1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 958 false, Offset, dl, DbgSDNodeOrder); 959 DAG.AddDbgValue(SDV, Val.getNode(), false); 960 } 961 } else 962 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 963 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 964 } 965 } 966 967 /// getCopyFromRegs - If there was virtual register allocated for the value V 968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 970 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 971 SDValue Result; 972 973 if (It != FuncInfo.ValueMap.end()) { 974 unsigned InReg = It->second; 975 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 976 DAG.getDataLayout(), InReg, Ty); 977 SDValue Chain = DAG.getEntryNode(); 978 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 979 resolveDanglingDebugInfo(V, Result); 980 } 981 982 return Result; 983 } 984 985 /// getValue - Return an SDValue for the given Value. 986 SDValue SelectionDAGBuilder::getValue(const Value *V) { 987 // If we already have an SDValue for this value, use it. It's important 988 // to do this first, so that we don't create a CopyFromReg if we already 989 // have a regular SDValue. 990 SDValue &N = NodeMap[V]; 991 if (N.getNode()) return N; 992 993 // If there's a virtual register allocated and initialized for this 994 // value, use it. 995 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 996 if (copyFromReg.getNode()) { 997 return copyFromReg; 998 } 999 1000 // Otherwise create a new SDValue and remember it. 1001 SDValue Val = getValueImpl(V); 1002 NodeMap[V] = Val; 1003 resolveDanglingDebugInfo(V, Val); 1004 return Val; 1005 } 1006 1007 // Return true if SDValue exists for the given Value 1008 bool SelectionDAGBuilder::findValue(const Value *V) const { 1009 return (NodeMap.find(V) != NodeMap.end()) || 1010 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1011 } 1012 1013 /// getNonRegisterValue - Return an SDValue for the given Value, but 1014 /// don't look in FuncInfo.ValueMap for a virtual register. 1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. 1017 SDValue &N = NodeMap[V]; 1018 if (N.getNode()) { 1019 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1020 // Remove the debug location from the node as the node is about to be used 1021 // in a location which may differ from the original debug location. This 1022 // is relevant to Constant and ConstantFP nodes because they can appear 1023 // as constant expressions inside PHI nodes. 1024 N->setDebugLoc(DebugLoc()); 1025 } 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1037 /// Create an SDValue for the given value. 1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1040 1041 if (const Constant *C = dyn_cast<Constant>(V)) { 1042 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1043 1044 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1045 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1046 1047 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1048 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1049 1050 if (isa<ConstantPointerNull>(C)) { 1051 unsigned AS = V->getType()->getPointerAddressSpace(); 1052 return DAG.getConstant(0, getCurSDLoc(), 1053 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1054 } 1055 1056 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1057 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1058 1059 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1060 return DAG.getUNDEF(VT); 1061 1062 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1063 visit(CE->getOpcode(), *CE); 1064 SDValue N1 = NodeMap[V]; 1065 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1066 return N1; 1067 } 1068 1069 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1070 SmallVector<SDValue, 4> Constants; 1071 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1072 OI != OE; ++OI) { 1073 SDNode *Val = getValue(*OI).getNode(); 1074 // If the operand is an empty aggregate, there are no values. 1075 if (!Val) continue; 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Constants.push_back(SDValue(Val, i)); 1080 } 1081 1082 return DAG.getMergeValues(Constants, getCurSDLoc()); 1083 } 1084 1085 if (const ConstantDataSequential *CDS = 1086 dyn_cast<ConstantDataSequential>(C)) { 1087 SmallVector<SDValue, 4> Ops; 1088 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1089 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1090 // Add each leaf value from the operand to the Constants list 1091 // to form a flattened list of all the values. 1092 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1093 Ops.push_back(SDValue(Val, i)); 1094 } 1095 1096 if (isa<ArrayType>(CDS->getType())) 1097 return DAG.getMergeValues(Ops, getCurSDLoc()); 1098 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1099 VT, Ops); 1100 } 1101 1102 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1103 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1104 "Unknown struct or array constant!"); 1105 1106 SmallVector<EVT, 4> ValueVTs; 1107 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1108 unsigned NumElts = ValueVTs.size(); 1109 if (NumElts == 0) 1110 return SDValue(); // empty struct 1111 SmallVector<SDValue, 4> Constants(NumElts); 1112 for (unsigned i = 0; i != NumElts; ++i) { 1113 EVT EltVT = ValueVTs[i]; 1114 if (isa<UndefValue>(C)) 1115 Constants[i] = DAG.getUNDEF(EltVT); 1116 else if (EltVT.isFloatingPoint()) 1117 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1118 else 1119 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1120 } 1121 1122 return DAG.getMergeValues(Constants, getCurSDLoc()); 1123 } 1124 1125 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1126 return DAG.getBlockAddress(BA, VT); 1127 1128 VectorType *VecTy = cast<VectorType>(V->getType()); 1129 unsigned NumElements = VecTy->getNumElements(); 1130 1131 // Now that we know the number and type of the elements, get that number of 1132 // elements into the Ops array based on what kind of constant it is. 1133 SmallVector<SDValue, 16> Ops; 1134 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1135 for (unsigned i = 0; i != NumElements; ++i) 1136 Ops.push_back(getValue(CV->getOperand(i))); 1137 } else { 1138 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1139 EVT EltVT = 1140 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1141 1142 SDValue Op; 1143 if (EltVT.isFloatingPoint()) 1144 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1145 else 1146 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1147 Ops.assign(NumElements, Op); 1148 } 1149 1150 // Create a BUILD_VECTOR node. 1151 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1152 } 1153 1154 // If this is a static alloca, generate it as the frameindex instead of 1155 // computation. 1156 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1157 DenseMap<const AllocaInst*, int>::iterator SI = 1158 FuncInfo.StaticAllocaMap.find(AI); 1159 if (SI != FuncInfo.StaticAllocaMap.end()) 1160 return DAG.getFrameIndex(SI->second, 1161 TLI.getPointerTy(DAG.getDataLayout())); 1162 } 1163 1164 // If this is an instruction which fast-isel has deferred, select it now. 1165 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1166 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1167 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1168 Inst->getType()); 1169 SDValue Chain = DAG.getEntryNode(); 1170 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1171 } 1172 1173 llvm_unreachable("Can't get register for value!"); 1174 } 1175 1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1177 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1178 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1179 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1180 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1181 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1182 if (IsMSVCCXX || IsCoreCLR) 1183 CatchPadMBB->setIsEHFuncletEntry(); 1184 1185 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1186 } 1187 1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1189 // Update machine-CFG edge. 1190 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1191 FuncInfo.MBB->addSuccessor(TargetMBB); 1192 1193 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1194 bool IsSEH = isAsynchronousEHPersonality(Pers); 1195 if (IsSEH) { 1196 // If this is not a fall-through branch or optimizations are switched off, 1197 // emit the branch. 1198 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1199 TM.getOptLevel() == CodeGenOpt::None) 1200 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1201 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1202 return; 1203 } 1204 1205 // Figure out the funclet membership for the catchret's successor. 1206 // This will be used by the FuncletLayout pass to determine how to order the 1207 // BB's. 1208 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1209 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1210 assert(SuccessorColor && "No parent funclet for catchret!"); 1211 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1212 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1213 1214 // Create the terminator node. 1215 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1216 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1217 DAG.getBasicBlock(SuccessorColorMBB)); 1218 DAG.setRoot(Ret); 1219 } 1220 1221 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1222 // Don't emit any special code for the cleanuppad instruction. It just marks 1223 // the start of a funclet. 1224 FuncInfo.MBB->setIsEHFuncletEntry(); 1225 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1226 } 1227 1228 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1229 /// many places it could ultimately go. In the IR, we have a single unwind 1230 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1231 /// This function skips over imaginary basic blocks that hold catchswitch 1232 /// instructions, and finds all the "real" machine 1233 /// basic block destinations. As those destinations may not be successors of 1234 /// EHPadBB, here we also calculate the edge probability to those destinations. 1235 /// The passed-in Prob is the edge probability to EHPadBB. 1236 static void findUnwindDestinations( 1237 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1238 BranchProbability Prob, 1239 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1240 &UnwindDests) { 1241 EHPersonality Personality = 1242 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1243 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1244 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1245 1246 while (EHPadBB) { 1247 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1248 BasicBlock *NewEHPadBB = nullptr; 1249 if (isa<LandingPadInst>(Pad)) { 1250 // Stop on landingpads. They are not funclets. 1251 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1252 break; 1253 } else if (isa<CleanupPadInst>(Pad)) { 1254 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1255 // personalities. 1256 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1257 UnwindDests.back().first->setIsEHFuncletEntry(); 1258 break; 1259 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1260 // Add the catchpad handlers to the possible destinations. 1261 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1262 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1263 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1264 if (IsMSVCCXX || IsCoreCLR) 1265 UnwindDests.back().first->setIsEHFuncletEntry(); 1266 } 1267 NewEHPadBB = CatchSwitch->getUnwindDest(); 1268 } else { 1269 continue; 1270 } 1271 1272 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1273 if (BPI && NewEHPadBB) 1274 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1275 EHPadBB = NewEHPadBB; 1276 } 1277 } 1278 1279 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1280 // Update successor info. 1281 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1282 auto UnwindDest = I.getUnwindDest(); 1283 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1284 BranchProbability UnwindDestProb = 1285 (BPI && UnwindDest) 1286 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1287 : BranchProbability::getZero(); 1288 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1289 for (auto &UnwindDest : UnwindDests) { 1290 UnwindDest.first->setIsEHPad(); 1291 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1292 } 1293 FuncInfo.MBB->normalizeSuccProbs(); 1294 1295 // Create the terminator node. 1296 SDValue Ret = 1297 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1298 DAG.setRoot(Ret); 1299 } 1300 1301 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1302 report_fatal_error("visitCatchSwitch not yet implemented!"); 1303 } 1304 1305 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1307 auto &DL = DAG.getDataLayout(); 1308 SDValue Chain = getControlRoot(); 1309 SmallVector<ISD::OutputArg, 8> Outs; 1310 SmallVector<SDValue, 8> OutVals; 1311 1312 if (!FuncInfo.CanLowerReturn) { 1313 unsigned DemoteReg = FuncInfo.DemoteRegister; 1314 const Function *F = I.getParent()->getParent(); 1315 1316 // Emit a store of the return value through the virtual register. 1317 // Leave Outs empty so that LowerReturn won't try to load return 1318 // registers the usual way. 1319 SmallVector<EVT, 1> PtrValueVTs; 1320 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1321 PtrValueVTs); 1322 1323 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1324 DemoteReg, PtrValueVTs[0]); 1325 SDValue RetOp = getValue(I.getOperand(0)); 1326 1327 SmallVector<EVT, 4> ValueVTs; 1328 SmallVector<uint64_t, 4> Offsets; 1329 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1330 unsigned NumValues = ValueVTs.size(); 1331 1332 // An aggregate return value cannot wrap around the address space, so 1333 // offsets to its parts don't wrap either. 1334 SDNodeFlags Flags; 1335 Flags.setNoUnsignedWrap(true); 1336 1337 SmallVector<SDValue, 4> Chains(NumValues); 1338 for (unsigned i = 0; i != NumValues; ++i) { 1339 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1340 RetPtr.getValueType(), RetPtr, 1341 DAG.getIntPtrConstant(Offsets[i], 1342 getCurSDLoc()), 1343 &Flags); 1344 Chains[i] = 1345 DAG.getStore(Chain, getCurSDLoc(), 1346 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1347 // FIXME: better loc info would be nice. 1348 Add, MachinePointerInfo(), false, false, 0); 1349 } 1350 1351 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1352 MVT::Other, Chains); 1353 } else if (I.getNumOperands() != 0) { 1354 SmallVector<EVT, 4> ValueVTs; 1355 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1356 unsigned NumValues = ValueVTs.size(); 1357 if (NumValues) { 1358 SDValue RetOp = getValue(I.getOperand(0)); 1359 1360 const Function *F = I.getParent()->getParent(); 1361 1362 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1363 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1364 Attribute::SExt)) 1365 ExtendKind = ISD::SIGN_EXTEND; 1366 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1367 Attribute::ZExt)) 1368 ExtendKind = ISD::ZERO_EXTEND; 1369 1370 LLVMContext &Context = F->getContext(); 1371 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1372 Attribute::InReg); 1373 1374 for (unsigned j = 0; j != NumValues; ++j) { 1375 EVT VT = ValueVTs[j]; 1376 1377 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1378 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1379 1380 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1381 MVT PartVT = TLI.getRegisterType(Context, VT); 1382 SmallVector<SDValue, 4> Parts(NumParts); 1383 getCopyToParts(DAG, getCurSDLoc(), 1384 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1385 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1386 1387 // 'inreg' on function refers to return value 1388 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1389 if (RetInReg) 1390 Flags.setInReg(); 1391 1392 // Propagate extension type if any 1393 if (ExtendKind == ISD::SIGN_EXTEND) 1394 Flags.setSExt(); 1395 else if (ExtendKind == ISD::ZERO_EXTEND) 1396 Flags.setZExt(); 1397 1398 for (unsigned i = 0; i < NumParts; ++i) { 1399 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1400 VT, /*isfixed=*/true, 0, 0)); 1401 OutVals.push_back(Parts[i]); 1402 } 1403 } 1404 } 1405 } 1406 1407 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1408 CallingConv::ID CallConv = 1409 DAG.getMachineFunction().getFunction()->getCallingConv(); 1410 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1411 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1412 1413 // Verify that the target's LowerReturn behaved as expected. 1414 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1415 "LowerReturn didn't return a valid chain!"); 1416 1417 // Update the DAG with the new chain value resulting from return lowering. 1418 DAG.setRoot(Chain); 1419 } 1420 1421 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1422 /// created for it, emit nodes to copy the value into the virtual 1423 /// registers. 1424 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1425 // Skip empty types 1426 if (V->getType()->isEmptyTy()) 1427 return; 1428 1429 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1430 if (VMI != FuncInfo.ValueMap.end()) { 1431 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1432 CopyValueToVirtualRegister(V, VMI->second); 1433 } 1434 } 1435 1436 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1437 /// the current basic block, add it to ValueMap now so that we'll get a 1438 /// CopyTo/FromReg. 1439 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1440 // No need to export constants. 1441 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1442 1443 // Already exported? 1444 if (FuncInfo.isExportedInst(V)) return; 1445 1446 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1447 CopyValueToVirtualRegister(V, Reg); 1448 } 1449 1450 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1451 const BasicBlock *FromBB) { 1452 // The operands of the setcc have to be in this block. We don't know 1453 // how to export them from some other block. 1454 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1455 // Can export from current BB. 1456 if (VI->getParent() == FromBB) 1457 return true; 1458 1459 // Is already exported, noop. 1460 return FuncInfo.isExportedInst(V); 1461 } 1462 1463 // If this is an argument, we can export it if the BB is the entry block or 1464 // if it is already exported. 1465 if (isa<Argument>(V)) { 1466 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1467 return true; 1468 1469 // Otherwise, can only export this if it is already exported. 1470 return FuncInfo.isExportedInst(V); 1471 } 1472 1473 // Otherwise, constants can always be exported. 1474 return true; 1475 } 1476 1477 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1478 BranchProbability 1479 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1480 const MachineBasicBlock *Dst) const { 1481 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1482 const BasicBlock *SrcBB = Src->getBasicBlock(); 1483 const BasicBlock *DstBB = Dst->getBasicBlock(); 1484 if (!BPI) { 1485 // If BPI is not available, set the default probability as 1 / N, where N is 1486 // the number of successors. 1487 auto SuccSize = std::max<uint32_t>( 1488 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1489 return BranchProbability(1, SuccSize); 1490 } 1491 return BPI->getEdgeProbability(SrcBB, DstBB); 1492 } 1493 1494 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1495 MachineBasicBlock *Dst, 1496 BranchProbability Prob) { 1497 if (!FuncInfo.BPI) 1498 Src->addSuccessorWithoutProb(Dst); 1499 else { 1500 if (Prob.isUnknown()) 1501 Prob = getEdgeProbability(Src, Dst); 1502 Src->addSuccessor(Dst, Prob); 1503 } 1504 } 1505 1506 static bool InBlock(const Value *V, const BasicBlock *BB) { 1507 if (const Instruction *I = dyn_cast<Instruction>(V)) 1508 return I->getParent() == BB; 1509 return true; 1510 } 1511 1512 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1513 /// This function emits a branch and is used at the leaves of an OR or an 1514 /// AND operator tree. 1515 /// 1516 void 1517 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1518 MachineBasicBlock *TBB, 1519 MachineBasicBlock *FBB, 1520 MachineBasicBlock *CurBB, 1521 MachineBasicBlock *SwitchBB, 1522 BranchProbability TProb, 1523 BranchProbability FProb) { 1524 const BasicBlock *BB = CurBB->getBasicBlock(); 1525 1526 // If the leaf of the tree is a comparison, merge the condition into 1527 // the caseblock. 1528 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1529 // The operands of the cmp have to be in this block. We don't know 1530 // how to export them from some other block. If this is the first block 1531 // of the sequence, no exporting is needed. 1532 if (CurBB == SwitchBB || 1533 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1534 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1535 ISD::CondCode Condition; 1536 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1537 Condition = getICmpCondCode(IC->getPredicate()); 1538 } else { 1539 const FCmpInst *FC = cast<FCmpInst>(Cond); 1540 Condition = getFCmpCondCode(FC->getPredicate()); 1541 if (TM.Options.NoNaNsFPMath) 1542 Condition = getFCmpCodeWithoutNaN(Condition); 1543 } 1544 1545 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1546 TBB, FBB, CurBB, TProb, FProb); 1547 SwitchCases.push_back(CB); 1548 return; 1549 } 1550 } 1551 1552 // Create a CaseBlock record representing this branch. 1553 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1554 nullptr, TBB, FBB, CurBB, TProb, FProb); 1555 SwitchCases.push_back(CB); 1556 } 1557 1558 /// FindMergedConditions - If Cond is an expression like 1559 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1560 MachineBasicBlock *TBB, 1561 MachineBasicBlock *FBB, 1562 MachineBasicBlock *CurBB, 1563 MachineBasicBlock *SwitchBB, 1564 Instruction::BinaryOps Opc, 1565 BranchProbability TProb, 1566 BranchProbability FProb) { 1567 // If this node is not part of the or/and tree, emit it as a branch. 1568 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1569 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1570 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1571 BOp->getParent() != CurBB->getBasicBlock() || 1572 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1573 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1574 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1575 TProb, FProb); 1576 return; 1577 } 1578 1579 // Create TmpBB after CurBB. 1580 MachineFunction::iterator BBI(CurBB); 1581 MachineFunction &MF = DAG.getMachineFunction(); 1582 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1583 CurBB->getParent()->insert(++BBI, TmpBB); 1584 1585 if (Opc == Instruction::Or) { 1586 // Codegen X | Y as: 1587 // BB1: 1588 // jmp_if_X TBB 1589 // jmp TmpBB 1590 // TmpBB: 1591 // jmp_if_Y TBB 1592 // jmp FBB 1593 // 1594 1595 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1596 // The requirement is that 1597 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1598 // = TrueProb for original BB. 1599 // Assuming the original probabilities are A and B, one choice is to set 1600 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1601 // A/(1+B) and 2B/(1+B). This choice assumes that 1602 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1603 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1604 // TmpBB, but the math is more complicated. 1605 1606 auto NewTrueProb = TProb / 2; 1607 auto NewFalseProb = TProb / 2 + FProb; 1608 // Emit the LHS condition. 1609 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1610 NewTrueProb, NewFalseProb); 1611 1612 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1613 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1614 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1615 // Emit the RHS condition into TmpBB. 1616 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1617 Probs[0], Probs[1]); 1618 } else { 1619 assert(Opc == Instruction::And && "Unknown merge op!"); 1620 // Codegen X & Y as: 1621 // BB1: 1622 // jmp_if_X TmpBB 1623 // jmp FBB 1624 // TmpBB: 1625 // jmp_if_Y TBB 1626 // jmp FBB 1627 // 1628 // This requires creation of TmpBB after CurBB. 1629 1630 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1631 // The requirement is that 1632 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1633 // = FalseProb for original BB. 1634 // Assuming the original probabilities are A and B, one choice is to set 1635 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1636 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1637 // TrueProb for BB1 * FalseProb for TmpBB. 1638 1639 auto NewTrueProb = TProb + FProb / 2; 1640 auto NewFalseProb = FProb / 2; 1641 // Emit the LHS condition. 1642 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1643 NewTrueProb, NewFalseProb); 1644 1645 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1646 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1647 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1648 // Emit the RHS condition into TmpBB. 1649 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1650 Probs[0], Probs[1]); 1651 } 1652 } 1653 1654 /// If the set of cases should be emitted as a series of branches, return true. 1655 /// If we should emit this as a bunch of and/or'd together conditions, return 1656 /// false. 1657 bool 1658 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1659 if (Cases.size() != 2) return true; 1660 1661 // If this is two comparisons of the same values or'd or and'd together, they 1662 // will get folded into a single comparison, so don't emit two blocks. 1663 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1664 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1665 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1666 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1667 return false; 1668 } 1669 1670 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1671 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1672 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1673 Cases[0].CC == Cases[1].CC && 1674 isa<Constant>(Cases[0].CmpRHS) && 1675 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1676 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1677 return false; 1678 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1679 return false; 1680 } 1681 1682 return true; 1683 } 1684 1685 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1686 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1687 1688 // Update machine-CFG edges. 1689 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1690 1691 if (I.isUnconditional()) { 1692 // Update machine-CFG edges. 1693 BrMBB->addSuccessor(Succ0MBB); 1694 1695 // If this is not a fall-through branch or optimizations are switched off, 1696 // emit the branch. 1697 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1698 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1699 MVT::Other, getControlRoot(), 1700 DAG.getBasicBlock(Succ0MBB))); 1701 1702 return; 1703 } 1704 1705 // If this condition is one of the special cases we handle, do special stuff 1706 // now. 1707 const Value *CondVal = I.getCondition(); 1708 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1709 1710 // If this is a series of conditions that are or'd or and'd together, emit 1711 // this as a sequence of branches instead of setcc's with and/or operations. 1712 // As long as jumps are not expensive, this should improve performance. 1713 // For example, instead of something like: 1714 // cmp A, B 1715 // C = seteq 1716 // cmp D, E 1717 // F = setle 1718 // or C, F 1719 // jnz foo 1720 // Emit: 1721 // cmp A, B 1722 // je foo 1723 // cmp D, E 1724 // jle foo 1725 // 1726 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1727 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1728 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1729 !I.getMetadata(LLVMContext::MD_unpredictable) && 1730 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1731 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1732 Opcode, 1733 getEdgeProbability(BrMBB, Succ0MBB), 1734 getEdgeProbability(BrMBB, Succ1MBB)); 1735 // If the compares in later blocks need to use values not currently 1736 // exported from this block, export them now. This block should always 1737 // be the first entry. 1738 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1739 1740 // Allow some cases to be rejected. 1741 if (ShouldEmitAsBranches(SwitchCases)) { 1742 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1743 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1744 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1745 } 1746 1747 // Emit the branch for this block. 1748 visitSwitchCase(SwitchCases[0], BrMBB); 1749 SwitchCases.erase(SwitchCases.begin()); 1750 return; 1751 } 1752 1753 // Okay, we decided not to do this, remove any inserted MBB's and clear 1754 // SwitchCases. 1755 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1756 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1757 1758 SwitchCases.clear(); 1759 } 1760 } 1761 1762 // Create a CaseBlock record representing this branch. 1763 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1764 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1765 1766 // Use visitSwitchCase to actually insert the fast branch sequence for this 1767 // cond branch. 1768 visitSwitchCase(CB, BrMBB); 1769 } 1770 1771 /// visitSwitchCase - Emits the necessary code to represent a single node in 1772 /// the binary search tree resulting from lowering a switch instruction. 1773 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1774 MachineBasicBlock *SwitchBB) { 1775 SDValue Cond; 1776 SDValue CondLHS = getValue(CB.CmpLHS); 1777 SDLoc dl = getCurSDLoc(); 1778 1779 // Build the setcc now. 1780 if (!CB.CmpMHS) { 1781 // Fold "(X == true)" to X and "(X == false)" to !X to 1782 // handle common cases produced by branch lowering. 1783 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1784 CB.CC == ISD::SETEQ) 1785 Cond = CondLHS; 1786 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1787 CB.CC == ISD::SETEQ) { 1788 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1789 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1790 } else 1791 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1792 } else { 1793 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1794 1795 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1796 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1797 1798 SDValue CmpOp = getValue(CB.CmpMHS); 1799 EVT VT = CmpOp.getValueType(); 1800 1801 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1802 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1803 ISD::SETLE); 1804 } else { 1805 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1806 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1807 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1808 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1809 } 1810 } 1811 1812 // Update successor info 1813 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1814 // TrueBB and FalseBB are always different unless the incoming IR is 1815 // degenerate. This only happens when running llc on weird IR. 1816 if (CB.TrueBB != CB.FalseBB) 1817 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1818 SwitchBB->normalizeSuccProbs(); 1819 1820 // If the lhs block is the next block, invert the condition so that we can 1821 // fall through to the lhs instead of the rhs block. 1822 if (CB.TrueBB == NextBlock(SwitchBB)) { 1823 std::swap(CB.TrueBB, CB.FalseBB); 1824 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1825 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1826 } 1827 1828 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1829 MVT::Other, getControlRoot(), Cond, 1830 DAG.getBasicBlock(CB.TrueBB)); 1831 1832 // Insert the false branch. Do this even if it's a fall through branch, 1833 // this makes it easier to do DAG optimizations which require inverting 1834 // the branch condition. 1835 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1836 DAG.getBasicBlock(CB.FalseBB)); 1837 1838 DAG.setRoot(BrCond); 1839 } 1840 1841 /// visitJumpTable - Emit JumpTable node in the current MBB 1842 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1843 // Emit the code for the jump table 1844 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1845 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1846 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1847 JT.Reg, PTy); 1848 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1849 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1850 MVT::Other, Index.getValue(1), 1851 Table, Index); 1852 DAG.setRoot(BrJumpTable); 1853 } 1854 1855 /// visitJumpTableHeader - This function emits necessary code to produce index 1856 /// in the JumpTable from switch case. 1857 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1858 JumpTableHeader &JTH, 1859 MachineBasicBlock *SwitchBB) { 1860 SDLoc dl = getCurSDLoc(); 1861 1862 // Subtract the lowest switch case value from the value being switched on and 1863 // conditional branch to default mbb if the result is greater than the 1864 // difference between smallest and largest cases. 1865 SDValue SwitchOp = getValue(JTH.SValue); 1866 EVT VT = SwitchOp.getValueType(); 1867 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1868 DAG.getConstant(JTH.First, dl, VT)); 1869 1870 // The SDNode we just created, which holds the value being switched on minus 1871 // the smallest case value, needs to be copied to a virtual register so it 1872 // can be used as an index into the jump table in a subsequent basic block. 1873 // This value may be smaller or larger than the target's pointer type, and 1874 // therefore require extension or truncating. 1875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1876 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1877 1878 unsigned JumpTableReg = 1879 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1880 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1881 JumpTableReg, SwitchOp); 1882 JT.Reg = JumpTableReg; 1883 1884 // Emit the range check for the jump table, and branch to the default block 1885 // for the switch statement if the value being switched on exceeds the largest 1886 // case in the switch. 1887 SDValue CMP = DAG.getSetCC( 1888 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1889 Sub.getValueType()), 1890 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1891 1892 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1893 MVT::Other, CopyTo, CMP, 1894 DAG.getBasicBlock(JT.Default)); 1895 1896 // Avoid emitting unnecessary branches to the next block. 1897 if (JT.MBB != NextBlock(SwitchBB)) 1898 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1899 DAG.getBasicBlock(JT.MBB)); 1900 1901 DAG.setRoot(BrCond); 1902 } 1903 1904 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1905 /// tail spliced into a stack protector check success bb. 1906 /// 1907 /// For a high level explanation of how this fits into the stack protector 1908 /// generation see the comment on the declaration of class 1909 /// StackProtectorDescriptor. 1910 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1911 MachineBasicBlock *ParentBB) { 1912 1913 // First create the loads to the guard/stack slot for the comparison. 1914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1915 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1916 1917 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1918 int FI = MFI->getStackProtectorIndex(); 1919 1920 const Value *IRGuard = SPD.getGuard(); 1921 SDValue GuardPtr = getValue(IRGuard); 1922 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1923 1924 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1925 1926 SDValue Guard; 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1930 // guard value from the virtual register holding the value. Otherwise, emit a 1931 // volatile load to retrieve the stack guard value. 1932 unsigned GuardReg = SPD.getGuardReg(); 1933 1934 if (GuardReg && TLI.useLoadStackGuardNode()) 1935 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1936 PtrTy); 1937 else 1938 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1939 GuardPtr, MachinePointerInfo(IRGuard, 0), 1940 true, false, false, Align); 1941 1942 SDValue StackSlot = DAG.getLoad( 1943 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1944 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1945 false, false, Align); 1946 1947 // Perform the comparison via a subtract/getsetcc. 1948 EVT VT = Guard.getValueType(); 1949 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1950 1951 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1952 *DAG.getContext(), 1953 Sub.getValueType()), 1954 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1955 1956 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1957 // branch to failure MBB. 1958 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1959 MVT::Other, StackSlot.getOperand(0), 1960 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1961 // Otherwise branch to success MBB. 1962 SDValue Br = DAG.getNode(ISD::BR, dl, 1963 MVT::Other, BrCond, 1964 DAG.getBasicBlock(SPD.getSuccessMBB())); 1965 1966 DAG.setRoot(Br); 1967 } 1968 1969 /// Codegen the failure basic block for a stack protector check. 1970 /// 1971 /// A failure stack protector machine basic block consists simply of a call to 1972 /// __stack_chk_fail(). 1973 /// 1974 /// For a high level explanation of how this fits into the stack protector 1975 /// generation see the comment on the declaration of class 1976 /// StackProtectorDescriptor. 1977 void 1978 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1980 SDValue Chain = 1981 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1982 None, false, getCurSDLoc(), false, false).second; 1983 DAG.setRoot(Chain); 1984 } 1985 1986 /// visitBitTestHeader - This function emits necessary code to produce value 1987 /// suitable for "bit tests" 1988 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1989 MachineBasicBlock *SwitchBB) { 1990 SDLoc dl = getCurSDLoc(); 1991 1992 // Subtract the minimum value 1993 SDValue SwitchOp = getValue(B.SValue); 1994 EVT VT = SwitchOp.getValueType(); 1995 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1996 DAG.getConstant(B.First, dl, VT)); 1997 1998 // Check range 1999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2000 SDValue RangeCmp = DAG.getSetCC( 2001 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2002 Sub.getValueType()), 2003 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2004 2005 // Determine the type of the test operands. 2006 bool UsePtrType = false; 2007 if (!TLI.isTypeLegal(VT)) 2008 UsePtrType = true; 2009 else { 2010 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2011 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2012 // Switch table case range are encoded into series of masks. 2013 // Just use pointer type, it's guaranteed to fit. 2014 UsePtrType = true; 2015 break; 2016 } 2017 } 2018 if (UsePtrType) { 2019 VT = TLI.getPointerTy(DAG.getDataLayout()); 2020 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2021 } 2022 2023 B.RegVT = VT.getSimpleVT(); 2024 B.Reg = FuncInfo.CreateReg(B.RegVT); 2025 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2026 2027 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2028 2029 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2030 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2031 SwitchBB->normalizeSuccProbs(); 2032 2033 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2034 MVT::Other, CopyTo, RangeCmp, 2035 DAG.getBasicBlock(B.Default)); 2036 2037 // Avoid emitting unnecessary branches to the next block. 2038 if (MBB != NextBlock(SwitchBB)) 2039 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2040 DAG.getBasicBlock(MBB)); 2041 2042 DAG.setRoot(BrRange); 2043 } 2044 2045 /// visitBitTestCase - this function produces one "bit test" 2046 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2047 MachineBasicBlock* NextMBB, 2048 BranchProbability BranchProbToNext, 2049 unsigned Reg, 2050 BitTestCase &B, 2051 MachineBasicBlock *SwitchBB) { 2052 SDLoc dl = getCurSDLoc(); 2053 MVT VT = BB.RegVT; 2054 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2055 SDValue Cmp; 2056 unsigned PopCount = countPopulation(B.Mask); 2057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2058 if (PopCount == 1) { 2059 // Testing for a single bit; just compare the shift count with what it 2060 // would need to be to shift a 1 bit in that position. 2061 Cmp = DAG.getSetCC( 2062 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2063 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2064 ISD::SETEQ); 2065 } else if (PopCount == BB.Range) { 2066 // There is only one zero bit in the range, test for it directly. 2067 Cmp = DAG.getSetCC( 2068 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2069 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2070 ISD::SETNE); 2071 } else { 2072 // Make desired shift 2073 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2074 DAG.getConstant(1, dl, VT), ShiftOp); 2075 2076 // Emit bit tests and jumps 2077 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2078 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2079 Cmp = DAG.getSetCC( 2080 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2081 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2082 } 2083 2084 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2085 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2086 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2087 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2088 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2089 // one as they are relative probabilities (and thus work more like weights), 2090 // and hence we need to normalize them to let the sum of them become one. 2091 SwitchBB->normalizeSuccProbs(); 2092 2093 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2094 MVT::Other, getControlRoot(), 2095 Cmp, DAG.getBasicBlock(B.TargetBB)); 2096 2097 // Avoid emitting unnecessary branches to the next block. 2098 if (NextMBB != NextBlock(SwitchBB)) 2099 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2100 DAG.getBasicBlock(NextMBB)); 2101 2102 DAG.setRoot(BrAnd); 2103 } 2104 2105 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2106 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2107 2108 // Retrieve successors. Look through artificial IR level blocks like 2109 // catchswitch for successors. 2110 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2111 const BasicBlock *EHPadBB = I.getSuccessor(1); 2112 2113 const Value *Callee(I.getCalledValue()); 2114 const Function *Fn = dyn_cast<Function>(Callee); 2115 if (isa<InlineAsm>(Callee)) 2116 visitInlineAsm(&I); 2117 else if (Fn && Fn->isIntrinsic()) { 2118 switch (Fn->getIntrinsicID()) { 2119 default: 2120 llvm_unreachable("Cannot invoke this intrinsic"); 2121 case Intrinsic::donothing: 2122 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2123 break; 2124 case Intrinsic::experimental_patchpoint_void: 2125 case Intrinsic::experimental_patchpoint_i64: 2126 visitPatchpoint(&I, EHPadBB); 2127 break; 2128 case Intrinsic::experimental_gc_statepoint: 2129 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2130 break; 2131 } 2132 } else 2133 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2134 2135 // If the value of the invoke is used outside of its defining block, make it 2136 // available as a virtual register. 2137 // We already took care of the exported value for the statepoint instruction 2138 // during call to the LowerStatepoint. 2139 if (!isStatepoint(I)) { 2140 CopyToExportRegsIfNeeded(&I); 2141 } 2142 2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability EHPadBBProb = 2146 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2147 : BranchProbability::getZero(); 2148 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2149 2150 // Update successor info. 2151 addSuccessorWithProb(InvokeMBB, Return); 2152 for (auto &UnwindDest : UnwindDests) { 2153 UnwindDest.first->setIsEHPad(); 2154 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2155 } 2156 InvokeMBB->normalizeSuccProbs(); 2157 2158 // Drop into normal successor. 2159 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2160 MVT::Other, getControlRoot(), 2161 DAG.getBasicBlock(Return))); 2162 } 2163 2164 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2165 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2166 } 2167 2168 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2169 assert(FuncInfo.MBB->isEHPad() && 2170 "Call to landingpad not in landing pad!"); 2171 2172 MachineBasicBlock *MBB = FuncInfo.MBB; 2173 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2174 AddLandingPadInfo(LP, MMI, MBB); 2175 2176 // If there aren't registers to copy the values into (e.g., during SjLj 2177 // exceptions), then don't bother to create these DAG nodes. 2178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2179 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2180 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2181 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2182 return; 2183 2184 // If landingpad's return type is token type, we don't create DAG nodes 2185 // for its exception pointer and selector value. The extraction of exception 2186 // pointer or selector value from token type landingpads is not currently 2187 // supported. 2188 if (LP.getType()->isTokenTy()) 2189 return; 2190 2191 SmallVector<EVT, 2> ValueVTs; 2192 SDLoc dl = getCurSDLoc(); 2193 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2194 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2195 2196 // Get the two live-in registers as SDValues. The physregs have already been 2197 // copied into virtual registers. 2198 SDValue Ops[2]; 2199 if (FuncInfo.ExceptionPointerVirtReg) { 2200 Ops[0] = DAG.getZExtOrTrunc( 2201 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2202 FuncInfo.ExceptionPointerVirtReg, 2203 TLI.getPointerTy(DAG.getDataLayout())), 2204 dl, ValueVTs[0]); 2205 } else { 2206 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2207 } 2208 Ops[1] = DAG.getZExtOrTrunc( 2209 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2210 FuncInfo.ExceptionSelectorVirtReg, 2211 TLI.getPointerTy(DAG.getDataLayout())), 2212 dl, ValueVTs[1]); 2213 2214 // Merge into one. 2215 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2216 DAG.getVTList(ValueVTs), Ops); 2217 setValue(&LP, Res); 2218 } 2219 2220 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2221 #ifndef NDEBUG 2222 for (const CaseCluster &CC : Clusters) 2223 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2224 #endif 2225 2226 std::sort(Clusters.begin(), Clusters.end(), 2227 [](const CaseCluster &a, const CaseCluster &b) { 2228 return a.Low->getValue().slt(b.Low->getValue()); 2229 }); 2230 2231 // Merge adjacent clusters with the same destination. 2232 const unsigned N = Clusters.size(); 2233 unsigned DstIndex = 0; 2234 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2235 CaseCluster &CC = Clusters[SrcIndex]; 2236 const ConstantInt *CaseVal = CC.Low; 2237 MachineBasicBlock *Succ = CC.MBB; 2238 2239 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2240 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2241 // If this case has the same successor and is a neighbour, merge it into 2242 // the previous cluster. 2243 Clusters[DstIndex - 1].High = CaseVal; 2244 Clusters[DstIndex - 1].Prob += CC.Prob; 2245 } else { 2246 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2247 sizeof(Clusters[SrcIndex])); 2248 } 2249 } 2250 Clusters.resize(DstIndex); 2251 } 2252 2253 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2254 MachineBasicBlock *Last) { 2255 // Update JTCases. 2256 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2257 if (JTCases[i].first.HeaderBB == First) 2258 JTCases[i].first.HeaderBB = Last; 2259 2260 // Update BitTestCases. 2261 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2262 if (BitTestCases[i].Parent == First) 2263 BitTestCases[i].Parent = Last; 2264 } 2265 2266 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2267 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2268 2269 // Update machine-CFG edges with unique successors. 2270 SmallSet<BasicBlock*, 32> Done; 2271 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2272 BasicBlock *BB = I.getSuccessor(i); 2273 bool Inserted = Done.insert(BB).second; 2274 if (!Inserted) 2275 continue; 2276 2277 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2278 addSuccessorWithProb(IndirectBrMBB, Succ); 2279 } 2280 IndirectBrMBB->normalizeSuccProbs(); 2281 2282 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2283 MVT::Other, getControlRoot(), 2284 getValue(I.getAddress()))); 2285 } 2286 2287 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2288 if (DAG.getTarget().Options.TrapUnreachable) 2289 DAG.setRoot( 2290 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2291 } 2292 2293 void SelectionDAGBuilder::visitFSub(const User &I) { 2294 // -0.0 - X --> fneg 2295 Type *Ty = I.getType(); 2296 if (isa<Constant>(I.getOperand(0)) && 2297 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2298 SDValue Op2 = getValue(I.getOperand(1)); 2299 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2300 Op2.getValueType(), Op2)); 2301 return; 2302 } 2303 2304 visitBinary(I, ISD::FSUB); 2305 } 2306 2307 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2308 SDValue Op1 = getValue(I.getOperand(0)); 2309 SDValue Op2 = getValue(I.getOperand(1)); 2310 2311 bool nuw = false; 2312 bool nsw = false; 2313 bool exact = false; 2314 FastMathFlags FMF; 2315 2316 if (const OverflowingBinaryOperator *OFBinOp = 2317 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2318 nuw = OFBinOp->hasNoUnsignedWrap(); 2319 nsw = OFBinOp->hasNoSignedWrap(); 2320 } 2321 if (const PossiblyExactOperator *ExactOp = 2322 dyn_cast<const PossiblyExactOperator>(&I)) 2323 exact = ExactOp->isExact(); 2324 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2325 FMF = FPOp->getFastMathFlags(); 2326 2327 SDNodeFlags Flags; 2328 Flags.setExact(exact); 2329 Flags.setNoSignedWrap(nsw); 2330 Flags.setNoUnsignedWrap(nuw); 2331 if (EnableFMFInDAG) { 2332 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2333 Flags.setNoInfs(FMF.noInfs()); 2334 Flags.setNoNaNs(FMF.noNaNs()); 2335 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2336 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2337 } 2338 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2339 Op1, Op2, &Flags); 2340 setValue(&I, BinNodeValue); 2341 } 2342 2343 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2344 SDValue Op1 = getValue(I.getOperand(0)); 2345 SDValue Op2 = getValue(I.getOperand(1)); 2346 2347 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2348 Op2.getValueType(), DAG.getDataLayout()); 2349 2350 // Coerce the shift amount to the right type if we can. 2351 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2352 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2353 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2354 SDLoc DL = getCurSDLoc(); 2355 2356 // If the operand is smaller than the shift count type, promote it. 2357 if (ShiftSize > Op2Size) 2358 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2359 2360 // If the operand is larger than the shift count type but the shift 2361 // count type has enough bits to represent any shift value, truncate 2362 // it now. This is a common case and it exposes the truncate to 2363 // optimization early. 2364 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2365 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2366 // Otherwise we'll need to temporarily settle for some other convenient 2367 // type. Type legalization will make adjustments once the shiftee is split. 2368 else 2369 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2370 } 2371 2372 bool nuw = false; 2373 bool nsw = false; 2374 bool exact = false; 2375 2376 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2377 2378 if (const OverflowingBinaryOperator *OFBinOp = 2379 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2380 nuw = OFBinOp->hasNoUnsignedWrap(); 2381 nsw = OFBinOp->hasNoSignedWrap(); 2382 } 2383 if (const PossiblyExactOperator *ExactOp = 2384 dyn_cast<const PossiblyExactOperator>(&I)) 2385 exact = ExactOp->isExact(); 2386 } 2387 SDNodeFlags Flags; 2388 Flags.setExact(exact); 2389 Flags.setNoSignedWrap(nsw); 2390 Flags.setNoUnsignedWrap(nuw); 2391 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2392 &Flags); 2393 setValue(&I, Res); 2394 } 2395 2396 void SelectionDAGBuilder::visitSDiv(const User &I) { 2397 SDValue Op1 = getValue(I.getOperand(0)); 2398 SDValue Op2 = getValue(I.getOperand(1)); 2399 2400 SDNodeFlags Flags; 2401 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2402 cast<PossiblyExactOperator>(&I)->isExact()); 2403 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2404 Op2, &Flags)); 2405 } 2406 2407 void SelectionDAGBuilder::visitICmp(const User &I) { 2408 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2409 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2410 predicate = IC->getPredicate(); 2411 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2412 predicate = ICmpInst::Predicate(IC->getPredicate()); 2413 SDValue Op1 = getValue(I.getOperand(0)); 2414 SDValue Op2 = getValue(I.getOperand(1)); 2415 ISD::CondCode Opcode = getICmpCondCode(predicate); 2416 2417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2418 I.getType()); 2419 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2420 } 2421 2422 void SelectionDAGBuilder::visitFCmp(const User &I) { 2423 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2424 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2425 predicate = FC->getPredicate(); 2426 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2427 predicate = FCmpInst::Predicate(FC->getPredicate()); 2428 SDValue Op1 = getValue(I.getOperand(0)); 2429 SDValue Op2 = getValue(I.getOperand(1)); 2430 ISD::CondCode Condition = getFCmpCondCode(predicate); 2431 2432 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2433 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2434 // further optimization, but currently FMF is only applicable to binary nodes. 2435 if (TM.Options.NoNaNsFPMath) 2436 Condition = getFCmpCodeWithoutNaN(Condition); 2437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2438 I.getType()); 2439 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2440 } 2441 2442 void SelectionDAGBuilder::visitSelect(const User &I) { 2443 SmallVector<EVT, 4> ValueVTs; 2444 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2445 ValueVTs); 2446 unsigned NumValues = ValueVTs.size(); 2447 if (NumValues == 0) return; 2448 2449 SmallVector<SDValue, 4> Values(NumValues); 2450 SDValue Cond = getValue(I.getOperand(0)); 2451 SDValue LHSVal = getValue(I.getOperand(1)); 2452 SDValue RHSVal = getValue(I.getOperand(2)); 2453 auto BaseOps = {Cond}; 2454 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2455 ISD::VSELECT : ISD::SELECT; 2456 2457 // Min/max matching is only viable if all output VTs are the same. 2458 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2459 EVT VT = ValueVTs[0]; 2460 LLVMContext &Ctx = *DAG.getContext(); 2461 auto &TLI = DAG.getTargetLoweringInfo(); 2462 2463 // We care about the legality of the operation after it has been type 2464 // legalized. 2465 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2466 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2467 VT = TLI.getTypeToTransformTo(Ctx, VT); 2468 2469 // If the vselect is legal, assume we want to leave this as a vector setcc + 2470 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2471 // min/max is legal on the scalar type. 2472 bool UseScalarMinMax = VT.isVector() && 2473 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2474 2475 Value *LHS, *RHS; 2476 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2477 ISD::NodeType Opc = ISD::DELETED_NODE; 2478 switch (SPR.Flavor) { 2479 case SPF_UMAX: Opc = ISD::UMAX; break; 2480 case SPF_UMIN: Opc = ISD::UMIN; break; 2481 case SPF_SMAX: Opc = ISD::SMAX; break; 2482 case SPF_SMIN: Opc = ISD::SMIN; break; 2483 case SPF_FMINNUM: 2484 switch (SPR.NaNBehavior) { 2485 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2486 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2487 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2488 case SPNB_RETURNS_ANY: { 2489 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2490 Opc = ISD::FMINNUM; 2491 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2492 Opc = ISD::FMINNAN; 2493 else if (UseScalarMinMax) 2494 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2495 ISD::FMINNUM : ISD::FMINNAN; 2496 break; 2497 } 2498 } 2499 break; 2500 case SPF_FMAXNUM: 2501 switch (SPR.NaNBehavior) { 2502 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2503 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2504 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2505 case SPNB_RETURNS_ANY: 2506 2507 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2508 Opc = ISD::FMAXNUM; 2509 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2510 Opc = ISD::FMAXNAN; 2511 else if (UseScalarMinMax) 2512 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2513 ISD::FMAXNUM : ISD::FMAXNAN; 2514 break; 2515 } 2516 break; 2517 default: break; 2518 } 2519 2520 if (Opc != ISD::DELETED_NODE && 2521 (TLI.isOperationLegalOrCustom(Opc, VT) || 2522 (UseScalarMinMax && 2523 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2524 // If the underlying comparison instruction is used by any other 2525 // instruction, the consumed instructions won't be destroyed, so it is 2526 // not profitable to convert to a min/max. 2527 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2528 OpCode = Opc; 2529 LHSVal = getValue(LHS); 2530 RHSVal = getValue(RHS); 2531 BaseOps = {}; 2532 } 2533 } 2534 2535 for (unsigned i = 0; i != NumValues; ++i) { 2536 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2537 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2538 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2539 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2540 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2541 Ops); 2542 } 2543 2544 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2545 DAG.getVTList(ValueVTs), Values)); 2546 } 2547 2548 void SelectionDAGBuilder::visitTrunc(const User &I) { 2549 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2550 SDValue N = getValue(I.getOperand(0)); 2551 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2552 I.getType()); 2553 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2554 } 2555 2556 void SelectionDAGBuilder::visitZExt(const User &I) { 2557 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2558 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2559 SDValue N = getValue(I.getOperand(0)); 2560 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2561 I.getType()); 2562 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2563 } 2564 2565 void SelectionDAGBuilder::visitSExt(const User &I) { 2566 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2567 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2568 SDValue N = getValue(I.getOperand(0)); 2569 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2570 I.getType()); 2571 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2572 } 2573 2574 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2575 // FPTrunc is never a no-op cast, no need to check 2576 SDValue N = getValue(I.getOperand(0)); 2577 SDLoc dl = getCurSDLoc(); 2578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2579 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2580 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2581 DAG.getTargetConstant( 2582 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2583 } 2584 2585 void SelectionDAGBuilder::visitFPExt(const User &I) { 2586 // FPExt is never a no-op cast, no need to check 2587 SDValue N = getValue(I.getOperand(0)); 2588 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2589 I.getType()); 2590 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2591 } 2592 2593 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2594 // FPToUI is never a no-op cast, no need to check 2595 SDValue N = getValue(I.getOperand(0)); 2596 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2597 I.getType()); 2598 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2599 } 2600 2601 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2602 // FPToSI is never a no-op cast, no need to check 2603 SDValue N = getValue(I.getOperand(0)); 2604 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2605 I.getType()); 2606 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2607 } 2608 2609 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2610 // UIToFP is never a no-op cast, no need to check 2611 SDValue N = getValue(I.getOperand(0)); 2612 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2613 I.getType()); 2614 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2615 } 2616 2617 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2618 // SIToFP is never a no-op cast, no need to check 2619 SDValue N = getValue(I.getOperand(0)); 2620 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2621 I.getType()); 2622 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2623 } 2624 2625 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2626 // What to do depends on the size of the integer and the size of the pointer. 2627 // We can either truncate, zero extend, or no-op, accordingly. 2628 SDValue N = getValue(I.getOperand(0)); 2629 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2630 I.getType()); 2631 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2632 } 2633 2634 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2635 // What to do depends on the size of the integer and the size of the pointer. 2636 // We can either truncate, zero extend, or no-op, accordingly. 2637 SDValue N = getValue(I.getOperand(0)); 2638 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2639 I.getType()); 2640 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2641 } 2642 2643 void SelectionDAGBuilder::visitBitCast(const User &I) { 2644 SDValue N = getValue(I.getOperand(0)); 2645 SDLoc dl = getCurSDLoc(); 2646 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2647 I.getType()); 2648 2649 // BitCast assures us that source and destination are the same size so this is 2650 // either a BITCAST or a no-op. 2651 if (DestVT != N.getValueType()) 2652 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2653 DestVT, N)); // convert types. 2654 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2655 // might fold any kind of constant expression to an integer constant and that 2656 // is not what we are looking for. Only regcognize a bitcast of a genuine 2657 // constant integer as an opaque constant. 2658 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2659 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2660 /*isOpaque*/true)); 2661 else 2662 setValue(&I, N); // noop cast. 2663 } 2664 2665 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2667 const Value *SV = I.getOperand(0); 2668 SDValue N = getValue(SV); 2669 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2670 2671 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2672 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2673 2674 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2675 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2676 2677 setValue(&I, N); 2678 } 2679 2680 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2682 SDValue InVec = getValue(I.getOperand(0)); 2683 SDValue InVal = getValue(I.getOperand(1)); 2684 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2685 TLI.getVectorIdxTy(DAG.getDataLayout())); 2686 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2687 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2688 InVec, InVal, InIdx)); 2689 } 2690 2691 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2693 SDValue InVec = getValue(I.getOperand(0)); 2694 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2695 TLI.getVectorIdxTy(DAG.getDataLayout())); 2696 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2697 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2698 InVec, InIdx)); 2699 } 2700 2701 // Utility for visitShuffleVector - Return true if every element in Mask, 2702 // beginning from position Pos and ending in Pos+Size, falls within the 2703 // specified sequential range [L, L+Pos). or is undef. 2704 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2705 unsigned Pos, unsigned Size, int Low) { 2706 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2707 if (Mask[i] >= 0 && Mask[i] != Low) 2708 return false; 2709 return true; 2710 } 2711 2712 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2713 SDValue Src1 = getValue(I.getOperand(0)); 2714 SDValue Src2 = getValue(I.getOperand(1)); 2715 2716 SmallVector<int, 8> Mask; 2717 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2718 unsigned MaskNumElts = Mask.size(); 2719 2720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2721 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2722 EVT SrcVT = Src1.getValueType(); 2723 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2724 2725 if (SrcNumElts == MaskNumElts) { 2726 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2727 &Mask[0])); 2728 return; 2729 } 2730 2731 // Normalize the shuffle vector since mask and vector length don't match. 2732 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2733 // Mask is longer than the source vectors and is a multiple of the source 2734 // vectors. We can use concatenate vector to make the mask and vectors 2735 // lengths match. 2736 if (SrcNumElts*2 == MaskNumElts) { 2737 // First check for Src1 in low and Src2 in high 2738 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2739 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2740 // The shuffle is concatenating two vectors together. 2741 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2742 VT, Src1, Src2)); 2743 return; 2744 } 2745 // Then check for Src2 in low and Src1 in high 2746 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2747 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2748 // The shuffle is concatenating two vectors together. 2749 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2750 VT, Src2, Src1)); 2751 return; 2752 } 2753 } 2754 2755 // Pad both vectors with undefs to make them the same length as the mask. 2756 unsigned NumConcat = MaskNumElts / SrcNumElts; 2757 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2758 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2759 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2760 2761 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2762 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2763 MOps1[0] = Src1; 2764 MOps2[0] = Src2; 2765 2766 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2767 getCurSDLoc(), VT, MOps1); 2768 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2769 getCurSDLoc(), VT, MOps2); 2770 2771 // Readjust mask for new input vector length. 2772 SmallVector<int, 8> MappedOps; 2773 for (unsigned i = 0; i != MaskNumElts; ++i) { 2774 int Idx = Mask[i]; 2775 if (Idx >= (int)SrcNumElts) 2776 Idx -= SrcNumElts - MaskNumElts; 2777 MappedOps.push_back(Idx); 2778 } 2779 2780 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2781 &MappedOps[0])); 2782 return; 2783 } 2784 2785 if (SrcNumElts > MaskNumElts) { 2786 // Analyze the access pattern of the vector to see if we can extract 2787 // two subvectors and do the shuffle. The analysis is done by calculating 2788 // the range of elements the mask access on both vectors. 2789 int MinRange[2] = { static_cast<int>(SrcNumElts), 2790 static_cast<int>(SrcNumElts)}; 2791 int MaxRange[2] = {-1, -1}; 2792 2793 for (unsigned i = 0; i != MaskNumElts; ++i) { 2794 int Idx = Mask[i]; 2795 unsigned Input = 0; 2796 if (Idx < 0) 2797 continue; 2798 2799 if (Idx >= (int)SrcNumElts) { 2800 Input = 1; 2801 Idx -= SrcNumElts; 2802 } 2803 if (Idx > MaxRange[Input]) 2804 MaxRange[Input] = Idx; 2805 if (Idx < MinRange[Input]) 2806 MinRange[Input] = Idx; 2807 } 2808 2809 // Check if the access is smaller than the vector size and can we find 2810 // a reasonable extract index. 2811 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2812 // Extract. 2813 int StartIdx[2]; // StartIdx to extract from 2814 for (unsigned Input = 0; Input < 2; ++Input) { 2815 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2816 RangeUse[Input] = 0; // Unused 2817 StartIdx[Input] = 0; 2818 continue; 2819 } 2820 2821 // Find a good start index that is a multiple of the mask length. Then 2822 // see if the rest of the elements are in range. 2823 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2824 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2825 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2826 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2827 } 2828 2829 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2830 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2831 return; 2832 } 2833 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2834 // Extract appropriate subvector and generate a vector shuffle 2835 for (unsigned Input = 0; Input < 2; ++Input) { 2836 SDValue &Src = Input == 0 ? Src1 : Src2; 2837 if (RangeUse[Input] == 0) 2838 Src = DAG.getUNDEF(VT); 2839 else { 2840 SDLoc dl = getCurSDLoc(); 2841 Src = DAG.getNode( 2842 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2843 DAG.getConstant(StartIdx[Input], dl, 2844 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2845 } 2846 } 2847 2848 // Calculate new mask. 2849 SmallVector<int, 8> MappedOps; 2850 for (unsigned i = 0; i != MaskNumElts; ++i) { 2851 int Idx = Mask[i]; 2852 if (Idx >= 0) { 2853 if (Idx < (int)SrcNumElts) 2854 Idx -= StartIdx[0]; 2855 else 2856 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2857 } 2858 MappedOps.push_back(Idx); 2859 } 2860 2861 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2862 &MappedOps[0])); 2863 return; 2864 } 2865 } 2866 2867 // We can't use either concat vectors or extract subvectors so fall back to 2868 // replacing the shuffle with extract and build vector. 2869 // to insert and build vector. 2870 EVT EltVT = VT.getVectorElementType(); 2871 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2872 SDLoc dl = getCurSDLoc(); 2873 SmallVector<SDValue,8> Ops; 2874 for (unsigned i = 0; i != MaskNumElts; ++i) { 2875 int Idx = Mask[i]; 2876 SDValue Res; 2877 2878 if (Idx < 0) { 2879 Res = DAG.getUNDEF(EltVT); 2880 } else { 2881 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2882 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2883 2884 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2885 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2886 } 2887 2888 Ops.push_back(Res); 2889 } 2890 2891 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2892 } 2893 2894 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2895 const Value *Op0 = I.getOperand(0); 2896 const Value *Op1 = I.getOperand(1); 2897 Type *AggTy = I.getType(); 2898 Type *ValTy = Op1->getType(); 2899 bool IntoUndef = isa<UndefValue>(Op0); 2900 bool FromUndef = isa<UndefValue>(Op1); 2901 2902 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2903 2904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2905 SmallVector<EVT, 4> AggValueVTs; 2906 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2907 SmallVector<EVT, 4> ValValueVTs; 2908 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2909 2910 unsigned NumAggValues = AggValueVTs.size(); 2911 unsigned NumValValues = ValValueVTs.size(); 2912 SmallVector<SDValue, 4> Values(NumAggValues); 2913 2914 // Ignore an insertvalue that produces an empty object 2915 if (!NumAggValues) { 2916 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2917 return; 2918 } 2919 2920 SDValue Agg = getValue(Op0); 2921 unsigned i = 0; 2922 // Copy the beginning value(s) from the original aggregate. 2923 for (; i != LinearIndex; ++i) 2924 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2925 SDValue(Agg.getNode(), Agg.getResNo() + i); 2926 // Copy values from the inserted value(s). 2927 if (NumValValues) { 2928 SDValue Val = getValue(Op1); 2929 for (; i != LinearIndex + NumValValues; ++i) 2930 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2931 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2932 } 2933 // Copy remaining value(s) from the original aggregate. 2934 for (; i != NumAggValues; ++i) 2935 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2936 SDValue(Agg.getNode(), Agg.getResNo() + i); 2937 2938 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2939 DAG.getVTList(AggValueVTs), Values)); 2940 } 2941 2942 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2943 const Value *Op0 = I.getOperand(0); 2944 Type *AggTy = Op0->getType(); 2945 Type *ValTy = I.getType(); 2946 bool OutOfUndef = isa<UndefValue>(Op0); 2947 2948 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2949 2950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2951 SmallVector<EVT, 4> ValValueVTs; 2952 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2953 2954 unsigned NumValValues = ValValueVTs.size(); 2955 2956 // Ignore a extractvalue that produces an empty object 2957 if (!NumValValues) { 2958 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2959 return; 2960 } 2961 2962 SmallVector<SDValue, 4> Values(NumValValues); 2963 2964 SDValue Agg = getValue(Op0); 2965 // Copy out the selected value(s). 2966 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2967 Values[i - LinearIndex] = 2968 OutOfUndef ? 2969 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2970 SDValue(Agg.getNode(), Agg.getResNo() + i); 2971 2972 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2973 DAG.getVTList(ValValueVTs), Values)); 2974 } 2975 2976 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2977 Value *Op0 = I.getOperand(0); 2978 // Note that the pointer operand may be a vector of pointers. Take the scalar 2979 // element which holds a pointer. 2980 Type *Ty = Op0->getType()->getScalarType(); 2981 unsigned AS = Ty->getPointerAddressSpace(); 2982 SDValue N = getValue(Op0); 2983 SDLoc dl = getCurSDLoc(); 2984 2985 // Normalize Vector GEP - all scalar operands should be converted to the 2986 // splat vector. 2987 unsigned VectorWidth = I.getType()->isVectorTy() ? 2988 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2989 2990 if (VectorWidth && !N.getValueType().isVector()) { 2991 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2992 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2993 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2994 } 2995 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2996 OI != E; ++OI) { 2997 const Value *Idx = *OI; 2998 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2999 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3000 if (Field) { 3001 // N = N + Offset 3002 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3003 3004 // In an inbouds GEP with an offset that is nonnegative even when 3005 // interpreted as signed, assume there is no unsigned overflow. 3006 SDNodeFlags Flags; 3007 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3008 Flags.setNoUnsignedWrap(true); 3009 3010 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3011 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3012 } 3013 3014 Ty = StTy->getElementType(Field); 3015 } else { 3016 Ty = cast<SequentialType>(Ty)->getElementType(); 3017 MVT PtrTy = 3018 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3019 unsigned PtrSize = PtrTy.getSizeInBits(); 3020 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3021 3022 // If this is a scalar constant or a splat vector of constants, 3023 // handle it quickly. 3024 const auto *CI = dyn_cast<ConstantInt>(Idx); 3025 if (!CI && isa<ConstantDataVector>(Idx) && 3026 cast<ConstantDataVector>(Idx)->getSplatValue()) 3027 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3028 3029 if (CI) { 3030 if (CI->isZero()) 3031 continue; 3032 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3033 SDValue OffsVal = VectorWidth ? 3034 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3035 DAG.getConstant(Offs, dl, PtrTy); 3036 3037 // In an inbouds GEP with an offset that is nonnegative even when 3038 // interpreted as signed, assume there is no unsigned overflow. 3039 SDNodeFlags Flags; 3040 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3041 Flags.setNoUnsignedWrap(true); 3042 3043 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3044 continue; 3045 } 3046 3047 // N = N + Idx * ElementSize; 3048 SDValue IdxN = getValue(Idx); 3049 3050 if (!IdxN.getValueType().isVector() && VectorWidth) { 3051 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3052 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3053 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3054 } 3055 // If the index is smaller or larger than intptr_t, truncate or extend 3056 // it. 3057 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3058 3059 // If this is a multiply by a power of two, turn it into a shl 3060 // immediately. This is a very common case. 3061 if (ElementSize != 1) { 3062 if (ElementSize.isPowerOf2()) { 3063 unsigned Amt = ElementSize.logBase2(); 3064 IdxN = DAG.getNode(ISD::SHL, dl, 3065 N.getValueType(), IdxN, 3066 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3067 } else { 3068 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3069 IdxN = DAG.getNode(ISD::MUL, dl, 3070 N.getValueType(), IdxN, Scale); 3071 } 3072 } 3073 3074 N = DAG.getNode(ISD::ADD, dl, 3075 N.getValueType(), N, IdxN); 3076 } 3077 } 3078 3079 setValue(&I, N); 3080 } 3081 3082 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3083 // If this is a fixed sized alloca in the entry block of the function, 3084 // allocate it statically on the stack. 3085 if (FuncInfo.StaticAllocaMap.count(&I)) 3086 return; // getValue will auto-populate this. 3087 3088 SDLoc dl = getCurSDLoc(); 3089 Type *Ty = I.getAllocatedType(); 3090 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3091 auto &DL = DAG.getDataLayout(); 3092 uint64_t TySize = DL.getTypeAllocSize(Ty); 3093 unsigned Align = 3094 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3095 3096 SDValue AllocSize = getValue(I.getArraySize()); 3097 3098 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3099 if (AllocSize.getValueType() != IntPtr) 3100 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3101 3102 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3103 AllocSize, 3104 DAG.getConstant(TySize, dl, IntPtr)); 3105 3106 // Handle alignment. If the requested alignment is less than or equal to 3107 // the stack alignment, ignore it. If the size is greater than or equal to 3108 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3109 unsigned StackAlign = 3110 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3111 if (Align <= StackAlign) 3112 Align = 0; 3113 3114 // Round the size of the allocation up to the stack alignment size 3115 // by add SA-1 to the size. This doesn't overflow because we're computing 3116 // an address inside an alloca. 3117 SDNodeFlags Flags; 3118 Flags.setNoUnsignedWrap(true); 3119 AllocSize = DAG.getNode(ISD::ADD, dl, 3120 AllocSize.getValueType(), AllocSize, 3121 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3122 3123 // Mask out the low bits for alignment purposes. 3124 AllocSize = DAG.getNode(ISD::AND, dl, 3125 AllocSize.getValueType(), AllocSize, 3126 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3127 dl)); 3128 3129 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3130 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3131 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3132 setValue(&I, DSA); 3133 DAG.setRoot(DSA.getValue(1)); 3134 3135 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3136 } 3137 3138 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3139 if (I.isAtomic()) 3140 return visitAtomicLoad(I); 3141 3142 const Value *SV = I.getOperand(0); 3143 SDValue Ptr = getValue(SV); 3144 3145 Type *Ty = I.getType(); 3146 3147 bool isVolatile = I.isVolatile(); 3148 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3149 3150 // The IR notion of invariant_load only guarantees that all *non-faulting* 3151 // invariant loads result in the same value. The MI notion of invariant load 3152 // guarantees that the load can be legally moved to any location within its 3153 // containing function. The MI notion of invariant_load is stronger than the 3154 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3155 // with a guarantee that the location being loaded from is dereferenceable 3156 // throughout the function's lifetime. 3157 3158 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3159 isDereferenceablePointer(SV, DAG.getDataLayout()); 3160 unsigned Alignment = I.getAlignment(); 3161 3162 AAMDNodes AAInfo; 3163 I.getAAMetadata(AAInfo); 3164 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3165 3166 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3167 SmallVector<EVT, 4> ValueVTs; 3168 SmallVector<uint64_t, 4> Offsets; 3169 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3170 unsigned NumValues = ValueVTs.size(); 3171 if (NumValues == 0) 3172 return; 3173 3174 SDValue Root; 3175 bool ConstantMemory = false; 3176 if (isVolatile || NumValues > MaxParallelChains) 3177 // Serialize volatile loads with other side effects. 3178 Root = getRoot(); 3179 else if (AA->pointsToConstantMemory(MemoryLocation( 3180 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3181 // Do not serialize (non-volatile) loads of constant memory with anything. 3182 Root = DAG.getEntryNode(); 3183 ConstantMemory = true; 3184 } else { 3185 // Do not serialize non-volatile loads against each other. 3186 Root = DAG.getRoot(); 3187 } 3188 3189 SDLoc dl = getCurSDLoc(); 3190 3191 if (isVolatile) 3192 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3193 3194 // An aggregate load cannot wrap around the address space, so offsets to its 3195 // parts don't wrap either. 3196 SDNodeFlags Flags; 3197 Flags.setNoUnsignedWrap(true); 3198 3199 SmallVector<SDValue, 4> Values(NumValues); 3200 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3201 EVT PtrVT = Ptr.getValueType(); 3202 unsigned ChainI = 0; 3203 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3204 // Serializing loads here may result in excessive register pressure, and 3205 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3206 // could recover a bit by hoisting nodes upward in the chain by recognizing 3207 // they are side-effect free or do not alias. The optimizer should really 3208 // avoid this case by converting large object/array copies to llvm.memcpy 3209 // (MaxParallelChains should always remain as failsafe). 3210 if (ChainI == MaxParallelChains) { 3211 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3212 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3213 makeArrayRef(Chains.data(), ChainI)); 3214 Root = Chain; 3215 ChainI = 0; 3216 } 3217 SDValue A = DAG.getNode(ISD::ADD, dl, 3218 PtrVT, Ptr, 3219 DAG.getConstant(Offsets[i], dl, PtrVT), 3220 &Flags); 3221 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3222 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3223 isNonTemporal, isInvariant, Alignment, AAInfo, 3224 Ranges); 3225 3226 Values[i] = L; 3227 Chains[ChainI] = L.getValue(1); 3228 } 3229 3230 if (!ConstantMemory) { 3231 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3232 makeArrayRef(Chains.data(), ChainI)); 3233 if (isVolatile) 3234 DAG.setRoot(Chain); 3235 else 3236 PendingLoads.push_back(Chain); 3237 } 3238 3239 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3240 DAG.getVTList(ValueVTs), Values)); 3241 } 3242 3243 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3244 if (I.isAtomic()) 3245 return visitAtomicStore(I); 3246 3247 const Value *SrcV = I.getOperand(0); 3248 const Value *PtrV = I.getOperand(1); 3249 3250 SmallVector<EVT, 4> ValueVTs; 3251 SmallVector<uint64_t, 4> Offsets; 3252 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3253 SrcV->getType(), ValueVTs, &Offsets); 3254 unsigned NumValues = ValueVTs.size(); 3255 if (NumValues == 0) 3256 return; 3257 3258 // Get the lowered operands. Note that we do this after 3259 // checking if NumResults is zero, because with zero results 3260 // the operands won't have values in the map. 3261 SDValue Src = getValue(SrcV); 3262 SDValue Ptr = getValue(PtrV); 3263 3264 SDValue Root = getRoot(); 3265 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3266 EVT PtrVT = Ptr.getValueType(); 3267 bool isVolatile = I.isVolatile(); 3268 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3269 unsigned Alignment = I.getAlignment(); 3270 SDLoc dl = getCurSDLoc(); 3271 3272 AAMDNodes AAInfo; 3273 I.getAAMetadata(AAInfo); 3274 3275 // An aggregate load cannot wrap around the address space, so offsets to its 3276 // parts don't wrap either. 3277 SDNodeFlags Flags; 3278 Flags.setNoUnsignedWrap(true); 3279 3280 unsigned ChainI = 0; 3281 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3282 // See visitLoad comments. 3283 if (ChainI == MaxParallelChains) { 3284 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3285 makeArrayRef(Chains.data(), ChainI)); 3286 Root = Chain; 3287 ChainI = 0; 3288 } 3289 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3290 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3291 SDValue St = DAG.getStore(Root, dl, 3292 SDValue(Src.getNode(), Src.getResNo() + i), 3293 Add, MachinePointerInfo(PtrV, Offsets[i]), 3294 isVolatile, isNonTemporal, Alignment, AAInfo); 3295 Chains[ChainI] = St; 3296 } 3297 3298 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3299 makeArrayRef(Chains.data(), ChainI)); 3300 DAG.setRoot(StoreNode); 3301 } 3302 3303 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3304 SDLoc sdl = getCurSDLoc(); 3305 3306 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3307 Value *PtrOperand = I.getArgOperand(1); 3308 SDValue Ptr = getValue(PtrOperand); 3309 SDValue Src0 = getValue(I.getArgOperand(0)); 3310 SDValue Mask = getValue(I.getArgOperand(3)); 3311 EVT VT = Src0.getValueType(); 3312 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3313 if (!Alignment) 3314 Alignment = DAG.getEVTAlignment(VT); 3315 3316 AAMDNodes AAInfo; 3317 I.getAAMetadata(AAInfo); 3318 3319 MachineMemOperand *MMO = 3320 DAG.getMachineFunction(). 3321 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3322 MachineMemOperand::MOStore, VT.getStoreSize(), 3323 Alignment, AAInfo); 3324 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3325 MMO, false); 3326 DAG.setRoot(StoreNode); 3327 setValue(&I, StoreNode); 3328 } 3329 3330 // Get a uniform base for the Gather/Scatter intrinsic. 3331 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3332 // We try to represent it as a base pointer + vector of indices. 3333 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3334 // The first operand of the GEP may be a single pointer or a vector of pointers 3335 // Example: 3336 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3337 // or 3338 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3339 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3340 // 3341 // When the first GEP operand is a single pointer - it is the uniform base we 3342 // are looking for. If first operand of the GEP is a splat vector - we 3343 // extract the spalt value and use it as a uniform base. 3344 // In all other cases the function returns 'false'. 3345 // 3346 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3347 SelectionDAGBuilder* SDB) { 3348 3349 SelectionDAG& DAG = SDB->DAG; 3350 LLVMContext &Context = *DAG.getContext(); 3351 3352 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3353 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3354 if (!GEP || GEP->getNumOperands() > 2) 3355 return false; 3356 3357 const Value *GEPPtr = GEP->getPointerOperand(); 3358 if (!GEPPtr->getType()->isVectorTy()) 3359 Ptr = GEPPtr; 3360 else if (!(Ptr = getSplatValue(GEPPtr))) 3361 return false; 3362 3363 Value *IndexVal = GEP->getOperand(1); 3364 3365 // The operands of the GEP may be defined in another basic block. 3366 // In this case we'll not find nodes for the operands. 3367 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3368 return false; 3369 3370 Base = SDB->getValue(Ptr); 3371 Index = SDB->getValue(IndexVal); 3372 3373 // Suppress sign extension. 3374 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3375 if (SDB->findValue(Sext->getOperand(0))) { 3376 IndexVal = Sext->getOperand(0); 3377 Index = SDB->getValue(IndexVal); 3378 } 3379 } 3380 if (!Index.getValueType().isVector()) { 3381 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3382 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3383 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3384 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3385 } 3386 return true; 3387 } 3388 3389 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3390 SDLoc sdl = getCurSDLoc(); 3391 3392 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3393 const Value *Ptr = I.getArgOperand(1); 3394 SDValue Src0 = getValue(I.getArgOperand(0)); 3395 SDValue Mask = getValue(I.getArgOperand(3)); 3396 EVT VT = Src0.getValueType(); 3397 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3398 if (!Alignment) 3399 Alignment = DAG.getEVTAlignment(VT); 3400 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3401 3402 AAMDNodes AAInfo; 3403 I.getAAMetadata(AAInfo); 3404 3405 SDValue Base; 3406 SDValue Index; 3407 const Value *BasePtr = Ptr; 3408 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3409 3410 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3411 MachineMemOperand *MMO = DAG.getMachineFunction(). 3412 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3413 MachineMemOperand::MOStore, VT.getStoreSize(), 3414 Alignment, AAInfo); 3415 if (!UniformBase) { 3416 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3417 Index = getValue(Ptr); 3418 } 3419 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3420 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3421 Ops, MMO); 3422 DAG.setRoot(Scatter); 3423 setValue(&I, Scatter); 3424 } 3425 3426 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3427 SDLoc sdl = getCurSDLoc(); 3428 3429 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3430 Value *PtrOperand = I.getArgOperand(0); 3431 SDValue Ptr = getValue(PtrOperand); 3432 SDValue Src0 = getValue(I.getArgOperand(3)); 3433 SDValue Mask = getValue(I.getArgOperand(2)); 3434 3435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3436 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3437 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3438 if (!Alignment) 3439 Alignment = DAG.getEVTAlignment(VT); 3440 3441 AAMDNodes AAInfo; 3442 I.getAAMetadata(AAInfo); 3443 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3444 3445 SDValue InChain = DAG.getRoot(); 3446 if (AA->pointsToConstantMemory(MemoryLocation( 3447 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3448 AAInfo))) { 3449 // Do not serialize (non-volatile) loads of constant memory with anything. 3450 InChain = DAG.getEntryNode(); 3451 } 3452 3453 MachineMemOperand *MMO = 3454 DAG.getMachineFunction(). 3455 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3456 MachineMemOperand::MOLoad, VT.getStoreSize(), 3457 Alignment, AAInfo, Ranges); 3458 3459 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3460 ISD::NON_EXTLOAD); 3461 SDValue OutChain = Load.getValue(1); 3462 DAG.setRoot(OutChain); 3463 setValue(&I, Load); 3464 } 3465 3466 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3467 SDLoc sdl = getCurSDLoc(); 3468 3469 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3470 const Value *Ptr = I.getArgOperand(0); 3471 SDValue Src0 = getValue(I.getArgOperand(3)); 3472 SDValue Mask = getValue(I.getArgOperand(2)); 3473 3474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3475 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3476 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3477 if (!Alignment) 3478 Alignment = DAG.getEVTAlignment(VT); 3479 3480 AAMDNodes AAInfo; 3481 I.getAAMetadata(AAInfo); 3482 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3483 3484 SDValue Root = DAG.getRoot(); 3485 SDValue Base; 3486 SDValue Index; 3487 const Value *BasePtr = Ptr; 3488 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3489 bool ConstantMemory = false; 3490 if (UniformBase && 3491 AA->pointsToConstantMemory(MemoryLocation( 3492 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3493 AAInfo))) { 3494 // Do not serialize (non-volatile) loads of constant memory with anything. 3495 Root = DAG.getEntryNode(); 3496 ConstantMemory = true; 3497 } 3498 3499 MachineMemOperand *MMO = 3500 DAG.getMachineFunction(). 3501 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3502 MachineMemOperand::MOLoad, VT.getStoreSize(), 3503 Alignment, AAInfo, Ranges); 3504 3505 if (!UniformBase) { 3506 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3507 Index = getValue(Ptr); 3508 } 3509 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3510 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3511 Ops, MMO); 3512 3513 SDValue OutChain = Gather.getValue(1); 3514 if (!ConstantMemory) 3515 PendingLoads.push_back(OutChain); 3516 setValue(&I, Gather); 3517 } 3518 3519 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3520 SDLoc dl = getCurSDLoc(); 3521 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3522 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3523 SynchronizationScope Scope = I.getSynchScope(); 3524 3525 SDValue InChain = getRoot(); 3526 3527 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3528 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3529 SDValue L = DAG.getAtomicCmpSwap( 3530 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3531 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3532 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3533 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3534 3535 SDValue OutChain = L.getValue(2); 3536 3537 setValue(&I, L); 3538 DAG.setRoot(OutChain); 3539 } 3540 3541 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3542 SDLoc dl = getCurSDLoc(); 3543 ISD::NodeType NT; 3544 switch (I.getOperation()) { 3545 default: llvm_unreachable("Unknown atomicrmw operation"); 3546 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3547 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3548 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3549 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3550 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3551 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3552 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3553 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3554 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3555 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3556 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3557 } 3558 AtomicOrdering Order = I.getOrdering(); 3559 SynchronizationScope Scope = I.getSynchScope(); 3560 3561 SDValue InChain = getRoot(); 3562 3563 SDValue L = 3564 DAG.getAtomic(NT, dl, 3565 getValue(I.getValOperand()).getSimpleValueType(), 3566 InChain, 3567 getValue(I.getPointerOperand()), 3568 getValue(I.getValOperand()), 3569 I.getPointerOperand(), 3570 /* Alignment=*/ 0, Order, Scope); 3571 3572 SDValue OutChain = L.getValue(1); 3573 3574 setValue(&I, L); 3575 DAG.setRoot(OutChain); 3576 } 3577 3578 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3579 SDLoc dl = getCurSDLoc(); 3580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3581 SDValue Ops[3]; 3582 Ops[0] = getRoot(); 3583 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3584 TLI.getPointerTy(DAG.getDataLayout())); 3585 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3586 TLI.getPointerTy(DAG.getDataLayout())); 3587 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3588 } 3589 3590 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3591 SDLoc dl = getCurSDLoc(); 3592 AtomicOrdering Order = I.getOrdering(); 3593 SynchronizationScope Scope = I.getSynchScope(); 3594 3595 SDValue InChain = getRoot(); 3596 3597 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3598 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3599 3600 if (I.getAlignment() < VT.getSizeInBits() / 8) 3601 report_fatal_error("Cannot generate unaligned atomic load"); 3602 3603 MachineMemOperand *MMO = 3604 DAG.getMachineFunction(). 3605 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3606 MachineMemOperand::MOVolatile | 3607 MachineMemOperand::MOLoad, 3608 VT.getStoreSize(), 3609 I.getAlignment() ? I.getAlignment() : 3610 DAG.getEVTAlignment(VT)); 3611 3612 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3613 SDValue L = 3614 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3615 getValue(I.getPointerOperand()), MMO, 3616 Order, Scope); 3617 3618 SDValue OutChain = L.getValue(1); 3619 3620 setValue(&I, L); 3621 DAG.setRoot(OutChain); 3622 } 3623 3624 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3625 SDLoc dl = getCurSDLoc(); 3626 3627 AtomicOrdering Order = I.getOrdering(); 3628 SynchronizationScope Scope = I.getSynchScope(); 3629 3630 SDValue InChain = getRoot(); 3631 3632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3633 EVT VT = 3634 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3635 3636 if (I.getAlignment() < VT.getSizeInBits() / 8) 3637 report_fatal_error("Cannot generate unaligned atomic store"); 3638 3639 SDValue OutChain = 3640 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3641 InChain, 3642 getValue(I.getPointerOperand()), 3643 getValue(I.getValueOperand()), 3644 I.getPointerOperand(), I.getAlignment(), 3645 Order, Scope); 3646 3647 DAG.setRoot(OutChain); 3648 } 3649 3650 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3651 /// node. 3652 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3653 unsigned Intrinsic) { 3654 bool HasChain = !I.doesNotAccessMemory(); 3655 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3656 3657 // Build the operand list. 3658 SmallVector<SDValue, 8> Ops; 3659 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3660 if (OnlyLoad) { 3661 // We don't need to serialize loads against other loads. 3662 Ops.push_back(DAG.getRoot()); 3663 } else { 3664 Ops.push_back(getRoot()); 3665 } 3666 } 3667 3668 // Info is set by getTgtMemInstrinsic 3669 TargetLowering::IntrinsicInfo Info; 3670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3671 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3672 3673 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3674 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3675 Info.opc == ISD::INTRINSIC_W_CHAIN) 3676 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3677 TLI.getPointerTy(DAG.getDataLayout()))); 3678 3679 // Add all operands of the call to the operand list. 3680 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3681 SDValue Op = getValue(I.getArgOperand(i)); 3682 Ops.push_back(Op); 3683 } 3684 3685 SmallVector<EVT, 4> ValueVTs; 3686 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3687 3688 if (HasChain) 3689 ValueVTs.push_back(MVT::Other); 3690 3691 SDVTList VTs = DAG.getVTList(ValueVTs); 3692 3693 // Create the node. 3694 SDValue Result; 3695 if (IsTgtIntrinsic) { 3696 // This is target intrinsic that touches memory 3697 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3698 VTs, Ops, Info.memVT, 3699 MachinePointerInfo(Info.ptrVal, Info.offset), 3700 Info.align, Info.vol, 3701 Info.readMem, Info.writeMem, Info.size); 3702 } else if (!HasChain) { 3703 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3704 } else if (!I.getType()->isVoidTy()) { 3705 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3706 } else { 3707 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3708 } 3709 3710 if (HasChain) { 3711 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3712 if (OnlyLoad) 3713 PendingLoads.push_back(Chain); 3714 else 3715 DAG.setRoot(Chain); 3716 } 3717 3718 if (!I.getType()->isVoidTy()) { 3719 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3720 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3721 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3722 } 3723 3724 setValue(&I, Result); 3725 } 3726 } 3727 3728 /// GetSignificand - Get the significand and build it into a floating-point 3729 /// number with exponent of 1: 3730 /// 3731 /// Op = (Op & 0x007fffff) | 0x3f800000; 3732 /// 3733 /// where Op is the hexadecimal representation of floating point value. 3734 static SDValue 3735 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3736 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3737 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3738 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3739 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3740 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3741 } 3742 3743 /// GetExponent - Get the exponent: 3744 /// 3745 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3746 /// 3747 /// where Op is the hexadecimal representation of floating point value. 3748 static SDValue 3749 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3750 SDLoc dl) { 3751 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3752 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3753 SDValue t1 = DAG.getNode( 3754 ISD::SRL, dl, MVT::i32, t0, 3755 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3756 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3757 DAG.getConstant(127, dl, MVT::i32)); 3758 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3759 } 3760 3761 /// getF32Constant - Get 32-bit floating point constant. 3762 static SDValue 3763 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3764 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3765 MVT::f32); 3766 } 3767 3768 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3769 SelectionDAG &DAG) { 3770 // TODO: What fast-math-flags should be set on the floating-point nodes? 3771 3772 // IntegerPartOfX = ((int32_t)(t0); 3773 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3774 3775 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3776 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3777 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3778 3779 // IntegerPartOfX <<= 23; 3780 IntegerPartOfX = DAG.getNode( 3781 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3782 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3783 DAG.getDataLayout()))); 3784 3785 SDValue TwoToFractionalPartOfX; 3786 if (LimitFloatPrecision <= 6) { 3787 // For floating-point precision of 6: 3788 // 3789 // TwoToFractionalPartOfX = 3790 // 0.997535578f + 3791 // (0.735607626f + 0.252464424f * x) * x; 3792 // 3793 // error 0.0144103317, which is 6 bits 3794 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3795 getF32Constant(DAG, 0x3e814304, dl)); 3796 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3797 getF32Constant(DAG, 0x3f3c50c8, dl)); 3798 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3799 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3800 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3801 } else if (LimitFloatPrecision <= 12) { 3802 // For floating-point precision of 12: 3803 // 3804 // TwoToFractionalPartOfX = 3805 // 0.999892986f + 3806 // (0.696457318f + 3807 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3808 // 3809 // error 0.000107046256, which is 13 to 14 bits 3810 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3811 getF32Constant(DAG, 0x3da235e3, dl)); 3812 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3813 getF32Constant(DAG, 0x3e65b8f3, dl)); 3814 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3815 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3816 getF32Constant(DAG, 0x3f324b07, dl)); 3817 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3818 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3819 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3820 } else { // LimitFloatPrecision <= 18 3821 // For floating-point precision of 18: 3822 // 3823 // TwoToFractionalPartOfX = 3824 // 0.999999982f + 3825 // (0.693148872f + 3826 // (0.240227044f + 3827 // (0.554906021e-1f + 3828 // (0.961591928e-2f + 3829 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3830 // error 2.47208000*10^(-7), which is better than 18 bits 3831 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3832 getF32Constant(DAG, 0x3924b03e, dl)); 3833 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3834 getF32Constant(DAG, 0x3ab24b87, dl)); 3835 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3836 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3837 getF32Constant(DAG, 0x3c1d8c17, dl)); 3838 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3839 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3840 getF32Constant(DAG, 0x3d634a1d, dl)); 3841 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3842 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3843 getF32Constant(DAG, 0x3e75fe14, dl)); 3844 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3845 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3846 getF32Constant(DAG, 0x3f317234, dl)); 3847 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3848 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3849 getF32Constant(DAG, 0x3f800000, dl)); 3850 } 3851 3852 // Add the exponent into the result in integer domain. 3853 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3854 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3855 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3856 } 3857 3858 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3859 /// limited-precision mode. 3860 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3861 const TargetLowering &TLI) { 3862 if (Op.getValueType() == MVT::f32 && 3863 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3864 3865 // Put the exponent in the right bit position for later addition to the 3866 // final result: 3867 // 3868 // #define LOG2OFe 1.4426950f 3869 // t0 = Op * LOG2OFe 3870 3871 // TODO: What fast-math-flags should be set here? 3872 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3873 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3874 return getLimitedPrecisionExp2(t0, dl, DAG); 3875 } 3876 3877 // No special expansion. 3878 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3879 } 3880 3881 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3882 /// limited-precision mode. 3883 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3884 const TargetLowering &TLI) { 3885 3886 // TODO: What fast-math-flags should be set on the floating-point nodes? 3887 3888 if (Op.getValueType() == MVT::f32 && 3889 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3890 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3891 3892 // Scale the exponent by log(2) [0.69314718f]. 3893 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3894 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3895 getF32Constant(DAG, 0x3f317218, dl)); 3896 3897 // Get the significand and build it into a floating-point number with 3898 // exponent of 1. 3899 SDValue X = GetSignificand(DAG, Op1, dl); 3900 3901 SDValue LogOfMantissa; 3902 if (LimitFloatPrecision <= 6) { 3903 // For floating-point precision of 6: 3904 // 3905 // LogofMantissa = 3906 // -1.1609546f + 3907 // (1.4034025f - 0.23903021f * x) * x; 3908 // 3909 // error 0.0034276066, which is better than 8 bits 3910 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3911 getF32Constant(DAG, 0xbe74c456, dl)); 3912 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3913 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3914 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3915 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3916 getF32Constant(DAG, 0x3f949a29, dl)); 3917 } else if (LimitFloatPrecision <= 12) { 3918 // For floating-point precision of 12: 3919 // 3920 // LogOfMantissa = 3921 // -1.7417939f + 3922 // (2.8212026f + 3923 // (-1.4699568f + 3924 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3925 // 3926 // error 0.000061011436, which is 14 bits 3927 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3928 getF32Constant(DAG, 0xbd67b6d6, dl)); 3929 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3930 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3932 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3933 getF32Constant(DAG, 0x3fbc278b, dl)); 3934 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3935 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3936 getF32Constant(DAG, 0x40348e95, dl)); 3937 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3938 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3939 getF32Constant(DAG, 0x3fdef31a, dl)); 3940 } else { // LimitFloatPrecision <= 18 3941 // For floating-point precision of 18: 3942 // 3943 // LogOfMantissa = 3944 // -2.1072184f + 3945 // (4.2372794f + 3946 // (-3.7029485f + 3947 // (2.2781945f + 3948 // (-0.87823314f + 3949 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3950 // 3951 // error 0.0000023660568, which is better than 18 bits 3952 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3953 getF32Constant(DAG, 0xbc91e5ac, dl)); 3954 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3955 getF32Constant(DAG, 0x3e4350aa, dl)); 3956 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3957 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3958 getF32Constant(DAG, 0x3f60d3e3, dl)); 3959 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3960 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3961 getF32Constant(DAG, 0x4011cdf0, dl)); 3962 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3963 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3964 getF32Constant(DAG, 0x406cfd1c, dl)); 3965 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3966 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3967 getF32Constant(DAG, 0x408797cb, dl)); 3968 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3969 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3970 getF32Constant(DAG, 0x4006dcab, dl)); 3971 } 3972 3973 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3974 } 3975 3976 // No special expansion. 3977 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3978 } 3979 3980 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3981 /// limited-precision mode. 3982 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3983 const TargetLowering &TLI) { 3984 3985 // TODO: What fast-math-flags should be set on the floating-point nodes? 3986 3987 if (Op.getValueType() == MVT::f32 && 3988 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3989 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3990 3991 // Get the exponent. 3992 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3993 3994 // Get the significand and build it into a floating-point number with 3995 // exponent of 1. 3996 SDValue X = GetSignificand(DAG, Op1, dl); 3997 3998 // Different possible minimax approximations of significand in 3999 // floating-point for various degrees of accuracy over [1,2]. 4000 SDValue Log2ofMantissa; 4001 if (LimitFloatPrecision <= 6) { 4002 // For floating-point precision of 6: 4003 // 4004 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4005 // 4006 // error 0.0049451742, which is more than 7 bits 4007 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4008 getF32Constant(DAG, 0xbeb08fe0, dl)); 4009 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4010 getF32Constant(DAG, 0x40019463, dl)); 4011 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4012 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4013 getF32Constant(DAG, 0x3fd6633d, dl)); 4014 } else if (LimitFloatPrecision <= 12) { 4015 // For floating-point precision of 12: 4016 // 4017 // Log2ofMantissa = 4018 // -2.51285454f + 4019 // (4.07009056f + 4020 // (-2.12067489f + 4021 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4022 // 4023 // error 0.0000876136000, which is better than 13 bits 4024 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4025 getF32Constant(DAG, 0xbda7262e, dl)); 4026 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4027 getF32Constant(DAG, 0x3f25280b, dl)); 4028 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4029 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4030 getF32Constant(DAG, 0x4007b923, dl)); 4031 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4032 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4033 getF32Constant(DAG, 0x40823e2f, dl)); 4034 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4035 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4036 getF32Constant(DAG, 0x4020d29c, dl)); 4037 } else { // LimitFloatPrecision <= 18 4038 // For floating-point precision of 18: 4039 // 4040 // Log2ofMantissa = 4041 // -3.0400495f + 4042 // (6.1129976f + 4043 // (-5.3420409f + 4044 // (3.2865683f + 4045 // (-1.2669343f + 4046 // (0.27515199f - 4047 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4048 // 4049 // error 0.0000018516, which is better than 18 bits 4050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4051 getF32Constant(DAG, 0xbcd2769e, dl)); 4052 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4053 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4055 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4056 getF32Constant(DAG, 0x3fa22ae7, dl)); 4057 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4058 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4059 getF32Constant(DAG, 0x40525723, dl)); 4060 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4061 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4062 getF32Constant(DAG, 0x40aaf200, dl)); 4063 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4064 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4065 getF32Constant(DAG, 0x40c39dad, dl)); 4066 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4067 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4068 getF32Constant(DAG, 0x4042902c, dl)); 4069 } 4070 4071 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4072 } 4073 4074 // No special expansion. 4075 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4076 } 4077 4078 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4079 /// limited-precision mode. 4080 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4081 const TargetLowering &TLI) { 4082 4083 // TODO: What fast-math-flags should be set on the floating-point nodes? 4084 4085 if (Op.getValueType() == MVT::f32 && 4086 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4087 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4088 4089 // Scale the exponent by log10(2) [0.30102999f]. 4090 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4091 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4092 getF32Constant(DAG, 0x3e9a209a, dl)); 4093 4094 // Get the significand and build it into a floating-point number with 4095 // exponent of 1. 4096 SDValue X = GetSignificand(DAG, Op1, dl); 4097 4098 SDValue Log10ofMantissa; 4099 if (LimitFloatPrecision <= 6) { 4100 // For floating-point precision of 6: 4101 // 4102 // Log10ofMantissa = 4103 // -0.50419619f + 4104 // (0.60948995f - 0.10380950f * x) * x; 4105 // 4106 // error 0.0014886165, which is 6 bits 4107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4108 getF32Constant(DAG, 0xbdd49a13, dl)); 4109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4110 getF32Constant(DAG, 0x3f1c0789, dl)); 4111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4112 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3f011300, dl)); 4114 } else if (LimitFloatPrecision <= 12) { 4115 // For floating-point precision of 12: 4116 // 4117 // Log10ofMantissa = 4118 // -0.64831180f + 4119 // (0.91751397f + 4120 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4121 // 4122 // error 0.00019228036, which is better than 12 bits 4123 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4124 getF32Constant(DAG, 0x3d431f31, dl)); 4125 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4126 getF32Constant(DAG, 0x3ea21fb2, dl)); 4127 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4128 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4129 getF32Constant(DAG, 0x3f6ae232, dl)); 4130 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4131 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4132 getF32Constant(DAG, 0x3f25f7c3, dl)); 4133 } else { // LimitFloatPrecision <= 18 4134 // For floating-point precision of 18: 4135 // 4136 // Log10ofMantissa = 4137 // -0.84299375f + 4138 // (1.5327582f + 4139 // (-1.0688956f + 4140 // (0.49102474f + 4141 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4142 // 4143 // error 0.0000037995730, which is better than 18 bits 4144 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4145 getF32Constant(DAG, 0x3c5d51ce, dl)); 4146 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4147 getF32Constant(DAG, 0x3e00685a, dl)); 4148 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4149 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4150 getF32Constant(DAG, 0x3efb6798, dl)); 4151 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4152 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4153 getF32Constant(DAG, 0x3f88d192, dl)); 4154 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4155 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4156 getF32Constant(DAG, 0x3fc4316c, dl)); 4157 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4158 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4159 getF32Constant(DAG, 0x3f57ce70, dl)); 4160 } 4161 4162 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4163 } 4164 4165 // No special expansion. 4166 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4167 } 4168 4169 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4170 /// limited-precision mode. 4171 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4172 const TargetLowering &TLI) { 4173 if (Op.getValueType() == MVT::f32 && 4174 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4175 return getLimitedPrecisionExp2(Op, dl, DAG); 4176 4177 // No special expansion. 4178 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4179 } 4180 4181 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4182 /// limited-precision mode with x == 10.0f. 4183 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4184 SelectionDAG &DAG, const TargetLowering &TLI) { 4185 bool IsExp10 = false; 4186 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4187 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4188 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4189 APFloat Ten(10.0f); 4190 IsExp10 = LHSC->isExactlyValue(Ten); 4191 } 4192 } 4193 4194 // TODO: What fast-math-flags should be set on the FMUL node? 4195 if (IsExp10) { 4196 // Put the exponent in the right bit position for later addition to the 4197 // final result: 4198 // 4199 // #define LOG2OF10 3.3219281f 4200 // t0 = Op * LOG2OF10; 4201 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4202 getF32Constant(DAG, 0x40549a78, dl)); 4203 return getLimitedPrecisionExp2(t0, dl, DAG); 4204 } 4205 4206 // No special expansion. 4207 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4208 } 4209 4210 4211 /// ExpandPowI - Expand a llvm.powi intrinsic. 4212 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4213 SelectionDAG &DAG) { 4214 // If RHS is a constant, we can expand this out to a multiplication tree, 4215 // otherwise we end up lowering to a call to __powidf2 (for example). When 4216 // optimizing for size, we only want to do this if the expansion would produce 4217 // a small number of multiplies, otherwise we do the full expansion. 4218 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4219 // Get the exponent as a positive value. 4220 unsigned Val = RHSC->getSExtValue(); 4221 if ((int)Val < 0) Val = -Val; 4222 4223 // powi(x, 0) -> 1.0 4224 if (Val == 0) 4225 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4226 4227 const Function *F = DAG.getMachineFunction().getFunction(); 4228 if (!F->optForSize() || 4229 // If optimizing for size, don't insert too many multiplies. 4230 // This inserts up to 5 multiplies. 4231 countPopulation(Val) + Log2_32(Val) < 7) { 4232 // We use the simple binary decomposition method to generate the multiply 4233 // sequence. There are more optimal ways to do this (for example, 4234 // powi(x,15) generates one more multiply than it should), but this has 4235 // the benefit of being both really simple and much better than a libcall. 4236 SDValue Res; // Logically starts equal to 1.0 4237 SDValue CurSquare = LHS; 4238 // TODO: Intrinsics should have fast-math-flags that propagate to these 4239 // nodes. 4240 while (Val) { 4241 if (Val & 1) { 4242 if (Res.getNode()) 4243 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4244 else 4245 Res = CurSquare; // 1.0*CurSquare. 4246 } 4247 4248 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4249 CurSquare, CurSquare); 4250 Val >>= 1; 4251 } 4252 4253 // If the original was negative, invert the result, producing 1/(x*x*x). 4254 if (RHSC->getSExtValue() < 0) 4255 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4256 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4257 return Res; 4258 } 4259 } 4260 4261 // Otherwise, expand to a libcall. 4262 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4263 } 4264 4265 // getUnderlyingArgReg - Find underlying register used for a truncated or 4266 // bitcasted argument. 4267 static unsigned getUnderlyingArgReg(const SDValue &N) { 4268 switch (N.getOpcode()) { 4269 case ISD::CopyFromReg: 4270 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4271 case ISD::BITCAST: 4272 case ISD::AssertZext: 4273 case ISD::AssertSext: 4274 case ISD::TRUNCATE: 4275 return getUnderlyingArgReg(N.getOperand(0)); 4276 default: 4277 return 0; 4278 } 4279 } 4280 4281 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4282 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4283 /// At the end of instruction selection, they will be inserted to the entry BB. 4284 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4285 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4286 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4287 const Argument *Arg = dyn_cast<Argument>(V); 4288 if (!Arg) 4289 return false; 4290 4291 MachineFunction &MF = DAG.getMachineFunction(); 4292 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4293 4294 // Ignore inlined function arguments here. 4295 // 4296 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4297 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4298 return false; 4299 4300 Optional<MachineOperand> Op; 4301 // Some arguments' frame index is recorded during argument lowering. 4302 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4303 Op = MachineOperand::CreateFI(FI); 4304 4305 if (!Op && N.getNode()) { 4306 unsigned Reg = getUnderlyingArgReg(N); 4307 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4308 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4309 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4310 if (PR) 4311 Reg = PR; 4312 } 4313 if (Reg) 4314 Op = MachineOperand::CreateReg(Reg, false); 4315 } 4316 4317 if (!Op) { 4318 // Check if ValueMap has reg number. 4319 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4320 if (VMI != FuncInfo.ValueMap.end()) 4321 Op = MachineOperand::CreateReg(VMI->second, false); 4322 } 4323 4324 if (!Op && N.getNode()) 4325 // Check if frame index is available. 4326 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4327 if (FrameIndexSDNode *FINode = 4328 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4329 Op = MachineOperand::CreateFI(FINode->getIndex()); 4330 4331 if (!Op) 4332 return false; 4333 4334 assert(Variable->isValidLocationForIntrinsic(DL) && 4335 "Expected inlined-at fields to agree"); 4336 if (Op->isReg()) 4337 FuncInfo.ArgDbgValues.push_back( 4338 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4339 Op->getReg(), Offset, Variable, Expr)); 4340 else 4341 FuncInfo.ArgDbgValues.push_back( 4342 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4343 .addOperand(*Op) 4344 .addImm(Offset) 4345 .addMetadata(Variable) 4346 .addMetadata(Expr)); 4347 4348 return true; 4349 } 4350 4351 // VisualStudio defines setjmp as _setjmp 4352 #if defined(_MSC_VER) && defined(setjmp) && \ 4353 !defined(setjmp_undefined_for_msvc) 4354 # pragma push_macro("setjmp") 4355 # undef setjmp 4356 # define setjmp_undefined_for_msvc 4357 #endif 4358 4359 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4360 /// we want to emit this as a call to a named external function, return the name 4361 /// otherwise lower it and return null. 4362 const char * 4363 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4365 SDLoc sdl = getCurSDLoc(); 4366 DebugLoc dl = getCurDebugLoc(); 4367 SDValue Res; 4368 4369 switch (Intrinsic) { 4370 default: 4371 // By default, turn this into a target intrinsic node. 4372 visitTargetIntrinsic(I, Intrinsic); 4373 return nullptr; 4374 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4375 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4376 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4377 case Intrinsic::returnaddress: 4378 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4379 TLI.getPointerTy(DAG.getDataLayout()), 4380 getValue(I.getArgOperand(0)))); 4381 return nullptr; 4382 case Intrinsic::frameaddress: 4383 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4384 TLI.getPointerTy(DAG.getDataLayout()), 4385 getValue(I.getArgOperand(0)))); 4386 return nullptr; 4387 case Intrinsic::read_register: { 4388 Value *Reg = I.getArgOperand(0); 4389 SDValue Chain = getRoot(); 4390 SDValue RegName = 4391 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4392 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4393 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4394 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4395 setValue(&I, Res); 4396 DAG.setRoot(Res.getValue(1)); 4397 return nullptr; 4398 } 4399 case Intrinsic::write_register: { 4400 Value *Reg = I.getArgOperand(0); 4401 Value *RegValue = I.getArgOperand(1); 4402 SDValue Chain = getRoot(); 4403 SDValue RegName = 4404 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4405 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4406 RegName, getValue(RegValue))); 4407 return nullptr; 4408 } 4409 case Intrinsic::setjmp: 4410 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4411 case Intrinsic::longjmp: 4412 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4413 case Intrinsic::memcpy: { 4414 SDValue Op1 = getValue(I.getArgOperand(0)); 4415 SDValue Op2 = getValue(I.getArgOperand(1)); 4416 SDValue Op3 = getValue(I.getArgOperand(2)); 4417 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4418 if (!Align) 4419 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4420 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4421 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4422 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4423 false, isTC, 4424 MachinePointerInfo(I.getArgOperand(0)), 4425 MachinePointerInfo(I.getArgOperand(1))); 4426 updateDAGForMaybeTailCall(MC); 4427 return nullptr; 4428 } 4429 case Intrinsic::memset: { 4430 SDValue Op1 = getValue(I.getArgOperand(0)); 4431 SDValue Op2 = getValue(I.getArgOperand(1)); 4432 SDValue Op3 = getValue(I.getArgOperand(2)); 4433 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4434 if (!Align) 4435 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4436 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4437 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4438 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4439 isTC, MachinePointerInfo(I.getArgOperand(0))); 4440 updateDAGForMaybeTailCall(MS); 4441 return nullptr; 4442 } 4443 case Intrinsic::memmove: { 4444 SDValue Op1 = getValue(I.getArgOperand(0)); 4445 SDValue Op2 = getValue(I.getArgOperand(1)); 4446 SDValue Op3 = getValue(I.getArgOperand(2)); 4447 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4448 if (!Align) 4449 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4450 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4451 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4452 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4453 isTC, MachinePointerInfo(I.getArgOperand(0)), 4454 MachinePointerInfo(I.getArgOperand(1))); 4455 updateDAGForMaybeTailCall(MM); 4456 return nullptr; 4457 } 4458 case Intrinsic::dbg_declare: { 4459 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4460 DILocalVariable *Variable = DI.getVariable(); 4461 DIExpression *Expression = DI.getExpression(); 4462 const Value *Address = DI.getAddress(); 4463 assert(Variable && "Missing variable"); 4464 if (!Address) { 4465 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4466 return nullptr; 4467 } 4468 4469 // Check if address has undef value. 4470 if (isa<UndefValue>(Address) || 4471 (Address->use_empty() && !isa<Argument>(Address))) { 4472 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4473 return nullptr; 4474 } 4475 4476 SDValue &N = NodeMap[Address]; 4477 if (!N.getNode() && isa<Argument>(Address)) 4478 // Check unused arguments map. 4479 N = UnusedArgNodeMap[Address]; 4480 SDDbgValue *SDV; 4481 if (N.getNode()) { 4482 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4483 Address = BCI->getOperand(0); 4484 // Parameters are handled specially. 4485 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4486 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4487 if (isParameter && FINode) { 4488 // Byval parameter. We have a frame index at this point. 4489 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4490 FINode->getIndex(), 0, dl, SDNodeOrder); 4491 } else if (isa<Argument>(Address)) { 4492 // Address is an argument, so try to emit its dbg value using 4493 // virtual register info from the FuncInfo.ValueMap. 4494 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4495 N); 4496 return nullptr; 4497 } else { 4498 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4499 true, 0, dl, SDNodeOrder); 4500 } 4501 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4502 } else { 4503 // If Address is an argument then try to emit its dbg value using 4504 // virtual register info from the FuncInfo.ValueMap. 4505 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4506 N)) { 4507 // If variable is pinned by a alloca in dominating bb then 4508 // use StaticAllocaMap. 4509 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4510 if (AI->getParent() != DI.getParent()) { 4511 DenseMap<const AllocaInst*, int>::iterator SI = 4512 FuncInfo.StaticAllocaMap.find(AI); 4513 if (SI != FuncInfo.StaticAllocaMap.end()) { 4514 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4515 0, dl, SDNodeOrder); 4516 DAG.AddDbgValue(SDV, nullptr, false); 4517 return nullptr; 4518 } 4519 } 4520 } 4521 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4522 } 4523 } 4524 return nullptr; 4525 } 4526 case Intrinsic::dbg_value: { 4527 const DbgValueInst &DI = cast<DbgValueInst>(I); 4528 assert(DI.getVariable() && "Missing variable"); 4529 4530 DILocalVariable *Variable = DI.getVariable(); 4531 DIExpression *Expression = DI.getExpression(); 4532 uint64_t Offset = DI.getOffset(); 4533 const Value *V = DI.getValue(); 4534 if (!V) 4535 return nullptr; 4536 4537 SDDbgValue *SDV; 4538 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4539 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4540 SDNodeOrder); 4541 DAG.AddDbgValue(SDV, nullptr, false); 4542 } else { 4543 // Do not use getValue() in here; we don't want to generate code at 4544 // this point if it hasn't been done yet. 4545 SDValue N = NodeMap[V]; 4546 if (!N.getNode() && isa<Argument>(V)) 4547 // Check unused arguments map. 4548 N = UnusedArgNodeMap[V]; 4549 if (N.getNode()) { 4550 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4551 false, N)) { 4552 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4553 false, Offset, dl, SDNodeOrder); 4554 DAG.AddDbgValue(SDV, N.getNode(), false); 4555 } 4556 } else if (!V->use_empty() ) { 4557 // Do not call getValue(V) yet, as we don't want to generate code. 4558 // Remember it for later. 4559 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4560 DanglingDebugInfoMap[V] = DDI; 4561 } else { 4562 // We may expand this to cover more cases. One case where we have no 4563 // data available is an unreferenced parameter. 4564 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4565 } 4566 } 4567 4568 // Build a debug info table entry. 4569 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4570 V = BCI->getOperand(0); 4571 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4572 // Don't handle byval struct arguments or VLAs, for example. 4573 if (!AI) { 4574 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4575 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4576 return nullptr; 4577 } 4578 DenseMap<const AllocaInst*, int>::iterator SI = 4579 FuncInfo.StaticAllocaMap.find(AI); 4580 if (SI == FuncInfo.StaticAllocaMap.end()) 4581 return nullptr; // VLAs. 4582 return nullptr; 4583 } 4584 4585 case Intrinsic::eh_typeid_for: { 4586 // Find the type id for the given typeinfo. 4587 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4588 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4589 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4590 setValue(&I, Res); 4591 return nullptr; 4592 } 4593 4594 case Intrinsic::eh_return_i32: 4595 case Intrinsic::eh_return_i64: 4596 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4597 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4598 MVT::Other, 4599 getControlRoot(), 4600 getValue(I.getArgOperand(0)), 4601 getValue(I.getArgOperand(1)))); 4602 return nullptr; 4603 case Intrinsic::eh_unwind_init: 4604 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4605 return nullptr; 4606 case Intrinsic::eh_dwarf_cfa: { 4607 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4608 TLI.getPointerTy(DAG.getDataLayout())); 4609 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4610 CfaArg.getValueType(), 4611 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4612 CfaArg.getValueType()), 4613 CfaArg); 4614 SDValue FA = DAG.getNode( 4615 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4616 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4617 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4618 FA, Offset)); 4619 return nullptr; 4620 } 4621 case Intrinsic::eh_sjlj_callsite: { 4622 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4623 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4624 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4625 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4626 4627 MMI.setCurrentCallSite(CI->getZExtValue()); 4628 return nullptr; 4629 } 4630 case Intrinsic::eh_sjlj_functioncontext: { 4631 // Get and store the index of the function context. 4632 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4633 AllocaInst *FnCtx = 4634 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4635 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4636 MFI->setFunctionContextIndex(FI); 4637 return nullptr; 4638 } 4639 case Intrinsic::eh_sjlj_setjmp: { 4640 SDValue Ops[2]; 4641 Ops[0] = getRoot(); 4642 Ops[1] = getValue(I.getArgOperand(0)); 4643 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4644 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4645 setValue(&I, Op.getValue(0)); 4646 DAG.setRoot(Op.getValue(1)); 4647 return nullptr; 4648 } 4649 case Intrinsic::eh_sjlj_longjmp: { 4650 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4651 getRoot(), getValue(I.getArgOperand(0)))); 4652 return nullptr; 4653 } 4654 case Intrinsic::eh_sjlj_setup_dispatch: { 4655 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4656 getRoot())); 4657 return nullptr; 4658 } 4659 4660 case Intrinsic::masked_gather: 4661 visitMaskedGather(I); 4662 return nullptr; 4663 case Intrinsic::masked_load: 4664 visitMaskedLoad(I); 4665 return nullptr; 4666 case Intrinsic::masked_scatter: 4667 visitMaskedScatter(I); 4668 return nullptr; 4669 case Intrinsic::masked_store: 4670 visitMaskedStore(I); 4671 return nullptr; 4672 case Intrinsic::x86_mmx_pslli_w: 4673 case Intrinsic::x86_mmx_pslli_d: 4674 case Intrinsic::x86_mmx_pslli_q: 4675 case Intrinsic::x86_mmx_psrli_w: 4676 case Intrinsic::x86_mmx_psrli_d: 4677 case Intrinsic::x86_mmx_psrli_q: 4678 case Intrinsic::x86_mmx_psrai_w: 4679 case Intrinsic::x86_mmx_psrai_d: { 4680 SDValue ShAmt = getValue(I.getArgOperand(1)); 4681 if (isa<ConstantSDNode>(ShAmt)) { 4682 visitTargetIntrinsic(I, Intrinsic); 4683 return nullptr; 4684 } 4685 unsigned NewIntrinsic = 0; 4686 EVT ShAmtVT = MVT::v2i32; 4687 switch (Intrinsic) { 4688 case Intrinsic::x86_mmx_pslli_w: 4689 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4690 break; 4691 case Intrinsic::x86_mmx_pslli_d: 4692 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4693 break; 4694 case Intrinsic::x86_mmx_pslli_q: 4695 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4696 break; 4697 case Intrinsic::x86_mmx_psrli_w: 4698 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4699 break; 4700 case Intrinsic::x86_mmx_psrli_d: 4701 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4702 break; 4703 case Intrinsic::x86_mmx_psrli_q: 4704 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4705 break; 4706 case Intrinsic::x86_mmx_psrai_w: 4707 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4708 break; 4709 case Intrinsic::x86_mmx_psrai_d: 4710 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4711 break; 4712 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4713 } 4714 4715 // The vector shift intrinsics with scalars uses 32b shift amounts but 4716 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4717 // to be zero. 4718 // We must do this early because v2i32 is not a legal type. 4719 SDValue ShOps[2]; 4720 ShOps[0] = ShAmt; 4721 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4722 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4723 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4724 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4725 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4726 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4727 getValue(I.getArgOperand(0)), ShAmt); 4728 setValue(&I, Res); 4729 return nullptr; 4730 } 4731 case Intrinsic::convertff: 4732 case Intrinsic::convertfsi: 4733 case Intrinsic::convertfui: 4734 case Intrinsic::convertsif: 4735 case Intrinsic::convertuif: 4736 case Intrinsic::convertss: 4737 case Intrinsic::convertsu: 4738 case Intrinsic::convertus: 4739 case Intrinsic::convertuu: { 4740 ISD::CvtCode Code = ISD::CVT_INVALID; 4741 switch (Intrinsic) { 4742 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4743 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4744 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4745 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4746 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4747 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4748 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4749 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4750 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4751 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4752 } 4753 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4754 const Value *Op1 = I.getArgOperand(0); 4755 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4756 DAG.getValueType(DestVT), 4757 DAG.getValueType(getValue(Op1).getValueType()), 4758 getValue(I.getArgOperand(1)), 4759 getValue(I.getArgOperand(2)), 4760 Code); 4761 setValue(&I, Res); 4762 return nullptr; 4763 } 4764 case Intrinsic::powi: 4765 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4766 getValue(I.getArgOperand(1)), DAG)); 4767 return nullptr; 4768 case Intrinsic::log: 4769 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4770 return nullptr; 4771 case Intrinsic::log2: 4772 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4773 return nullptr; 4774 case Intrinsic::log10: 4775 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4776 return nullptr; 4777 case Intrinsic::exp: 4778 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4779 return nullptr; 4780 case Intrinsic::exp2: 4781 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4782 return nullptr; 4783 case Intrinsic::pow: 4784 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4785 getValue(I.getArgOperand(1)), DAG, TLI)); 4786 return nullptr; 4787 case Intrinsic::sqrt: 4788 case Intrinsic::fabs: 4789 case Intrinsic::sin: 4790 case Intrinsic::cos: 4791 case Intrinsic::floor: 4792 case Intrinsic::ceil: 4793 case Intrinsic::trunc: 4794 case Intrinsic::rint: 4795 case Intrinsic::nearbyint: 4796 case Intrinsic::round: { 4797 unsigned Opcode; 4798 switch (Intrinsic) { 4799 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4800 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4801 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4802 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4803 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4804 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4805 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4806 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4807 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4808 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4809 case Intrinsic::round: Opcode = ISD::FROUND; break; 4810 } 4811 4812 setValue(&I, DAG.getNode(Opcode, sdl, 4813 getValue(I.getArgOperand(0)).getValueType(), 4814 getValue(I.getArgOperand(0)))); 4815 return nullptr; 4816 } 4817 case Intrinsic::minnum: 4818 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4819 getValue(I.getArgOperand(0)).getValueType(), 4820 getValue(I.getArgOperand(0)), 4821 getValue(I.getArgOperand(1)))); 4822 return nullptr; 4823 case Intrinsic::maxnum: 4824 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4825 getValue(I.getArgOperand(0)).getValueType(), 4826 getValue(I.getArgOperand(0)), 4827 getValue(I.getArgOperand(1)))); 4828 return nullptr; 4829 case Intrinsic::copysign: 4830 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4831 getValue(I.getArgOperand(0)).getValueType(), 4832 getValue(I.getArgOperand(0)), 4833 getValue(I.getArgOperand(1)))); 4834 return nullptr; 4835 case Intrinsic::fma: 4836 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4837 getValue(I.getArgOperand(0)).getValueType(), 4838 getValue(I.getArgOperand(0)), 4839 getValue(I.getArgOperand(1)), 4840 getValue(I.getArgOperand(2)))); 4841 return nullptr; 4842 case Intrinsic::fmuladd: { 4843 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4844 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4845 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4846 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4847 getValue(I.getArgOperand(0)).getValueType(), 4848 getValue(I.getArgOperand(0)), 4849 getValue(I.getArgOperand(1)), 4850 getValue(I.getArgOperand(2)))); 4851 } else { 4852 // TODO: Intrinsic calls should have fast-math-flags. 4853 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4854 getValue(I.getArgOperand(0)).getValueType(), 4855 getValue(I.getArgOperand(0)), 4856 getValue(I.getArgOperand(1))); 4857 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4858 getValue(I.getArgOperand(0)).getValueType(), 4859 Mul, 4860 getValue(I.getArgOperand(2))); 4861 setValue(&I, Add); 4862 } 4863 return nullptr; 4864 } 4865 case Intrinsic::convert_to_fp16: 4866 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4867 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4868 getValue(I.getArgOperand(0)), 4869 DAG.getTargetConstant(0, sdl, 4870 MVT::i32)))); 4871 return nullptr; 4872 case Intrinsic::convert_from_fp16: 4873 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4874 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4875 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4876 getValue(I.getArgOperand(0))))); 4877 return nullptr; 4878 case Intrinsic::pcmarker: { 4879 SDValue Tmp = getValue(I.getArgOperand(0)); 4880 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4881 return nullptr; 4882 } 4883 case Intrinsic::readcyclecounter: { 4884 SDValue Op = getRoot(); 4885 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4886 DAG.getVTList(MVT::i64, MVT::Other), Op); 4887 setValue(&I, Res); 4888 DAG.setRoot(Res.getValue(1)); 4889 return nullptr; 4890 } 4891 case Intrinsic::bitreverse: 4892 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4893 getValue(I.getArgOperand(0)).getValueType(), 4894 getValue(I.getArgOperand(0)))); 4895 return nullptr; 4896 case Intrinsic::bswap: 4897 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4898 getValue(I.getArgOperand(0)).getValueType(), 4899 getValue(I.getArgOperand(0)))); 4900 return nullptr; 4901 case Intrinsic::cttz: { 4902 SDValue Arg = getValue(I.getArgOperand(0)); 4903 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4904 EVT Ty = Arg.getValueType(); 4905 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4906 sdl, Ty, Arg)); 4907 return nullptr; 4908 } 4909 case Intrinsic::ctlz: { 4910 SDValue Arg = getValue(I.getArgOperand(0)); 4911 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4912 EVT Ty = Arg.getValueType(); 4913 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4914 sdl, Ty, Arg)); 4915 return nullptr; 4916 } 4917 case Intrinsic::ctpop: { 4918 SDValue Arg = getValue(I.getArgOperand(0)); 4919 EVT Ty = Arg.getValueType(); 4920 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4921 return nullptr; 4922 } 4923 case Intrinsic::stacksave: { 4924 SDValue Op = getRoot(); 4925 Res = DAG.getNode( 4926 ISD::STACKSAVE, sdl, 4927 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4928 setValue(&I, Res); 4929 DAG.setRoot(Res.getValue(1)); 4930 return nullptr; 4931 } 4932 case Intrinsic::stackrestore: { 4933 Res = getValue(I.getArgOperand(0)); 4934 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4935 return nullptr; 4936 } 4937 case Intrinsic::get_dynamic_area_offset: { 4938 SDValue Op = getRoot(); 4939 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4940 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4941 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4942 // target. 4943 if (PtrTy != ResTy) 4944 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4945 " intrinsic!"); 4946 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4947 Op); 4948 DAG.setRoot(Op); 4949 setValue(&I, Res); 4950 return nullptr; 4951 } 4952 case Intrinsic::stackprotector: { 4953 // Emit code into the DAG to store the stack guard onto the stack. 4954 MachineFunction &MF = DAG.getMachineFunction(); 4955 MachineFrameInfo *MFI = MF.getFrameInfo(); 4956 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4957 SDValue Src, Chain = getRoot(); 4958 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4959 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4960 4961 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4962 // global variable __stack_chk_guard. 4963 if (!GV) 4964 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4965 if (BC->getOpcode() == Instruction::BitCast) 4966 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4967 4968 if (GV && TLI.useLoadStackGuardNode()) { 4969 // Emit a LOAD_STACK_GUARD node. 4970 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4971 sdl, PtrTy, Chain); 4972 MachinePointerInfo MPInfo(GV); 4973 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4974 unsigned Flags = MachineMemOperand::MOLoad | 4975 MachineMemOperand::MOInvariant; 4976 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4977 PtrTy.getSizeInBits() / 8, 4978 DAG.getEVTAlignment(PtrTy)); 4979 Node->setMemRefs(MemRefs, MemRefs + 1); 4980 4981 // Copy the guard value to a virtual register so that it can be 4982 // retrieved in the epilogue. 4983 Src = SDValue(Node, 0); 4984 const TargetRegisterClass *RC = 4985 TLI.getRegClassFor(Src.getSimpleValueType()); 4986 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4987 4988 SPDescriptor.setGuardReg(Reg); 4989 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4990 } else { 4991 Src = getValue(I.getArgOperand(0)); // The guard's value. 4992 } 4993 4994 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4995 4996 int FI = FuncInfo.StaticAllocaMap[Slot]; 4997 MFI->setStackProtectorIndex(FI); 4998 4999 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5000 5001 // Store the stack protector onto the stack. 5002 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5003 DAG.getMachineFunction(), FI), 5004 true, false, 0); 5005 setValue(&I, Res); 5006 DAG.setRoot(Res); 5007 return nullptr; 5008 } 5009 case Intrinsic::objectsize: { 5010 // If we don't know by now, we're never going to know. 5011 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5012 5013 assert(CI && "Non-constant type in __builtin_object_size?"); 5014 5015 SDValue Arg = getValue(I.getCalledValue()); 5016 EVT Ty = Arg.getValueType(); 5017 5018 if (CI->isZero()) 5019 Res = DAG.getConstant(-1ULL, sdl, Ty); 5020 else 5021 Res = DAG.getConstant(0, sdl, Ty); 5022 5023 setValue(&I, Res); 5024 return nullptr; 5025 } 5026 case Intrinsic::annotation: 5027 case Intrinsic::ptr_annotation: 5028 // Drop the intrinsic, but forward the value 5029 setValue(&I, getValue(I.getOperand(0))); 5030 return nullptr; 5031 case Intrinsic::assume: 5032 case Intrinsic::var_annotation: 5033 // Discard annotate attributes and assumptions 5034 return nullptr; 5035 5036 case Intrinsic::init_trampoline: { 5037 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5038 5039 SDValue Ops[6]; 5040 Ops[0] = getRoot(); 5041 Ops[1] = getValue(I.getArgOperand(0)); 5042 Ops[2] = getValue(I.getArgOperand(1)); 5043 Ops[3] = getValue(I.getArgOperand(2)); 5044 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5045 Ops[5] = DAG.getSrcValue(F); 5046 5047 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5048 5049 DAG.setRoot(Res); 5050 return nullptr; 5051 } 5052 case Intrinsic::adjust_trampoline: { 5053 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5054 TLI.getPointerTy(DAG.getDataLayout()), 5055 getValue(I.getArgOperand(0)))); 5056 return nullptr; 5057 } 5058 case Intrinsic::gcroot: 5059 if (GFI) { 5060 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5061 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5062 5063 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5064 GFI->addStackRoot(FI->getIndex(), TypeMap); 5065 } 5066 return nullptr; 5067 case Intrinsic::gcread: 5068 case Intrinsic::gcwrite: 5069 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5070 case Intrinsic::flt_rounds: 5071 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5072 return nullptr; 5073 5074 case Intrinsic::expect: { 5075 // Just replace __builtin_expect(exp, c) with EXP. 5076 setValue(&I, getValue(I.getArgOperand(0))); 5077 return nullptr; 5078 } 5079 5080 case Intrinsic::debugtrap: 5081 case Intrinsic::trap: { 5082 StringRef TrapFuncName = 5083 I.getAttributes() 5084 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5085 .getValueAsString(); 5086 if (TrapFuncName.empty()) { 5087 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5088 ISD::TRAP : ISD::DEBUGTRAP; 5089 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5090 return nullptr; 5091 } 5092 TargetLowering::ArgListTy Args; 5093 5094 TargetLowering::CallLoweringInfo CLI(DAG); 5095 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5096 CallingConv::C, I.getType(), 5097 DAG.getExternalSymbol(TrapFuncName.data(), 5098 TLI.getPointerTy(DAG.getDataLayout())), 5099 std::move(Args), 0); 5100 5101 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5102 DAG.setRoot(Result.second); 5103 return nullptr; 5104 } 5105 5106 case Intrinsic::uadd_with_overflow: 5107 case Intrinsic::sadd_with_overflow: 5108 case Intrinsic::usub_with_overflow: 5109 case Intrinsic::ssub_with_overflow: 5110 case Intrinsic::umul_with_overflow: 5111 case Intrinsic::smul_with_overflow: { 5112 ISD::NodeType Op; 5113 switch (Intrinsic) { 5114 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5115 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5116 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5117 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5118 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5119 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5120 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5121 } 5122 SDValue Op1 = getValue(I.getArgOperand(0)); 5123 SDValue Op2 = getValue(I.getArgOperand(1)); 5124 5125 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5126 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5127 return nullptr; 5128 } 5129 case Intrinsic::prefetch: { 5130 SDValue Ops[5]; 5131 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5132 Ops[0] = getRoot(); 5133 Ops[1] = getValue(I.getArgOperand(0)); 5134 Ops[2] = getValue(I.getArgOperand(1)); 5135 Ops[3] = getValue(I.getArgOperand(2)); 5136 Ops[4] = getValue(I.getArgOperand(3)); 5137 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5138 DAG.getVTList(MVT::Other), Ops, 5139 EVT::getIntegerVT(*Context, 8), 5140 MachinePointerInfo(I.getArgOperand(0)), 5141 0, /* align */ 5142 false, /* volatile */ 5143 rw==0, /* read */ 5144 rw==1)); /* write */ 5145 return nullptr; 5146 } 5147 case Intrinsic::lifetime_start: 5148 case Intrinsic::lifetime_end: { 5149 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5150 // Stack coloring is not enabled in O0, discard region information. 5151 if (TM.getOptLevel() == CodeGenOpt::None) 5152 return nullptr; 5153 5154 SmallVector<Value *, 4> Allocas; 5155 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5156 5157 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5158 E = Allocas.end(); Object != E; ++Object) { 5159 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5160 5161 // Could not find an Alloca. 5162 if (!LifetimeObject) 5163 continue; 5164 5165 // First check that the Alloca is static, otherwise it won't have a 5166 // valid frame index. 5167 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5168 if (SI == FuncInfo.StaticAllocaMap.end()) 5169 return nullptr; 5170 5171 int FI = SI->second; 5172 5173 SDValue Ops[2]; 5174 Ops[0] = getRoot(); 5175 Ops[1] = 5176 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5177 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5178 5179 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5180 DAG.setRoot(Res); 5181 } 5182 return nullptr; 5183 } 5184 case Intrinsic::invariant_start: 5185 // Discard region information. 5186 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5187 return nullptr; 5188 case Intrinsic::invariant_end: 5189 // Discard region information. 5190 return nullptr; 5191 case Intrinsic::stackprotectorcheck: { 5192 // Do not actually emit anything for this basic block. Instead we initialize 5193 // the stack protector descriptor and export the guard variable so we can 5194 // access it in FinishBasicBlock. 5195 const BasicBlock *BB = I.getParent(); 5196 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5197 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5198 5199 // Flush our exports since we are going to process a terminator. 5200 (void)getControlRoot(); 5201 return nullptr; 5202 } 5203 case Intrinsic::clear_cache: 5204 return TLI.getClearCacheBuiltinName(); 5205 case Intrinsic::donothing: 5206 // ignore 5207 return nullptr; 5208 case Intrinsic::experimental_stackmap: { 5209 visitStackmap(I); 5210 return nullptr; 5211 } 5212 case Intrinsic::experimental_patchpoint_void: 5213 case Intrinsic::experimental_patchpoint_i64: { 5214 visitPatchpoint(&I); 5215 return nullptr; 5216 } 5217 case Intrinsic::experimental_gc_statepoint: { 5218 visitStatepoint(I); 5219 return nullptr; 5220 } 5221 case Intrinsic::experimental_gc_result: { 5222 visitGCResult(I); 5223 return nullptr; 5224 } 5225 case Intrinsic::experimental_gc_relocate: { 5226 visitGCRelocate(cast<GCRelocateInst>(I)); 5227 return nullptr; 5228 } 5229 case Intrinsic::instrprof_increment: 5230 llvm_unreachable("instrprof failed to lower an increment"); 5231 case Intrinsic::instrprof_value_profile: 5232 llvm_unreachable("instrprof failed to lower a value profiling call"); 5233 case Intrinsic::localescape: { 5234 MachineFunction &MF = DAG.getMachineFunction(); 5235 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5236 5237 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5238 // is the same on all targets. 5239 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5240 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5241 if (isa<ConstantPointerNull>(Arg)) 5242 continue; // Skip null pointers. They represent a hole in index space. 5243 AllocaInst *Slot = cast<AllocaInst>(Arg); 5244 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5245 "can only escape static allocas"); 5246 int FI = FuncInfo.StaticAllocaMap[Slot]; 5247 MCSymbol *FrameAllocSym = 5248 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5249 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5250 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5251 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5252 .addSym(FrameAllocSym) 5253 .addFrameIndex(FI); 5254 } 5255 5256 return nullptr; 5257 } 5258 5259 case Intrinsic::localrecover: { 5260 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5261 MachineFunction &MF = DAG.getMachineFunction(); 5262 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5263 5264 // Get the symbol that defines the frame offset. 5265 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5266 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5267 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5268 MCSymbol *FrameAllocSym = 5269 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5270 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5271 5272 // Create a MCSymbol for the label to avoid any target lowering 5273 // that would make this PC relative. 5274 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5275 SDValue OffsetVal = 5276 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5277 5278 // Add the offset to the FP. 5279 Value *FP = I.getArgOperand(1); 5280 SDValue FPVal = getValue(FP); 5281 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5282 setValue(&I, Add); 5283 5284 return nullptr; 5285 } 5286 5287 case Intrinsic::eh_exceptionpointer: 5288 case Intrinsic::eh_exceptioncode: { 5289 // Get the exception pointer vreg, copy from it, and resize it to fit. 5290 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5291 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5292 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5293 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5294 SDValue N = 5295 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5296 if (Intrinsic == Intrinsic::eh_exceptioncode) 5297 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5298 setValue(&I, N); 5299 return nullptr; 5300 } 5301 } 5302 } 5303 5304 std::pair<SDValue, SDValue> 5305 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5306 const BasicBlock *EHPadBB) { 5307 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5308 MCSymbol *BeginLabel = nullptr; 5309 5310 if (EHPadBB) { 5311 // Insert a label before the invoke call to mark the try range. This can be 5312 // used to detect deletion of the invoke via the MachineModuleInfo. 5313 BeginLabel = MMI.getContext().createTempSymbol(); 5314 5315 // For SjLj, keep track of which landing pads go with which invokes 5316 // so as to maintain the ordering of pads in the LSDA. 5317 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5318 if (CallSiteIndex) { 5319 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5320 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5321 5322 // Now that the call site is handled, stop tracking it. 5323 MMI.setCurrentCallSite(0); 5324 } 5325 5326 // Both PendingLoads and PendingExports must be flushed here; 5327 // this call might not return. 5328 (void)getRoot(); 5329 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5330 5331 CLI.setChain(getRoot()); 5332 } 5333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5334 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5335 5336 assert((CLI.IsTailCall || Result.second.getNode()) && 5337 "Non-null chain expected with non-tail call!"); 5338 assert((Result.second.getNode() || !Result.first.getNode()) && 5339 "Null value expected with tail call!"); 5340 5341 if (!Result.second.getNode()) { 5342 // As a special case, a null chain means that a tail call has been emitted 5343 // and the DAG root is already updated. 5344 HasTailCall = true; 5345 5346 // Since there's no actual continuation from this block, nothing can be 5347 // relying on us setting vregs for them. 5348 PendingExports.clear(); 5349 } else { 5350 DAG.setRoot(Result.second); 5351 } 5352 5353 if (EHPadBB) { 5354 // Insert a label at the end of the invoke call to mark the try range. This 5355 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5356 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5357 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5358 5359 // Inform MachineModuleInfo of range. 5360 if (MMI.hasEHFunclets()) { 5361 assert(CLI.CS); 5362 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5363 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5364 BeginLabel, EndLabel); 5365 } else { 5366 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5367 } 5368 } 5369 5370 return Result; 5371 } 5372 5373 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5374 bool isTailCall, 5375 const BasicBlock *EHPadBB) { 5376 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5377 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5378 Type *RetTy = FTy->getReturnType(); 5379 5380 TargetLowering::ArgListTy Args; 5381 TargetLowering::ArgListEntry Entry; 5382 Args.reserve(CS.arg_size()); 5383 5384 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5385 i != e; ++i) { 5386 const Value *V = *i; 5387 5388 // Skip empty types 5389 if (V->getType()->isEmptyTy()) 5390 continue; 5391 5392 SDValue ArgNode = getValue(V); 5393 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5394 5395 // Skip the first return-type Attribute to get to params. 5396 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5397 Args.push_back(Entry); 5398 5399 // If we have an explicit sret argument that is an Instruction, (i.e., it 5400 // might point to function-local memory), we can't meaningfully tail-call. 5401 if (Entry.isSRet && isa<Instruction>(V)) 5402 isTailCall = false; 5403 } 5404 5405 // Check if target-independent constraints permit a tail call here. 5406 // Target-dependent constraints are checked within TLI->LowerCallTo. 5407 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5408 isTailCall = false; 5409 5410 TargetLowering::CallLoweringInfo CLI(DAG); 5411 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5412 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5413 .setTailCall(isTailCall); 5414 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5415 5416 if (Result.first.getNode()) 5417 setValue(CS.getInstruction(), Result.first); 5418 } 5419 5420 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5421 /// value is equal or not-equal to zero. 5422 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5423 for (const User *U : V->users()) { 5424 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5425 if (IC->isEquality()) 5426 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5427 if (C->isNullValue()) 5428 continue; 5429 // Unknown instruction. 5430 return false; 5431 } 5432 return true; 5433 } 5434 5435 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5436 Type *LoadTy, 5437 SelectionDAGBuilder &Builder) { 5438 5439 // Check to see if this load can be trivially constant folded, e.g. if the 5440 // input is from a string literal. 5441 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5442 // Cast pointer to the type we really want to load. 5443 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5444 PointerType::getUnqual(LoadTy)); 5445 5446 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5447 const_cast<Constant *>(LoadInput), *Builder.DL)) 5448 return Builder.getValue(LoadCst); 5449 } 5450 5451 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5452 // still constant memory, the input chain can be the entry node. 5453 SDValue Root; 5454 bool ConstantMemory = false; 5455 5456 // Do not serialize (non-volatile) loads of constant memory with anything. 5457 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5458 Root = Builder.DAG.getEntryNode(); 5459 ConstantMemory = true; 5460 } else { 5461 // Do not serialize non-volatile loads against each other. 5462 Root = Builder.DAG.getRoot(); 5463 } 5464 5465 SDValue Ptr = Builder.getValue(PtrVal); 5466 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5467 Ptr, MachinePointerInfo(PtrVal), 5468 false /*volatile*/, 5469 false /*nontemporal*/, 5470 false /*isinvariant*/, 1 /* align=1 */); 5471 5472 if (!ConstantMemory) 5473 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5474 return LoadVal; 5475 } 5476 5477 /// processIntegerCallValue - Record the value for an instruction that 5478 /// produces an integer result, converting the type where necessary. 5479 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5480 SDValue Value, 5481 bool IsSigned) { 5482 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5483 I.getType(), true); 5484 if (IsSigned) 5485 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5486 else 5487 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5488 setValue(&I, Value); 5489 } 5490 5491 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5492 /// If so, return true and lower it, otherwise return false and it will be 5493 /// lowered like a normal call. 5494 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5495 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5496 if (I.getNumArgOperands() != 3) 5497 return false; 5498 5499 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5500 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5501 !I.getArgOperand(2)->getType()->isIntegerTy() || 5502 !I.getType()->isIntegerTy()) 5503 return false; 5504 5505 const Value *Size = I.getArgOperand(2); 5506 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5507 if (CSize && CSize->getZExtValue() == 0) { 5508 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5509 I.getType(), true); 5510 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5511 return true; 5512 } 5513 5514 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5515 std::pair<SDValue, SDValue> Res = 5516 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5517 getValue(LHS), getValue(RHS), getValue(Size), 5518 MachinePointerInfo(LHS), 5519 MachinePointerInfo(RHS)); 5520 if (Res.first.getNode()) { 5521 processIntegerCallValue(I, Res.first, true); 5522 PendingLoads.push_back(Res.second); 5523 return true; 5524 } 5525 5526 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5527 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5528 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5529 bool ActuallyDoIt = true; 5530 MVT LoadVT; 5531 Type *LoadTy; 5532 switch (CSize->getZExtValue()) { 5533 default: 5534 LoadVT = MVT::Other; 5535 LoadTy = nullptr; 5536 ActuallyDoIt = false; 5537 break; 5538 case 2: 5539 LoadVT = MVT::i16; 5540 LoadTy = Type::getInt16Ty(CSize->getContext()); 5541 break; 5542 case 4: 5543 LoadVT = MVT::i32; 5544 LoadTy = Type::getInt32Ty(CSize->getContext()); 5545 break; 5546 case 8: 5547 LoadVT = MVT::i64; 5548 LoadTy = Type::getInt64Ty(CSize->getContext()); 5549 break; 5550 /* 5551 case 16: 5552 LoadVT = MVT::v4i32; 5553 LoadTy = Type::getInt32Ty(CSize->getContext()); 5554 LoadTy = VectorType::get(LoadTy, 4); 5555 break; 5556 */ 5557 } 5558 5559 // This turns into unaligned loads. We only do this if the target natively 5560 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5561 // we'll only produce a small number of byte loads. 5562 5563 // Require that we can find a legal MVT, and only do this if the target 5564 // supports unaligned loads of that type. Expanding into byte loads would 5565 // bloat the code. 5566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5567 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5568 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5569 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5570 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5571 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5572 // TODO: Check alignment of src and dest ptrs. 5573 if (!TLI.isTypeLegal(LoadVT) || 5574 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5575 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5576 ActuallyDoIt = false; 5577 } 5578 5579 if (ActuallyDoIt) { 5580 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5581 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5582 5583 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5584 ISD::SETNE); 5585 processIntegerCallValue(I, Res, false); 5586 return true; 5587 } 5588 } 5589 5590 5591 return false; 5592 } 5593 5594 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5595 /// form. If so, return true and lower it, otherwise return false and it 5596 /// will be lowered like a normal call. 5597 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5598 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5599 if (I.getNumArgOperands() != 3) 5600 return false; 5601 5602 const Value *Src = I.getArgOperand(0); 5603 const Value *Char = I.getArgOperand(1); 5604 const Value *Length = I.getArgOperand(2); 5605 if (!Src->getType()->isPointerTy() || 5606 !Char->getType()->isIntegerTy() || 5607 !Length->getType()->isIntegerTy() || 5608 !I.getType()->isPointerTy()) 5609 return false; 5610 5611 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5612 std::pair<SDValue, SDValue> Res = 5613 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5614 getValue(Src), getValue(Char), getValue(Length), 5615 MachinePointerInfo(Src)); 5616 if (Res.first.getNode()) { 5617 setValue(&I, Res.first); 5618 PendingLoads.push_back(Res.second); 5619 return true; 5620 } 5621 5622 return false; 5623 } 5624 5625 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5626 /// optimized form. If so, return true and lower it, otherwise return false 5627 /// and it will be lowered like a normal call. 5628 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5629 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5630 if (I.getNumArgOperands() != 2) 5631 return false; 5632 5633 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5634 if (!Arg0->getType()->isPointerTy() || 5635 !Arg1->getType()->isPointerTy() || 5636 !I.getType()->isPointerTy()) 5637 return false; 5638 5639 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5640 std::pair<SDValue, SDValue> Res = 5641 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5642 getValue(Arg0), getValue(Arg1), 5643 MachinePointerInfo(Arg0), 5644 MachinePointerInfo(Arg1), isStpcpy); 5645 if (Res.first.getNode()) { 5646 setValue(&I, Res.first); 5647 DAG.setRoot(Res.second); 5648 return true; 5649 } 5650 5651 return false; 5652 } 5653 5654 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5655 /// If so, return true and lower it, otherwise return false and it will be 5656 /// lowered like a normal call. 5657 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5658 // Verify that the prototype makes sense. int strcmp(void*,void*) 5659 if (I.getNumArgOperands() != 2) 5660 return false; 5661 5662 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5663 if (!Arg0->getType()->isPointerTy() || 5664 !Arg1->getType()->isPointerTy() || 5665 !I.getType()->isIntegerTy()) 5666 return false; 5667 5668 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5669 std::pair<SDValue, SDValue> Res = 5670 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5671 getValue(Arg0), getValue(Arg1), 5672 MachinePointerInfo(Arg0), 5673 MachinePointerInfo(Arg1)); 5674 if (Res.first.getNode()) { 5675 processIntegerCallValue(I, Res.first, true); 5676 PendingLoads.push_back(Res.second); 5677 return true; 5678 } 5679 5680 return false; 5681 } 5682 5683 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5684 /// form. If so, return true and lower it, otherwise return false and it 5685 /// will be lowered like a normal call. 5686 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5687 // Verify that the prototype makes sense. size_t strlen(char *) 5688 if (I.getNumArgOperands() != 1) 5689 return false; 5690 5691 const Value *Arg0 = I.getArgOperand(0); 5692 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5693 return false; 5694 5695 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5696 std::pair<SDValue, SDValue> Res = 5697 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5698 getValue(Arg0), MachinePointerInfo(Arg0)); 5699 if (Res.first.getNode()) { 5700 processIntegerCallValue(I, Res.first, false); 5701 PendingLoads.push_back(Res.second); 5702 return true; 5703 } 5704 5705 return false; 5706 } 5707 5708 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5709 /// form. If so, return true and lower it, otherwise return false and it 5710 /// will be lowered like a normal call. 5711 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5712 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5713 if (I.getNumArgOperands() != 2) 5714 return false; 5715 5716 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5717 if (!Arg0->getType()->isPointerTy() || 5718 !Arg1->getType()->isIntegerTy() || 5719 !I.getType()->isIntegerTy()) 5720 return false; 5721 5722 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5723 std::pair<SDValue, SDValue> Res = 5724 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5725 getValue(Arg0), getValue(Arg1), 5726 MachinePointerInfo(Arg0)); 5727 if (Res.first.getNode()) { 5728 processIntegerCallValue(I, Res.first, false); 5729 PendingLoads.push_back(Res.second); 5730 return true; 5731 } 5732 5733 return false; 5734 } 5735 5736 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5737 /// operation (as expected), translate it to an SDNode with the specified opcode 5738 /// and return true. 5739 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5740 unsigned Opcode) { 5741 // Sanity check that it really is a unary floating-point call. 5742 if (I.getNumArgOperands() != 1 || 5743 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5744 I.getType() != I.getArgOperand(0)->getType() || 5745 !I.onlyReadsMemory()) 5746 return false; 5747 5748 SDValue Tmp = getValue(I.getArgOperand(0)); 5749 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5750 return true; 5751 } 5752 5753 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5754 /// operation (as expected), translate it to an SDNode with the specified opcode 5755 /// and return true. 5756 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5757 unsigned Opcode) { 5758 // Sanity check that it really is a binary floating-point call. 5759 if (I.getNumArgOperands() != 2 || 5760 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5761 I.getType() != I.getArgOperand(0)->getType() || 5762 I.getType() != I.getArgOperand(1)->getType() || 5763 !I.onlyReadsMemory()) 5764 return false; 5765 5766 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5767 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5768 EVT VT = Tmp0.getValueType(); 5769 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5770 return true; 5771 } 5772 5773 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5774 // Handle inline assembly differently. 5775 if (isa<InlineAsm>(I.getCalledValue())) { 5776 visitInlineAsm(&I); 5777 return; 5778 } 5779 5780 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5781 ComputeUsesVAFloatArgument(I, &MMI); 5782 5783 const char *RenameFn = nullptr; 5784 if (Function *F = I.getCalledFunction()) { 5785 if (F->isDeclaration()) { 5786 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5787 if (unsigned IID = II->getIntrinsicID(F)) { 5788 RenameFn = visitIntrinsicCall(I, IID); 5789 if (!RenameFn) 5790 return; 5791 } 5792 } 5793 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5794 RenameFn = visitIntrinsicCall(I, IID); 5795 if (!RenameFn) 5796 return; 5797 } 5798 } 5799 5800 // Check for well-known libc/libm calls. If the function is internal, it 5801 // can't be a library call. 5802 LibFunc::Func Func; 5803 if (!F->hasLocalLinkage() && F->hasName() && 5804 LibInfo->getLibFunc(F->getName(), Func) && 5805 LibInfo->hasOptimizedCodeGen(Func)) { 5806 switch (Func) { 5807 default: break; 5808 case LibFunc::copysign: 5809 case LibFunc::copysignf: 5810 case LibFunc::copysignl: 5811 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5812 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5813 I.getType() == I.getArgOperand(0)->getType() && 5814 I.getType() == I.getArgOperand(1)->getType() && 5815 I.onlyReadsMemory()) { 5816 SDValue LHS = getValue(I.getArgOperand(0)); 5817 SDValue RHS = getValue(I.getArgOperand(1)); 5818 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5819 LHS.getValueType(), LHS, RHS)); 5820 return; 5821 } 5822 break; 5823 case LibFunc::fabs: 5824 case LibFunc::fabsf: 5825 case LibFunc::fabsl: 5826 if (visitUnaryFloatCall(I, ISD::FABS)) 5827 return; 5828 break; 5829 case LibFunc::fmin: 5830 case LibFunc::fminf: 5831 case LibFunc::fminl: 5832 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5833 return; 5834 break; 5835 case LibFunc::fmax: 5836 case LibFunc::fmaxf: 5837 case LibFunc::fmaxl: 5838 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5839 return; 5840 break; 5841 case LibFunc::sin: 5842 case LibFunc::sinf: 5843 case LibFunc::sinl: 5844 if (visitUnaryFloatCall(I, ISD::FSIN)) 5845 return; 5846 break; 5847 case LibFunc::cos: 5848 case LibFunc::cosf: 5849 case LibFunc::cosl: 5850 if (visitUnaryFloatCall(I, ISD::FCOS)) 5851 return; 5852 break; 5853 case LibFunc::sqrt: 5854 case LibFunc::sqrtf: 5855 case LibFunc::sqrtl: 5856 case LibFunc::sqrt_finite: 5857 case LibFunc::sqrtf_finite: 5858 case LibFunc::sqrtl_finite: 5859 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5860 return; 5861 break; 5862 case LibFunc::floor: 5863 case LibFunc::floorf: 5864 case LibFunc::floorl: 5865 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5866 return; 5867 break; 5868 case LibFunc::nearbyint: 5869 case LibFunc::nearbyintf: 5870 case LibFunc::nearbyintl: 5871 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5872 return; 5873 break; 5874 case LibFunc::ceil: 5875 case LibFunc::ceilf: 5876 case LibFunc::ceill: 5877 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5878 return; 5879 break; 5880 case LibFunc::rint: 5881 case LibFunc::rintf: 5882 case LibFunc::rintl: 5883 if (visitUnaryFloatCall(I, ISD::FRINT)) 5884 return; 5885 break; 5886 case LibFunc::round: 5887 case LibFunc::roundf: 5888 case LibFunc::roundl: 5889 if (visitUnaryFloatCall(I, ISD::FROUND)) 5890 return; 5891 break; 5892 case LibFunc::trunc: 5893 case LibFunc::truncf: 5894 case LibFunc::truncl: 5895 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5896 return; 5897 break; 5898 case LibFunc::log2: 5899 case LibFunc::log2f: 5900 case LibFunc::log2l: 5901 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5902 return; 5903 break; 5904 case LibFunc::exp2: 5905 case LibFunc::exp2f: 5906 case LibFunc::exp2l: 5907 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5908 return; 5909 break; 5910 case LibFunc::memcmp: 5911 if (visitMemCmpCall(I)) 5912 return; 5913 break; 5914 case LibFunc::memchr: 5915 if (visitMemChrCall(I)) 5916 return; 5917 break; 5918 case LibFunc::strcpy: 5919 if (visitStrCpyCall(I, false)) 5920 return; 5921 break; 5922 case LibFunc::stpcpy: 5923 if (visitStrCpyCall(I, true)) 5924 return; 5925 break; 5926 case LibFunc::strcmp: 5927 if (visitStrCmpCall(I)) 5928 return; 5929 break; 5930 case LibFunc::strlen: 5931 if (visitStrLenCall(I)) 5932 return; 5933 break; 5934 case LibFunc::strnlen: 5935 if (visitStrNLenCall(I)) 5936 return; 5937 break; 5938 } 5939 } 5940 } 5941 5942 SDValue Callee; 5943 if (!RenameFn) 5944 Callee = getValue(I.getCalledValue()); 5945 else 5946 Callee = DAG.getExternalSymbol( 5947 RenameFn, 5948 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5949 5950 // Check if we can potentially perform a tail call. More detailed checking is 5951 // be done within LowerCallTo, after more information about the call is known. 5952 LowerCallTo(&I, Callee, I.isTailCall()); 5953 } 5954 5955 namespace { 5956 5957 /// AsmOperandInfo - This contains information for each constraint that we are 5958 /// lowering. 5959 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5960 public: 5961 /// CallOperand - If this is the result output operand or a clobber 5962 /// this is null, otherwise it is the incoming operand to the CallInst. 5963 /// This gets modified as the asm is processed. 5964 SDValue CallOperand; 5965 5966 /// AssignedRegs - If this is a register or register class operand, this 5967 /// contains the set of register corresponding to the operand. 5968 RegsForValue AssignedRegs; 5969 5970 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5971 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5972 } 5973 5974 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5975 /// corresponds to. If there is no Value* for this operand, it returns 5976 /// MVT::Other. 5977 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5978 const DataLayout &DL) const { 5979 if (!CallOperandVal) return MVT::Other; 5980 5981 if (isa<BasicBlock>(CallOperandVal)) 5982 return TLI.getPointerTy(DL); 5983 5984 llvm::Type *OpTy = CallOperandVal->getType(); 5985 5986 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5987 // If this is an indirect operand, the operand is a pointer to the 5988 // accessed type. 5989 if (isIndirect) { 5990 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5991 if (!PtrTy) 5992 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5993 OpTy = PtrTy->getElementType(); 5994 } 5995 5996 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5997 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5998 if (STy->getNumElements() == 1) 5999 OpTy = STy->getElementType(0); 6000 6001 // If OpTy is not a single value, it may be a struct/union that we 6002 // can tile with integers. 6003 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6004 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6005 switch (BitSize) { 6006 default: break; 6007 case 1: 6008 case 8: 6009 case 16: 6010 case 32: 6011 case 64: 6012 case 128: 6013 OpTy = IntegerType::get(Context, BitSize); 6014 break; 6015 } 6016 } 6017 6018 return TLI.getValueType(DL, OpTy, true); 6019 } 6020 }; 6021 6022 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6023 6024 } // end anonymous namespace 6025 6026 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6027 /// specified operand. We prefer to assign virtual registers, to allow the 6028 /// register allocator to handle the assignment process. However, if the asm 6029 /// uses features that we can't model on machineinstrs, we have SDISel do the 6030 /// allocation. This produces generally horrible, but correct, code. 6031 /// 6032 /// OpInfo describes the operand. 6033 /// 6034 static void GetRegistersForValue(SelectionDAG &DAG, 6035 const TargetLowering &TLI, 6036 SDLoc DL, 6037 SDISelAsmOperandInfo &OpInfo) { 6038 LLVMContext &Context = *DAG.getContext(); 6039 6040 MachineFunction &MF = DAG.getMachineFunction(); 6041 SmallVector<unsigned, 4> Regs; 6042 6043 // If this is a constraint for a single physreg, or a constraint for a 6044 // register class, find it. 6045 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6046 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6047 OpInfo.ConstraintCode, 6048 OpInfo.ConstraintVT); 6049 6050 unsigned NumRegs = 1; 6051 if (OpInfo.ConstraintVT != MVT::Other) { 6052 // If this is a FP input in an integer register (or visa versa) insert a bit 6053 // cast of the input value. More generally, handle any case where the input 6054 // value disagrees with the register class we plan to stick this in. 6055 if (OpInfo.Type == InlineAsm::isInput && 6056 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6057 // Try to convert to the first EVT that the reg class contains. If the 6058 // types are identical size, use a bitcast to convert (e.g. two differing 6059 // vector types). 6060 MVT RegVT = *PhysReg.second->vt_begin(); 6061 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6062 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6063 RegVT, OpInfo.CallOperand); 6064 OpInfo.ConstraintVT = RegVT; 6065 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6066 // If the input is a FP value and we want it in FP registers, do a 6067 // bitcast to the corresponding integer type. This turns an f64 value 6068 // into i64, which can be passed with two i32 values on a 32-bit 6069 // machine. 6070 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6071 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6072 RegVT, OpInfo.CallOperand); 6073 OpInfo.ConstraintVT = RegVT; 6074 } 6075 } 6076 6077 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6078 } 6079 6080 MVT RegVT; 6081 EVT ValueVT = OpInfo.ConstraintVT; 6082 6083 // If this is a constraint for a specific physical register, like {r17}, 6084 // assign it now. 6085 if (unsigned AssignedReg = PhysReg.first) { 6086 const TargetRegisterClass *RC = PhysReg.second; 6087 if (OpInfo.ConstraintVT == MVT::Other) 6088 ValueVT = *RC->vt_begin(); 6089 6090 // Get the actual register value type. This is important, because the user 6091 // may have asked for (e.g.) the AX register in i32 type. We need to 6092 // remember that AX is actually i16 to get the right extension. 6093 RegVT = *RC->vt_begin(); 6094 6095 // This is a explicit reference to a physical register. 6096 Regs.push_back(AssignedReg); 6097 6098 // If this is an expanded reference, add the rest of the regs to Regs. 6099 if (NumRegs != 1) { 6100 TargetRegisterClass::iterator I = RC->begin(); 6101 for (; *I != AssignedReg; ++I) 6102 assert(I != RC->end() && "Didn't find reg!"); 6103 6104 // Already added the first reg. 6105 --NumRegs; ++I; 6106 for (; NumRegs; --NumRegs, ++I) { 6107 assert(I != RC->end() && "Ran out of registers to allocate!"); 6108 Regs.push_back(*I); 6109 } 6110 } 6111 6112 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6113 return; 6114 } 6115 6116 // Otherwise, if this was a reference to an LLVM register class, create vregs 6117 // for this reference. 6118 if (const TargetRegisterClass *RC = PhysReg.second) { 6119 RegVT = *RC->vt_begin(); 6120 if (OpInfo.ConstraintVT == MVT::Other) 6121 ValueVT = RegVT; 6122 6123 // Create the appropriate number of virtual registers. 6124 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6125 for (; NumRegs; --NumRegs) 6126 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6127 6128 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6129 return; 6130 } 6131 6132 // Otherwise, we couldn't allocate enough registers for this. 6133 } 6134 6135 /// visitInlineAsm - Handle a call to an InlineAsm object. 6136 /// 6137 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6138 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6139 6140 /// ConstraintOperands - Information about all of the constraints. 6141 SDISelAsmOperandInfoVector ConstraintOperands; 6142 6143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6144 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6145 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6146 6147 bool hasMemory = false; 6148 6149 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6150 unsigned ResNo = 0; // ResNo - The result number of the next output. 6151 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6152 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6153 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6154 6155 MVT OpVT = MVT::Other; 6156 6157 // Compute the value type for each operand. 6158 switch (OpInfo.Type) { 6159 case InlineAsm::isOutput: 6160 // Indirect outputs just consume an argument. 6161 if (OpInfo.isIndirect) { 6162 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6163 break; 6164 } 6165 6166 // The return value of the call is this value. As such, there is no 6167 // corresponding argument. 6168 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6169 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6170 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6171 STy->getElementType(ResNo)); 6172 } else { 6173 assert(ResNo == 0 && "Asm only has one result!"); 6174 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6175 } 6176 ++ResNo; 6177 break; 6178 case InlineAsm::isInput: 6179 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6180 break; 6181 case InlineAsm::isClobber: 6182 // Nothing to do. 6183 break; 6184 } 6185 6186 // If this is an input or an indirect output, process the call argument. 6187 // BasicBlocks are labels, currently appearing only in asm's. 6188 if (OpInfo.CallOperandVal) { 6189 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6190 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6191 } else { 6192 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6193 } 6194 6195 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6196 DAG.getDataLayout()).getSimpleVT(); 6197 } 6198 6199 OpInfo.ConstraintVT = OpVT; 6200 6201 // Indirect operand accesses access memory. 6202 if (OpInfo.isIndirect) 6203 hasMemory = true; 6204 else { 6205 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6206 TargetLowering::ConstraintType 6207 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6208 if (CType == TargetLowering::C_Memory) { 6209 hasMemory = true; 6210 break; 6211 } 6212 } 6213 } 6214 } 6215 6216 SDValue Chain, Flag; 6217 6218 // We won't need to flush pending loads if this asm doesn't touch 6219 // memory and is nonvolatile. 6220 if (hasMemory || IA->hasSideEffects()) 6221 Chain = getRoot(); 6222 else 6223 Chain = DAG.getRoot(); 6224 6225 // Second pass over the constraints: compute which constraint option to use 6226 // and assign registers to constraints that want a specific physreg. 6227 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6228 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6229 6230 // If this is an output operand with a matching input operand, look up the 6231 // matching input. If their types mismatch, e.g. one is an integer, the 6232 // other is floating point, or their sizes are different, flag it as an 6233 // error. 6234 if (OpInfo.hasMatchingInput()) { 6235 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6236 6237 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6238 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6239 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6240 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6241 OpInfo.ConstraintVT); 6242 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6243 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6244 Input.ConstraintVT); 6245 if ((OpInfo.ConstraintVT.isInteger() != 6246 Input.ConstraintVT.isInteger()) || 6247 (MatchRC.second != InputRC.second)) { 6248 report_fatal_error("Unsupported asm: input constraint" 6249 " with a matching output constraint of" 6250 " incompatible type!"); 6251 } 6252 Input.ConstraintVT = OpInfo.ConstraintVT; 6253 } 6254 } 6255 6256 // Compute the constraint code and ConstraintType to use. 6257 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6258 6259 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6260 OpInfo.Type == InlineAsm::isClobber) 6261 continue; 6262 6263 // If this is a memory input, and if the operand is not indirect, do what we 6264 // need to to provide an address for the memory input. 6265 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6266 !OpInfo.isIndirect) { 6267 assert((OpInfo.isMultipleAlternative || 6268 (OpInfo.Type == InlineAsm::isInput)) && 6269 "Can only indirectify direct input operands!"); 6270 6271 // Memory operands really want the address of the value. If we don't have 6272 // an indirect input, put it in the constpool if we can, otherwise spill 6273 // it to a stack slot. 6274 // TODO: This isn't quite right. We need to handle these according to 6275 // the addressing mode that the constraint wants. Also, this may take 6276 // an additional register for the computation and we don't want that 6277 // either. 6278 6279 // If the operand is a float, integer, or vector constant, spill to a 6280 // constant pool entry to get its address. 6281 const Value *OpVal = OpInfo.CallOperandVal; 6282 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6283 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6284 OpInfo.CallOperand = DAG.getConstantPool( 6285 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6286 } else { 6287 // Otherwise, create a stack slot and emit a store to it before the 6288 // asm. 6289 Type *Ty = OpVal->getType(); 6290 auto &DL = DAG.getDataLayout(); 6291 uint64_t TySize = DL.getTypeAllocSize(Ty); 6292 unsigned Align = DL.getPrefTypeAlignment(Ty); 6293 MachineFunction &MF = DAG.getMachineFunction(); 6294 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6295 SDValue StackSlot = 6296 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6297 Chain = DAG.getStore( 6298 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6299 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6300 false, false, 0); 6301 OpInfo.CallOperand = StackSlot; 6302 } 6303 6304 // There is no longer a Value* corresponding to this operand. 6305 OpInfo.CallOperandVal = nullptr; 6306 6307 // It is now an indirect operand. 6308 OpInfo.isIndirect = true; 6309 } 6310 6311 // If this constraint is for a specific register, allocate it before 6312 // anything else. 6313 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6314 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6315 } 6316 6317 // Second pass - Loop over all of the operands, assigning virtual or physregs 6318 // to register class operands. 6319 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6320 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6321 6322 // C_Register operands have already been allocated, Other/Memory don't need 6323 // to be. 6324 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6325 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6326 } 6327 6328 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6329 std::vector<SDValue> AsmNodeOperands; 6330 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6331 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6332 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6333 6334 // If we have a !srcloc metadata node associated with it, we want to attach 6335 // this to the ultimately generated inline asm machineinstr. To do this, we 6336 // pass in the third operand as this (potentially null) inline asm MDNode. 6337 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6338 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6339 6340 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6341 // bits as operand 3. 6342 unsigned ExtraInfo = 0; 6343 if (IA->hasSideEffects()) 6344 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6345 if (IA->isAlignStack()) 6346 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6347 // Set the asm dialect. 6348 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6349 6350 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6351 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6352 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6353 6354 // Compute the constraint code and ConstraintType to use. 6355 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6356 6357 // Ideally, we would only check against memory constraints. However, the 6358 // meaning of an other constraint can be target-specific and we can't easily 6359 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6360 // for other constriants as well. 6361 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6362 OpInfo.ConstraintType == TargetLowering::C_Other) { 6363 if (OpInfo.Type == InlineAsm::isInput) 6364 ExtraInfo |= InlineAsm::Extra_MayLoad; 6365 else if (OpInfo.Type == InlineAsm::isOutput) 6366 ExtraInfo |= InlineAsm::Extra_MayStore; 6367 else if (OpInfo.Type == InlineAsm::isClobber) 6368 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6369 } 6370 } 6371 6372 AsmNodeOperands.push_back(DAG.getTargetConstant( 6373 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6374 6375 // Loop over all of the inputs, copying the operand values into the 6376 // appropriate registers and processing the output regs. 6377 RegsForValue RetValRegs; 6378 6379 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6380 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6381 6382 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6383 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6384 6385 switch (OpInfo.Type) { 6386 case InlineAsm::isOutput: { 6387 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6388 OpInfo.ConstraintType != TargetLowering::C_Register) { 6389 // Memory output, or 'other' output (e.g. 'X' constraint). 6390 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6391 6392 unsigned ConstraintID = 6393 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6394 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6395 "Failed to convert memory constraint code to constraint id."); 6396 6397 // Add information to the INLINEASM node to know about this output. 6398 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6399 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6400 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6401 MVT::i32)); 6402 AsmNodeOperands.push_back(OpInfo.CallOperand); 6403 break; 6404 } 6405 6406 // Otherwise, this is a register or register class output. 6407 6408 // Copy the output from the appropriate register. Find a register that 6409 // we can use. 6410 if (OpInfo.AssignedRegs.Regs.empty()) { 6411 LLVMContext &Ctx = *DAG.getContext(); 6412 Ctx.emitError(CS.getInstruction(), 6413 "couldn't allocate output register for constraint '" + 6414 Twine(OpInfo.ConstraintCode) + "'"); 6415 return; 6416 } 6417 6418 // If this is an indirect operand, store through the pointer after the 6419 // asm. 6420 if (OpInfo.isIndirect) { 6421 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6422 OpInfo.CallOperandVal)); 6423 } else { 6424 // This is the result value of the call. 6425 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6426 // Concatenate this output onto the outputs list. 6427 RetValRegs.append(OpInfo.AssignedRegs); 6428 } 6429 6430 // Add information to the INLINEASM node to know that this register is 6431 // set. 6432 OpInfo.AssignedRegs 6433 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6434 ? InlineAsm::Kind_RegDefEarlyClobber 6435 : InlineAsm::Kind_RegDef, 6436 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6437 break; 6438 } 6439 case InlineAsm::isInput: { 6440 SDValue InOperandVal = OpInfo.CallOperand; 6441 6442 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6443 // If this is required to match an output register we have already set, 6444 // just use its register. 6445 unsigned OperandNo = OpInfo.getMatchedOperand(); 6446 6447 // Scan until we find the definition we already emitted of this operand. 6448 // When we find it, create a RegsForValue operand. 6449 unsigned CurOp = InlineAsm::Op_FirstOperand; 6450 for (; OperandNo; --OperandNo) { 6451 // Advance to the next operand. 6452 unsigned OpFlag = 6453 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6454 assert((InlineAsm::isRegDefKind(OpFlag) || 6455 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6456 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6457 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6458 } 6459 6460 unsigned OpFlag = 6461 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6462 if (InlineAsm::isRegDefKind(OpFlag) || 6463 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6464 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6465 if (OpInfo.isIndirect) { 6466 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6467 LLVMContext &Ctx = *DAG.getContext(); 6468 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6469 " don't know how to handle tied " 6470 "indirect register inputs"); 6471 return; 6472 } 6473 6474 RegsForValue MatchedRegs; 6475 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6476 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6477 MatchedRegs.RegVTs.push_back(RegVT); 6478 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6479 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6480 i != e; ++i) { 6481 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6482 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6483 else { 6484 LLVMContext &Ctx = *DAG.getContext(); 6485 Ctx.emitError(CS.getInstruction(), 6486 "inline asm error: This value" 6487 " type register class is not natively supported!"); 6488 return; 6489 } 6490 } 6491 SDLoc dl = getCurSDLoc(); 6492 // Use the produced MatchedRegs object to 6493 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6494 Chain, &Flag, CS.getInstruction()); 6495 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6496 true, OpInfo.getMatchedOperand(), dl, 6497 DAG, AsmNodeOperands); 6498 break; 6499 } 6500 6501 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6502 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6503 "Unexpected number of operands"); 6504 // Add information to the INLINEASM node to know about this input. 6505 // See InlineAsm.h isUseOperandTiedToDef. 6506 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6507 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6508 OpInfo.getMatchedOperand()); 6509 AsmNodeOperands.push_back(DAG.getTargetConstant( 6510 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6511 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6512 break; 6513 } 6514 6515 // Treat indirect 'X' constraint as memory. 6516 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6517 OpInfo.isIndirect) 6518 OpInfo.ConstraintType = TargetLowering::C_Memory; 6519 6520 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6521 std::vector<SDValue> Ops; 6522 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6523 Ops, DAG); 6524 if (Ops.empty()) { 6525 LLVMContext &Ctx = *DAG.getContext(); 6526 Ctx.emitError(CS.getInstruction(), 6527 "invalid operand for inline asm constraint '" + 6528 Twine(OpInfo.ConstraintCode) + "'"); 6529 return; 6530 } 6531 6532 // Add information to the INLINEASM node to know about this input. 6533 unsigned ResOpType = 6534 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6535 AsmNodeOperands.push_back(DAG.getTargetConstant( 6536 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6537 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6538 break; 6539 } 6540 6541 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6542 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6543 assert(InOperandVal.getValueType() == 6544 TLI.getPointerTy(DAG.getDataLayout()) && 6545 "Memory operands expect pointer values"); 6546 6547 unsigned ConstraintID = 6548 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6549 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6550 "Failed to convert memory constraint code to constraint id."); 6551 6552 // Add information to the INLINEASM node to know about this input. 6553 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6554 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6555 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6556 getCurSDLoc(), 6557 MVT::i32)); 6558 AsmNodeOperands.push_back(InOperandVal); 6559 break; 6560 } 6561 6562 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6563 OpInfo.ConstraintType == TargetLowering::C_Register) && 6564 "Unknown constraint type!"); 6565 6566 // TODO: Support this. 6567 if (OpInfo.isIndirect) { 6568 LLVMContext &Ctx = *DAG.getContext(); 6569 Ctx.emitError(CS.getInstruction(), 6570 "Don't know how to handle indirect register inputs yet " 6571 "for constraint '" + 6572 Twine(OpInfo.ConstraintCode) + "'"); 6573 return; 6574 } 6575 6576 // Copy the input into the appropriate registers. 6577 if (OpInfo.AssignedRegs.Regs.empty()) { 6578 LLVMContext &Ctx = *DAG.getContext(); 6579 Ctx.emitError(CS.getInstruction(), 6580 "couldn't allocate input reg for constraint '" + 6581 Twine(OpInfo.ConstraintCode) + "'"); 6582 return; 6583 } 6584 6585 SDLoc dl = getCurSDLoc(); 6586 6587 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6588 Chain, &Flag, CS.getInstruction()); 6589 6590 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6591 dl, DAG, AsmNodeOperands); 6592 break; 6593 } 6594 case InlineAsm::isClobber: { 6595 // Add the clobbered value to the operand list, so that the register 6596 // allocator is aware that the physreg got clobbered. 6597 if (!OpInfo.AssignedRegs.Regs.empty()) 6598 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6599 false, 0, getCurSDLoc(), DAG, 6600 AsmNodeOperands); 6601 break; 6602 } 6603 } 6604 } 6605 6606 // Finish up input operands. Set the input chain and add the flag last. 6607 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6608 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6609 6610 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6611 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6612 Flag = Chain.getValue(1); 6613 6614 // If this asm returns a register value, copy the result from that register 6615 // and set it as the value of the call. 6616 if (!RetValRegs.Regs.empty()) { 6617 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6618 Chain, &Flag, CS.getInstruction()); 6619 6620 // FIXME: Why don't we do this for inline asms with MRVs? 6621 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6622 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6623 6624 // If any of the results of the inline asm is a vector, it may have the 6625 // wrong width/num elts. This can happen for register classes that can 6626 // contain multiple different value types. The preg or vreg allocated may 6627 // not have the same VT as was expected. Convert it to the right type 6628 // with bit_convert. 6629 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6630 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6631 ResultType, Val); 6632 6633 } else if (ResultType != Val.getValueType() && 6634 ResultType.isInteger() && Val.getValueType().isInteger()) { 6635 // If a result value was tied to an input value, the computed result may 6636 // have a wider width than the expected result. Extract the relevant 6637 // portion. 6638 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6639 } 6640 6641 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6642 } 6643 6644 setValue(CS.getInstruction(), Val); 6645 // Don't need to use this as a chain in this case. 6646 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6647 return; 6648 } 6649 6650 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6651 6652 // Process indirect outputs, first output all of the flagged copies out of 6653 // physregs. 6654 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6655 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6656 const Value *Ptr = IndirectStoresToEmit[i].second; 6657 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6658 Chain, &Flag, IA); 6659 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6660 } 6661 6662 // Emit the non-flagged stores from the physregs. 6663 SmallVector<SDValue, 8> OutChains; 6664 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6665 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6666 StoresToEmit[i].first, 6667 getValue(StoresToEmit[i].second), 6668 MachinePointerInfo(StoresToEmit[i].second), 6669 false, false, 0); 6670 OutChains.push_back(Val); 6671 } 6672 6673 if (!OutChains.empty()) 6674 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6675 6676 DAG.setRoot(Chain); 6677 } 6678 6679 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6680 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6681 MVT::Other, getRoot(), 6682 getValue(I.getArgOperand(0)), 6683 DAG.getSrcValue(I.getArgOperand(0)))); 6684 } 6685 6686 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6688 const DataLayout &DL = DAG.getDataLayout(); 6689 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6690 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6691 DAG.getSrcValue(I.getOperand(0)), 6692 DL.getABITypeAlignment(I.getType())); 6693 setValue(&I, V); 6694 DAG.setRoot(V.getValue(1)); 6695 } 6696 6697 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6698 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6699 MVT::Other, getRoot(), 6700 getValue(I.getArgOperand(0)), 6701 DAG.getSrcValue(I.getArgOperand(0)))); 6702 } 6703 6704 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6705 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6706 MVT::Other, getRoot(), 6707 getValue(I.getArgOperand(0)), 6708 getValue(I.getArgOperand(1)), 6709 DAG.getSrcValue(I.getArgOperand(0)), 6710 DAG.getSrcValue(I.getArgOperand(1)))); 6711 } 6712 6713 /// \brief Lower an argument list according to the target calling convention. 6714 /// 6715 /// \return A tuple of <return-value, token-chain> 6716 /// 6717 /// This is a helper for lowering intrinsics that follow a target calling 6718 /// convention or require stack pointer adjustment. Only a subset of the 6719 /// intrinsic's operands need to participate in the calling convention. 6720 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6721 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6722 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6723 TargetLowering::ArgListTy Args; 6724 Args.reserve(NumArgs); 6725 6726 // Populate the argument list. 6727 // Attributes for args start at offset 1, after the return attribute. 6728 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6729 ArgI != ArgE; ++ArgI) { 6730 const Value *V = CS->getOperand(ArgI); 6731 6732 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6733 6734 TargetLowering::ArgListEntry Entry; 6735 Entry.Node = getValue(V); 6736 Entry.Ty = V->getType(); 6737 Entry.setAttributes(&CS, AttrI); 6738 Args.push_back(Entry); 6739 } 6740 6741 TargetLowering::CallLoweringInfo CLI(DAG); 6742 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6743 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6744 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6745 6746 return lowerInvokable(CLI, EHPadBB); 6747 } 6748 6749 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6750 /// or patchpoint target node's operand list. 6751 /// 6752 /// Constants are converted to TargetConstants purely as an optimization to 6753 /// avoid constant materialization and register allocation. 6754 /// 6755 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6756 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6757 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6758 /// address materialization and register allocation, but may also be required 6759 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6760 /// alloca in the entry block, then the runtime may assume that the alloca's 6761 /// StackMap location can be read immediately after compilation and that the 6762 /// location is valid at any point during execution (this is similar to the 6763 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6764 /// only available in a register, then the runtime would need to trap when 6765 /// execution reaches the StackMap in order to read the alloca's location. 6766 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6767 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6768 SelectionDAGBuilder &Builder) { 6769 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6770 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6771 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6772 Ops.push_back( 6773 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6774 Ops.push_back( 6775 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6776 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6777 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6778 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6779 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6780 } else 6781 Ops.push_back(OpVal); 6782 } 6783 } 6784 6785 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6786 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6787 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6788 // [live variables...]) 6789 6790 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6791 6792 SDValue Chain, InFlag, Callee, NullPtr; 6793 SmallVector<SDValue, 32> Ops; 6794 6795 SDLoc DL = getCurSDLoc(); 6796 Callee = getValue(CI.getCalledValue()); 6797 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6798 6799 // The stackmap intrinsic only records the live variables (the arguemnts 6800 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6801 // intrinsic, this won't be lowered to a function call. This means we don't 6802 // have to worry about calling conventions and target specific lowering code. 6803 // Instead we perform the call lowering right here. 6804 // 6805 // chain, flag = CALLSEQ_START(chain, 0) 6806 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6807 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6808 // 6809 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6810 InFlag = Chain.getValue(1); 6811 6812 // Add the <id> and <numBytes> constants. 6813 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6814 Ops.push_back(DAG.getTargetConstant( 6815 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6816 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6817 Ops.push_back(DAG.getTargetConstant( 6818 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6819 MVT::i32)); 6820 6821 // Push live variables for the stack map. 6822 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6823 6824 // We are not pushing any register mask info here on the operands list, 6825 // because the stackmap doesn't clobber anything. 6826 6827 // Push the chain and the glue flag. 6828 Ops.push_back(Chain); 6829 Ops.push_back(InFlag); 6830 6831 // Create the STACKMAP node. 6832 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6833 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6834 Chain = SDValue(SM, 0); 6835 InFlag = Chain.getValue(1); 6836 6837 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6838 6839 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6840 6841 // Set the root to the target-lowered call chain. 6842 DAG.setRoot(Chain); 6843 6844 // Inform the Frame Information that we have a stackmap in this function. 6845 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6846 } 6847 6848 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6849 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6850 const BasicBlock *EHPadBB) { 6851 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6852 // i32 <numBytes>, 6853 // i8* <target>, 6854 // i32 <numArgs>, 6855 // [Args...], 6856 // [live variables...]) 6857 6858 CallingConv::ID CC = CS.getCallingConv(); 6859 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6860 bool HasDef = !CS->getType()->isVoidTy(); 6861 SDLoc dl = getCurSDLoc(); 6862 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6863 6864 // Handle immediate and symbolic callees. 6865 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6866 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6867 /*isTarget=*/true); 6868 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6869 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6870 SDLoc(SymbolicCallee), 6871 SymbolicCallee->getValueType(0)); 6872 6873 // Get the real number of arguments participating in the call <numArgs> 6874 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6875 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6876 6877 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6878 // Intrinsics include all meta-operands up to but not including CC. 6879 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6880 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6881 "Not enough arguments provided to the patchpoint intrinsic"); 6882 6883 // For AnyRegCC the arguments are lowered later on manually. 6884 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6885 Type *ReturnTy = 6886 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6887 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6888 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6889 6890 SDNode *CallEnd = Result.second.getNode(); 6891 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6892 CallEnd = CallEnd->getOperand(0).getNode(); 6893 6894 /// Get a call instruction from the call sequence chain. 6895 /// Tail calls are not allowed. 6896 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6897 "Expected a callseq node."); 6898 SDNode *Call = CallEnd->getOperand(0).getNode(); 6899 bool HasGlue = Call->getGluedNode(); 6900 6901 // Replace the target specific call node with the patchable intrinsic. 6902 SmallVector<SDValue, 8> Ops; 6903 6904 // Add the <id> and <numBytes> constants. 6905 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6906 Ops.push_back(DAG.getTargetConstant( 6907 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6908 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6909 Ops.push_back(DAG.getTargetConstant( 6910 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6911 MVT::i32)); 6912 6913 // Add the callee. 6914 Ops.push_back(Callee); 6915 6916 // Adjust <numArgs> to account for any arguments that have been passed on the 6917 // stack instead. 6918 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6919 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6920 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6921 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6922 6923 // Add the calling convention 6924 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6925 6926 // Add the arguments we omitted previously. The register allocator should 6927 // place these in any free register. 6928 if (IsAnyRegCC) 6929 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6930 Ops.push_back(getValue(CS.getArgument(i))); 6931 6932 // Push the arguments from the call instruction up to the register mask. 6933 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6934 Ops.append(Call->op_begin() + 2, e); 6935 6936 // Push live variables for the stack map. 6937 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6938 6939 // Push the register mask info. 6940 if (HasGlue) 6941 Ops.push_back(*(Call->op_end()-2)); 6942 else 6943 Ops.push_back(*(Call->op_end()-1)); 6944 6945 // Push the chain (this is originally the first operand of the call, but 6946 // becomes now the last or second to last operand). 6947 Ops.push_back(*(Call->op_begin())); 6948 6949 // Push the glue flag (last operand). 6950 if (HasGlue) 6951 Ops.push_back(*(Call->op_end()-1)); 6952 6953 SDVTList NodeTys; 6954 if (IsAnyRegCC && HasDef) { 6955 // Create the return types based on the intrinsic definition 6956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6957 SmallVector<EVT, 3> ValueVTs; 6958 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6959 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6960 6961 // There is always a chain and a glue type at the end 6962 ValueVTs.push_back(MVT::Other); 6963 ValueVTs.push_back(MVT::Glue); 6964 NodeTys = DAG.getVTList(ValueVTs); 6965 } else 6966 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6967 6968 // Replace the target specific call node with a PATCHPOINT node. 6969 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6970 dl, NodeTys, Ops); 6971 6972 // Update the NodeMap. 6973 if (HasDef) { 6974 if (IsAnyRegCC) 6975 setValue(CS.getInstruction(), SDValue(MN, 0)); 6976 else 6977 setValue(CS.getInstruction(), Result.first); 6978 } 6979 6980 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6981 // call sequence. Furthermore the location of the chain and glue can change 6982 // when the AnyReg calling convention is used and the intrinsic returns a 6983 // value. 6984 if (IsAnyRegCC && HasDef) { 6985 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6986 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6987 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6988 } else 6989 DAG.ReplaceAllUsesWith(Call, MN); 6990 DAG.DeleteNode(Call); 6991 6992 // Inform the Frame Information that we have a patchpoint in this function. 6993 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6994 } 6995 6996 /// Returns an AttributeSet representing the attributes applied to the return 6997 /// value of the given call. 6998 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6999 SmallVector<Attribute::AttrKind, 2> Attrs; 7000 if (CLI.RetSExt) 7001 Attrs.push_back(Attribute::SExt); 7002 if (CLI.RetZExt) 7003 Attrs.push_back(Attribute::ZExt); 7004 if (CLI.IsInReg) 7005 Attrs.push_back(Attribute::InReg); 7006 7007 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7008 Attrs); 7009 } 7010 7011 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7012 /// implementation, which just calls LowerCall. 7013 /// FIXME: When all targets are 7014 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7015 std::pair<SDValue, SDValue> 7016 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7017 // Handle the incoming return values from the call. 7018 CLI.Ins.clear(); 7019 Type *OrigRetTy = CLI.RetTy; 7020 SmallVector<EVT, 4> RetTys; 7021 SmallVector<uint64_t, 4> Offsets; 7022 auto &DL = CLI.DAG.getDataLayout(); 7023 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7024 7025 SmallVector<ISD::OutputArg, 4> Outs; 7026 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7027 7028 bool CanLowerReturn = 7029 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7030 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7031 7032 SDValue DemoteStackSlot; 7033 int DemoteStackIdx = -100; 7034 if (!CanLowerReturn) { 7035 // FIXME: equivalent assert? 7036 // assert(!CS.hasInAllocaArgument() && 7037 // "sret demotion is incompatible with inalloca"); 7038 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7039 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7040 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7041 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7042 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7043 7044 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7045 ArgListEntry Entry; 7046 Entry.Node = DemoteStackSlot; 7047 Entry.Ty = StackSlotPtrType; 7048 Entry.isSExt = false; 7049 Entry.isZExt = false; 7050 Entry.isInReg = false; 7051 Entry.isSRet = true; 7052 Entry.isNest = false; 7053 Entry.isByVal = false; 7054 Entry.isReturned = false; 7055 Entry.Alignment = Align; 7056 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7057 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7058 7059 // sret demotion isn't compatible with tail-calls, since the sret argument 7060 // points into the callers stack frame. 7061 CLI.IsTailCall = false; 7062 } else { 7063 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7064 EVT VT = RetTys[I]; 7065 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7066 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7067 for (unsigned i = 0; i != NumRegs; ++i) { 7068 ISD::InputArg MyFlags; 7069 MyFlags.VT = RegisterVT; 7070 MyFlags.ArgVT = VT; 7071 MyFlags.Used = CLI.IsReturnValueUsed; 7072 if (CLI.RetSExt) 7073 MyFlags.Flags.setSExt(); 7074 if (CLI.RetZExt) 7075 MyFlags.Flags.setZExt(); 7076 if (CLI.IsInReg) 7077 MyFlags.Flags.setInReg(); 7078 CLI.Ins.push_back(MyFlags); 7079 } 7080 } 7081 } 7082 7083 // Handle all of the outgoing arguments. 7084 CLI.Outs.clear(); 7085 CLI.OutVals.clear(); 7086 ArgListTy &Args = CLI.getArgs(); 7087 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7088 SmallVector<EVT, 4> ValueVTs; 7089 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7090 Type *FinalType = Args[i].Ty; 7091 if (Args[i].isByVal) 7092 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7093 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7094 FinalType, CLI.CallConv, CLI.IsVarArg); 7095 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7096 ++Value) { 7097 EVT VT = ValueVTs[Value]; 7098 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7099 SDValue Op = SDValue(Args[i].Node.getNode(), 7100 Args[i].Node.getResNo() + Value); 7101 ISD::ArgFlagsTy Flags; 7102 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7103 7104 if (Args[i].isZExt) 7105 Flags.setZExt(); 7106 if (Args[i].isSExt) 7107 Flags.setSExt(); 7108 if (Args[i].isInReg) 7109 Flags.setInReg(); 7110 if (Args[i].isSRet) 7111 Flags.setSRet(); 7112 if (Args[i].isByVal) 7113 Flags.setByVal(); 7114 if (Args[i].isInAlloca) { 7115 Flags.setInAlloca(); 7116 // Set the byval flag for CCAssignFn callbacks that don't know about 7117 // inalloca. This way we can know how many bytes we should've allocated 7118 // and how many bytes a callee cleanup function will pop. If we port 7119 // inalloca to more targets, we'll have to add custom inalloca handling 7120 // in the various CC lowering callbacks. 7121 Flags.setByVal(); 7122 } 7123 if (Args[i].isByVal || Args[i].isInAlloca) { 7124 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7125 Type *ElementTy = Ty->getElementType(); 7126 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7127 // For ByVal, alignment should come from FE. BE will guess if this 7128 // info is not there but there are cases it cannot get right. 7129 unsigned FrameAlign; 7130 if (Args[i].Alignment) 7131 FrameAlign = Args[i].Alignment; 7132 else 7133 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7134 Flags.setByValAlign(FrameAlign); 7135 } 7136 if (Args[i].isNest) 7137 Flags.setNest(); 7138 if (NeedsRegBlock) 7139 Flags.setInConsecutiveRegs(); 7140 Flags.setOrigAlign(OriginalAlignment); 7141 7142 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7143 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7144 SmallVector<SDValue, 4> Parts(NumParts); 7145 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7146 7147 if (Args[i].isSExt) 7148 ExtendKind = ISD::SIGN_EXTEND; 7149 else if (Args[i].isZExt) 7150 ExtendKind = ISD::ZERO_EXTEND; 7151 7152 // Conservatively only handle 'returned' on non-vectors for now 7153 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7154 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7155 "unexpected use of 'returned'"); 7156 // Before passing 'returned' to the target lowering code, ensure that 7157 // either the register MVT and the actual EVT are the same size or that 7158 // the return value and argument are extended in the same way; in these 7159 // cases it's safe to pass the argument register value unchanged as the 7160 // return register value (although it's at the target's option whether 7161 // to do so) 7162 // TODO: allow code generation to take advantage of partially preserved 7163 // registers rather than clobbering the entire register when the 7164 // parameter extension method is not compatible with the return 7165 // extension method 7166 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7167 (ExtendKind != ISD::ANY_EXTEND && 7168 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7169 Flags.setReturned(); 7170 } 7171 7172 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7173 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7174 7175 for (unsigned j = 0; j != NumParts; ++j) { 7176 // if it isn't first piece, alignment must be 1 7177 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7178 i < CLI.NumFixedArgs, 7179 i, j*Parts[j].getValueType().getStoreSize()); 7180 if (NumParts > 1 && j == 0) 7181 MyFlags.Flags.setSplit(); 7182 else if (j != 0) { 7183 MyFlags.Flags.setOrigAlign(1); 7184 if (j == NumParts - 1) 7185 MyFlags.Flags.setSplitEnd(); 7186 } 7187 7188 CLI.Outs.push_back(MyFlags); 7189 CLI.OutVals.push_back(Parts[j]); 7190 } 7191 7192 if (NeedsRegBlock && Value == NumValues - 1) 7193 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7194 } 7195 } 7196 7197 SmallVector<SDValue, 4> InVals; 7198 CLI.Chain = LowerCall(CLI, InVals); 7199 7200 // Verify that the target's LowerCall behaved as expected. 7201 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7202 "LowerCall didn't return a valid chain!"); 7203 assert((!CLI.IsTailCall || InVals.empty()) && 7204 "LowerCall emitted a return value for a tail call!"); 7205 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7206 "LowerCall didn't emit the correct number of values!"); 7207 7208 // For a tail call, the return value is merely live-out and there aren't 7209 // any nodes in the DAG representing it. Return a special value to 7210 // indicate that a tail call has been emitted and no more Instructions 7211 // should be processed in the current block. 7212 if (CLI.IsTailCall) { 7213 CLI.DAG.setRoot(CLI.Chain); 7214 return std::make_pair(SDValue(), SDValue()); 7215 } 7216 7217 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7218 assert(InVals[i].getNode() && 7219 "LowerCall emitted a null value!"); 7220 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7221 "LowerCall emitted a value with the wrong type!"); 7222 }); 7223 7224 SmallVector<SDValue, 4> ReturnValues; 7225 if (!CanLowerReturn) { 7226 // The instruction result is the result of loading from the 7227 // hidden sret parameter. 7228 SmallVector<EVT, 1> PVTs; 7229 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7230 7231 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7232 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7233 EVT PtrVT = PVTs[0]; 7234 7235 unsigned NumValues = RetTys.size(); 7236 ReturnValues.resize(NumValues); 7237 SmallVector<SDValue, 4> Chains(NumValues); 7238 7239 // An aggregate return value cannot wrap around the address space, so 7240 // offsets to its parts don't wrap either. 7241 SDNodeFlags Flags; 7242 Flags.setNoUnsignedWrap(true); 7243 7244 for (unsigned i = 0; i < NumValues; ++i) { 7245 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7246 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7247 PtrVT), &Flags); 7248 SDValue L = CLI.DAG.getLoad( 7249 RetTys[i], CLI.DL, CLI.Chain, Add, 7250 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7251 DemoteStackIdx, Offsets[i]), 7252 false, false, false, 1); 7253 ReturnValues[i] = L; 7254 Chains[i] = L.getValue(1); 7255 } 7256 7257 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7258 } else { 7259 // Collect the legal value parts into potentially illegal values 7260 // that correspond to the original function's return values. 7261 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7262 if (CLI.RetSExt) 7263 AssertOp = ISD::AssertSext; 7264 else if (CLI.RetZExt) 7265 AssertOp = ISD::AssertZext; 7266 unsigned CurReg = 0; 7267 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7268 EVT VT = RetTys[I]; 7269 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7270 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7271 7272 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7273 NumRegs, RegisterVT, VT, nullptr, 7274 AssertOp)); 7275 CurReg += NumRegs; 7276 } 7277 7278 // For a function returning void, there is no return value. We can't create 7279 // such a node, so we just return a null return value in that case. In 7280 // that case, nothing will actually look at the value. 7281 if (ReturnValues.empty()) 7282 return std::make_pair(SDValue(), CLI.Chain); 7283 } 7284 7285 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7286 CLI.DAG.getVTList(RetTys), ReturnValues); 7287 return std::make_pair(Res, CLI.Chain); 7288 } 7289 7290 void TargetLowering::LowerOperationWrapper(SDNode *N, 7291 SmallVectorImpl<SDValue> &Results, 7292 SelectionDAG &DAG) const { 7293 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7294 if (Res.getNode()) 7295 Results.push_back(Res); 7296 } 7297 7298 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7299 llvm_unreachable("LowerOperation not implemented for this target!"); 7300 } 7301 7302 void 7303 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7304 SDValue Op = getNonRegisterValue(V); 7305 assert((Op.getOpcode() != ISD::CopyFromReg || 7306 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7307 "Copy from a reg to the same reg!"); 7308 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7309 7310 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7311 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7312 V->getType()); 7313 SDValue Chain = DAG.getEntryNode(); 7314 7315 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7316 FuncInfo.PreferredExtendType.end()) 7317 ? ISD::ANY_EXTEND 7318 : FuncInfo.PreferredExtendType[V]; 7319 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7320 PendingExports.push_back(Chain); 7321 } 7322 7323 #include "llvm/CodeGen/SelectionDAGISel.h" 7324 7325 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7326 /// entry block, return true. This includes arguments used by switches, since 7327 /// the switch may expand into multiple basic blocks. 7328 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7329 // With FastISel active, we may be splitting blocks, so force creation 7330 // of virtual registers for all non-dead arguments. 7331 if (FastISel) 7332 return A->use_empty(); 7333 7334 const BasicBlock &Entry = A->getParent()->front(); 7335 for (const User *U : A->users()) 7336 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7337 return false; // Use not in entry block. 7338 7339 return true; 7340 } 7341 7342 void SelectionDAGISel::LowerArguments(const Function &F) { 7343 SelectionDAG &DAG = SDB->DAG; 7344 SDLoc dl = SDB->getCurSDLoc(); 7345 const DataLayout &DL = DAG.getDataLayout(); 7346 SmallVector<ISD::InputArg, 16> Ins; 7347 7348 if (!FuncInfo->CanLowerReturn) { 7349 // Put in an sret pointer parameter before all the other parameters. 7350 SmallVector<EVT, 1> ValueVTs; 7351 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7352 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7353 7354 // NOTE: Assuming that a pointer will never break down to more than one VT 7355 // or one register. 7356 ISD::ArgFlagsTy Flags; 7357 Flags.setSRet(); 7358 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7359 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7360 ISD::InputArg::NoArgIndex, 0); 7361 Ins.push_back(RetArg); 7362 } 7363 7364 // Set up the incoming argument description vector. 7365 unsigned Idx = 1; 7366 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7367 I != E; ++I, ++Idx) { 7368 SmallVector<EVT, 4> ValueVTs; 7369 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7370 bool isArgValueUsed = !I->use_empty(); 7371 unsigned PartBase = 0; 7372 Type *FinalType = I->getType(); 7373 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7374 FinalType = cast<PointerType>(FinalType)->getElementType(); 7375 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7376 FinalType, F.getCallingConv(), F.isVarArg()); 7377 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7378 Value != NumValues; ++Value) { 7379 EVT VT = ValueVTs[Value]; 7380 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7381 ISD::ArgFlagsTy Flags; 7382 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7383 7384 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7385 Flags.setZExt(); 7386 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7387 Flags.setSExt(); 7388 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7389 Flags.setInReg(); 7390 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7391 Flags.setSRet(); 7392 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7393 Flags.setByVal(); 7394 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7395 Flags.setInAlloca(); 7396 // Set the byval flag for CCAssignFn callbacks that don't know about 7397 // inalloca. This way we can know how many bytes we should've allocated 7398 // and how many bytes a callee cleanup function will pop. If we port 7399 // inalloca to more targets, we'll have to add custom inalloca handling 7400 // in the various CC lowering callbacks. 7401 Flags.setByVal(); 7402 } 7403 if (F.getCallingConv() == CallingConv::X86_INTR) { 7404 // IA Interrupt passes frame (1st parameter) by value in the stack. 7405 if (Idx == 1) 7406 Flags.setByVal(); 7407 } 7408 if (Flags.isByVal() || Flags.isInAlloca()) { 7409 PointerType *Ty = cast<PointerType>(I->getType()); 7410 Type *ElementTy = Ty->getElementType(); 7411 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7412 // For ByVal, alignment should be passed from FE. BE will guess if 7413 // this info is not there but there are cases it cannot get right. 7414 unsigned FrameAlign; 7415 if (F.getParamAlignment(Idx)) 7416 FrameAlign = F.getParamAlignment(Idx); 7417 else 7418 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7419 Flags.setByValAlign(FrameAlign); 7420 } 7421 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7422 Flags.setNest(); 7423 if (NeedsRegBlock) 7424 Flags.setInConsecutiveRegs(); 7425 Flags.setOrigAlign(OriginalAlignment); 7426 7427 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7428 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7429 for (unsigned i = 0; i != NumRegs; ++i) { 7430 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7431 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7432 if (NumRegs > 1 && i == 0) 7433 MyFlags.Flags.setSplit(); 7434 // if it isn't first piece, alignment must be 1 7435 else if (i > 0) { 7436 MyFlags.Flags.setOrigAlign(1); 7437 if (i == NumRegs - 1) 7438 MyFlags.Flags.setSplitEnd(); 7439 } 7440 Ins.push_back(MyFlags); 7441 } 7442 if (NeedsRegBlock && Value == NumValues - 1) 7443 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7444 PartBase += VT.getStoreSize(); 7445 } 7446 } 7447 7448 // Call the target to set up the argument values. 7449 SmallVector<SDValue, 8> InVals; 7450 SDValue NewRoot = TLI->LowerFormalArguments( 7451 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7452 7453 // Verify that the target's LowerFormalArguments behaved as expected. 7454 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7455 "LowerFormalArguments didn't return a valid chain!"); 7456 assert(InVals.size() == Ins.size() && 7457 "LowerFormalArguments didn't emit the correct number of values!"); 7458 DEBUG({ 7459 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7460 assert(InVals[i].getNode() && 7461 "LowerFormalArguments emitted a null value!"); 7462 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7463 "LowerFormalArguments emitted a value with the wrong type!"); 7464 } 7465 }); 7466 7467 // Update the DAG with the new chain value resulting from argument lowering. 7468 DAG.setRoot(NewRoot); 7469 7470 // Set up the argument values. 7471 unsigned i = 0; 7472 Idx = 1; 7473 if (!FuncInfo->CanLowerReturn) { 7474 // Create a virtual register for the sret pointer, and put in a copy 7475 // from the sret argument into it. 7476 SmallVector<EVT, 1> ValueVTs; 7477 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7478 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7479 MVT VT = ValueVTs[0].getSimpleVT(); 7480 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7481 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7482 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7483 RegVT, VT, nullptr, AssertOp); 7484 7485 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7486 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7487 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7488 FuncInfo->DemoteRegister = SRetReg; 7489 NewRoot = 7490 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7491 DAG.setRoot(NewRoot); 7492 7493 // i indexes lowered arguments. Bump it past the hidden sret argument. 7494 // Idx indexes LLVM arguments. Don't touch it. 7495 ++i; 7496 } 7497 7498 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7499 ++I, ++Idx) { 7500 SmallVector<SDValue, 4> ArgValues; 7501 SmallVector<EVT, 4> ValueVTs; 7502 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7503 unsigned NumValues = ValueVTs.size(); 7504 7505 // If this argument is unused then remember its value. It is used to generate 7506 // debugging information. 7507 if (I->use_empty() && NumValues) { 7508 SDB->setUnusedArgValue(&*I, InVals[i]); 7509 7510 // Also remember any frame index for use in FastISel. 7511 if (FrameIndexSDNode *FI = 7512 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7513 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7514 } 7515 7516 for (unsigned Val = 0; Val != NumValues; ++Val) { 7517 EVT VT = ValueVTs[Val]; 7518 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7519 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7520 7521 if (!I->use_empty()) { 7522 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7523 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7524 AssertOp = ISD::AssertSext; 7525 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7526 AssertOp = ISD::AssertZext; 7527 7528 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7529 NumParts, PartVT, VT, 7530 nullptr, AssertOp)); 7531 } 7532 7533 i += NumParts; 7534 } 7535 7536 // We don't need to do anything else for unused arguments. 7537 if (ArgValues.empty()) 7538 continue; 7539 7540 // Note down frame index. 7541 if (FrameIndexSDNode *FI = 7542 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7543 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7544 7545 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7546 SDB->getCurSDLoc()); 7547 7548 SDB->setValue(&*I, Res); 7549 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7550 if (LoadSDNode *LNode = 7551 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7552 if (FrameIndexSDNode *FI = 7553 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7554 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7555 } 7556 7557 // If this argument is live outside of the entry block, insert a copy from 7558 // wherever we got it to the vreg that other BB's will reference it as. 7559 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7560 // If we can, though, try to skip creating an unnecessary vreg. 7561 // FIXME: This isn't very clean... it would be nice to make this more 7562 // general. It's also subtly incompatible with the hacks FastISel 7563 // uses with vregs. 7564 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7565 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7566 FuncInfo->ValueMap[&*I] = Reg; 7567 continue; 7568 } 7569 } 7570 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7571 FuncInfo->InitializeRegForValue(&*I); 7572 SDB->CopyToExportRegsIfNeeded(&*I); 7573 } 7574 } 7575 7576 assert(i == InVals.size() && "Argument register count mismatch!"); 7577 7578 // Finally, if the target has anything special to do, allow it to do so. 7579 EmitFunctionEntryCode(); 7580 } 7581 7582 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7583 /// ensure constants are generated when needed. Remember the virtual registers 7584 /// that need to be added to the Machine PHI nodes as input. We cannot just 7585 /// directly add them, because expansion might result in multiple MBB's for one 7586 /// BB. As such, the start of the BB might correspond to a different MBB than 7587 /// the end. 7588 /// 7589 void 7590 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7591 const TerminatorInst *TI = LLVMBB->getTerminator(); 7592 7593 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7594 7595 // Check PHI nodes in successors that expect a value to be available from this 7596 // block. 7597 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7598 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7599 if (!isa<PHINode>(SuccBB->begin())) continue; 7600 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7601 7602 // If this terminator has multiple identical successors (common for 7603 // switches), only handle each succ once. 7604 if (!SuccsHandled.insert(SuccMBB).second) 7605 continue; 7606 7607 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7608 7609 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7610 // nodes and Machine PHI nodes, but the incoming operands have not been 7611 // emitted yet. 7612 for (BasicBlock::const_iterator I = SuccBB->begin(); 7613 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7614 // Ignore dead phi's. 7615 if (PN->use_empty()) continue; 7616 7617 // Skip empty types 7618 if (PN->getType()->isEmptyTy()) 7619 continue; 7620 7621 unsigned Reg; 7622 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7623 7624 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7625 unsigned &RegOut = ConstantsOut[C]; 7626 if (RegOut == 0) { 7627 RegOut = FuncInfo.CreateRegs(C->getType()); 7628 CopyValueToVirtualRegister(C, RegOut); 7629 } 7630 Reg = RegOut; 7631 } else { 7632 DenseMap<const Value *, unsigned>::iterator I = 7633 FuncInfo.ValueMap.find(PHIOp); 7634 if (I != FuncInfo.ValueMap.end()) 7635 Reg = I->second; 7636 else { 7637 assert(isa<AllocaInst>(PHIOp) && 7638 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7639 "Didn't codegen value into a register!??"); 7640 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7641 CopyValueToVirtualRegister(PHIOp, Reg); 7642 } 7643 } 7644 7645 // Remember that this register needs to added to the machine PHI node as 7646 // the input for this MBB. 7647 SmallVector<EVT, 4> ValueVTs; 7648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7649 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7650 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7651 EVT VT = ValueVTs[vti]; 7652 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7653 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7654 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7655 Reg += NumRegisters; 7656 } 7657 } 7658 } 7659 7660 ConstantsOut.clear(); 7661 } 7662 7663 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7664 /// is 0. 7665 MachineBasicBlock * 7666 SelectionDAGBuilder::StackProtectorDescriptor:: 7667 AddSuccessorMBB(const BasicBlock *BB, 7668 MachineBasicBlock *ParentMBB, 7669 bool IsLikely, 7670 MachineBasicBlock *SuccMBB) { 7671 // If SuccBB has not been created yet, create it. 7672 if (!SuccMBB) { 7673 MachineFunction *MF = ParentMBB->getParent(); 7674 MachineFunction::iterator BBI(ParentMBB); 7675 SuccMBB = MF->CreateMachineBasicBlock(BB); 7676 MF->insert(++BBI, SuccMBB); 7677 } 7678 // Add it as a successor of ParentMBB. 7679 ParentMBB->addSuccessor( 7680 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7681 return SuccMBB; 7682 } 7683 7684 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7685 MachineFunction::iterator I(MBB); 7686 if (++I == FuncInfo.MF->end()) 7687 return nullptr; 7688 return &*I; 7689 } 7690 7691 /// During lowering new call nodes can be created (such as memset, etc.). 7692 /// Those will become new roots of the current DAG, but complications arise 7693 /// when they are tail calls. In such cases, the call lowering will update 7694 /// the root, but the builder still needs to know that a tail call has been 7695 /// lowered in order to avoid generating an additional return. 7696 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7697 // If the node is null, we do have a tail call. 7698 if (MaybeTC.getNode() != nullptr) 7699 DAG.setRoot(MaybeTC); 7700 else 7701 HasTailCall = true; 7702 } 7703 7704 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7705 unsigned *TotalCases, unsigned First, 7706 unsigned Last) { 7707 assert(Last >= First); 7708 assert(TotalCases[Last] >= TotalCases[First]); 7709 7710 APInt LowCase = Clusters[First].Low->getValue(); 7711 APInt HighCase = Clusters[Last].High->getValue(); 7712 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7713 7714 // FIXME: A range of consecutive cases has 100% density, but only requires one 7715 // comparison to lower. We should discriminate against such consecutive ranges 7716 // in jump tables. 7717 7718 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7719 uint64_t Range = Diff + 1; 7720 7721 uint64_t NumCases = 7722 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7723 7724 assert(NumCases < UINT64_MAX / 100); 7725 assert(Range >= NumCases); 7726 7727 return NumCases * 100 >= Range * MinJumpTableDensity; 7728 } 7729 7730 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7731 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7732 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7733 } 7734 7735 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7736 unsigned First, unsigned Last, 7737 const SwitchInst *SI, 7738 MachineBasicBlock *DefaultMBB, 7739 CaseCluster &JTCluster) { 7740 assert(First <= Last); 7741 7742 auto Prob = BranchProbability::getZero(); 7743 unsigned NumCmps = 0; 7744 std::vector<MachineBasicBlock*> Table; 7745 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7746 7747 // Initialize probabilities in JTProbs. 7748 for (unsigned I = First; I <= Last; ++I) 7749 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7750 7751 for (unsigned I = First; I <= Last; ++I) { 7752 assert(Clusters[I].Kind == CC_Range); 7753 Prob += Clusters[I].Prob; 7754 APInt Low = Clusters[I].Low->getValue(); 7755 APInt High = Clusters[I].High->getValue(); 7756 NumCmps += (Low == High) ? 1 : 2; 7757 if (I != First) { 7758 // Fill the gap between this and the previous cluster. 7759 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7760 assert(PreviousHigh.slt(Low)); 7761 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7762 for (uint64_t J = 0; J < Gap; J++) 7763 Table.push_back(DefaultMBB); 7764 } 7765 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7766 for (uint64_t J = 0; J < ClusterSize; ++J) 7767 Table.push_back(Clusters[I].MBB); 7768 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7769 } 7770 7771 unsigned NumDests = JTProbs.size(); 7772 if (isSuitableForBitTests(NumDests, NumCmps, 7773 Clusters[First].Low->getValue(), 7774 Clusters[Last].High->getValue())) { 7775 // Clusters[First..Last] should be lowered as bit tests instead. 7776 return false; 7777 } 7778 7779 // Create the MBB that will load from and jump through the table. 7780 // Note: We create it here, but it's not inserted into the function yet. 7781 MachineFunction *CurMF = FuncInfo.MF; 7782 MachineBasicBlock *JumpTableMBB = 7783 CurMF->CreateMachineBasicBlock(SI->getParent()); 7784 7785 // Add successors. Note: use table order for determinism. 7786 SmallPtrSet<MachineBasicBlock *, 8> Done; 7787 for (MachineBasicBlock *Succ : Table) { 7788 if (Done.count(Succ)) 7789 continue; 7790 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7791 Done.insert(Succ); 7792 } 7793 JumpTableMBB->normalizeSuccProbs(); 7794 7795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7796 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7797 ->createJumpTableIndex(Table); 7798 7799 // Set up the jump table info. 7800 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7801 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7802 Clusters[Last].High->getValue(), SI->getCondition(), 7803 nullptr, false); 7804 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7805 7806 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7807 JTCases.size() - 1, Prob); 7808 return true; 7809 } 7810 7811 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7812 const SwitchInst *SI, 7813 MachineBasicBlock *DefaultMBB) { 7814 #ifndef NDEBUG 7815 // Clusters must be non-empty, sorted, and only contain Range clusters. 7816 assert(!Clusters.empty()); 7817 for (CaseCluster &C : Clusters) 7818 assert(C.Kind == CC_Range); 7819 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7820 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7821 #endif 7822 7823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7824 if (!areJTsAllowed(TLI)) 7825 return; 7826 7827 const int64_t N = Clusters.size(); 7828 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7829 7830 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7831 SmallVector<unsigned, 8> TotalCases(N); 7832 7833 for (unsigned i = 0; i < N; ++i) { 7834 APInt Hi = Clusters[i].High->getValue(); 7835 APInt Lo = Clusters[i].Low->getValue(); 7836 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7837 if (i != 0) 7838 TotalCases[i] += TotalCases[i - 1]; 7839 } 7840 7841 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7842 // Cheap case: the whole range might be suitable for jump table. 7843 CaseCluster JTCluster; 7844 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7845 Clusters[0] = JTCluster; 7846 Clusters.resize(1); 7847 return; 7848 } 7849 } 7850 7851 // The algorithm below is not suitable for -O0. 7852 if (TM.getOptLevel() == CodeGenOpt::None) 7853 return; 7854 7855 // Split Clusters into minimum number of dense partitions. The algorithm uses 7856 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7857 // for the Case Statement'" (1994), but builds the MinPartitions array in 7858 // reverse order to make it easier to reconstruct the partitions in ascending 7859 // order. In the choice between two optimal partitionings, it picks the one 7860 // which yields more jump tables. 7861 7862 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7863 SmallVector<unsigned, 8> MinPartitions(N); 7864 // LastElement[i] is the last element of the partition starting at i. 7865 SmallVector<unsigned, 8> LastElement(N); 7866 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7867 SmallVector<unsigned, 8> NumTables(N); 7868 7869 // Base case: There is only one way to partition Clusters[N-1]. 7870 MinPartitions[N - 1] = 1; 7871 LastElement[N - 1] = N - 1; 7872 assert(MinJumpTableSize > 1); 7873 NumTables[N - 1] = 0; 7874 7875 // Note: loop indexes are signed to avoid underflow. 7876 for (int64_t i = N - 2; i >= 0; i--) { 7877 // Find optimal partitioning of Clusters[i..N-1]. 7878 // Baseline: Put Clusters[i] into a partition on its own. 7879 MinPartitions[i] = MinPartitions[i + 1] + 1; 7880 LastElement[i] = i; 7881 NumTables[i] = NumTables[i + 1]; 7882 7883 // Search for a solution that results in fewer partitions. 7884 for (int64_t j = N - 1; j > i; j--) { 7885 // Try building a partition from Clusters[i..j]. 7886 if (isDense(Clusters, &TotalCases[0], i, j)) { 7887 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7888 bool IsTable = j - i + 1 >= MinJumpTableSize; 7889 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7890 7891 // If this j leads to fewer partitions, or same number of partitions 7892 // with more lookup tables, it is a better partitioning. 7893 if (NumPartitions < MinPartitions[i] || 7894 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7895 MinPartitions[i] = NumPartitions; 7896 LastElement[i] = j; 7897 NumTables[i] = Tables; 7898 } 7899 } 7900 } 7901 } 7902 7903 // Iterate over the partitions, replacing some with jump tables in-place. 7904 unsigned DstIndex = 0; 7905 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7906 Last = LastElement[First]; 7907 assert(Last >= First); 7908 assert(DstIndex <= First); 7909 unsigned NumClusters = Last - First + 1; 7910 7911 CaseCluster JTCluster; 7912 if (NumClusters >= MinJumpTableSize && 7913 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7914 Clusters[DstIndex++] = JTCluster; 7915 } else { 7916 for (unsigned I = First; I <= Last; ++I) 7917 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7918 } 7919 } 7920 Clusters.resize(DstIndex); 7921 } 7922 7923 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7924 // FIXME: Using the pointer type doesn't seem ideal. 7925 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7926 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7927 return Range <= BW; 7928 } 7929 7930 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7931 unsigned NumCmps, 7932 const APInt &Low, 7933 const APInt &High) { 7934 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7935 // range of cases both require only one branch to lower. Just looking at the 7936 // number of clusters and destinations should be enough to decide whether to 7937 // build bit tests. 7938 7939 // To lower a range with bit tests, the range must fit the bitwidth of a 7940 // machine word. 7941 if (!rangeFitsInWord(Low, High)) 7942 return false; 7943 7944 // Decide whether it's profitable to lower this range with bit tests. Each 7945 // destination requires a bit test and branch, and there is an overall range 7946 // check branch. For a small number of clusters, separate comparisons might be 7947 // cheaper, and for many destinations, splitting the range might be better. 7948 return (NumDests == 1 && NumCmps >= 3) || 7949 (NumDests == 2 && NumCmps >= 5) || 7950 (NumDests == 3 && NumCmps >= 6); 7951 } 7952 7953 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7954 unsigned First, unsigned Last, 7955 const SwitchInst *SI, 7956 CaseCluster &BTCluster) { 7957 assert(First <= Last); 7958 if (First == Last) 7959 return false; 7960 7961 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7962 unsigned NumCmps = 0; 7963 for (int64_t I = First; I <= Last; ++I) { 7964 assert(Clusters[I].Kind == CC_Range); 7965 Dests.set(Clusters[I].MBB->getNumber()); 7966 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7967 } 7968 unsigned NumDests = Dests.count(); 7969 7970 APInt Low = Clusters[First].Low->getValue(); 7971 APInt High = Clusters[Last].High->getValue(); 7972 assert(Low.slt(High)); 7973 7974 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7975 return false; 7976 7977 APInt LowBound; 7978 APInt CmpRange; 7979 7980 const int BitWidth = DAG.getTargetLoweringInfo() 7981 .getPointerTy(DAG.getDataLayout()) 7982 .getSizeInBits(); 7983 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7984 7985 // Check if the clusters cover a contiguous range such that no value in the 7986 // range will jump to the default statement. 7987 bool ContiguousRange = true; 7988 for (int64_t I = First + 1; I <= Last; ++I) { 7989 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7990 ContiguousRange = false; 7991 break; 7992 } 7993 } 7994 7995 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7996 // Optimize the case where all the case values fit in a word without having 7997 // to subtract minValue. In this case, we can optimize away the subtraction. 7998 LowBound = APInt::getNullValue(Low.getBitWidth()); 7999 CmpRange = High; 8000 ContiguousRange = false; 8001 } else { 8002 LowBound = Low; 8003 CmpRange = High - Low; 8004 } 8005 8006 CaseBitsVector CBV; 8007 auto TotalProb = BranchProbability::getZero(); 8008 for (unsigned i = First; i <= Last; ++i) { 8009 // Find the CaseBits for this destination. 8010 unsigned j; 8011 for (j = 0; j < CBV.size(); ++j) 8012 if (CBV[j].BB == Clusters[i].MBB) 8013 break; 8014 if (j == CBV.size()) 8015 CBV.push_back( 8016 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8017 CaseBits *CB = &CBV[j]; 8018 8019 // Update Mask, Bits and ExtraProb. 8020 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8021 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8022 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8023 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8024 CB->Bits += Hi - Lo + 1; 8025 CB->ExtraProb += Clusters[i].Prob; 8026 TotalProb += Clusters[i].Prob; 8027 } 8028 8029 BitTestInfo BTI; 8030 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8031 // Sort by probability first, number of bits second. 8032 if (a.ExtraProb != b.ExtraProb) 8033 return a.ExtraProb > b.ExtraProb; 8034 return a.Bits > b.Bits; 8035 }); 8036 8037 for (auto &CB : CBV) { 8038 MachineBasicBlock *BitTestBB = 8039 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8040 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8041 } 8042 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8043 SI->getCondition(), -1U, MVT::Other, false, 8044 ContiguousRange, nullptr, nullptr, std::move(BTI), 8045 TotalProb); 8046 8047 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8048 BitTestCases.size() - 1, TotalProb); 8049 return true; 8050 } 8051 8052 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8053 const SwitchInst *SI) { 8054 // Partition Clusters into as few subsets as possible, where each subset has a 8055 // range that fits in a machine word and has <= 3 unique destinations. 8056 8057 #ifndef NDEBUG 8058 // Clusters must be sorted and contain Range or JumpTable clusters. 8059 assert(!Clusters.empty()); 8060 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8061 for (const CaseCluster &C : Clusters) 8062 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8063 for (unsigned i = 1; i < Clusters.size(); ++i) 8064 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8065 #endif 8066 8067 // The algorithm below is not suitable for -O0. 8068 if (TM.getOptLevel() == CodeGenOpt::None) 8069 return; 8070 8071 // If target does not have legal shift left, do not emit bit tests at all. 8072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8073 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8074 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8075 return; 8076 8077 int BitWidth = PTy.getSizeInBits(); 8078 const int64_t N = Clusters.size(); 8079 8080 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8081 SmallVector<unsigned, 8> MinPartitions(N); 8082 // LastElement[i] is the last element of the partition starting at i. 8083 SmallVector<unsigned, 8> LastElement(N); 8084 8085 // FIXME: This might not be the best algorithm for finding bit test clusters. 8086 8087 // Base case: There is only one way to partition Clusters[N-1]. 8088 MinPartitions[N - 1] = 1; 8089 LastElement[N - 1] = N - 1; 8090 8091 // Note: loop indexes are signed to avoid underflow. 8092 for (int64_t i = N - 2; i >= 0; --i) { 8093 // Find optimal partitioning of Clusters[i..N-1]. 8094 // Baseline: Put Clusters[i] into a partition on its own. 8095 MinPartitions[i] = MinPartitions[i + 1] + 1; 8096 LastElement[i] = i; 8097 8098 // Search for a solution that results in fewer partitions. 8099 // Note: the search is limited by BitWidth, reducing time complexity. 8100 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8101 // Try building a partition from Clusters[i..j]. 8102 8103 // Check the range. 8104 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8105 Clusters[j].High->getValue())) 8106 continue; 8107 8108 // Check nbr of destinations and cluster types. 8109 // FIXME: This works, but doesn't seem very efficient. 8110 bool RangesOnly = true; 8111 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8112 for (int64_t k = i; k <= j; k++) { 8113 if (Clusters[k].Kind != CC_Range) { 8114 RangesOnly = false; 8115 break; 8116 } 8117 Dests.set(Clusters[k].MBB->getNumber()); 8118 } 8119 if (!RangesOnly || Dests.count() > 3) 8120 break; 8121 8122 // Check if it's a better partition. 8123 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8124 if (NumPartitions < MinPartitions[i]) { 8125 // Found a better partition. 8126 MinPartitions[i] = NumPartitions; 8127 LastElement[i] = j; 8128 } 8129 } 8130 } 8131 8132 // Iterate over the partitions, replacing with bit-test clusters in-place. 8133 unsigned DstIndex = 0; 8134 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8135 Last = LastElement[First]; 8136 assert(First <= Last); 8137 assert(DstIndex <= First); 8138 8139 CaseCluster BitTestCluster; 8140 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8141 Clusters[DstIndex++] = BitTestCluster; 8142 } else { 8143 size_t NumClusters = Last - First + 1; 8144 std::memmove(&Clusters[DstIndex], &Clusters[First], 8145 sizeof(Clusters[0]) * NumClusters); 8146 DstIndex += NumClusters; 8147 } 8148 } 8149 Clusters.resize(DstIndex); 8150 } 8151 8152 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8153 MachineBasicBlock *SwitchMBB, 8154 MachineBasicBlock *DefaultMBB) { 8155 MachineFunction *CurMF = FuncInfo.MF; 8156 MachineBasicBlock *NextMBB = nullptr; 8157 MachineFunction::iterator BBI(W.MBB); 8158 if (++BBI != FuncInfo.MF->end()) 8159 NextMBB = &*BBI; 8160 8161 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8162 8163 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8164 8165 if (Size == 2 && W.MBB == SwitchMBB) { 8166 // If any two of the cases has the same destination, and if one value 8167 // is the same as the other, but has one bit unset that the other has set, 8168 // use bit manipulation to do two compares at once. For example: 8169 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8170 // TODO: This could be extended to merge any 2 cases in switches with 3 8171 // cases. 8172 // TODO: Handle cases where W.CaseBB != SwitchBB. 8173 CaseCluster &Small = *W.FirstCluster; 8174 CaseCluster &Big = *W.LastCluster; 8175 8176 if (Small.Low == Small.High && Big.Low == Big.High && 8177 Small.MBB == Big.MBB) { 8178 const APInt &SmallValue = Small.Low->getValue(); 8179 const APInt &BigValue = Big.Low->getValue(); 8180 8181 // Check that there is only one bit different. 8182 APInt CommonBit = BigValue ^ SmallValue; 8183 if (CommonBit.isPowerOf2()) { 8184 SDValue CondLHS = getValue(Cond); 8185 EVT VT = CondLHS.getValueType(); 8186 SDLoc DL = getCurSDLoc(); 8187 8188 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8189 DAG.getConstant(CommonBit, DL, VT)); 8190 SDValue Cond = DAG.getSetCC( 8191 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8192 ISD::SETEQ); 8193 8194 // Update successor info. 8195 // Both Small and Big will jump to Small.BB, so we sum up the 8196 // probabilities. 8197 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8198 if (BPI) 8199 addSuccessorWithProb( 8200 SwitchMBB, DefaultMBB, 8201 // The default destination is the first successor in IR. 8202 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8203 else 8204 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8205 8206 // Insert the true branch. 8207 SDValue BrCond = 8208 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8209 DAG.getBasicBlock(Small.MBB)); 8210 // Insert the false branch. 8211 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8212 DAG.getBasicBlock(DefaultMBB)); 8213 8214 DAG.setRoot(BrCond); 8215 return; 8216 } 8217 } 8218 } 8219 8220 if (TM.getOptLevel() != CodeGenOpt::None) { 8221 // Order cases by probability so the most likely case will be checked first. 8222 std::sort(W.FirstCluster, W.LastCluster + 1, 8223 [](const CaseCluster &a, const CaseCluster &b) { 8224 return a.Prob > b.Prob; 8225 }); 8226 8227 // Rearrange the case blocks so that the last one falls through if possible 8228 // without without changing the order of probabilities. 8229 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8230 --I; 8231 if (I->Prob > W.LastCluster->Prob) 8232 break; 8233 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8234 std::swap(*I, *W.LastCluster); 8235 break; 8236 } 8237 } 8238 } 8239 8240 // Compute total probability. 8241 BranchProbability DefaultProb = W.DefaultProb; 8242 BranchProbability UnhandledProbs = DefaultProb; 8243 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8244 UnhandledProbs += I->Prob; 8245 8246 MachineBasicBlock *CurMBB = W.MBB; 8247 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8248 MachineBasicBlock *Fallthrough; 8249 if (I == W.LastCluster) { 8250 // For the last cluster, fall through to the default destination. 8251 Fallthrough = DefaultMBB; 8252 } else { 8253 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8254 CurMF->insert(BBI, Fallthrough); 8255 // Put Cond in a virtual register to make it available from the new blocks. 8256 ExportFromCurrentBlock(Cond); 8257 } 8258 UnhandledProbs -= I->Prob; 8259 8260 switch (I->Kind) { 8261 case CC_JumpTable: { 8262 // FIXME: Optimize away range check based on pivot comparisons. 8263 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8264 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8265 8266 // The jump block hasn't been inserted yet; insert it here. 8267 MachineBasicBlock *JumpMBB = JT->MBB; 8268 CurMF->insert(BBI, JumpMBB); 8269 8270 auto JumpProb = I->Prob; 8271 auto FallthroughProb = UnhandledProbs; 8272 8273 // If the default statement is a target of the jump table, we evenly 8274 // distribute the default probability to successors of CurMBB. Also 8275 // update the probability on the edge from JumpMBB to Fallthrough. 8276 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8277 SE = JumpMBB->succ_end(); 8278 SI != SE; ++SI) { 8279 if (*SI == DefaultMBB) { 8280 JumpProb += DefaultProb / 2; 8281 FallthroughProb -= DefaultProb / 2; 8282 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8283 JumpMBB->normalizeSuccProbs(); 8284 break; 8285 } 8286 } 8287 8288 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8289 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8290 CurMBB->normalizeSuccProbs(); 8291 8292 // The jump table header will be inserted in our current block, do the 8293 // range check, and fall through to our fallthrough block. 8294 JTH->HeaderBB = CurMBB; 8295 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8296 8297 // If we're in the right place, emit the jump table header right now. 8298 if (CurMBB == SwitchMBB) { 8299 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8300 JTH->Emitted = true; 8301 } 8302 break; 8303 } 8304 case CC_BitTests: { 8305 // FIXME: Optimize away range check based on pivot comparisons. 8306 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8307 8308 // The bit test blocks haven't been inserted yet; insert them here. 8309 for (BitTestCase &BTC : BTB->Cases) 8310 CurMF->insert(BBI, BTC.ThisBB); 8311 8312 // Fill in fields of the BitTestBlock. 8313 BTB->Parent = CurMBB; 8314 BTB->Default = Fallthrough; 8315 8316 BTB->DefaultProb = UnhandledProbs; 8317 // If the cases in bit test don't form a contiguous range, we evenly 8318 // distribute the probability on the edge to Fallthrough to two 8319 // successors of CurMBB. 8320 if (!BTB->ContiguousRange) { 8321 BTB->Prob += DefaultProb / 2; 8322 BTB->DefaultProb -= DefaultProb / 2; 8323 } 8324 8325 // If we're in the right place, emit the bit test header right now. 8326 if (CurMBB == SwitchMBB) { 8327 visitBitTestHeader(*BTB, SwitchMBB); 8328 BTB->Emitted = true; 8329 } 8330 break; 8331 } 8332 case CC_Range: { 8333 const Value *RHS, *LHS, *MHS; 8334 ISD::CondCode CC; 8335 if (I->Low == I->High) { 8336 // Check Cond == I->Low. 8337 CC = ISD::SETEQ; 8338 LHS = Cond; 8339 RHS=I->Low; 8340 MHS = nullptr; 8341 } else { 8342 // Check I->Low <= Cond <= I->High. 8343 CC = ISD::SETLE; 8344 LHS = I->Low; 8345 MHS = Cond; 8346 RHS = I->High; 8347 } 8348 8349 // The false probability is the sum of all unhandled cases. 8350 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8351 UnhandledProbs); 8352 8353 if (CurMBB == SwitchMBB) 8354 visitSwitchCase(CB, SwitchMBB); 8355 else 8356 SwitchCases.push_back(CB); 8357 8358 break; 8359 } 8360 } 8361 CurMBB = Fallthrough; 8362 } 8363 } 8364 8365 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8366 CaseClusterIt First, 8367 CaseClusterIt Last) { 8368 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8369 if (X.Prob != CC.Prob) 8370 return X.Prob > CC.Prob; 8371 8372 // Ties are broken by comparing the case value. 8373 return X.Low->getValue().slt(CC.Low->getValue()); 8374 }); 8375 } 8376 8377 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8378 const SwitchWorkListItem &W, 8379 Value *Cond, 8380 MachineBasicBlock *SwitchMBB) { 8381 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8382 "Clusters not sorted?"); 8383 8384 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8385 8386 // Balance the tree based on branch probabilities to create a near-optimal (in 8387 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8388 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8389 CaseClusterIt LastLeft = W.FirstCluster; 8390 CaseClusterIt FirstRight = W.LastCluster; 8391 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8392 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8393 8394 // Move LastLeft and FirstRight towards each other from opposite directions to 8395 // find a partitioning of the clusters which balances the probability on both 8396 // sides. If LeftProb and RightProb are equal, alternate which side is 8397 // taken to ensure 0-probability nodes are distributed evenly. 8398 unsigned I = 0; 8399 while (LastLeft + 1 < FirstRight) { 8400 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8401 LeftProb += (++LastLeft)->Prob; 8402 else 8403 RightProb += (--FirstRight)->Prob; 8404 I++; 8405 } 8406 8407 for (;;) { 8408 // Our binary search tree differs from a typical BST in that ours can have up 8409 // to three values in each leaf. The pivot selection above doesn't take that 8410 // into account, which means the tree might require more nodes and be less 8411 // efficient. We compensate for this here. 8412 8413 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8414 unsigned NumRight = W.LastCluster - FirstRight + 1; 8415 8416 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8417 // If one side has less than 3 clusters, and the other has more than 3, 8418 // consider taking a cluster from the other side. 8419 8420 if (NumLeft < NumRight) { 8421 // Consider moving the first cluster on the right to the left side. 8422 CaseCluster &CC = *FirstRight; 8423 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8424 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8425 if (LeftSideRank <= RightSideRank) { 8426 // Moving the cluster to the left does not demote it. 8427 ++LastLeft; 8428 ++FirstRight; 8429 continue; 8430 } 8431 } else { 8432 assert(NumRight < NumLeft); 8433 // Consider moving the last element on the left to the right side. 8434 CaseCluster &CC = *LastLeft; 8435 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8436 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8437 if (RightSideRank <= LeftSideRank) { 8438 // Moving the cluster to the right does not demot it. 8439 --LastLeft; 8440 --FirstRight; 8441 continue; 8442 } 8443 } 8444 } 8445 break; 8446 } 8447 8448 assert(LastLeft + 1 == FirstRight); 8449 assert(LastLeft >= W.FirstCluster); 8450 assert(FirstRight <= W.LastCluster); 8451 8452 // Use the first element on the right as pivot since we will make less-than 8453 // comparisons against it. 8454 CaseClusterIt PivotCluster = FirstRight; 8455 assert(PivotCluster > W.FirstCluster); 8456 assert(PivotCluster <= W.LastCluster); 8457 8458 CaseClusterIt FirstLeft = W.FirstCluster; 8459 CaseClusterIt LastRight = W.LastCluster; 8460 8461 const ConstantInt *Pivot = PivotCluster->Low; 8462 8463 // New blocks will be inserted immediately after the current one. 8464 MachineFunction::iterator BBI(W.MBB); 8465 ++BBI; 8466 8467 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8468 // we can branch to its destination directly if it's squeezed exactly in 8469 // between the known lower bound and Pivot - 1. 8470 MachineBasicBlock *LeftMBB; 8471 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8472 FirstLeft->Low == W.GE && 8473 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8474 LeftMBB = FirstLeft->MBB; 8475 } else { 8476 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8477 FuncInfo.MF->insert(BBI, LeftMBB); 8478 WorkList.push_back( 8479 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8480 // Put Cond in a virtual register to make it available from the new blocks. 8481 ExportFromCurrentBlock(Cond); 8482 } 8483 8484 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8485 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8486 // directly if RHS.High equals the current upper bound. 8487 MachineBasicBlock *RightMBB; 8488 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8489 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8490 RightMBB = FirstRight->MBB; 8491 } else { 8492 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8493 FuncInfo.MF->insert(BBI, RightMBB); 8494 WorkList.push_back( 8495 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8496 // Put Cond in a virtual register to make it available from the new blocks. 8497 ExportFromCurrentBlock(Cond); 8498 } 8499 8500 // Create the CaseBlock record that will be used to lower the branch. 8501 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8502 LeftProb, RightProb); 8503 8504 if (W.MBB == SwitchMBB) 8505 visitSwitchCase(CB, SwitchMBB); 8506 else 8507 SwitchCases.push_back(CB); 8508 } 8509 8510 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8511 // Extract cases from the switch. 8512 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8513 CaseClusterVector Clusters; 8514 Clusters.reserve(SI.getNumCases()); 8515 for (auto I : SI.cases()) { 8516 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8517 const ConstantInt *CaseVal = I.getCaseValue(); 8518 BranchProbability Prob = 8519 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8520 : BranchProbability(1, SI.getNumCases() + 1); 8521 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8522 } 8523 8524 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8525 8526 // Cluster adjacent cases with the same destination. We do this at all 8527 // optimization levels because it's cheap to do and will make codegen faster 8528 // if there are many clusters. 8529 sortAndRangeify(Clusters); 8530 8531 if (TM.getOptLevel() != CodeGenOpt::None) { 8532 // Replace an unreachable default with the most popular destination. 8533 // FIXME: Exploit unreachable default more aggressively. 8534 bool UnreachableDefault = 8535 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8536 if (UnreachableDefault && !Clusters.empty()) { 8537 DenseMap<const BasicBlock *, unsigned> Popularity; 8538 unsigned MaxPop = 0; 8539 const BasicBlock *MaxBB = nullptr; 8540 for (auto I : SI.cases()) { 8541 const BasicBlock *BB = I.getCaseSuccessor(); 8542 if (++Popularity[BB] > MaxPop) { 8543 MaxPop = Popularity[BB]; 8544 MaxBB = BB; 8545 } 8546 } 8547 // Set new default. 8548 assert(MaxPop > 0 && MaxBB); 8549 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8550 8551 // Remove cases that were pointing to the destination that is now the 8552 // default. 8553 CaseClusterVector New; 8554 New.reserve(Clusters.size()); 8555 for (CaseCluster &CC : Clusters) { 8556 if (CC.MBB != DefaultMBB) 8557 New.push_back(CC); 8558 } 8559 Clusters = std::move(New); 8560 } 8561 } 8562 8563 // If there is only the default destination, jump there directly. 8564 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8565 if (Clusters.empty()) { 8566 SwitchMBB->addSuccessor(DefaultMBB); 8567 if (DefaultMBB != NextBlock(SwitchMBB)) { 8568 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8569 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8570 } 8571 return; 8572 } 8573 8574 findJumpTables(Clusters, &SI, DefaultMBB); 8575 findBitTestClusters(Clusters, &SI); 8576 8577 DEBUG({ 8578 dbgs() << "Case clusters: "; 8579 for (const CaseCluster &C : Clusters) { 8580 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8581 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8582 8583 C.Low->getValue().print(dbgs(), true); 8584 if (C.Low != C.High) { 8585 dbgs() << '-'; 8586 C.High->getValue().print(dbgs(), true); 8587 } 8588 dbgs() << ' '; 8589 } 8590 dbgs() << '\n'; 8591 }); 8592 8593 assert(!Clusters.empty()); 8594 SwitchWorkList WorkList; 8595 CaseClusterIt First = Clusters.begin(); 8596 CaseClusterIt Last = Clusters.end() - 1; 8597 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8598 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8599 8600 while (!WorkList.empty()) { 8601 SwitchWorkListItem W = WorkList.back(); 8602 WorkList.pop_back(); 8603 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8604 8605 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8606 // For optimized builds, lower large range as a balanced binary tree. 8607 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8608 continue; 8609 } 8610 8611 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8612 } 8613 } 8614