1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 // Create the terminator node. 1172 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1173 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1174 DAG.setRoot(Ret); 1175 } 1176 1177 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1178 llvm_unreachable("should never codegen catchendpads"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 // Don't emit any special code for the cleanuppad instruction. It just marks 1183 // the start of a funclet. 1184 FuncInfo.MBB->setIsEHFuncletEntry(); 1185 } 1186 1187 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1188 /// many places it could ultimately go. In the IR, we have a single unwind 1189 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1190 /// This function skips over imaginary basic blocks that hold catchpad, 1191 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1192 /// basic block destinations. 1193 static void 1194 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1195 const BasicBlock *EHPadBB, 1196 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1197 bool IsMSVCCXX = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()) == 1198 EHPersonality::MSVC_CXX; 1199 while (EHPadBB) { 1200 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1201 if (isa<LandingPadInst>(Pad)) { 1202 // Stop on landingpads. They are not funclets. 1203 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1204 break; 1205 } else if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 1206 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1207 // personalities. 1208 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1209 UnwindDests.back()->setIsEHFuncletEntry(); 1210 break; 1211 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1212 // Add the catchpad handler to the possible destinations. 1213 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 1214 // In MSVC C++, catchblocks are funclets and need prologues. 1215 if (IsMSVCCXX) 1216 UnwindDests.back()->setIsEHFuncletEntry(); 1217 EHPadBB = CPI->getUnwindDest(); 1218 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1219 EHPadBB = CEPI->getUnwindDest(); 1220 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1221 EHPadBB = CEPI->getUnwindDest(); 1222 } 1223 } 1224 } 1225 1226 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1227 // Update successor info. 1228 // FIXME: The weights for catchpads will be wrong. 1229 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1230 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1231 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1232 UnwindDest->setIsEHPad(); 1233 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1234 } 1235 1236 // Create the terminator node. 1237 SDValue Ret = 1238 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1239 DAG.setRoot(Ret); 1240 } 1241 1242 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1243 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1244 } 1245 1246 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1247 report_fatal_error("visitTerminatePad not yet implemented!"); 1248 } 1249 1250 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1251 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1252 auto &DL = DAG.getDataLayout(); 1253 SDValue Chain = getControlRoot(); 1254 SmallVector<ISD::OutputArg, 8> Outs; 1255 SmallVector<SDValue, 8> OutVals; 1256 1257 if (!FuncInfo.CanLowerReturn) { 1258 unsigned DemoteReg = FuncInfo.DemoteRegister; 1259 const Function *F = I.getParent()->getParent(); 1260 1261 // Emit a store of the return value through the virtual register. 1262 // Leave Outs empty so that LowerReturn won't try to load return 1263 // registers the usual way. 1264 SmallVector<EVT, 1> PtrValueVTs; 1265 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1266 PtrValueVTs); 1267 1268 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1269 SDValue RetOp = getValue(I.getOperand(0)); 1270 1271 SmallVector<EVT, 4> ValueVTs; 1272 SmallVector<uint64_t, 4> Offsets; 1273 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1274 unsigned NumValues = ValueVTs.size(); 1275 1276 SmallVector<SDValue, 4> Chains(NumValues); 1277 for (unsigned i = 0; i != NumValues; ++i) { 1278 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1279 RetPtr.getValueType(), RetPtr, 1280 DAG.getIntPtrConstant(Offsets[i], 1281 getCurSDLoc())); 1282 Chains[i] = 1283 DAG.getStore(Chain, getCurSDLoc(), 1284 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1285 // FIXME: better loc info would be nice. 1286 Add, MachinePointerInfo(), false, false, 0); 1287 } 1288 1289 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1290 MVT::Other, Chains); 1291 } else if (I.getNumOperands() != 0) { 1292 SmallVector<EVT, 4> ValueVTs; 1293 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1294 unsigned NumValues = ValueVTs.size(); 1295 if (NumValues) { 1296 SDValue RetOp = getValue(I.getOperand(0)); 1297 1298 const Function *F = I.getParent()->getParent(); 1299 1300 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1301 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1302 Attribute::SExt)) 1303 ExtendKind = ISD::SIGN_EXTEND; 1304 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1305 Attribute::ZExt)) 1306 ExtendKind = ISD::ZERO_EXTEND; 1307 1308 LLVMContext &Context = F->getContext(); 1309 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1310 Attribute::InReg); 1311 1312 for (unsigned j = 0; j != NumValues; ++j) { 1313 EVT VT = ValueVTs[j]; 1314 1315 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1316 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1317 1318 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1319 MVT PartVT = TLI.getRegisterType(Context, VT); 1320 SmallVector<SDValue, 4> Parts(NumParts); 1321 getCopyToParts(DAG, getCurSDLoc(), 1322 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1323 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1324 1325 // 'inreg' on function refers to return value 1326 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1327 if (RetInReg) 1328 Flags.setInReg(); 1329 1330 // Propagate extension type if any 1331 if (ExtendKind == ISD::SIGN_EXTEND) 1332 Flags.setSExt(); 1333 else if (ExtendKind == ISD::ZERO_EXTEND) 1334 Flags.setZExt(); 1335 1336 for (unsigned i = 0; i < NumParts; ++i) { 1337 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1338 VT, /*isfixed=*/true, 0, 0)); 1339 OutVals.push_back(Parts[i]); 1340 } 1341 } 1342 } 1343 } 1344 1345 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1346 CallingConv::ID CallConv = 1347 DAG.getMachineFunction().getFunction()->getCallingConv(); 1348 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1349 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1350 1351 // Verify that the target's LowerReturn behaved as expected. 1352 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1353 "LowerReturn didn't return a valid chain!"); 1354 1355 // Update the DAG with the new chain value resulting from return lowering. 1356 DAG.setRoot(Chain); 1357 } 1358 1359 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1360 /// created for it, emit nodes to copy the value into the virtual 1361 /// registers. 1362 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1363 // Skip empty types 1364 if (V->getType()->isEmptyTy()) 1365 return; 1366 1367 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1368 if (VMI != FuncInfo.ValueMap.end()) { 1369 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1370 CopyValueToVirtualRegister(V, VMI->second); 1371 } 1372 } 1373 1374 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1375 /// the current basic block, add it to ValueMap now so that we'll get a 1376 /// CopyTo/FromReg. 1377 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1378 // No need to export constants. 1379 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1380 1381 // Already exported? 1382 if (FuncInfo.isExportedInst(V)) return; 1383 1384 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1385 CopyValueToVirtualRegister(V, Reg); 1386 } 1387 1388 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1389 const BasicBlock *FromBB) { 1390 // The operands of the setcc have to be in this block. We don't know 1391 // how to export them from some other block. 1392 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1393 // Can export from current BB. 1394 if (VI->getParent() == FromBB) 1395 return true; 1396 1397 // Is already exported, noop. 1398 return FuncInfo.isExportedInst(V); 1399 } 1400 1401 // If this is an argument, we can export it if the BB is the entry block or 1402 // if it is already exported. 1403 if (isa<Argument>(V)) { 1404 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1405 return true; 1406 1407 // Otherwise, can only export this if it is already exported. 1408 return FuncInfo.isExportedInst(V); 1409 } 1410 1411 // Otherwise, constants can always be exported. 1412 return true; 1413 } 1414 1415 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1416 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1417 const MachineBasicBlock *Dst) const { 1418 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1419 if (!BPI) 1420 return 0; 1421 const BasicBlock *SrcBB = Src->getBasicBlock(); 1422 const BasicBlock *DstBB = Dst->getBasicBlock(); 1423 return BPI->getEdgeWeight(SrcBB, DstBB); 1424 } 1425 1426 void SelectionDAGBuilder:: 1427 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1428 uint32_t Weight /* = 0 */) { 1429 if (!Weight) 1430 Weight = getEdgeWeight(Src, Dst); 1431 Src->addSuccessor(Dst, Weight); 1432 } 1433 1434 1435 static bool InBlock(const Value *V, const BasicBlock *BB) { 1436 if (const Instruction *I = dyn_cast<Instruction>(V)) 1437 return I->getParent() == BB; 1438 return true; 1439 } 1440 1441 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1442 /// This function emits a branch and is used at the leaves of an OR or an 1443 /// AND operator tree. 1444 /// 1445 void 1446 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1447 MachineBasicBlock *TBB, 1448 MachineBasicBlock *FBB, 1449 MachineBasicBlock *CurBB, 1450 MachineBasicBlock *SwitchBB, 1451 uint32_t TWeight, 1452 uint32_t FWeight) { 1453 const BasicBlock *BB = CurBB->getBasicBlock(); 1454 1455 // If the leaf of the tree is a comparison, merge the condition into 1456 // the caseblock. 1457 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1458 // The operands of the cmp have to be in this block. We don't know 1459 // how to export them from some other block. If this is the first block 1460 // of the sequence, no exporting is needed. 1461 if (CurBB == SwitchBB || 1462 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1463 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1464 ISD::CondCode Condition; 1465 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1466 Condition = getICmpCondCode(IC->getPredicate()); 1467 } else { 1468 const FCmpInst *FC = cast<FCmpInst>(Cond); 1469 Condition = getFCmpCondCode(FC->getPredicate()); 1470 if (TM.Options.NoNaNsFPMath) 1471 Condition = getFCmpCodeWithoutNaN(Condition); 1472 } 1473 1474 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1475 TBB, FBB, CurBB, TWeight, FWeight); 1476 SwitchCases.push_back(CB); 1477 return; 1478 } 1479 } 1480 1481 // Create a CaseBlock record representing this branch. 1482 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1483 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1484 SwitchCases.push_back(CB); 1485 } 1486 1487 /// Scale down both weights to fit into uint32_t. 1488 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1489 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1490 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1491 NewTrue = NewTrue / Scale; 1492 NewFalse = NewFalse / Scale; 1493 } 1494 1495 /// FindMergedConditions - If Cond is an expression like 1496 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1497 MachineBasicBlock *TBB, 1498 MachineBasicBlock *FBB, 1499 MachineBasicBlock *CurBB, 1500 MachineBasicBlock *SwitchBB, 1501 Instruction::BinaryOps Opc, 1502 uint32_t TWeight, 1503 uint32_t FWeight) { 1504 // If this node is not part of the or/and tree, emit it as a branch. 1505 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1506 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1507 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1508 BOp->getParent() != CurBB->getBasicBlock() || 1509 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1510 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1511 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1512 TWeight, FWeight); 1513 return; 1514 } 1515 1516 // Create TmpBB after CurBB. 1517 MachineFunction::iterator BBI = CurBB; 1518 MachineFunction &MF = DAG.getMachineFunction(); 1519 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1520 CurBB->getParent()->insert(++BBI, TmpBB); 1521 1522 if (Opc == Instruction::Or) { 1523 // Codegen X | Y as: 1524 // BB1: 1525 // jmp_if_X TBB 1526 // jmp TmpBB 1527 // TmpBB: 1528 // jmp_if_Y TBB 1529 // jmp FBB 1530 // 1531 1532 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1533 // The requirement is that 1534 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1535 // = TrueProb for original BB. 1536 // Assuming the original weights are A and B, one choice is to set BB1's 1537 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1538 // assumes that 1539 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1540 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1541 // TmpBB, but the math is more complicated. 1542 1543 uint64_t NewTrueWeight = TWeight; 1544 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1545 ScaleWeights(NewTrueWeight, NewFalseWeight); 1546 // Emit the LHS condition. 1547 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1548 NewTrueWeight, NewFalseWeight); 1549 1550 NewTrueWeight = TWeight; 1551 NewFalseWeight = 2 * (uint64_t)FWeight; 1552 ScaleWeights(NewTrueWeight, NewFalseWeight); 1553 // Emit the RHS condition into TmpBB. 1554 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1555 NewTrueWeight, NewFalseWeight); 1556 } else { 1557 assert(Opc == Instruction::And && "Unknown merge op!"); 1558 // Codegen X & Y as: 1559 // BB1: 1560 // jmp_if_X TmpBB 1561 // jmp FBB 1562 // TmpBB: 1563 // jmp_if_Y TBB 1564 // jmp FBB 1565 // 1566 // This requires creation of TmpBB after CurBB. 1567 1568 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1569 // The requirement is that 1570 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1571 // = FalseProb for original BB. 1572 // Assuming the original weights are A and B, one choice is to set BB1's 1573 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1574 // assumes that 1575 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1576 1577 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1578 uint64_t NewFalseWeight = FWeight; 1579 ScaleWeights(NewTrueWeight, NewFalseWeight); 1580 // Emit the LHS condition. 1581 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1582 NewTrueWeight, NewFalseWeight); 1583 1584 NewTrueWeight = 2 * (uint64_t)TWeight; 1585 NewFalseWeight = FWeight; 1586 ScaleWeights(NewTrueWeight, NewFalseWeight); 1587 // Emit the RHS condition into TmpBB. 1588 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1589 NewTrueWeight, NewFalseWeight); 1590 } 1591 } 1592 1593 /// If the set of cases should be emitted as a series of branches, return true. 1594 /// If we should emit this as a bunch of and/or'd together conditions, return 1595 /// false. 1596 bool 1597 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1598 if (Cases.size() != 2) return true; 1599 1600 // If this is two comparisons of the same values or'd or and'd together, they 1601 // will get folded into a single comparison, so don't emit two blocks. 1602 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1603 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1604 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1605 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1606 return false; 1607 } 1608 1609 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1610 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1611 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1612 Cases[0].CC == Cases[1].CC && 1613 isa<Constant>(Cases[0].CmpRHS) && 1614 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1615 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1616 return false; 1617 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1618 return false; 1619 } 1620 1621 return true; 1622 } 1623 1624 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1625 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1626 1627 // Update machine-CFG edges. 1628 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1629 1630 if (I.isUnconditional()) { 1631 // Update machine-CFG edges. 1632 BrMBB->addSuccessor(Succ0MBB); 1633 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1637 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1638 MVT::Other, getControlRoot(), 1639 DAG.getBasicBlock(Succ0MBB))); 1640 1641 return; 1642 } 1643 1644 // If this condition is one of the special cases we handle, do special stuff 1645 // now. 1646 const Value *CondVal = I.getCondition(); 1647 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1648 1649 // If this is a series of conditions that are or'd or and'd together, emit 1650 // this as a sequence of branches instead of setcc's with and/or operations. 1651 // As long as jumps are not expensive, this should improve performance. 1652 // For example, instead of something like: 1653 // cmp A, B 1654 // C = seteq 1655 // cmp D, E 1656 // F = setle 1657 // or C, F 1658 // jnz foo 1659 // Emit: 1660 // cmp A, B 1661 // je foo 1662 // cmp D, E 1663 // jle foo 1664 // 1665 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1666 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1667 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1668 !I.getMetadata(LLVMContext::MD_unpredictable) && 1669 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1670 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1671 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1672 getEdgeWeight(BrMBB, Succ1MBB)); 1673 // If the compares in later blocks need to use values not currently 1674 // exported from this block, export them now. This block should always 1675 // be the first entry. 1676 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1677 1678 // Allow some cases to be rejected. 1679 if (ShouldEmitAsBranches(SwitchCases)) { 1680 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1681 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1682 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1683 } 1684 1685 // Emit the branch for this block. 1686 visitSwitchCase(SwitchCases[0], BrMBB); 1687 SwitchCases.erase(SwitchCases.begin()); 1688 return; 1689 } 1690 1691 // Okay, we decided not to do this, remove any inserted MBB's and clear 1692 // SwitchCases. 1693 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1694 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1695 1696 SwitchCases.clear(); 1697 } 1698 } 1699 1700 // Create a CaseBlock record representing this branch. 1701 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1702 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1703 1704 // Use visitSwitchCase to actually insert the fast branch sequence for this 1705 // cond branch. 1706 visitSwitchCase(CB, BrMBB); 1707 } 1708 1709 /// visitSwitchCase - Emits the necessary code to represent a single node in 1710 /// the binary search tree resulting from lowering a switch instruction. 1711 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1712 MachineBasicBlock *SwitchBB) { 1713 SDValue Cond; 1714 SDValue CondLHS = getValue(CB.CmpLHS); 1715 SDLoc dl = getCurSDLoc(); 1716 1717 // Build the setcc now. 1718 if (!CB.CmpMHS) { 1719 // Fold "(X == true)" to X and "(X == false)" to !X to 1720 // handle common cases produced by branch lowering. 1721 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1722 CB.CC == ISD::SETEQ) 1723 Cond = CondLHS; 1724 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1725 CB.CC == ISD::SETEQ) { 1726 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1727 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1728 } else 1729 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1730 } else { 1731 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1732 1733 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1734 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1735 1736 SDValue CmpOp = getValue(CB.CmpMHS); 1737 EVT VT = CmpOp.getValueType(); 1738 1739 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1740 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1741 ISD::SETLE); 1742 } else { 1743 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1744 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1745 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1746 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1747 } 1748 } 1749 1750 // Update successor info 1751 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1752 // TrueBB and FalseBB are always different unless the incoming IR is 1753 // degenerate. This only happens when running llc on weird IR. 1754 if (CB.TrueBB != CB.FalseBB) 1755 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1756 1757 // If the lhs block is the next block, invert the condition so that we can 1758 // fall through to the lhs instead of the rhs block. 1759 if (CB.TrueBB == NextBlock(SwitchBB)) { 1760 std::swap(CB.TrueBB, CB.FalseBB); 1761 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1762 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1763 } 1764 1765 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1766 MVT::Other, getControlRoot(), Cond, 1767 DAG.getBasicBlock(CB.TrueBB)); 1768 1769 // Insert the false branch. Do this even if it's a fall through branch, 1770 // this makes it easier to do DAG optimizations which require inverting 1771 // the branch condition. 1772 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1773 DAG.getBasicBlock(CB.FalseBB)); 1774 1775 DAG.setRoot(BrCond); 1776 } 1777 1778 /// visitJumpTable - Emit JumpTable node in the current MBB 1779 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1780 // Emit the code for the jump table 1781 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1782 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1783 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1784 JT.Reg, PTy); 1785 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1786 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1787 MVT::Other, Index.getValue(1), 1788 Table, Index); 1789 DAG.setRoot(BrJumpTable); 1790 } 1791 1792 /// visitJumpTableHeader - This function emits necessary code to produce index 1793 /// in the JumpTable from switch case. 1794 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1795 JumpTableHeader &JTH, 1796 MachineBasicBlock *SwitchBB) { 1797 SDLoc dl = getCurSDLoc(); 1798 1799 // Subtract the lowest switch case value from the value being switched on and 1800 // conditional branch to default mbb if the result is greater than the 1801 // difference between smallest and largest cases. 1802 SDValue SwitchOp = getValue(JTH.SValue); 1803 EVT VT = SwitchOp.getValueType(); 1804 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1805 DAG.getConstant(JTH.First, dl, VT)); 1806 1807 // The SDNode we just created, which holds the value being switched on minus 1808 // the smallest case value, needs to be copied to a virtual register so it 1809 // can be used as an index into the jump table in a subsequent basic block. 1810 // This value may be smaller or larger than the target's pointer type, and 1811 // therefore require extension or truncating. 1812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1813 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1814 1815 unsigned JumpTableReg = 1816 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1817 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1818 JumpTableReg, SwitchOp); 1819 JT.Reg = JumpTableReg; 1820 1821 // Emit the range check for the jump table, and branch to the default block 1822 // for the switch statement if the value being switched on exceeds the largest 1823 // case in the switch. 1824 SDValue CMP = DAG.getSetCC( 1825 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1826 Sub.getValueType()), 1827 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1828 1829 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1830 MVT::Other, CopyTo, CMP, 1831 DAG.getBasicBlock(JT.Default)); 1832 1833 // Avoid emitting unnecessary branches to the next block. 1834 if (JT.MBB != NextBlock(SwitchBB)) 1835 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1836 DAG.getBasicBlock(JT.MBB)); 1837 1838 DAG.setRoot(BrCond); 1839 } 1840 1841 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1842 /// tail spliced into a stack protector check success bb. 1843 /// 1844 /// For a high level explanation of how this fits into the stack protector 1845 /// generation see the comment on the declaration of class 1846 /// StackProtectorDescriptor. 1847 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1848 MachineBasicBlock *ParentBB) { 1849 1850 // First create the loads to the guard/stack slot for the comparison. 1851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1852 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1853 1854 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1855 int FI = MFI->getStackProtectorIndex(); 1856 1857 const Value *IRGuard = SPD.getGuard(); 1858 SDValue GuardPtr = getValue(IRGuard); 1859 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1860 1861 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1862 1863 SDValue Guard; 1864 SDLoc dl = getCurSDLoc(); 1865 1866 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1867 // guard value from the virtual register holding the value. Otherwise, emit a 1868 // volatile load to retrieve the stack guard value. 1869 unsigned GuardReg = SPD.getGuardReg(); 1870 1871 if (GuardReg && TLI.useLoadStackGuardNode()) 1872 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1873 PtrTy); 1874 else 1875 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1876 GuardPtr, MachinePointerInfo(IRGuard, 0), 1877 true, false, false, Align); 1878 1879 SDValue StackSlot = DAG.getLoad( 1880 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1881 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1882 false, false, Align); 1883 1884 // Perform the comparison via a subtract/getsetcc. 1885 EVT VT = Guard.getValueType(); 1886 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1887 1888 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1889 *DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1892 1893 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1894 // branch to failure MBB. 1895 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1896 MVT::Other, StackSlot.getOperand(0), 1897 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1898 // Otherwise branch to success MBB. 1899 SDValue Br = DAG.getNode(ISD::BR, dl, 1900 MVT::Other, BrCond, 1901 DAG.getBasicBlock(SPD.getSuccessMBB())); 1902 1903 DAG.setRoot(Br); 1904 } 1905 1906 /// Codegen the failure basic block for a stack protector check. 1907 /// 1908 /// A failure stack protector machine basic block consists simply of a call to 1909 /// __stack_chk_fail(). 1910 /// 1911 /// For a high level explanation of how this fits into the stack protector 1912 /// generation see the comment on the declaration of class 1913 /// StackProtectorDescriptor. 1914 void 1915 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1916 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1917 SDValue Chain = 1918 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1919 nullptr, 0, false, getCurSDLoc(), false, false).second; 1920 DAG.setRoot(Chain); 1921 } 1922 1923 /// visitBitTestHeader - This function emits necessary code to produce value 1924 /// suitable for "bit tests" 1925 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1926 MachineBasicBlock *SwitchBB) { 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // Subtract the minimum value 1930 SDValue SwitchOp = getValue(B.SValue); 1931 EVT VT = SwitchOp.getValueType(); 1932 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1933 DAG.getConstant(B.First, dl, VT)); 1934 1935 // Check range 1936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1937 SDValue RangeCmp = DAG.getSetCC( 1938 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1939 Sub.getValueType()), 1940 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1941 1942 // Determine the type of the test operands. 1943 bool UsePtrType = false; 1944 if (!TLI.isTypeLegal(VT)) 1945 UsePtrType = true; 1946 else { 1947 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1948 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1949 // Switch table case range are encoded into series of masks. 1950 // Just use pointer type, it's guaranteed to fit. 1951 UsePtrType = true; 1952 break; 1953 } 1954 } 1955 if (UsePtrType) { 1956 VT = TLI.getPointerTy(DAG.getDataLayout()); 1957 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1958 } 1959 1960 B.RegVT = VT.getSimpleVT(); 1961 B.Reg = FuncInfo.CreateReg(B.RegVT); 1962 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1963 1964 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1965 1966 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1967 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1968 1969 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1970 MVT::Other, CopyTo, RangeCmp, 1971 DAG.getBasicBlock(B.Default)); 1972 1973 // Avoid emitting unnecessary branches to the next block. 1974 if (MBB != NextBlock(SwitchBB)) 1975 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1976 DAG.getBasicBlock(MBB)); 1977 1978 DAG.setRoot(BrRange); 1979 } 1980 1981 /// visitBitTestCase - this function produces one "bit test" 1982 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1983 MachineBasicBlock* NextMBB, 1984 uint32_t BranchWeightToNext, 1985 unsigned Reg, 1986 BitTestCase &B, 1987 MachineBasicBlock *SwitchBB) { 1988 SDLoc dl = getCurSDLoc(); 1989 MVT VT = BB.RegVT; 1990 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1991 SDValue Cmp; 1992 unsigned PopCount = countPopulation(B.Mask); 1993 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1994 if (PopCount == 1) { 1995 // Testing for a single bit; just compare the shift count with what it 1996 // would need to be to shift a 1 bit in that position. 1997 Cmp = DAG.getSetCC( 1998 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1999 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2000 ISD::SETEQ); 2001 } else if (PopCount == BB.Range) { 2002 // There is only one zero bit in the range, test for it directly. 2003 Cmp = DAG.getSetCC( 2004 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2005 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2006 ISD::SETNE); 2007 } else { 2008 // Make desired shift 2009 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2010 DAG.getConstant(1, dl, VT), ShiftOp); 2011 2012 // Emit bit tests and jumps 2013 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2014 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2015 Cmp = DAG.getSetCC( 2016 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2017 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2018 } 2019 2020 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2021 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2022 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2023 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2024 2025 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2026 MVT::Other, getControlRoot(), 2027 Cmp, DAG.getBasicBlock(B.TargetBB)); 2028 2029 // Avoid emitting unnecessary branches to the next block. 2030 if (NextMBB != NextBlock(SwitchBB)) 2031 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2032 DAG.getBasicBlock(NextMBB)); 2033 2034 DAG.setRoot(BrAnd); 2035 } 2036 2037 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2038 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2039 2040 // Retrieve successors. Look through artificial IR level blocks like catchpads 2041 // and catchendpads for successors. 2042 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2043 const BasicBlock *EHPadBB = I.getSuccessor(1); 2044 2045 const Value *Callee(I.getCalledValue()); 2046 const Function *Fn = dyn_cast<Function>(Callee); 2047 if (isa<InlineAsm>(Callee)) 2048 visitInlineAsm(&I); 2049 else if (Fn && Fn->isIntrinsic()) { 2050 switch (Fn->getIntrinsicID()) { 2051 default: 2052 llvm_unreachable("Cannot invoke this intrinsic"); 2053 case Intrinsic::donothing: 2054 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2055 break; 2056 case Intrinsic::experimental_patchpoint_void: 2057 case Intrinsic::experimental_patchpoint_i64: 2058 visitPatchpoint(&I, EHPadBB); 2059 break; 2060 case Intrinsic::experimental_gc_statepoint: 2061 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2062 break; 2063 } 2064 } else 2065 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2066 2067 // If the value of the invoke is used outside of its defining block, make it 2068 // available as a virtual register. 2069 // We already took care of the exported value for the statepoint instruction 2070 // during call to the LowerStatepoint. 2071 if (!isStatepoint(I)) { 2072 CopyToExportRegsIfNeeded(&I); 2073 } 2074 2075 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2076 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2077 2078 // Update successor info. 2079 // FIXME: The weights for catchpads will be wrong. 2080 addSuccessorWithWeight(InvokeMBB, Return); 2081 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2082 UnwindDest->setIsEHPad(); 2083 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2084 } 2085 2086 // Drop into normal successor. 2087 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2088 MVT::Other, getControlRoot(), 2089 DAG.getBasicBlock(Return))); 2090 } 2091 2092 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2093 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2094 } 2095 2096 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2097 assert(FuncInfo.MBB->isEHPad() && 2098 "Call to landingpad not in landing pad!"); 2099 2100 MachineBasicBlock *MBB = FuncInfo.MBB; 2101 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2102 AddLandingPadInfo(LP, MMI, MBB); 2103 2104 // If there aren't registers to copy the values into (e.g., during SjLj 2105 // exceptions), then don't bother to create these DAG nodes. 2106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2107 if (TLI.getExceptionPointerRegister() == 0 && 2108 TLI.getExceptionSelectorRegister() == 0) 2109 return; 2110 2111 SmallVector<EVT, 2> ValueVTs; 2112 SDLoc dl = getCurSDLoc(); 2113 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2114 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2115 2116 // Get the two live-in registers as SDValues. The physregs have already been 2117 // copied into virtual registers. 2118 SDValue Ops[2]; 2119 if (FuncInfo.ExceptionPointerVirtReg) { 2120 Ops[0] = DAG.getZExtOrTrunc( 2121 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2122 FuncInfo.ExceptionPointerVirtReg, 2123 TLI.getPointerTy(DAG.getDataLayout())), 2124 dl, ValueVTs[0]); 2125 } else { 2126 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2127 } 2128 Ops[1] = DAG.getZExtOrTrunc( 2129 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2130 FuncInfo.ExceptionSelectorVirtReg, 2131 TLI.getPointerTy(DAG.getDataLayout())), 2132 dl, ValueVTs[1]); 2133 2134 // Merge into one. 2135 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2136 DAG.getVTList(ValueVTs), Ops); 2137 setValue(&LP, Res); 2138 } 2139 2140 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2141 #ifndef NDEBUG 2142 for (const CaseCluster &CC : Clusters) 2143 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2144 #endif 2145 2146 std::sort(Clusters.begin(), Clusters.end(), 2147 [](const CaseCluster &a, const CaseCluster &b) { 2148 return a.Low->getValue().slt(b.Low->getValue()); 2149 }); 2150 2151 // Merge adjacent clusters with the same destination. 2152 const unsigned N = Clusters.size(); 2153 unsigned DstIndex = 0; 2154 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2155 CaseCluster &CC = Clusters[SrcIndex]; 2156 const ConstantInt *CaseVal = CC.Low; 2157 MachineBasicBlock *Succ = CC.MBB; 2158 2159 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2160 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2161 // If this case has the same successor and is a neighbour, merge it into 2162 // the previous cluster. 2163 Clusters[DstIndex - 1].High = CaseVal; 2164 Clusters[DstIndex - 1].Weight += CC.Weight; 2165 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2166 } else { 2167 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2168 sizeof(Clusters[SrcIndex])); 2169 } 2170 } 2171 Clusters.resize(DstIndex); 2172 } 2173 2174 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2175 MachineBasicBlock *Last) { 2176 // Update JTCases. 2177 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2178 if (JTCases[i].first.HeaderBB == First) 2179 JTCases[i].first.HeaderBB = Last; 2180 2181 // Update BitTestCases. 2182 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2183 if (BitTestCases[i].Parent == First) 2184 BitTestCases[i].Parent = Last; 2185 } 2186 2187 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2188 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2189 2190 // Update machine-CFG edges with unique successors. 2191 SmallSet<BasicBlock*, 32> Done; 2192 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2193 BasicBlock *BB = I.getSuccessor(i); 2194 bool Inserted = Done.insert(BB).second; 2195 if (!Inserted) 2196 continue; 2197 2198 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2199 addSuccessorWithWeight(IndirectBrMBB, Succ); 2200 } 2201 2202 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2203 MVT::Other, getControlRoot(), 2204 getValue(I.getAddress()))); 2205 } 2206 2207 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2208 if (DAG.getTarget().Options.TrapUnreachable) 2209 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2210 } 2211 2212 void SelectionDAGBuilder::visitFSub(const User &I) { 2213 // -0.0 - X --> fneg 2214 Type *Ty = I.getType(); 2215 if (isa<Constant>(I.getOperand(0)) && 2216 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2217 SDValue Op2 = getValue(I.getOperand(1)); 2218 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2219 Op2.getValueType(), Op2)); 2220 return; 2221 } 2222 2223 visitBinary(I, ISD::FSUB); 2224 } 2225 2226 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2227 SDValue Op1 = getValue(I.getOperand(0)); 2228 SDValue Op2 = getValue(I.getOperand(1)); 2229 2230 bool nuw = false; 2231 bool nsw = false; 2232 bool exact = false; 2233 FastMathFlags FMF; 2234 2235 if (const OverflowingBinaryOperator *OFBinOp = 2236 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2237 nuw = OFBinOp->hasNoUnsignedWrap(); 2238 nsw = OFBinOp->hasNoSignedWrap(); 2239 } 2240 if (const PossiblyExactOperator *ExactOp = 2241 dyn_cast<const PossiblyExactOperator>(&I)) 2242 exact = ExactOp->isExact(); 2243 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2244 FMF = FPOp->getFastMathFlags(); 2245 2246 SDNodeFlags Flags; 2247 Flags.setExact(exact); 2248 Flags.setNoSignedWrap(nsw); 2249 Flags.setNoUnsignedWrap(nuw); 2250 if (EnableFMFInDAG) { 2251 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2252 Flags.setNoInfs(FMF.noInfs()); 2253 Flags.setNoNaNs(FMF.noNaNs()); 2254 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2255 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2256 } 2257 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2258 Op1, Op2, &Flags); 2259 setValue(&I, BinNodeValue); 2260 } 2261 2262 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2263 SDValue Op1 = getValue(I.getOperand(0)); 2264 SDValue Op2 = getValue(I.getOperand(1)); 2265 2266 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2267 Op2.getValueType(), DAG.getDataLayout()); 2268 2269 // Coerce the shift amount to the right type if we can. 2270 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2271 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2272 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2273 SDLoc DL = getCurSDLoc(); 2274 2275 // If the operand is smaller than the shift count type, promote it. 2276 if (ShiftSize > Op2Size) 2277 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2278 2279 // If the operand is larger than the shift count type but the shift 2280 // count type has enough bits to represent any shift value, truncate 2281 // it now. This is a common case and it exposes the truncate to 2282 // optimization early. 2283 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2284 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2285 // Otherwise we'll need to temporarily settle for some other convenient 2286 // type. Type legalization will make adjustments once the shiftee is split. 2287 else 2288 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2289 } 2290 2291 bool nuw = false; 2292 bool nsw = false; 2293 bool exact = false; 2294 2295 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2296 2297 if (const OverflowingBinaryOperator *OFBinOp = 2298 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2299 nuw = OFBinOp->hasNoUnsignedWrap(); 2300 nsw = OFBinOp->hasNoSignedWrap(); 2301 } 2302 if (const PossiblyExactOperator *ExactOp = 2303 dyn_cast<const PossiblyExactOperator>(&I)) 2304 exact = ExactOp->isExact(); 2305 } 2306 SDNodeFlags Flags; 2307 Flags.setExact(exact); 2308 Flags.setNoSignedWrap(nsw); 2309 Flags.setNoUnsignedWrap(nuw); 2310 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2311 &Flags); 2312 setValue(&I, Res); 2313 } 2314 2315 void SelectionDAGBuilder::visitSDiv(const User &I) { 2316 SDValue Op1 = getValue(I.getOperand(0)); 2317 SDValue Op2 = getValue(I.getOperand(1)); 2318 2319 SDNodeFlags Flags; 2320 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2321 cast<PossiblyExactOperator>(&I)->isExact()); 2322 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2323 Op2, &Flags)); 2324 } 2325 2326 void SelectionDAGBuilder::visitICmp(const User &I) { 2327 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2328 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2329 predicate = IC->getPredicate(); 2330 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2331 predicate = ICmpInst::Predicate(IC->getPredicate()); 2332 SDValue Op1 = getValue(I.getOperand(0)); 2333 SDValue Op2 = getValue(I.getOperand(1)); 2334 ISD::CondCode Opcode = getICmpCondCode(predicate); 2335 2336 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2337 I.getType()); 2338 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2339 } 2340 2341 void SelectionDAGBuilder::visitFCmp(const User &I) { 2342 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2343 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2344 predicate = FC->getPredicate(); 2345 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2346 predicate = FCmpInst::Predicate(FC->getPredicate()); 2347 SDValue Op1 = getValue(I.getOperand(0)); 2348 SDValue Op2 = getValue(I.getOperand(1)); 2349 ISD::CondCode Condition = getFCmpCondCode(predicate); 2350 if (TM.Options.NoNaNsFPMath) 2351 Condition = getFCmpCodeWithoutNaN(Condition); 2352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2353 I.getType()); 2354 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2355 } 2356 2357 void SelectionDAGBuilder::visitSelect(const User &I) { 2358 SmallVector<EVT, 4> ValueVTs; 2359 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2360 ValueVTs); 2361 unsigned NumValues = ValueVTs.size(); 2362 if (NumValues == 0) return; 2363 2364 SmallVector<SDValue, 4> Values(NumValues); 2365 SDValue Cond = getValue(I.getOperand(0)); 2366 SDValue LHSVal = getValue(I.getOperand(1)); 2367 SDValue RHSVal = getValue(I.getOperand(2)); 2368 auto BaseOps = {Cond}; 2369 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2370 ISD::VSELECT : ISD::SELECT; 2371 2372 // Min/max matching is only viable if all output VTs are the same. 2373 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2374 EVT VT = ValueVTs[0]; 2375 LLVMContext &Ctx = *DAG.getContext(); 2376 auto &TLI = DAG.getTargetLoweringInfo(); 2377 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2378 VT = TLI.getTypeToTransformTo(Ctx, VT); 2379 2380 Value *LHS, *RHS; 2381 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2382 ISD::NodeType Opc = ISD::DELETED_NODE; 2383 switch (SPR.Flavor) { 2384 case SPF_UMAX: Opc = ISD::UMAX; break; 2385 case SPF_UMIN: Opc = ISD::UMIN; break; 2386 case SPF_SMAX: Opc = ISD::SMAX; break; 2387 case SPF_SMIN: Opc = ISD::SMIN; break; 2388 case SPF_FMINNUM: 2389 switch (SPR.NaNBehavior) { 2390 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2391 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2392 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2393 case SPNB_RETURNS_ANY: 2394 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2395 : ISD::FMINNAN; 2396 break; 2397 } 2398 break; 2399 case SPF_FMAXNUM: 2400 switch (SPR.NaNBehavior) { 2401 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2402 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2403 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2404 case SPNB_RETURNS_ANY: 2405 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2406 : ISD::FMAXNAN; 2407 break; 2408 } 2409 break; 2410 default: break; 2411 } 2412 2413 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2414 // If the underlying comparison instruction is used by any other instruction, 2415 // the consumed instructions won't be destroyed, so it is not profitable 2416 // to convert to a min/max. 2417 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2418 OpCode = Opc; 2419 LHSVal = getValue(LHS); 2420 RHSVal = getValue(RHS); 2421 BaseOps = {}; 2422 } 2423 } 2424 2425 for (unsigned i = 0; i != NumValues; ++i) { 2426 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2427 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2428 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2429 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2430 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2431 Ops); 2432 } 2433 2434 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2435 DAG.getVTList(ValueVTs), Values)); 2436 } 2437 2438 void SelectionDAGBuilder::visitTrunc(const User &I) { 2439 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2440 SDValue N = getValue(I.getOperand(0)); 2441 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2442 I.getType()); 2443 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2444 } 2445 2446 void SelectionDAGBuilder::visitZExt(const User &I) { 2447 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2448 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2449 SDValue N = getValue(I.getOperand(0)); 2450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2451 I.getType()); 2452 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2453 } 2454 2455 void SelectionDAGBuilder::visitSExt(const User &I) { 2456 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2457 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2458 SDValue N = getValue(I.getOperand(0)); 2459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2460 I.getType()); 2461 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2462 } 2463 2464 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2465 // FPTrunc is never a no-op cast, no need to check 2466 SDValue N = getValue(I.getOperand(0)); 2467 SDLoc dl = getCurSDLoc(); 2468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2469 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2470 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2471 DAG.getTargetConstant( 2472 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2473 } 2474 2475 void SelectionDAGBuilder::visitFPExt(const User &I) { 2476 // FPExt is never a no-op cast, no need to check 2477 SDValue N = getValue(I.getOperand(0)); 2478 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2479 I.getType()); 2480 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2481 } 2482 2483 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2484 // FPToUI is never a no-op cast, no need to check 2485 SDValue N = getValue(I.getOperand(0)); 2486 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2487 I.getType()); 2488 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2489 } 2490 2491 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2492 // FPToSI is never a no-op cast, no need to check 2493 SDValue N = getValue(I.getOperand(0)); 2494 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2495 I.getType()); 2496 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2497 } 2498 2499 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2500 // UIToFP is never a no-op cast, no need to check 2501 SDValue N = getValue(I.getOperand(0)); 2502 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2503 I.getType()); 2504 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2505 } 2506 2507 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2508 // SIToFP is never a no-op cast, no need to check 2509 SDValue N = getValue(I.getOperand(0)); 2510 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2511 I.getType()); 2512 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2513 } 2514 2515 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2516 // What to do depends on the size of the integer and the size of the pointer. 2517 // We can either truncate, zero extend, or no-op, accordingly. 2518 SDValue N = getValue(I.getOperand(0)); 2519 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2520 I.getType()); 2521 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2522 } 2523 2524 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2525 // What to do depends on the size of the integer and the size of the pointer. 2526 // We can either truncate, zero extend, or no-op, accordingly. 2527 SDValue N = getValue(I.getOperand(0)); 2528 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2529 I.getType()); 2530 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2531 } 2532 2533 void SelectionDAGBuilder::visitBitCast(const User &I) { 2534 SDValue N = getValue(I.getOperand(0)); 2535 SDLoc dl = getCurSDLoc(); 2536 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2537 I.getType()); 2538 2539 // BitCast assures us that source and destination are the same size so this is 2540 // either a BITCAST or a no-op. 2541 if (DestVT != N.getValueType()) 2542 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2543 DestVT, N)); // convert types. 2544 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2545 // might fold any kind of constant expression to an integer constant and that 2546 // is not what we are looking for. Only regcognize a bitcast of a genuine 2547 // constant integer as an opaque constant. 2548 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2549 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2550 /*isOpaque*/true)); 2551 else 2552 setValue(&I, N); // noop cast. 2553 } 2554 2555 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2557 const Value *SV = I.getOperand(0); 2558 SDValue N = getValue(SV); 2559 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2560 2561 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2562 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2563 2564 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2565 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2566 2567 setValue(&I, N); 2568 } 2569 2570 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2572 SDValue InVec = getValue(I.getOperand(0)); 2573 SDValue InVal = getValue(I.getOperand(1)); 2574 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2575 TLI.getVectorIdxTy(DAG.getDataLayout())); 2576 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2577 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2578 InVec, InVal, InIdx)); 2579 } 2580 2581 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2582 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2583 SDValue InVec = getValue(I.getOperand(0)); 2584 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2585 TLI.getVectorIdxTy(DAG.getDataLayout())); 2586 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2587 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2588 InVec, InIdx)); 2589 } 2590 2591 // Utility for visitShuffleVector - Return true if every element in Mask, 2592 // beginning from position Pos and ending in Pos+Size, falls within the 2593 // specified sequential range [L, L+Pos). or is undef. 2594 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2595 unsigned Pos, unsigned Size, int Low) { 2596 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2597 if (Mask[i] >= 0 && Mask[i] != Low) 2598 return false; 2599 return true; 2600 } 2601 2602 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2603 SDValue Src1 = getValue(I.getOperand(0)); 2604 SDValue Src2 = getValue(I.getOperand(1)); 2605 2606 SmallVector<int, 8> Mask; 2607 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2608 unsigned MaskNumElts = Mask.size(); 2609 2610 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2611 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2612 EVT SrcVT = Src1.getValueType(); 2613 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2614 2615 if (SrcNumElts == MaskNumElts) { 2616 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2617 &Mask[0])); 2618 return; 2619 } 2620 2621 // Normalize the shuffle vector since mask and vector length don't match. 2622 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2623 // Mask is longer than the source vectors and is a multiple of the source 2624 // vectors. We can use concatenate vector to make the mask and vectors 2625 // lengths match. 2626 if (SrcNumElts*2 == MaskNumElts) { 2627 // First check for Src1 in low and Src2 in high 2628 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2629 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2630 // The shuffle is concatenating two vectors together. 2631 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2632 VT, Src1, Src2)); 2633 return; 2634 } 2635 // Then check for Src2 in low and Src1 in high 2636 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2637 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2638 // The shuffle is concatenating two vectors together. 2639 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2640 VT, Src2, Src1)); 2641 return; 2642 } 2643 } 2644 2645 // Pad both vectors with undefs to make them the same length as the mask. 2646 unsigned NumConcat = MaskNumElts / SrcNumElts; 2647 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2648 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2649 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2650 2651 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2652 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2653 MOps1[0] = Src1; 2654 MOps2[0] = Src2; 2655 2656 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2657 getCurSDLoc(), VT, MOps1); 2658 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2659 getCurSDLoc(), VT, MOps2); 2660 2661 // Readjust mask for new input vector length. 2662 SmallVector<int, 8> MappedOps; 2663 for (unsigned i = 0; i != MaskNumElts; ++i) { 2664 int Idx = Mask[i]; 2665 if (Idx >= (int)SrcNumElts) 2666 Idx -= SrcNumElts - MaskNumElts; 2667 MappedOps.push_back(Idx); 2668 } 2669 2670 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2671 &MappedOps[0])); 2672 return; 2673 } 2674 2675 if (SrcNumElts > MaskNumElts) { 2676 // Analyze the access pattern of the vector to see if we can extract 2677 // two subvectors and do the shuffle. The analysis is done by calculating 2678 // the range of elements the mask access on both vectors. 2679 int MinRange[2] = { static_cast<int>(SrcNumElts), 2680 static_cast<int>(SrcNumElts)}; 2681 int MaxRange[2] = {-1, -1}; 2682 2683 for (unsigned i = 0; i != MaskNumElts; ++i) { 2684 int Idx = Mask[i]; 2685 unsigned Input = 0; 2686 if (Idx < 0) 2687 continue; 2688 2689 if (Idx >= (int)SrcNumElts) { 2690 Input = 1; 2691 Idx -= SrcNumElts; 2692 } 2693 if (Idx > MaxRange[Input]) 2694 MaxRange[Input] = Idx; 2695 if (Idx < MinRange[Input]) 2696 MinRange[Input] = Idx; 2697 } 2698 2699 // Check if the access is smaller than the vector size and can we find 2700 // a reasonable extract index. 2701 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2702 // Extract. 2703 int StartIdx[2]; // StartIdx to extract from 2704 for (unsigned Input = 0; Input < 2; ++Input) { 2705 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2706 RangeUse[Input] = 0; // Unused 2707 StartIdx[Input] = 0; 2708 continue; 2709 } 2710 2711 // Find a good start index that is a multiple of the mask length. Then 2712 // see if the rest of the elements are in range. 2713 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2714 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2715 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2716 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2717 } 2718 2719 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2720 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2721 return; 2722 } 2723 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2724 // Extract appropriate subvector and generate a vector shuffle 2725 for (unsigned Input = 0; Input < 2; ++Input) { 2726 SDValue &Src = Input == 0 ? Src1 : Src2; 2727 if (RangeUse[Input] == 0) 2728 Src = DAG.getUNDEF(VT); 2729 else { 2730 SDLoc dl = getCurSDLoc(); 2731 Src = DAG.getNode( 2732 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2733 DAG.getConstant(StartIdx[Input], dl, 2734 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2735 } 2736 } 2737 2738 // Calculate new mask. 2739 SmallVector<int, 8> MappedOps; 2740 for (unsigned i = 0; i != MaskNumElts; ++i) { 2741 int Idx = Mask[i]; 2742 if (Idx >= 0) { 2743 if (Idx < (int)SrcNumElts) 2744 Idx -= StartIdx[0]; 2745 else 2746 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2747 } 2748 MappedOps.push_back(Idx); 2749 } 2750 2751 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2752 &MappedOps[0])); 2753 return; 2754 } 2755 } 2756 2757 // We can't use either concat vectors or extract subvectors so fall back to 2758 // replacing the shuffle with extract and build vector. 2759 // to insert and build vector. 2760 EVT EltVT = VT.getVectorElementType(); 2761 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2762 SDLoc dl = getCurSDLoc(); 2763 SmallVector<SDValue,8> Ops; 2764 for (unsigned i = 0; i != MaskNumElts; ++i) { 2765 int Idx = Mask[i]; 2766 SDValue Res; 2767 2768 if (Idx < 0) { 2769 Res = DAG.getUNDEF(EltVT); 2770 } else { 2771 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2772 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2773 2774 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2775 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2776 } 2777 2778 Ops.push_back(Res); 2779 } 2780 2781 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2782 } 2783 2784 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2785 const Value *Op0 = I.getOperand(0); 2786 const Value *Op1 = I.getOperand(1); 2787 Type *AggTy = I.getType(); 2788 Type *ValTy = Op1->getType(); 2789 bool IntoUndef = isa<UndefValue>(Op0); 2790 bool FromUndef = isa<UndefValue>(Op1); 2791 2792 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2793 2794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2795 SmallVector<EVT, 4> AggValueVTs; 2796 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2797 SmallVector<EVT, 4> ValValueVTs; 2798 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2799 2800 unsigned NumAggValues = AggValueVTs.size(); 2801 unsigned NumValValues = ValValueVTs.size(); 2802 SmallVector<SDValue, 4> Values(NumAggValues); 2803 2804 // Ignore an insertvalue that produces an empty object 2805 if (!NumAggValues) { 2806 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2807 return; 2808 } 2809 2810 SDValue Agg = getValue(Op0); 2811 unsigned i = 0; 2812 // Copy the beginning value(s) from the original aggregate. 2813 for (; i != LinearIndex; ++i) 2814 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2815 SDValue(Agg.getNode(), Agg.getResNo() + i); 2816 // Copy values from the inserted value(s). 2817 if (NumValValues) { 2818 SDValue Val = getValue(Op1); 2819 for (; i != LinearIndex + NumValValues; ++i) 2820 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2821 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2822 } 2823 // Copy remaining value(s) from the original aggregate. 2824 for (; i != NumAggValues; ++i) 2825 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2826 SDValue(Agg.getNode(), Agg.getResNo() + i); 2827 2828 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2829 DAG.getVTList(AggValueVTs), Values)); 2830 } 2831 2832 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2833 const Value *Op0 = I.getOperand(0); 2834 Type *AggTy = Op0->getType(); 2835 Type *ValTy = I.getType(); 2836 bool OutOfUndef = isa<UndefValue>(Op0); 2837 2838 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2839 2840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2841 SmallVector<EVT, 4> ValValueVTs; 2842 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2843 2844 unsigned NumValValues = ValValueVTs.size(); 2845 2846 // Ignore a extractvalue that produces an empty object 2847 if (!NumValValues) { 2848 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2849 return; 2850 } 2851 2852 SmallVector<SDValue, 4> Values(NumValValues); 2853 2854 SDValue Agg = getValue(Op0); 2855 // Copy out the selected value(s). 2856 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2857 Values[i - LinearIndex] = 2858 OutOfUndef ? 2859 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2860 SDValue(Agg.getNode(), Agg.getResNo() + i); 2861 2862 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2863 DAG.getVTList(ValValueVTs), Values)); 2864 } 2865 2866 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2867 Value *Op0 = I.getOperand(0); 2868 // Note that the pointer operand may be a vector of pointers. Take the scalar 2869 // element which holds a pointer. 2870 Type *Ty = Op0->getType()->getScalarType(); 2871 unsigned AS = Ty->getPointerAddressSpace(); 2872 SDValue N = getValue(Op0); 2873 SDLoc dl = getCurSDLoc(); 2874 2875 // Normalize Vector GEP - all scalar operands should be converted to the 2876 // splat vector. 2877 unsigned VectorWidth = I.getType()->isVectorTy() ? 2878 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2879 2880 if (VectorWidth && !N.getValueType().isVector()) { 2881 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2882 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2883 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2884 } 2885 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2886 OI != E; ++OI) { 2887 const Value *Idx = *OI; 2888 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2889 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2890 if (Field) { 2891 // N = N + Offset 2892 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2893 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2894 DAG.getConstant(Offset, dl, N.getValueType())); 2895 } 2896 2897 Ty = StTy->getElementType(Field); 2898 } else { 2899 Ty = cast<SequentialType>(Ty)->getElementType(); 2900 MVT PtrTy = 2901 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2902 unsigned PtrSize = PtrTy.getSizeInBits(); 2903 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2904 2905 // If this is a scalar constant or a splat vector of constants, 2906 // handle it quickly. 2907 const auto *CI = dyn_cast<ConstantInt>(Idx); 2908 if (!CI && isa<ConstantDataVector>(Idx) && 2909 cast<ConstantDataVector>(Idx)->getSplatValue()) 2910 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2911 2912 if (CI) { 2913 if (CI->isZero()) 2914 continue; 2915 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2916 SDValue OffsVal = VectorWidth ? 2917 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2918 DAG.getConstant(Offs, dl, PtrTy); 2919 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2920 continue; 2921 } 2922 2923 // N = N + Idx * ElementSize; 2924 SDValue IdxN = getValue(Idx); 2925 2926 if (!IdxN.getValueType().isVector() && VectorWidth) { 2927 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2928 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2929 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2930 } 2931 // If the index is smaller or larger than intptr_t, truncate or extend 2932 // it. 2933 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2934 2935 // If this is a multiply by a power of two, turn it into a shl 2936 // immediately. This is a very common case. 2937 if (ElementSize != 1) { 2938 if (ElementSize.isPowerOf2()) { 2939 unsigned Amt = ElementSize.logBase2(); 2940 IdxN = DAG.getNode(ISD::SHL, dl, 2941 N.getValueType(), IdxN, 2942 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2943 } else { 2944 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2945 IdxN = DAG.getNode(ISD::MUL, dl, 2946 N.getValueType(), IdxN, Scale); 2947 } 2948 } 2949 2950 N = DAG.getNode(ISD::ADD, dl, 2951 N.getValueType(), N, IdxN); 2952 } 2953 } 2954 2955 setValue(&I, N); 2956 } 2957 2958 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2959 // If this is a fixed sized alloca in the entry block of the function, 2960 // allocate it statically on the stack. 2961 if (FuncInfo.StaticAllocaMap.count(&I)) 2962 return; // getValue will auto-populate this. 2963 2964 SDLoc dl = getCurSDLoc(); 2965 Type *Ty = I.getAllocatedType(); 2966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2967 auto &DL = DAG.getDataLayout(); 2968 uint64_t TySize = DL.getTypeAllocSize(Ty); 2969 unsigned Align = 2970 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2971 2972 SDValue AllocSize = getValue(I.getArraySize()); 2973 2974 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2975 if (AllocSize.getValueType() != IntPtr) 2976 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2977 2978 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2979 AllocSize, 2980 DAG.getConstant(TySize, dl, IntPtr)); 2981 2982 // Handle alignment. If the requested alignment is less than or equal to 2983 // the stack alignment, ignore it. If the size is greater than or equal to 2984 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2985 unsigned StackAlign = 2986 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2987 if (Align <= StackAlign) 2988 Align = 0; 2989 2990 // Round the size of the allocation up to the stack alignment size 2991 // by add SA-1 to the size. 2992 AllocSize = DAG.getNode(ISD::ADD, dl, 2993 AllocSize.getValueType(), AllocSize, 2994 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2995 2996 // Mask out the low bits for alignment purposes. 2997 AllocSize = DAG.getNode(ISD::AND, dl, 2998 AllocSize.getValueType(), AllocSize, 2999 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3000 dl)); 3001 3002 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3003 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3004 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3005 setValue(&I, DSA); 3006 DAG.setRoot(DSA.getValue(1)); 3007 3008 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3009 } 3010 3011 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3012 if (I.isAtomic()) 3013 return visitAtomicLoad(I); 3014 3015 const Value *SV = I.getOperand(0); 3016 SDValue Ptr = getValue(SV); 3017 3018 Type *Ty = I.getType(); 3019 3020 bool isVolatile = I.isVolatile(); 3021 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3022 3023 // The IR notion of invariant_load only guarantees that all *non-faulting* 3024 // invariant loads result in the same value. The MI notion of invariant load 3025 // guarantees that the load can be legally moved to any location within its 3026 // containing function. The MI notion of invariant_load is stronger than the 3027 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3028 // with a guarantee that the location being loaded from is dereferenceable 3029 // throughout the function's lifetime. 3030 3031 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3032 isDereferenceablePointer(SV, DAG.getDataLayout()); 3033 unsigned Alignment = I.getAlignment(); 3034 3035 AAMDNodes AAInfo; 3036 I.getAAMetadata(AAInfo); 3037 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3038 3039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3040 SmallVector<EVT, 4> ValueVTs; 3041 SmallVector<uint64_t, 4> Offsets; 3042 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3043 unsigned NumValues = ValueVTs.size(); 3044 if (NumValues == 0) 3045 return; 3046 3047 SDValue Root; 3048 bool ConstantMemory = false; 3049 if (isVolatile || NumValues > MaxParallelChains) 3050 // Serialize volatile loads with other side effects. 3051 Root = getRoot(); 3052 else if (AA->pointsToConstantMemory(MemoryLocation( 3053 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3054 // Do not serialize (non-volatile) loads of constant memory with anything. 3055 Root = DAG.getEntryNode(); 3056 ConstantMemory = true; 3057 } else { 3058 // Do not serialize non-volatile loads against each other. 3059 Root = DAG.getRoot(); 3060 } 3061 3062 SDLoc dl = getCurSDLoc(); 3063 3064 if (isVolatile) 3065 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3066 3067 SmallVector<SDValue, 4> Values(NumValues); 3068 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3069 EVT PtrVT = Ptr.getValueType(); 3070 unsigned ChainI = 0; 3071 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3072 // Serializing loads here may result in excessive register pressure, and 3073 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3074 // could recover a bit by hoisting nodes upward in the chain by recognizing 3075 // they are side-effect free or do not alias. The optimizer should really 3076 // avoid this case by converting large object/array copies to llvm.memcpy 3077 // (MaxParallelChains should always remain as failsafe). 3078 if (ChainI == MaxParallelChains) { 3079 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3080 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3081 makeArrayRef(Chains.data(), ChainI)); 3082 Root = Chain; 3083 ChainI = 0; 3084 } 3085 SDValue A = DAG.getNode(ISD::ADD, dl, 3086 PtrVT, Ptr, 3087 DAG.getConstant(Offsets[i], dl, PtrVT)); 3088 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3089 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3090 isNonTemporal, isInvariant, Alignment, AAInfo, 3091 Ranges); 3092 3093 Values[i] = L; 3094 Chains[ChainI] = L.getValue(1); 3095 } 3096 3097 if (!ConstantMemory) { 3098 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3099 makeArrayRef(Chains.data(), ChainI)); 3100 if (isVolatile) 3101 DAG.setRoot(Chain); 3102 else 3103 PendingLoads.push_back(Chain); 3104 } 3105 3106 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3107 DAG.getVTList(ValueVTs), Values)); 3108 } 3109 3110 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3111 if (I.isAtomic()) 3112 return visitAtomicStore(I); 3113 3114 const Value *SrcV = I.getOperand(0); 3115 const Value *PtrV = I.getOperand(1); 3116 3117 SmallVector<EVT, 4> ValueVTs; 3118 SmallVector<uint64_t, 4> Offsets; 3119 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3120 SrcV->getType(), ValueVTs, &Offsets); 3121 unsigned NumValues = ValueVTs.size(); 3122 if (NumValues == 0) 3123 return; 3124 3125 // Get the lowered operands. Note that we do this after 3126 // checking if NumResults is zero, because with zero results 3127 // the operands won't have values in the map. 3128 SDValue Src = getValue(SrcV); 3129 SDValue Ptr = getValue(PtrV); 3130 3131 SDValue Root = getRoot(); 3132 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3133 EVT PtrVT = Ptr.getValueType(); 3134 bool isVolatile = I.isVolatile(); 3135 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3136 unsigned Alignment = I.getAlignment(); 3137 SDLoc dl = getCurSDLoc(); 3138 3139 AAMDNodes AAInfo; 3140 I.getAAMetadata(AAInfo); 3141 3142 unsigned ChainI = 0; 3143 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3144 // See visitLoad comments. 3145 if (ChainI == MaxParallelChains) { 3146 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3147 makeArrayRef(Chains.data(), ChainI)); 3148 Root = Chain; 3149 ChainI = 0; 3150 } 3151 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3152 DAG.getConstant(Offsets[i], dl, PtrVT)); 3153 SDValue St = DAG.getStore(Root, dl, 3154 SDValue(Src.getNode(), Src.getResNo() + i), 3155 Add, MachinePointerInfo(PtrV, Offsets[i]), 3156 isVolatile, isNonTemporal, Alignment, AAInfo); 3157 Chains[ChainI] = St; 3158 } 3159 3160 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3161 makeArrayRef(Chains.data(), ChainI)); 3162 DAG.setRoot(StoreNode); 3163 } 3164 3165 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3166 SDLoc sdl = getCurSDLoc(); 3167 3168 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3169 Value *PtrOperand = I.getArgOperand(1); 3170 SDValue Ptr = getValue(PtrOperand); 3171 SDValue Src0 = getValue(I.getArgOperand(0)); 3172 SDValue Mask = getValue(I.getArgOperand(3)); 3173 EVT VT = Src0.getValueType(); 3174 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3175 if (!Alignment) 3176 Alignment = DAG.getEVTAlignment(VT); 3177 3178 AAMDNodes AAInfo; 3179 I.getAAMetadata(AAInfo); 3180 3181 MachineMemOperand *MMO = 3182 DAG.getMachineFunction(). 3183 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3184 MachineMemOperand::MOStore, VT.getStoreSize(), 3185 Alignment, AAInfo); 3186 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3187 MMO, false); 3188 DAG.setRoot(StoreNode); 3189 setValue(&I, StoreNode); 3190 } 3191 3192 // Get a uniform base for the Gather/Scatter intrinsic. 3193 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3194 // We try to represent it as a base pointer + vector of indices. 3195 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3196 // The first operand of the GEP may be a single pointer or a vector of pointers 3197 // Example: 3198 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3199 // or 3200 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3201 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3202 // 3203 // When the first GEP operand is a single pointer - it is the uniform base we 3204 // are looking for. If first operand of the GEP is a splat vector - we 3205 // extract the spalt value and use it as a uniform base. 3206 // In all other cases the function returns 'false'. 3207 // 3208 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3209 SelectionDAGBuilder* SDB) { 3210 3211 SelectionDAG& DAG = SDB->DAG; 3212 LLVMContext &Context = *DAG.getContext(); 3213 3214 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3215 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3216 if (!GEP || GEP->getNumOperands() > 2) 3217 return false; 3218 3219 Value *GEPPtr = GEP->getPointerOperand(); 3220 if (!GEPPtr->getType()->isVectorTy()) 3221 Ptr = GEPPtr; 3222 else if (!(Ptr = getSplatValue(GEPPtr))) 3223 return false; 3224 3225 Value *IndexVal = GEP->getOperand(1); 3226 3227 // The operands of the GEP may be defined in another basic block. 3228 // In this case we'll not find nodes for the operands. 3229 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3230 return false; 3231 3232 Base = SDB->getValue(Ptr); 3233 Index = SDB->getValue(IndexVal); 3234 3235 // Suppress sign extension. 3236 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3237 if (SDB->findValue(Sext->getOperand(0))) { 3238 IndexVal = Sext->getOperand(0); 3239 Index = SDB->getValue(IndexVal); 3240 } 3241 } 3242 if (!Index.getValueType().isVector()) { 3243 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3244 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3245 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3246 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3247 } 3248 return true; 3249 } 3250 3251 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3252 SDLoc sdl = getCurSDLoc(); 3253 3254 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3255 Value *Ptr = I.getArgOperand(1); 3256 SDValue Src0 = getValue(I.getArgOperand(0)); 3257 SDValue Mask = getValue(I.getArgOperand(3)); 3258 EVT VT = Src0.getValueType(); 3259 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3260 if (!Alignment) 3261 Alignment = DAG.getEVTAlignment(VT); 3262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3263 3264 AAMDNodes AAInfo; 3265 I.getAAMetadata(AAInfo); 3266 3267 SDValue Base; 3268 SDValue Index; 3269 Value *BasePtr = Ptr; 3270 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3271 3272 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3273 MachineMemOperand *MMO = DAG.getMachineFunction(). 3274 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3275 MachineMemOperand::MOStore, VT.getStoreSize(), 3276 Alignment, AAInfo); 3277 if (!UniformBase) { 3278 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3279 Index = getValue(Ptr); 3280 } 3281 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3282 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3283 Ops, MMO); 3284 DAG.setRoot(Scatter); 3285 setValue(&I, Scatter); 3286 } 3287 3288 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3289 SDLoc sdl = getCurSDLoc(); 3290 3291 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3292 Value *PtrOperand = I.getArgOperand(0); 3293 SDValue Ptr = getValue(PtrOperand); 3294 SDValue Src0 = getValue(I.getArgOperand(3)); 3295 SDValue Mask = getValue(I.getArgOperand(2)); 3296 3297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3298 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3299 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3300 if (!Alignment) 3301 Alignment = DAG.getEVTAlignment(VT); 3302 3303 AAMDNodes AAInfo; 3304 I.getAAMetadata(AAInfo); 3305 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3306 3307 SDValue InChain = DAG.getRoot(); 3308 if (AA->pointsToConstantMemory(MemoryLocation( 3309 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3310 AAInfo))) { 3311 // Do not serialize (non-volatile) loads of constant memory with anything. 3312 InChain = DAG.getEntryNode(); 3313 } 3314 3315 MachineMemOperand *MMO = 3316 DAG.getMachineFunction(). 3317 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3318 MachineMemOperand::MOLoad, VT.getStoreSize(), 3319 Alignment, AAInfo, Ranges); 3320 3321 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3322 ISD::NON_EXTLOAD); 3323 SDValue OutChain = Load.getValue(1); 3324 DAG.setRoot(OutChain); 3325 setValue(&I, Load); 3326 } 3327 3328 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3329 SDLoc sdl = getCurSDLoc(); 3330 3331 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3332 Value *Ptr = I.getArgOperand(0); 3333 SDValue Src0 = getValue(I.getArgOperand(3)); 3334 SDValue Mask = getValue(I.getArgOperand(2)); 3335 3336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3337 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3338 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3339 if (!Alignment) 3340 Alignment = DAG.getEVTAlignment(VT); 3341 3342 AAMDNodes AAInfo; 3343 I.getAAMetadata(AAInfo); 3344 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3345 3346 SDValue Root = DAG.getRoot(); 3347 SDValue Base; 3348 SDValue Index; 3349 Value *BasePtr = Ptr; 3350 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3351 bool ConstantMemory = false; 3352 if (UniformBase && 3353 AA->pointsToConstantMemory(MemoryLocation( 3354 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3355 AAInfo))) { 3356 // Do not serialize (non-volatile) loads of constant memory with anything. 3357 Root = DAG.getEntryNode(); 3358 ConstantMemory = true; 3359 } 3360 3361 MachineMemOperand *MMO = 3362 DAG.getMachineFunction(). 3363 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3364 MachineMemOperand::MOLoad, VT.getStoreSize(), 3365 Alignment, AAInfo, Ranges); 3366 3367 if (!UniformBase) { 3368 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3369 Index = getValue(Ptr); 3370 } 3371 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3372 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3373 Ops, MMO); 3374 3375 SDValue OutChain = Gather.getValue(1); 3376 if (!ConstantMemory) 3377 PendingLoads.push_back(OutChain); 3378 setValue(&I, Gather); 3379 } 3380 3381 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3382 SDLoc dl = getCurSDLoc(); 3383 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3384 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3385 SynchronizationScope Scope = I.getSynchScope(); 3386 3387 SDValue InChain = getRoot(); 3388 3389 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3390 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3391 SDValue L = DAG.getAtomicCmpSwap( 3392 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3393 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3394 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3395 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3396 3397 SDValue OutChain = L.getValue(2); 3398 3399 setValue(&I, L); 3400 DAG.setRoot(OutChain); 3401 } 3402 3403 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3404 SDLoc dl = getCurSDLoc(); 3405 ISD::NodeType NT; 3406 switch (I.getOperation()) { 3407 default: llvm_unreachable("Unknown atomicrmw operation"); 3408 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3409 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3410 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3411 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3412 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3413 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3414 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3415 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3416 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3417 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3418 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3419 } 3420 AtomicOrdering Order = I.getOrdering(); 3421 SynchronizationScope Scope = I.getSynchScope(); 3422 3423 SDValue InChain = getRoot(); 3424 3425 SDValue L = 3426 DAG.getAtomic(NT, dl, 3427 getValue(I.getValOperand()).getSimpleValueType(), 3428 InChain, 3429 getValue(I.getPointerOperand()), 3430 getValue(I.getValOperand()), 3431 I.getPointerOperand(), 3432 /* Alignment=*/ 0, Order, Scope); 3433 3434 SDValue OutChain = L.getValue(1); 3435 3436 setValue(&I, L); 3437 DAG.setRoot(OutChain); 3438 } 3439 3440 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3441 SDLoc dl = getCurSDLoc(); 3442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3443 SDValue Ops[3]; 3444 Ops[0] = getRoot(); 3445 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3446 TLI.getPointerTy(DAG.getDataLayout())); 3447 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3448 TLI.getPointerTy(DAG.getDataLayout())); 3449 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3450 } 3451 3452 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3453 SDLoc dl = getCurSDLoc(); 3454 AtomicOrdering Order = I.getOrdering(); 3455 SynchronizationScope Scope = I.getSynchScope(); 3456 3457 SDValue InChain = getRoot(); 3458 3459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3460 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3461 3462 if (I.getAlignment() < VT.getSizeInBits() / 8) 3463 report_fatal_error("Cannot generate unaligned atomic load"); 3464 3465 MachineMemOperand *MMO = 3466 DAG.getMachineFunction(). 3467 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3468 MachineMemOperand::MOVolatile | 3469 MachineMemOperand::MOLoad, 3470 VT.getStoreSize(), 3471 I.getAlignment() ? I.getAlignment() : 3472 DAG.getEVTAlignment(VT)); 3473 3474 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3475 SDValue L = 3476 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3477 getValue(I.getPointerOperand()), MMO, 3478 Order, Scope); 3479 3480 SDValue OutChain = L.getValue(1); 3481 3482 setValue(&I, L); 3483 DAG.setRoot(OutChain); 3484 } 3485 3486 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3487 SDLoc dl = getCurSDLoc(); 3488 3489 AtomicOrdering Order = I.getOrdering(); 3490 SynchronizationScope Scope = I.getSynchScope(); 3491 3492 SDValue InChain = getRoot(); 3493 3494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3495 EVT VT = 3496 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3497 3498 if (I.getAlignment() < VT.getSizeInBits() / 8) 3499 report_fatal_error("Cannot generate unaligned atomic store"); 3500 3501 SDValue OutChain = 3502 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3503 InChain, 3504 getValue(I.getPointerOperand()), 3505 getValue(I.getValueOperand()), 3506 I.getPointerOperand(), I.getAlignment(), 3507 Order, Scope); 3508 3509 DAG.setRoot(OutChain); 3510 } 3511 3512 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3513 /// node. 3514 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3515 unsigned Intrinsic) { 3516 bool HasChain = !I.doesNotAccessMemory(); 3517 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3518 3519 // Build the operand list. 3520 SmallVector<SDValue, 8> Ops; 3521 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3522 if (OnlyLoad) { 3523 // We don't need to serialize loads against other loads. 3524 Ops.push_back(DAG.getRoot()); 3525 } else { 3526 Ops.push_back(getRoot()); 3527 } 3528 } 3529 3530 // Info is set by getTgtMemInstrinsic 3531 TargetLowering::IntrinsicInfo Info; 3532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3533 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3534 3535 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3536 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3537 Info.opc == ISD::INTRINSIC_W_CHAIN) 3538 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3539 TLI.getPointerTy(DAG.getDataLayout()))); 3540 3541 // Add all operands of the call to the operand list. 3542 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3543 SDValue Op = getValue(I.getArgOperand(i)); 3544 Ops.push_back(Op); 3545 } 3546 3547 SmallVector<EVT, 4> ValueVTs; 3548 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3549 3550 if (HasChain) 3551 ValueVTs.push_back(MVT::Other); 3552 3553 SDVTList VTs = DAG.getVTList(ValueVTs); 3554 3555 // Create the node. 3556 SDValue Result; 3557 if (IsTgtIntrinsic) { 3558 // This is target intrinsic that touches memory 3559 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3560 VTs, Ops, Info.memVT, 3561 MachinePointerInfo(Info.ptrVal, Info.offset), 3562 Info.align, Info.vol, 3563 Info.readMem, Info.writeMem, Info.size); 3564 } else if (!HasChain) { 3565 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3566 } else if (!I.getType()->isVoidTy()) { 3567 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3568 } else { 3569 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3570 } 3571 3572 if (HasChain) { 3573 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3574 if (OnlyLoad) 3575 PendingLoads.push_back(Chain); 3576 else 3577 DAG.setRoot(Chain); 3578 } 3579 3580 if (!I.getType()->isVoidTy()) { 3581 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3582 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3583 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3584 } 3585 3586 setValue(&I, Result); 3587 } 3588 } 3589 3590 /// GetSignificand - Get the significand and build it into a floating-point 3591 /// number with exponent of 1: 3592 /// 3593 /// Op = (Op & 0x007fffff) | 0x3f800000; 3594 /// 3595 /// where Op is the hexadecimal representation of floating point value. 3596 static SDValue 3597 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3598 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3599 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3600 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3601 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3602 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3603 } 3604 3605 /// GetExponent - Get the exponent: 3606 /// 3607 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3608 /// 3609 /// where Op is the hexadecimal representation of floating point value. 3610 static SDValue 3611 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3612 SDLoc dl) { 3613 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3614 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3615 SDValue t1 = DAG.getNode( 3616 ISD::SRL, dl, MVT::i32, t0, 3617 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3618 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3619 DAG.getConstant(127, dl, MVT::i32)); 3620 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3621 } 3622 3623 /// getF32Constant - Get 32-bit floating point constant. 3624 static SDValue 3625 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3626 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3627 MVT::f32); 3628 } 3629 3630 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3631 SelectionDAG &DAG) { 3632 // IntegerPartOfX = ((int32_t)(t0); 3633 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3634 3635 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3636 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3637 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3638 3639 // IntegerPartOfX <<= 23; 3640 IntegerPartOfX = DAG.getNode( 3641 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3642 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3643 DAG.getDataLayout()))); 3644 3645 SDValue TwoToFractionalPartOfX; 3646 if (LimitFloatPrecision <= 6) { 3647 // For floating-point precision of 6: 3648 // 3649 // TwoToFractionalPartOfX = 3650 // 0.997535578f + 3651 // (0.735607626f + 0.252464424f * x) * x; 3652 // 3653 // error 0.0144103317, which is 6 bits 3654 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3655 getF32Constant(DAG, 0x3e814304, dl)); 3656 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3657 getF32Constant(DAG, 0x3f3c50c8, dl)); 3658 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3659 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3660 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3661 } else if (LimitFloatPrecision <= 12) { 3662 // For floating-point precision of 12: 3663 // 3664 // TwoToFractionalPartOfX = 3665 // 0.999892986f + 3666 // (0.696457318f + 3667 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3668 // 3669 // error 0.000107046256, which is 13 to 14 bits 3670 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3671 getF32Constant(DAG, 0x3da235e3, dl)); 3672 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3673 getF32Constant(DAG, 0x3e65b8f3, dl)); 3674 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3675 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3676 getF32Constant(DAG, 0x3f324b07, dl)); 3677 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3678 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3679 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3680 } else { // LimitFloatPrecision <= 18 3681 // For floating-point precision of 18: 3682 // 3683 // TwoToFractionalPartOfX = 3684 // 0.999999982f + 3685 // (0.693148872f + 3686 // (0.240227044f + 3687 // (0.554906021e-1f + 3688 // (0.961591928e-2f + 3689 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3690 // error 2.47208000*10^(-7), which is better than 18 bits 3691 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3692 getF32Constant(DAG, 0x3924b03e, dl)); 3693 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3694 getF32Constant(DAG, 0x3ab24b87, dl)); 3695 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3696 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3697 getF32Constant(DAG, 0x3c1d8c17, dl)); 3698 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3699 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3700 getF32Constant(DAG, 0x3d634a1d, dl)); 3701 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3702 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3703 getF32Constant(DAG, 0x3e75fe14, dl)); 3704 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3705 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3706 getF32Constant(DAG, 0x3f317234, dl)); 3707 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3708 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3709 getF32Constant(DAG, 0x3f800000, dl)); 3710 } 3711 3712 // Add the exponent into the result in integer domain. 3713 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3714 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3715 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3716 } 3717 3718 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3719 /// limited-precision mode. 3720 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3721 const TargetLowering &TLI) { 3722 if (Op.getValueType() == MVT::f32 && 3723 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3724 3725 // Put the exponent in the right bit position for later addition to the 3726 // final result: 3727 // 3728 // #define LOG2OFe 1.4426950f 3729 // t0 = Op * LOG2OFe 3730 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3731 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3732 return getLimitedPrecisionExp2(t0, dl, DAG); 3733 } 3734 3735 // No special expansion. 3736 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3737 } 3738 3739 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3740 /// limited-precision mode. 3741 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3742 const TargetLowering &TLI) { 3743 if (Op.getValueType() == MVT::f32 && 3744 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3745 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3746 3747 // Scale the exponent by log(2) [0.69314718f]. 3748 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3749 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3750 getF32Constant(DAG, 0x3f317218, dl)); 3751 3752 // Get the significand and build it into a floating-point number with 3753 // exponent of 1. 3754 SDValue X = GetSignificand(DAG, Op1, dl); 3755 3756 SDValue LogOfMantissa; 3757 if (LimitFloatPrecision <= 6) { 3758 // For floating-point precision of 6: 3759 // 3760 // LogofMantissa = 3761 // -1.1609546f + 3762 // (1.4034025f - 0.23903021f * x) * x; 3763 // 3764 // error 0.0034276066, which is better than 8 bits 3765 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3766 getF32Constant(DAG, 0xbe74c456, dl)); 3767 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3768 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3769 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3770 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3771 getF32Constant(DAG, 0x3f949a29, dl)); 3772 } else if (LimitFloatPrecision <= 12) { 3773 // For floating-point precision of 12: 3774 // 3775 // LogOfMantissa = 3776 // -1.7417939f + 3777 // (2.8212026f + 3778 // (-1.4699568f + 3779 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3780 // 3781 // error 0.000061011436, which is 14 bits 3782 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3783 getF32Constant(DAG, 0xbd67b6d6, dl)); 3784 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3785 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3786 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3787 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3788 getF32Constant(DAG, 0x3fbc278b, dl)); 3789 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3790 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3791 getF32Constant(DAG, 0x40348e95, dl)); 3792 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3793 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3794 getF32Constant(DAG, 0x3fdef31a, dl)); 3795 } else { // LimitFloatPrecision <= 18 3796 // For floating-point precision of 18: 3797 // 3798 // LogOfMantissa = 3799 // -2.1072184f + 3800 // (4.2372794f + 3801 // (-3.7029485f + 3802 // (2.2781945f + 3803 // (-0.87823314f + 3804 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3805 // 3806 // error 0.0000023660568, which is better than 18 bits 3807 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3808 getF32Constant(DAG, 0xbc91e5ac, dl)); 3809 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3810 getF32Constant(DAG, 0x3e4350aa, dl)); 3811 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3812 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3813 getF32Constant(DAG, 0x3f60d3e3, dl)); 3814 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3815 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3816 getF32Constant(DAG, 0x4011cdf0, dl)); 3817 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3818 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3819 getF32Constant(DAG, 0x406cfd1c, dl)); 3820 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3821 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3822 getF32Constant(DAG, 0x408797cb, dl)); 3823 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3824 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3825 getF32Constant(DAG, 0x4006dcab, dl)); 3826 } 3827 3828 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3829 } 3830 3831 // No special expansion. 3832 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3833 } 3834 3835 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3836 /// limited-precision mode. 3837 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3838 const TargetLowering &TLI) { 3839 if (Op.getValueType() == MVT::f32 && 3840 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3841 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3842 3843 // Get the exponent. 3844 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3845 3846 // Get the significand and build it into a floating-point number with 3847 // exponent of 1. 3848 SDValue X = GetSignificand(DAG, Op1, dl); 3849 3850 // Different possible minimax approximations of significand in 3851 // floating-point for various degrees of accuracy over [1,2]. 3852 SDValue Log2ofMantissa; 3853 if (LimitFloatPrecision <= 6) { 3854 // For floating-point precision of 6: 3855 // 3856 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3857 // 3858 // error 0.0049451742, which is more than 7 bits 3859 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3860 getF32Constant(DAG, 0xbeb08fe0, dl)); 3861 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3862 getF32Constant(DAG, 0x40019463, dl)); 3863 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3864 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3865 getF32Constant(DAG, 0x3fd6633d, dl)); 3866 } else if (LimitFloatPrecision <= 12) { 3867 // For floating-point precision of 12: 3868 // 3869 // Log2ofMantissa = 3870 // -2.51285454f + 3871 // (4.07009056f + 3872 // (-2.12067489f + 3873 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3874 // 3875 // error 0.0000876136000, which is better than 13 bits 3876 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3877 getF32Constant(DAG, 0xbda7262e, dl)); 3878 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3879 getF32Constant(DAG, 0x3f25280b, dl)); 3880 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3881 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3882 getF32Constant(DAG, 0x4007b923, dl)); 3883 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3884 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3885 getF32Constant(DAG, 0x40823e2f, dl)); 3886 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3887 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3888 getF32Constant(DAG, 0x4020d29c, dl)); 3889 } else { // LimitFloatPrecision <= 18 3890 // For floating-point precision of 18: 3891 // 3892 // Log2ofMantissa = 3893 // -3.0400495f + 3894 // (6.1129976f + 3895 // (-5.3420409f + 3896 // (3.2865683f + 3897 // (-1.2669343f + 3898 // (0.27515199f - 3899 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3900 // 3901 // error 0.0000018516, which is better than 18 bits 3902 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3903 getF32Constant(DAG, 0xbcd2769e, dl)); 3904 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3905 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3906 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3907 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3908 getF32Constant(DAG, 0x3fa22ae7, dl)); 3909 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3910 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3911 getF32Constant(DAG, 0x40525723, dl)); 3912 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3913 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3914 getF32Constant(DAG, 0x40aaf200, dl)); 3915 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3916 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3917 getF32Constant(DAG, 0x40c39dad, dl)); 3918 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3919 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3920 getF32Constant(DAG, 0x4042902c, dl)); 3921 } 3922 3923 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3924 } 3925 3926 // No special expansion. 3927 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3928 } 3929 3930 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3931 /// limited-precision mode. 3932 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3933 const TargetLowering &TLI) { 3934 if (Op.getValueType() == MVT::f32 && 3935 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3936 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3937 3938 // Scale the exponent by log10(2) [0.30102999f]. 3939 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3940 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3941 getF32Constant(DAG, 0x3e9a209a, dl)); 3942 3943 // Get the significand and build it into a floating-point number with 3944 // exponent of 1. 3945 SDValue X = GetSignificand(DAG, Op1, dl); 3946 3947 SDValue Log10ofMantissa; 3948 if (LimitFloatPrecision <= 6) { 3949 // For floating-point precision of 6: 3950 // 3951 // Log10ofMantissa = 3952 // -0.50419619f + 3953 // (0.60948995f - 0.10380950f * x) * x; 3954 // 3955 // error 0.0014886165, which is 6 bits 3956 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3957 getF32Constant(DAG, 0xbdd49a13, dl)); 3958 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3959 getF32Constant(DAG, 0x3f1c0789, dl)); 3960 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3961 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3962 getF32Constant(DAG, 0x3f011300, dl)); 3963 } else if (LimitFloatPrecision <= 12) { 3964 // For floating-point precision of 12: 3965 // 3966 // Log10ofMantissa = 3967 // -0.64831180f + 3968 // (0.91751397f + 3969 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3970 // 3971 // error 0.00019228036, which is better than 12 bits 3972 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3973 getF32Constant(DAG, 0x3d431f31, dl)); 3974 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3975 getF32Constant(DAG, 0x3ea21fb2, dl)); 3976 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3977 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3978 getF32Constant(DAG, 0x3f6ae232, dl)); 3979 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3980 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3981 getF32Constant(DAG, 0x3f25f7c3, dl)); 3982 } else { // LimitFloatPrecision <= 18 3983 // For floating-point precision of 18: 3984 // 3985 // Log10ofMantissa = 3986 // -0.84299375f + 3987 // (1.5327582f + 3988 // (-1.0688956f + 3989 // (0.49102474f + 3990 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3991 // 3992 // error 0.0000037995730, which is better than 18 bits 3993 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3994 getF32Constant(DAG, 0x3c5d51ce, dl)); 3995 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3996 getF32Constant(DAG, 0x3e00685a, dl)); 3997 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3998 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3999 getF32Constant(DAG, 0x3efb6798, dl)); 4000 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4001 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4002 getF32Constant(DAG, 0x3f88d192, dl)); 4003 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4004 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4005 getF32Constant(DAG, 0x3fc4316c, dl)); 4006 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4007 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4008 getF32Constant(DAG, 0x3f57ce70, dl)); 4009 } 4010 4011 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4012 } 4013 4014 // No special expansion. 4015 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4016 } 4017 4018 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4019 /// limited-precision mode. 4020 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4021 const TargetLowering &TLI) { 4022 if (Op.getValueType() == MVT::f32 && 4023 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4024 return getLimitedPrecisionExp2(Op, dl, DAG); 4025 4026 // No special expansion. 4027 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4028 } 4029 4030 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4031 /// limited-precision mode with x == 10.0f. 4032 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4033 SelectionDAG &DAG, const TargetLowering &TLI) { 4034 bool IsExp10 = false; 4035 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4036 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4037 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4038 APFloat Ten(10.0f); 4039 IsExp10 = LHSC->isExactlyValue(Ten); 4040 } 4041 } 4042 4043 if (IsExp10) { 4044 // Put the exponent in the right bit position for later addition to the 4045 // final result: 4046 // 4047 // #define LOG2OF10 3.3219281f 4048 // t0 = Op * LOG2OF10; 4049 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4050 getF32Constant(DAG, 0x40549a78, dl)); 4051 return getLimitedPrecisionExp2(t0, dl, DAG); 4052 } 4053 4054 // No special expansion. 4055 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4056 } 4057 4058 4059 /// ExpandPowI - Expand a llvm.powi intrinsic. 4060 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4061 SelectionDAG &DAG) { 4062 // If RHS is a constant, we can expand this out to a multiplication tree, 4063 // otherwise we end up lowering to a call to __powidf2 (for example). When 4064 // optimizing for size, we only want to do this if the expansion would produce 4065 // a small number of multiplies, otherwise we do the full expansion. 4066 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4067 // Get the exponent as a positive value. 4068 unsigned Val = RHSC->getSExtValue(); 4069 if ((int)Val < 0) Val = -Val; 4070 4071 // powi(x, 0) -> 1.0 4072 if (Val == 0) 4073 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4074 4075 const Function *F = DAG.getMachineFunction().getFunction(); 4076 if (!F->optForSize() || 4077 // If optimizing for size, don't insert too many multiplies. 4078 // This inserts up to 5 multiplies. 4079 countPopulation(Val) + Log2_32(Val) < 7) { 4080 // We use the simple binary decomposition method to generate the multiply 4081 // sequence. There are more optimal ways to do this (for example, 4082 // powi(x,15) generates one more multiply than it should), but this has 4083 // the benefit of being both really simple and much better than a libcall. 4084 SDValue Res; // Logically starts equal to 1.0 4085 SDValue CurSquare = LHS; 4086 while (Val) { 4087 if (Val & 1) { 4088 if (Res.getNode()) 4089 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4090 else 4091 Res = CurSquare; // 1.0*CurSquare. 4092 } 4093 4094 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4095 CurSquare, CurSquare); 4096 Val >>= 1; 4097 } 4098 4099 // If the original was negative, invert the result, producing 1/(x*x*x). 4100 if (RHSC->getSExtValue() < 0) 4101 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4102 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4103 return Res; 4104 } 4105 } 4106 4107 // Otherwise, expand to a libcall. 4108 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4109 } 4110 4111 // getTruncatedArgReg - Find underlying register used for an truncated 4112 // argument. 4113 static unsigned getTruncatedArgReg(const SDValue &N) { 4114 if (N.getOpcode() != ISD::TRUNCATE) 4115 return 0; 4116 4117 const SDValue &Ext = N.getOperand(0); 4118 if (Ext.getOpcode() == ISD::AssertZext || 4119 Ext.getOpcode() == ISD::AssertSext) { 4120 const SDValue &CFR = Ext.getOperand(0); 4121 if (CFR.getOpcode() == ISD::CopyFromReg) 4122 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4123 if (CFR.getOpcode() == ISD::TRUNCATE) 4124 return getTruncatedArgReg(CFR); 4125 } 4126 return 0; 4127 } 4128 4129 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4130 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4131 /// At the end of instruction selection, they will be inserted to the entry BB. 4132 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4133 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4134 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4135 const Argument *Arg = dyn_cast<Argument>(V); 4136 if (!Arg) 4137 return false; 4138 4139 MachineFunction &MF = DAG.getMachineFunction(); 4140 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4141 4142 // Ignore inlined function arguments here. 4143 // 4144 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4145 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4146 return false; 4147 4148 Optional<MachineOperand> Op; 4149 // Some arguments' frame index is recorded during argument lowering. 4150 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4151 Op = MachineOperand::CreateFI(FI); 4152 4153 if (!Op && N.getNode()) { 4154 unsigned Reg; 4155 if (N.getOpcode() == ISD::CopyFromReg) 4156 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4157 else 4158 Reg = getTruncatedArgReg(N); 4159 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4160 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4161 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4162 if (PR) 4163 Reg = PR; 4164 } 4165 if (Reg) 4166 Op = MachineOperand::CreateReg(Reg, false); 4167 } 4168 4169 if (!Op) { 4170 // Check if ValueMap has reg number. 4171 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4172 if (VMI != FuncInfo.ValueMap.end()) 4173 Op = MachineOperand::CreateReg(VMI->second, false); 4174 } 4175 4176 if (!Op && N.getNode()) 4177 // Check if frame index is available. 4178 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4179 if (FrameIndexSDNode *FINode = 4180 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4181 Op = MachineOperand::CreateFI(FINode->getIndex()); 4182 4183 if (!Op) 4184 return false; 4185 4186 assert(Variable->isValidLocationForIntrinsic(DL) && 4187 "Expected inlined-at fields to agree"); 4188 if (Op->isReg()) 4189 FuncInfo.ArgDbgValues.push_back( 4190 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4191 Op->getReg(), Offset, Variable, Expr)); 4192 else 4193 FuncInfo.ArgDbgValues.push_back( 4194 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4195 .addOperand(*Op) 4196 .addImm(Offset) 4197 .addMetadata(Variable) 4198 .addMetadata(Expr)); 4199 4200 return true; 4201 } 4202 4203 // VisualStudio defines setjmp as _setjmp 4204 #if defined(_MSC_VER) && defined(setjmp) && \ 4205 !defined(setjmp_undefined_for_msvc) 4206 # pragma push_macro("setjmp") 4207 # undef setjmp 4208 # define setjmp_undefined_for_msvc 4209 #endif 4210 4211 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4212 /// we want to emit this as a call to a named external function, return the name 4213 /// otherwise lower it and return null. 4214 const char * 4215 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4216 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4217 SDLoc sdl = getCurSDLoc(); 4218 DebugLoc dl = getCurDebugLoc(); 4219 SDValue Res; 4220 4221 switch (Intrinsic) { 4222 default: 4223 // By default, turn this into a target intrinsic node. 4224 visitTargetIntrinsic(I, Intrinsic); 4225 return nullptr; 4226 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4227 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4228 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4229 case Intrinsic::returnaddress: 4230 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4231 TLI.getPointerTy(DAG.getDataLayout()), 4232 getValue(I.getArgOperand(0)))); 4233 return nullptr; 4234 case Intrinsic::frameaddress: 4235 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4236 TLI.getPointerTy(DAG.getDataLayout()), 4237 getValue(I.getArgOperand(0)))); 4238 return nullptr; 4239 case Intrinsic::read_register: { 4240 Value *Reg = I.getArgOperand(0); 4241 SDValue Chain = getRoot(); 4242 SDValue RegName = 4243 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4244 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4245 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4246 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4247 setValue(&I, Res); 4248 DAG.setRoot(Res.getValue(1)); 4249 return nullptr; 4250 } 4251 case Intrinsic::write_register: { 4252 Value *Reg = I.getArgOperand(0); 4253 Value *RegValue = I.getArgOperand(1); 4254 SDValue Chain = getRoot(); 4255 SDValue RegName = 4256 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4257 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4258 RegName, getValue(RegValue))); 4259 return nullptr; 4260 } 4261 case Intrinsic::setjmp: 4262 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4263 case Intrinsic::longjmp: 4264 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4265 case Intrinsic::memcpy: { 4266 // FIXME: this definition of "user defined address space" is x86-specific 4267 // Assert for address < 256 since we support only user defined address 4268 // spaces. 4269 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4270 < 256 && 4271 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4272 < 256 && 4273 "Unknown address space"); 4274 SDValue Op1 = getValue(I.getArgOperand(0)); 4275 SDValue Op2 = getValue(I.getArgOperand(1)); 4276 SDValue Op3 = getValue(I.getArgOperand(2)); 4277 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4278 if (!Align) 4279 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4280 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4281 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4282 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4283 false, isTC, 4284 MachinePointerInfo(I.getArgOperand(0)), 4285 MachinePointerInfo(I.getArgOperand(1))); 4286 updateDAGForMaybeTailCall(MC); 4287 return nullptr; 4288 } 4289 case Intrinsic::memset: { 4290 // FIXME: this definition of "user defined address space" is x86-specific 4291 // Assert for address < 256 since we support only user defined address 4292 // spaces. 4293 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4294 < 256 && 4295 "Unknown address space"); 4296 SDValue Op1 = getValue(I.getArgOperand(0)); 4297 SDValue Op2 = getValue(I.getArgOperand(1)); 4298 SDValue Op3 = getValue(I.getArgOperand(2)); 4299 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4300 if (!Align) 4301 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4302 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4303 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4304 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4305 isTC, MachinePointerInfo(I.getArgOperand(0))); 4306 updateDAGForMaybeTailCall(MS); 4307 return nullptr; 4308 } 4309 case Intrinsic::memmove: { 4310 // FIXME: this definition of "user defined address space" is x86-specific 4311 // Assert for address < 256 since we support only user defined address 4312 // spaces. 4313 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4314 < 256 && 4315 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4316 < 256 && 4317 "Unknown address space"); 4318 SDValue Op1 = getValue(I.getArgOperand(0)); 4319 SDValue Op2 = getValue(I.getArgOperand(1)); 4320 SDValue Op3 = getValue(I.getArgOperand(2)); 4321 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4322 if (!Align) 4323 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4324 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4325 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4326 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4327 isTC, MachinePointerInfo(I.getArgOperand(0)), 4328 MachinePointerInfo(I.getArgOperand(1))); 4329 updateDAGForMaybeTailCall(MM); 4330 return nullptr; 4331 } 4332 case Intrinsic::dbg_declare: { 4333 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4334 DILocalVariable *Variable = DI.getVariable(); 4335 DIExpression *Expression = DI.getExpression(); 4336 const Value *Address = DI.getAddress(); 4337 assert(Variable && "Missing variable"); 4338 if (!Address) { 4339 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4340 return nullptr; 4341 } 4342 4343 // Check if address has undef value. 4344 if (isa<UndefValue>(Address) || 4345 (Address->use_empty() && !isa<Argument>(Address))) { 4346 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4347 return nullptr; 4348 } 4349 4350 SDValue &N = NodeMap[Address]; 4351 if (!N.getNode() && isa<Argument>(Address)) 4352 // Check unused arguments map. 4353 N = UnusedArgNodeMap[Address]; 4354 SDDbgValue *SDV; 4355 if (N.getNode()) { 4356 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4357 Address = BCI->getOperand(0); 4358 // Parameters are handled specially. 4359 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4360 4361 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4362 4363 if (isParameter && !AI) { 4364 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4365 if (FINode) 4366 // Byval parameter. We have a frame index at this point. 4367 SDV = DAG.getFrameIndexDbgValue( 4368 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4369 else { 4370 // Address is an argument, so try to emit its dbg value using 4371 // virtual register info from the FuncInfo.ValueMap. 4372 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4373 N); 4374 return nullptr; 4375 } 4376 } else if (AI) 4377 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4378 true, 0, dl, SDNodeOrder); 4379 else { 4380 // Can't do anything with other non-AI cases yet. 4381 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4382 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4383 DEBUG(Address->dump()); 4384 return nullptr; 4385 } 4386 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4387 } else { 4388 // If Address is an argument then try to emit its dbg value using 4389 // virtual register info from the FuncInfo.ValueMap. 4390 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4391 N)) { 4392 // If variable is pinned by a alloca in dominating bb then 4393 // use StaticAllocaMap. 4394 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4395 if (AI->getParent() != DI.getParent()) { 4396 DenseMap<const AllocaInst*, int>::iterator SI = 4397 FuncInfo.StaticAllocaMap.find(AI); 4398 if (SI != FuncInfo.StaticAllocaMap.end()) { 4399 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4400 0, dl, SDNodeOrder); 4401 DAG.AddDbgValue(SDV, nullptr, false); 4402 return nullptr; 4403 } 4404 } 4405 } 4406 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4407 } 4408 } 4409 return nullptr; 4410 } 4411 case Intrinsic::dbg_value: { 4412 const DbgValueInst &DI = cast<DbgValueInst>(I); 4413 assert(DI.getVariable() && "Missing variable"); 4414 4415 DILocalVariable *Variable = DI.getVariable(); 4416 DIExpression *Expression = DI.getExpression(); 4417 uint64_t Offset = DI.getOffset(); 4418 const Value *V = DI.getValue(); 4419 if (!V) 4420 return nullptr; 4421 4422 SDDbgValue *SDV; 4423 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4424 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4425 SDNodeOrder); 4426 DAG.AddDbgValue(SDV, nullptr, false); 4427 } else { 4428 // Do not use getValue() in here; we don't want to generate code at 4429 // this point if it hasn't been done yet. 4430 SDValue N = NodeMap[V]; 4431 if (!N.getNode() && isa<Argument>(V)) 4432 // Check unused arguments map. 4433 N = UnusedArgNodeMap[V]; 4434 if (N.getNode()) { 4435 // A dbg.value for an alloca is always indirect. 4436 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4437 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4438 IsIndirect, N)) { 4439 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4440 IsIndirect, Offset, dl, SDNodeOrder); 4441 DAG.AddDbgValue(SDV, N.getNode(), false); 4442 } 4443 } else if (!V->use_empty() ) { 4444 // Do not call getValue(V) yet, as we don't want to generate code. 4445 // Remember it for later. 4446 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4447 DanglingDebugInfoMap[V] = DDI; 4448 } else { 4449 // We may expand this to cover more cases. One case where we have no 4450 // data available is an unreferenced parameter. 4451 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4452 } 4453 } 4454 4455 // Build a debug info table entry. 4456 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4457 V = BCI->getOperand(0); 4458 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4459 // Don't handle byval struct arguments or VLAs, for example. 4460 if (!AI) { 4461 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4462 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4463 return nullptr; 4464 } 4465 DenseMap<const AllocaInst*, int>::iterator SI = 4466 FuncInfo.StaticAllocaMap.find(AI); 4467 if (SI == FuncInfo.StaticAllocaMap.end()) 4468 return nullptr; // VLAs. 4469 return nullptr; 4470 } 4471 4472 case Intrinsic::eh_typeid_for: { 4473 // Find the type id for the given typeinfo. 4474 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4475 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4476 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4477 setValue(&I, Res); 4478 return nullptr; 4479 } 4480 4481 case Intrinsic::eh_return_i32: 4482 case Intrinsic::eh_return_i64: 4483 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4484 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4485 MVT::Other, 4486 getControlRoot(), 4487 getValue(I.getArgOperand(0)), 4488 getValue(I.getArgOperand(1)))); 4489 return nullptr; 4490 case Intrinsic::eh_unwind_init: 4491 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4492 return nullptr; 4493 case Intrinsic::eh_dwarf_cfa: { 4494 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4495 TLI.getPointerTy(DAG.getDataLayout())); 4496 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4497 CfaArg.getValueType(), 4498 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4499 CfaArg.getValueType()), 4500 CfaArg); 4501 SDValue FA = DAG.getNode( 4502 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4503 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4504 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4505 FA, Offset)); 4506 return nullptr; 4507 } 4508 case Intrinsic::eh_sjlj_callsite: { 4509 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4510 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4511 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4512 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4513 4514 MMI.setCurrentCallSite(CI->getZExtValue()); 4515 return nullptr; 4516 } 4517 case Intrinsic::eh_sjlj_functioncontext: { 4518 // Get and store the index of the function context. 4519 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4520 AllocaInst *FnCtx = 4521 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4522 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4523 MFI->setFunctionContextIndex(FI); 4524 return nullptr; 4525 } 4526 case Intrinsic::eh_sjlj_setjmp: { 4527 SDValue Ops[2]; 4528 Ops[0] = getRoot(); 4529 Ops[1] = getValue(I.getArgOperand(0)); 4530 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4531 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4532 setValue(&I, Op.getValue(0)); 4533 DAG.setRoot(Op.getValue(1)); 4534 return nullptr; 4535 } 4536 case Intrinsic::eh_sjlj_longjmp: { 4537 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4538 getRoot(), getValue(I.getArgOperand(0)))); 4539 return nullptr; 4540 } 4541 case Intrinsic::eh_sjlj_setup_dispatch: { 4542 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4543 getRoot())); 4544 return nullptr; 4545 } 4546 4547 case Intrinsic::masked_gather: 4548 visitMaskedGather(I); 4549 return nullptr; 4550 case Intrinsic::masked_load: 4551 visitMaskedLoad(I); 4552 return nullptr; 4553 case Intrinsic::masked_scatter: 4554 visitMaskedScatter(I); 4555 return nullptr; 4556 case Intrinsic::masked_store: 4557 visitMaskedStore(I); 4558 return nullptr; 4559 case Intrinsic::x86_mmx_pslli_w: 4560 case Intrinsic::x86_mmx_pslli_d: 4561 case Intrinsic::x86_mmx_pslli_q: 4562 case Intrinsic::x86_mmx_psrli_w: 4563 case Intrinsic::x86_mmx_psrli_d: 4564 case Intrinsic::x86_mmx_psrli_q: 4565 case Intrinsic::x86_mmx_psrai_w: 4566 case Intrinsic::x86_mmx_psrai_d: { 4567 SDValue ShAmt = getValue(I.getArgOperand(1)); 4568 if (isa<ConstantSDNode>(ShAmt)) { 4569 visitTargetIntrinsic(I, Intrinsic); 4570 return nullptr; 4571 } 4572 unsigned NewIntrinsic = 0; 4573 EVT ShAmtVT = MVT::v2i32; 4574 switch (Intrinsic) { 4575 case Intrinsic::x86_mmx_pslli_w: 4576 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4577 break; 4578 case Intrinsic::x86_mmx_pslli_d: 4579 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4580 break; 4581 case Intrinsic::x86_mmx_pslli_q: 4582 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4583 break; 4584 case Intrinsic::x86_mmx_psrli_w: 4585 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4586 break; 4587 case Intrinsic::x86_mmx_psrli_d: 4588 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4589 break; 4590 case Intrinsic::x86_mmx_psrli_q: 4591 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4592 break; 4593 case Intrinsic::x86_mmx_psrai_w: 4594 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4595 break; 4596 case Intrinsic::x86_mmx_psrai_d: 4597 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4598 break; 4599 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4600 } 4601 4602 // The vector shift intrinsics with scalars uses 32b shift amounts but 4603 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4604 // to be zero. 4605 // We must do this early because v2i32 is not a legal type. 4606 SDValue ShOps[2]; 4607 ShOps[0] = ShAmt; 4608 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4609 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4610 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4611 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4612 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4613 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4614 getValue(I.getArgOperand(0)), ShAmt); 4615 setValue(&I, Res); 4616 return nullptr; 4617 } 4618 case Intrinsic::convertff: 4619 case Intrinsic::convertfsi: 4620 case Intrinsic::convertfui: 4621 case Intrinsic::convertsif: 4622 case Intrinsic::convertuif: 4623 case Intrinsic::convertss: 4624 case Intrinsic::convertsu: 4625 case Intrinsic::convertus: 4626 case Intrinsic::convertuu: { 4627 ISD::CvtCode Code = ISD::CVT_INVALID; 4628 switch (Intrinsic) { 4629 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4630 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4631 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4632 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4633 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4634 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4635 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4636 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4637 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4638 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4639 } 4640 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4641 const Value *Op1 = I.getArgOperand(0); 4642 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4643 DAG.getValueType(DestVT), 4644 DAG.getValueType(getValue(Op1).getValueType()), 4645 getValue(I.getArgOperand(1)), 4646 getValue(I.getArgOperand(2)), 4647 Code); 4648 setValue(&I, Res); 4649 return nullptr; 4650 } 4651 case Intrinsic::powi: 4652 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4653 getValue(I.getArgOperand(1)), DAG)); 4654 return nullptr; 4655 case Intrinsic::log: 4656 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4657 return nullptr; 4658 case Intrinsic::log2: 4659 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4660 return nullptr; 4661 case Intrinsic::log10: 4662 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4663 return nullptr; 4664 case Intrinsic::exp: 4665 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4666 return nullptr; 4667 case Intrinsic::exp2: 4668 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4669 return nullptr; 4670 case Intrinsic::pow: 4671 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4672 getValue(I.getArgOperand(1)), DAG, TLI)); 4673 return nullptr; 4674 case Intrinsic::sqrt: 4675 case Intrinsic::fabs: 4676 case Intrinsic::sin: 4677 case Intrinsic::cos: 4678 case Intrinsic::floor: 4679 case Intrinsic::ceil: 4680 case Intrinsic::trunc: 4681 case Intrinsic::rint: 4682 case Intrinsic::nearbyint: 4683 case Intrinsic::round: { 4684 unsigned Opcode; 4685 switch (Intrinsic) { 4686 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4687 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4688 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4689 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4690 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4691 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4692 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4693 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4694 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4695 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4696 case Intrinsic::round: Opcode = ISD::FROUND; break; 4697 } 4698 4699 setValue(&I, DAG.getNode(Opcode, sdl, 4700 getValue(I.getArgOperand(0)).getValueType(), 4701 getValue(I.getArgOperand(0)))); 4702 return nullptr; 4703 } 4704 case Intrinsic::minnum: 4705 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4706 getValue(I.getArgOperand(0)).getValueType(), 4707 getValue(I.getArgOperand(0)), 4708 getValue(I.getArgOperand(1)))); 4709 return nullptr; 4710 case Intrinsic::maxnum: 4711 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4712 getValue(I.getArgOperand(0)).getValueType(), 4713 getValue(I.getArgOperand(0)), 4714 getValue(I.getArgOperand(1)))); 4715 return nullptr; 4716 case Intrinsic::copysign: 4717 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4718 getValue(I.getArgOperand(0)).getValueType(), 4719 getValue(I.getArgOperand(0)), 4720 getValue(I.getArgOperand(1)))); 4721 return nullptr; 4722 case Intrinsic::fma: 4723 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4724 getValue(I.getArgOperand(0)).getValueType(), 4725 getValue(I.getArgOperand(0)), 4726 getValue(I.getArgOperand(1)), 4727 getValue(I.getArgOperand(2)))); 4728 return nullptr; 4729 case Intrinsic::fmuladd: { 4730 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4731 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4732 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4733 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4734 getValue(I.getArgOperand(0)).getValueType(), 4735 getValue(I.getArgOperand(0)), 4736 getValue(I.getArgOperand(1)), 4737 getValue(I.getArgOperand(2)))); 4738 } else { 4739 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4740 getValue(I.getArgOperand(0)).getValueType(), 4741 getValue(I.getArgOperand(0)), 4742 getValue(I.getArgOperand(1))); 4743 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4744 getValue(I.getArgOperand(0)).getValueType(), 4745 Mul, 4746 getValue(I.getArgOperand(2))); 4747 setValue(&I, Add); 4748 } 4749 return nullptr; 4750 } 4751 case Intrinsic::convert_to_fp16: 4752 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4753 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4754 getValue(I.getArgOperand(0)), 4755 DAG.getTargetConstant(0, sdl, 4756 MVT::i32)))); 4757 return nullptr; 4758 case Intrinsic::convert_from_fp16: 4759 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4760 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4761 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4762 getValue(I.getArgOperand(0))))); 4763 return nullptr; 4764 case Intrinsic::pcmarker: { 4765 SDValue Tmp = getValue(I.getArgOperand(0)); 4766 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4767 return nullptr; 4768 } 4769 case Intrinsic::readcyclecounter: { 4770 SDValue Op = getRoot(); 4771 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4772 DAG.getVTList(MVT::i64, MVT::Other), Op); 4773 setValue(&I, Res); 4774 DAG.setRoot(Res.getValue(1)); 4775 return nullptr; 4776 } 4777 case Intrinsic::bswap: 4778 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4779 getValue(I.getArgOperand(0)).getValueType(), 4780 getValue(I.getArgOperand(0)))); 4781 return nullptr; 4782 case Intrinsic::uabsdiff: 4783 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4784 getValue(I.getArgOperand(0)).getValueType(), 4785 getValue(I.getArgOperand(0)), 4786 getValue(I.getArgOperand(1)))); 4787 return nullptr; 4788 case Intrinsic::sabsdiff: 4789 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4790 getValue(I.getArgOperand(0)).getValueType(), 4791 getValue(I.getArgOperand(0)), 4792 getValue(I.getArgOperand(1)))); 4793 return nullptr; 4794 case Intrinsic::cttz: { 4795 SDValue Arg = getValue(I.getArgOperand(0)); 4796 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4797 EVT Ty = Arg.getValueType(); 4798 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4799 sdl, Ty, Arg)); 4800 return nullptr; 4801 } 4802 case Intrinsic::ctlz: { 4803 SDValue Arg = getValue(I.getArgOperand(0)); 4804 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4805 EVT Ty = Arg.getValueType(); 4806 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4807 sdl, Ty, Arg)); 4808 return nullptr; 4809 } 4810 case Intrinsic::ctpop: { 4811 SDValue Arg = getValue(I.getArgOperand(0)); 4812 EVT Ty = Arg.getValueType(); 4813 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4814 return nullptr; 4815 } 4816 case Intrinsic::stacksave: { 4817 SDValue Op = getRoot(); 4818 Res = DAG.getNode( 4819 ISD::STACKSAVE, sdl, 4820 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4821 setValue(&I, Res); 4822 DAG.setRoot(Res.getValue(1)); 4823 return nullptr; 4824 } 4825 case Intrinsic::stackrestore: { 4826 Res = getValue(I.getArgOperand(0)); 4827 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4828 return nullptr; 4829 } 4830 case Intrinsic::stackprotector: { 4831 // Emit code into the DAG to store the stack guard onto the stack. 4832 MachineFunction &MF = DAG.getMachineFunction(); 4833 MachineFrameInfo *MFI = MF.getFrameInfo(); 4834 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4835 SDValue Src, Chain = getRoot(); 4836 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4837 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4838 4839 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4840 // global variable __stack_chk_guard. 4841 if (!GV) 4842 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4843 if (BC->getOpcode() == Instruction::BitCast) 4844 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4845 4846 if (GV && TLI.useLoadStackGuardNode()) { 4847 // Emit a LOAD_STACK_GUARD node. 4848 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4849 sdl, PtrTy, Chain); 4850 MachinePointerInfo MPInfo(GV); 4851 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4852 unsigned Flags = MachineMemOperand::MOLoad | 4853 MachineMemOperand::MOInvariant; 4854 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4855 PtrTy.getSizeInBits() / 8, 4856 DAG.getEVTAlignment(PtrTy)); 4857 Node->setMemRefs(MemRefs, MemRefs + 1); 4858 4859 // Copy the guard value to a virtual register so that it can be 4860 // retrieved in the epilogue. 4861 Src = SDValue(Node, 0); 4862 const TargetRegisterClass *RC = 4863 TLI.getRegClassFor(Src.getSimpleValueType()); 4864 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4865 4866 SPDescriptor.setGuardReg(Reg); 4867 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4868 } else { 4869 Src = getValue(I.getArgOperand(0)); // The guard's value. 4870 } 4871 4872 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4873 4874 int FI = FuncInfo.StaticAllocaMap[Slot]; 4875 MFI->setStackProtectorIndex(FI); 4876 4877 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4878 4879 // Store the stack protector onto the stack. 4880 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4881 DAG.getMachineFunction(), FI), 4882 true, false, 0); 4883 setValue(&I, Res); 4884 DAG.setRoot(Res); 4885 return nullptr; 4886 } 4887 case Intrinsic::objectsize: { 4888 // If we don't know by now, we're never going to know. 4889 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4890 4891 assert(CI && "Non-constant type in __builtin_object_size?"); 4892 4893 SDValue Arg = getValue(I.getCalledValue()); 4894 EVT Ty = Arg.getValueType(); 4895 4896 if (CI->isZero()) 4897 Res = DAG.getConstant(-1ULL, sdl, Ty); 4898 else 4899 Res = DAG.getConstant(0, sdl, Ty); 4900 4901 setValue(&I, Res); 4902 return nullptr; 4903 } 4904 case Intrinsic::annotation: 4905 case Intrinsic::ptr_annotation: 4906 // Drop the intrinsic, but forward the value 4907 setValue(&I, getValue(I.getOperand(0))); 4908 return nullptr; 4909 case Intrinsic::assume: 4910 case Intrinsic::var_annotation: 4911 // Discard annotate attributes and assumptions 4912 return nullptr; 4913 4914 case Intrinsic::init_trampoline: { 4915 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4916 4917 SDValue Ops[6]; 4918 Ops[0] = getRoot(); 4919 Ops[1] = getValue(I.getArgOperand(0)); 4920 Ops[2] = getValue(I.getArgOperand(1)); 4921 Ops[3] = getValue(I.getArgOperand(2)); 4922 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4923 Ops[5] = DAG.getSrcValue(F); 4924 4925 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4926 4927 DAG.setRoot(Res); 4928 return nullptr; 4929 } 4930 case Intrinsic::adjust_trampoline: { 4931 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4932 TLI.getPointerTy(DAG.getDataLayout()), 4933 getValue(I.getArgOperand(0)))); 4934 return nullptr; 4935 } 4936 case Intrinsic::gcroot: 4937 if (GFI) { 4938 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4939 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4940 4941 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4942 GFI->addStackRoot(FI->getIndex(), TypeMap); 4943 } 4944 return nullptr; 4945 case Intrinsic::gcread: 4946 case Intrinsic::gcwrite: 4947 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4948 case Intrinsic::flt_rounds: 4949 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4950 return nullptr; 4951 4952 case Intrinsic::expect: { 4953 // Just replace __builtin_expect(exp, c) with EXP. 4954 setValue(&I, getValue(I.getArgOperand(0))); 4955 return nullptr; 4956 } 4957 4958 case Intrinsic::debugtrap: 4959 case Intrinsic::trap: { 4960 StringRef TrapFuncName = 4961 I.getAttributes() 4962 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4963 .getValueAsString(); 4964 if (TrapFuncName.empty()) { 4965 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4966 ISD::TRAP : ISD::DEBUGTRAP; 4967 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4968 return nullptr; 4969 } 4970 TargetLowering::ArgListTy Args; 4971 4972 TargetLowering::CallLoweringInfo CLI(DAG); 4973 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4974 CallingConv::C, I.getType(), 4975 DAG.getExternalSymbol(TrapFuncName.data(), 4976 TLI.getPointerTy(DAG.getDataLayout())), 4977 std::move(Args), 0); 4978 4979 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4980 DAG.setRoot(Result.second); 4981 return nullptr; 4982 } 4983 4984 case Intrinsic::uadd_with_overflow: 4985 case Intrinsic::sadd_with_overflow: 4986 case Intrinsic::usub_with_overflow: 4987 case Intrinsic::ssub_with_overflow: 4988 case Intrinsic::umul_with_overflow: 4989 case Intrinsic::smul_with_overflow: { 4990 ISD::NodeType Op; 4991 switch (Intrinsic) { 4992 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4993 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4994 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4995 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4996 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4997 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4998 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4999 } 5000 SDValue Op1 = getValue(I.getArgOperand(0)); 5001 SDValue Op2 = getValue(I.getArgOperand(1)); 5002 5003 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5004 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5005 return nullptr; 5006 } 5007 case Intrinsic::prefetch: { 5008 SDValue Ops[5]; 5009 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5010 Ops[0] = getRoot(); 5011 Ops[1] = getValue(I.getArgOperand(0)); 5012 Ops[2] = getValue(I.getArgOperand(1)); 5013 Ops[3] = getValue(I.getArgOperand(2)); 5014 Ops[4] = getValue(I.getArgOperand(3)); 5015 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5016 DAG.getVTList(MVT::Other), Ops, 5017 EVT::getIntegerVT(*Context, 8), 5018 MachinePointerInfo(I.getArgOperand(0)), 5019 0, /* align */ 5020 false, /* volatile */ 5021 rw==0, /* read */ 5022 rw==1)); /* write */ 5023 return nullptr; 5024 } 5025 case Intrinsic::lifetime_start: 5026 case Intrinsic::lifetime_end: { 5027 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5028 // Stack coloring is not enabled in O0, discard region information. 5029 if (TM.getOptLevel() == CodeGenOpt::None) 5030 return nullptr; 5031 5032 SmallVector<Value *, 4> Allocas; 5033 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5034 5035 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5036 E = Allocas.end(); Object != E; ++Object) { 5037 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5038 5039 // Could not find an Alloca. 5040 if (!LifetimeObject) 5041 continue; 5042 5043 // First check that the Alloca is static, otherwise it won't have a 5044 // valid frame index. 5045 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5046 if (SI == FuncInfo.StaticAllocaMap.end()) 5047 return nullptr; 5048 5049 int FI = SI->second; 5050 5051 SDValue Ops[2]; 5052 Ops[0] = getRoot(); 5053 Ops[1] = 5054 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5055 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5056 5057 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5058 DAG.setRoot(Res); 5059 } 5060 return nullptr; 5061 } 5062 case Intrinsic::invariant_start: 5063 // Discard region information. 5064 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5065 return nullptr; 5066 case Intrinsic::invariant_end: 5067 // Discard region information. 5068 return nullptr; 5069 case Intrinsic::stackprotectorcheck: { 5070 // Do not actually emit anything for this basic block. Instead we initialize 5071 // the stack protector descriptor and export the guard variable so we can 5072 // access it in FinishBasicBlock. 5073 const BasicBlock *BB = I.getParent(); 5074 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5075 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5076 5077 // Flush our exports since we are going to process a terminator. 5078 (void)getControlRoot(); 5079 return nullptr; 5080 } 5081 case Intrinsic::clear_cache: 5082 return TLI.getClearCacheBuiltinName(); 5083 case Intrinsic::eh_actions: 5084 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5085 return nullptr; 5086 case Intrinsic::donothing: 5087 // ignore 5088 return nullptr; 5089 case Intrinsic::experimental_stackmap: { 5090 visitStackmap(I); 5091 return nullptr; 5092 } 5093 case Intrinsic::experimental_patchpoint_void: 5094 case Intrinsic::experimental_patchpoint_i64: { 5095 visitPatchpoint(&I); 5096 return nullptr; 5097 } 5098 case Intrinsic::experimental_gc_statepoint: { 5099 visitStatepoint(I); 5100 return nullptr; 5101 } 5102 case Intrinsic::experimental_gc_result_int: 5103 case Intrinsic::experimental_gc_result_float: 5104 case Intrinsic::experimental_gc_result_ptr: 5105 case Intrinsic::experimental_gc_result: { 5106 visitGCResult(I); 5107 return nullptr; 5108 } 5109 case Intrinsic::experimental_gc_relocate: { 5110 visitGCRelocate(I); 5111 return nullptr; 5112 } 5113 case Intrinsic::instrprof_increment: 5114 llvm_unreachable("instrprof failed to lower an increment"); 5115 5116 case Intrinsic::localescape: { 5117 MachineFunction &MF = DAG.getMachineFunction(); 5118 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5119 5120 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5121 // is the same on all targets. 5122 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5123 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5124 if (isa<ConstantPointerNull>(Arg)) 5125 continue; // Skip null pointers. They represent a hole in index space. 5126 AllocaInst *Slot = cast<AllocaInst>(Arg); 5127 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5128 "can only escape static allocas"); 5129 int FI = FuncInfo.StaticAllocaMap[Slot]; 5130 MCSymbol *FrameAllocSym = 5131 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5132 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5134 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5135 .addSym(FrameAllocSym) 5136 .addFrameIndex(FI); 5137 } 5138 5139 return nullptr; 5140 } 5141 5142 case Intrinsic::localrecover: { 5143 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5144 MachineFunction &MF = DAG.getMachineFunction(); 5145 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5146 5147 // Get the symbol that defines the frame offset. 5148 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5149 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5150 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5151 MCSymbol *FrameAllocSym = 5152 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5153 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5154 5155 // Create a MCSymbol for the label to avoid any target lowering 5156 // that would make this PC relative. 5157 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5158 SDValue OffsetVal = 5159 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5160 5161 // Add the offset to the FP. 5162 Value *FP = I.getArgOperand(1); 5163 SDValue FPVal = getValue(FP); 5164 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5165 setValue(&I, Add); 5166 5167 return nullptr; 5168 } 5169 case Intrinsic::eh_begincatch: 5170 case Intrinsic::eh_endcatch: 5171 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5172 case Intrinsic::eh_exceptioncode: { 5173 unsigned Reg = TLI.getExceptionPointerRegister(); 5174 assert(Reg && "cannot get exception code on this platform"); 5175 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5176 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5177 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5178 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5179 SDValue N = 5180 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5181 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5182 setValue(&I, N); 5183 return nullptr; 5184 } 5185 } 5186 } 5187 5188 std::pair<SDValue, SDValue> 5189 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5190 const BasicBlock *EHPadBB) { 5191 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5192 MCSymbol *BeginLabel = nullptr; 5193 5194 if (EHPadBB) { 5195 // Insert a label before the invoke call to mark the try range. This can be 5196 // used to detect deletion of the invoke via the MachineModuleInfo. 5197 BeginLabel = MMI.getContext().createTempSymbol(); 5198 5199 // For SjLj, keep track of which landing pads go with which invokes 5200 // so as to maintain the ordering of pads in the LSDA. 5201 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5202 if (CallSiteIndex) { 5203 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5204 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5205 5206 // Now that the call site is handled, stop tracking it. 5207 MMI.setCurrentCallSite(0); 5208 } 5209 5210 // Both PendingLoads and PendingExports must be flushed here; 5211 // this call might not return. 5212 (void)getRoot(); 5213 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5214 5215 CLI.setChain(getRoot()); 5216 } 5217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5218 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5219 5220 assert((CLI.IsTailCall || Result.second.getNode()) && 5221 "Non-null chain expected with non-tail call!"); 5222 assert((Result.second.getNode() || !Result.first.getNode()) && 5223 "Null value expected with tail call!"); 5224 5225 if (!Result.second.getNode()) { 5226 // As a special case, a null chain means that a tail call has been emitted 5227 // and the DAG root is already updated. 5228 HasTailCall = true; 5229 5230 // Since there's no actual continuation from this block, nothing can be 5231 // relying on us setting vregs for them. 5232 PendingExports.clear(); 5233 } else { 5234 DAG.setRoot(Result.second); 5235 } 5236 5237 if (EHPadBB) { 5238 // Insert a label at the end of the invoke call to mark the try range. This 5239 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5240 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5241 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5242 5243 // Inform MachineModuleInfo of range. 5244 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5245 } 5246 5247 return Result; 5248 } 5249 5250 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5251 bool isTailCall, 5252 const BasicBlock *EHPadBB) { 5253 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5254 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5255 Type *RetTy = FTy->getReturnType(); 5256 5257 TargetLowering::ArgListTy Args; 5258 TargetLowering::ArgListEntry Entry; 5259 Args.reserve(CS.arg_size()); 5260 5261 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5262 i != e; ++i) { 5263 const Value *V = *i; 5264 5265 // Skip empty types 5266 if (V->getType()->isEmptyTy()) 5267 continue; 5268 5269 SDValue ArgNode = getValue(V); 5270 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5271 5272 // Skip the first return-type Attribute to get to params. 5273 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5274 Args.push_back(Entry); 5275 5276 // If we have an explicit sret argument that is an Instruction, (i.e., it 5277 // might point to function-local memory), we can't meaningfully tail-call. 5278 if (Entry.isSRet && isa<Instruction>(V)) 5279 isTailCall = false; 5280 } 5281 5282 // Check if target-independent constraints permit a tail call here. 5283 // Target-dependent constraints are checked within TLI->LowerCallTo. 5284 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5285 isTailCall = false; 5286 5287 TargetLowering::CallLoweringInfo CLI(DAG); 5288 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5289 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5290 .setTailCall(isTailCall); 5291 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5292 5293 if (Result.first.getNode()) 5294 setValue(CS.getInstruction(), Result.first); 5295 } 5296 5297 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5298 /// value is equal or not-equal to zero. 5299 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5300 for (const User *U : V->users()) { 5301 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5302 if (IC->isEquality()) 5303 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5304 if (C->isNullValue()) 5305 continue; 5306 // Unknown instruction. 5307 return false; 5308 } 5309 return true; 5310 } 5311 5312 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5313 Type *LoadTy, 5314 SelectionDAGBuilder &Builder) { 5315 5316 // Check to see if this load can be trivially constant folded, e.g. if the 5317 // input is from a string literal. 5318 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5319 // Cast pointer to the type we really want to load. 5320 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5321 PointerType::getUnqual(LoadTy)); 5322 5323 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5324 const_cast<Constant *>(LoadInput), *Builder.DL)) 5325 return Builder.getValue(LoadCst); 5326 } 5327 5328 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5329 // still constant memory, the input chain can be the entry node. 5330 SDValue Root; 5331 bool ConstantMemory = false; 5332 5333 // Do not serialize (non-volatile) loads of constant memory with anything. 5334 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5335 Root = Builder.DAG.getEntryNode(); 5336 ConstantMemory = true; 5337 } else { 5338 // Do not serialize non-volatile loads against each other. 5339 Root = Builder.DAG.getRoot(); 5340 } 5341 5342 SDValue Ptr = Builder.getValue(PtrVal); 5343 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5344 Ptr, MachinePointerInfo(PtrVal), 5345 false /*volatile*/, 5346 false /*nontemporal*/, 5347 false /*isinvariant*/, 1 /* align=1 */); 5348 5349 if (!ConstantMemory) 5350 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5351 return LoadVal; 5352 } 5353 5354 /// processIntegerCallValue - Record the value for an instruction that 5355 /// produces an integer result, converting the type where necessary. 5356 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5357 SDValue Value, 5358 bool IsSigned) { 5359 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5360 I.getType(), true); 5361 if (IsSigned) 5362 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5363 else 5364 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5365 setValue(&I, Value); 5366 } 5367 5368 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5369 /// If so, return true and lower it, otherwise return false and it will be 5370 /// lowered like a normal call. 5371 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5372 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5373 if (I.getNumArgOperands() != 3) 5374 return false; 5375 5376 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5377 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5378 !I.getArgOperand(2)->getType()->isIntegerTy() || 5379 !I.getType()->isIntegerTy()) 5380 return false; 5381 5382 const Value *Size = I.getArgOperand(2); 5383 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5384 if (CSize && CSize->getZExtValue() == 0) { 5385 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5386 I.getType(), true); 5387 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5388 return true; 5389 } 5390 5391 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5392 std::pair<SDValue, SDValue> Res = 5393 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5394 getValue(LHS), getValue(RHS), getValue(Size), 5395 MachinePointerInfo(LHS), 5396 MachinePointerInfo(RHS)); 5397 if (Res.first.getNode()) { 5398 processIntegerCallValue(I, Res.first, true); 5399 PendingLoads.push_back(Res.second); 5400 return true; 5401 } 5402 5403 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5404 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5405 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5406 bool ActuallyDoIt = true; 5407 MVT LoadVT; 5408 Type *LoadTy; 5409 switch (CSize->getZExtValue()) { 5410 default: 5411 LoadVT = MVT::Other; 5412 LoadTy = nullptr; 5413 ActuallyDoIt = false; 5414 break; 5415 case 2: 5416 LoadVT = MVT::i16; 5417 LoadTy = Type::getInt16Ty(CSize->getContext()); 5418 break; 5419 case 4: 5420 LoadVT = MVT::i32; 5421 LoadTy = Type::getInt32Ty(CSize->getContext()); 5422 break; 5423 case 8: 5424 LoadVT = MVT::i64; 5425 LoadTy = Type::getInt64Ty(CSize->getContext()); 5426 break; 5427 /* 5428 case 16: 5429 LoadVT = MVT::v4i32; 5430 LoadTy = Type::getInt32Ty(CSize->getContext()); 5431 LoadTy = VectorType::get(LoadTy, 4); 5432 break; 5433 */ 5434 } 5435 5436 // This turns into unaligned loads. We only do this if the target natively 5437 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5438 // we'll only produce a small number of byte loads. 5439 5440 // Require that we can find a legal MVT, and only do this if the target 5441 // supports unaligned loads of that type. Expanding into byte loads would 5442 // bloat the code. 5443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5444 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5445 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5446 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5447 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5448 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5449 // TODO: Check alignment of src and dest ptrs. 5450 if (!TLI.isTypeLegal(LoadVT) || 5451 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5452 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5453 ActuallyDoIt = false; 5454 } 5455 5456 if (ActuallyDoIt) { 5457 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5458 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5459 5460 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5461 ISD::SETNE); 5462 processIntegerCallValue(I, Res, false); 5463 return true; 5464 } 5465 } 5466 5467 5468 return false; 5469 } 5470 5471 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5472 /// form. If so, return true and lower it, otherwise return false and it 5473 /// will be lowered like a normal call. 5474 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5475 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5476 if (I.getNumArgOperands() != 3) 5477 return false; 5478 5479 const Value *Src = I.getArgOperand(0); 5480 const Value *Char = I.getArgOperand(1); 5481 const Value *Length = I.getArgOperand(2); 5482 if (!Src->getType()->isPointerTy() || 5483 !Char->getType()->isIntegerTy() || 5484 !Length->getType()->isIntegerTy() || 5485 !I.getType()->isPointerTy()) 5486 return false; 5487 5488 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5489 std::pair<SDValue, SDValue> Res = 5490 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5491 getValue(Src), getValue(Char), getValue(Length), 5492 MachinePointerInfo(Src)); 5493 if (Res.first.getNode()) { 5494 setValue(&I, Res.first); 5495 PendingLoads.push_back(Res.second); 5496 return true; 5497 } 5498 5499 return false; 5500 } 5501 5502 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5503 /// optimized form. If so, return true and lower it, otherwise return false 5504 /// and it will be lowered like a normal call. 5505 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5506 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5507 if (I.getNumArgOperands() != 2) 5508 return false; 5509 5510 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5511 if (!Arg0->getType()->isPointerTy() || 5512 !Arg1->getType()->isPointerTy() || 5513 !I.getType()->isPointerTy()) 5514 return false; 5515 5516 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5517 std::pair<SDValue, SDValue> Res = 5518 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5519 getValue(Arg0), getValue(Arg1), 5520 MachinePointerInfo(Arg0), 5521 MachinePointerInfo(Arg1), isStpcpy); 5522 if (Res.first.getNode()) { 5523 setValue(&I, Res.first); 5524 DAG.setRoot(Res.second); 5525 return true; 5526 } 5527 5528 return false; 5529 } 5530 5531 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5532 /// If so, return true and lower it, otherwise return false and it will be 5533 /// lowered like a normal call. 5534 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5535 // Verify that the prototype makes sense. int strcmp(void*,void*) 5536 if (I.getNumArgOperands() != 2) 5537 return false; 5538 5539 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5540 if (!Arg0->getType()->isPointerTy() || 5541 !Arg1->getType()->isPointerTy() || 5542 !I.getType()->isIntegerTy()) 5543 return false; 5544 5545 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5546 std::pair<SDValue, SDValue> Res = 5547 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5548 getValue(Arg0), getValue(Arg1), 5549 MachinePointerInfo(Arg0), 5550 MachinePointerInfo(Arg1)); 5551 if (Res.first.getNode()) { 5552 processIntegerCallValue(I, Res.first, true); 5553 PendingLoads.push_back(Res.second); 5554 return true; 5555 } 5556 5557 return false; 5558 } 5559 5560 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5561 /// form. If so, return true and lower it, otherwise return false and it 5562 /// will be lowered like a normal call. 5563 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5564 // Verify that the prototype makes sense. size_t strlen(char *) 5565 if (I.getNumArgOperands() != 1) 5566 return false; 5567 5568 const Value *Arg0 = I.getArgOperand(0); 5569 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5570 return false; 5571 5572 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5573 std::pair<SDValue, SDValue> Res = 5574 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5575 getValue(Arg0), MachinePointerInfo(Arg0)); 5576 if (Res.first.getNode()) { 5577 processIntegerCallValue(I, Res.first, false); 5578 PendingLoads.push_back(Res.second); 5579 return true; 5580 } 5581 5582 return false; 5583 } 5584 5585 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5586 /// form. If so, return true and lower it, otherwise return false and it 5587 /// will be lowered like a normal call. 5588 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5589 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5590 if (I.getNumArgOperands() != 2) 5591 return false; 5592 5593 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5594 if (!Arg0->getType()->isPointerTy() || 5595 !Arg1->getType()->isIntegerTy() || 5596 !I.getType()->isIntegerTy()) 5597 return false; 5598 5599 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5600 std::pair<SDValue, SDValue> Res = 5601 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5602 getValue(Arg0), getValue(Arg1), 5603 MachinePointerInfo(Arg0)); 5604 if (Res.first.getNode()) { 5605 processIntegerCallValue(I, Res.first, false); 5606 PendingLoads.push_back(Res.second); 5607 return true; 5608 } 5609 5610 return false; 5611 } 5612 5613 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5614 /// operation (as expected), translate it to an SDNode with the specified opcode 5615 /// and return true. 5616 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5617 unsigned Opcode) { 5618 // Sanity check that it really is a unary floating-point call. 5619 if (I.getNumArgOperands() != 1 || 5620 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5621 I.getType() != I.getArgOperand(0)->getType() || 5622 !I.onlyReadsMemory()) 5623 return false; 5624 5625 SDValue Tmp = getValue(I.getArgOperand(0)); 5626 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5627 return true; 5628 } 5629 5630 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5631 /// operation (as expected), translate it to an SDNode with the specified opcode 5632 /// and return true. 5633 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5634 unsigned Opcode) { 5635 // Sanity check that it really is a binary floating-point call. 5636 if (I.getNumArgOperands() != 2 || 5637 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5638 I.getType() != I.getArgOperand(0)->getType() || 5639 I.getType() != I.getArgOperand(1)->getType() || 5640 !I.onlyReadsMemory()) 5641 return false; 5642 5643 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5644 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5645 EVT VT = Tmp0.getValueType(); 5646 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5647 return true; 5648 } 5649 5650 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5651 // Handle inline assembly differently. 5652 if (isa<InlineAsm>(I.getCalledValue())) { 5653 visitInlineAsm(&I); 5654 return; 5655 } 5656 5657 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5658 ComputeUsesVAFloatArgument(I, &MMI); 5659 5660 const char *RenameFn = nullptr; 5661 if (Function *F = I.getCalledFunction()) { 5662 if (F->isDeclaration()) { 5663 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5664 if (unsigned IID = II->getIntrinsicID(F)) { 5665 RenameFn = visitIntrinsicCall(I, IID); 5666 if (!RenameFn) 5667 return; 5668 } 5669 } 5670 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5671 RenameFn = visitIntrinsicCall(I, IID); 5672 if (!RenameFn) 5673 return; 5674 } 5675 } 5676 5677 // Check for well-known libc/libm calls. If the function is internal, it 5678 // can't be a library call. 5679 LibFunc::Func Func; 5680 if (!F->hasLocalLinkage() && F->hasName() && 5681 LibInfo->getLibFunc(F->getName(), Func) && 5682 LibInfo->hasOptimizedCodeGen(Func)) { 5683 switch (Func) { 5684 default: break; 5685 case LibFunc::copysign: 5686 case LibFunc::copysignf: 5687 case LibFunc::copysignl: 5688 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5689 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5690 I.getType() == I.getArgOperand(0)->getType() && 5691 I.getType() == I.getArgOperand(1)->getType() && 5692 I.onlyReadsMemory()) { 5693 SDValue LHS = getValue(I.getArgOperand(0)); 5694 SDValue RHS = getValue(I.getArgOperand(1)); 5695 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5696 LHS.getValueType(), LHS, RHS)); 5697 return; 5698 } 5699 break; 5700 case LibFunc::fabs: 5701 case LibFunc::fabsf: 5702 case LibFunc::fabsl: 5703 if (visitUnaryFloatCall(I, ISD::FABS)) 5704 return; 5705 break; 5706 case LibFunc::fmin: 5707 case LibFunc::fminf: 5708 case LibFunc::fminl: 5709 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5710 return; 5711 break; 5712 case LibFunc::fmax: 5713 case LibFunc::fmaxf: 5714 case LibFunc::fmaxl: 5715 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5716 return; 5717 break; 5718 case LibFunc::sin: 5719 case LibFunc::sinf: 5720 case LibFunc::sinl: 5721 if (visitUnaryFloatCall(I, ISD::FSIN)) 5722 return; 5723 break; 5724 case LibFunc::cos: 5725 case LibFunc::cosf: 5726 case LibFunc::cosl: 5727 if (visitUnaryFloatCall(I, ISD::FCOS)) 5728 return; 5729 break; 5730 case LibFunc::sqrt: 5731 case LibFunc::sqrtf: 5732 case LibFunc::sqrtl: 5733 case LibFunc::sqrt_finite: 5734 case LibFunc::sqrtf_finite: 5735 case LibFunc::sqrtl_finite: 5736 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5737 return; 5738 break; 5739 case LibFunc::floor: 5740 case LibFunc::floorf: 5741 case LibFunc::floorl: 5742 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5743 return; 5744 break; 5745 case LibFunc::nearbyint: 5746 case LibFunc::nearbyintf: 5747 case LibFunc::nearbyintl: 5748 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5749 return; 5750 break; 5751 case LibFunc::ceil: 5752 case LibFunc::ceilf: 5753 case LibFunc::ceill: 5754 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5755 return; 5756 break; 5757 case LibFunc::rint: 5758 case LibFunc::rintf: 5759 case LibFunc::rintl: 5760 if (visitUnaryFloatCall(I, ISD::FRINT)) 5761 return; 5762 break; 5763 case LibFunc::round: 5764 case LibFunc::roundf: 5765 case LibFunc::roundl: 5766 if (visitUnaryFloatCall(I, ISD::FROUND)) 5767 return; 5768 break; 5769 case LibFunc::trunc: 5770 case LibFunc::truncf: 5771 case LibFunc::truncl: 5772 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5773 return; 5774 break; 5775 case LibFunc::log2: 5776 case LibFunc::log2f: 5777 case LibFunc::log2l: 5778 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5779 return; 5780 break; 5781 case LibFunc::exp2: 5782 case LibFunc::exp2f: 5783 case LibFunc::exp2l: 5784 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5785 return; 5786 break; 5787 case LibFunc::memcmp: 5788 if (visitMemCmpCall(I)) 5789 return; 5790 break; 5791 case LibFunc::memchr: 5792 if (visitMemChrCall(I)) 5793 return; 5794 break; 5795 case LibFunc::strcpy: 5796 if (visitStrCpyCall(I, false)) 5797 return; 5798 break; 5799 case LibFunc::stpcpy: 5800 if (visitStrCpyCall(I, true)) 5801 return; 5802 break; 5803 case LibFunc::strcmp: 5804 if (visitStrCmpCall(I)) 5805 return; 5806 break; 5807 case LibFunc::strlen: 5808 if (visitStrLenCall(I)) 5809 return; 5810 break; 5811 case LibFunc::strnlen: 5812 if (visitStrNLenCall(I)) 5813 return; 5814 break; 5815 } 5816 } 5817 } 5818 5819 SDValue Callee; 5820 if (!RenameFn) 5821 Callee = getValue(I.getCalledValue()); 5822 else 5823 Callee = DAG.getExternalSymbol( 5824 RenameFn, 5825 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5826 5827 // Check if we can potentially perform a tail call. More detailed checking is 5828 // be done within LowerCallTo, after more information about the call is known. 5829 LowerCallTo(&I, Callee, I.isTailCall()); 5830 } 5831 5832 namespace { 5833 5834 /// AsmOperandInfo - This contains information for each constraint that we are 5835 /// lowering. 5836 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5837 public: 5838 /// CallOperand - If this is the result output operand or a clobber 5839 /// this is null, otherwise it is the incoming operand to the CallInst. 5840 /// This gets modified as the asm is processed. 5841 SDValue CallOperand; 5842 5843 /// AssignedRegs - If this is a register or register class operand, this 5844 /// contains the set of register corresponding to the operand. 5845 RegsForValue AssignedRegs; 5846 5847 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5848 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5849 } 5850 5851 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5852 /// corresponds to. If there is no Value* for this operand, it returns 5853 /// MVT::Other. 5854 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5855 const DataLayout &DL) const { 5856 if (!CallOperandVal) return MVT::Other; 5857 5858 if (isa<BasicBlock>(CallOperandVal)) 5859 return TLI.getPointerTy(DL); 5860 5861 llvm::Type *OpTy = CallOperandVal->getType(); 5862 5863 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5864 // If this is an indirect operand, the operand is a pointer to the 5865 // accessed type. 5866 if (isIndirect) { 5867 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5868 if (!PtrTy) 5869 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5870 OpTy = PtrTy->getElementType(); 5871 } 5872 5873 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5874 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5875 if (STy->getNumElements() == 1) 5876 OpTy = STy->getElementType(0); 5877 5878 // If OpTy is not a single value, it may be a struct/union that we 5879 // can tile with integers. 5880 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5881 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5882 switch (BitSize) { 5883 default: break; 5884 case 1: 5885 case 8: 5886 case 16: 5887 case 32: 5888 case 64: 5889 case 128: 5890 OpTy = IntegerType::get(Context, BitSize); 5891 break; 5892 } 5893 } 5894 5895 return TLI.getValueType(DL, OpTy, true); 5896 } 5897 }; 5898 5899 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5900 5901 } // end anonymous namespace 5902 5903 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5904 /// specified operand. We prefer to assign virtual registers, to allow the 5905 /// register allocator to handle the assignment process. However, if the asm 5906 /// uses features that we can't model on machineinstrs, we have SDISel do the 5907 /// allocation. This produces generally horrible, but correct, code. 5908 /// 5909 /// OpInfo describes the operand. 5910 /// 5911 static void GetRegistersForValue(SelectionDAG &DAG, 5912 const TargetLowering &TLI, 5913 SDLoc DL, 5914 SDISelAsmOperandInfo &OpInfo) { 5915 LLVMContext &Context = *DAG.getContext(); 5916 5917 MachineFunction &MF = DAG.getMachineFunction(); 5918 SmallVector<unsigned, 4> Regs; 5919 5920 // If this is a constraint for a single physreg, or a constraint for a 5921 // register class, find it. 5922 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5923 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5924 OpInfo.ConstraintCode, 5925 OpInfo.ConstraintVT); 5926 5927 unsigned NumRegs = 1; 5928 if (OpInfo.ConstraintVT != MVT::Other) { 5929 // If this is a FP input in an integer register (or visa versa) insert a bit 5930 // cast of the input value. More generally, handle any case where the input 5931 // value disagrees with the register class we plan to stick this in. 5932 if (OpInfo.Type == InlineAsm::isInput && 5933 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5934 // Try to convert to the first EVT that the reg class contains. If the 5935 // types are identical size, use a bitcast to convert (e.g. two differing 5936 // vector types). 5937 MVT RegVT = *PhysReg.second->vt_begin(); 5938 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5939 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5940 RegVT, OpInfo.CallOperand); 5941 OpInfo.ConstraintVT = RegVT; 5942 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5943 // If the input is a FP value and we want it in FP registers, do a 5944 // bitcast to the corresponding integer type. This turns an f64 value 5945 // into i64, which can be passed with two i32 values on a 32-bit 5946 // machine. 5947 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5948 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5949 RegVT, OpInfo.CallOperand); 5950 OpInfo.ConstraintVT = RegVT; 5951 } 5952 } 5953 5954 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5955 } 5956 5957 MVT RegVT; 5958 EVT ValueVT = OpInfo.ConstraintVT; 5959 5960 // If this is a constraint for a specific physical register, like {r17}, 5961 // assign it now. 5962 if (unsigned AssignedReg = PhysReg.first) { 5963 const TargetRegisterClass *RC = PhysReg.second; 5964 if (OpInfo.ConstraintVT == MVT::Other) 5965 ValueVT = *RC->vt_begin(); 5966 5967 // Get the actual register value type. This is important, because the user 5968 // may have asked for (e.g.) the AX register in i32 type. We need to 5969 // remember that AX is actually i16 to get the right extension. 5970 RegVT = *RC->vt_begin(); 5971 5972 // This is a explicit reference to a physical register. 5973 Regs.push_back(AssignedReg); 5974 5975 // If this is an expanded reference, add the rest of the regs to Regs. 5976 if (NumRegs != 1) { 5977 TargetRegisterClass::iterator I = RC->begin(); 5978 for (; *I != AssignedReg; ++I) 5979 assert(I != RC->end() && "Didn't find reg!"); 5980 5981 // Already added the first reg. 5982 --NumRegs; ++I; 5983 for (; NumRegs; --NumRegs, ++I) { 5984 assert(I != RC->end() && "Ran out of registers to allocate!"); 5985 Regs.push_back(*I); 5986 } 5987 } 5988 5989 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5990 return; 5991 } 5992 5993 // Otherwise, if this was a reference to an LLVM register class, create vregs 5994 // for this reference. 5995 if (const TargetRegisterClass *RC = PhysReg.second) { 5996 RegVT = *RC->vt_begin(); 5997 if (OpInfo.ConstraintVT == MVT::Other) 5998 ValueVT = RegVT; 5999 6000 // Create the appropriate number of virtual registers. 6001 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6002 for (; NumRegs; --NumRegs) 6003 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6004 6005 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6006 return; 6007 } 6008 6009 // Otherwise, we couldn't allocate enough registers for this. 6010 } 6011 6012 /// visitInlineAsm - Handle a call to an InlineAsm object. 6013 /// 6014 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6015 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6016 6017 /// ConstraintOperands - Information about all of the constraints. 6018 SDISelAsmOperandInfoVector ConstraintOperands; 6019 6020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6021 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6022 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6023 6024 bool hasMemory = false; 6025 6026 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6027 unsigned ResNo = 0; // ResNo - The result number of the next output. 6028 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6029 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6030 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6031 6032 MVT OpVT = MVT::Other; 6033 6034 // Compute the value type for each operand. 6035 switch (OpInfo.Type) { 6036 case InlineAsm::isOutput: 6037 // Indirect outputs just consume an argument. 6038 if (OpInfo.isIndirect) { 6039 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6040 break; 6041 } 6042 6043 // The return value of the call is this value. As such, there is no 6044 // corresponding argument. 6045 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6046 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6047 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6048 STy->getElementType(ResNo)); 6049 } else { 6050 assert(ResNo == 0 && "Asm only has one result!"); 6051 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6052 } 6053 ++ResNo; 6054 break; 6055 case InlineAsm::isInput: 6056 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6057 break; 6058 case InlineAsm::isClobber: 6059 // Nothing to do. 6060 break; 6061 } 6062 6063 // If this is an input or an indirect output, process the call argument. 6064 // BasicBlocks are labels, currently appearing only in asm's. 6065 if (OpInfo.CallOperandVal) { 6066 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6067 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6068 } else { 6069 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6070 } 6071 6072 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6073 DAG.getDataLayout()).getSimpleVT(); 6074 } 6075 6076 OpInfo.ConstraintVT = OpVT; 6077 6078 // Indirect operand accesses access memory. 6079 if (OpInfo.isIndirect) 6080 hasMemory = true; 6081 else { 6082 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6083 TargetLowering::ConstraintType 6084 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6085 if (CType == TargetLowering::C_Memory) { 6086 hasMemory = true; 6087 break; 6088 } 6089 } 6090 } 6091 } 6092 6093 SDValue Chain, Flag; 6094 6095 // We won't need to flush pending loads if this asm doesn't touch 6096 // memory and is nonvolatile. 6097 if (hasMemory || IA->hasSideEffects()) 6098 Chain = getRoot(); 6099 else 6100 Chain = DAG.getRoot(); 6101 6102 // Second pass over the constraints: compute which constraint option to use 6103 // and assign registers to constraints that want a specific physreg. 6104 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6105 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6106 6107 // If this is an output operand with a matching input operand, look up the 6108 // matching input. If their types mismatch, e.g. one is an integer, the 6109 // other is floating point, or their sizes are different, flag it as an 6110 // error. 6111 if (OpInfo.hasMatchingInput()) { 6112 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6113 6114 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6115 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6116 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6117 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6118 OpInfo.ConstraintVT); 6119 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6120 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6121 Input.ConstraintVT); 6122 if ((OpInfo.ConstraintVT.isInteger() != 6123 Input.ConstraintVT.isInteger()) || 6124 (MatchRC.second != InputRC.second)) { 6125 report_fatal_error("Unsupported asm: input constraint" 6126 " with a matching output constraint of" 6127 " incompatible type!"); 6128 } 6129 Input.ConstraintVT = OpInfo.ConstraintVT; 6130 } 6131 } 6132 6133 // Compute the constraint code and ConstraintType to use. 6134 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6135 6136 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6137 OpInfo.Type == InlineAsm::isClobber) 6138 continue; 6139 6140 // If this is a memory input, and if the operand is not indirect, do what we 6141 // need to to provide an address for the memory input. 6142 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6143 !OpInfo.isIndirect) { 6144 assert((OpInfo.isMultipleAlternative || 6145 (OpInfo.Type == InlineAsm::isInput)) && 6146 "Can only indirectify direct input operands!"); 6147 6148 // Memory operands really want the address of the value. If we don't have 6149 // an indirect input, put it in the constpool if we can, otherwise spill 6150 // it to a stack slot. 6151 // TODO: This isn't quite right. We need to handle these according to 6152 // the addressing mode that the constraint wants. Also, this may take 6153 // an additional register for the computation and we don't want that 6154 // either. 6155 6156 // If the operand is a float, integer, or vector constant, spill to a 6157 // constant pool entry to get its address. 6158 const Value *OpVal = OpInfo.CallOperandVal; 6159 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6160 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6161 OpInfo.CallOperand = DAG.getConstantPool( 6162 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6163 } else { 6164 // Otherwise, create a stack slot and emit a store to it before the 6165 // asm. 6166 Type *Ty = OpVal->getType(); 6167 auto &DL = DAG.getDataLayout(); 6168 uint64_t TySize = DL.getTypeAllocSize(Ty); 6169 unsigned Align = DL.getPrefTypeAlignment(Ty); 6170 MachineFunction &MF = DAG.getMachineFunction(); 6171 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6172 SDValue StackSlot = 6173 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6174 Chain = DAG.getStore( 6175 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6176 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6177 false, false, 0); 6178 OpInfo.CallOperand = StackSlot; 6179 } 6180 6181 // There is no longer a Value* corresponding to this operand. 6182 OpInfo.CallOperandVal = nullptr; 6183 6184 // It is now an indirect operand. 6185 OpInfo.isIndirect = true; 6186 } 6187 6188 // If this constraint is for a specific register, allocate it before 6189 // anything else. 6190 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6191 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6192 } 6193 6194 // Second pass - Loop over all of the operands, assigning virtual or physregs 6195 // to register class operands. 6196 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6197 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6198 6199 // C_Register operands have already been allocated, Other/Memory don't need 6200 // to be. 6201 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6202 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6203 } 6204 6205 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6206 std::vector<SDValue> AsmNodeOperands; 6207 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6208 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6209 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6210 6211 // If we have a !srcloc metadata node associated with it, we want to attach 6212 // this to the ultimately generated inline asm machineinstr. To do this, we 6213 // pass in the third operand as this (potentially null) inline asm MDNode. 6214 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6215 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6216 6217 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6218 // bits as operand 3. 6219 unsigned ExtraInfo = 0; 6220 if (IA->hasSideEffects()) 6221 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6222 if (IA->isAlignStack()) 6223 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6224 // Set the asm dialect. 6225 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6226 6227 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6228 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6229 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6230 6231 // Compute the constraint code and ConstraintType to use. 6232 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6233 6234 // Ideally, we would only check against memory constraints. However, the 6235 // meaning of an other constraint can be target-specific and we can't easily 6236 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6237 // for other constriants as well. 6238 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6239 OpInfo.ConstraintType == TargetLowering::C_Other) { 6240 if (OpInfo.Type == InlineAsm::isInput) 6241 ExtraInfo |= InlineAsm::Extra_MayLoad; 6242 else if (OpInfo.Type == InlineAsm::isOutput) 6243 ExtraInfo |= InlineAsm::Extra_MayStore; 6244 else if (OpInfo.Type == InlineAsm::isClobber) 6245 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6246 } 6247 } 6248 6249 AsmNodeOperands.push_back(DAG.getTargetConstant( 6250 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6251 6252 // Loop over all of the inputs, copying the operand values into the 6253 // appropriate registers and processing the output regs. 6254 RegsForValue RetValRegs; 6255 6256 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6257 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6258 6259 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6260 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6261 6262 switch (OpInfo.Type) { 6263 case InlineAsm::isOutput: { 6264 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6265 OpInfo.ConstraintType != TargetLowering::C_Register) { 6266 // Memory output, or 'other' output (e.g. 'X' constraint). 6267 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6268 6269 unsigned ConstraintID = 6270 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6271 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6272 "Failed to convert memory constraint code to constraint id."); 6273 6274 // Add information to the INLINEASM node to know about this output. 6275 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6276 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6277 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6278 MVT::i32)); 6279 AsmNodeOperands.push_back(OpInfo.CallOperand); 6280 break; 6281 } 6282 6283 // Otherwise, this is a register or register class output. 6284 6285 // Copy the output from the appropriate register. Find a register that 6286 // we can use. 6287 if (OpInfo.AssignedRegs.Regs.empty()) { 6288 LLVMContext &Ctx = *DAG.getContext(); 6289 Ctx.emitError(CS.getInstruction(), 6290 "couldn't allocate output register for constraint '" + 6291 Twine(OpInfo.ConstraintCode) + "'"); 6292 return; 6293 } 6294 6295 // If this is an indirect operand, store through the pointer after the 6296 // asm. 6297 if (OpInfo.isIndirect) { 6298 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6299 OpInfo.CallOperandVal)); 6300 } else { 6301 // This is the result value of the call. 6302 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6303 // Concatenate this output onto the outputs list. 6304 RetValRegs.append(OpInfo.AssignedRegs); 6305 } 6306 6307 // Add information to the INLINEASM node to know that this register is 6308 // set. 6309 OpInfo.AssignedRegs 6310 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6311 ? InlineAsm::Kind_RegDefEarlyClobber 6312 : InlineAsm::Kind_RegDef, 6313 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6314 break; 6315 } 6316 case InlineAsm::isInput: { 6317 SDValue InOperandVal = OpInfo.CallOperand; 6318 6319 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6320 // If this is required to match an output register we have already set, 6321 // just use its register. 6322 unsigned OperandNo = OpInfo.getMatchedOperand(); 6323 6324 // Scan until we find the definition we already emitted of this operand. 6325 // When we find it, create a RegsForValue operand. 6326 unsigned CurOp = InlineAsm::Op_FirstOperand; 6327 for (; OperandNo; --OperandNo) { 6328 // Advance to the next operand. 6329 unsigned OpFlag = 6330 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6331 assert((InlineAsm::isRegDefKind(OpFlag) || 6332 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6333 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6334 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6335 } 6336 6337 unsigned OpFlag = 6338 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6339 if (InlineAsm::isRegDefKind(OpFlag) || 6340 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6341 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6342 if (OpInfo.isIndirect) { 6343 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6344 LLVMContext &Ctx = *DAG.getContext(); 6345 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6346 " don't know how to handle tied " 6347 "indirect register inputs"); 6348 return; 6349 } 6350 6351 RegsForValue MatchedRegs; 6352 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6353 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6354 MatchedRegs.RegVTs.push_back(RegVT); 6355 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6356 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6357 i != e; ++i) { 6358 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6359 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6360 else { 6361 LLVMContext &Ctx = *DAG.getContext(); 6362 Ctx.emitError(CS.getInstruction(), 6363 "inline asm error: This value" 6364 " type register class is not natively supported!"); 6365 return; 6366 } 6367 } 6368 SDLoc dl = getCurSDLoc(); 6369 // Use the produced MatchedRegs object to 6370 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6371 Chain, &Flag, CS.getInstruction()); 6372 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6373 true, OpInfo.getMatchedOperand(), dl, 6374 DAG, AsmNodeOperands); 6375 break; 6376 } 6377 6378 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6379 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6380 "Unexpected number of operands"); 6381 // Add information to the INLINEASM node to know about this input. 6382 // See InlineAsm.h isUseOperandTiedToDef. 6383 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6384 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6385 OpInfo.getMatchedOperand()); 6386 AsmNodeOperands.push_back(DAG.getTargetConstant( 6387 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6388 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6389 break; 6390 } 6391 6392 // Treat indirect 'X' constraint as memory. 6393 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6394 OpInfo.isIndirect) 6395 OpInfo.ConstraintType = TargetLowering::C_Memory; 6396 6397 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6398 std::vector<SDValue> Ops; 6399 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6400 Ops, DAG); 6401 if (Ops.empty()) { 6402 LLVMContext &Ctx = *DAG.getContext(); 6403 Ctx.emitError(CS.getInstruction(), 6404 "invalid operand for inline asm constraint '" + 6405 Twine(OpInfo.ConstraintCode) + "'"); 6406 return; 6407 } 6408 6409 // Add information to the INLINEASM node to know about this input. 6410 unsigned ResOpType = 6411 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6412 AsmNodeOperands.push_back(DAG.getTargetConstant( 6413 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6414 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6415 break; 6416 } 6417 6418 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6419 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6420 assert(InOperandVal.getValueType() == 6421 TLI.getPointerTy(DAG.getDataLayout()) && 6422 "Memory operands expect pointer values"); 6423 6424 unsigned ConstraintID = 6425 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6426 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6427 "Failed to convert memory constraint code to constraint id."); 6428 6429 // Add information to the INLINEASM node to know about this input. 6430 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6431 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6432 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6433 getCurSDLoc(), 6434 MVT::i32)); 6435 AsmNodeOperands.push_back(InOperandVal); 6436 break; 6437 } 6438 6439 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6440 OpInfo.ConstraintType == TargetLowering::C_Register) && 6441 "Unknown constraint type!"); 6442 6443 // TODO: Support this. 6444 if (OpInfo.isIndirect) { 6445 LLVMContext &Ctx = *DAG.getContext(); 6446 Ctx.emitError(CS.getInstruction(), 6447 "Don't know how to handle indirect register inputs yet " 6448 "for constraint '" + 6449 Twine(OpInfo.ConstraintCode) + "'"); 6450 return; 6451 } 6452 6453 // Copy the input into the appropriate registers. 6454 if (OpInfo.AssignedRegs.Regs.empty()) { 6455 LLVMContext &Ctx = *DAG.getContext(); 6456 Ctx.emitError(CS.getInstruction(), 6457 "couldn't allocate input reg for constraint '" + 6458 Twine(OpInfo.ConstraintCode) + "'"); 6459 return; 6460 } 6461 6462 SDLoc dl = getCurSDLoc(); 6463 6464 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6465 Chain, &Flag, CS.getInstruction()); 6466 6467 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6468 dl, DAG, AsmNodeOperands); 6469 break; 6470 } 6471 case InlineAsm::isClobber: { 6472 // Add the clobbered value to the operand list, so that the register 6473 // allocator is aware that the physreg got clobbered. 6474 if (!OpInfo.AssignedRegs.Regs.empty()) 6475 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6476 false, 0, getCurSDLoc(), DAG, 6477 AsmNodeOperands); 6478 break; 6479 } 6480 } 6481 } 6482 6483 // Finish up input operands. Set the input chain and add the flag last. 6484 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6485 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6486 6487 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6488 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6489 Flag = Chain.getValue(1); 6490 6491 // If this asm returns a register value, copy the result from that register 6492 // and set it as the value of the call. 6493 if (!RetValRegs.Regs.empty()) { 6494 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6495 Chain, &Flag, CS.getInstruction()); 6496 6497 // FIXME: Why don't we do this for inline asms with MRVs? 6498 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6499 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6500 6501 // If any of the results of the inline asm is a vector, it may have the 6502 // wrong width/num elts. This can happen for register classes that can 6503 // contain multiple different value types. The preg or vreg allocated may 6504 // not have the same VT as was expected. Convert it to the right type 6505 // with bit_convert. 6506 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6507 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6508 ResultType, Val); 6509 6510 } else if (ResultType != Val.getValueType() && 6511 ResultType.isInteger() && Val.getValueType().isInteger()) { 6512 // If a result value was tied to an input value, the computed result may 6513 // have a wider width than the expected result. Extract the relevant 6514 // portion. 6515 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6516 } 6517 6518 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6519 } 6520 6521 setValue(CS.getInstruction(), Val); 6522 // Don't need to use this as a chain in this case. 6523 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6524 return; 6525 } 6526 6527 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6528 6529 // Process indirect outputs, first output all of the flagged copies out of 6530 // physregs. 6531 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6532 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6533 const Value *Ptr = IndirectStoresToEmit[i].second; 6534 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6535 Chain, &Flag, IA); 6536 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6537 } 6538 6539 // Emit the non-flagged stores from the physregs. 6540 SmallVector<SDValue, 8> OutChains; 6541 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6542 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6543 StoresToEmit[i].first, 6544 getValue(StoresToEmit[i].second), 6545 MachinePointerInfo(StoresToEmit[i].second), 6546 false, false, 0); 6547 OutChains.push_back(Val); 6548 } 6549 6550 if (!OutChains.empty()) 6551 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6552 6553 DAG.setRoot(Chain); 6554 } 6555 6556 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6557 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6558 MVT::Other, getRoot(), 6559 getValue(I.getArgOperand(0)), 6560 DAG.getSrcValue(I.getArgOperand(0)))); 6561 } 6562 6563 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6565 const DataLayout &DL = DAG.getDataLayout(); 6566 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6567 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6568 DAG.getSrcValue(I.getOperand(0)), 6569 DL.getABITypeAlignment(I.getType())); 6570 setValue(&I, V); 6571 DAG.setRoot(V.getValue(1)); 6572 } 6573 6574 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6575 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6576 MVT::Other, getRoot(), 6577 getValue(I.getArgOperand(0)), 6578 DAG.getSrcValue(I.getArgOperand(0)))); 6579 } 6580 6581 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6582 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6583 MVT::Other, getRoot(), 6584 getValue(I.getArgOperand(0)), 6585 getValue(I.getArgOperand(1)), 6586 DAG.getSrcValue(I.getArgOperand(0)), 6587 DAG.getSrcValue(I.getArgOperand(1)))); 6588 } 6589 6590 /// \brief Lower an argument list according to the target calling convention. 6591 /// 6592 /// \return A tuple of <return-value, token-chain> 6593 /// 6594 /// This is a helper for lowering intrinsics that follow a target calling 6595 /// convention or require stack pointer adjustment. Only a subset of the 6596 /// intrinsic's operands need to participate in the calling convention. 6597 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6598 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6599 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6600 TargetLowering::ArgListTy Args; 6601 Args.reserve(NumArgs); 6602 6603 // Populate the argument list. 6604 // Attributes for args start at offset 1, after the return attribute. 6605 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6606 ArgI != ArgE; ++ArgI) { 6607 const Value *V = CS->getOperand(ArgI); 6608 6609 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6610 6611 TargetLowering::ArgListEntry Entry; 6612 Entry.Node = getValue(V); 6613 Entry.Ty = V->getType(); 6614 Entry.setAttributes(&CS, AttrI); 6615 Args.push_back(Entry); 6616 } 6617 6618 TargetLowering::CallLoweringInfo CLI(DAG); 6619 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6620 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6621 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6622 6623 return lowerInvokable(CLI, EHPadBB); 6624 } 6625 6626 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6627 /// or patchpoint target node's operand list. 6628 /// 6629 /// Constants are converted to TargetConstants purely as an optimization to 6630 /// avoid constant materialization and register allocation. 6631 /// 6632 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6633 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6634 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6635 /// address materialization and register allocation, but may also be required 6636 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6637 /// alloca in the entry block, then the runtime may assume that the alloca's 6638 /// StackMap location can be read immediately after compilation and that the 6639 /// location is valid at any point during execution (this is similar to the 6640 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6641 /// only available in a register, then the runtime would need to trap when 6642 /// execution reaches the StackMap in order to read the alloca's location. 6643 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6644 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6645 SelectionDAGBuilder &Builder) { 6646 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6647 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6648 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6649 Ops.push_back( 6650 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6651 Ops.push_back( 6652 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6653 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6654 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6655 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6656 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6657 } else 6658 Ops.push_back(OpVal); 6659 } 6660 } 6661 6662 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6663 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6664 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6665 // [live variables...]) 6666 6667 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6668 6669 SDValue Chain, InFlag, Callee, NullPtr; 6670 SmallVector<SDValue, 32> Ops; 6671 6672 SDLoc DL = getCurSDLoc(); 6673 Callee = getValue(CI.getCalledValue()); 6674 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6675 6676 // The stackmap intrinsic only records the live variables (the arguemnts 6677 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6678 // intrinsic, this won't be lowered to a function call. This means we don't 6679 // have to worry about calling conventions and target specific lowering code. 6680 // Instead we perform the call lowering right here. 6681 // 6682 // chain, flag = CALLSEQ_START(chain, 0) 6683 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6684 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6685 // 6686 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6687 InFlag = Chain.getValue(1); 6688 6689 // Add the <id> and <numBytes> constants. 6690 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6691 Ops.push_back(DAG.getTargetConstant( 6692 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6693 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6694 Ops.push_back(DAG.getTargetConstant( 6695 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6696 MVT::i32)); 6697 6698 // Push live variables for the stack map. 6699 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6700 6701 // We are not pushing any register mask info here on the operands list, 6702 // because the stackmap doesn't clobber anything. 6703 6704 // Push the chain and the glue flag. 6705 Ops.push_back(Chain); 6706 Ops.push_back(InFlag); 6707 6708 // Create the STACKMAP node. 6709 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6710 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6711 Chain = SDValue(SM, 0); 6712 InFlag = Chain.getValue(1); 6713 6714 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6715 6716 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6717 6718 // Set the root to the target-lowered call chain. 6719 DAG.setRoot(Chain); 6720 6721 // Inform the Frame Information that we have a stackmap in this function. 6722 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6723 } 6724 6725 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6726 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6727 const BasicBlock *EHPadBB) { 6728 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6729 // i32 <numBytes>, 6730 // i8* <target>, 6731 // i32 <numArgs>, 6732 // [Args...], 6733 // [live variables...]) 6734 6735 CallingConv::ID CC = CS.getCallingConv(); 6736 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6737 bool HasDef = !CS->getType()->isVoidTy(); 6738 SDLoc dl = getCurSDLoc(); 6739 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6740 6741 // Handle immediate and symbolic callees. 6742 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6743 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6744 /*isTarget=*/true); 6745 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6746 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6747 SDLoc(SymbolicCallee), 6748 SymbolicCallee->getValueType(0)); 6749 6750 // Get the real number of arguments participating in the call <numArgs> 6751 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6752 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6753 6754 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6755 // Intrinsics include all meta-operands up to but not including CC. 6756 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6757 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6758 "Not enough arguments provided to the patchpoint intrinsic"); 6759 6760 // For AnyRegCC the arguments are lowered later on manually. 6761 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6762 Type *ReturnTy = 6763 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6764 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6765 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6766 6767 SDNode *CallEnd = Result.second.getNode(); 6768 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6769 CallEnd = CallEnd->getOperand(0).getNode(); 6770 6771 /// Get a call instruction from the call sequence chain. 6772 /// Tail calls are not allowed. 6773 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6774 "Expected a callseq node."); 6775 SDNode *Call = CallEnd->getOperand(0).getNode(); 6776 bool HasGlue = Call->getGluedNode(); 6777 6778 // Replace the target specific call node with the patchable intrinsic. 6779 SmallVector<SDValue, 8> Ops; 6780 6781 // Add the <id> and <numBytes> constants. 6782 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6783 Ops.push_back(DAG.getTargetConstant( 6784 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6785 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6786 Ops.push_back(DAG.getTargetConstant( 6787 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6788 MVT::i32)); 6789 6790 // Add the callee. 6791 Ops.push_back(Callee); 6792 6793 // Adjust <numArgs> to account for any arguments that have been passed on the 6794 // stack instead. 6795 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6796 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6797 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6798 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6799 6800 // Add the calling convention 6801 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6802 6803 // Add the arguments we omitted previously. The register allocator should 6804 // place these in any free register. 6805 if (IsAnyRegCC) 6806 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6807 Ops.push_back(getValue(CS.getArgument(i))); 6808 6809 // Push the arguments from the call instruction up to the register mask. 6810 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6811 Ops.append(Call->op_begin() + 2, e); 6812 6813 // Push live variables for the stack map. 6814 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6815 6816 // Push the register mask info. 6817 if (HasGlue) 6818 Ops.push_back(*(Call->op_end()-2)); 6819 else 6820 Ops.push_back(*(Call->op_end()-1)); 6821 6822 // Push the chain (this is originally the first operand of the call, but 6823 // becomes now the last or second to last operand). 6824 Ops.push_back(*(Call->op_begin())); 6825 6826 // Push the glue flag (last operand). 6827 if (HasGlue) 6828 Ops.push_back(*(Call->op_end()-1)); 6829 6830 SDVTList NodeTys; 6831 if (IsAnyRegCC && HasDef) { 6832 // Create the return types based on the intrinsic definition 6833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6834 SmallVector<EVT, 3> ValueVTs; 6835 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6836 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6837 6838 // There is always a chain and a glue type at the end 6839 ValueVTs.push_back(MVT::Other); 6840 ValueVTs.push_back(MVT::Glue); 6841 NodeTys = DAG.getVTList(ValueVTs); 6842 } else 6843 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6844 6845 // Replace the target specific call node with a PATCHPOINT node. 6846 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6847 dl, NodeTys, Ops); 6848 6849 // Update the NodeMap. 6850 if (HasDef) { 6851 if (IsAnyRegCC) 6852 setValue(CS.getInstruction(), SDValue(MN, 0)); 6853 else 6854 setValue(CS.getInstruction(), Result.first); 6855 } 6856 6857 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6858 // call sequence. Furthermore the location of the chain and glue can change 6859 // when the AnyReg calling convention is used and the intrinsic returns a 6860 // value. 6861 if (IsAnyRegCC && HasDef) { 6862 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6863 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6864 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6865 } else 6866 DAG.ReplaceAllUsesWith(Call, MN); 6867 DAG.DeleteNode(Call); 6868 6869 // Inform the Frame Information that we have a patchpoint in this function. 6870 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6871 } 6872 6873 /// Returns an AttributeSet representing the attributes applied to the return 6874 /// value of the given call. 6875 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6876 SmallVector<Attribute::AttrKind, 2> Attrs; 6877 if (CLI.RetSExt) 6878 Attrs.push_back(Attribute::SExt); 6879 if (CLI.RetZExt) 6880 Attrs.push_back(Attribute::ZExt); 6881 if (CLI.IsInReg) 6882 Attrs.push_back(Attribute::InReg); 6883 6884 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6885 Attrs); 6886 } 6887 6888 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6889 /// implementation, which just calls LowerCall. 6890 /// FIXME: When all targets are 6891 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6892 std::pair<SDValue, SDValue> 6893 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6894 // Handle the incoming return values from the call. 6895 CLI.Ins.clear(); 6896 Type *OrigRetTy = CLI.RetTy; 6897 SmallVector<EVT, 4> RetTys; 6898 SmallVector<uint64_t, 4> Offsets; 6899 auto &DL = CLI.DAG.getDataLayout(); 6900 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6901 6902 SmallVector<ISD::OutputArg, 4> Outs; 6903 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6904 6905 bool CanLowerReturn = 6906 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6907 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6908 6909 SDValue DemoteStackSlot; 6910 int DemoteStackIdx = -100; 6911 if (!CanLowerReturn) { 6912 // FIXME: equivalent assert? 6913 // assert(!CS.hasInAllocaArgument() && 6914 // "sret demotion is incompatible with inalloca"); 6915 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6916 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6917 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6918 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6919 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6920 6921 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6922 ArgListEntry Entry; 6923 Entry.Node = DemoteStackSlot; 6924 Entry.Ty = StackSlotPtrType; 6925 Entry.isSExt = false; 6926 Entry.isZExt = false; 6927 Entry.isInReg = false; 6928 Entry.isSRet = true; 6929 Entry.isNest = false; 6930 Entry.isByVal = false; 6931 Entry.isReturned = false; 6932 Entry.Alignment = Align; 6933 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6934 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6935 6936 // sret demotion isn't compatible with tail-calls, since the sret argument 6937 // points into the callers stack frame. 6938 CLI.IsTailCall = false; 6939 } else { 6940 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6941 EVT VT = RetTys[I]; 6942 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6943 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6944 for (unsigned i = 0; i != NumRegs; ++i) { 6945 ISD::InputArg MyFlags; 6946 MyFlags.VT = RegisterVT; 6947 MyFlags.ArgVT = VT; 6948 MyFlags.Used = CLI.IsReturnValueUsed; 6949 if (CLI.RetSExt) 6950 MyFlags.Flags.setSExt(); 6951 if (CLI.RetZExt) 6952 MyFlags.Flags.setZExt(); 6953 if (CLI.IsInReg) 6954 MyFlags.Flags.setInReg(); 6955 CLI.Ins.push_back(MyFlags); 6956 } 6957 } 6958 } 6959 6960 // Handle all of the outgoing arguments. 6961 CLI.Outs.clear(); 6962 CLI.OutVals.clear(); 6963 ArgListTy &Args = CLI.getArgs(); 6964 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6965 SmallVector<EVT, 4> ValueVTs; 6966 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6967 Type *FinalType = Args[i].Ty; 6968 if (Args[i].isByVal) 6969 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6970 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6971 FinalType, CLI.CallConv, CLI.IsVarArg); 6972 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6973 ++Value) { 6974 EVT VT = ValueVTs[Value]; 6975 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6976 SDValue Op = SDValue(Args[i].Node.getNode(), 6977 Args[i].Node.getResNo() + Value); 6978 ISD::ArgFlagsTy Flags; 6979 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6980 6981 if (Args[i].isZExt) 6982 Flags.setZExt(); 6983 if (Args[i].isSExt) 6984 Flags.setSExt(); 6985 if (Args[i].isInReg) 6986 Flags.setInReg(); 6987 if (Args[i].isSRet) 6988 Flags.setSRet(); 6989 if (Args[i].isByVal) 6990 Flags.setByVal(); 6991 if (Args[i].isInAlloca) { 6992 Flags.setInAlloca(); 6993 // Set the byval flag for CCAssignFn callbacks that don't know about 6994 // inalloca. This way we can know how many bytes we should've allocated 6995 // and how many bytes a callee cleanup function will pop. If we port 6996 // inalloca to more targets, we'll have to add custom inalloca handling 6997 // in the various CC lowering callbacks. 6998 Flags.setByVal(); 6999 } 7000 if (Args[i].isByVal || Args[i].isInAlloca) { 7001 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7002 Type *ElementTy = Ty->getElementType(); 7003 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7004 // For ByVal, alignment should come from FE. BE will guess if this 7005 // info is not there but there are cases it cannot get right. 7006 unsigned FrameAlign; 7007 if (Args[i].Alignment) 7008 FrameAlign = Args[i].Alignment; 7009 else 7010 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7011 Flags.setByValAlign(FrameAlign); 7012 } 7013 if (Args[i].isNest) 7014 Flags.setNest(); 7015 if (NeedsRegBlock) 7016 Flags.setInConsecutiveRegs(); 7017 Flags.setOrigAlign(OriginalAlignment); 7018 7019 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7020 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7021 SmallVector<SDValue, 4> Parts(NumParts); 7022 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7023 7024 if (Args[i].isSExt) 7025 ExtendKind = ISD::SIGN_EXTEND; 7026 else if (Args[i].isZExt) 7027 ExtendKind = ISD::ZERO_EXTEND; 7028 7029 // Conservatively only handle 'returned' on non-vectors for now 7030 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7031 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7032 "unexpected use of 'returned'"); 7033 // Before passing 'returned' to the target lowering code, ensure that 7034 // either the register MVT and the actual EVT are the same size or that 7035 // the return value and argument are extended in the same way; in these 7036 // cases it's safe to pass the argument register value unchanged as the 7037 // return register value (although it's at the target's option whether 7038 // to do so) 7039 // TODO: allow code generation to take advantage of partially preserved 7040 // registers rather than clobbering the entire register when the 7041 // parameter extension method is not compatible with the return 7042 // extension method 7043 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7044 (ExtendKind != ISD::ANY_EXTEND && 7045 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7046 Flags.setReturned(); 7047 } 7048 7049 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7050 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7051 7052 for (unsigned j = 0; j != NumParts; ++j) { 7053 // if it isn't first piece, alignment must be 1 7054 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7055 i < CLI.NumFixedArgs, 7056 i, j*Parts[j].getValueType().getStoreSize()); 7057 if (NumParts > 1 && j == 0) 7058 MyFlags.Flags.setSplit(); 7059 else if (j != 0) 7060 MyFlags.Flags.setOrigAlign(1); 7061 7062 CLI.Outs.push_back(MyFlags); 7063 CLI.OutVals.push_back(Parts[j]); 7064 } 7065 7066 if (NeedsRegBlock && Value == NumValues - 1) 7067 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7068 } 7069 } 7070 7071 SmallVector<SDValue, 4> InVals; 7072 CLI.Chain = LowerCall(CLI, InVals); 7073 7074 // Verify that the target's LowerCall behaved as expected. 7075 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7076 "LowerCall didn't return a valid chain!"); 7077 assert((!CLI.IsTailCall || InVals.empty()) && 7078 "LowerCall emitted a return value for a tail call!"); 7079 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7080 "LowerCall didn't emit the correct number of values!"); 7081 7082 // For a tail call, the return value is merely live-out and there aren't 7083 // any nodes in the DAG representing it. Return a special value to 7084 // indicate that a tail call has been emitted and no more Instructions 7085 // should be processed in the current block. 7086 if (CLI.IsTailCall) { 7087 CLI.DAG.setRoot(CLI.Chain); 7088 return std::make_pair(SDValue(), SDValue()); 7089 } 7090 7091 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7092 assert(InVals[i].getNode() && 7093 "LowerCall emitted a null value!"); 7094 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7095 "LowerCall emitted a value with the wrong type!"); 7096 }); 7097 7098 SmallVector<SDValue, 4> ReturnValues; 7099 if (!CanLowerReturn) { 7100 // The instruction result is the result of loading from the 7101 // hidden sret parameter. 7102 SmallVector<EVT, 1> PVTs; 7103 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7104 7105 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7106 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7107 EVT PtrVT = PVTs[0]; 7108 7109 unsigned NumValues = RetTys.size(); 7110 ReturnValues.resize(NumValues); 7111 SmallVector<SDValue, 4> Chains(NumValues); 7112 7113 for (unsigned i = 0; i < NumValues; ++i) { 7114 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7115 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7116 PtrVT)); 7117 SDValue L = CLI.DAG.getLoad( 7118 RetTys[i], CLI.DL, CLI.Chain, Add, 7119 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7120 DemoteStackIdx, Offsets[i]), 7121 false, false, false, 1); 7122 ReturnValues[i] = L; 7123 Chains[i] = L.getValue(1); 7124 } 7125 7126 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7127 } else { 7128 // Collect the legal value parts into potentially illegal values 7129 // that correspond to the original function's return values. 7130 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7131 if (CLI.RetSExt) 7132 AssertOp = ISD::AssertSext; 7133 else if (CLI.RetZExt) 7134 AssertOp = ISD::AssertZext; 7135 unsigned CurReg = 0; 7136 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7137 EVT VT = RetTys[I]; 7138 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7139 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7140 7141 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7142 NumRegs, RegisterVT, VT, nullptr, 7143 AssertOp)); 7144 CurReg += NumRegs; 7145 } 7146 7147 // For a function returning void, there is no return value. We can't create 7148 // such a node, so we just return a null return value in that case. In 7149 // that case, nothing will actually look at the value. 7150 if (ReturnValues.empty()) 7151 return std::make_pair(SDValue(), CLI.Chain); 7152 } 7153 7154 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7155 CLI.DAG.getVTList(RetTys), ReturnValues); 7156 return std::make_pair(Res, CLI.Chain); 7157 } 7158 7159 void TargetLowering::LowerOperationWrapper(SDNode *N, 7160 SmallVectorImpl<SDValue> &Results, 7161 SelectionDAG &DAG) const { 7162 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7163 if (Res.getNode()) 7164 Results.push_back(Res); 7165 } 7166 7167 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7168 llvm_unreachable("LowerOperation not implemented for this target!"); 7169 } 7170 7171 void 7172 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7173 SDValue Op = getNonRegisterValue(V); 7174 assert((Op.getOpcode() != ISD::CopyFromReg || 7175 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7176 "Copy from a reg to the same reg!"); 7177 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7178 7179 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7180 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7181 V->getType()); 7182 SDValue Chain = DAG.getEntryNode(); 7183 7184 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7185 FuncInfo.PreferredExtendType.end()) 7186 ? ISD::ANY_EXTEND 7187 : FuncInfo.PreferredExtendType[V]; 7188 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7189 PendingExports.push_back(Chain); 7190 } 7191 7192 #include "llvm/CodeGen/SelectionDAGISel.h" 7193 7194 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7195 /// entry block, return true. This includes arguments used by switches, since 7196 /// the switch may expand into multiple basic blocks. 7197 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7198 // With FastISel active, we may be splitting blocks, so force creation 7199 // of virtual registers for all non-dead arguments. 7200 if (FastISel) 7201 return A->use_empty(); 7202 7203 const BasicBlock *Entry = A->getParent()->begin(); 7204 for (const User *U : A->users()) 7205 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7206 return false; // Use not in entry block. 7207 7208 return true; 7209 } 7210 7211 void SelectionDAGISel::LowerArguments(const Function &F) { 7212 SelectionDAG &DAG = SDB->DAG; 7213 SDLoc dl = SDB->getCurSDLoc(); 7214 const DataLayout &DL = DAG.getDataLayout(); 7215 SmallVector<ISD::InputArg, 16> Ins; 7216 7217 if (!FuncInfo->CanLowerReturn) { 7218 // Put in an sret pointer parameter before all the other parameters. 7219 SmallVector<EVT, 1> ValueVTs; 7220 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7221 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7222 7223 // NOTE: Assuming that a pointer will never break down to more than one VT 7224 // or one register. 7225 ISD::ArgFlagsTy Flags; 7226 Flags.setSRet(); 7227 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7228 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7229 ISD::InputArg::NoArgIndex, 0); 7230 Ins.push_back(RetArg); 7231 } 7232 7233 // Set up the incoming argument description vector. 7234 unsigned Idx = 1; 7235 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7236 I != E; ++I, ++Idx) { 7237 SmallVector<EVT, 4> ValueVTs; 7238 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7239 bool isArgValueUsed = !I->use_empty(); 7240 unsigned PartBase = 0; 7241 Type *FinalType = I->getType(); 7242 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7243 FinalType = cast<PointerType>(FinalType)->getElementType(); 7244 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7245 FinalType, F.getCallingConv(), F.isVarArg()); 7246 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7247 Value != NumValues; ++Value) { 7248 EVT VT = ValueVTs[Value]; 7249 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7250 ISD::ArgFlagsTy Flags; 7251 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7252 7253 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7254 Flags.setZExt(); 7255 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7256 Flags.setSExt(); 7257 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7258 Flags.setInReg(); 7259 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7260 Flags.setSRet(); 7261 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7262 Flags.setByVal(); 7263 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7264 Flags.setInAlloca(); 7265 // Set the byval flag for CCAssignFn callbacks that don't know about 7266 // inalloca. This way we can know how many bytes we should've allocated 7267 // and how many bytes a callee cleanup function will pop. If we port 7268 // inalloca to more targets, we'll have to add custom inalloca handling 7269 // in the various CC lowering callbacks. 7270 Flags.setByVal(); 7271 } 7272 if (Flags.isByVal() || Flags.isInAlloca()) { 7273 PointerType *Ty = cast<PointerType>(I->getType()); 7274 Type *ElementTy = Ty->getElementType(); 7275 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7276 // For ByVal, alignment should be passed from FE. BE will guess if 7277 // this info is not there but there are cases it cannot get right. 7278 unsigned FrameAlign; 7279 if (F.getParamAlignment(Idx)) 7280 FrameAlign = F.getParamAlignment(Idx); 7281 else 7282 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7283 Flags.setByValAlign(FrameAlign); 7284 } 7285 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7286 Flags.setNest(); 7287 if (NeedsRegBlock) 7288 Flags.setInConsecutiveRegs(); 7289 Flags.setOrigAlign(OriginalAlignment); 7290 7291 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7292 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7293 for (unsigned i = 0; i != NumRegs; ++i) { 7294 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7295 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7296 if (NumRegs > 1 && i == 0) 7297 MyFlags.Flags.setSplit(); 7298 // if it isn't first piece, alignment must be 1 7299 else if (i > 0) 7300 MyFlags.Flags.setOrigAlign(1); 7301 Ins.push_back(MyFlags); 7302 } 7303 if (NeedsRegBlock && Value == NumValues - 1) 7304 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7305 PartBase += VT.getStoreSize(); 7306 } 7307 } 7308 7309 // Call the target to set up the argument values. 7310 SmallVector<SDValue, 8> InVals; 7311 SDValue NewRoot = TLI->LowerFormalArguments( 7312 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7313 7314 // Verify that the target's LowerFormalArguments behaved as expected. 7315 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7316 "LowerFormalArguments didn't return a valid chain!"); 7317 assert(InVals.size() == Ins.size() && 7318 "LowerFormalArguments didn't emit the correct number of values!"); 7319 DEBUG({ 7320 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7321 assert(InVals[i].getNode() && 7322 "LowerFormalArguments emitted a null value!"); 7323 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7324 "LowerFormalArguments emitted a value with the wrong type!"); 7325 } 7326 }); 7327 7328 // Update the DAG with the new chain value resulting from argument lowering. 7329 DAG.setRoot(NewRoot); 7330 7331 // Set up the argument values. 7332 unsigned i = 0; 7333 Idx = 1; 7334 if (!FuncInfo->CanLowerReturn) { 7335 // Create a virtual register for the sret pointer, and put in a copy 7336 // from the sret argument into it. 7337 SmallVector<EVT, 1> ValueVTs; 7338 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7339 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7340 MVT VT = ValueVTs[0].getSimpleVT(); 7341 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7342 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7343 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7344 RegVT, VT, nullptr, AssertOp); 7345 7346 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7347 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7348 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7349 FuncInfo->DemoteRegister = SRetReg; 7350 NewRoot = 7351 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7352 DAG.setRoot(NewRoot); 7353 7354 // i indexes lowered arguments. Bump it past the hidden sret argument. 7355 // Idx indexes LLVM arguments. Don't touch it. 7356 ++i; 7357 } 7358 7359 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7360 ++I, ++Idx) { 7361 SmallVector<SDValue, 4> ArgValues; 7362 SmallVector<EVT, 4> ValueVTs; 7363 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7364 unsigned NumValues = ValueVTs.size(); 7365 7366 // If this argument is unused then remember its value. It is used to generate 7367 // debugging information. 7368 if (I->use_empty() && NumValues) { 7369 SDB->setUnusedArgValue(I, InVals[i]); 7370 7371 // Also remember any frame index for use in FastISel. 7372 if (FrameIndexSDNode *FI = 7373 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7374 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7375 } 7376 7377 for (unsigned Val = 0; Val != NumValues; ++Val) { 7378 EVT VT = ValueVTs[Val]; 7379 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7380 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7381 7382 if (!I->use_empty()) { 7383 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7384 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7385 AssertOp = ISD::AssertSext; 7386 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7387 AssertOp = ISD::AssertZext; 7388 7389 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7390 NumParts, PartVT, VT, 7391 nullptr, AssertOp)); 7392 } 7393 7394 i += NumParts; 7395 } 7396 7397 // We don't need to do anything else for unused arguments. 7398 if (ArgValues.empty()) 7399 continue; 7400 7401 // Note down frame index. 7402 if (FrameIndexSDNode *FI = 7403 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7404 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7405 7406 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7407 SDB->getCurSDLoc()); 7408 7409 SDB->setValue(I, Res); 7410 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7411 if (LoadSDNode *LNode = 7412 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7413 if (FrameIndexSDNode *FI = 7414 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7415 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7416 } 7417 7418 // If this argument is live outside of the entry block, insert a copy from 7419 // wherever we got it to the vreg that other BB's will reference it as. 7420 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7421 // If we can, though, try to skip creating an unnecessary vreg. 7422 // FIXME: This isn't very clean... it would be nice to make this more 7423 // general. It's also subtly incompatible with the hacks FastISel 7424 // uses with vregs. 7425 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7426 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7427 FuncInfo->ValueMap[I] = Reg; 7428 continue; 7429 } 7430 } 7431 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7432 FuncInfo->InitializeRegForValue(I); 7433 SDB->CopyToExportRegsIfNeeded(I); 7434 } 7435 } 7436 7437 assert(i == InVals.size() && "Argument register count mismatch!"); 7438 7439 // Finally, if the target has anything special to do, allow it to do so. 7440 EmitFunctionEntryCode(); 7441 } 7442 7443 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7444 /// ensure constants are generated when needed. Remember the virtual registers 7445 /// that need to be added to the Machine PHI nodes as input. We cannot just 7446 /// directly add them, because expansion might result in multiple MBB's for one 7447 /// BB. As such, the start of the BB might correspond to a different MBB than 7448 /// the end. 7449 /// 7450 void 7451 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7452 const TerminatorInst *TI = LLVMBB->getTerminator(); 7453 7454 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7455 7456 // Check PHI nodes in successors that expect a value to be available from this 7457 // block. 7458 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7459 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7460 if (!isa<PHINode>(SuccBB->begin())) continue; 7461 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7462 7463 // If this terminator has multiple identical successors (common for 7464 // switches), only handle each succ once. 7465 if (!SuccsHandled.insert(SuccMBB).second) 7466 continue; 7467 7468 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7469 7470 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7471 // nodes and Machine PHI nodes, but the incoming operands have not been 7472 // emitted yet. 7473 for (BasicBlock::const_iterator I = SuccBB->begin(); 7474 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7475 // Ignore dead phi's. 7476 if (PN->use_empty()) continue; 7477 7478 // Skip empty types 7479 if (PN->getType()->isEmptyTy()) 7480 continue; 7481 7482 unsigned Reg; 7483 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7484 7485 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7486 unsigned &RegOut = ConstantsOut[C]; 7487 if (RegOut == 0) { 7488 RegOut = FuncInfo.CreateRegs(C->getType()); 7489 CopyValueToVirtualRegister(C, RegOut); 7490 } 7491 Reg = RegOut; 7492 } else { 7493 DenseMap<const Value *, unsigned>::iterator I = 7494 FuncInfo.ValueMap.find(PHIOp); 7495 if (I != FuncInfo.ValueMap.end()) 7496 Reg = I->second; 7497 else { 7498 assert(isa<AllocaInst>(PHIOp) && 7499 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7500 "Didn't codegen value into a register!??"); 7501 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7502 CopyValueToVirtualRegister(PHIOp, Reg); 7503 } 7504 } 7505 7506 // Remember that this register needs to added to the machine PHI node as 7507 // the input for this MBB. 7508 SmallVector<EVT, 4> ValueVTs; 7509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7510 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7511 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7512 EVT VT = ValueVTs[vti]; 7513 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7514 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7515 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7516 Reg += NumRegisters; 7517 } 7518 } 7519 } 7520 7521 ConstantsOut.clear(); 7522 } 7523 7524 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7525 /// is 0. 7526 MachineBasicBlock * 7527 SelectionDAGBuilder::StackProtectorDescriptor:: 7528 AddSuccessorMBB(const BasicBlock *BB, 7529 MachineBasicBlock *ParentMBB, 7530 bool IsLikely, 7531 MachineBasicBlock *SuccMBB) { 7532 // If SuccBB has not been created yet, create it. 7533 if (!SuccMBB) { 7534 MachineFunction *MF = ParentMBB->getParent(); 7535 MachineFunction::iterator BBI = ParentMBB; 7536 SuccMBB = MF->CreateMachineBasicBlock(BB); 7537 MF->insert(++BBI, SuccMBB); 7538 } 7539 // Add it as a successor of ParentMBB. 7540 ParentMBB->addSuccessor( 7541 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7542 return SuccMBB; 7543 } 7544 7545 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7546 MachineFunction::iterator I = MBB; 7547 if (++I == FuncInfo.MF->end()) 7548 return nullptr; 7549 return I; 7550 } 7551 7552 /// During lowering new call nodes can be created (such as memset, etc.). 7553 /// Those will become new roots of the current DAG, but complications arise 7554 /// when they are tail calls. In such cases, the call lowering will update 7555 /// the root, but the builder still needs to know that a tail call has been 7556 /// lowered in order to avoid generating an additional return. 7557 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7558 // If the node is null, we do have a tail call. 7559 if (MaybeTC.getNode() != nullptr) 7560 DAG.setRoot(MaybeTC); 7561 else 7562 HasTailCall = true; 7563 } 7564 7565 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7566 unsigned *TotalCases, unsigned First, 7567 unsigned Last) { 7568 assert(Last >= First); 7569 assert(TotalCases[Last] >= TotalCases[First]); 7570 7571 APInt LowCase = Clusters[First].Low->getValue(); 7572 APInt HighCase = Clusters[Last].High->getValue(); 7573 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7574 7575 // FIXME: A range of consecutive cases has 100% density, but only requires one 7576 // comparison to lower. We should discriminate against such consecutive ranges 7577 // in jump tables. 7578 7579 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7580 uint64_t Range = Diff + 1; 7581 7582 uint64_t NumCases = 7583 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7584 7585 assert(NumCases < UINT64_MAX / 100); 7586 assert(Range >= NumCases); 7587 7588 return NumCases * 100 >= Range * MinJumpTableDensity; 7589 } 7590 7591 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7592 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7593 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7594 } 7595 7596 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7597 unsigned First, unsigned Last, 7598 const SwitchInst *SI, 7599 MachineBasicBlock *DefaultMBB, 7600 CaseCluster &JTCluster) { 7601 assert(First <= Last); 7602 7603 uint32_t Weight = 0; 7604 unsigned NumCmps = 0; 7605 std::vector<MachineBasicBlock*> Table; 7606 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7607 for (unsigned I = First; I <= Last; ++I) { 7608 assert(Clusters[I].Kind == CC_Range); 7609 Weight += Clusters[I].Weight; 7610 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7611 APInt Low = Clusters[I].Low->getValue(); 7612 APInt High = Clusters[I].High->getValue(); 7613 NumCmps += (Low == High) ? 1 : 2; 7614 if (I != First) { 7615 // Fill the gap between this and the previous cluster. 7616 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7617 assert(PreviousHigh.slt(Low)); 7618 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7619 for (uint64_t J = 0; J < Gap; J++) 7620 Table.push_back(DefaultMBB); 7621 } 7622 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7623 for (uint64_t J = 0; J < ClusterSize; ++J) 7624 Table.push_back(Clusters[I].MBB); 7625 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7626 } 7627 7628 unsigned NumDests = JTWeights.size(); 7629 if (isSuitableForBitTests(NumDests, NumCmps, 7630 Clusters[First].Low->getValue(), 7631 Clusters[Last].High->getValue())) { 7632 // Clusters[First..Last] should be lowered as bit tests instead. 7633 return false; 7634 } 7635 7636 // Create the MBB that will load from and jump through the table. 7637 // Note: We create it here, but it's not inserted into the function yet. 7638 MachineFunction *CurMF = FuncInfo.MF; 7639 MachineBasicBlock *JumpTableMBB = 7640 CurMF->CreateMachineBasicBlock(SI->getParent()); 7641 7642 // Add successors. Note: use table order for determinism. 7643 SmallPtrSet<MachineBasicBlock *, 8> Done; 7644 for (MachineBasicBlock *Succ : Table) { 7645 if (Done.count(Succ)) 7646 continue; 7647 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7648 Done.insert(Succ); 7649 } 7650 7651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7652 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7653 ->createJumpTableIndex(Table); 7654 7655 // Set up the jump table info. 7656 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7657 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7658 Clusters[Last].High->getValue(), SI->getCondition(), 7659 nullptr, false); 7660 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7661 7662 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7663 JTCases.size() - 1, Weight); 7664 return true; 7665 } 7666 7667 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7668 const SwitchInst *SI, 7669 MachineBasicBlock *DefaultMBB) { 7670 #ifndef NDEBUG 7671 // Clusters must be non-empty, sorted, and only contain Range clusters. 7672 assert(!Clusters.empty()); 7673 for (CaseCluster &C : Clusters) 7674 assert(C.Kind == CC_Range); 7675 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7676 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7677 #endif 7678 7679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7680 if (!areJTsAllowed(TLI)) 7681 return; 7682 7683 const int64_t N = Clusters.size(); 7684 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7685 7686 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7687 SmallVector<unsigned, 8> TotalCases(N); 7688 7689 for (unsigned i = 0; i < N; ++i) { 7690 APInt Hi = Clusters[i].High->getValue(); 7691 APInt Lo = Clusters[i].Low->getValue(); 7692 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7693 if (i != 0) 7694 TotalCases[i] += TotalCases[i - 1]; 7695 } 7696 7697 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7698 // Cheap case: the whole range might be suitable for jump table. 7699 CaseCluster JTCluster; 7700 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7701 Clusters[0] = JTCluster; 7702 Clusters.resize(1); 7703 return; 7704 } 7705 } 7706 7707 // The algorithm below is not suitable for -O0. 7708 if (TM.getOptLevel() == CodeGenOpt::None) 7709 return; 7710 7711 // Split Clusters into minimum number of dense partitions. The algorithm uses 7712 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7713 // for the Case Statement'" (1994), but builds the MinPartitions array in 7714 // reverse order to make it easier to reconstruct the partitions in ascending 7715 // order. In the choice between two optimal partitionings, it picks the one 7716 // which yields more jump tables. 7717 7718 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7719 SmallVector<unsigned, 8> MinPartitions(N); 7720 // LastElement[i] is the last element of the partition starting at i. 7721 SmallVector<unsigned, 8> LastElement(N); 7722 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7723 SmallVector<unsigned, 8> NumTables(N); 7724 7725 // Base case: There is only one way to partition Clusters[N-1]. 7726 MinPartitions[N - 1] = 1; 7727 LastElement[N - 1] = N - 1; 7728 assert(MinJumpTableSize > 1); 7729 NumTables[N - 1] = 0; 7730 7731 // Note: loop indexes are signed to avoid underflow. 7732 for (int64_t i = N - 2; i >= 0; i--) { 7733 // Find optimal partitioning of Clusters[i..N-1]. 7734 // Baseline: Put Clusters[i] into a partition on its own. 7735 MinPartitions[i] = MinPartitions[i + 1] + 1; 7736 LastElement[i] = i; 7737 NumTables[i] = NumTables[i + 1]; 7738 7739 // Search for a solution that results in fewer partitions. 7740 for (int64_t j = N - 1; j > i; j--) { 7741 // Try building a partition from Clusters[i..j]. 7742 if (isDense(Clusters, &TotalCases[0], i, j)) { 7743 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7744 bool IsTable = j - i + 1 >= MinJumpTableSize; 7745 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7746 7747 // If this j leads to fewer partitions, or same number of partitions 7748 // with more lookup tables, it is a better partitioning. 7749 if (NumPartitions < MinPartitions[i] || 7750 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7751 MinPartitions[i] = NumPartitions; 7752 LastElement[i] = j; 7753 NumTables[i] = Tables; 7754 } 7755 } 7756 } 7757 } 7758 7759 // Iterate over the partitions, replacing some with jump tables in-place. 7760 unsigned DstIndex = 0; 7761 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7762 Last = LastElement[First]; 7763 assert(Last >= First); 7764 assert(DstIndex <= First); 7765 unsigned NumClusters = Last - First + 1; 7766 7767 CaseCluster JTCluster; 7768 if (NumClusters >= MinJumpTableSize && 7769 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7770 Clusters[DstIndex++] = JTCluster; 7771 } else { 7772 for (unsigned I = First; I <= Last; ++I) 7773 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7774 } 7775 } 7776 Clusters.resize(DstIndex); 7777 } 7778 7779 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7780 // FIXME: Using the pointer type doesn't seem ideal. 7781 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7782 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7783 return Range <= BW; 7784 } 7785 7786 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7787 unsigned NumCmps, 7788 const APInt &Low, 7789 const APInt &High) { 7790 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7791 // range of cases both require only one branch to lower. Just looking at the 7792 // number of clusters and destinations should be enough to decide whether to 7793 // build bit tests. 7794 7795 // To lower a range with bit tests, the range must fit the bitwidth of a 7796 // machine word. 7797 if (!rangeFitsInWord(Low, High)) 7798 return false; 7799 7800 // Decide whether it's profitable to lower this range with bit tests. Each 7801 // destination requires a bit test and branch, and there is an overall range 7802 // check branch. For a small number of clusters, separate comparisons might be 7803 // cheaper, and for many destinations, splitting the range might be better. 7804 return (NumDests == 1 && NumCmps >= 3) || 7805 (NumDests == 2 && NumCmps >= 5) || 7806 (NumDests == 3 && NumCmps >= 6); 7807 } 7808 7809 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7810 unsigned First, unsigned Last, 7811 const SwitchInst *SI, 7812 CaseCluster &BTCluster) { 7813 assert(First <= Last); 7814 if (First == Last) 7815 return false; 7816 7817 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7818 unsigned NumCmps = 0; 7819 for (int64_t I = First; I <= Last; ++I) { 7820 assert(Clusters[I].Kind == CC_Range); 7821 Dests.set(Clusters[I].MBB->getNumber()); 7822 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7823 } 7824 unsigned NumDests = Dests.count(); 7825 7826 APInt Low = Clusters[First].Low->getValue(); 7827 APInt High = Clusters[Last].High->getValue(); 7828 assert(Low.slt(High)); 7829 7830 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7831 return false; 7832 7833 APInt LowBound; 7834 APInt CmpRange; 7835 7836 const int BitWidth = DAG.getTargetLoweringInfo() 7837 .getPointerTy(DAG.getDataLayout()) 7838 .getSizeInBits(); 7839 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7840 7841 // Check if the clusters cover a contiguous range such that no value in the 7842 // range will jump to the default statement. 7843 bool ContiguousRange = true; 7844 for (int64_t I = First + 1; I <= Last; ++I) { 7845 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7846 ContiguousRange = false; 7847 break; 7848 } 7849 } 7850 7851 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7852 // Optimize the case where all the case values fit in a word without having 7853 // to subtract minValue. In this case, we can optimize away the subtraction. 7854 LowBound = APInt::getNullValue(Low.getBitWidth()); 7855 CmpRange = High; 7856 ContiguousRange = false; 7857 } else { 7858 LowBound = Low; 7859 CmpRange = High - Low; 7860 } 7861 7862 CaseBitsVector CBV; 7863 uint32_t TotalWeight = 0; 7864 for (unsigned i = First; i <= Last; ++i) { 7865 // Find the CaseBits for this destination. 7866 unsigned j; 7867 for (j = 0; j < CBV.size(); ++j) 7868 if (CBV[j].BB == Clusters[i].MBB) 7869 break; 7870 if (j == CBV.size()) 7871 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7872 CaseBits *CB = &CBV[j]; 7873 7874 // Update Mask, Bits and ExtraWeight. 7875 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7876 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7877 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7878 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7879 CB->Bits += Hi - Lo + 1; 7880 CB->ExtraWeight += Clusters[i].Weight; 7881 TotalWeight += Clusters[i].Weight; 7882 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7883 } 7884 7885 BitTestInfo BTI; 7886 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7887 // Sort by weight first, number of bits second. 7888 if (a.ExtraWeight != b.ExtraWeight) 7889 return a.ExtraWeight > b.ExtraWeight; 7890 return a.Bits > b.Bits; 7891 }); 7892 7893 for (auto &CB : CBV) { 7894 MachineBasicBlock *BitTestBB = 7895 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7896 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7897 } 7898 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7899 SI->getCondition(), -1U, MVT::Other, false, 7900 ContiguousRange, nullptr, nullptr, std::move(BTI), 7901 TotalWeight); 7902 7903 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7904 BitTestCases.size() - 1, TotalWeight); 7905 return true; 7906 } 7907 7908 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7909 const SwitchInst *SI) { 7910 // Partition Clusters into as few subsets as possible, where each subset has a 7911 // range that fits in a machine word and has <= 3 unique destinations. 7912 7913 #ifndef NDEBUG 7914 // Clusters must be sorted and contain Range or JumpTable clusters. 7915 assert(!Clusters.empty()); 7916 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7917 for (const CaseCluster &C : Clusters) 7918 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7919 for (unsigned i = 1; i < Clusters.size(); ++i) 7920 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7921 #endif 7922 7923 // The algorithm below is not suitable for -O0. 7924 if (TM.getOptLevel() == CodeGenOpt::None) 7925 return; 7926 7927 // If target does not have legal shift left, do not emit bit tests at all. 7928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7929 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7930 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7931 return; 7932 7933 int BitWidth = PTy.getSizeInBits(); 7934 const int64_t N = Clusters.size(); 7935 7936 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7937 SmallVector<unsigned, 8> MinPartitions(N); 7938 // LastElement[i] is the last element of the partition starting at i. 7939 SmallVector<unsigned, 8> LastElement(N); 7940 7941 // FIXME: This might not be the best algorithm for finding bit test clusters. 7942 7943 // Base case: There is only one way to partition Clusters[N-1]. 7944 MinPartitions[N - 1] = 1; 7945 LastElement[N - 1] = N - 1; 7946 7947 // Note: loop indexes are signed to avoid underflow. 7948 for (int64_t i = N - 2; i >= 0; --i) { 7949 // Find optimal partitioning of Clusters[i..N-1]. 7950 // Baseline: Put Clusters[i] into a partition on its own. 7951 MinPartitions[i] = MinPartitions[i + 1] + 1; 7952 LastElement[i] = i; 7953 7954 // Search for a solution that results in fewer partitions. 7955 // Note: the search is limited by BitWidth, reducing time complexity. 7956 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7957 // Try building a partition from Clusters[i..j]. 7958 7959 // Check the range. 7960 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7961 Clusters[j].High->getValue())) 7962 continue; 7963 7964 // Check nbr of destinations and cluster types. 7965 // FIXME: This works, but doesn't seem very efficient. 7966 bool RangesOnly = true; 7967 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7968 for (int64_t k = i; k <= j; k++) { 7969 if (Clusters[k].Kind != CC_Range) { 7970 RangesOnly = false; 7971 break; 7972 } 7973 Dests.set(Clusters[k].MBB->getNumber()); 7974 } 7975 if (!RangesOnly || Dests.count() > 3) 7976 break; 7977 7978 // Check if it's a better partition. 7979 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7980 if (NumPartitions < MinPartitions[i]) { 7981 // Found a better partition. 7982 MinPartitions[i] = NumPartitions; 7983 LastElement[i] = j; 7984 } 7985 } 7986 } 7987 7988 // Iterate over the partitions, replacing with bit-test clusters in-place. 7989 unsigned DstIndex = 0; 7990 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7991 Last = LastElement[First]; 7992 assert(First <= Last); 7993 assert(DstIndex <= First); 7994 7995 CaseCluster BitTestCluster; 7996 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7997 Clusters[DstIndex++] = BitTestCluster; 7998 } else { 7999 size_t NumClusters = Last - First + 1; 8000 std::memmove(&Clusters[DstIndex], &Clusters[First], 8001 sizeof(Clusters[0]) * NumClusters); 8002 DstIndex += NumClusters; 8003 } 8004 } 8005 Clusters.resize(DstIndex); 8006 } 8007 8008 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8009 MachineBasicBlock *SwitchMBB, 8010 MachineBasicBlock *DefaultMBB) { 8011 MachineFunction *CurMF = FuncInfo.MF; 8012 MachineBasicBlock *NextMBB = nullptr; 8013 MachineFunction::iterator BBI = W.MBB; 8014 if (++BBI != FuncInfo.MF->end()) 8015 NextMBB = BBI; 8016 8017 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8018 8019 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8020 8021 if (Size == 2 && W.MBB == SwitchMBB) { 8022 // If any two of the cases has the same destination, and if one value 8023 // is the same as the other, but has one bit unset that the other has set, 8024 // use bit manipulation to do two compares at once. For example: 8025 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8026 // TODO: This could be extended to merge any 2 cases in switches with 3 8027 // cases. 8028 // TODO: Handle cases where W.CaseBB != SwitchBB. 8029 CaseCluster &Small = *W.FirstCluster; 8030 CaseCluster &Big = *W.LastCluster; 8031 8032 if (Small.Low == Small.High && Big.Low == Big.High && 8033 Small.MBB == Big.MBB) { 8034 const APInt &SmallValue = Small.Low->getValue(); 8035 const APInt &BigValue = Big.Low->getValue(); 8036 8037 // Check that there is only one bit different. 8038 APInt CommonBit = BigValue ^ SmallValue; 8039 if (CommonBit.isPowerOf2()) { 8040 SDValue CondLHS = getValue(Cond); 8041 EVT VT = CondLHS.getValueType(); 8042 SDLoc DL = getCurSDLoc(); 8043 8044 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8045 DAG.getConstant(CommonBit, DL, VT)); 8046 SDValue Cond = DAG.getSetCC( 8047 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8048 ISD::SETEQ); 8049 8050 // Update successor info. 8051 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8052 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8053 addSuccessorWithWeight( 8054 SwitchMBB, DefaultMBB, 8055 // The default destination is the first successor in IR. 8056 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8057 : 0); 8058 8059 // Insert the true branch. 8060 SDValue BrCond = 8061 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8062 DAG.getBasicBlock(Small.MBB)); 8063 // Insert the false branch. 8064 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8065 DAG.getBasicBlock(DefaultMBB)); 8066 8067 DAG.setRoot(BrCond); 8068 return; 8069 } 8070 } 8071 } 8072 8073 if (TM.getOptLevel() != CodeGenOpt::None) { 8074 // Order cases by weight so the most likely case will be checked first. 8075 std::sort(W.FirstCluster, W.LastCluster + 1, 8076 [](const CaseCluster &a, const CaseCluster &b) { 8077 return a.Weight > b.Weight; 8078 }); 8079 8080 // Rearrange the case blocks so that the last one falls through if possible 8081 // without without changing the order of weights. 8082 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8083 --I; 8084 if (I->Weight > W.LastCluster->Weight) 8085 break; 8086 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8087 std::swap(*I, *W.LastCluster); 8088 break; 8089 } 8090 } 8091 } 8092 8093 // Compute total weight. 8094 uint32_t DefaultWeight = W.DefaultWeight; 8095 uint32_t UnhandledWeights = DefaultWeight; 8096 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8097 UnhandledWeights += I->Weight; 8098 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8099 } 8100 8101 MachineBasicBlock *CurMBB = W.MBB; 8102 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8103 MachineBasicBlock *Fallthrough; 8104 if (I == W.LastCluster) { 8105 // For the last cluster, fall through to the default destination. 8106 Fallthrough = DefaultMBB; 8107 } else { 8108 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8109 CurMF->insert(BBI, Fallthrough); 8110 // Put Cond in a virtual register to make it available from the new blocks. 8111 ExportFromCurrentBlock(Cond); 8112 } 8113 UnhandledWeights -= I->Weight; 8114 8115 switch (I->Kind) { 8116 case CC_JumpTable: { 8117 // FIXME: Optimize away range check based on pivot comparisons. 8118 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8119 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8120 8121 // The jump block hasn't been inserted yet; insert it here. 8122 MachineBasicBlock *JumpMBB = JT->MBB; 8123 CurMF->insert(BBI, JumpMBB); 8124 8125 uint32_t JumpWeight = I->Weight; 8126 uint32_t FallthroughWeight = UnhandledWeights; 8127 8128 // If Fallthrough is a target of the jump table, we evenly distribute 8129 // the weight on the edge to Fallthrough to successors of CurMBB. 8130 // Also update the weight on the edge from JumpMBB to Fallthrough. 8131 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8132 SE = JumpMBB->succ_end(); 8133 SI != SE; ++SI) { 8134 if (*SI == Fallthrough) { 8135 JumpWeight += DefaultWeight / 2; 8136 FallthroughWeight -= DefaultWeight / 2; 8137 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8138 break; 8139 } 8140 } 8141 8142 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8143 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8144 8145 // The jump table header will be inserted in our current block, do the 8146 // range check, and fall through to our fallthrough block. 8147 JTH->HeaderBB = CurMBB; 8148 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8149 8150 // If we're in the right place, emit the jump table header right now. 8151 if (CurMBB == SwitchMBB) { 8152 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8153 JTH->Emitted = true; 8154 } 8155 break; 8156 } 8157 case CC_BitTests: { 8158 // FIXME: Optimize away range check based on pivot comparisons. 8159 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8160 8161 // The bit test blocks haven't been inserted yet; insert them here. 8162 for (BitTestCase &BTC : BTB->Cases) 8163 CurMF->insert(BBI, BTC.ThisBB); 8164 8165 // Fill in fields of the BitTestBlock. 8166 BTB->Parent = CurMBB; 8167 BTB->Default = Fallthrough; 8168 8169 BTB->DefaultWeight = UnhandledWeights; 8170 // If the cases in bit test don't form a contiguous range, we evenly 8171 // distribute the weight on the edge to Fallthrough to two successors 8172 // of CurMBB. 8173 if (!BTB->ContiguousRange) { 8174 BTB->Weight += DefaultWeight / 2; 8175 BTB->DefaultWeight -= DefaultWeight / 2; 8176 } 8177 8178 // If we're in the right place, emit the bit test header right now. 8179 if (CurMBB == SwitchMBB) { 8180 visitBitTestHeader(*BTB, SwitchMBB); 8181 BTB->Emitted = true; 8182 } 8183 break; 8184 } 8185 case CC_Range: { 8186 const Value *RHS, *LHS, *MHS; 8187 ISD::CondCode CC; 8188 if (I->Low == I->High) { 8189 // Check Cond == I->Low. 8190 CC = ISD::SETEQ; 8191 LHS = Cond; 8192 RHS=I->Low; 8193 MHS = nullptr; 8194 } else { 8195 // Check I->Low <= Cond <= I->High. 8196 CC = ISD::SETLE; 8197 LHS = I->Low; 8198 MHS = Cond; 8199 RHS = I->High; 8200 } 8201 8202 // The false weight is the sum of all unhandled cases. 8203 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8204 UnhandledWeights); 8205 8206 if (CurMBB == SwitchMBB) 8207 visitSwitchCase(CB, SwitchMBB); 8208 else 8209 SwitchCases.push_back(CB); 8210 8211 break; 8212 } 8213 } 8214 CurMBB = Fallthrough; 8215 } 8216 } 8217 8218 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8219 CaseClusterIt First, 8220 CaseClusterIt Last) { 8221 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8222 if (X.Weight != CC.Weight) 8223 return X.Weight > CC.Weight; 8224 8225 // Ties are broken by comparing the case value. 8226 return X.Low->getValue().slt(CC.Low->getValue()); 8227 }); 8228 } 8229 8230 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8231 const SwitchWorkListItem &W, 8232 Value *Cond, 8233 MachineBasicBlock *SwitchMBB) { 8234 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8235 "Clusters not sorted?"); 8236 8237 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8238 8239 // Balance the tree based on branch weights to create a near-optimal (in terms 8240 // of search time given key frequency) binary search tree. See e.g. Kurt 8241 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8242 CaseClusterIt LastLeft = W.FirstCluster; 8243 CaseClusterIt FirstRight = W.LastCluster; 8244 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8245 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8246 8247 // Move LastLeft and FirstRight towards each other from opposite directions to 8248 // find a partitioning of the clusters which balances the weight on both 8249 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8250 // taken to ensure 0-weight nodes are distributed evenly. 8251 unsigned I = 0; 8252 while (LastLeft + 1 < FirstRight) { 8253 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8254 LeftWeight += (++LastLeft)->Weight; 8255 else 8256 RightWeight += (--FirstRight)->Weight; 8257 I++; 8258 } 8259 8260 for (;;) { 8261 // Our binary search tree differs from a typical BST in that ours can have up 8262 // to three values in each leaf. The pivot selection above doesn't take that 8263 // into account, which means the tree might require more nodes and be less 8264 // efficient. We compensate for this here. 8265 8266 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8267 unsigned NumRight = W.LastCluster - FirstRight + 1; 8268 8269 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8270 // If one side has less than 3 clusters, and the other has more than 3, 8271 // consider taking a cluster from the other side. 8272 8273 if (NumLeft < NumRight) { 8274 // Consider moving the first cluster on the right to the left side. 8275 CaseCluster &CC = *FirstRight; 8276 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8277 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8278 if (LeftSideRank <= RightSideRank) { 8279 // Moving the cluster to the left does not demote it. 8280 ++LastLeft; 8281 ++FirstRight; 8282 continue; 8283 } 8284 } else { 8285 assert(NumRight < NumLeft); 8286 // Consider moving the last element on the left to the right side. 8287 CaseCluster &CC = *LastLeft; 8288 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8289 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8290 if (RightSideRank <= LeftSideRank) { 8291 // Moving the cluster to the right does not demot it. 8292 --LastLeft; 8293 --FirstRight; 8294 continue; 8295 } 8296 } 8297 } 8298 break; 8299 } 8300 8301 assert(LastLeft + 1 == FirstRight); 8302 assert(LastLeft >= W.FirstCluster); 8303 assert(FirstRight <= W.LastCluster); 8304 8305 // Use the first element on the right as pivot since we will make less-than 8306 // comparisons against it. 8307 CaseClusterIt PivotCluster = FirstRight; 8308 assert(PivotCluster > W.FirstCluster); 8309 assert(PivotCluster <= W.LastCluster); 8310 8311 CaseClusterIt FirstLeft = W.FirstCluster; 8312 CaseClusterIt LastRight = W.LastCluster; 8313 8314 const ConstantInt *Pivot = PivotCluster->Low; 8315 8316 // New blocks will be inserted immediately after the current one. 8317 MachineFunction::iterator BBI = W.MBB; 8318 ++BBI; 8319 8320 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8321 // we can branch to its destination directly if it's squeezed exactly in 8322 // between the known lower bound and Pivot - 1. 8323 MachineBasicBlock *LeftMBB; 8324 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8325 FirstLeft->Low == W.GE && 8326 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8327 LeftMBB = FirstLeft->MBB; 8328 } else { 8329 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8330 FuncInfo.MF->insert(BBI, LeftMBB); 8331 WorkList.push_back( 8332 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8333 // Put Cond in a virtual register to make it available from the new blocks. 8334 ExportFromCurrentBlock(Cond); 8335 } 8336 8337 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8338 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8339 // directly if RHS.High equals the current upper bound. 8340 MachineBasicBlock *RightMBB; 8341 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8342 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8343 RightMBB = FirstRight->MBB; 8344 } else { 8345 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8346 FuncInfo.MF->insert(BBI, RightMBB); 8347 WorkList.push_back( 8348 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8349 // Put Cond in a virtual register to make it available from the new blocks. 8350 ExportFromCurrentBlock(Cond); 8351 } 8352 8353 // Create the CaseBlock record that will be used to lower the branch. 8354 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8355 LeftWeight, RightWeight); 8356 8357 if (W.MBB == SwitchMBB) 8358 visitSwitchCase(CB, SwitchMBB); 8359 else 8360 SwitchCases.push_back(CB); 8361 } 8362 8363 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8364 // Extract cases from the switch. 8365 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8366 CaseClusterVector Clusters; 8367 Clusters.reserve(SI.getNumCases()); 8368 for (auto I : SI.cases()) { 8369 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8370 const ConstantInt *CaseVal = I.getCaseValue(); 8371 uint32_t Weight = 8372 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8373 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8374 } 8375 8376 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8377 8378 // Cluster adjacent cases with the same destination. We do this at all 8379 // optimization levels because it's cheap to do and will make codegen faster 8380 // if there are many clusters. 8381 sortAndRangeify(Clusters); 8382 8383 if (TM.getOptLevel() != CodeGenOpt::None) { 8384 // Replace an unreachable default with the most popular destination. 8385 // FIXME: Exploit unreachable default more aggressively. 8386 bool UnreachableDefault = 8387 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8388 if (UnreachableDefault && !Clusters.empty()) { 8389 DenseMap<const BasicBlock *, unsigned> Popularity; 8390 unsigned MaxPop = 0; 8391 const BasicBlock *MaxBB = nullptr; 8392 for (auto I : SI.cases()) { 8393 const BasicBlock *BB = I.getCaseSuccessor(); 8394 if (++Popularity[BB] > MaxPop) { 8395 MaxPop = Popularity[BB]; 8396 MaxBB = BB; 8397 } 8398 } 8399 // Set new default. 8400 assert(MaxPop > 0 && MaxBB); 8401 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8402 8403 // Remove cases that were pointing to the destination that is now the 8404 // default. 8405 CaseClusterVector New; 8406 New.reserve(Clusters.size()); 8407 for (CaseCluster &CC : Clusters) { 8408 if (CC.MBB != DefaultMBB) 8409 New.push_back(CC); 8410 } 8411 Clusters = std::move(New); 8412 } 8413 } 8414 8415 // If there is only the default destination, jump there directly. 8416 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8417 if (Clusters.empty()) { 8418 SwitchMBB->addSuccessor(DefaultMBB); 8419 if (DefaultMBB != NextBlock(SwitchMBB)) { 8420 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8421 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8422 } 8423 return; 8424 } 8425 8426 findJumpTables(Clusters, &SI, DefaultMBB); 8427 findBitTestClusters(Clusters, &SI); 8428 8429 DEBUG({ 8430 dbgs() << "Case clusters: "; 8431 for (const CaseCluster &C : Clusters) { 8432 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8433 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8434 8435 C.Low->getValue().print(dbgs(), true); 8436 if (C.Low != C.High) { 8437 dbgs() << '-'; 8438 C.High->getValue().print(dbgs(), true); 8439 } 8440 dbgs() << ' '; 8441 } 8442 dbgs() << '\n'; 8443 }); 8444 8445 assert(!Clusters.empty()); 8446 SwitchWorkList WorkList; 8447 CaseClusterIt First = Clusters.begin(); 8448 CaseClusterIt Last = Clusters.end() - 1; 8449 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8450 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8451 8452 while (!WorkList.empty()) { 8453 SwitchWorkListItem W = WorkList.back(); 8454 WorkList.pop_back(); 8455 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8456 8457 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8458 // For optimized builds, lower large range as a balanced binary tree. 8459 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8460 continue; 8461 } 8462 8463 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8464 } 8465 } 8466