedPrecisionExp2(t0, dl, DAG);
5600   }
5601 
5602   // No special expansion.
5603   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5604 }
5605 
5606 /// ExpandPowI - Expand a llvm.powi intrinsic.
5607 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5608                           SelectionDAG &DAG) {
5609   // If RHS is a constant, we can expand this out to a multiplication tree if
5610   // it's beneficial on the target, otherwise we end up lowering to a call to
5611   // __powidf2 (for example).
5612   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5613     unsigned Val = RHSC->getSExtValue();
5614 
5615     // powi(x, 0) -> 1.0
5616     if (Val == 0)
5617       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5618 
5619     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5620             Val, DAG.shouldOptForSize())) {
5621       // Get the exponent as a positive value.
5622       if ((int)Val < 0)
5623         Val = -Val;
5624       // We use the simple binary decomposition method to generate the multiply
5625       // sequence.  There are more optimal ways to do this (for example,
5626       // powi(x,15) generates one more multiply than it should), but this has
5627       // the benefit of being both really simple and much better than a libcall.
5628       SDValue Res; // Logically starts equal to 1.0
5629       SDValue CurSquare = LHS;
5630       // TODO: Intrinsics should have fast-math-flags that propagate to these
5631       // nodes.
5632       while (Val) {
5633         if (Val & 1) {
5634           if (Res.getNode())
5635             Res =
5636                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5637           else
5638             Res = CurSquare; // 1.0*CurSquare.
5639         }
5640 
5641         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5642                                 CurSquare, CurSquare);
5643         Val >>= 1;
5644       }
5645 
5646       // If the original was negative, invert the result, producing 1/(x*x*x).
5647       if (RHSC->getSExtValue() < 0)
5648         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5649                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5650       return Res;
5651     }
5652   }
5653 
5654   // Otherwise, expand to a libcall.
5655   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5656 }
5657 
5658 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5659                             SDValue LHS, SDValue RHS, SDValue Scale,
5660                             SelectionDAG &DAG, const TargetLowering &TLI) {
5661   EVT VT = LHS.getValueType();
5662   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5663   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5664   LLVMContext &Ctx = *DAG.getContext();
5665 
5666   // If the type is legal but the operation isn't, this node might survive all
5667   // the way to operation legalization. If we end up there and we do not have
5668   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5669   // node.
5670 
5671   // Coax the legalizer into expanding the node during type legalization instead
5672   // by bumping the size by one bit. This will force it to Promote, enabling the
5673   // early expansion and avoiding the need to expand later.
5674 
5675   // We don't have to do this if Scale is 0; that can always be expanded, unless
5676   // it's a saturating signed operation. Those can experience true integer
5677   // division overflow, a case which we must avoid.
5678 
5679   // FIXME: We wouldn't have to do this (or any of the early
5680   // expansion/promotion) if it was possible to expand a libcall of an
5681   // illegal type during operation legalization. But it's not, so things
5682   // get a bit hacky.
5683   unsigned ScaleInt = Scale->getAsZExtVal();
5684   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5685       (TLI.isTypeLegal(VT) ||
5686        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5687     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5688         Opcode, VT, ScaleInt);
5689     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5690       EVT PromVT;
5691       if (VT.isScalarInteger())
5692         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5693       else if (VT.isVector()) {
5694         PromVT = VT.getVectorElementType();
5695         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5696         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5697       } else
5698         llvm_unreachable("Wrong VT for DIVFIX?");
5699       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5700       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5701       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5702       // For saturating operations, we need to shift up the LHS to get the
5703       // proper saturation width, and then shift down again afterwards.
5704       if (Saturating)
5705         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5706                           DAG.getConstant(1, DL, ShiftTy));
5707       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5708       if (Saturating)
5709         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5710                           DAG.getConstant(1, DL, ShiftTy));
5711       return DAG.getZExtOrTrunc(Res, DL, VT);
5712     }
5713   }
5714 
5715   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5716 }
5717 
5718 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5719 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5720 static void
5721 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5722                      const SDValue &N) {
5723   switch (N.getOpcode()) {
5724   case ISD::CopyFromReg: {
5725     SDValue Op = N.getOperand(1);
5726     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5727                       Op.getValueType().getSizeInBits());
5728     return;
5729   }
5730   case ISD::BITCAST:
5731   case ISD::AssertZext:
5732   case ISD::AssertSext:
5733   case ISD::TRUNCATE:
5734     getUnderlyingArgRegs(Regs, N.getOperand(0));
5735     return;
5736   case ISD::BUILD_PAIR:
5737   case ISD::BUILD_VECTOR:
5738   case ISD::CONCAT_VECTORS:
5739     for (SDValue Op : N->op_values())
5740       getUnderlyingArgRegs(Regs, Op);
5741     return;
5742   default:
5743     return;
5744   }
5745 }
5746 
5747 /// If the DbgValueInst is a dbg_value of a function argument, create the
5748 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5749 /// instruction selection, they will be inserted to the entry BB.
5750 /// We don't currently support this for variadic dbg_values, as they shouldn't
5751 /// appear for function arguments or in the prologue.
5752 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5753     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5754     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5755   const Argument *Arg = dyn_cast<Argument>(V);
5756   if (!Arg)
5757     return false;
5758 
5759   MachineFunction &MF = DAG.getMachineFunction();
5760   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5761 
5762   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5763   // we've been asked to pursue.
5764   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5765                               bool Indirect) {
5766     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5767       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5768       // pointing at the VReg, which will be patched up later.
5769       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5770       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5771           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5772           /* isKill */ false, /* isDead */ false,
5773           /* isUndef */ false, /* isEarlyClobber */ false,
5774           /* SubReg */ 0, /* isDebug */ true)});
5775 
5776       auto *NewDIExpr = FragExpr;
5777       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5778       // the DIExpression.
5779       if (Indirect)
5780         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5781       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5782       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5783       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5784     } else {
5785       // Create a completely standard DBG_VALUE.
5786       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5787       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5788     }
5789   };
5790 
5791   if (Kind == FuncArgumentDbgValueKind::Value) {
5792     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5793     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5794     // the entry block.
5795     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5796     if (!IsInEntryBlock)
5797       return false;
5798 
5799     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5800     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5801     // variable that also is a param.
5802     //
5803     // Although, if we are at the top of the entry block already, we can still
5804     // emit using ArgDbgValue. This might catch some situations when the
5805     // dbg.value refers to an argument that isn't used in the entry block, so
5806     // any CopyToReg node would be optimized out and the only way to express
5807     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5808     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5809     // we should only emit as ArgDbgValue if the Variable is an argument to the
5810     // current function, and the dbg.value intrinsic is found in the entry
5811     // block.
5812     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5813         !DL->getInlinedAt();
5814     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5815     if (!IsInPrologue && !VariableIsFunctionInputArg)
5816       return false;
5817 
5818     // Here we assume that a function argument on IR level only can be used to
5819     // describe one input parameter on source level. If we for example have
5820     // source code like this
5821     //
5822     //    struct A { long x, y; };
5823     //    void foo(struct A a, long b) {
5824     //      ...
5825     //      b = a.x;
5826     //      ...
5827     //    }
5828     //
5829     // and IR like this
5830     //
5831     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5832     //  entry:
5833     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5834     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5835     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5836     //    ...
5837     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5838     //    ...
5839     //
5840     // then the last dbg.value is describing a parameter "b" using a value that
5841     // is an argument. But since we already has used %a1 to describe a parameter
5842     // we should not handle that last dbg.value here (that would result in an
5843     // incorrect hoisting of the DBG_VALUE to the function entry).
5844     // Notice that we allow one dbg.value per IR level argument, to accommodate
5845     // for the situation with fragments above.
5846     if (VariableIsFunctionInputArg) {
5847       unsigned ArgNo = Arg->getArgNo();
5848       if (ArgNo >= FuncInfo.DescribedArgs.size())
5849         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5850       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5851         return false;
5852       FuncInfo.DescribedArgs.set(ArgNo);
5853     }
5854   }
5855 
5856   bool IsIndirect = false;
5857   std::optional<MachineOperand> Op;
5858   // Some arguments' frame index is recorded during argument lowering.
5859   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5860   if (FI != std::numeric_limits<int>::max())
5861     Op = MachineOperand::CreateFI(FI);
5862 
5863   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5864   if (!Op && N.getNode()) {
5865     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5866     Register Reg;
5867     if (ArgRegsAndSizes.size() == 1)
5868       Reg = ArgRegsAndSizes.front().first;
5869 
5870     if (Reg && Reg.isVirtual()) {
5871       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5872       Register PR = RegInfo.getLiveInPhysReg(Reg);
5873       if (PR)
5874         Reg = PR;
5875     }
5876     if (Reg) {
5877       Op = MachineOperand::CreateReg(Reg, false);
5878       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5879     }
5880   }
5881 
5882   if (!Op && N.getNode()) {
5883     // Check if frame index is available.
5884     SDValue LCandidate = peekThroughBitcasts(N);
5885     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5886       if (FrameIndexSDNode *FINode =
5887           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5888         Op = MachineOperand::CreateFI(FINode->getIndex());
5889   }
5890 
5891   if (!Op) {
5892     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5893     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5894                                          SplitRegs) {
5895       unsigned Offset = 0;
5896       for (const auto &RegAndSize : SplitRegs) {
5897         // If the expression is already a fragment, the current register
5898         // offset+size might extend beyond the fragment. In this case, only
5899         // the register bits that are inside the fragment are relevant.
5900         int RegFragmentSizeInBits = RegAndSize.second;
5901         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5902           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5903           // The register is entirely outside the expression fragment,
5904           // so is irrelevant for debug info.
5905           if (Offset >= ExprFragmentSizeInBits)
5906             break;
5907           // The register is partially outside the expression fragment, only
5908           // the low bits within the fragment are relevant for debug info.
5909           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5910             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5911           }
5912         }
5913 
5914         auto FragmentExpr = DIExpression::createFragmentExpression(
5915             Expr, Offset, RegFragmentSizeInBits);
5916         Offset += RegAndSize.second;
5917         // If a valid fragment expression cannot be created, the variable's
5918         // correct value cannot be determined and so it is set as Undef.
5919         if (!FragmentExpr) {
5920           SDDbgValue *SDV = DAG.getConstantDbgValue(
5921               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5922           DAG.AddDbgValue(SDV, false);
5923           continue;
5924         }
5925         MachineInstr *NewMI =
5926             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5927                              Kind != FuncArgumentDbgValueKind::Value);
5928         FuncInfo.ArgDbgValues.push_back(NewMI);
5929       }
5930     };
5931 
5932     // Check if ValueMap has reg number.
5933     DenseMap<const Value *, Register>::const_iterator
5934       VMI = FuncInfo.ValueMap.find(V);
5935     if (VMI != FuncInfo.ValueMap.end()) {
5936       const auto &TLI = DAG.getTargetLoweringInfo();
5937       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5938                        V->getType(), std::nullopt);
5939       if (RFV.occupiesMultipleRegs()) {
5940         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5941         return true;
5942       }
5943 
5944       Op = MachineOperand::CreateReg(VMI->second, false);
5945       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5946     } else if (ArgRegsAndSizes.size() > 1) {
5947       // This was split due to the calling convention, and no virtual register
5948       // mapping exists for the value.
5949       splitMultiRegDbgValue(ArgRegsAndSizes);
5950       return true;
5951     }
5952   }
5953 
5954   if (!Op)
5955     return false;
5956 
5957   assert(Variable->isValidLocationForIntrinsic(DL) &&
5958          "Expected inlined-at fields to agree");
5959   MachineInstr *NewMI = nullptr;
5960 
5961   if (Op->isReg())
5962     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5963   else
5964     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5965                     Variable, Expr);
5966 
5967   // Otherwise, use ArgDbgValues.
5968   FuncInfo.ArgDbgValues.push_back(NewMI);
5969   return true;
5970 }
5971 
5972 /// Return the appropriate SDDbgValue based on N.
5973 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5974                                              DILocalVariable *Variable,
5975                                              DIExpression *Expr,
5976                                              const DebugLoc &dl,
5977                                              unsigned DbgSDNodeOrder) {
5978   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5979     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5980     // stack slot locations.
5981     //
5982     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5983     // debug values here after optimization:
5984     //
5985     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5986     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5987     //
5988     // Both describe the direct values of their associated variables.
5989     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5990                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5991   }
5992   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5993                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5994 }
5995 
5996 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5997   switch (Intrinsic) {
5998   case Intrinsic::smul_fix:
5999     return ISD::SMULFIX;
6000   case Intrinsic::umul_fix:
6001     return ISD::UMULFIX;
6002   case Intrinsic::smul_fix_sat:
6003     return ISD::SMULFIXSAT;
6004   case Intrinsic::umul_fix_sat:
6005     return ISD::UMULFIXSAT;
6006   case Intrinsic::sdiv_fix:
6007     return ISD::SDIVFIX;
6008   case Intrinsic::udiv_fix:
6009     return ISD::UDIVFIX;
6010   case Intrinsic::sdiv_fix_sat:
6011     return ISD::SDIVFIXSAT;
6012   case Intrinsic::udiv_fix_sat:
6013     return ISD::UDIVFIXSAT;
6014   default:
6015     llvm_unreachable("Unhandled fixed point intrinsic");
6016   }
6017 }
6018 
6019 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6020                                            const char *FunctionName) {
6021   assert(FunctionName && "FunctionName must not be nullptr");
6022   SDValue Callee = DAG.getExternalSymbol(
6023       FunctionName,
6024       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6025   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6026 }
6027 
6028 /// Given a @llvm.call.preallocated.setup, return the corresponding
6029 /// preallocated call.
6030 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6031   assert(cast<CallBase>(PreallocatedSetup)
6032                  ->getCalledFunction()
6033                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6034          "expected call_preallocated_setup Value");
6035   for (const auto *U : PreallocatedSetup->users()) {
6036     auto *UseCall = cast<CallBase>(U);
6037     const Function *Fn = UseCall->getCalledFunction();
6038     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6039       return UseCall;
6040     }
6041   }
6042   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6043 }
6044 
6045 /// If DI is a debug value with an EntryValue expression, lower it using the
6046 /// corresponding physical register of the associated Argument value
6047 /// (guaranteed to exist by the verifier).
6048 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6049     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6050     DIExpression *Expr, DebugLoc DbgLoc) {
6051   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6052     return false;
6053 
6054   // These properties are guaranteed by the verifier.
6055   const Argument *Arg = cast<Argument>(Values[0]);
6056   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6057 
6058   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6059   if (ArgIt == FuncInfo.ValueMap.end()) {
6060     LLVM_DEBUG(
6061         dbgs() << "Dropping dbg.value: expression is entry_value but "
6062                   "couldn't find an associated register for the Argument\n");
6063     return true;
6064   }
6065   Register ArgVReg = ArgIt->getSecond();
6066 
6067   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6068     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6069       SDDbgValue *SDV = DAG.getVRegDbgValue(
6070           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6071       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6072       return true;
6073     }
6074   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6075                        "couldn't find a physical register\n");
6076   return true;
6077 }
6078 
6079 /// Lower the call to the specified intrinsic function.
6080 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6081                                                   unsigned Intrinsic) {
6082   SDLoc sdl = getCurSDLoc();
6083   switch (Intrinsic) {
6084   case Intrinsic::experimental_convergence_anchor:
6085     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6086     break;
6087   case Intrinsic::experimental_convergence_entry:
6088     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6089     break;
6090   case Intrinsic::experimental_convergence_loop: {
6091     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6092     auto *Token = Bundle->Inputs[0].get();
6093     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6094                              getValue(Token)));
6095     break;
6096   }
6097   }
6098 }
6099 
6100 /// Lower the call to the specified intrinsic function.
6101 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6102                                              unsigned Intrinsic) {
6103   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6104   SDLoc sdl = getCurSDLoc();
6105   DebugLoc dl = getCurDebugLoc();
6106   SDValue Res;
6107 
6108   SDNodeFlags Flags;
6109   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6110     Flags.copyFMF(*FPOp);
6111 
6112   switch (Intrinsic) {
6113   default:
6114     // By default, turn this into a target intrinsic node.
6115     visitTargetIntrinsic(I, Intrinsic);
6116     return;
6117   case Intrinsic::vscale: {
6118     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6119     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6120     return;
6121   }
6122   case Intrinsic::vastart:  visitVAStart(I); return;
6123   case Intrinsic::vaend:    visitVAEnd(I); return;
6124   case Intrinsic::vacopy:   visitVACopy(I); return;
6125   case Intrinsic::returnaddress:
6126     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6127                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6128                              getValue(I.getArgOperand(0))));
6129     return;
6130   case Intrinsic::addressofreturnaddress:
6131     setValue(&I,
6132              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6133                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6134     return;
6135   case Intrinsic::sponentry:
6136     setValue(&I,
6137              DAG.getNode(ISD::SPONENTRY, sdl,
6138                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6139     return;
6140   case Intrinsic::frameaddress:
6141     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6142                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6143                              getValue(I.getArgOperand(0))));
6144     return;
6145   case Intrinsic::read_volatile_register:
6146   case Intrinsic::read_register: {
6147     Value *Reg = I.getArgOperand(0);
6148     SDValue Chain = getRoot();
6149     SDValue RegName =
6150         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6151     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6152     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6153       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6154     setValue(&I, Res);
6155     DAG.setRoot(Res.getValue(1));
6156     return;
6157   }
6158   case Intrinsic::write_register: {
6159     Value *Reg = I.getArgOperand(0);
6160     Value *RegValue = I.getArgOperand(1);
6161     SDValue Chain = getRoot();
6162     SDValue RegName =
6163         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6164     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6165                             RegName, getValue(RegValue)));
6166     return;
6167   }
6168   case Intrinsic::memcpy: {
6169     const auto &MCI = cast<MemCpyInst>(I);
6170     SDValue Op1 = getValue(I.getArgOperand(0));
6171     SDValue Op2 = getValue(I.getArgOperand(1));
6172     SDValue Op3 = getValue(I.getArgOperand(2));
6173     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6174     Align DstAlign = MCI.getDestAlign().valueOrOne();
6175     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6176     Align Alignment = std::min(DstAlign, SrcAlign);
6177     bool isVol = MCI.isVolatile();
6178     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6179     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6180     // node.
6181     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6182     SDValue MC = DAG.getMemcpy(
6183         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6184         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6185         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6186     updateDAGForMaybeTailCall(MC);
6187     return;
6188   }
6189   case Intrinsic::memcpy_inline: {
6190     const auto &MCI = cast<MemCpyInlineInst>(I);
6191     SDValue Dst = getValue(I.getArgOperand(0));
6192     SDValue Src = getValue(I.getArgOperand(1));
6193     SDValue Size = getValue(I.getArgOperand(2));
6194     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6195     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6196     Align DstAlign = MCI.getDestAlign().valueOrOne();
6197     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6198     Align Alignment = std::min(DstAlign, SrcAlign);
6199     bool isVol = MCI.isVolatile();
6200     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6201     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6202     // node.
6203     SDValue MC = DAG.getMemcpy(
6204         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6205         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6206         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6207     updateDAGForMaybeTailCall(MC);
6208     return;
6209   }
6210   case Intrinsic::memset: {
6211     const auto &MSI = cast<MemSetInst>(I);
6212     SDValue Op1 = getValue(I.getArgOperand(0));
6213     SDValue Op2 = getValue(I.getArgOperand(1));
6214     SDValue Op3 = getValue(I.getArgOperand(2));
6215     // @llvm.memset defines 0 and 1 to both mean no alignment.
6216     Align Alignment = MSI.getDestAlign().valueOrOne();
6217     bool isVol = MSI.isVolatile();
6218     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6219     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6220     SDValue MS = DAG.getMemset(
6221         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6222         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6223     updateDAGForMaybeTailCall(MS);
6224     return;
6225   }
6226   case Intrinsic::memset_inline: {
6227     const auto &MSII = cast<MemSetInlineInst>(I);
6228     SDValue Dst = getValue(I.getArgOperand(0));
6229     SDValue Value = getValue(I.getArgOperand(1));
6230     SDValue Size = getValue(I.getArgOperand(2));
6231     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6232     // @llvm.memset defines 0 and 1 to both mean no alignment.
6233     Align DstAlign = MSII.getDestAlign().valueOrOne();
6234     bool isVol = MSII.isVolatile();
6235     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6236     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6237     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6238                                /* AlwaysInline */ true, isTC,
6239                                MachinePointerInfo(I.getArgOperand(0)),
6240                                I.getAAMetadata());
6241     updateDAGForMaybeTailCall(MC);
6242     return;
6243   }
6244   case Intrinsic::memmove: {
6245     const auto &MMI = cast<MemMoveInst>(I);
6246     SDValue Op1 = getValue(I.getArgOperand(0));
6247     SDValue Op2 = getValue(I.getArgOperand(1));
6248     SDValue Op3 = getValue(I.getArgOperand(2));
6249     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6250     Align DstAlign = MMI.getDestAlign().valueOrOne();
6251     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6252     Align Alignment = std::min(DstAlign, SrcAlign);
6253     bool isVol = MMI.isVolatile();
6254     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6255     // FIXME: Support passing different dest/src alignments to the memmove DAG
6256     // node.
6257     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6258     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6259                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6260                                 MachinePointerInfo(I.getArgOperand(1)),
6261                                 I.getAAMetadata(), AA);
6262     updateDAGForMaybeTailCall(MM);
6263     return;
6264   }
6265   case Intrinsic::memcpy_element_unordered_atomic: {
6266     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6267     SDValue Dst = getValue(MI.getRawDest());
6268     SDValue Src = getValue(MI.getRawSource());
6269     SDValue Length = getValue(MI.getLength());
6270 
6271     Type *LengthTy = MI.getLength()->getType();
6272     unsigned ElemSz = MI.getElementSizeInBytes();
6273     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6274     SDValue MC =
6275         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6276                             isTC, MachinePointerInfo(MI.getRawDest()),
6277                             MachinePointerInfo(MI.getRawSource()));
6278     updateDAGForMaybeTailCall(MC);
6279     return;
6280   }
6281   case Intrinsic::memmove_element_unordered_atomic: {
6282     auto &MI = cast<AtomicMemMoveInst>(I);
6283     SDValue Dst = getValue(MI.getRawDest());
6284     SDValue Src = getValue(MI.getRawSource());
6285     SDValue Length = getValue(MI.getLength());
6286 
6287     Type *LengthTy = MI.getLength()->getType();
6288     unsigned ElemSz = MI.getElementSizeInBytes();
6289     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6290     SDValue MC =
6291         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6292                              isTC, MachinePointerInfo(MI.getRawDest()),
6293                              MachinePointerInfo(MI.getRawSource()));
6294     updateDAGForMaybeTailCall(MC);
6295     return;
6296   }
6297   case Intrinsic::memset_element_unordered_atomic: {
6298     auto &MI = cast<AtomicMemSetInst>(I);
6299     SDValue Dst = getValue(MI.getRawDest());
6300     SDValue Val = getValue(MI.getValue());
6301     SDValue Length = getValue(MI.getLength());
6302 
6303     Type *LengthTy = MI.getLength()->getType();
6304     unsigned ElemSz = MI.getElementSizeInBytes();
6305     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6306     SDValue MC =
6307         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6308                             isTC, MachinePointerInfo(MI.getRawDest()));
6309     updateDAGForMaybeTailCall(MC);
6310     return;
6311   }
6312   case Intrinsic::call_preallocated_setup: {
6313     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6314     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6315     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6316                               getRoot(), SrcValue);
6317     setValue(&I, Res);
6318     DAG.setRoot(Res);
6319     return;
6320   }
6321   case Intrinsic::call_preallocated_arg: {
6322     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6323     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6324     SDValue Ops[3];
6325     Ops[0] = getRoot();
6326     Ops[1] = SrcValue;
6327     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6328                                    MVT::i32); // arg index
6329     SDValue Res = DAG.getNode(
6330         ISD::PREALLOCATED_ARG, sdl,
6331         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6332     setValue(&I, Res);
6333     DAG.setRoot(Res.getValue(1));
6334     return;
6335   }
6336   case Intrinsic::dbg_declare: {
6337     const auto &DI = cast<DbgDeclareInst>(I);
6338     // Debug intrinsics are handled separately in assignment tracking mode.
6339     // Some intrinsics are handled right after Argument lowering.
6340     if (AssignmentTrackingEnabled ||
6341         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6342       return;
6343     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6344     DILocalVariable *Variable = DI.getVariable();
6345     DIExpression *Expression = DI.getExpression();
6346     dropDanglingDebugInfo(Variable, Expression);
6347     // Assume dbg.declare can not currently use DIArgList, i.e.
6348     // it is non-variadic.
6349     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6350     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6351                        DI.getDebugLoc());
6352     return;
6353   }
6354   case Intrinsic::dbg_label: {
6355     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6356     DILabel *Label = DI.getLabel();
6357     assert(Label && "Missing label");
6358 
6359     SDDbgLabel *SDV;
6360     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6361     DAG.AddDbgLabel(SDV);
6362     return;
6363   }
6364   case Intrinsic::dbg_assign: {
6365     // Debug intrinsics are handled seperately in assignment tracking mode.
6366     if (AssignmentTrackingEnabled)
6367       return;
6368     // If assignment tracking hasn't been enabled then fall through and treat
6369     // the dbg.assign as a dbg.value.
6370     [[fallthrough]];
6371   }
6372   case Intrinsic::dbg_value: {
6373     // Debug intrinsics are handled seperately in assignment tracking mode.
6374     if (AssignmentTrackingEnabled)
6375       return;
6376     const DbgValueInst &DI = cast<DbgValueInst>(I);
6377     assert(DI.getVariable() && "Missing variable");
6378 
6379     DILocalVariable *Variable = DI.getVariable();
6380     DIExpression *Expression = DI.getExpression();
6381     dropDanglingDebugInfo(Variable, Expression);
6382 
6383     if (DI.isKillLocation()) {
6384       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6385       return;
6386     }
6387 
6388     SmallVector<Value *, 4> Values(DI.getValues());
6389     if (Values.empty())
6390       return;
6391 
6392     bool IsVariadic = DI.hasArgList();
6393     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6394                           SDNodeOrder, IsVariadic))
6395       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6396                            DI.getDebugLoc(), SDNodeOrder);
6397     return;
6398   }
6399 
6400   case Intrinsic::eh_typeid_for: {
6401     // Find the type id for the given typeinfo.
6402     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6403     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6404     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6405     setValue(&I, Res);
6406     return;
6407   }
6408 
6409   case Intrinsic::eh_return_i32:
6410   case Intrinsic::eh_return_i64:
6411     DAG.getMachineFunction().setCallsEHReturn(true);
6412     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6413                             MVT::Other,
6414                             getControlRoot(),
6415                             getValue(I.getArgOperand(0)),
6416                             getValue(I.getArgOperand(1))));
6417     return;
6418   case Intrinsic::eh_unwind_init:
6419     DAG.getMachineFunction().setCallsUnwindInit(true);
6420     return;
6421   case Intrinsic::eh_dwarf_cfa:
6422     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6423                              TLI.getPointerTy(DAG.getDataLayout()),
6424                              getValue(I.getArgOperand(0))));
6425     return;
6426   case Intrinsic::eh_sjlj_callsite: {
6427     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6428     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6429     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6430 
6431     MMI.setCurrentCallSite(CI->getZExtValue());
6432     return;
6433   }
6434   case Intrinsic::eh_sjlj_functioncontext: {
6435     // Get and store the index of the function context.
6436     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6437     AllocaInst *FnCtx =
6438       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6439     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6440     MFI.setFunctionContextIndex(FI);
6441     return;
6442   }
6443   case Intrinsic::eh_sjlj_setjmp: {
6444     SDValue Ops[2];
6445     Ops[0] = getRoot();
6446     Ops[1] = getValue(I.getArgOperand(0));
6447     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6448                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6449     setValue(&I, Op.getValue(0));
6450     DAG.setRoot(Op.getValue(1));
6451     return;
6452   }
6453   case Intrinsic::eh_sjlj_longjmp:
6454     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6455                             getRoot(), getValue(I.getArgOperand(0))));
6456     return;
6457   case Intrinsic::eh_sjlj_setup_dispatch:
6458     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6459                             getRoot()));
6460     return;
6461   case Intrinsic::masked_gather:
6462     visitMaskedGather(I);
6463     return;
6464   case Intrinsic::masked_load:
6465     visitMaskedLoad(I);
6466     return;
6467   case Intrinsic::masked_scatter:
6468     visitMaskedScatter(I);
6469     return;
6470   case Intrinsic::masked_store:
6471     visitMaskedStore(I);
6472     return;
6473   case Intrinsic::masked_expandload:
6474     visitMaskedLoad(I, true /* IsExpanding */);
6475     return;
6476   case Intrinsic::masked_compressstore:
6477     visitMaskedStore(I, true /* IsCompressing */);
6478     return;
6479   case Intrinsic::powi:
6480     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6481                             getValue(I.getArgOperand(1)), DAG));
6482     return;
6483   case Intrinsic::log:
6484     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6485     return;
6486   case Intrinsic::log2:
6487     setValue(&I,
6488              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6489     return;
6490   case Intrinsic::log10:
6491     setValue(&I,
6492              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6493     return;
6494   case Intrinsic::exp:
6495     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6496     return;
6497   case Intrinsic::exp2:
6498     setValue(&I,
6499              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6500     return;
6501   case Intrinsic::pow:
6502     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6503                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6504     return;
6505   case Intrinsic::sqrt:
6506   case Intrinsic::fabs:
6507   case Intrinsic::sin:
6508   case Intrinsic::cos:
6509   case Intrinsic::exp10:
6510   case Intrinsic::floor:
6511   case Intrinsic::ceil:
6512   case Intrinsic::trunc:
6513   case Intrinsic::rint:
6514   case Intrinsic::nearbyint:
6515   case Intrinsic::round:
6516   case Intrinsic::roundeven:
6517   case Intrinsic::canonicalize: {
6518     unsigned Opcode;
6519     switch (Intrinsic) {
6520     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6521     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6522     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6523     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6524     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6525     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6526     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6527     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6528     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6529     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6530     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6531     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6532     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6533     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6534     }
6535 
6536     setValue(&I, DAG.getNode(Opcode, sdl,
6537                              getValue(I.getArgOperand(0)).getValueType(),
6538                              getValue(I.getArgOperand(0)), Flags));
6539     return;
6540   }
6541   case Intrinsic::lround:
6542   case Intrinsic::llround:
6543   case Intrinsic::lrint:
6544   case Intrinsic::llrint: {
6545     unsigned Opcode;
6546     switch (Intrinsic) {
6547     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6548     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6549     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6550     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6551     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6552     }
6553 
6554     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6555     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6556                              getValue(I.getArgOperand(0))));
6557     return;
6558   }
6559   case Intrinsic::minnum:
6560     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6561                              getValue(I.getArgOperand(0)).getValueType(),
6562                              getValue(I.getArgOperand(0)),
6563                              getValue(I.getArgOperand(1)), Flags));
6564     return;
6565   case Intrinsic::maxnum:
6566     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6567                              getValue(I.getArgOperand(0)).getValueType(),
6568                              getValue(I.getArgOperand(0)),
6569                              getValue(I.getArgOperand(1)), Flags));
6570     return;
6571   case Intrinsic::minimum:
6572     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6573                              getValue(I.getArgOperand(0)).getValueType(),
6574                              getValue(I.getArgOperand(0)),
6575                              getValue(I.getArgOperand(1)), Flags));
6576     return;
6577   case Intrinsic::maximum:
6578     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6579                              getValue(I.getArgOperand(0)).getValueType(),
6580                              getValue(I.getArgOperand(0)),
6581                              getValue(I.getArgOperand(1)), Flags));
6582     return;
6583   case Intrinsic::copysign:
6584     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6585                              getValue(I.getArgOperand(0)).getValueType(),
6586                              getValue(I.getArgOperand(0)),
6587                              getValue(I.getArgOperand(1)), Flags));
6588     return;
6589   case Intrinsic::ldexp:
6590     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6591                              getValue(I.getArgOperand(0)).getValueType(),
6592                              getValue(I.getArgOperand(0)),
6593                              getValue(I.getArgOperand(1)), Flags));
6594     return;
6595   case Intrinsic::frexp: {
6596     SmallVector<EVT, 2> ValueVTs;
6597     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6598     SDVTList VTs = DAG.getVTList(ValueVTs);
6599     setValue(&I,
6600              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6601     return;
6602   }
6603   case Intrinsic::arithmetic_fence: {
6604     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6605                              getValue(I.getArgOperand(0)).getValueType(),
6606                              getValue(I.getArgOperand(0)), Flags));
6607     return;
6608   }
6609   case Intrinsic::fma:
6610     setValue(&I, DAG.getNode(
6611                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6612                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6613                      getValue(I.getArgOperand(2)), Flags));
6614     return;
6615 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6616   case Intrinsic::INTRINSIC:
6617 #include "llvm/IR/ConstrainedOps.def"
6618     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6619     return;
6620 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6621 #include "llvm/IR/VPIntrinsics.def"
6622     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6623     return;
6624   case Intrinsic::fptrunc_round: {
6625     // Get the last argument, the metadata and convert it to an integer in the
6626     // call
6627     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6628     std::optional<RoundingMode> RoundMode =
6629         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6630 
6631     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6632 
6633     // Propagate fast-math-flags from IR to node(s).
6634     SDNodeFlags Flags;
6635     Flags.copyFMF(*cast<FPMathOperator>(&I));
6636     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6637 
6638     SDValue Result;
6639     Result = DAG.getNode(
6640         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6641         DAG.getTargetConstant((int)*RoundMode, sdl,
6642                               TLI.getPointerTy(DAG.getDataLayout())));
6643     setValue(&I, Result);
6644 
6645     return;
6646   }
6647   case Intrinsic::fmuladd: {
6648     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6649     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6650         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6651       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6652                                getValue(I.getArgOperand(0)).getValueType(),
6653                                getValue(I.getArgOperand(0)),
6654                                getValue(I.getArgOperand(1)),
6655                                getValue(I.getArgOperand(2)), Flags));
6656     } else {
6657       // TODO: Intrinsic calls should have fast-math-flags.
6658       SDValue Mul = DAG.getNode(
6659           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6660           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6661       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6662                                 getValue(I.getArgOperand(0)).getValueType(),
6663                                 Mul, getValue(I.getArgOperand(2)), Flags);
6664       setValue(&I, Add);
6665     }
6666     return;
6667   }
6668   case Intrinsic::convert_to_fp16:
6669     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6670                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6671                                          getValue(I.getArgOperand(0)),
6672                                          DAG.getTargetConstant(0, sdl,
6673                                                                MVT::i32))));
6674     return;
6675   case Intrinsic::convert_from_fp16:
6676     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6677                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6678                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6679                                          getValue(I.getArgOperand(0)))));
6680     return;
6681   case Intrinsic::fptosi_sat: {
6682     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6683     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6684                              getValue(I.getArgOperand(0)),
6685                              DAG.getValueType(VT.getScalarType())));
6686     return;
6687   }
6688   case Intrinsic::fptoui_sat: {
6689     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6690     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6691                              getValue(I.getArgOperand(0)),
6692                              DAG.getValueType(VT.getScalarType())));
6693     return;
6694   }
6695   case Intrinsic::set_rounding:
6696     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6697                       {getRoot(), getValue(I.getArgOperand(0))});
6698     setValue(&I, Res);
6699     DAG.setRoot(Res.getValue(0));
6700     return;
6701   case Intrinsic::is_fpclass: {
6702     const DataLayout DLayout = DAG.getDataLayout();
6703     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6704     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6705     FPClassTest Test = static_cast<FPClassTest>(
6706         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6707     MachineFunction &MF = DAG.getMachineFunction();
6708     const Function &F = MF.getFunction();
6709     SDValue Op = getValue(I.getArgOperand(0));
6710     SDNodeFlags Flags;
6711     Flags.setNoFPExcept(
6712         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6713     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6714     // expansion can use illegal types. Making expansion early allows
6715     // legalizing these types prior to selection.
6716     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6717       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6718       setValue(&I, Result);
6719       return;
6720     }
6721 
6722     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6723     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6724     setValue(&I, V);
6725     return;
6726   }
6727   case Intrinsic::get_fpenv: {
6728     const DataLayout DLayout = DAG.getDataLayout();
6729     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6730     Align TempAlign = DAG.getEVTAlign(EnvVT);
6731     SDValue Chain = getRoot();
6732     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6733     // and temporary storage in stack.
6734     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6735       Res = DAG.getNode(
6736           ISD::GET_FPENV, sdl,
6737           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6738                         MVT::Other),
6739           Chain);
6740     } else {
6741       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6742       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6743       auto MPI =
6744           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6745       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6746           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6747           TempAlign);
6748       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6749       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6750     }
6751     setValue(&I, Res);
6752     DAG.setRoot(Res.getValue(1));
6753     return;
6754   }
6755   case Intrinsic::set_fpenv: {
6756     const DataLayout DLayout = DAG.getDataLayout();
6757     SDValue Env = getValue(I.getArgOperand(0));
6758     EVT EnvVT = Env.getValueType();
6759     Align TempAlign = DAG.getEVTAlign(EnvVT);
6760     SDValue Chain = getRoot();
6761     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6762     // environment from memory.
6763     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6764       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6765     } else {
6766       // Allocate space in stack, copy environment bits into it and use this
6767       // memory in SET_FPENV_MEM.
6768       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6769       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6770       auto MPI =
6771           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6772       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6773                            MachineMemOperand::MOStore);
6774       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6775           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6776           TempAlign);
6777       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6778     }
6779     DAG.setRoot(Chain);
6780     return;
6781   }
6782   case Intrinsic::reset_fpenv:
6783     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6784     return;
6785   case Intrinsic::get_fpmode:
6786     Res = DAG.getNode(
6787         ISD::GET_FPMODE, sdl,
6788         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6789                       MVT::Other),
6790         DAG.getRoot());
6791     setValue(&I, Res);
6792     DAG.setRoot(Res.getValue(1));
6793     return;
6794   case Intrinsic::set_fpmode:
6795     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6796                       getValue(I.getArgOperand(0)));
6797     DAG.setRoot(Res);
6798     return;
6799   case Intrinsic::reset_fpmode: {
6800     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6801     DAG.setRoot(Res);
6802     return;
6803   }
6804   case Intrinsic::pcmarker: {
6805     SDValue Tmp = getValue(I.getArgOperand(0));
6806     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6807     return;
6808   }
6809   case Intrinsic::readcyclecounter: {
6810     SDValue Op = getRoot();
6811     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6812                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6813     setValue(&I, Res);
6814     DAG.setRoot(Res.getValue(1));
6815     return;
6816   }
6817   case Intrinsic::readsteadycounter: {
6818     SDValue Op = getRoot();
6819     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
6820                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6821     setValue(&I, Res);
6822     DAG.setRoot(Res.getValue(1));
6823     return;
6824   }
6825   case Intrinsic::bitreverse:
6826     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6827                              getValue(I.getArgOperand(0)).getValueType(),
6828                              getValue(I.getArgOperand(0))));
6829     return;
6830   case Intrinsic::bswap:
6831     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6832                              getValue(I.getArgOperand(0)).getValueType(),
6833                              getValue(I.getArgOperand(0))));
6834     return;
6835   case Intrinsic::cttz: {
6836     SDValue Arg = getValue(I.getArgOperand(0));
6837     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6838     EVT Ty = Arg.getValueType();
6839     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6840                              sdl, Ty, Arg));
6841     return;
6842   }
6843   case Intrinsic::ctlz: {
6844     SDValue Arg = getValue(I.getArgOperand(0));
6845     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6846     EVT Ty = Arg.getValueType();
6847     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6848                              sdl, Ty, Arg));
6849     return;
6850   }
6851   case Intrinsic::ctpop: {
6852     SDValue Arg = getValue(I.getArgOperand(0));
6853     EVT Ty = Arg.getValueType();
6854     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6855     return;
6856   }
6857   case Intrinsic::fshl:
6858   case Intrinsic::fshr: {
6859     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6860     SDValue X = getValue(I.getArgOperand(0));
6861     SDValue Y = getValue(I.getArgOperand(1));
6862     SDValue Z = getValue(I.getArgOperand(2));
6863     EVT VT = X.getValueType();
6864 
6865     if (X == Y) {
6866       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6867       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6868     } else {
6869       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6870       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6871     }
6872     return;
6873   }
6874   case Intrinsic::sadd_sat: {
6875     SDValue Op1 = getValue(I.getArgOperand(0));
6876     SDValue Op2 = getValue(I.getArgOperand(1));
6877     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6878     return;
6879   }
6880   case Intrinsic::uadd_sat: {
6881     SDValue Op1 = getValue(I.getArgOperand(0));
6882     SDValue Op2 = getValue(I.getArgOperand(1));
6883     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6884     return;
6885   }
6886   case Intrinsic::ssub_sat: {
6887     SDValue Op1 = getValue(I.getArgOperand(0));
6888     SDValue Op2 = getValue(I.getArgOperand(1));
6889     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6890     return;
6891   }
6892   case Intrinsic::usub_sat: {
6893     SDValue Op1 = getValue(I.getArgOperand(0));
6894     SDValue Op2 = getValue(I.getArgOperand(1));
6895     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6896     return;
6897   }
6898   case Intrinsic::sshl_sat: {
6899     SDValue Op1 = getValue(I.getArgOperand(0));
6900     SDValue Op2 = getValue(I.getArgOperand(1));
6901     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6902     return;
6903   }
6904   case Intrinsic::ushl_sat: {
6905     SDValue Op1 = getValue(I.getArgOperand(0));
6906     SDValue Op2 = getValue(I.getArgOperand(1));
6907     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6908     return;
6909   }
6910   case Intrinsic::smul_fix:
6911   case Intrinsic::umul_fix:
6912   case Intrinsic::smul_fix_sat:
6913   case Intrinsic::umul_fix_sat: {
6914     SDValue Op1 = getValue(I.getArgOperand(0));
6915     SDValue Op2 = getValue(I.getArgOperand(1));
6916     SDValue Op3 = getValue(I.getArgOperand(2));
6917     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6918                              Op1.getValueType(), Op1, Op2, Op3));
6919     return;
6920   }
6921   case Intrinsic::sdiv_fix:
6922   case Intrinsic::udiv_fix:
6923   case Intrinsic::sdiv_fix_sat:
6924   case Intrinsic::udiv_fix_sat: {
6925     SDValue Op1 = getValue(I.getArgOperand(0));
6926     SDValue Op2 = getValue(I.getArgOperand(1));
6927     SDValue Op3 = getValue(I.getArgOperand(2));
6928     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6929                               Op1, Op2, Op3, DAG, TLI));
6930     return;
6931   }
6932   case Intrinsic::smax: {
6933     SDValue Op1 = getValue(I.getArgOperand(0));
6934     SDValue Op2 = getValue(I.getArgOperand(1));
6935     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6936     return;
6937   }
6938   case Intrinsic::smin: {
6939     SDValue Op1 = getValue(I.getArgOperand(0));
6940     SDValue Op2 = getValue(I.getArgOperand(1));
6941     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6942     return;
6943   }
6944   case Intrinsic::umax: {
6945     SDValue Op1 = getValue(I.getArgOperand(0));
6946     SDValue Op2 = getValue(I.getArgOperand(1));
6947     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6948     return;
6949   }
6950   case Intrinsic::umin: {
6951     SDValue Op1 = getValue(I.getArgOperand(0));
6952     SDValue Op2 = getValue(I.getArgOperand(1));
6953     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6954     return;
6955   }
6956   case Intrinsic::abs: {
6957     // TODO: Preserve "int min is poison" arg in SDAG?
6958     SDValue Op1 = getValue(I.getArgOperand(0));
6959     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6960     return;
6961   }
6962   case Intrinsic::stacksave: {
6963     SDValue Op = getRoot();
6964     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6965     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6966     setValue(&I, Res);
6967     DAG.setRoot(Res.getValue(1));
6968     return;
6969   }
6970   case Intrinsic::stackrestore:
6971     Res = getValue(I.getArgOperand(0));
6972     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6973     return;
6974   case Intrinsic::get_dynamic_area_offset: {
6975     SDValue Op = getRoot();
6976     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6977     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6978     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6979     // target.
6980     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6981       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6982                          " intrinsic!");
6983     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6984                       Op);
6985     DAG.setRoot(Op);
6986     setValue(&I, Res);
6987     return;
6988   }
6989   case Intrinsic::stackguard: {
6990     MachineFunction &MF = DAG.getMachineFunction();
6991     const Module &M = *MF.getFunction().getParent();
6992     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6993     SDValue Chain = getRoot();
6994     if (TLI.useLoadStackGuardNode()) {
6995       Res = getLoadStackGuard(DAG, sdl, Chain);
6996       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
6997     } else {
6998       const Value *Global = TLI.getSDagStackGuard(M);
6999       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7000       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7001                         MachinePointerInfo(Global, 0), Align,
7002                         MachineMemOperand::MOVolatile);
7003     }
7004     if (TLI.useStackGuardXorFP())
7005       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7006     DAG.setRoot(Chain);
7007     setValue(&I, Res);
7008     return;
7009   }
7010   case Intrinsic::stackprotector: {
7011     // Emit code into the DAG to store the stack guard onto the stack.
7012     MachineFunction &MF = DAG.getMachineFunction();
7013     MachineFrameInfo &MFI = MF.getFrameInfo();
7014     SDValue Src, Chain = getRoot();
7015 
7016     if (TLI.useLoadStackGuardNode())
7017       Src = getLoadStackGuard(DAG, sdl, Chain);
7018     else
7019       Src = getValue(I.getArgOperand(0));   // The guard's value.
7020 
7021     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7022 
7023     int FI = FuncInfo.StaticAllocaMap[Slot];
7024     MFI.setStackProtectorIndex(FI);
7025     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7026 
7027     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7028 
7029     // Store the stack protector onto the stack.
7030     Res = DAG.getStore(
7031         Chain, sdl, Src, FIN,
7032         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7033         MaybeAlign(), MachineMemOperand::MOVolatile);
7034     setValue(&I, Res);
7035     DAG.setRoot(Res);
7036     return;
7037   }
7038   case Intrinsic::objectsize:
7039     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7040 
7041   case Intrinsic::is_constant:
7042     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7043 
7044   case Intrinsic::annotation:
7045   case Intrinsic::ptr_annotation:
7046   case Intrinsic::launder_invariant_group:
7047   case Intrinsic::strip_invariant_group:
7048     // Drop the intrinsic, but forward the value
7049     setValue(&I, getValue(I.getOperand(0)));
7050     return;
7051 
7052   case Intrinsic::assume:
7053   case Intrinsic::experimental_noalias_scope_decl:
7054   case Intrinsic::var_annotation:
7055   case Intrinsic::sideeffect:
7056     // Discard annotate attributes, noalias scope declarations, assumptions, and
7057     // artificial side-effects.
7058     return;
7059 
7060   case Intrinsic::codeview_annotation: {
7061     // Emit a label associated with this metadata.
7062     MachineFunction &MF = DAG.getMachineFunction();
7063     MCSymbol *Label =
7064         MF.getMMI().getContext().createTempSymbol("annotation", true);
7065     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7066     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7067     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7068     DAG.setRoot(Res);
7069     return;
7070   }
7071 
7072   case Intrinsic::init_trampoline: {
7073     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7074 
7075     SDValue Ops[6];
7076     Ops[0] = getRoot();
7077     Ops[1] = getValue(I.getArgOperand(0));
7078     Ops[2] = getValue(I.getArgOperand(1));
7079     Ops[3] = getValue(I.getArgOperand(2));
7080     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7081     Ops[5] = DAG.getSrcValue(F);
7082 
7083     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7084 
7085     DAG.setRoot(Res);
7086     return;
7087   }
7088   case Intrinsic::adjust_trampoline:
7089     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7090                              TLI.getPointerTy(DAG.getDataLayout()),
7091                              getValue(I.getArgOperand(0))));
7092     return;
7093   case Intrinsic::gcroot: {
7094     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7095            "only valid in functions with gc specified, enforced by Verifier");
7096     assert(GFI && "implied by previous");
7097     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7098     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7099 
7100     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7101     GFI->addStackRoot(FI->getIndex(), TypeMap);
7102     return;
7103   }
7104   case Intrinsic::gcread:
7105   case Intrinsic::gcwrite:
7106     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7107   case Intrinsic::get_rounding:
7108     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7109     setValue(&I, Res);
7110     DAG.setRoot(Res.getValue(1));
7111     return;
7112 
7113   case Intrinsic::expect:
7114     // Just replace __builtin_expect(exp, c) with EXP.
7115     setValue(&I, getValue(I.getArgOperand(0)));
7116     return;
7117 
7118   case Intrinsic::ubsantrap:
7119   case Intrinsic::debugtrap:
7120   case Intrinsic::trap: {
7121     StringRef TrapFuncName =
7122         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7123     if (TrapFuncName.empty()) {
7124       switch (Intrinsic) {
7125       case Intrinsic::trap:
7126         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7127         break;
7128       case Intrinsic::debugtrap:
7129         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7130         break;
7131       case Intrinsic::ubsantrap:
7132         DAG.setRoot(DAG.getNode(
7133             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7134             DAG.getTargetConstant(
7135                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7136                 MVT::i32)));
7137         break;
7138       default: llvm_unreachable("unknown trap intrinsic");
7139       }
7140       return;
7141     }
7142     TargetLowering::ArgListTy Args;
7143     if (Intrinsic == Intrinsic::ubsantrap) {
7144       Args.push_back(TargetLoweringBase::ArgListEntry());
7145       Args[0].Val = I.getArgOperand(0);
7146       Args[0].Node = getValue(Args[0].Val);
7147       Args[0].Ty = Args[0].Val->getType();
7148     }
7149 
7150     TargetLowering::CallLoweringInfo CLI(DAG);
7151     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7152         CallingConv::C, I.getType(),
7153         DAG.getExternalSymbol(TrapFuncName.data(),
7154                               TLI.getPointerTy(DAG.getDataLayout())),
7155         std::move(Args));
7156 
7157     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7158     DAG.setRoot(Result.second);
7159     return;
7160   }
7161 
7162   case Intrinsic::uadd_with_overflow:
7163   case Intrinsic::sadd_with_overflow:
7164   case Intrinsic::usub_with_overflow:
7165   case Intrinsic::ssub_with_overflow:
7166   case Intrinsic::umul_with_overflow:
7167   case Intrinsic::smul_with_overflow: {
7168     ISD::NodeType Op;
7169     switch (Intrinsic) {
7170     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7171     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7172     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7173     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7174     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7175     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7176     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7177     }
7178     SDValue Op1 = getValue(I.getArgOperand(0));
7179     SDValue Op2 = getValue(I.getArgOperand(1));
7180 
7181     EVT ResultVT = Op1.getValueType();
7182     EVT OverflowVT = MVT::i1;
7183     if (ResultVT.isVector())
7184       OverflowVT = EVT::getVectorVT(
7185           *Context, OverflowVT, ResultVT.getVectorElementCount());
7186 
7187     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7188     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7189     return;
7190   }
7191   case Intrinsic::prefetch: {
7192     SDValue Ops[5];
7193     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7194     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7195     Ops[0] = DAG.getRoot();
7196     Ops[1] = getValue(I.getArgOperand(0));
7197     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7198                                    MVT::i32);
7199     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7200                                    MVT::i32);
7201     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7202                                    MVT::i32);
7203     SDValue Result = DAG.getMemIntrinsicNode(
7204         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7205         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7206         /* align */ std::nullopt, Flags);
7207 
7208     // Chain the prefetch in parallel with any pending loads, to stay out of
7209     // the way of later optimizations.
7210     PendingLoads.push_back(Result);
7211     Result = getRoot();
7212     DAG.setRoot(Result);
7213     return;
7214   }
7215   case Intrinsic::lifetime_start:
7216   case Intrinsic::lifetime_end: {
7217     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7218     // Stack coloring is not enabled in O0, discard region information.
7219     if (TM.getOptLevel() == CodeGenOptLevel::None)
7220       return;
7221 
7222     const int64_t ObjectSize =
7223         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7224     Value *const ObjectPtr = I.getArgOperand(1);
7225     SmallVector<const Value *, 4> Allocas;
7226     getUnderlyingObjects(ObjectPtr, Allocas);
7227 
7228     for (const Value *Alloca : Allocas) {
7229       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7230 
7231       // Could not find an Alloca.
7232       if (!LifetimeObject)
7233         continue;
7234 
7235       // First check that the Alloca is static, otherwise it won't have a
7236       // valid frame index.
7237       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7238       if (SI == FuncInfo.StaticAllocaMap.end())
7239         return;
7240 
7241       const int FrameIndex = SI->second;
7242       int64_t Offset;
7243       if (GetPointerBaseWithConstantOffset(
7244               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7245         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7246       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7247                                 Offset);
7248       DAG.setRoot(Res);
7249     }
7250     return;
7251   }
7252   case Intrinsic::pseudoprobe: {
7253     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7254     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7255     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7256     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7257     DAG.setRoot(Res);
7258     return;
7259   }
7260   case Intrinsic::invariant_start:
7261     // Discard region information.
7262     setValue(&I,
7263              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7264     return;
7265   case Intrinsic::invariant_end:
7266     // Discard region information.
7267     return;
7268   case Intrinsic::clear_cache:
7269     /// FunctionName may be null.
7270     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7271       lowerCallToExternalSymbol(I, FunctionName);
7272     return;
7273   case Intrinsic::donothing:
7274   case Intrinsic::seh_try_begin:
7275   case Intrinsic::seh_scope_begin:
7276   case Intrinsic::seh_try_end:
7277   case Intrinsic::seh_scope_end:
7278     // ignore
7279     return;
7280   case Intrinsic::experimental_stackmap:
7281     visitStackmap(I);
7282     return;
7283   case Intrinsic::experimental_patchpoint_void:
7284   case Intrinsic::experimental_patchpoint_i64:
7285     visitPatchpoint(I);
7286     return;
7287   case Intrinsic::experimental_gc_statepoint:
7288     LowerStatepoint(cast<GCStatepointInst>(I));
7289     return;
7290   case Intrinsic::experimental_gc_result:
7291     visitGCResult(cast<GCResultInst>(I));
7292     return;
7293   case Intrinsic::experimental_gc_relocate:
7294     visitGCRelocate(cast<GCRelocateInst>(I));
7295     return;
7296   case Intrinsic::instrprof_cover:
7297     llvm_unreachable("instrprof failed to lower a cover");
7298   case Intrinsic::instrprof_increment:
7299     llvm_unreachable("instrprof failed to lower an increment");
7300   case Intrinsic::instrprof_timestamp:
7301     llvm_unreachable("instrprof failed to lower a timestamp");
7302   case Intrinsic::instrprof_value_profile:
7303     llvm_unreachable("instrprof failed to lower a value profiling call");
7304   case Intrinsic::instrprof_mcdc_parameters:
7305     llvm_unreachable("instrprof failed to lower mcdc parameters");
7306   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7307     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7308   case Intrinsic::instrprof_mcdc_condbitmap_update:
7309     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7310   case Intrinsic::localescape: {
7311     MachineFunction &MF = DAG.getMachineFunction();
7312     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7313 
7314     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7315     // is the same on all targets.
7316     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7317       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7318       if (isa<ConstantPointerNull>(Arg))
7319         continue; // Skip null pointers. They represent a hole in index space.
7320       AllocaInst *Slot = cast<AllocaInst>(Arg);
7321       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7322              "can only escape static allocas");
7323       int FI = FuncInfo.StaticAllocaMap[Slot];
7324       MCSymbol *FrameAllocSym =
7325           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7326               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7327       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7328               TII->get(TargetOpcode::LOCAL_ESCAPE))
7329           .addSym(FrameAllocSym)
7330           .addFrameIndex(FI);
7331     }
7332 
7333     return;
7334   }
7335 
7336   case Intrinsic::localrecover: {
7337     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7338     MachineFunction &MF = DAG.getMachineFunction();
7339 
7340     // Get the symbol that defines the frame offset.
7341     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7342     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7343     unsigned IdxVal =
7344         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7345     MCSymbol *FrameAllocSym =
7346         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7347             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7348 
7349     Value *FP = I.getArgOperand(1);
7350     SDValue FPVal = getValue(FP);
7351     EVT PtrVT = FPVal.getValueType();
7352 
7353     // Create a MCSymbol for the label to avoid any target lowering
7354     // that would make this PC relative.
7355     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7356     SDValue OffsetVal =
7357         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7358 
7359     // Add the offset to the FP.
7360     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7361     setValue(&I, Add);
7362 
7363     return;
7364   }
7365 
7366   case Intrinsic::eh_exceptionpointer:
7367   case Intrinsic::eh_exceptioncode: {
7368     // Get the exception pointer vreg, copy from it, and resize it to fit.
7369     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7370     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7371     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7372     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7373     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7374     if (Intrinsic == Intrinsic::eh_exceptioncode)
7375       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7376     setValue(&I, N);
7377     return;
7378   }
7379   case Intrinsic::xray_customevent: {
7380     // Here we want to make sure that the intrinsic behaves as if it has a
7381     // specific calling convention.
7382     const auto &Triple = DAG.getTarget().getTargetTriple();
7383     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7384       return;
7385 
7386     SmallVector<SDValue, 8> Ops;
7387 
7388     // We want to say that we always want the arguments in registers.
7389     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7390     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7391     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7392     SDValue Chain = getRoot();
7393     Ops.push_back(LogEntryVal);
7394     Ops.push_back(StrSizeVal);
7395     Ops.push_back(Chain);
7396 
7397     // We need to enforce the calling convention for the callsite, so that
7398     // argument ordering is enforced correctly, and that register allocation can
7399     // see that some registers may be assumed clobbered and have to preserve
7400     // them across calls to the intrinsic.
7401     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7402                                            sdl, NodeTys, Ops);
7403     SDValue patchableNode = SDValue(MN, 0);
7404     DAG.setRoot(patchableNode);
7405     setValue(&I, patchableNode);
7406     return;
7407   }
7408   case Intrinsic::xray_typedevent: {
7409     // Here we want to make sure that the intrinsic behaves as if it has a
7410     // specific calling convention.
7411     const auto &Triple = DAG.getTarget().getTargetTriple();
7412     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7413       return;
7414 
7415     SmallVector<SDValue, 8> Ops;
7416 
7417     // We want to say that we always want the arguments in registers.
7418     // It's unclear to me how manipulating the selection DAG here forces callers
7419     // to provide arguments in registers instead of on the stack.
7420     SDValue LogTypeId = getValue(I.getArgOperand(0));
7421     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7422     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7423     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7424     SDValue Chain = getRoot();
7425     Ops.push_back(LogTypeId);
7426     Ops.push_back(LogEntryVal);
7427     Ops.push_back(StrSizeVal);
7428     Ops.push_back(Chain);
7429 
7430     // We need to enforce the calling convention for the callsite, so that
7431     // argument ordering is enforced correctly, and that register allocation can
7432     // see that some registers may be assumed clobbered and have to preserve
7433     // them across calls to the intrinsic.
7434     MachineSDNode *MN = DAG.getMachineNode(
7435         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7436     SDValue patchableNode = SDValue(MN, 0);
7437     DAG.setRoot(patchableNode);
7438     setValue(&I, patchableNode);
7439     return;
7440   }
7441   case Intrinsic::experimental_deoptimize:
7442     LowerDeoptimizeCall(&I);
7443     return;
7444   case Intrinsic::experimental_stepvector:
7445     visitStepVector(I);
7446     return;
7447   case Intrinsic::vector_reduce_fadd:
7448   case Intrinsic::vector_reduce_fmul:
7449   case Intrinsic::vector_reduce_add:
7450   case Intrinsic::vector_reduce_mul:
7451   case Intrinsic::vector_reduce_and:
7452   case Intrinsic::vector_reduce_or:
7453   case Intrinsic::vector_reduce_xor:
7454   case Intrinsic::vector_reduce_smax:
7455   case Intrinsic::vector_reduce_smin:
7456   case Intrinsic::vector_reduce_umax:
7457   case Intrinsic::vector_reduce_umin:
7458   case Intrinsic::vector_reduce_fmax:
7459   case Intrinsic::vector_reduce_fmin:
7460   case Intrinsic::vector_reduce_fmaximum:
7461   case Intrinsic::vector_reduce_fminimum:
7462     visitVectorReduce(I, Intrinsic);
7463     return;
7464 
7465   case Intrinsic::icall_branch_funnel: {
7466     SmallVector<SDValue, 16> Ops;
7467     Ops.push_back(getValue(I.getArgOperand(0)));
7468 
7469     int64_t Offset;
7470     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7471         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7472     if (!Base)
7473       report_fatal_error(
7474           "llvm.icall.branch.funnel operand must be a GlobalValue");
7475     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7476 
7477     struct BranchFunnelTarget {
7478       int64_t Offset;
7479       SDValue Target;
7480     };
7481     SmallVector<BranchFunnelTarget, 8> Targets;
7482 
7483     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7484       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7485           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7486       if (ElemBase != Base)
7487         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7488                            "to the same GlobalValue");
7489 
7490       SDValue Val = getValue(I.getArgOperand(Op + 1));
7491       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7492       if (!GA)
7493         report_fatal_error(
7494             "llvm.icall.branch.funnel operand must be a GlobalValue");
7495       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7496                                      GA->getGlobal(), sdl, Val.getValueType(),
7497                                      GA->getOffset())});
7498     }
7499     llvm::sort(Targets,
7500                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7501                  return T1.Offset < T2.Offset;
7502                });
7503 
7504     for (auto &T : Targets) {
7505       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7506       Ops.push_back(T.Target);
7507     }
7508 
7509     Ops.push_back(DAG.getRoot()); // Chain
7510     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7511                                  MVT::Other, Ops),
7512               0);
7513     DAG.setRoot(N);
7514     setValue(&I, N);
7515     HasTailCall = true;
7516     return;
7517   }
7518 
7519   case Intrinsic::wasm_landingpad_index:
7520     // Information this intrinsic contained has been transferred to
7521     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7522     // delete it now.
7523     return;
7524 
7525   case Intrinsic::aarch64_settag:
7526   case Intrinsic::aarch64_settag_zero: {
7527     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7528     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7529     SDValue Val = TSI.EmitTargetCodeForSetTag(
7530         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7531         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7532         ZeroMemory);
7533     DAG.setRoot(Val);
7534     setValue(&I, Val);
7535     return;
7536   }
7537   case Intrinsic::amdgcn_cs_chain: {
7538     assert(I.arg_size() == 5 && "Additional args not supported yet");
7539     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7540            "Non-zero flags not supported yet");
7541 
7542     // At this point we don't care if it's amdgpu_cs_chain or
7543     // amdgpu_cs_chain_preserve.
7544     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7545 
7546     Type *RetTy = I.getType();
7547     assert(RetTy->isVoidTy() && "Should not return");
7548 
7549     SDValue Callee = getValue(I.getOperand(0));
7550 
7551     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7552     // We'll also tack the value of the EXEC mask at the end.
7553     TargetLowering::ArgListTy Args;
7554     Args.reserve(3);
7555 
7556     for (unsigned Idx : {2, 3, 1}) {
7557       TargetLowering::ArgListEntry Arg;
7558       Arg.Node = getValue(I.getOperand(Idx));
7559       Arg.Ty = I.getOperand(Idx)->getType();
7560       Arg.setAttributes(&I, Idx);
7561       Args.push_back(Arg);
7562     }
7563 
7564     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7565     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7566     Args[2].IsInReg = true; // EXEC should be inreg
7567 
7568     TargetLowering::CallLoweringInfo CLI(DAG);
7569     CLI.setDebugLoc(getCurSDLoc())
7570         .setChain(getRoot())
7571         .setCallee(CC, RetTy, Callee, std::move(Args))
7572         .setNoReturn(true)
7573         .setTailCall(true)
7574         .setConvergent(I.isConvergent());
7575     CLI.CB = &I;
7576     std::pair<SDValue, SDValue> Result =
7577         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7578     (void)Result;
7579     assert(!Result.first.getNode() && !Result.second.getNode() &&
7580            "Should've lowered as tail call");
7581 
7582     HasTailCall = true;
7583     return;
7584   }
7585   case Intrinsic::ptrmask: {
7586     SDValue Ptr = getValue(I.getOperand(0));
7587     SDValue Mask = getValue(I.getOperand(1));
7588 
7589     EVT PtrVT = Ptr.getValueType();
7590     assert(PtrVT == Mask.getValueType() &&
7591            "Pointers with different index type are not supported by SDAG");
7592     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7593     return;
7594   }
7595   case Intrinsic::threadlocal_address: {
7596     setValue(&I, getValue(I.getOperand(0)));
7597     return;
7598   }
7599   case Intrinsic::get_active_lane_mask: {
7600     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7601     SDValue Index = getValue(I.getOperand(0));
7602     EVT ElementVT = Index.getValueType();
7603 
7604     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7605       visitTargetIntrinsic(I, Intrinsic);
7606       return;
7607     }
7608 
7609     SDValue TripCount = getValue(I.getOperand(1));
7610     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7611                                  CCVT.getVectorElementCount());
7612 
7613     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7614     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7615     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7616     SDValue VectorInduction = DAG.getNode(
7617         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7618     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7619                                  VectorTripCount, ISD::CondCode::SETULT);
7620     setValue(&I, SetCC);
7621     return;
7622   }
7623   case Intrinsic::experimental_get_vector_length: {
7624     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7625            "Expected positive VF");
7626     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7627     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7628 
7629     SDValue Count = getValue(I.getOperand(0));
7630     EVT CountVT = Count.getValueType();
7631 
7632     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7633       visitTargetIntrinsic(I, Intrinsic);
7634       return;
7635     }
7636 
7637     // Expand to a umin between the trip count and the maximum elements the type
7638     // can hold.
7639     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7640 
7641     // Extend the trip count to at least the result VT.
7642     if (CountVT.bitsLT(VT)) {
7643       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7644       CountVT = VT;
7645     }
7646 
7647     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7648                                          ElementCount::get(VF, IsScalable));
7649 
7650     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7651     // Clip to the result type if needed.
7652     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7653 
7654     setValue(&I, Trunc);
7655     return;
7656   }
7657   case Intrinsic::experimental_cttz_elts: {
7658     auto DL = getCurSDLoc();
7659     SDValue Op = getValue(I.getOperand(0));
7660     EVT OpVT = Op.getValueType();
7661 
7662     if (!TLI.shouldExpandCttzElements(OpVT)) {
7663       visitTargetIntrinsic(I, Intrinsic);
7664       return;
7665     }
7666 
7667     if (OpVT.getScalarType() != MVT::i1) {
7668       // Compare the input vector elements to zero & use to count trailing zeros
7669       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7670       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7671                               OpVT.getVectorElementCount());
7672       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7673     }
7674 
7675     // Find the smallest "sensible" element type to use for the expansion.
7676     ConstantRange CR(
7677         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7678     if (OpVT.isScalableVT())
7679       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7680 
7681     // If the zero-is-poison flag is set, we can assume the upper limit
7682     // of the result is VF-1.
7683     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7684       CR = CR.subtract(APInt(64, 1));
7685 
7686     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7687     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7688     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7689 
7690     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7691 
7692     // Create the new vector type & get the vector length
7693     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7694                                  OpVT.getVectorElementCount());
7695 
7696     SDValue VL =
7697         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7698 
7699     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7700     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7701     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7702     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7703     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7704     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7705     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7706 
7707     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7708     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7709 
7710     setValue(&I, Ret);
7711     return;
7712   }
7713   case Intrinsic::vector_insert: {
7714     SDValue Vec = getValue(I.getOperand(0));
7715     SDValue SubVec = getValue(I.getOperand(1));
7716     SDValue Index = getValue(I.getOperand(2));
7717 
7718     // The intrinsic's index type is i64, but the SDNode requires an index type
7719     // suitable for the target. Convert the index as required.
7720     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7721     if (Index.getValueType() != VectorIdxTy)
7722       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7723 
7724     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7725     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7726                              Index));
7727     return;
7728   }
7729   case Intrinsic::vector_extract: {
7730     SDValue Vec = getValue(I.getOperand(0));
7731     SDValue Index = getValue(I.getOperand(1));
7732     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7733 
7734     // The intrinsic's index type is i64, but the SDNode requires an index type
7735     // suitable for the target. Convert the index as required.
7736     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7737     if (Index.getValueType() != VectorIdxTy)
7738       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7739 
7740     setValue(&I,
7741              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7742     return;
7743   }
7744   case Intrinsic::experimental_vector_reverse:
7745     visitVectorReverse(I);
7746     return;
7747   case Intrinsic::experimental_vector_splice:
7748     visitVectorSplice(I);
7749     return;
7750   case Intrinsic::callbr_landingpad:
7751     visitCallBrLandingPad(I);
7752     return;
7753   case Intrinsic::experimental_vector_interleave2:
7754     visitVectorInterleave(I);
7755     return;
7756   case Intrinsic::experimental_vector_deinterleave2:
7757     visitVectorDeinterleave(I);
7758     return;
7759   case Intrinsic::experimental_convergence_anchor:
7760   case Intrinsic::experimental_convergence_entry:
7761   case Intrinsic::experimental_convergence_loop:
7762     visitConvergenceControl(I, Intrinsic);
7763   }
7764 }
7765 
7766 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7767     const ConstrainedFPIntrinsic &FPI) {
7768   SDLoc sdl = getCurSDLoc();
7769 
7770   // We do not need to serialize constrained FP intrinsics against
7771   // each other or against (nonvolatile) loads, so they can be
7772   // chained like loads.
7773   SDValue Chain = DAG.getRoot();
7774   SmallVector<SDValue, 4> Opers;
7775   Opers.push_back(Chain);
7776   if (FPI.isUnaryOp()) {
7777     Opers.push_back(getValue(FPI.getArgOperand(0)));
7778   } else if (FPI.isTernaryOp()) {
7779     Opers.push_back(getValue(FPI.getArgOperand(0)));
7780     Opers.push_back(getValue(FPI.getArgOperand(1)));
7781     Opers.push_back(getValue(FPI.getArgOperand(2)));
7782   } else {
7783     Opers.push_back(getValue(FPI.getArgOperand(0)));
7784     Opers.push_back(getValue(FPI.getArgOperand(1)));
7785   }
7786 
7787   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7788     assert(Result.getNode()->getNumValues() == 2);
7789 
7790     // Push node to the appropriate list so that future instructions can be
7791     // chained up correctly.
7792     SDValue OutChain = Result.getValue(1);
7793     switch (EB) {
7794     case fp::ExceptionBehavior::ebIgnore:
7795       // The only reason why ebIgnore nodes still need to be chained is that
7796       // they might depend on the current rounding mode, and therefore must
7797       // not be moved across instruction that may change that mode.
7798       [[fallthrough]];
7799     case fp::ExceptionBehavior::ebMayTrap:
7800       // These must not be moved across calls or instructions that may change
7801       // floating-point exception masks.
7802       PendingConstrainedFP.push_back(OutChain);
7803       break;
7804     case fp::ExceptionBehavior::ebStrict:
7805       // These must not be moved across calls or instructions that may change
7806       // floating-point exception masks or read floating-point exception flags.
7807       // In addition, they cannot be optimized out even if unused.
7808       PendingConstrainedFPStrict.push_back(OutChain);
7809       break;
7810     }
7811   };
7812 
7813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7814   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7815   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7816   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7817 
7818   SDNodeFlags Flags;
7819   if (EB == fp::ExceptionBehavior::ebIgnore)
7820     Flags.setNoFPExcept(true);
7821 
7822   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7823     Flags.copyFMF(*FPOp);
7824 
7825   unsigned Opcode;
7826   switch (FPI.getIntrinsicID()) {
7827   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7828 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7829   case Intrinsic::INTRINSIC:                                                   \
7830     Opcode = ISD::STRICT_##DAGN;                                               \
7831     break;
7832 #include "llvm/IR/ConstrainedOps.def"
7833   case Intrinsic::experimental_constrained_fmuladd: {
7834     Opcode = ISD::STRICT_FMA;
7835     // Break fmuladd into fmul and fadd.
7836     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7837         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7838       Opers.pop_back();
7839       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7840       pushOutChain(Mul, EB);
7841       Opcode = ISD::STRICT_FADD;
7842       Opers.clear();
7843       Opers.push_back(Mul.getValue(1));
7844       Opers.push_back(Mul.getValue(0));
7845       Opers.push_back(getValue(FPI.getArgOperand(2)));
7846     }
7847     break;
7848   }
7849   }
7850 
7851   // A few strict DAG nodes carry additional operands that are not
7852   // set up by the default code above.
7853   switch (Opcode) {
7854   default: break;
7855   case ISD::STRICT_FP_ROUND:
7856     Opers.push_back(
7857         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7858     break;
7859   case ISD::STRICT_FSETCC:
7860   case ISD::STRICT_FSETCCS: {
7861     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7862     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7863     if (TM.Options.NoNaNsFPMath)
7864       Condition = getFCmpCodeWithoutNaN(Condition);
7865     Opers.push_back(DAG.getCondCode(Condition));
7866     break;
7867   }
7868   }
7869 
7870   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7871   pushOutChain(Result, EB);
7872 
7873   SDValue FPResult = Result.getValue(0);
7874   setValue(&FPI, FPResult);
7875 }
7876 
7877 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7878   std::optional<unsigned> ResOPC;
7879   switch (VPIntrin.getIntrinsicID()) {
7880   case Intrinsic::vp_ctlz: {
7881     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7882     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7883     break;
7884   }
7885   case Intrinsic::vp_cttz: {
7886     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7887     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7888     break;
7889   }
7890 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7891   case Intrinsic::VPID:                                                        \
7892     ResOPC = ISD::VPSD;                                                        \
7893     break;
7894 #include "llvm/IR/VPIntrinsics.def"
7895   }
7896 
7897   if (!ResOPC)
7898     llvm_unreachable(
7899         "Inconsistency: no SDNode available for this VPIntrinsic!");
7900 
7901   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7902       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7903     if (VPIntrin.getFastMathFlags().allowReassoc())
7904       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7905                                                 : ISD::VP_REDUCE_FMUL;
7906   }
7907 
7908   return *ResOPC;
7909 }
7910 
7911 void SelectionDAGBuilder::visitVPLoad(
7912     const VPIntrinsic &VPIntrin, EVT VT,
7913     const SmallVectorImpl<SDValue> &OpValues) {
7914   SDLoc DL = getCurSDLoc();
7915   Value *PtrOperand = VPIntrin.getArgOperand(0);
7916   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7917   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7918   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7919   SDValue LD;
7920   // Do not serialize variable-length loads of constant memory with
7921   // anything.
7922   if (!Alignment)
7923     Alignment = DAG.getEVTAlign(VT);
7924   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7925   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7926   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7927   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7928       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7929       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7930   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7931                      MMO, false /*IsExpanding */);
7932   if (AddToChain)
7933     PendingLoads.push_back(LD.getValue(1));
7934   setValue(&VPIntrin, LD);
7935 }
7936 
7937 void SelectionDAGBuilder::visitVPGather(
7938     const VPIntrinsic &VPIntrin, EVT VT,
7939     const SmallVectorImpl<SDValue> &OpValues) {
7940   SDLoc DL = getCurSDLoc();
7941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7942   Value *PtrOperand = VPIntrin.getArgOperand(0);
7943   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7944   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7945   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7946   SDValue LD;
7947   if (!Alignment)
7948     Alignment = DAG.getEVTAlign(VT.getScalarType());
7949   unsigned AS =
7950     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7951   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7952      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7953      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7954   SDValue Base, Index, Scale;
7955   ISD::MemIndexType IndexType;
7956   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7957                                     this, VPIntrin.getParent(),
7958                                     VT.getScalarStoreSize());
7959   if (!UniformBase) {
7960     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7961     Index = getValue(PtrOperand);
7962     IndexType = ISD::SIGNED_SCALED;
7963     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7964   }
7965   EVT IdxVT = Index.getValueType();
7966   EVT EltTy = IdxVT.getVectorElementType();
7967   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7968     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7969     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7970   }
7971   LD = DAG.getGatherVP(
7972       DAG.getVTList(VT, MVT::Other), VT, DL,
7973       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7974       IndexType);
7975   PendingLoads.push_back(LD.getValue(1));
7976   setValue(&VPIntrin, LD);
7977 }
7978 
7979 void SelectionDAGBuilder::visitVPStore(
7980     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7981   SDLoc DL = getCurSDLoc();
7982   Value *PtrOperand = VPIntrin.getArgOperand(1);
7983   EVT VT = OpValues[0].getValueType();
7984   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7985   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7986   SDValue ST;
7987   if (!Alignment)
7988     Alignment = DAG.getEVTAlign(VT);
7989   SDValue Ptr = OpValues[1];
7990   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7991   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7992       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7993       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7994   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7995                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7996                       /* IsTruncating */ false, /*IsCompressing*/ false);
7997   DAG.setRoot(ST);
7998   setValue(&VPIntrin, ST);
7999 }
8000 
8001 void SelectionDAGBuilder::visitVPScatter(
8002     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8003   SDLoc DL = getCurSDLoc();
8004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8005   Value *PtrOperand = VPIntrin.getArgOperand(1);
8006   EVT VT = OpValues[0].getValueType();
8007   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8008   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8009   SDValue ST;
8010   if (!Alignment)
8011     Alignment = DAG.getEVTAlign(VT.getScalarType());
8012   unsigned AS =
8013       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8014   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8015       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8016       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8017   SDValue Base, Index, Scale;
8018   ISD::MemIndexType IndexType;
8019   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8020                                     this, VPIntrin.getParent(),
8021                                     VT.getScalarStoreSize());
8022   if (!UniformBase) {
8023     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8024     Index = getValue(PtrOperand);
8025     IndexType = ISD::SIGNED_SCALED;
8026     Scale =
8027       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8028   }
8029   EVT IdxVT = Index.getValueType();
8030   EVT EltTy = IdxVT.getVectorElementType();
8031   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8032     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8033     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8034   }
8035   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8036                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8037                          OpValues[2], OpValues[3]},
8038                         MMO, IndexType);
8039   DAG.setRoot(ST);
8040   setValue(&VPIntrin, ST);
8041 }
8042 
8043 void SelectionDAGBuilder::visitVPStridedLoad(
8044     const VPIntrinsic &VPIntrin, EVT VT,
8045     const SmallVectorImpl<SDValue> &OpValues) {
8046   SDLoc DL = getCurSDLoc();
8047   Value *PtrOperand = VPIntrin.getArgOperand(0);
8048   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8049   if (!Alignment)
8050     Alignment = DAG.getEVTAlign(VT.getScalarType());
8051   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8052   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8053   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8054   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8055   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8056   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8057       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8058       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
8059 
8060   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8061                                     OpValues[2], OpValues[3], MMO,
8062                                     false /*IsExpanding*/);
8063 
8064   if (AddToChain)
8065     PendingLoads.push_back(LD.getValue(1));
8066   setValue(&VPIntrin, LD);
8067 }
8068 
8069 void SelectionDAGBuilder::visitVPStridedStore(
8070     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8071   SDLoc DL = getCurSDLoc();
8072   Value *PtrOperand = VPIntrin.getArgOperand(1);
8073   EVT VT = OpValues[0].getValueType();
8074   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8075   if (!Alignment)
8076     Alignment = DAG.getEVTAlign(VT.getScalarType());
8077   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8078   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8079       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8080       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8081 
8082   SDValue ST = DAG.getStridedStoreVP(
8083       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8084       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8085       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8086       /*IsCompressing*/ false);
8087 
8088   DAG.setRoot(ST);
8089   setValue(&VPIntrin, ST);
8090 }
8091 
8092 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8093   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8094   SDLoc DL = getCurSDLoc();
8095 
8096   ISD::CondCode Condition;
8097   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8098   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8099   if (IsFP) {
8100     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8101     // flags, but calls that don't return floating-point types can't be
8102     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8103     Condition = getFCmpCondCode(CondCode);
8104     if (TM.Options.NoNaNsFPMath)
8105       Condition = getFCmpCodeWithoutNaN(Condition);
8106   } else {
8107     Condition = getICmpCondCode(CondCode);
8108   }
8109 
8110   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8111   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8112   // #2 is the condition code
8113   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8114   SDValue EVL = getValue(VPIntrin.getOperand(4));
8115   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8116   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8117          "Unexpected target EVL type");
8118   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8119 
8120   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8121                                                         VPIntrin.getType());
8122   setValue(&VPIntrin,
8123            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8124 }
8125 
8126 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8127     const VPIntrinsic &VPIntrin) {
8128   SDLoc DL = getCurSDLoc();
8129   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8130 
8131   auto IID = VPIntrin.getIntrinsicID();
8132 
8133   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8134     return visitVPCmp(*CmpI);
8135 
8136   SmallVector<EVT, 4> ValueVTs;
8137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8138   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8139   SDVTList VTs = DAG.getVTList(ValueVTs);
8140 
8141   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8142 
8143   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8144   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8145          "Unexpected target EVL type");
8146 
8147   // Request operands.
8148   SmallVector<SDValue, 7> OpValues;
8149   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8150     auto Op = getValue(VPIntrin.getArgOperand(I));
8151     if (I == EVLParamPos)
8152       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8153     OpValues.push_back(Op);
8154   }
8155 
8156   switch (Opcode) {
8157   default: {
8158     SDNodeFlags SDFlags;
8159     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8160       SDFlags.copyFMF(*FPMO);
8161     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8162     setValue(&VPIntrin, Result);
8163     break;
8164   }
8165   case ISD::VP_LOAD:
8166     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8167     break;
8168   case ISD::VP_GATHER:
8169     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8170     break;
8171   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8172     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8173     break;
8174   case ISD::VP_STORE:
8175     visitVPStore(VPIntrin, OpValues);
8176     break;
8177   case ISD::VP_SCATTER:
8178     visitVPScatter(VPIntrin, OpValues);
8179     break;
8180   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8181     visitVPStridedStore(VPIntrin, OpValues);
8182     break;
8183   case ISD::VP_FMULADD: {
8184     assert(OpValues.size() == 5 && "Unexpected number of operands");
8185     SDNodeFlags SDFlags;
8186     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8187       SDFlags.copyFMF(*FPMO);
8188     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8189         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8190       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8191     } else {
8192       SDValue Mul = DAG.getNode(
8193           ISD::VP_FMUL, DL, VTs,
8194           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8195       SDValue Add =
8196           DAG.getNode(ISD::VP_FADD, DL, VTs,
8197                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8198       setValue(&VPIntrin, Add);
8199     }
8200     break;
8201   }
8202   case ISD::VP_IS_FPCLASS: {
8203     const DataLayout DLayout = DAG.getDataLayout();
8204     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8205     auto Constant = OpValues[1]->getAsZExtVal();
8206     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8207     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8208                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8209     setValue(&VPIntrin, V);
8210     return;
8211   }
8212   case ISD::VP_INTTOPTR: {
8213     SDValue N = OpValues[0];
8214     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8215     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8216     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8217                                OpValues[2]);
8218     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8219                              OpValues[2]);
8220     setValue(&VPIntrin, N);
8221     break;
8222   }
8223   case ISD::VP_PTRTOINT: {
8224     SDValue N = OpValues[0];
8225     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8226                                                           VPIntrin.getType());
8227     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8228                                        VPIntrin.getOperand(0)->getType());
8229     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8230                                OpValues[2]);
8231     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8232                              OpValues[2]);
8233     setValue(&VPIntrin, N);
8234     break;
8235   }
8236   case ISD::VP_ABS:
8237   case ISD::VP_CTLZ:
8238   case ISD::VP_CTLZ_ZERO_UNDEF:
8239   case ISD::VP_CTTZ:
8240   case ISD::VP_CTTZ_ZERO_UNDEF: {
8241     SDValue Result =
8242         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8243     setValue(&VPIntrin, Result);
8244     break;
8245   }
8246   }
8247 }
8248 
8249 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8250                                           const BasicBlock *EHPadBB,
8251                                           MCSymbol *&BeginLabel) {
8252   MachineFunction &MF = DAG.getMachineFunction();
8253   MachineModuleInfo &MMI = MF.getMMI();
8254 
8255   // Insert a label before the invoke call to mark the try range.  This can be
8256   // used to detect deletion of the invoke via the MachineModuleInfo.
8257   BeginLabel = MMI.getContext().createTempSymbol();
8258 
8259   // For SjLj, keep track of which landing pads go with which invokes
8260   // so as to maintain the ordering of pads in the LSDA.
8261   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8262   if (CallSiteIndex) {
8263     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8264     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8265 
8266     // Now that the call site is handled, stop tracking it.
8267     MMI.setCurrentCallSite(0);
8268   }
8269 
8270   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8271 }
8272 
8273 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8274                                         const BasicBlock *EHPadBB,
8275                                         MCSymbol *BeginLabel) {
8276   assert(BeginLabel && "BeginLabel should've been set");
8277 
8278   MachineFunction &MF = DAG.getMachineFunction();
8279   MachineModuleInfo &MMI = MF.getMMI();
8280 
8281   // Insert a label at the end of the invoke call to mark the try range.  This
8282   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8283   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8284   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8285 
8286   // Inform MachineModuleInfo of range.
8287   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8288   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8289   // actually use outlined funclets and their LSDA info style.
8290   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8291     assert(II && "II should've been set");
8292     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8293     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8294   } else if (!isScopedEHPersonality(Pers)) {
8295     assert(EHPadBB);
8296     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8297   }
8298 
8299   return Chain;
8300 }
8301 
8302 std::pair<SDValue, SDValue>
8303 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8304                                     const BasicBlock *EHPadBB) {
8305   MCSymbol *BeginLabel = nullptr;
8306 
8307   if (EHPadBB) {
8308     // Both PendingLoads and PendingExports must be flushed here;
8309     // this call might not return.
8310     (void)getRoot();
8311     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8312     CLI.setChain(getRoot());
8313   }
8314 
8315   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8316   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8317 
8318   assert((CLI.IsTailCall || Result.second.getNode()) &&
8319          "Non-null chain expected with non-tail call!");
8320   assert((Result.second.getNode() || !Result.first.getNode()) &&
8321          "Null value expected with tail call!");
8322 
8323   if (!Result.second.getNode()) {
8324     // As a special case, a null chain means that a tail call has been emitted
8325     // and the DAG root is already updated.
8326     HasTailCall = true;
8327 
8328     // Since there's no actual continuation from this block, nothing can be
8329     // relying on us setting vregs for them.
8330     PendingExports.clear();
8331   } else {
8332     DAG.setRoot(Result.second);
8333   }
8334 
8335   if (EHPadBB) {
8336     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8337                            BeginLabel));
8338   }
8339 
8340   return Result;
8341 }
8342 
8343 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8344                                       bool isTailCall,
8345                                       bool isMustTailCall,
8346                                       const BasicBlock *EHPadBB) {
8347   auto &DL = DAG.getDataLayout();
8348   FunctionType *FTy = CB.getFunctionType();
8349   Type *RetTy = CB.getType();
8350 
8351   TargetLowering::ArgListTy Args;
8352   Args.reserve(CB.arg_size());
8353 
8354   const Value *SwiftErrorVal = nullptr;
8355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8356 
8357   if (isTailCall) {
8358     // Avoid emitting tail calls in functions with the disable-tail-calls
8359     // attribute.
8360     auto *Caller = CB.getParent()->getParent();
8361     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8362         "true" && !isMustTailCall)
8363       isTailCall = false;
8364 
8365     // We can't tail call inside a function with a swifterror argument. Lowering
8366     // does not support this yet. It would have to move into the swifterror
8367     // register before the call.
8368     if (TLI.supportSwiftError() &&
8369         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8370       isTailCall = false;
8371   }
8372 
8373   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8374     TargetLowering::ArgListEntry Entry;
8375     const Value *V = *I;
8376 
8377     // Skip empty types
8378     if (V->getType()->isEmptyTy())
8379       continue;
8380 
8381     SDValue ArgNode = getValue(V);
8382     Entry.Node = ArgNode; Entry.Ty = V->getType();
8383 
8384     Entry.setAttributes(&CB, I - CB.arg_begin());
8385 
8386     // Use swifterror virtual register as input to the call.
8387     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8388       SwiftErrorVal = V;
8389       // We find the virtual register for the actual swifterror argument.
8390       // Instead of using the Value, we use the virtual register instead.
8391       Entry.Node =
8392           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8393                           EVT(TLI.getPointerTy(DL)));
8394     }
8395 
8396     Args.push_back(Entry);
8397 
8398     // If we have an explicit sret argument that is an Instruction, (i.e., it
8399     // might point to function-local memory), we can't meaningfully tail-call.
8400     if (Entry.IsSRet && isa<Instruction>(V))
8401       isTailCall = false;
8402   }
8403 
8404   // If call site has a cfguardtarget operand bundle, create and add an
8405   // additional ArgListEntry.
8406   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8407     TargetLowering::ArgListEntry Entry;
8408     Value *V = Bundle->Inputs[0];
8409     SDValue ArgNode = getValue(V);
8410     Entry.Node = ArgNode;
8411     Entry.Ty = V->getType();
8412     Entry.IsCFGuardTarget = true;
8413     Args.push_back(Entry);
8414   }
8415 
8416   // Check if target-independent constraints permit a tail call here.
8417   // Target-dependent constraints are checked within TLI->LowerCallTo.
8418   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8419     isTailCall = false;
8420 
8421   // Disable tail calls if there is an swifterror argument. Targets have not
8422   // been updated to support tail calls.
8423   if (TLI.supportSwiftError() && SwiftErrorVal)
8424     isTailCall = false;
8425 
8426   ConstantInt *CFIType = nullptr;
8427   if (CB.isIndirectCall()) {
8428     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8429       if (!TLI.supportKCFIBundles())
8430         report_fatal_error(
8431             "Target doesn't support calls with kcfi operand bundles.");
8432       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8433       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8434     }
8435   }
8436 
8437   SDValue ConvControlToken;
8438   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8439     auto *Token = Bundle->Inputs[0].get();
8440     ConvControlToken = getValue(Token);
8441   } else {
8442     ConvControlToken = DAG.getUNDEF(MVT::Untyped);
8443   }
8444 
8445   TargetLowering::CallLoweringInfo CLI(DAG);
8446   CLI.setDebugLoc(getCurSDLoc())
8447       .setChain(getRoot())
8448       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8449       .setTailCall(isTailCall)
8450       .setConvergent(CB.isConvergent())
8451       .setIsPreallocated(
8452           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8453       .setCFIType(CFIType)
8454       .setConvergenceControlToken(ConvControlToken);
8455   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8456 
8457   if (Result.first.getNode()) {
8458     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8459     setValue(&CB, Result.first);
8460   }
8461 
8462   // The last element of CLI.InVals has the SDValue for swifterror return.
8463   // Here we copy it to a virtual register and update SwiftErrorMap for
8464   // book-keeping.
8465   if (SwiftErrorVal && TLI.supportSwiftError()) {
8466     // Get the last element of InVals.
8467     SDValue Src = CLI.InVals.back();
8468     Register VReg =
8469         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8470     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8471     DAG.setRoot(CopyNode);
8472   }
8473 }
8474 
8475 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8476                              SelectionDAGBuilder &Builder) {
8477   // Check to see if this load can be trivially constant folded, e.g. if the
8478   // input is from a string literal.
8479   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8480     // Cast pointer to the type we really want to load.
8481     Type *LoadTy =
8482         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8483     if (LoadVT.isVector())
8484       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8485 
8486     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8487                                          PointerType::getUnqual(LoadTy));
8488 
8489     if (const Constant *LoadCst =
8490             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8491                                          LoadTy, Builder.DAG.getDataLayout()))
8492       return Builder.getValue(LoadCst);
8493   }
8494 
8495   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8496   // still constant memory, the input chain can be the entry node.
8497   SDValue Root;
8498   bool ConstantMemory = false;
8499 
8500   // Do not serialize (non-volatile) loads of constant memory with anything.
8501   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8502     Root = Builder.DAG.getEntryNode();
8503     ConstantMemory = true;
8504   } else {
8505     // Do not serialize non-volatile loads against each other.
8506     Root = Builder.DAG.getRoot();
8507   }
8508 
8509   SDValue Ptr = Builder.getValue(PtrVal);
8510   SDValue LoadVal =
8511       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8512                           MachinePointerInfo(PtrVal), Align(1));
8513 
8514   if (!ConstantMemory)
8515     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8516   return LoadVal;
8517 }
8518 
8519 /// Record the value for an instruction that produces an integer result,
8520 /// converting the type where necessary.
8521 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8522                                                   SDValue Value,
8523                                                   bool IsSigned) {
8524   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8525                                                     I.getType(), true);
8526   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8527   setValue(&I, Value);
8528 }
8529 
8530 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8531 /// true and lower it. Otherwise return false, and it will be lowered like a
8532 /// normal call.
8533 /// The caller already checked that \p I calls the appropriate LibFunc with a
8534 /// correct prototype.
8535 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8536   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8537   const Value *Size = I.getArgOperand(2);
8538   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8539   if (CSize && CSize->getZExtValue() == 0) {
8540     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8541                                                           I.getType(), true);
8542     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8543     return true;
8544   }
8545 
8546   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8547   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8548       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8549       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8550   if (Res.first.getNode()) {
8551     processIntegerCallValue(I, Res.first, true);
8552     PendingLoads.push_back(Res.second);
8553     return true;
8554   }
8555 
8556   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8557   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8558   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8559     return false;
8560 
8561   // If the target has a fast compare for the given size, it will return a
8562   // preferred load type for that size. Require that the load VT is legal and
8563   // that the target supports unaligned loads of that type. Otherwise, return
8564   // INVALID.
8565   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8566     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8567     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8568     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8569       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8570       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8571       // TODO: Check alignment of src and dest ptrs.
8572       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8573       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8574       if (!TLI.isTypeLegal(LVT) ||
8575           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8576           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8577         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8578     }
8579 
8580     return LVT;
8581   };
8582 
8583   // This turns into unaligned loads. We only do this if the target natively
8584   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8585   // we'll only produce a small number of byte loads.
8586   MVT LoadVT;
8587   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8588   switch (NumBitsToCompare) {
8589   default:
8590     return false;
8591   case 16:
8592     LoadVT = MVT::i16;
8593     break;
8594   case 32:
8595     LoadVT = MVT::i32;
8596     break;
8597   case 64:
8598   case 128:
8599   case 256:
8600     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8601     break;
8602   }
8603 
8604   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8605     return false;
8606 
8607   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8608   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8609 
8610   // Bitcast to a wide integer type if the loads are vectors.
8611   if (LoadVT.isVector()) {
8612     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8613     LoadL = DAG.getBitcast(CmpVT, LoadL);
8614     LoadR = DAG.getBitcast(CmpVT, LoadR);
8615   }
8616 
8617   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8618   processIntegerCallValue(I, Cmp, false);
8619   return true;
8620 }
8621 
8622 /// See if we can lower a memchr call into an optimized form. If so, return
8623 /// true and lower it. Otherwise return false, and it will be lowered like a
8624 /// normal call.
8625 /// The caller already checked that \p I calls the appropriate LibFunc with a
8626 /// correct prototype.
8627 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8628   const Value *Src = I.getArgOperand(0);
8629   const Value *Char = I.getArgOperand(1);
8630   const Value *Length = I.getArgOperand(2);
8631 
8632   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8633   std::pair<SDValue, SDValue> Res =
8634     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8635                                 getValue(Src), getValue(Char), getValue(Length),
8636                                 MachinePointerInfo(Src));
8637   if (Res.first.getNode()) {
8638     setValue(&I, Res.first);
8639     PendingLoads.push_back(Res.second);
8640     return true;
8641   }
8642 
8643   return false;
8644 }
8645 
8646 /// See if we can lower a mempcpy call into an optimized form. If so, return
8647 /// true and lower it. Otherwise return false, and it will be lowered like a
8648 /// normal call.
8649 /// The caller already checked that \p I calls the appropriate LibFunc with a
8650 /// correct prototype.
8651 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8652   SDValue Dst = getValue(I.getArgOperand(0));
8653   SDValue Src = getValue(I.getArgOperand(1));
8654   SDValue Size = getValue(I.getArgOperand(2));
8655 
8656   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8657   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8658   // DAG::getMemcpy needs Alignment to be defined.
8659   Align Alignment = std::min(DstAlign, SrcAlign);
8660 
8661   SDLoc sdl = getCurSDLoc();
8662 
8663   // In the mempcpy context we need to pass in a false value for isTailCall
8664   // because the return pointer needs to be adjusted by the size of
8665   // the copied memory.
8666   SDValue Root = getMemoryRoot();
8667   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8668                              /*isTailCall=*/false,
8669                              MachinePointerInfo(I.getArgOperand(0)),
8670                              MachinePointerInfo(I.getArgOperand(1)),
8671                              I.getAAMetadata());
8672   assert(MC.getNode() != nullptr &&
8673          "** memcpy should not be lowered as TailCall in mempcpy context **");
8674   DAG.setRoot(MC);
8675 
8676   // Check if Size needs to be truncated or extended.
8677   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8678 
8679   // Adjust return pointer to point just past the last dst byte.
8680   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8681                                     Dst, Size);
8682   setValue(&I, DstPlusSize);
8683   return true;
8684 }
8685 
8686 /// See if we can lower a strcpy call into an optimized form.  If so, return
8687 /// true and lower it, otherwise return false and it will be lowered like a
8688 /// normal call.
8689 /// The caller already checked that \p I calls the appropriate LibFunc with a
8690 /// correct prototype.
8691 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8692   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8693 
8694   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8695   std::pair<SDValue, SDValue> Res =
8696     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8697                                 getValue(Arg0), getValue(Arg1),
8698                                 MachinePointerInfo(Arg0),
8699                                 MachinePointerInfo(Arg1), isStpcpy);
8700   if (Res.first.getNode()) {
8701     setValue(&I, Res.first);
8702     DAG.setRoot(Res.second);
8703     return true;
8704   }
8705 
8706   return false;
8707 }
8708 
8709 /// See if we can lower a strcmp call into an optimized form.  If so, return
8710 /// true and lower it, otherwise return false and it will be lowered like a
8711 /// normal call.
8712 /// The caller already checked that \p I calls the appropriate LibFunc with a
8713 /// correct prototype.
8714 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8715   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8716 
8717   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8718   std::pair<SDValue, SDValue> Res =
8719     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8720                                 getValue(Arg0), getValue(Arg1),
8721                                 MachinePointerInfo(Arg0),
8722                                 MachinePointerInfo(Arg1));
8723   if (Res.first.getNode()) {
8724     processIntegerCallValue(I, Res.first, true);
8725     PendingLoads.push_back(Res.second);
8726     return true;
8727   }
8728 
8729   return false;
8730 }
8731 
8732 /// See if we can lower a strlen call into an optimized form.  If so, return
8733 /// true and lower it, otherwise return false and it will be lowered like a
8734 /// normal call.
8735 /// The caller already checked that \p I calls the appropriate LibFunc with a
8736 /// correct prototype.
8737 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8738   const Value *Arg0 = I.getArgOperand(0);
8739 
8740   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8741   std::pair<SDValue, SDValue> Res =
8742     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8743                                 getValue(Arg0), MachinePointerInfo(Arg0));
8744   if (Res.first.getNode()) {
8745     processIntegerCallValue(I, Res.first, false);
8746     PendingLoads.push_back(Res.second);
8747     return true;
8748   }
8749 
8750   return false;
8751 }
8752 
8753 /// See if we can lower a strnlen call into an optimized form.  If so, return
8754 /// true and lower it, otherwise return false and it will be lowered like a
8755 /// normal call.
8756 /// The caller already checked that \p I calls the appropriate LibFunc with a
8757 /// correct prototype.
8758 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8759   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8760 
8761   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8762   std::pair<SDValue, SDValue> Res =
8763     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8764                                  getValue(Arg0), getValue(Arg1),
8765                                  MachinePointerInfo(Arg0));
8766   if (Res.first.getNode()) {
8767     processIntegerCallValue(I, Res.first, false);
8768     PendingLoads.push_back(Res.second);
8769     return true;
8770   }
8771 
8772   return false;
8773 }
8774 
8775 /// See if we can lower a unary floating-point operation into an SDNode with
8776 /// the specified Opcode.  If so, return true and lower it, otherwise return
8777 /// false and it will be lowered like a normal call.
8778 /// The caller already checked that \p I calls the appropriate LibFunc with a
8779 /// correct prototype.
8780 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8781                                               unsigned Opcode) {
8782   // We already checked this call's prototype; verify it doesn't modify errno.
8783   if (!I.onlyReadsMemory())
8784     return false;
8785 
8786   SDNodeFlags Flags;
8787   Flags.copyFMF(cast<FPMathOperator>(I));
8788 
8789   SDValue Tmp = getValue(I.getArgOperand(0));
8790   setValue(&I,
8791            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8792   return true;
8793 }
8794 
8795 /// See if we can lower a binary floating-point operation into an SDNode with
8796 /// the specified Opcode. If so, return true and lower it. Otherwise return
8797 /// false, and it will be lowered like a normal call.
8798 /// The caller already checked that \p I calls the appropriate LibFunc with a
8799 /// correct prototype.
8800 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8801                                                unsigned Opcode) {
8802   // We already checked this call's prototype; verify it doesn't modify errno.
8803   if (!I.onlyReadsMemory())
8804     return false;
8805 
8806   SDNodeFlags Flags;
8807   Flags.copyFMF(cast<FPMathOperator>(I));
8808 
8809   SDValue Tmp0 = getValue(I.getArgOperand(0));
8810   SDValue Tmp1 = getValue(I.getArgOperand(1));
8811   EVT VT = Tmp0.getValueType();
8812   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8813   return true;
8814 }
8815 
8816 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8817   // Handle inline assembly differently.
8818   if (I.isInlineAsm()) {
8819     visitInlineAsm(I);
8820     return;
8821   }
8822 
8823   diagnoseDontCall(I);
8824 
8825   if (Function *F = I.getCalledFunction()) {
8826     if (F->isDeclaration()) {
8827       // Is this an LLVM intrinsic or a target-specific intrinsic?
8828       unsigned IID = F->getIntrinsicID();
8829       if (!IID)
8830         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8831           IID = II->getIntrinsicID(F);
8832 
8833       if (IID) {
8834         visitIntrinsicCall(I, IID);
8835         return;
8836       }
8837     }
8838 
8839     // Check for well-known libc/libm calls.  If the function is internal, it
8840     // can't be a library call.  Don't do the check if marked as nobuiltin for
8841     // some reason or the call site requires strict floating point semantics.
8842     LibFunc Func;
8843     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8844         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8845         LibInfo->hasOptimizedCodeGen(Func)) {
8846       switch (Func) {
8847       default: break;
8848       case LibFunc_bcmp:
8849         if (visitMemCmpBCmpCall(I))
8850           return;
8851         break;
8852       case LibFunc_copysign:
8853       case LibFunc_copysignf:
8854       case LibFunc_copysignl:
8855         // We already checked this call's prototype; verify it doesn't modify
8856         // errno.
8857         if (I.onlyReadsMemory()) {
8858           SDValue LHS = getValue(I.getArgOperand(0));
8859           SDValue RHS = getValue(I.getArgOperand(1));
8860           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8861                                    LHS.getValueType(), LHS, RHS));
8862           return;
8863         }
8864         break;
8865       case LibFunc_fabs:
8866       case LibFunc_fabsf:
8867       case LibFunc_fabsl:
8868         if (visitUnaryFloatCall(I, ISD::FABS))
8869           return;
8870         break;
8871       case LibFunc_fmin:
8872       case LibFunc_fminf:
8873       case LibFunc_fminl:
8874         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8875           return;
8876         break;
8877       case LibFunc_fmax:
8878       case LibFunc_fmaxf:
8879       case LibFunc_fmaxl:
8880         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8881           return;
8882         break;
8883       case LibFunc_sin:
8884       case LibFunc_sinf:
8885       case LibFunc_sinl:
8886         if (visitUnaryFloatCall(I, ISD::FSIN))
8887           return;
8888         break;
8889       case LibFunc_cos:
8890       case LibFunc_cosf:
8891       case LibFunc_cosl:
8892         if (visitUnaryFloatCall(I, ISD::FCOS))
8893           return;
8894         break;
8895       case LibFunc_sqrt:
8896       case LibFunc_sqrtf:
8897       case LibFunc_sqrtl:
8898       case LibFunc_sqrt_finite:
8899       case LibFunc_sqrtf_finite:
8900       case LibFunc_sqrtl_finite:
8901         if (visitUnaryFloatCall(I, ISD::FSQRT))
8902           return;
8903         break;
8904       case LibFunc_floor:
8905       case LibFunc_floorf:
8906       case LibFunc_floorl:
8907         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8908           return;
8909         break;
8910       case LibFunc_nearbyint:
8911       case LibFunc_nearbyintf:
8912       case LibFunc_nearbyintl:
8913         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8914           return;
8915         break;
8916       case LibFunc_ceil:
8917       case LibFunc_ceilf:
8918       case LibFunc_ceill:
8919         if (visitUnaryFloatCall(I, ISD::FCEIL))
8920           return;
8921         break;
8922       case LibFunc_rint:
8923       case LibFunc_rintf:
8924       case LibFunc_rintl:
8925         if (visitUnaryFloatCall(I, ISD::FRINT))
8926           return;
8927         break;
8928       case LibFunc_round:
8929       case LibFunc_roundf:
8930       case LibFunc_roundl:
8931         if (visitUnaryFloatCall(I, ISD::FROUND))
8932           return;
8933         break;
8934       case LibFunc_trunc:
8935       case LibFunc_truncf:
8936       case LibFunc_truncl:
8937         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8938           return;
8939         break;
8940       case LibFunc_log2:
8941       case LibFunc_log2f:
8942       case LibFunc_log2l:
8943         if (visitUnaryFloatCall(I, ISD::FLOG2))
8944           return;
8945         break;
8946       case LibFunc_exp2:
8947       case LibFunc_exp2f:
8948       case LibFunc_exp2l:
8949         if (visitUnaryFloatCall(I, ISD::FEXP2))
8950           return;
8951         break;
8952       case LibFunc_exp10:
8953       case LibFunc_exp10f:
8954       case LibFunc_exp10l:
8955         if (visitUnaryFloatCall(I, ISD::FEXP10))
8956           return;
8957         break;
8958       case LibFunc_ldexp:
8959       case LibFunc_ldexpf:
8960       case LibFunc_ldexpl:
8961         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8962           return;
8963         break;
8964       case LibFunc_memcmp:
8965         if (visitMemCmpBCmpCall(I))
8966           return;
8967         break;
8968       case LibFunc_mempcpy:
8969         if (visitMemPCpyCall(I))
8970           return;
8971         break;
8972       case LibFunc_memchr:
8973         if (visitMemChrCall(I))
8974           return;
8975         break;
8976       case LibFunc_strcpy:
8977         if (visitStrCpyCall(I, false))
8978           return;
8979         break;
8980       case LibFunc_stpcpy:
8981         if (visitStrCpyCall(I, true))
8982           return;
8983         break;
8984       case LibFunc_strcmp:
8985         if (visitStrCmpCall(I))
8986           return;
8987         break;
8988       case LibFunc_strlen:
8989         if (visitStrLenCall(I))
8990           return;
8991         break;
8992       case LibFunc_strnlen:
8993         if (visitStrNLenCall(I))
8994           return;
8995         break;
8996       }
8997     }
8998   }
8999 
9000   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9001   // have to do anything here to lower funclet bundles.
9002   // CFGuardTarget bundles are lowered in LowerCallTo.
9003   assert(!I.hasOperandBundlesOtherThan(
9004              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9005               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9006               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9007               LLVMContext::OB_convergencectrl}) &&
9008          "Cannot lower calls with arbitrary operand bundles!");
9009 
9010   SDValue Callee = getValue(I.getCalledOperand());
9011 
9012   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
9013     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9014   else
9015     // Check if we can potentially perform a tail call. More detailed checking
9016     // is be done within LowerCallTo, after more information about the call is
9017     // known.
9018     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9019 }
9020 
9021 namespace {
9022 
9023 /// AsmOperandInfo - This contains information for each constraint that we are
9024 /// lowering.
9025 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9026 public:
9027   /// CallOperand - If this is the result output operand or a clobber
9028   /// this is null, otherwise it is the incoming operand to the CallInst.
9029   /// This gets modified as the asm is processed.
9030   SDValue CallOperand;
9031 
9032   /// AssignedRegs - If this is a register or register class operand, this
9033   /// contains the set of register corresponding to the operand.
9034   RegsForValue AssignedRegs;
9035 
9036   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9037     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9038   }
9039 
9040   /// Whether or not this operand accesses memory
9041   bool hasMemory(const TargetLowering &TLI) const {
9042     // Indirect operand accesses access memory.
9043     if (isIndirect)
9044       return true;
9045 
9046     for (const auto &Code : Codes)
9047       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9048         return true;
9049 
9050     return false;
9051   }
9052 };
9053 
9054 
9055 } // end anonymous namespace
9056 
9057 /// Make sure that the output operand \p OpInfo and its corresponding input
9058 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9059 /// out).
9060 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9061                                SDISelAsmOperandInfo &MatchingOpInfo,
9062                                SelectionDAG &DAG) {
9063   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9064     return;
9065 
9066   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9067   const auto &TLI = DAG.getTargetLoweringInfo();
9068 
9069   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9070       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9071                                        OpInfo.ConstraintVT);
9072   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9073       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9074                                        MatchingOpInfo.ConstraintVT);
9075   if ((OpInfo.ConstraintVT.isInteger() !=
9076        MatchingOpInfo.ConstraintVT.isInteger()) ||
9077       (MatchRC.second != InputRC.second)) {
9078     // FIXME: error out in a more elegant fashion
9079     report_fatal_error("Unsupported asm: input constraint"
9080                        " with a matching output constraint of"
9081                        " incompatible type!");
9082   }
9083   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9084 }
9085 
9086 /// Get a direct memory input to behave well as an indirect operand.
9087 /// This may introduce stores, hence the need for a \p Chain.
9088 /// \return The (possibly updated) chain.
9089 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9090                                         SDISelAsmOperandInfo &OpInfo,
9091                                         SelectionDAG &DAG) {
9092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9093 
9094   // If we don't have an indirect input, put it in the constpool if we can,
9095   // otherwise spill it to a stack slot.
9096   // TODO: This isn't quite right. We need to handle these according to
9097   // the addressing mode that the constraint wants. Also, this may take
9098   // an additional register for the computation and we don't want that
9099   // either.
9100 
9101   // If the operand is a float, integer, or vector constant, spill to a
9102   // constant pool entry to get its address.
9103   const Value *OpVal = OpInfo.CallOperandVal;
9104   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9105       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9106     OpInfo.CallOperand = DAG.getConstantPool(
9107         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9108     return Chain;
9109   }
9110 
9111   // Otherwise, create a stack slot and emit a store to it before the asm.
9112   Type *Ty = OpVal->getType();
9113   auto &DL = DAG.getDataLayout();
9114   uint64_t TySize = DL.getTypeAllocSize(Ty);
9115   MachineFunction &MF = DAG.getMachineFunction();
9116   int SSFI = MF.getFrameInfo().CreateStackObject(
9117       TySize, DL.getPrefTypeAlign(Ty), false);
9118   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9119   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9120                             MachinePointerInfo::getFixedStack(MF, SSFI),
9121                             TLI.getMemValueType(DL, Ty));
9122   OpInfo.CallOperand = StackSlot;
9123 
9124   return Chain;
9125 }
9126 
9127 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9128 /// specified operand.  We prefer to assign virtual registers, to allow the
9129 /// register allocator to handle the assignment process.  However, if the asm
9130 /// uses features that we can't model on machineinstrs, we have SDISel do the
9131 /// allocation.  This produces generally horrible, but correct, code.
9132 ///
9133 ///   OpInfo describes the operand
9134 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9135 static std::optional<unsigned>
9136 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9137                      SDISelAsmOperandInfo &OpInfo,
9138                      SDISelAsmOperandInfo &RefOpInfo) {
9139   LLVMContext &Context = *DAG.getContext();
9140   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9141 
9142   MachineFunction &MF = DAG.getMachineFunction();
9143   SmallVector<unsigned, 4> Regs;
9144   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9145 
9146   // No work to do for memory/address operands.
9147   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9148       OpInfo.ConstraintType == TargetLowering::C_Address)
9149     return std::nullopt;
9150 
9151   // If this is a constraint for a single physreg, or a constraint for a
9152   // register class, find it.
9153   unsigned AssignedReg;
9154   const TargetRegisterClass *RC;
9155   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9156       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9157   // RC is unset only on failure. Return immediately.
9158   if (!RC)
9159     return std::nullopt;
9160 
9161   // Get the actual register value type.  This is important, because the user
9162   // may have asked for (e.g.) the AX register in i32 type.  We need to
9163   // remember that AX is actually i16 to get the right extension.
9164   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9165 
9166   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9167     // If this is an FP operand in an integer register (or visa versa), or more
9168     // generally if the operand value disagrees with the register class we plan
9169     // to stick it in, fix the operand type.
9170     //
9171     // If this is an input value, the bitcast to the new type is done now.
9172     // Bitcast for output value is done at the end of visitInlineAsm().
9173     if ((OpInfo.Type == InlineAsm::isOutput ||
9174          OpInfo.Type == InlineAsm::isInput) &&
9175         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9176       // Try to convert to the first EVT that the reg class contains.  If the
9177       // types are identical size, use a bitcast to convert (e.g. two differing
9178       // vector types).  Note: output bitcast is done at the end of
9179       // visitInlineAsm().
9180       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9181         // Exclude indirect inputs while they are unsupported because the code
9182         // to perform the load is missing and thus OpInfo.CallOperand still
9183         // refers to the input address rather than the pointed-to value.
9184         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9185           OpInfo.CallOperand =
9186               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9187         OpInfo.ConstraintVT = RegVT;
9188         // If the operand is an FP value and we want it in integer registers,
9189         // use the corresponding integer type. This turns an f64 value into
9190         // i64, which can be passed with two i32 values on a 32-bit machine.
9191       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9192         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9193         if (OpInfo.Type == InlineAsm::isInput)
9194           OpInfo.CallOperand =
9195               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9196         OpInfo.ConstraintVT = VT;
9197       }
9198     }
9199   }
9200 
9201   // No need to allocate a matching input constraint since the constraint it's
9202   // matching to has already been allocated.
9203   if (OpInfo.isMatchingInputConstraint())
9204     return std::nullopt;
9205 
9206   EVT ValueVT = OpInfo.ConstraintVT;
9207   if (OpInfo.ConstraintVT == MVT::Other)
9208     ValueVT = RegVT;
9209 
9210   // Initialize NumRegs.
9211   unsigned NumRegs = 1;
9212   if (OpInfo.ConstraintVT != MVT::Other)
9213     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9214 
9215   // If this is a constraint for a specific physical register, like {r17},
9216   // assign it now.
9217 
9218   // If this associated to a specific register, initialize iterator to correct
9219   // place. If virtual, make sure we have enough registers
9220 
9221   // Initialize iterator if necessary
9222   TargetRegisterClass::iterator I = RC->begin();
9223   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9224 
9225   // Do not check for single registers.
9226   if (AssignedReg) {
9227     I = std::find(I, RC->end(), AssignedReg);
9228     if (I == RC->end()) {
9229       // RC does not contain the selected register, which indicates a
9230       // mismatch between the register and the required type/bitwidth.
9231       return {AssignedReg};
9232     }
9233   }
9234 
9235   for (; NumRegs; --NumRegs, ++I) {
9236     assert(I != RC->end() && "Ran out of registers to allocate!");
9237     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9238     Regs.push_back(R);
9239   }
9240 
9241   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9242   return std::nullopt;
9243 }
9244 
9245 static unsigned
9246 findMatchingInlineAsmOperand(unsigned OperandNo,
9247                              const std::vector<SDValue> &AsmNodeOperands) {
9248   // Scan until we find the definition we already emitted of this operand.
9249   unsigned CurOp = InlineAsm::Op_FirstOperand;
9250   for (; OperandNo; --OperandNo) {
9251     // Advance to the next operand.
9252     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9253     const InlineAsm::Flag F(OpFlag);
9254     assert(
9255         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9256         "Skipped past definitions?");
9257     CurOp += F.getNumOperandRegisters() + 1;
9258   }
9259   return CurOp;
9260 }
9261 
9262 namespace {
9263 
9264 class ExtraFlags {
9265   unsigned Flags = 0;
9266 
9267 public:
9268   explicit ExtraFlags(const CallBase &Call) {
9269     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9270     if (IA->hasSideEffects())
9271       Flags |= InlineAsm::Extra_HasSideEffects;
9272     if (IA->isAlignStack())
9273       Flags |= InlineAsm::Extra_IsAlignStack;
9274     if (Call.isConvergent())
9275       Flags |= InlineAsm::Extra_IsConvergent;
9276     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9277   }
9278 
9279   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9280     // Ideally, we would only check against memory constraints.  However, the
9281     // meaning of an Other constraint can be target-specific and we can't easily
9282     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9283     // for Other constraints as well.
9284     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9285         OpInfo.ConstraintType == TargetLowering::C_Other) {
9286       if (OpInfo.Type == InlineAsm::isInput)
9287         Flags |= InlineAsm::Extra_MayLoad;
9288       else if (OpInfo.Type == InlineAsm::isOutput)
9289         Flags |= InlineAsm::Extra_MayStore;
9290       else if (OpInfo.Type == InlineAsm::isClobber)
9291         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9292     }
9293   }
9294 
9295   unsigned get() const { return Flags; }
9296 };
9297 
9298 } // end anonymous namespace
9299 
9300 static bool isFunction(SDValue Op) {
9301   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9302     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9303       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9304 
9305       // In normal "call dllimport func" instruction (non-inlineasm) it force
9306       // indirect access by specifing call opcode. And usually specially print
9307       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9308       // not do in this way now. (In fact, this is similar with "Data Access"
9309       // action). So here we ignore dllimport function.
9310       if (Fn && !Fn->hasDLLImportStorageClass())
9311         return true;
9312     }
9313   }
9314   return false;
9315 }
9316 
9317 /// visitInlineAsm - Handle a call to an InlineAsm object.
9318 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9319                                          const BasicBlock *EHPadBB) {
9320   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9321 
9322   /// ConstraintOperands - Information about all of the constraints.
9323   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9324 
9325   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9326   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9327       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9328 
9329   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9330   // AsmDialect, MayLoad, MayStore).
9331   bool HasSideEffect = IA->hasSideEffects();
9332   ExtraFlags ExtraInfo(Call);
9333 
9334   for (auto &T : TargetConstraints) {
9335     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9336     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9337 
9338     if (OpInfo.CallOperandVal)
9339       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9340 
9341     if (!HasSideEffect)
9342       HasSideEffect = OpInfo.hasMemory(TLI);
9343 
9344     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9345     // FIXME: Could we compute this on OpInfo rather than T?
9346 
9347     // Compute the constraint code and ConstraintType to use.
9348     TLI.ComputeConstraintToUse(T, SDValue());
9349 
9350     if (T.ConstraintType == TargetLowering::C_Immediate &&
9351         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9352       // We've delayed emitting a diagnostic like the "n" constraint because
9353       // inlining could cause an integer showing up.
9354       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9355                                           "' expects an integer constant "
9356                                           "expression");
9357 
9358     ExtraInfo.update(T);
9359   }
9360 
9361   // We won't need to flush pending loads if this asm doesn't touch
9362   // memory and is nonvolatile.
9363   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9364 
9365   bool EmitEHLabels = isa<InvokeInst>(Call);
9366   if (EmitEHLabels) {
9367     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9368   }
9369   bool IsCallBr = isa<CallBrInst>(Call);
9370 
9371   if (IsCallBr || EmitEHLabels) {
9372     // If this is a callbr or invoke we need to flush pending exports since
9373     // inlineasm_br and invoke are terminators.
9374     // We need to do this before nodes are glued to the inlineasm_br node.
9375     Chain = getControlRoot();
9376   }
9377 
9378   MCSymbol *BeginLabel = nullptr;
9379   if (EmitEHLabels) {
9380     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9381   }
9382 
9383   int OpNo = -1;
9384   SmallVector<StringRef> AsmStrs;
9385   IA->collectAsmStrs(AsmStrs);
9386 
9387   // Second pass over the constraints: compute which constraint option to use.
9388   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9389     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9390       OpNo++;
9391 
9392     // If this is an output operand with a matching input operand, look up the
9393     // matching input. If their types mismatch, e.g. one is an integer, the
9394     // other is floating point, or their sizes are different, flag it as an
9395     // error.
9396     if (OpInfo.hasMatchingInput()) {
9397       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9398       patchMatchingInput(OpInfo, Input, DAG);
9399     }
9400 
9401     // Compute the constraint code and ConstraintType to use.
9402     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9403 
9404     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9405          OpInfo.Type == InlineAsm::isClobber) ||
9406         OpInfo.ConstraintType == TargetLowering::C_Address)
9407       continue;
9408 
9409     // In Linux PIC model, there are 4 cases about value/label addressing:
9410     //
9411     // 1: Function call or Label jmp inside the module.
9412     // 2: Data access (such as global variable, static variable) inside module.
9413     // 3: Function call or Label jmp outside the module.
9414     // 4: Data access (such as global variable) outside the module.
9415     //
9416     // Due to current llvm inline asm architecture designed to not "recognize"
9417     // the asm code, there are quite troubles for us to treat mem addressing
9418     // differently for same value/adress used in different instuctions.
9419     // For example, in pic model, call a func may in plt way or direclty
9420     // pc-related, but lea/mov a function adress may use got.
9421     //
9422     // Here we try to "recognize" function call for the case 1 and case 3 in
9423     // inline asm. And try to adjust the constraint for them.
9424     //
9425     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9426     // label, so here we don't handle jmp function label now, but we need to
9427     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9428     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9429         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9430         TM.getCodeModel() != CodeModel::Large) {
9431       OpInfo.isIndirect = false;
9432       OpInfo.ConstraintType = TargetLowering::C_Address;
9433     }
9434 
9435     // If this is a memory input, and if the operand is not indirect, do what we
9436     // need to provide an address for the memory input.
9437     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9438         !OpInfo.isIndirect) {
9439       assert((OpInfo.isMultipleAlternative ||
9440               (OpInfo.Type == InlineAsm::isInput)) &&
9441              "Can only indirectify direct input operands!");
9442 
9443       // Memory operands really want the address of the value.
9444       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9445 
9446       // There is no longer a Value* corresponding to this operand.
9447       OpInfo.CallOperandVal = nullptr;
9448 
9449       // It is now an indirect operand.
9450       OpInfo.isIndirect = true;
9451     }
9452 
9453   }
9454 
9455   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9456   std::vector<SDValue> AsmNodeOperands;
9457   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9458   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9459       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9460 
9461   // If we have a !srcloc metadata node associated with it, we want to attach
9462   // this to the ultimately generated inline asm machineinstr.  To do this, we
9463   // pass in the third operand as this (potentially null) inline asm MDNode.
9464   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9465   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9466 
9467   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9468   // bits as operand 3.
9469   AsmNodeOperands.push_back(DAG.getTargetConstant(
9470       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9471 
9472   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9473   // this, assign virtual and physical registers for inputs and otput.
9474   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9475     // Assign Registers.
9476     SDISelAsmOperandInfo &RefOpInfo =
9477         OpInfo.isMatchingInputConstraint()
9478             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9479             : OpInfo;
9480     const auto RegError =
9481         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9482     if (RegError) {
9483       const MachineFunction &MF = DAG.getMachineFunction();
9484       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9485       const char *RegName = TRI.getName(*RegError);
9486       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9487                                    "' allocated for constraint '" +
9488                                    Twine(OpInfo.ConstraintCode) +
9489                                    "' does not match required type");
9490       return;
9491     }
9492 
9493     auto DetectWriteToReservedRegister = [&]() {
9494       const MachineFunction &MF = DAG.getMachineFunction();
9495       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9496       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9497         if (Register::isPhysicalRegister(Reg) &&
9498             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9499           const char *RegName = TRI.getName(Reg);
9500           emitInlineAsmError(Call, "write to reserved register '" +
9501                                        Twine(RegName) + "'");
9502           return true;
9503         }
9504       }
9505       return false;
9506     };
9507     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9508             (OpInfo.Type == InlineAsm::isInput &&
9509              !OpInfo.isMatchingInputConstraint())) &&
9510            "Only address as input operand is allowed.");
9511 
9512     switch (OpInfo.Type) {
9513     case InlineAsm::isOutput:
9514       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9515         const InlineAsm::ConstraintCode ConstraintID =
9516             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9517         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9518                "Failed to convert memory constraint code to constraint id.");
9519 
9520         // Add information to the INLINEASM node to know about this output.
9521         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9522         OpFlags.setMemConstraint(ConstraintID);
9523         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9524                                                         MVT::i32));
9525         AsmNodeOperands.push_back(OpInfo.CallOperand);
9526       } else {
9527         // Otherwise, this outputs to a register (directly for C_Register /
9528         // C_RegisterClass, and a target-defined fashion for
9529         // C_Immediate/C_Other). Find a register that we can use.
9530         if (OpInfo.AssignedRegs.Regs.empty()) {
9531           emitInlineAsmError(
9532               Call, "couldn't allocate output register for constraint '" +
9533                         Twine(OpInfo.ConstraintCode) + "'");
9534           return;
9535         }
9536 
9537         if (DetectWriteToReservedRegister())
9538           return;
9539 
9540         // Add information to the INLINEASM node to know that this register is
9541         // set.
9542         OpInfo.AssignedRegs.AddInlineAsmOperands(
9543             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9544                                   : InlineAsm::Kind::RegDef,
9545             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9546       }
9547       break;
9548 
9549     case InlineAsm::isInput:
9550     case InlineAsm::isLabel: {
9551       SDValue InOperandVal = OpInfo.CallOperand;
9552 
9553       if (OpInfo.isMatchingInputConstraint()) {
9554         // If this is required to match an output register we have already set,
9555         // just use its register.
9556         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9557                                                   AsmNodeOperands);
9558         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9559         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9560           if (OpInfo.isIndirect) {
9561             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9562             emitInlineAsmError(Call, "inline asm not supported yet: "
9563                                      "don't know how to handle tied "
9564                                      "indirect register inputs");
9565             return;
9566           }
9567 
9568           SmallVector<unsigned, 4> Regs;
9569           MachineFunction &MF = DAG.getMachineFunction();
9570           MachineRegisterInfo &MRI = MF.getRegInfo();
9571           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9572           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9573           Register TiedReg = R->getReg();
9574           MVT RegVT = R->getSimpleValueType(0);
9575           const TargetRegisterClass *RC =
9576               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9577               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9578                                       : TRI.getMinimalPhysRegClass(TiedReg);
9579           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9580             Regs.push_back(MRI.createVirtualRegister(RC));
9581 
9582           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9583 
9584           SDLoc dl = getCurSDLoc();
9585           // Use the produced MatchedRegs object to
9586           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9587           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9588                                            OpInfo.getMatchedOperand(), dl, DAG,
9589                                            AsmNodeOperands);
9590           break;
9591         }
9592 
9593         assert(Flag.isMemKind() && "Unknown matching constraint!");
9594         assert(Flag.getNumOperandRegisters() == 1 &&
9595                "Unexpected number of operands");
9596         // Add information to the INLINEASM node to know about this input.
9597         // See InlineAsm.h isUseOperandTiedToDef.
9598         Flag.clearMemConstraint();
9599         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9600         AsmNodeOperands.push_back(DAG.getTargetConstant(
9601             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9602         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9603         break;
9604       }
9605 
9606       // Treat indirect 'X' constraint as memory.
9607       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9608           OpInfo.isIndirect)
9609         OpInfo.ConstraintType = TargetLowering::C_Memory;
9610 
9611       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9612           OpInfo.ConstraintType == TargetLowering::C_Other) {
9613         std::vector<SDValue> Ops;
9614         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9615                                           Ops, DAG);
9616         if (Ops.empty()) {
9617           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9618             if (isa<ConstantSDNode>(InOperandVal)) {
9619               emitInlineAsmError(Call, "value out of range for constraint '" +
9620                                            Twine(OpInfo.ConstraintCode) + "'");
9621               return;
9622             }
9623 
9624           emitInlineAsmError(Call,
9625                              "invalid operand for inline asm constraint '" +
9626                                  Twine(OpInfo.ConstraintCode) + "'");
9627           return;
9628         }
9629 
9630         // Add information to the INLINEASM node to know about this input.
9631         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9632         AsmNodeOperands.push_back(DAG.getTargetConstant(
9633             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9634         llvm::append_range(AsmNodeOperands, Ops);
9635         break;
9636       }
9637 
9638       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9639         assert((OpInfo.isIndirect ||
9640                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9641                "Operand must be indirect to be a mem!");
9642         assert(InOperandVal.getValueType() ==
9643                    TLI.getPointerTy(DAG.getDataLayout()) &&
9644                "Memory operands expect pointer values");
9645 
9646         const InlineAsm::ConstraintCode ConstraintID =
9647             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9648         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9649                "Failed to convert memory constraint code to constraint id.");
9650 
9651         // Add information to the INLINEASM node to know about this input.
9652         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9653         ResOpType.setMemConstraint(ConstraintID);
9654         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9655                                                         getCurSDLoc(),
9656                                                         MVT::i32));
9657         AsmNodeOperands.push_back(InOperandVal);
9658         break;
9659       }
9660 
9661       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9662         const InlineAsm::ConstraintCode ConstraintID =
9663             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9664         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9665                "Failed to convert memory constraint code to constraint id.");
9666 
9667         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9668 
9669         SDValue AsmOp = InOperandVal;
9670         if (isFunction(InOperandVal)) {
9671           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9672           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9673           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9674                                              InOperandVal.getValueType(),
9675                                              GA->getOffset());
9676         }
9677 
9678         // Add information to the INLINEASM node to know about this input.
9679         ResOpType.setMemConstraint(ConstraintID);
9680 
9681         AsmNodeOperands.push_back(
9682             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9683 
9684         AsmNodeOperands.push_back(AsmOp);
9685         break;
9686       }
9687 
9688       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9689               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9690              "Unknown constraint type!");
9691 
9692       // TODO: Support this.
9693       if (OpInfo.isIndirect) {
9694         emitInlineAsmError(
9695             Call, "Don't know how to handle indirect register inputs yet "
9696                   "for constraint '" +
9697                       Twine(OpInfo.ConstraintCode) + "'");
9698         return;
9699       }
9700 
9701       // Copy the input into the appropriate registers.
9702       if (OpInfo.AssignedRegs.Regs.empty()) {
9703         emitInlineAsmError(Call,
9704                            "couldn't allocate input reg for constraint '" +
9705                                Twine(OpInfo.ConstraintCode) + "'");
9706         return;
9707       }
9708 
9709       if (DetectWriteToReservedRegister())
9710         return;
9711 
9712       SDLoc dl = getCurSDLoc();
9713 
9714       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9715                                         &Call);
9716 
9717       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9718                                                0, dl, DAG, AsmNodeOperands);
9719       break;
9720     }
9721     case InlineAsm::isClobber:
9722       // Add the clobbered value to the operand list, so that the register
9723       // allocator is aware that the physreg got clobbered.
9724       if (!OpInfo.AssignedRegs.Regs.empty())
9725         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9726                                                  false, 0, getCurSDLoc(), DAG,
9727                                                  AsmNodeOperands);
9728       break;
9729     }
9730   }
9731 
9732   // Finish up input operands.  Set the input chain and add the flag last.
9733   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9734   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9735 
9736   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9737   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9738                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9739   Glue = Chain.getValue(1);
9740 
9741   // Do additional work to generate outputs.
9742 
9743   SmallVector<EVT, 1> ResultVTs;
9744   SmallVector<SDValue, 1> ResultValues;
9745   SmallVector<SDValue, 8> OutChains;
9746 
9747   llvm::Type *CallResultType = Call.getType();
9748   ArrayRef<Type *> ResultTypes;
9749   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9750     ResultTypes = StructResult->elements();
9751   else if (!CallResultType->isVoidTy())
9752     ResultTypes = ArrayRef(CallResultType);
9753 
9754   auto CurResultType = ResultTypes.begin();
9755   auto handleRegAssign = [&](SDValue V) {
9756     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9757     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9758     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9759     ++CurResultType;
9760     // If the type of the inline asm call site return value is different but has
9761     // same size as the type of the asm output bitcast it.  One example of this
9762     // is for vectors with different width / number of elements.  This can
9763     // happen for register classes that can contain multiple different value
9764     // types.  The preg or vreg allocated may not have the same VT as was
9765     // expected.
9766     //
9767     // This can also happen for a return value that disagrees with the register
9768     // class it is put in, eg. a double in a general-purpose register on a
9769     // 32-bit machine.
9770     if (ResultVT != V.getValueType() &&
9771         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9772       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9773     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9774              V.getValueType().isInteger()) {
9775       // If a result value was tied to an input value, the computed result
9776       // may have a wider width than the expected result.  Extract the
9777       // relevant portion.
9778       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9779     }
9780     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9781     ResultVTs.push_back(ResultVT);
9782     ResultValues.push_back(V);
9783   };
9784 
9785   // Deal with output operands.
9786   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9787     if (OpInfo.Type == InlineAsm::isOutput) {
9788       SDValue Val;
9789       // Skip trivial output operands.
9790       if (OpInfo.AssignedRegs.Regs.empty())
9791         continue;
9792 
9793       switch (OpInfo.ConstraintType) {
9794       case TargetLowering::C_Register:
9795       case TargetLowering::C_RegisterClass:
9796         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9797                                                   Chain, &Glue, &Call);
9798         break;
9799       case TargetLowering::C_Immediate:
9800       case TargetLowering::C_Other:
9801         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9802                                               OpInfo, DAG);
9803         break;
9804       case TargetLowering::C_Memory:
9805         break; // Already handled.
9806       case TargetLowering::C_Address:
9807         break; // Silence warning.
9808       case TargetLowering::C_Unknown:
9809         assert(false && "Unexpected unknown constraint");
9810       }
9811 
9812       // Indirect output manifest as stores. Record output chains.
9813       if (OpInfo.isIndirect) {
9814         const Value *Ptr = OpInfo.CallOperandVal;
9815         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9816         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9817                                      MachinePointerInfo(Ptr));
9818         OutChains.push_back(Store);
9819       } else {
9820         // generate CopyFromRegs to associated registers.
9821         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9822         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9823           for (const SDValue &V : Val->op_values())
9824             handleRegAssign(V);
9825         } else
9826           handleRegAssign(Val);
9827       }
9828     }
9829   }
9830 
9831   // Set results.
9832   if (!ResultValues.empty()) {
9833     assert(CurResultType == ResultTypes.end() &&
9834            "Mismatch in number of ResultTypes");
9835     assert(ResultValues.size() == ResultTypes.size() &&
9836            "Mismatch in number of output operands in asm result");
9837 
9838     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9839                             DAG.getVTList(ResultVTs), ResultValues);
9840     setValue(&Call, V);
9841   }
9842 
9843   // Collect store chains.
9844   if (!OutChains.empty())
9845     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9846 
9847   if (EmitEHLabels) {
9848     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9849   }
9850 
9851   // Only Update Root if inline assembly has a memory effect.
9852   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9853       EmitEHLabels)
9854     DAG.setRoot(Chain);
9855 }
9856 
9857 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9858                                              const Twine &Message) {
9859   LLVMContext &Ctx = *DAG.getContext();
9860   Ctx.emitError(&Call, Message);
9861 
9862   // Make sure we leave the DAG in a valid state
9863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9864   SmallVector<EVT, 1> ValueVTs;
9865   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9866 
9867   if (ValueVTs.empty())
9868     return;
9869 
9870   SmallVector<SDValue, 1> Ops;
9871   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9872     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9873 
9874   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9875 }
9876 
9877 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9878   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9879                           MVT::Other, getRoot(),
9880                           getValue(I.getArgOperand(0)),
9881                           DAG.getSrcValue(I.getArgOperand(0))));
9882 }
9883 
9884 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9885   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9886   const DataLayout &DL = DAG.getDataLayout();
9887   SDValue V = DAG.getVAArg(
9888       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9889       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9890       DL.getABITypeAlign(I.getType()).value());
9891   DAG.setRoot(V.getValue(1));
9892 
9893   if (I.getType()->isPointerTy())
9894     V = DAG.getPtrExtOrTrunc(
9895         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9896   setValue(&I, V);
9897 }
9898 
9899 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9900   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9901                           MVT::Other, getRoot(),
9902                           getValue(I.getArgOperand(0)),
9903                           DAG.getSrcValue(I.getArgOperand(0))));
9904 }
9905 
9906 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9907   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9908                           MVT::Other, getRoot(),
9909                           getValue(I.getArgOperand(0)),
9910                           getValue(I.getArgOperand(1)),
9911                           DAG.getSrcValue(I.getArgOperand(0)),
9912                           DAG.getSrcValue(I.getArgOperand(1))));
9913 }
9914 
9915 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9916                                                     const Instruction &I,
9917                                                     SDValue Op) {
9918   const MDNode *Range = getRangeMetadata(I);
9919   if (!Range)
9920     return Op;
9921 
9922   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9923   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9924     return Op;
9925 
9926   APInt Lo = CR.getUnsignedMin();
9927   if (!Lo.isMinValue())
9928     return Op;
9929 
9930   APInt Hi = CR.getUnsignedMax();
9931   unsigned Bits = std::max(Hi.getActiveBits(),
9932                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9933 
9934   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9935 
9936   SDLoc SL = getCurSDLoc();
9937 
9938   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9939                              DAG.getValueType(SmallVT));
9940   unsigned NumVals = Op.getNode()->getNumValues();
9941   if (NumVals == 1)
9942     return ZExt;
9943 
9944   SmallVector<SDValue, 4> Ops;
9945 
9946   Ops.push_back(ZExt);
9947   for (unsigned I = 1; I != NumVals; ++I)
9948     Ops.push_back(Op.getValue(I));
9949 
9950   return DAG.getMergeValues(Ops, SL);
9951 }
9952 
9953 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9954 /// the call being lowered.
9955 ///
9956 /// This is a helper for lowering intrinsics that follow a target calling
9957 /// convention or require stack pointer adjustment. Only a subset of the
9958 /// intrinsic's operands need to participate in the calling convention.
9959 void SelectionDAGBuilder::populateCallLoweringInfo(
9960     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9961     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9962     AttributeSet RetAttrs, bool IsPatchPoint) {
9963   TargetLowering::ArgListTy Args;
9964   Args.reserve(NumArgs);
9965 
9966   // Populate the argument list.
9967   // Attributes for args start at offset 1, after the return attribute.
9968   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9969        ArgI != ArgE; ++ArgI) {
9970     const Value *V = Call->getOperand(ArgI);
9971 
9972     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9973 
9974     TargetLowering::ArgListEntry Entry;
9975     Entry.Node = getValue(V);
9976     Entry.Ty = V->getType();
9977     Entry.setAttributes(Call, ArgI);
9978     Args.push_back(Entry);
9979   }
9980 
9981   CLI.setDebugLoc(getCurSDLoc())
9982       .setChain(getRoot())
9983       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
9984                  RetAttrs)
9985       .setDiscardResult(Call->use_empty())
9986       .setIsPatchPoint(IsPatchPoint)
9987       .setIsPreallocated(
9988           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9989 }
9990 
9991 /// Add a stack map intrinsic call's live variable operands to a stackmap
9992 /// or patchpoint target node's operand list.
9993 ///
9994 /// Constants are converted to TargetConstants purely as an optimization to
9995 /// avoid constant materialization and register allocation.
9996 ///
9997 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9998 /// generate addess computation nodes, and so FinalizeISel can convert the
9999 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10000 /// address materialization and register allocation, but may also be required
10001 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10002 /// alloca in the entry block, then the runtime may assume that the alloca's
10003 /// StackMap location can be read immediately after compilation and that the
10004 /// location is valid at any point during execution (this is similar to the
10005 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10006 /// only available in a register, then the runtime would need to trap when
10007 /// execution reaches the StackMap in order to read the alloca's location.
10008 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10009                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10010                                 SelectionDAGBuilder &Builder) {
10011   SelectionDAG &DAG = Builder.DAG;
10012   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10013     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10014 
10015     // Things on the stack are pointer-typed, meaning that they are already
10016     // legal and can be emitted directly to target nodes.
10017     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10018       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10019     } else {
10020       // Otherwise emit a target independent node to be legalised.
10021       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10022     }
10023   }
10024 }
10025 
10026 /// Lower llvm.experimental.stackmap.
10027 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10028   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10029   //                                  [live variables...])
10030 
10031   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10032 
10033   SDValue Chain, InGlue, Callee;
10034   SmallVector<SDValue, 32> Ops;
10035 
10036   SDLoc DL = getCurSDLoc();
10037   Callee = getValue(CI.getCalledOperand());
10038 
10039   // The stackmap intrinsic only records the live variables (the arguments
10040   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10041   // intrinsic, this won't be lowered to a function call. This means we don't
10042   // have to worry about calling conventions and target specific lowering code.
10043   // Instead we perform the call lowering right here.
10044   //
10045   // chain, flag = CALLSEQ_START(chain, 0, 0)
10046   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10047   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10048   //
10049   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10050   InGlue = Chain.getValue(1);
10051 
10052   // Add the STACKMAP operands, starting with DAG house-keeping.
10053   Ops.push_back(Chain);
10054   Ops.push_back(InGlue);
10055 
10056   // Add the <id>, <numShadowBytes> operands.
10057   //
10058   // These do not require legalisation, and can be emitted directly to target
10059   // constant nodes.
10060   SDValue ID = getValue(CI.getArgOperand(0));
10061   assert(ID.getValueType() == MVT::i64);
10062   SDValue IDConst =
10063       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10064   Ops.push_back(IDConst);
10065 
10066   SDValue Shad = getValue(CI.getArgOperand(1));
10067   assert(Shad.getValueType() == MVT::i32);
10068   SDValue ShadConst =
10069       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10070   Ops.push_back(ShadConst);
10071 
10072   // Add the live variables.
10073   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10074 
10075   // Create the STACKMAP node.
10076   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10077   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10078   InGlue = Chain.getValue(1);
10079 
10080   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10081 
10082   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10083 
10084   // Set the root to the target-lowered call chain.
10085   DAG.setRoot(Chain);
10086 
10087   // Inform the Frame Information that we have a stackmap in this function.
10088   FuncInfo.MF->getFrameInfo().setHasStackMap();
10089 }
10090 
10091 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10092 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10093                                           const BasicBlock *EHPadBB) {
10094   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
10095   //                                                 i32 <numBytes>,
10096   //                                                 i8* <target>,
10097   //                                                 i32 <numArgs>,
10098   //                                                 [Args...],
10099   //                                                 [live variables...])
10100 
10101   CallingConv::ID CC = CB.getCallingConv();
10102   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10103   bool HasDef = !CB.getType()->isVoidTy();
10104   SDLoc dl = getCurSDLoc();
10105   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10106 
10107   // Handle immediate and symbolic callees.
10108   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10109     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10110                                    /*isTarget=*/true);
10111   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10112     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10113                                          SDLoc(SymbolicCallee),
10114                                          SymbolicCallee->getValueType(0));
10115 
10116   // Get the real number of arguments participating in the call <numArgs>
10117   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10118   unsigned NumArgs = NArgVal->getAsZExtVal();
10119 
10120   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10121   // Intrinsics include all meta-operands up to but not including CC.
10122   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10123   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10124          "Not enough arguments provided to the patchpoint intrinsic");
10125 
10126   // For AnyRegCC the arguments are lowered later on manually.
10127   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10128   Type *ReturnTy =
10129       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10130 
10131   TargetLowering::CallLoweringInfo CLI(DAG);
10132   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10133                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10134   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10135 
10136   SDNode *CallEnd = Result.second.getNode();
10137   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10138     CallEnd = CallEnd->getOperand(0).getNode();
10139 
10140   /// Get a call instruction from the call sequence chain.
10141   /// Tail calls are not allowed.
10142   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10143          "Expected a callseq node.");
10144   SDNode *Call = CallEnd->getOperand(0).getNode();
10145   bool HasGlue = Call->getGluedNode();
10146 
10147   // Replace the target specific call node with the patchable intrinsic.
10148   SmallVector<SDValue, 8> Ops;
10149 
10150   // Push the chain.
10151   Ops.push_back(*(Call->op_begin()));
10152 
10153   // Optionally, push the glue (if any).
10154   if (HasGlue)
10155     Ops.push_back(*(Call->op_end() - 1));
10156 
10157   // Push the register mask info.
10158   if (HasGlue)
10159     Ops.push_back(*(Call->op_end() - 2));
10160   else
10161     Ops.push_back(*(Call->op_end() - 1));
10162 
10163   // Add the <id> and <numBytes> constants.
10164   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10165   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10166   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10167   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10168 
10169   // Add the callee.
10170   Ops.push_back(Callee);
10171 
10172   // Adjust <numArgs> to account for any arguments that have been passed on the
10173   // stack instead.
10174   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10175   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10176   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10177   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10178 
10179   // Add the calling convention
10180   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10181 
10182   // Add the arguments we omitted previously. The register allocator should
10183   // place these in any free register.
10184   if (IsAnyRegCC)
10185     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10186       Ops.push_back(getValue(CB.getArgOperand(i)));
10187 
10188   // Push the arguments from the call instruction.
10189   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10190   Ops.append(Call->op_begin() + 2, e);
10191 
10192   // Push live variables for the stack map.
10193   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10194 
10195   SDVTList NodeTys;
10196   if (IsAnyRegCC && HasDef) {
10197     // Create the return types based on the intrinsic definition
10198     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10199     SmallVector<EVT, 3> ValueVTs;
10200     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10201     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10202 
10203     // There is always a chain and a glue type at the end
10204     ValueVTs.push_back(MVT::Other);
10205     ValueVTs.push_back(MVT::Glue);
10206     NodeTys = DAG.getVTList(ValueVTs);
10207   } else
10208     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10209 
10210   // Replace the target specific call node with a PATCHPOINT node.
10211   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10212 
10213   // Update the NodeMap.
10214   if (HasDef) {
10215     if (IsAnyRegCC)
10216       setValue(&CB, SDValue(PPV.getNode(), 0));
10217     else
10218       setValue(&CB, Result.first);
10219   }
10220 
10221   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10222   // call sequence. Furthermore the location of the chain and glue can change
10223   // when the AnyReg calling convention is used and the intrinsic returns a
10224   // value.
10225   if (IsAnyRegCC && HasDef) {
10226     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10227     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10228     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10229   } else
10230     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10231   DAG.DeleteNode(Call);
10232 
10233   // Inform the Frame Information that we have a patchpoint in this function.
10234   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10235 }
10236 
10237 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10238                                             unsigned Intrinsic) {
10239   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10240   SDValue Op1 = getValue(I.getArgOperand(0));
10241   SDValue Op2;
10242   if (I.arg_size() > 1)
10243     Op2 = getValue(I.getArgOperand(1));
10244   SDLoc dl = getCurSDLoc();
10245   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10246   SDValue Res;
10247   SDNodeFlags SDFlags;
10248   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10249     SDFlags.copyFMF(*FPMO);
10250 
10251   switch (Intrinsic) {
10252   case Intrinsic::vector_reduce_fadd:
10253     if (SDFlags.hasAllowReassociation())
10254       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10255                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10256                         SDFlags);
10257     else
10258       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10259     break;
10260   case Intrinsic::vector_reduce_fmul:
10261     if (SDFlags.hasAllowReassociation())
10262       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10263                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10264                         SDFlags);
10265     else
10266       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10267     break;
10268   case Intrinsic::vector_reduce_add:
10269     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10270     break;
10271   case Intrinsic::vector_reduce_mul:
10272     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10273     break;
10274   case Intrinsic::vector_reduce_and:
10275     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10276     break;
10277   case Intrinsic::vector_reduce_or:
10278     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10279     break;
10280   case Intrinsic::vector_reduce_xor:
10281     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10282     break;
10283   case Intrinsic::vector_reduce_smax:
10284     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10285     break;
10286   case Intrinsic::vector_reduce_smin:
10287     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10288     break;
10289   case Intrinsic::vector_reduce_umax:
10290     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10291     break;
10292   case Intrinsic::vector_reduce_umin:
10293     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10294     break;
10295   case Intrinsic::vector_reduce_fmax:
10296     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10297     break;
10298   case Intrinsic::vector_reduce_fmin:
10299     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10300     break;
10301   case Intrinsic::vector_reduce_fmaximum:
10302     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10303     break;
10304   case Intrinsic::vector_reduce_fminimum:
10305     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10306     break;
10307   default:
10308     llvm_unreachable("Unhandled vector reduce intrinsic");
10309   }
10310   setValue(&I, Res);
10311 }
10312 
10313 /// Returns an AttributeList representing the attributes applied to the return
10314 /// value of the given call.
10315 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10316   SmallVector<Attribute::AttrKind, 2> Attrs;
10317   if (CLI.RetSExt)
10318     Attrs.push_back(Attribute::SExt);
10319   if (CLI.RetZExt)
10320     Attrs.push_back(Attribute::ZExt);
10321   if (CLI.IsInReg)
10322     Attrs.push_back(Attribute::InReg);
10323 
10324   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10325                             Attrs);
10326 }
10327 
10328 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10329 /// implementation, which just calls LowerCall.
10330 /// FIXME: When all targets are
10331 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10332 std::pair<SDValue, SDValue>
10333 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10334   // Handle the incoming return values from the call.
10335   CLI.Ins.clear();
10336   Type *OrigRetTy = CLI.RetTy;
10337   SmallVector<EVT, 4> RetTys;
10338   SmallVector<uint64_t, 4> Offsets;
10339   auto &DL = CLI.DAG.getDataLayout();
10340   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10341 
10342   if (CLI.IsPostTypeLegalization) {
10343     // If we are lowering a libcall after legalization, split the return type.
10344     SmallVector<EVT, 4> OldRetTys;
10345     SmallVector<uint64_t, 4> OldOffsets;
10346     RetTys.swap(OldRetTys);
10347     Offsets.swap(OldOffsets);
10348 
10349     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10350       EVT RetVT = OldRetTys[i];
10351       uint64_t Offset = OldOffsets[i];
10352       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10353       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10354       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10355       RetTys.append(NumRegs, RegisterVT);
10356       for (unsigned j = 0; j != NumRegs; ++j)
10357         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10358     }
10359   }
10360 
10361   SmallVector<ISD::OutputArg, 4> Outs;
10362   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10363 
10364   bool CanLowerReturn =
10365       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10366                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10367 
10368   SDValue DemoteStackSlot;
10369   int DemoteStackIdx = -100;
10370   if (!CanLowerReturn) {
10371     // FIXME: equivalent assert?
10372     // assert(!CS.hasInAllocaArgument() &&
10373     //        "sret demotion is incompatible with inalloca");
10374     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10375     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10376     MachineFunction &MF = CLI.DAG.getMachineFunction();
10377     DemoteStackIdx =
10378         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10379     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10380                                               DL.getAllocaAddrSpace());
10381 
10382     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10383     ArgListEntry Entry;
10384     Entry.Node = DemoteStackSlot;
10385     Entry.Ty = StackSlotPtrType;
10386     Entry.IsSExt = false;
10387     Entry.IsZExt = false;
10388     Entry.IsInReg = false;
10389     Entry.IsSRet = true;
10390     Entry.IsNest = false;
10391     Entry.IsByVal = false;
10392     Entry.IsByRef = false;
10393     Entry.IsReturned = false;
10394     Entry.IsSwiftSelf = false;
10395     Entry.IsSwiftAsync = false;
10396     Entry.IsSwiftError = false;
10397     Entry.IsCFGuardTarget = false;
10398     Entry.Alignment = Alignment;
10399     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10400     CLI.NumFixedArgs += 1;
10401     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10402     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10403 
10404     // sret demotion isn't compatible with tail-calls, since the sret argument
10405     // points into the callers stack frame.
10406     CLI.IsTailCall = false;
10407   } else {
10408     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10409         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10410     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10411       ISD::ArgFlagsTy Flags;
10412       if (NeedsRegBlock) {
10413         Flags.setInConsecutiveRegs();
10414         if (I == RetTys.size() - 1)
10415           Flags.setInConsecutiveRegsLast();
10416       }
10417       EVT VT = RetTys[I];
10418       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10419                                                      CLI.CallConv, VT);
10420       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10421                                                        CLI.CallConv, VT);
10422       for (unsigned i = 0; i != NumRegs; ++i) {
10423         ISD::InputArg MyFlags;
10424         MyFlags.Flags = Flags;
10425         MyFlags.VT = RegisterVT;
10426         MyFlags.ArgVT = VT;
10427         MyFlags.Used = CLI.IsReturnValueUsed;
10428         if (CLI.RetTy->isPointerTy()) {
10429           MyFlags.Flags.setPointer();
10430           MyFlags.Flags.setPointerAddrSpace(
10431               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10432         }
10433         if (CLI.RetSExt)
10434           MyFlags.Flags.setSExt();
10435         if (CLI.RetZExt)
10436           MyFlags.Flags.setZExt();
10437         if (CLI.IsInReg)
10438           MyFlags.Flags.setInReg();
10439         CLI.Ins.push_back(MyFlags);
10440       }
10441     }
10442   }
10443 
10444   // We push in swifterror return as the last element of CLI.Ins.
10445   ArgListTy &Args = CLI.getArgs();
10446   if (supportSwiftError()) {
10447     for (const ArgListEntry &Arg : Args) {
10448       if (Arg.IsSwiftError) {
10449         ISD::InputArg MyFlags;
10450         MyFlags.VT = getPointerTy(DL);
10451         MyFlags.ArgVT = EVT(getPointerTy(DL));
10452         MyFlags.Flags.setSwiftError();
10453         CLI.Ins.push_back(MyFlags);
10454       }
10455     }
10456   }
10457 
10458   // Handle all of the outgoing arguments.
10459   CLI.Outs.clear();
10460   CLI.OutVals.clear();
10461   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10462     SmallVector<EVT, 4> ValueVTs;
10463     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10464     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10465     Type *FinalType = Args[i].Ty;
10466     if (Args[i].IsByVal)
10467       FinalType = Args[i].IndirectType;
10468     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10469         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10470     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10471          ++Value) {
10472       EVT VT = ValueVTs[Value];
10473       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10474       SDValue Op = SDValue(Args[i].Node.getNode(),
10475                            Args[i].Node.getResNo() + Value);
10476       ISD::ArgFlagsTy Flags;
10477 
10478       // Certain targets (such as MIPS), may have a different ABI alignment
10479       // for a type depending on the context. Give the target a chance to
10480       // specify the alignment it wants.
10481       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10482       Flags.setOrigAlign(OriginalAlignment);
10483 
10484       if (Args[i].Ty->isPointerTy()) {
10485         Flags.setPointer();
10486         Flags.setPointerAddrSpace(
10487             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10488       }
10489       if (Args[i].IsZExt)
10490         Flags.setZExt();
10491       if (Args[i].IsSExt)
10492         Flags.setSExt();
10493       if (Args[i].IsInReg) {
10494         // If we are using vectorcall calling convention, a structure that is
10495         // passed InReg - is surely an HVA
10496         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10497             isa<StructType>(FinalType)) {
10498           // The first value of a structure is marked
10499           if (0 == Value)
10500             Flags.setHvaStart();
10501           Flags.setHva();
10502         }
10503         // Set InReg Flag
10504         Flags.setInReg();
10505       }
10506       if (Args[i].IsSRet)
10507         Flags.setSRet();
10508       if (Args[i].IsSwiftSelf)
10509         Flags.setSwiftSelf();
10510       if (Args[i].IsSwiftAsync)
10511         Flags.setSwiftAsync();
10512       if (Args[i].IsSwiftError)
10513         Flags.setSwiftError();
10514       if (Args[i].IsCFGuardTarget)
10515         Flags.setCFGuardTarget();
10516       if (Args[i].IsByVal)
10517         Flags.setByVal();
10518       if (Args[i].IsByRef)
10519         Flags.setByRef();
10520       if (Args[i].IsPreallocated) {
10521         Flags.setPreallocated();
10522         // Set the byval flag for CCAssignFn callbacks that don't know about
10523         // preallocated.  This way we can know how many bytes we should've
10524         // allocated and how many bytes a callee cleanup function will pop.  If
10525         // we port preallocated to more targets, we'll have to add custom
10526         // preallocated handling in the various CC lowering callbacks.
10527         Flags.setByVal();
10528       }
10529       if (Args[i].IsInAlloca) {
10530         Flags.setInAlloca();
10531         // Set the byval flag for CCAssignFn callbacks that don't know about
10532         // inalloca.  This way we can know how many bytes we should've allocated
10533         // and how many bytes a callee cleanup function will pop.  If we port
10534         // inalloca to more targets, we'll have to add custom inalloca handling
10535         // in the various CC lowering callbacks.
10536         Flags.setByVal();
10537       }
10538       Align MemAlign;
10539       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10540         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10541         Flags.setByValSize(FrameSize);
10542 
10543         // info is not there but there are cases it cannot get right.
10544         if (auto MA = Args[i].Alignment)
10545           MemAlign = *MA;
10546         else
10547           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10548       } else if (auto MA = Args[i].Alignment) {
10549         MemAlign = *MA;
10550       } else {
10551         MemAlign = OriginalAlignment;
10552       }
10553       Flags.setMemAlign(MemAlign);
10554       if (Args[i].IsNest)
10555         Flags.setNest();
10556       if (NeedsRegBlock)
10557         Flags.setInConsecutiveRegs();
10558 
10559       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10560                                                  CLI.CallConv, VT);
10561       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10562                                                         CLI.CallConv, VT);
10563       SmallVector<SDValue, 4> Parts(NumParts);
10564       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10565 
10566       if (Args[i].IsSExt)
10567         ExtendKind = ISD::SIGN_EXTEND;
10568       else if (Args[i].IsZExt)
10569         ExtendKind = ISD::ZERO_EXTEND;
10570 
10571       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10572       // for now.
10573       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10574           CanLowerReturn) {
10575         assert((CLI.RetTy == Args[i].Ty ||
10576                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10577                  CLI.RetTy->getPointerAddressSpace() ==
10578                      Args[i].Ty->getPointerAddressSpace())) &&
10579                RetTys.size() == NumValues && "unexpected use of 'returned'");
10580         // Before passing 'returned' to the target lowering code, ensure that
10581         // either the register MVT and the actual EVT are the same size or that
10582         // the return value and argument are extended in the same way; in these
10583         // cases it's safe to pass the argument register value unchanged as the
10584         // return register value (although it's at the target's option whether
10585         // to do so)
10586         // TODO: allow code generation to take advantage of partially preserved
10587         // registers rather than clobbering the entire register when the
10588         // parameter extension method is not compatible with the return
10589         // extension method
10590         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10591             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10592              CLI.RetZExt == Args[i].IsZExt))
10593           Flags.setReturned();
10594       }
10595 
10596       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10597                      CLI.CallConv, ExtendKind);
10598 
10599       for (unsigned j = 0; j != NumParts; ++j) {
10600         // if it isn't first piece, alignment must be 1
10601         // For scalable vectors the scalable part is currently handled
10602         // by individual targets, so we just use the known minimum size here.
10603         ISD::OutputArg MyFlags(
10604             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10605             i < CLI.NumFixedArgs, i,
10606             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10607         if (NumParts > 1 && j == 0)
10608           MyFlags.Flags.setSplit();
10609         else if (j != 0) {
10610           MyFlags.Flags.setOrigAlign(Align(1));
10611           if (j == NumParts - 1)
10612             MyFlags.Flags.setSplitEnd();
10613         }
10614 
10615         CLI.Outs.push_back(MyFlags);
10616         CLI.OutVals.push_back(Parts[j]);
10617       }
10618 
10619       if (NeedsRegBlock && Value == NumValues - 1)
10620         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10621     }
10622   }
10623 
10624   SmallVector<SDValue, 4> InVals;
10625   CLI.Chain = LowerCall(CLI, InVals);
10626 
10627   // Update CLI.InVals to use outside of this function.
10628   CLI.InVals = InVals;
10629 
10630   // Verify that the target's LowerCall behaved as expected.
10631   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10632          "LowerCall didn't return a valid chain!");
10633   assert((!CLI.IsTailCall || InVals.empty()) &&
10634          "LowerCall emitted a return value for a tail call!");
10635   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10636          "LowerCall didn't emit the correct number of values!");
10637 
10638   // For a tail call, the return value is merely live-out and there aren't
10639   // any nodes in the DAG representing it. Return a special value to
10640   // indicate that a tail call has been emitted and no more Instructions
10641   // should be processed in the current block.
10642   if (CLI.IsTailCall) {
10643     CLI.DAG.setRoot(CLI.Chain);
10644     return std::make_pair(SDValue(), SDValue());
10645   }
10646 
10647 #ifndef NDEBUG
10648   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10649     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10650     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10651            "LowerCall emitted a value with the wrong type!");
10652   }
10653 #endif
10654 
10655   SmallVector<SDValue, 4> ReturnValues;
10656   if (!CanLowerReturn) {
10657     // The instruction result is the result of loading from the
10658     // hidden sret parameter.
10659     SmallVector<EVT, 1> PVTs;
10660     Type *PtrRetTy =
10661         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10662 
10663     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10664     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10665     EVT PtrVT = PVTs[0];
10666 
10667     unsigned NumValues = RetTys.size();
10668     ReturnValues.resize(NumValues);
10669     SmallVector<SDValue, 4> Chains(NumValues);
10670 
10671     // An aggregate return value cannot wrap around the address space, so
10672     // offsets to its parts don't wrap either.
10673     SDNodeFlags Flags;
10674     Flags.setNoUnsignedWrap(true);
10675 
10676     MachineFunction &MF = CLI.DAG.getMachineFunction();
10677     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10678     for (unsigned i = 0; i < NumValues; ++i) {
10679       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10680                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10681                                                         PtrVT), Flags);
10682       SDValue L = CLI.DAG.getLoad(
10683           RetTys[i], CLI.DL, CLI.Chain, Add,
10684           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10685                                             DemoteStackIdx, Offsets[i]),
10686           HiddenSRetAlign);
10687       ReturnValues[i] = L;
10688       Chains[i] = L.getValue(1);
10689     }
10690 
10691     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10692   } else {
10693     // Collect the legal value parts into potentially illegal values
10694     // that correspond to the original function's return values.
10695     std::optional<ISD::NodeType> AssertOp;
10696     if (CLI.RetSExt)
10697       AssertOp = ISD::AssertSext;
10698     else if (CLI.RetZExt)
10699       AssertOp = ISD::AssertZext;
10700     unsigned CurReg = 0;
10701     for (EVT VT : RetTys) {
10702       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10703                                                      CLI.CallConv, VT);
10704       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10705                                                        CLI.CallConv, VT);
10706 
10707       ReturnValues.push_back(getCopyFromParts(
10708           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10709           CLI.Chain, CLI.CallConv, AssertOp));
10710       CurReg += NumRegs;
10711     }
10712 
10713     // For a function returning void, there is no return value. We can't create
10714     // such a node, so we just return a null return value in that case. In
10715     // that case, nothing will actually look at the value.
10716     if (ReturnValues.empty())
10717       return std::make_pair(SDValue(), CLI.Chain);
10718   }
10719 
10720   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10721                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10722   return std::make_pair(Res, CLI.Chain);
10723 }
10724 
10725 /// Places new result values for the node in Results (their number
10726 /// and types must exactly match those of the original return values of
10727 /// the node), or leaves Results empty, which indicates that the node is not
10728 /// to be custom lowered after all.
10729 void TargetLowering::LowerOperationWrapper(SDNode *N,
10730                                            SmallVectorImpl<SDValue> &Results,
10731                                            SelectionDAG &DAG) const {
10732   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10733 
10734   if (!Res.getNode())
10735     return;
10736 
10737   // If the original node has one result, take the return value from
10738   // LowerOperation as is. It might not be result number 0.
10739   if (N->getNumValues() == 1) {
10740     Results.push_back(Res);
10741     return;
10742   }
10743 
10744   // If the original node has multiple results, then the return node should
10745   // have the same number of results.
10746   assert((N->getNumValues() == Res->getNumValues()) &&
10747       "Lowering returned the wrong number of results!");
10748 
10749   // Places new result values base on N result number.
10750   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10751     Results.push_back(Res.getValue(I));
10752 }
10753 
10754 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10755   llvm_unreachable("LowerOperation not implemented for this target!");
10756 }
10757 
10758 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10759                                                      unsigned Reg,
10760                                                      ISD::NodeType ExtendType) {
10761   SDValue Op = getNonRegisterValue(V);
10762   assert((Op.getOpcode() != ISD::CopyFromReg ||
10763           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10764          "Copy from a reg to the same reg!");
10765   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10766 
10767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10768   // If this is an InlineAsm we have to match the registers required, not the
10769   // notional registers required by the type.
10770 
10771   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10772                    std::nullopt); // This is not an ABI copy.
10773   SDValue Chain = DAG.getEntryNode();
10774 
10775   if (ExtendType == ISD::ANY_EXTEND) {
10776     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10777     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10778       ExtendType = PreferredExtendIt->second;
10779   }
10780   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10781   PendingExports.push_back(Chain);
10782 }
10783 
10784 #include "llvm/CodeGen/SelectionDAGISel.h"
10785 
10786 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10787 /// entry block, return true.  This includes arguments used by switches, since
10788 /// the switch may expand into multiple basic blocks.
10789 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10790   // With FastISel active, we may be splitting blocks, so force creation
10791   // of virtual registers for all non-dead arguments.
10792   if (FastISel)
10793     return A->use_empty();
10794 
10795   const BasicBlock &Entry = A->getParent()->front();
10796   for (const User *U : A->users())
10797     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10798       return false;  // Use not in entry block.
10799 
10800   return true;
10801 }
10802 
10803 using ArgCopyElisionMapTy =
10804     DenseMap<const Argument *,
10805              std::pair<const AllocaInst *, const StoreInst *>>;
10806 
10807 /// Scan the entry block of the function in FuncInfo for arguments that look
10808 /// like copies into a local alloca. Record any copied arguments in
10809 /// ArgCopyElisionCandidates.
10810 static void
10811 findArgumentCopyElisionCandidates(const DataLayout &DL,
10812                                   FunctionLoweringInfo *FuncInfo,
10813                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10814   // Record the state of every static alloca used in the entry block. Argument
10815   // allocas are all used in the entry block, so we need approximately as many
10816   // entries as we have arguments.
10817   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10818   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10819   unsigned NumArgs = FuncInfo->Fn->arg_size();
10820   StaticAllocas.reserve(NumArgs * 2);
10821 
10822   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10823     if (!V)
10824       return nullptr;
10825     V = V->stripPointerCasts();
10826     const auto *AI = dyn_cast<AllocaInst>(V);
10827     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10828       return nullptr;
10829     auto Iter = StaticAllocas.insert({AI, Unknown});
10830     return &Iter.first->second;
10831   };
10832 
10833   // Look for stores of arguments to static allocas. Look through bitcasts and
10834   // GEPs to handle type coercions, as long as the alloca is fully initialized
10835   // by the store. Any non-store use of an alloca escapes it and any subsequent
10836   // unanalyzed store might write it.
10837   // FIXME: Handle structs initialized with multiple stores.
10838   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10839     // Look for stores, and handle non-store uses conservatively.
10840     const auto *SI = dyn_cast<StoreInst>(&I);
10841     if (!SI) {
10842       // We will look through cast uses, so ignore them completely.
10843       if (I.isCast())
10844         continue;
10845       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10846       // to allocas.
10847       if (I.isDebugOrPseudoInst())
10848         continue;
10849       // This is an unknown instruction. Assume it escapes or writes to all
10850       // static alloca operands.
10851       for (const Use &U : I.operands()) {
10852         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10853           *Info = StaticAllocaInfo::Clobbered;
10854       }
10855       continue;
10856     }
10857 
10858     // If the stored value is a static alloca, mark it as escaped.
10859     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10860       *Info = StaticAllocaInfo::Clobbered;
10861 
10862     // Check if the destination is a static alloca.
10863     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10864     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10865     if (!Info)
10866       continue;
10867     const AllocaInst *AI = cast<AllocaInst>(Dst);
10868 
10869     // Skip allocas that have been initialized or clobbered.
10870     if (*Info != StaticAllocaInfo::Unknown)
10871       continue;
10872 
10873     // Check if the stored value is an argument, and that this store fully
10874     // initializes the alloca.
10875     // If the argument type has padding bits we can't directly forward a pointer
10876     // as the upper bits may contain garbage.
10877     // Don't elide copies from the same argument twice.
10878     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10879     const auto *Arg = dyn_cast<Argument>(Val);
10880     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10881         Arg->getType()->isEmptyTy() ||
10882         DL.getTypeStoreSize(Arg->getType()) !=
10883             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10884         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10885         ArgCopyElisionCandidates.count(Arg)) {
10886       *Info = StaticAllocaInfo::Clobbered;
10887       continue;
10888     }
10889 
10890     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10891                       << '\n');
10892 
10893     // Mark this alloca and store for argument copy elision.
10894     *Info = StaticAllocaInfo::Elidable;
10895     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10896 
10897     // Stop scanning if we've seen all arguments. This will happen early in -O0
10898     // builds, which is useful, because -O0 builds have large entry blocks and
10899     // many allocas.
10900     if (ArgCopyElisionCandidates.size() == NumArgs)
10901       break;
10902   }
10903 }
10904 
10905 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10906 /// ArgVal is a load from a suitable fixed stack object.
10907 static void tryToElideArgumentCopy(
10908     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10909     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10910     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10911     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10912     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10913   // Check if this is a load from a fixed stack object.
10914   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10915   if (!LNode)
10916     return;
10917   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10918   if (!FINode)
10919     return;
10920 
10921   // Check that the fixed stack object is the right size and alignment.
10922   // Look at the alignment that the user wrote on the alloca instead of looking
10923   // at the stack object.
10924   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10925   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10926   const AllocaInst *AI = ArgCopyIter->second.first;
10927   int FixedIndex = FINode->getIndex();
10928   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10929   int OldIndex = AllocaIndex;
10930   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10931   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10932     LLVM_DEBUG(
10933         dbgs() << "  argument copy elision failed due to bad fixed stack "
10934                   "object size\n");
10935     return;
10936   }
10937   Align RequiredAlignment = AI->getAlign();
10938   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10939     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10940                          "greater than stack argument alignment ("
10941                       << DebugStr(RequiredAlignment) << " vs "
10942                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10943     return;
10944   }
10945 
10946   // Perform the elision. Delete the old stack object and replace its only use
10947   // in the variable info map. Mark the stack object as mutable.
10948   LLVM_DEBUG({
10949     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10950            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10951            << '\n';
10952   });
10953   MFI.RemoveStackObject(OldIndex);
10954   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10955   AllocaIndex = FixedIndex;
10956   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10957   for (SDValue ArgVal : ArgVals)
10958     Chains.push_back(ArgVal.getValue(1));
10959 
10960   // Avoid emitting code for the store implementing the copy.
10961   const StoreInst *SI = ArgCopyIter->second.second;
10962   ElidedArgCopyInstrs.insert(SI);
10963 
10964   // Check for uses of the argument again so that we can avoid exporting ArgVal
10965   // if it is't used by anything other than the store.
10966   for (const Value *U : Arg.users()) {
10967     if (U != SI) {
10968       ArgHasUses = true;
10969       break;
10970     }
10971   }
10972 }
10973 
10974 void SelectionDAGISel::LowerArguments(const Function &F) {
10975   SelectionDAG &DAG = SDB->DAG;
10976   SDLoc dl = SDB->getCurSDLoc();
10977   const DataLayout &DL = DAG.getDataLayout();
10978   SmallVector<ISD::InputArg, 16> Ins;
10979 
10980   // In Naked functions we aren't going to save any registers.
10981   if (F.hasFnAttribute(Attribute::Naked))
10982     return;
10983 
10984   if (!FuncInfo->CanLowerReturn) {
10985     // Put in an sret pointer parameter before all the other parameters.
10986     SmallVector<EVT, 1> ValueVTs;
10987     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10988                     PointerType::get(F.getContext(),
10989                                      DAG.getDataLayout().getAllocaAddrSpace()),
10990                     ValueVTs);
10991 
10992     // NOTE: Assuming that a pointer will never break down to more than one VT
10993     // or one register.
10994     ISD::ArgFlagsTy Flags;
10995     Flags.setSRet();
10996     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10997     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10998                          ISD::InputArg::NoArgIndex, 0);
10999     Ins.push_back(RetArg);
11000   }
11001 
11002   // Look for stores of arguments to static allocas. Mark such arguments with a
11003   // flag to ask the target to give us the memory location of that argument if
11004   // available.
11005   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11006   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11007                                     ArgCopyElisionCandidates);
11008 
11009   // Set up the incoming argument description vector.
11010   for (const Argument &Arg : F.args()) {
11011     unsigned ArgNo = Arg.getArgNo();
11012     SmallVector<EVT, 4> ValueVTs;
11013     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11014     bool isArgValueUsed = !Arg.use_empty();
11015     unsigned PartBase = 0;
11016     Type *FinalType = Arg.getType();
11017     if (Arg.hasAttribute(Attribute::ByVal))
11018       FinalType = Arg.getParamByValType();
11019     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11020         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11021     for (unsigned Value = 0, NumValues = ValueVTs.size();
11022          Value != NumValues; ++Value) {
11023       EVT VT = ValueVTs[Value];
11024       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11025       ISD::ArgFlagsTy Flags;
11026 
11027 
11028       if (Arg.getType()->isPointerTy()) {
11029         Flags.setPointer();
11030         Flags.setPointerAddrSpace(
11031             cast<PointerType>(Arg.getType())->getAddressSpace());
11032       }
11033       if (Arg.hasAttribute(Attribute::ZExt))
11034         Flags.setZExt();
11035       if (Arg.hasAttribute(Attribute::SExt))
11036         Flags.setSExt();
11037       if (Arg.hasAttribute(Attribute::InReg)) {
11038         // If we are using vectorcall calling convention, a structure that is
11039         // passed InReg - is surely an HVA
11040         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11041             isa<StructType>(Arg.getType())) {
11042           // The first value of a structure is marked
11043           if (0 == Value)
11044             Flags.setHvaStart();
11045           Flags.setHva();
11046         }
11047         // Set InReg Flag
11048         Flags.setInReg();
11049       }
11050       if (Arg.hasAttribute(Attribute::StructRet))
11051         Flags.setSRet();
11052       if (Arg.hasAttribute(Attribute::SwiftSelf))
11053         Flags.setSwiftSelf();
11054       if (Arg.hasAttribute(Attribute::SwiftAsync))
11055         Flags.setSwiftAsync();
11056       if (Arg.hasAttribute(Attribute::SwiftError))
11057         Flags.setSwiftError();
11058       if (Arg.hasAttribute(Attribute::ByVal))
11059         Flags.setByVal();
11060       if (Arg.hasAttribute(Attribute::ByRef))
11061         Flags.setByRef();
11062       if (Arg.hasAttribute(Attribute::InAlloca)) {
11063         Flags.setInAlloca();
11064         // Set the byval flag for CCAssignFn callbacks that don't know about
11065         // inalloca.  This way we can know how many bytes we should've allocated
11066         // and how many bytes a callee cleanup function will pop.  If we port
11067         // inalloca to more targets, we'll have to add custom inalloca handling
11068         // in the various CC lowering callbacks.
11069         Flags.setByVal();
11070       }
11071       if (Arg.hasAttribute(Attribute::Preallocated)) {
11072         Flags.setPreallocated();
11073         // Set the byval flag for CCAssignFn callbacks that don't know about
11074         // preallocated.  This way we can know how many bytes we should've
11075         // allocated and how many bytes a callee cleanup function will pop.  If
11076         // we port preallocated to more targets, we'll have to add custom
11077         // preallocated handling in the various CC lowering callbacks.
11078         Flags.setByVal();
11079       }
11080 
11081       // Certain targets (such as MIPS), may have a different ABI alignment
11082       // for a type depending on the context. Give the target a chance to
11083       // specify the alignment it wants.
11084       const Align OriginalAlignment(
11085           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11086       Flags.setOrigAlign(OriginalAlignment);
11087 
11088       Align MemAlign;
11089       Type *ArgMemTy = nullptr;
11090       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11091           Flags.isByRef()) {
11092         if (!ArgMemTy)
11093           ArgMemTy = Arg.getPointeeInMemoryValueType();
11094 
11095         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11096 
11097         // For in-memory arguments, size and alignment should be passed from FE.
11098         // BE will guess if this info is not there but there are cases it cannot
11099         // get right.
11100         if (auto ParamAlign = Arg.getParamStackAlign())
11101           MemAlign = *ParamAlign;
11102         else if ((ParamAlign = Arg.getParamAlign()))
11103           MemAlign = *ParamAlign;
11104         else
11105           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11106         if (Flags.isByRef())
11107           Flags.setByRefSize(MemSize);
11108         else
11109           Flags.setByValSize(MemSize);
11110       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11111         MemAlign = *ParamAlign;
11112       } else {
11113         MemAlign = OriginalAlignment;
11114       }
11115       Flags.setMemAlign(MemAlign);
11116 
11117       if (Arg.hasAttribute(Attribute::Nest))
11118         Flags.setNest();
11119       if (NeedsRegBlock)
11120         Flags.setInConsecutiveRegs();
11121       if (ArgCopyElisionCandidates.count(&Arg))
11122         Flags.setCopyElisionCandidate();
11123       if (Arg.hasAttribute(Attribute::Returned))
11124         Flags.setReturned();
11125 
11126       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11127           *CurDAG->getContext(), F.getCallingConv(), VT);
11128       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11129           *CurDAG->getContext(), F.getCallingConv(), VT);
11130       for (unsigned i = 0; i != NumRegs; ++i) {
11131         // For scalable vectors, use the minimum size; individual targets
11132         // are responsible for handling scalable vector arguments and
11133         // return values.
11134         ISD::InputArg MyFlags(
11135             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11136             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11137         if (NumRegs > 1 && i == 0)
11138           MyFlags.Flags.setSplit();
11139         // if it isn't first piece, alignment must be 1
11140         else if (i > 0) {
11141           MyFlags.Flags.setOrigAlign(Align(1));
11142           if (i == NumRegs - 1)
11143             MyFlags.Flags.setSplitEnd();
11144         }
11145         Ins.push_back(MyFlags);
11146       }
11147       if (NeedsRegBlock && Value == NumValues - 1)
11148         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11149       PartBase += VT.getStoreSize().getKnownMinValue();
11150     }
11151   }
11152 
11153   // Call the target to set up the argument values.
11154   SmallVector<SDValue, 8> InVals;
11155   SDValue NewRoot = TLI->LowerFormalArguments(
11156       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11157 
11158   // Verify that the target's LowerFormalArguments behaved as expected.
11159   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11160          "LowerFormalArguments didn't return a valid chain!");
11161   assert(InVals.size() == Ins.size() &&
11162          "LowerFormalArguments didn't emit the correct number of values!");
11163   LLVM_DEBUG({
11164     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11165       assert(InVals[i].getNode() &&
11166              "LowerFormalArguments emitted a null value!");
11167       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11168              "LowerFormalArguments emitted a value with the wrong type!");
11169     }
11170   });
11171 
11172   // Update the DAG with the new chain value resulting from argument lowering.
11173   DAG.setRoot(NewRoot);
11174 
11175   // Set up the argument values.
11176   unsigned i = 0;
11177   if (!FuncInfo->CanLowerReturn) {
11178     // Create a virtual register for the sret pointer, and put in a copy
11179     // from the sret argument into it.
11180     SmallVector<EVT, 1> ValueVTs;
11181     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11182                     PointerType::get(F.getContext(),
11183                                      DAG.getDataLayout().getAllocaAddrSpace()),
11184                     ValueVTs);
11185     MVT VT = ValueVTs[0].getSimpleVT();
11186     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11187     std::optional<ISD::NodeType> AssertOp;
11188     SDValue ArgValue =
11189         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11190                          F.getCallingConv(), AssertOp);
11191 
11192     MachineFunction& MF = SDB->DAG.getMachineFunction();
11193     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11194     Register SRetReg =
11195         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11196     FuncInfo->DemoteRegister = SRetReg;
11197     NewRoot =
11198         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11199     DAG.setRoot(NewRoot);
11200 
11201     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11202     ++i;
11203   }
11204 
11205   SmallVector<SDValue, 4> Chains;
11206   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11207   for (const Argument &Arg : F.args()) {
11208     SmallVector<SDValue, 4> ArgValues;
11209     SmallVector<EVT, 4> ValueVTs;
11210     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11211     unsigned NumValues = ValueVTs.size();
11212     if (NumValues == 0)
11213       continue;
11214 
11215     bool ArgHasUses = !Arg.use_empty();
11216 
11217     // Elide the copying store if the target loaded this argument from a
11218     // suitable fixed stack object.
11219     if (Ins[i].Flags.isCopyElisionCandidate()) {
11220       unsigned NumParts = 0;
11221       for (EVT VT : ValueVTs)
11222         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11223                                                        F.getCallingConv(), VT);
11224 
11225       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11226                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11227                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11228     }
11229 
11230     // If this argument is unused then remember its value. It is used to generate
11231     // debugging information.
11232     bool isSwiftErrorArg =
11233         TLI->supportSwiftError() &&
11234         Arg.hasAttribute(Attribute::SwiftError);
11235     if (!ArgHasUses && !isSwiftErrorArg) {
11236       SDB->setUnusedArgValue(&Arg, InVals[i]);
11237 
11238       // Also remember any frame index for use in FastISel.
11239       if (FrameIndexSDNode *FI =
11240           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11241         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11242     }
11243 
11244     for (unsigned Val = 0; Val != NumValues; ++Val) {
11245       EVT VT = ValueVTs[Val];
11246       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11247                                                       F.getCallingConv(), VT);
11248       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11249           *CurDAG->getContext(), F.getCallingConv(), VT);
11250 
11251       // Even an apparent 'unused' swifterror argument needs to be returned. So
11252       // we do generate a copy for it that can be used on return from the
11253       // function.
11254       if (ArgHasUses || isSwiftErrorArg) {
11255         std::optional<ISD::NodeType> AssertOp;
11256         if (Arg.hasAttribute(Attribute::SExt))
11257           AssertOp = ISD::AssertSext;
11258         else if (Arg.hasAttribute(Attribute::ZExt))
11259           AssertOp = ISD::AssertZext;
11260 
11261         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11262                                              PartVT, VT, nullptr, NewRoot,
11263                                              F.getCallingConv(), AssertOp));
11264       }
11265 
11266       i += NumParts;
11267     }
11268 
11269     // We don't need to do anything else for unused arguments.
11270     if (ArgValues.empty())
11271       continue;
11272 
11273     // Note down frame index.
11274     if (FrameIndexSDNode *FI =
11275         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11276       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11277 
11278     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11279                                      SDB->getCurSDLoc());
11280 
11281     SDB->setValue(&Arg, Res);
11282     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11283       // We want to associate the argument with the frame index, among
11284       // involved operands, that correspond to the lowest address. The
11285       // getCopyFromParts function, called earlier, is swapping the order of
11286       // the operands to BUILD_PAIR depending on endianness. The result of
11287       // that swapping is that the least significant bits of the argument will
11288       // be in the first operand of the BUILD_PAIR node, and the most
11289       // significant bits will be in the second operand.
11290       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11291       if (LoadSDNode *LNode =
11292           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11293         if (FrameIndexSDNode *FI =
11294             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11295           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11296     }
11297 
11298     // Analyses past this point are naive and don't expect an assertion.
11299     if (Res.getOpcode() == ISD::AssertZext)
11300       Res = Res.getOperand(0);
11301 
11302     // Update the SwiftErrorVRegDefMap.
11303     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11304       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11305       if (Register::isVirtualRegister(Reg))
11306         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11307                                    Reg);
11308     }
11309 
11310     // If this argument is live outside of the entry block, insert a copy from
11311     // wherever we got it to the vreg that other BB's will reference it as.
11312     if (Res.getOpcode() == ISD::CopyFromReg) {
11313       // If we can, though, try to skip creating an unnecessary vreg.
11314       // FIXME: This isn't very clean... it would be nice to make this more
11315       // general.
11316       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11317       if (Register::isVirtualRegister(Reg)) {
11318         FuncInfo->ValueMap[&Arg] = Reg;
11319         continue;
11320       }
11321     }
11322     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11323       FuncInfo->InitializeRegForValue(&Arg);
11324       SDB->CopyToExportRegsIfNeeded(&Arg);
11325     }
11326   }
11327 
11328   if (!Chains.empty()) {
11329     Chains.push_back(NewRoot);
11330     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11331   }
11332 
11333   DAG.setRoot(NewRoot);
11334 
11335   assert(i == InVals.size() && "Argument register count mismatch!");
11336 
11337   // If any argument copy elisions occurred and we have debug info, update the
11338   // stale frame indices used in the dbg.declare variable info table.
11339   if (!ArgCopyElisionFrameIndexMap.empty()) {
11340     for (MachineFunction::VariableDbgInfo &VI :
11341          MF->getInStackSlotVariableDbgInfo()) {
11342       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11343       if (I != ArgCopyElisionFrameIndexMap.end())
11344         VI.updateStackSlot(I->second);
11345     }
11346   }
11347 
11348   // Finally, if the target has anything special to do, allow it to do so.
11349   emitFunctionEntryCode();
11350 }
11351 
11352 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11353 /// ensure constants are generated when needed.  Remember the virtual registers
11354 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11355 /// directly add them, because expansion might result in multiple MBB's for one
11356 /// BB.  As such, the start of the BB might correspond to a different MBB than
11357 /// the end.
11358 void
11359 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11361 
11362   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11363 
11364   // Check PHI nodes in successors that expect a value to be available from this
11365   // block.
11366   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11367     if (!isa<PHINode>(SuccBB->begin())) continue;
11368     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11369 
11370     // If this terminator has multiple identical successors (common for
11371     // switches), only handle each succ once.
11372     if (!SuccsHandled.insert(SuccMBB).second)
11373       continue;
11374 
11375     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11376 
11377     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11378     // nodes and Machine PHI nodes, but the incoming operands have not been
11379     // emitted yet.
11380     for (const PHINode &PN : SuccBB->phis()) {
11381       // Ignore dead phi's.
11382       if (PN.use_empty())
11383         continue;
11384 
11385       // Skip empty types
11386       if (PN.getType()->isEmptyTy())
11387         continue;
11388 
11389       unsigned Reg;
11390       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11391 
11392       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11393         unsigned &RegOut = ConstantsOut[C];
11394         if (RegOut == 0) {
11395           RegOut = FuncInfo.CreateRegs(C);
11396           // We need to zero/sign extend ConstantInt phi operands to match
11397           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11398           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11399           if (auto *CI = dyn_cast<ConstantInt>(C))
11400             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11401                                                     : ISD::ZERO_EXTEND;
11402           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11403         }
11404         Reg = RegOut;
11405       } else {
11406         DenseMap<const Value *, Register>::iterator I =
11407           FuncInfo.ValueMap.find(PHIOp);
11408         if (I != FuncInfo.ValueMap.end())
11409           Reg = I->second;
11410         else {
11411           assert(isa<AllocaInst>(PHIOp) &&
11412                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11413                  "Didn't codegen value into a register!??");
11414           Reg = FuncInfo.CreateRegs(PHIOp);
11415           CopyValueToVirtualRegister(PHIOp, Reg);
11416         }
11417       }
11418 
11419       // Remember that this register needs to added to the machine PHI node as
11420       // the input for this MBB.
11421       SmallVector<EVT, 4> ValueVTs;
11422       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11423       for (EVT VT : ValueVTs) {
11424         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11425         for (unsigned i = 0; i != NumRegisters; ++i)
11426           FuncInfo.PHINodesToUpdate.push_back(
11427               std::make_pair(&*MBBI++, Reg + i));
11428         Reg += NumRegisters;
11429       }
11430     }
11431   }
11432 
11433   ConstantsOut.clear();
11434 }
11435 
11436 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11437   MachineFunction::iterator I(MBB);
11438   if (++I == FuncInfo.MF->end())
11439     return nullptr;
11440   return &*I;
11441 }
11442 
11443 /// During lowering new call nodes can be created (such as memset, etc.).
11444 /// Those will become new roots of the current DAG, but complications arise
11445 /// when they are tail calls. In such cases, the call lowering will update
11446 /// the root, but the builder still needs to know that a tail call has been
11447 /// lowered in order to avoid generating an additional return.
11448 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11449   // If the node is null, we do have a tail call.
11450   if (MaybeTC.getNode() != nullptr)
11451     DAG.setRoot(MaybeTC);
11452   else
11453     HasTailCall = true;
11454 }
11455 
11456 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11457                                         MachineBasicBlock *SwitchMBB,
11458                                         MachineBasicBlock *DefaultMBB) {
11459   MachineFunction *CurMF = FuncInfo.MF;
11460   MachineBasicBlock *NextMBB = nullptr;
11461   MachineFunction::iterator BBI(W.MBB);
11462   if (++BBI != FuncInfo.MF->end())
11463     NextMBB = &*BBI;
11464 
11465   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11466 
11467   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11468 
11469   if (Size == 2 && W.MBB == SwitchMBB) {
11470     // If any two of the cases has the same destination, and if one value
11471     // is the same as the other, but has one bit unset that the other has set,
11472     // use bit manipulation to do two compares at once.  For example:
11473     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11474     // TODO: This could be extended to merge any 2 cases in switches with 3
11475     // cases.
11476     // TODO: Handle cases where W.CaseBB != SwitchBB.
11477     CaseCluster &Small = *W.FirstCluster;
11478     CaseCluster &Big = *W.LastCluster;
11479 
11480     if (Small.Low == Small.High && Big.Low == Big.High &&
11481         Small.MBB == Big.MBB) {
11482       const APInt &SmallValue = Small.Low->getValue();
11483       const APInt &BigValue = Big.Low->getValue();
11484 
11485       // Check that there is only one bit different.
11486       APInt CommonBit = BigValue ^ SmallValue;
11487       if (CommonBit.isPowerOf2()) {
11488         SDValue CondLHS = getValue(Cond);
11489         EVT VT = CondLHS.getValueType();
11490         SDLoc DL = getCurSDLoc();
11491 
11492         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11493                                  DAG.getConstant(CommonBit, DL, VT));
11494         SDValue Cond = DAG.getSetCC(
11495             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11496             ISD::SETEQ);
11497 
11498         // Update successor info.
11499         // Both Small and Big will jump to Small.BB, so we sum up the
11500         // probabilities.
11501         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11502         if (BPI)
11503           addSuccessorWithProb(
11504               SwitchMBB, DefaultMBB,
11505               // The default destination is the first successor in IR.
11506               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11507         else
11508           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11509 
11510         // Insert the true branch.
11511         SDValue BrCond =
11512             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11513                         DAG.getBasicBlock(Small.MBB));
11514         // Insert the false branch.
11515         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11516                              DAG.getBasicBlock(DefaultMBB));
11517 
11518         DAG.setRoot(BrCond);
11519         return;
11520       }
11521     }
11522   }
11523 
11524   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11525     // Here, we order cases by probability so the most likely case will be
11526     // checked first. However, two clusters can have the same probability in
11527     // which case their relative ordering is non-deterministic. So we use Low
11528     // as a tie-breaker as clusters are guaranteed to never overlap.
11529     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11530                [](const CaseCluster &a, const CaseCluster &b) {
11531       return a.Prob != b.Prob ?
11532              a.Prob > b.Prob :
11533              a.Low->getValue().slt(b.Low->getValue());
11534     });
11535 
11536     // Rearrange the case blocks so that the last one falls through if possible
11537     // without changing the order of probabilities.
11538     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11539       --I;
11540       if (I->Prob > W.LastCluster->Prob)
11541         break;
11542       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11543         std::swap(*I, *W.LastCluster);
11544         break;
11545       }
11546     }
11547   }
11548 
11549   // Compute total probability.
11550   BranchProbability DefaultProb = W.DefaultProb;
11551   BranchProbability UnhandledProbs = DefaultProb;
11552   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11553     UnhandledProbs += I->Prob;
11554 
11555   MachineBasicBlock *CurMBB = W.MBB;
11556   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11557     bool FallthroughUnreachable = false;
11558     MachineBasicBlock *Fallthrough;
11559     if (I == W.LastCluster) {
11560       // For the last cluster, fall through to the default destination.
11561       Fallthrough = DefaultMBB;
11562       FallthroughUnreachable = isa<UnreachableInst>(
11563           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11564     } else {
11565       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11566       CurMF->insert(BBI, Fallthrough);
11567       // Put Cond in a virtual register to make it available from the new blocks.
11568       ExportFromCurrentBlock(Cond);
11569     }
11570     UnhandledProbs -= I->Prob;
11571 
11572     switch (I->Kind) {
11573       case CC_JumpTable: {
11574         // FIXME: Optimize away range check based on pivot comparisons.
11575         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11576         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11577 
11578         // The jump block hasn't been inserted yet; insert it here.
11579         MachineBasicBlock *JumpMBB = JT->MBB;
11580         CurMF->insert(BBI, JumpMBB);
11581 
11582         auto JumpProb = I->Prob;
11583         auto FallthroughProb = UnhandledProbs;
11584 
11585         // If the default statement is a target of the jump table, we evenly
11586         // distribute the default probability to successors of CurMBB. Also
11587         // update the probability on the edge from JumpMBB to Fallthrough.
11588         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11589                                               SE = JumpMBB->succ_end();
11590              SI != SE; ++SI) {
11591           if (*SI == DefaultMBB) {
11592             JumpProb += DefaultProb / 2;
11593             FallthroughProb -= DefaultProb / 2;
11594             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11595             JumpMBB->normalizeSuccProbs();
11596             break;
11597           }
11598         }
11599 
11600         // If the default clause is unreachable, propagate that knowledge into
11601         // JTH->FallthroughUnreachable which will use it to suppress the range
11602         // check.
11603         //
11604         // However, don't do this if we're doing branch target enforcement,
11605         // because a table branch _without_ a range check can be a tempting JOP
11606         // gadget - out-of-bounds inputs that are impossible in correct
11607         // execution become possible again if an attacker can influence the
11608         // control flow. So if an attacker doesn't already have a BTI bypass
11609         // available, we don't want them to be able to get one out of this
11610         // table branch.
11611         if (FallthroughUnreachable) {
11612           Function &CurFunc = CurMF->getFunction();
11613           bool HasBranchTargetEnforcement = false;
11614           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11615             HasBranchTargetEnforcement =
11616                 CurFunc.getFnAttribute("branch-target-enforcement")
11617                     .getValueAsBool();
11618           } else {
11619             HasBranchTargetEnforcement =
11620                 CurMF->getMMI().getModule()->getModuleFlag(
11621                     "branch-target-enforcement");
11622           }
11623           if (!HasBranchTargetEnforcement)
11624             JTH->FallthroughUnreachable = true;
11625         }
11626 
11627         if (!JTH->FallthroughUnreachable)
11628           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11629         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11630         CurMBB->normalizeSuccProbs();
11631 
11632         // The jump table header will be inserted in our current block, do the
11633         // range check, and fall through to our fallthrough block.
11634         JTH->HeaderBB = CurMBB;
11635         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11636 
11637         // If we're in the right place, emit the jump table header right now.
11638         if (CurMBB == SwitchMBB) {
11639           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11640           JTH->Emitted = true;
11641         }
11642         break;
11643       }
11644       case CC_BitTests: {
11645         // FIXME: Optimize away range check based on pivot comparisons.
11646         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11647 
11648         // The bit test blocks haven't been inserted yet; insert them here.
11649         for (BitTestCase &BTC : BTB->Cases)
11650           CurMF->insert(BBI, BTC.ThisBB);
11651 
11652         // Fill in fields of the BitTestBlock.
11653         BTB->Parent = CurMBB;
11654         BTB->Default = Fallthrough;
11655 
11656         BTB->DefaultProb = UnhandledProbs;
11657         // If the cases in bit test don't form a contiguous range, we evenly
11658         // distribute the probability on the edge to Fallthrough to two
11659         // successors of CurMBB.
11660         if (!BTB->ContiguousRange) {
11661           BTB->Prob += DefaultProb / 2;
11662           BTB->DefaultProb -= DefaultProb / 2;
11663         }
11664 
11665         if (FallthroughUnreachable)
11666           BTB->FallthroughUnreachable = true;
11667 
11668         // If we're in the right place, emit the bit test header right now.
11669         if (CurMBB == SwitchMBB) {
11670           visitBitTestHeader(*BTB, SwitchMBB);
11671           BTB->Emitted = true;
11672         }
11673         break;
11674       }
11675       case CC_Range: {
11676         const Value *RHS, *LHS, *MHS;
11677         ISD::CondCode CC;
11678         if (I->Low == I->High) {
11679           // Check Cond == I->Low.
11680           CC = ISD::SETEQ;
11681           LHS = Cond;
11682           RHS=I->Low;
11683           MHS = nullptr;
11684         } else {
11685           // Check I->Low <= Cond <= I->High.
11686           CC = ISD::SETLE;
11687           LHS = I->Low;
11688           MHS = Cond;
11689           RHS = I->High;
11690         }
11691 
11692         // If Fallthrough is unreachable, fold away the comparison.
11693         if (FallthroughUnreachable)
11694           CC = ISD::SETTRUE;
11695 
11696         // The false probability is the sum of all unhandled cases.
11697         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11698                      getCurSDLoc(), I->Prob, UnhandledProbs);
11699 
11700         if (CurMBB == SwitchMBB)
11701           visitSwitchCase(CB, SwitchMBB);
11702         else
11703           SL->SwitchCases.push_back(CB);
11704 
11705         break;
11706       }
11707     }
11708     CurMBB = Fallthrough;
11709   }
11710 }
11711 
11712 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11713                                         const SwitchWorkListItem &W,
11714                                         Value *Cond,
11715                                         MachineBasicBlock *SwitchMBB) {
11716   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11717          "Clusters not sorted?");
11718   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11719 
11720   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11721       SL->computeSplitWorkItemInfo(W);
11722 
11723   // Use the first element on the right as pivot since we will make less-than
11724   // comparisons against it.
11725   CaseClusterIt PivotCluster = FirstRight;
11726   assert(PivotCluster > W.FirstCluster);
11727   assert(PivotCluster <= W.LastCluster);
11728 
11729   CaseClusterIt FirstLeft = W.FirstCluster;
11730   CaseClusterIt LastRight = W.LastCluster;
11731 
11732   const ConstantInt *Pivot = PivotCluster->Low;
11733 
11734   // New blocks will be inserted immediately after the current one.
11735   MachineFunction::iterator BBI(W.MBB);
11736   ++BBI;
11737 
11738   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11739   // we can branch to its destination directly if it's squeezed exactly in
11740   // between the known lower bound and Pivot - 1.
11741   MachineBasicBlock *LeftMBB;
11742   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11743       FirstLeft->Low == W.GE &&
11744       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11745     LeftMBB = FirstLeft->MBB;
11746   } else {
11747     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11748     FuncInfo.MF->insert(BBI, LeftMBB);
11749     WorkList.push_back(
11750         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11751     // Put Cond in a virtual register to make it available from the new blocks.
11752     ExportFromCurrentBlock(Cond);
11753   }
11754 
11755   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11756   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11757   // directly if RHS.High equals the current upper bound.
11758   MachineBasicBlock *RightMBB;
11759   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11760       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11761     RightMBB = FirstRight->MBB;
11762   } else {
11763     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11764     FuncInfo.MF->insert(BBI, RightMBB);
11765     WorkList.push_back(
11766         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11767     // Put Cond in a virtual register to make it available from the new blocks.
11768     ExportFromCurrentBlock(Cond);
11769   }
11770 
11771   // Create the CaseBlock record that will be used to lower the branch.
11772   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11773                getCurSDLoc(), LeftProb, RightProb);
11774 
11775   if (W.MBB == SwitchMBB)
11776     visitSwitchCase(CB, SwitchMBB);
11777   else
11778     SL->SwitchCases.push_back(CB);
11779 }
11780 
11781 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11782 // from the swith statement.
11783 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11784                                             BranchProbability PeeledCaseProb) {
11785   if (PeeledCaseProb == BranchProbability::getOne())
11786     return BranchProbability::getZero();
11787   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11788 
11789   uint32_t Numerator = CaseProb.getNumerator();
11790   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11791   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11792 }
11793 
11794 // Try to peel the top probability case if it exceeds the threshold.
11795 // Return current MachineBasicBlock for the switch statement if the peeling
11796 // does not occur.
11797 // If the peeling is performed, return the newly created MachineBasicBlock
11798 // for the peeled switch statement. Also update Clusters to remove the peeled
11799 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11800 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11801     const SwitchInst &SI, CaseClusterVector &Clusters,
11802     BranchProbability &PeeledCaseProb) {
11803   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11804   // Don't perform if there is only one cluster or optimizing for size.
11805   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11806       TM.getOptLevel() == CodeGenOptLevel::None ||
11807       SwitchMBB->getParent()->getFunction().hasMinSize())
11808     return SwitchMBB;
11809 
11810   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11811   unsigned PeeledCaseIndex = 0;
11812   bool SwitchPeeled = false;
11813   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11814     CaseCluster &CC = Clusters[Index];
11815     if (CC.Prob < TopCaseProb)
11816       continue;
11817     TopCaseProb = CC.Prob;
11818     PeeledCaseIndex = Index;
11819     SwitchPeeled = true;
11820   }
11821   if (!SwitchPeeled)
11822     return SwitchMBB;
11823 
11824   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11825                     << TopCaseProb << "\n");
11826 
11827   // Record the MBB for the peeled switch statement.
11828   MachineFunction::iterator BBI(SwitchMBB);
11829   ++BBI;
11830   MachineBasicBlock *PeeledSwitchMBB =
11831       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11832   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11833 
11834   ExportFromCurrentBlock(SI.getCondition());
11835   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11836   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11837                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11838   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11839 
11840   Clusters.erase(PeeledCaseIt);
11841   for (CaseCluster &CC : Clusters) {
11842     LLVM_DEBUG(
11843         dbgs() << "Scale the probablity for one cluster, before scaling: "
11844                << CC.Prob << "\n");
11845     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11846     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11847   }
11848   PeeledCaseProb = TopCaseProb;
11849   return PeeledSwitchMBB;
11850 }
11851 
11852 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11853   // Extract cases from the switch.
11854   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11855   CaseClusterVector Clusters;
11856   Clusters.reserve(SI.getNumCases());
11857   for (auto I : SI.cases()) {
11858     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11859     const ConstantInt *CaseVal = I.getCaseValue();
11860     BranchProbability Prob =
11861         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11862             : BranchProbability(1, SI.getNumCases() + 1);
11863     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11864   }
11865 
11866   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11867 
11868   // Cluster adjacent cases with the same destination. We do this at all
11869   // optimization levels because it's cheap to do and will make codegen faster
11870   // if there are many clusters.
11871   sortAndRangeify(Clusters);
11872 
11873   // The branch probablity of the peeled case.
11874   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11875   MachineBasicBlock *PeeledSwitchMBB =
11876       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11877 
11878   // If there is only the default destination, jump there directly.
11879   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11880   if (Clusters.empty()) {
11881     assert(PeeledSwitchMBB == SwitchMBB);
11882     SwitchMBB->addSuccessor(DefaultMBB);
11883     if (DefaultMBB != NextBlock(SwitchMBB)) {
11884       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11885                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11886     }
11887     return;
11888   }
11889 
11890   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
11891                      DAG.getBFI());
11892   SL->findBitTestClusters(Clusters, &SI);
11893 
11894   LLVM_DEBUG({
11895     dbgs() << "Case clusters: ";
11896     for (const CaseCluster &C : Clusters) {
11897       if (C.Kind == CC_JumpTable)
11898         dbgs() << "JT:";
11899       if (C.Kind == CC_BitTests)
11900         dbgs() << "BT:";
11901 
11902       C.Low->getValue().print(dbgs(), true);
11903       if (C.Low != C.High) {
11904         dbgs() << '-';
11905         C.High->getValue().print(dbgs(), true);
11906       }
11907       dbgs() << ' ';
11908     }
11909     dbgs() << '\n';
11910   });
11911 
11912   assert(!Clusters.empty());
11913   SwitchWorkList WorkList;
11914   CaseClusterIt First = Clusters.begin();
11915   CaseClusterIt Last = Clusters.end() - 1;
11916   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11917   // Scale the branchprobability for DefaultMBB if the peel occurs and
11918   // DefaultMBB is not replaced.
11919   if (PeeledCaseProb != BranchProbability::getZero() &&
11920       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11921     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11922   WorkList.push_back(
11923       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11924 
11925   while (!WorkList.empty()) {
11926     SwitchWorkListItem W = WorkList.pop_back_val();
11927     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11928 
11929     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
11930         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11931       // For optimized builds, lower large range as a balanced binary tree.
11932       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11933       continue;
11934     }
11935 
11936     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11937   }
11938 }
11939 
11940 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11942   auto DL = getCurSDLoc();
11943   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11944   setValue(&I, DAG.getStepVector(DL, ResultVT));
11945 }
11946 
11947 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11949   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11950 
11951   SDLoc DL = getCurSDLoc();
11952   SDValue V = getValue(I.getOperand(0));
11953   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11954 
11955   if (VT.isScalableVector()) {
11956     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11957     return;
11958   }
11959 
11960   // Use VECTOR_SHUFFLE for the fixed-length vector
11961   // to maintain existing behavior.
11962   SmallVector<int, 8> Mask;
11963   unsigned NumElts = VT.getVectorMinNumElements();
11964   for (unsigned i = 0; i != NumElts; ++i)
11965     Mask.push_back(NumElts - 1 - i);
11966 
11967   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11968 }
11969 
11970 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11971   auto DL = getCurSDLoc();
11972   SDValue InVec = getValue(I.getOperand(0));
11973   EVT OutVT =
11974       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11975 
11976   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11977 
11978   // ISD Node needs the input vectors split into two equal parts
11979   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11980                            DAG.getVectorIdxConstant(0, DL));
11981   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11982                            DAG.getVectorIdxConstant(OutNumElts, DL));
11983 
11984   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11985   // legalisation and combines.
11986   if (OutVT.isFixedLengthVector()) {
11987     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11988                                         createStrideMask(0, 2, OutNumElts));
11989     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11990                                        createStrideMask(1, 2, OutNumElts));
11991     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11992     setValue(&I, Res);
11993     return;
11994   }
11995 
11996   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11997                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11998   setValue(&I, Res);
11999 }
12000 
12001 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12002   auto DL = getCurSDLoc();
12003   EVT InVT = getValue(I.getOperand(0)).getValueType();
12004   SDValue InVec0 = getValue(I.getOperand(0));
12005   SDValue InVec1 = getValue(I.getOperand(1));
12006   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12007   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12008 
12009   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12010   // legalisation and combines.
12011   if (OutVT.isFixedLengthVector()) {
12012     unsigned NumElts = InVT.getVectorMinNumElements();
12013     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12014     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12015                                       createInterleaveMask(NumElts, 2)));
12016     return;
12017   }
12018 
12019   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12020                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12021   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12022                     Res.getValue(1));
12023   setValue(&I, Res);
12024 }
12025 
12026 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12027   SmallVector<EVT, 4> ValueVTs;
12028   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12029                   ValueVTs);
12030   unsigned NumValues = ValueVTs.size();
12031   if (NumValues == 0) return;
12032 
12033   SmallVector<SDValue, 4> Values(NumValues);
12034   SDValue Op = getValue(I.getOperand(0));
12035 
12036   for (unsigned i = 0; i != NumValues; ++i)
12037     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12038                             SDValue(Op.getNode(), Op.getResNo() + i));
12039 
12040   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12041                            DAG.getVTList(ValueVTs), Values));
12042 }
12043 
12044 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12045   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12046   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12047 
12048   SDLoc DL = getCurSDLoc();
12049   SDValue V1 = getValue(I.getOperand(0));
12050   SDValue V2 = getValue(I.getOperand(1));
12051   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12052 
12053   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12054   if (VT.isScalableVector()) {
12055     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12056     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12057                              DAG.getConstant(Imm, DL, IdxVT)));
12058     return;
12059   }
12060 
12061   unsigned NumElts = VT.getVectorNumElements();
12062 
12063   uint64_t Idx = (NumElts + Imm) % NumElts;
12064 
12065   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12066   SmallVector<int, 8> Mask;
12067   for (unsigned i = 0; i < NumElts; ++i)
12068     Mask.push_back(Idx + i);
12069   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12070 }
12071 
12072 // Consider the following MIR after SelectionDAG, which produces output in
12073 // phyregs in the first case or virtregs in the second case.
12074 //
12075 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12076 // %5:gr32 = COPY $ebx
12077 // %6:gr32 = COPY $edx
12078 // %1:gr32 = COPY %6:gr32
12079 // %0:gr32 = COPY %5:gr32
12080 //
12081 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12082 // %1:gr32 = COPY %6:gr32
12083 // %0:gr32 = COPY %5:gr32
12084 //
12085 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12086 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12087 //
12088 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12089 // to a single virtreg (such as %0). The remaining outputs monotonically
12090 // increase in virtreg number from there. If a callbr has no outputs, then it
12091 // should not have a corresponding callbr landingpad; in fact, the callbr
12092 // landingpad would not even be able to refer to such a callbr.
12093 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12094   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12095   // There is definitely at least one copy.
12096   assert(MI->getOpcode() == TargetOpcode::COPY &&
12097          "start of copy chain MUST be COPY");
12098   Reg = MI->getOperand(1).getReg();
12099   MI = MRI.def_begin(Reg)->getParent();
12100   // There may be an optional second copy.
12101   if (MI->getOpcode() == TargetOpcode::COPY) {
12102     assert(Reg.isVirtual() && "expected COPY of virtual register");
12103     Reg = MI->getOperand(1).getReg();
12104     assert(Reg.isPhysical() && "expected COPY of physical register");
12105     MI = MRI.def_begin(Reg)->getParent();
12106   }
12107   // The start of the chain must be an INLINEASM_BR.
12108   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12109          "end of copy chain MUST be INLINEASM_BR");
12110   return Reg;
12111 }
12112 
12113 // We must do this walk rather than the simpler
12114 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12115 // otherwise we will end up with copies of virtregs only valid along direct
12116 // edges.
12117 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12118   SmallVector<EVT, 8> ResultVTs;
12119   SmallVector<SDValue, 8> ResultValues;
12120   const auto *CBR =
12121       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12122 
12123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12124   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12125   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12126 
12127   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12128   SDValue Chain = DAG.getRoot();
12129 
12130   // Re-parse the asm constraints string.
12131   TargetLowering::AsmOperandInfoVector TargetConstraints =
12132       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12133   for (auto &T : TargetConstraints) {
12134     SDISelAsmOperandInfo OpInfo(T);
12135     if (OpInfo.Type != InlineAsm::isOutput)
12136       continue;
12137 
12138     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12139     // individual constraint.
12140     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12141 
12142     switch (OpInfo.ConstraintType) {
12143     case TargetLowering::C_Register:
12144     case TargetLowering::C_RegisterClass: {
12145       // Fill in OpInfo.AssignedRegs.Regs.
12146       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12147 
12148       // getRegistersForValue may produce 1 to many registers based on whether
12149       // the OpInfo.ConstraintVT is legal on the target or not.
12150       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12151         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12152         if (Register::isPhysicalRegister(OriginalDef))
12153           FuncInfo.MBB->addLiveIn(OriginalDef);
12154         // Update the assigned registers to use the original defs.
12155         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12156       }
12157 
12158       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12159           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12160       ResultValues.push_back(V);
12161       ResultVTs.push_back(OpInfo.ConstraintVT);
12162       break;
12163     }
12164     case TargetLowering::C_Other: {
12165       SDValue Flag;
12166       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12167                                                   OpInfo, DAG);
12168       ++InitialDef;
12169       ResultValues.push_back(V);
12170       ResultVTs.push_back(OpInfo.ConstraintVT);
12171       break;
12172     }
12173     default:
12174       break;
12175     }
12176   }
12177   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12178                           DAG.getVTList(ResultVTs), ResultValues);
12179   setValue(&I, V);
12180 }
12181