xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 784929d0454c4df6a98ef6fbbd1d30a6f71f9c16)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 using namespace PatternMatch;
125 
126 #define DEBUG_TYPE "isel"
127 
128 /// LimitFloatPrecision - Generate low-precision inline sequences for
129 /// some float libcalls (6, 8 or 12 bits).
130 static unsigned LimitFloatPrecision;
131 
132 static cl::opt<unsigned, true>
133     LimitFPPrecision("limit-float-precision",
134                      cl::desc("Generate low-precision inline sequences "
135                               "for some float libcalls"),
136                      cl::location(LimitFloatPrecision), cl::Hidden,
137                      cl::init(0));
138 
139 static cl::opt<unsigned> SwitchPeelThreshold(
140     "switch-peel-threshold", cl::Hidden, cl::init(66),
141     cl::desc("Set the case probability threshold for peeling the case from a "
142              "switch statement. A value greater than 100 will void this "
143              "optimization"));
144 
145 // Limit the width of DAG chains. This is important in general to prevent
146 // DAG-based analysis from blowing up. For example, alias analysis and
147 // load clustering may not complete in reasonable time. It is difficult to
148 // recognize and avoid this situation within each individual analysis, and
149 // future analyses are likely to have the same behavior. Limiting DAG width is
150 // the safe approach and will be especially important with global DAGs.
151 //
152 // MaxParallelChains default is arbitrarily high to avoid affecting
153 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
154 // sequence over this should have been converted to llvm.memcpy by the
155 // frontend. It is easy to induce this behavior with .ll code such as:
156 // %buffer = alloca [4096 x i8]
157 // %data = load [4096 x i8]* %argPtr
158 // store [4096 x i8] %data, [4096 x i8]* %buffer
159 static const unsigned MaxParallelChains = 64;
160 
161 // Return the calling convention if the Value passed requires ABI mangling as it
162 // is a parameter to a function or a return value from a function which is not
163 // an intrinsic.
164 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
165   if (auto *R = dyn_cast<ReturnInst>(V))
166     return R->getParent()->getParent()->getCallingConv();
167 
168   if (auto *CI = dyn_cast<CallInst>(V)) {
169     const bool IsInlineAsm = CI->isInlineAsm();
170     const bool IsIndirectFunctionCall =
171         !IsInlineAsm && !CI->getCalledFunction();
172 
173     // It is possible that the call instruction is an inline asm statement or an
174     // indirect function call in which case the return value of
175     // getCalledFunction() would be nullptr.
176     const bool IsInstrinsicCall =
177         !IsInlineAsm && !IsIndirectFunctionCall &&
178         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
179 
180     if (!IsInlineAsm && !IsInstrinsicCall)
181       return CI->getCallingConv();
182   }
183 
184   return None;
185 }
186 
187 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
188                                       const SDValue *Parts, unsigned NumParts,
189                                       MVT PartVT, EVT ValueVT, const Value *V,
190                                       Optional<CallingConv::ID> CC);
191 
192 /// getCopyFromParts - Create a value that contains the specified legal parts
193 /// combined into the value they represent.  If the parts combine to a type
194 /// larger than ValueVT then AssertOp can be used to specify whether the extra
195 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
196 /// (ISD::AssertSext).
197 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
198                                 const SDValue *Parts, unsigned NumParts,
199                                 MVT PartVT, EVT ValueVT, const Value *V,
200                                 Optional<CallingConv::ID> CC = None,
201                                 Optional<ISD::NodeType> AssertOp = None) {
202   if (ValueVT.isVector())
203     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
204                                   CC);
205 
206   assert(NumParts > 0 && "No parts to assemble!");
207   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208   SDValue Val = Parts[0];
209 
210   if (NumParts > 1) {
211     // Assemble the value from multiple parts.
212     if (ValueVT.isInteger()) {
213       unsigned PartBits = PartVT.getSizeInBits();
214       unsigned ValueBits = ValueVT.getSizeInBits();
215 
216       // Assemble the power of 2 part.
217       unsigned RoundParts = NumParts & (NumParts - 1) ?
218         1 << Log2_32(NumParts) : NumParts;
219       unsigned RoundBits = PartBits * RoundParts;
220       EVT RoundVT = RoundBits == ValueBits ?
221         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
222       SDValue Lo, Hi;
223 
224       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
225 
226       if (RoundParts > 2) {
227         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
228                               PartVT, HalfVT, V);
229         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
230                               RoundParts / 2, PartVT, HalfVT, V);
231       } else {
232         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
233         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
234       }
235 
236       if (DAG.getDataLayout().isBigEndian())
237         std::swap(Lo, Hi);
238 
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
240 
241       if (RoundParts < NumParts) {
242         // Assemble the trailing non-power-of-2 part.
243         unsigned OddParts = NumParts - RoundParts;
244         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
245         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
246                               OddVT, V, CC);
247 
248         // Combine the round and odd parts.
249         Lo = Val;
250         if (DAG.getDataLayout().isBigEndian())
251           std::swap(Lo, Hi);
252         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
253         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
254         Hi =
255             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
256                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
257                                         TLI.getPointerTy(DAG.getDataLayout())));
258         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
259         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
260       }
261     } else if (PartVT.isFloatingPoint()) {
262       // FP split into multiple FP parts (for ppcf128)
263       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
264              "Unexpected split");
265       SDValue Lo, Hi;
266       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
267       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
268       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
269         std::swap(Lo, Hi);
270       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
271     } else {
272       // FP split into integer parts (soft fp)
273       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
274              !PartVT.isVector() && "Unexpected split");
275       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
276       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
277     }
278   }
279 
280   // There is now one part, held in Val.  Correct it to match ValueVT.
281   // PartEVT is the type of the register class that holds the value.
282   // ValueVT is the type of the inline asm operation.
283   EVT PartEVT = Val.getValueType();
284 
285   if (PartEVT == ValueVT)
286     return Val;
287 
288   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
289       ValueVT.bitsLT(PartEVT)) {
290     // For an FP value in an integer part, we need to truncate to the right
291     // width first.
292     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
293     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
294   }
295 
296   // Handle types that have the same size.
297   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
298     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299 
300   // Handle types with different sizes.
301   if (PartEVT.isInteger() && ValueVT.isInteger()) {
302     if (ValueVT.bitsLT(PartEVT)) {
303       // For a truncate, see if we have any information to
304       // indicate whether the truncated bits will always be
305       // zero or sign-extension.
306       if (AssertOp.hasValue())
307         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
308                           DAG.getValueType(ValueVT));
309       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
310     }
311     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
312   }
313 
314   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315     // FP_ROUND's are always exact here.
316     if (ValueVT.bitsLT(Val.getValueType()))
317       return DAG.getNode(
318           ISD::FP_ROUND, DL, ValueVT, Val,
319           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
320 
321     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
322   }
323 
324   llvm_unreachable("Unknown mismatch!");
325 }
326 
327 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
328                                               const Twine &ErrMsg) {
329   const Instruction *I = dyn_cast_or_null<Instruction>(V);
330   if (!V)
331     return Ctx.emitError(ErrMsg);
332 
333   const char *AsmError = ", possible invalid constraint for vector type";
334   if (const CallInst *CI = dyn_cast<CallInst>(I))
335     if (isa<InlineAsm>(CI->getCalledValue()))
336       return Ctx.emitError(I, ErrMsg + AsmError);
337 
338   return Ctx.emitError(I, ErrMsg);
339 }
340 
341 /// getCopyFromPartsVector - Create a value that contains the specified legal
342 /// parts combined into the value they represent.  If the parts combine to a
343 /// type larger than ValueVT then AssertOp can be used to specify whether the
344 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
345 /// ValueVT (ISD::AssertSext).
346 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
347                                       const SDValue *Parts, unsigned NumParts,
348                                       MVT PartVT, EVT ValueVT, const Value *V,
349                                       Optional<CallingConv::ID> CallConv) {
350   assert(ValueVT.isVector() && "Not a vector value");
351   assert(NumParts > 0 && "No parts to assemble!");
352   const bool IsABIRegCopy = CallConv.hasValue();
353 
354   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
355   SDValue Val = Parts[0];
356 
357   // Handle a multi-element vector.
358   if (NumParts > 1) {
359     EVT IntermediateVT;
360     MVT RegisterVT;
361     unsigned NumIntermediates;
362     unsigned NumRegs;
363 
364     if (IsABIRegCopy) {
365       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
366           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
367           NumIntermediates, RegisterVT);
368     } else {
369       NumRegs =
370           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
371                                      NumIntermediates, RegisterVT);
372     }
373 
374     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
375     NumParts = NumRegs; // Silence a compiler warning.
376     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
377     assert(RegisterVT.getSizeInBits() ==
378            Parts[0].getSimpleValueType().getSizeInBits() &&
379            "Part type sizes don't match!");
380 
381     // Assemble the parts into intermediate operands.
382     SmallVector<SDValue, 8> Ops(NumIntermediates);
383     if (NumIntermediates == NumParts) {
384       // If the register was not expanded, truncate or copy the value,
385       // as appropriate.
386       for (unsigned i = 0; i != NumParts; ++i)
387         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
388                                   PartVT, IntermediateVT, V);
389     } else if (NumParts > 0) {
390       // If the intermediate type was expanded, build the intermediate
391       // operands from the parts.
392       assert(NumParts % NumIntermediates == 0 &&
393              "Must expand into a divisible number of parts!");
394       unsigned Factor = NumParts / NumIntermediates;
395       for (unsigned i = 0; i != NumIntermediates; ++i)
396         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
397                                   PartVT, IntermediateVT, V);
398     }
399 
400     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
401     // intermediate operands.
402     EVT BuiltVectorTy =
403         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
404                          (IntermediateVT.isVector()
405                               ? IntermediateVT.getVectorNumElements() * NumParts
406                               : NumIntermediates));
407     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
408                                                 : ISD::BUILD_VECTOR,
409                       DL, BuiltVectorTy, Ops);
410   }
411 
412   // There is now one part, held in Val.  Correct it to match ValueVT.
413   EVT PartEVT = Val.getValueType();
414 
415   if (PartEVT == ValueVT)
416     return Val;
417 
418   if (PartEVT.isVector()) {
419     // If the element type of the source/dest vectors are the same, but the
420     // parts vector has more elements than the value vector, then we have a
421     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
422     // elements we want.
423     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
424       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
425              "Cannot narrow, it would be a lossy transformation");
426       return DAG.getNode(
427           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
428           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
429     }
430 
431     // Vector/Vector bitcast.
432     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
433       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434 
435     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
436       "Cannot handle this kind of promotion");
437     // Promoted vector extract
438     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
439 
440   }
441 
442   // Trivial bitcast if the types are the same size and the destination
443   // vector type is legal.
444   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
445       TLI.isTypeLegal(ValueVT))
446     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
447 
448   if (ValueVT.getVectorNumElements() != 1) {
449      // Certain ABIs require that vectors are passed as integers. For vectors
450      // are the same size, this is an obvious bitcast.
451      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
452        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
453      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
454        // Bitcast Val back the original type and extract the corresponding
455        // vector we want.
456        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
457        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
458                                            ValueVT.getVectorElementType(), Elts);
459        Val = DAG.getBitcast(WiderVecType, Val);
460        return DAG.getNode(
461            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
462            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
463      }
464 
465      diagnosePossiblyInvalidConstraint(
466          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
467      return DAG.getUNDEF(ValueVT);
468   }
469 
470   // Handle cases such as i8 -> <1 x i1>
471   EVT ValueSVT = ValueVT.getVectorElementType();
472   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
473     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
474                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  Optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
488                            SDValue *Parts, unsigned NumParts, MVT PartVT,
489                            const Value *V,
490                            Optional<CallingConv::ID> CallConv = None,
491                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned PartBits = PartVT.getSizeInBits();
500   unsigned OrigNumParts = NumParts;
501   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
502          "Copying to an illegal type!");
503 
504   if (NumParts == 0)
505     return;
506 
507   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
508   EVT PartEVT = PartVT;
509   if (PartEVT == ValueVT) {
510     assert(NumParts == 1 && "No-op copy with multiple parts!");
511     Parts[0] = Val;
512     return;
513   }
514 
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = 1 << Log2_32(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575                                  DAG.getIntPtrConstant(RoundBits, DL));
576     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
577                    CallConv);
578 
579     if (DAG.getDataLayout().isBigEndian())
580       // The odd parts were reversed by getCopyToParts - unreverse them.
581       std::reverse(Parts + RoundParts, Parts + NumParts);
582 
583     NumParts = RoundParts;
584     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
585     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
586   }
587 
588   // The number of parts is a power of 2.  Repeatedly bisect the value using
589   // EXTRACT_ELEMENT.
590   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
591                          EVT::getIntegerVT(*DAG.getContext(),
592                                            ValueVT.getSizeInBits()),
593                          Val);
594 
595   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
596     for (unsigned i = 0; i < NumParts; i += StepSize) {
597       unsigned ThisBits = StepSize * PartBits / 2;
598       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
599       SDValue &Part0 = Parts[i];
600       SDValue &Part1 = Parts[i+StepSize/2];
601 
602       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
603                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
604       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 
607       if (ThisBits == PartBits && ThisVT != PartVT) {
608         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
609         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
610       }
611     }
612   }
613 
614   if (DAG.getDataLayout().isBigEndian())
615     std::reverse(Parts, Parts + OrigNumParts);
616 }
617 
618 static SDValue widenVectorToPartType(SelectionDAG &DAG,
619                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
620   if (!PartVT.isVector())
621     return SDValue();
622 
623   EVT ValueVT = Val.getValueType();
624   unsigned PartNumElts = PartVT.getVectorNumElements();
625   unsigned ValueNumElts = ValueVT.getVectorNumElements();
626   if (PartNumElts > ValueNumElts &&
627       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
628     EVT ElementVT = PartVT.getVectorElementType();
629     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
630     // undef elements.
631     SmallVector<SDValue, 16> Ops;
632     DAG.ExtractVectorElements(Val, Ops);
633     SDValue EltUndef = DAG.getUNDEF(ElementVT);
634     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
635       Ops.push_back(EltUndef);
636 
637     // FIXME: Use CONCAT for 2x -> 4x.
638     return DAG.getBuildVector(PartVT, DL, Ops);
639   }
640 
641   return SDValue();
642 }
643 
644 /// getCopyToPartsVector - Create a series of nodes that contain the specified
645 /// value split into legal parts.
646 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
647                                  SDValue Val, SDValue *Parts, unsigned NumParts,
648                                  MVT PartVT, const Value *V,
649                                  Optional<CallingConv::ID> CallConv) {
650   EVT ValueVT = Val.getValueType();
651   assert(ValueVT.isVector() && "Not a vector");
652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
653   const bool IsABIRegCopy = CallConv.hasValue();
654 
655   if (NumParts == 1) {
656     EVT PartEVT = PartVT;
657     if (PartEVT == ValueVT) {
658       // Nothing to do.
659     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
660       // Bitconvert vector->vector case.
661       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
662     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
663       Val = Widened;
664     } else if (PartVT.isVector() &&
665                PartEVT.getVectorElementType().bitsGE(
666                  ValueVT.getVectorElementType()) &&
667                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
668 
669       // Promoted vector extract
670       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
671     } else {
672       if (ValueVT.getVectorNumElements() == 1) {
673         Val = DAG.getNode(
674             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
675             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
676       } else {
677         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
678                "lossy conversion of vector to scalar type");
679         EVT IntermediateType =
680             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
681         Val = DAG.getBitcast(IntermediateType, Val);
682         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683       }
684     }
685 
686     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
687     Parts[0] = Val;
688     return;
689   }
690 
691   // Handle a multi-element vector.
692   EVT IntermediateVT;
693   MVT RegisterVT;
694   unsigned NumIntermediates;
695   unsigned NumRegs;
696   if (IsABIRegCopy) {
697     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
698         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
699         NumIntermediates, RegisterVT);
700   } else {
701     NumRegs =
702         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
703                                    NumIntermediates, RegisterVT);
704   }
705 
706   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
707   NumParts = NumRegs; // Silence a compiler warning.
708   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
709 
710   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
711     IntermediateVT.getVectorNumElements() : 1;
712 
713   // Convert the vector to the appropiate type if necessary.
714   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
715 
716   EVT BuiltVectorTy = EVT::getVectorVT(
717       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
718   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
719   if (ValueVT != BuiltVectorTy) {
720     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
721       Val = Widened;
722 
723     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
724   }
725 
726   // Split the vector into intermediate operands.
727   SmallVector<SDValue, 8> Ops(NumIntermediates);
728   for (unsigned i = 0; i != NumIntermediates; ++i) {
729     if (IntermediateVT.isVector()) {
730       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
731                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
732     } else {
733       Ops[i] = DAG.getNode(
734           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
735           DAG.getConstant(i, DL, IdxVT));
736     }
737   }
738 
739   // Split the intermediate operands into legal parts.
740   if (NumParts == NumIntermediates) {
741     // If the register was not expanded, promote or copy the value,
742     // as appropriate.
743     for (unsigned i = 0; i != NumParts; ++i)
744       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
745   } else if (NumParts > 0) {
746     // If the intermediate type was expanded, split each the value into
747     // legal parts.
748     assert(NumIntermediates != 0 && "division by zero");
749     assert(NumParts % NumIntermediates == 0 &&
750            "Must expand into a divisible number of parts!");
751     unsigned Factor = NumParts / NumIntermediates;
752     for (unsigned i = 0; i != NumIntermediates; ++i)
753       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
754                      CallConv);
755   }
756 }
757 
758 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
759                            EVT valuevt, Optional<CallingConv::ID> CC)
760     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
761       RegCount(1, regs.size()), CallConv(CC) {}
762 
763 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
764                            const DataLayout &DL, unsigned Reg, Type *Ty,
765                            Optional<CallingConv::ID> CC) {
766   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
767 
768   CallConv = CC;
769 
770   for (EVT ValueVT : ValueVTs) {
771     unsigned NumRegs =
772         isABIMangled()
773             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
774             : TLI.getNumRegisters(Context, ValueVT);
775     MVT RegisterVT =
776         isABIMangled()
777             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
778             : TLI.getRegisterType(Context, ValueVT);
779     for (unsigned i = 0; i != NumRegs; ++i)
780       Regs.push_back(Reg + i);
781     RegVTs.push_back(RegisterVT);
782     RegCount.push_back(NumRegs);
783     Reg += NumRegs;
784   }
785 }
786 
787 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
788                                       FunctionLoweringInfo &FuncInfo,
789                                       const SDLoc &dl, SDValue &Chain,
790                                       SDValue *Flag, const Value *V) const {
791   // A Value with type {} or [0 x %t] needs no registers.
792   if (ValueVTs.empty())
793     return SDValue();
794 
795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
796 
797   // Assemble the legal parts into the final values.
798   SmallVector<SDValue, 4> Values(ValueVTs.size());
799   SmallVector<SDValue, 8> Parts;
800   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
801     // Copy the legal parts from the registers.
802     EVT ValueVT = ValueVTs[Value];
803     unsigned NumRegs = RegCount[Value];
804     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
805                                           *DAG.getContext(),
806                                           CallConv.getValue(), RegVTs[Value])
807                                     : RegVTs[Value];
808 
809     Parts.resize(NumRegs);
810     for (unsigned i = 0; i != NumRegs; ++i) {
811       SDValue P;
812       if (!Flag) {
813         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
814       } else {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
816         *Flag = P.getValue(2);
817       }
818 
819       Chain = P.getValue(1);
820       Parts[i] = P;
821 
822       // If the source register was virtual and if we know something about it,
823       // add an assert node.
824       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
825           !RegisterVT.isInteger())
826         continue;
827 
828       const FunctionLoweringInfo::LiveOutInfo *LOI =
829         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
830       if (!LOI)
831         continue;
832 
833       unsigned RegSize = RegisterVT.getScalarSizeInBits();
834       unsigned NumSignBits = LOI->NumSignBits;
835       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
836 
837       if (NumZeroBits == RegSize) {
838         // The current value is a zero.
839         // Explicitly express that as it would be easier for
840         // optimizations to kick in.
841         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
842         continue;
843       }
844 
845       // FIXME: We capture more information than the dag can represent.  For
846       // now, just use the tightest assertzext/assertsext possible.
847       bool isSExt;
848       EVT FromVT(MVT::Other);
849       if (NumZeroBits) {
850         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
851         isSExt = false;
852       } else if (NumSignBits > 1) {
853         FromVT =
854             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
855         isSExt = true;
856       } else {
857         continue;
858       }
859       // Add an assertion node.
860       assert(FromVT != MVT::Other);
861       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
862                              RegisterVT, P, DAG.getValueType(FromVT));
863     }
864 
865     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
866                                      RegisterVT, ValueVT, V, CallConv);
867     Part += NumRegs;
868     Parts.clear();
869   }
870 
871   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
872 }
873 
874 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
875                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
876                                  const Value *V,
877                                  ISD::NodeType PreferredExtendType) const {
878   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
879   ISD::NodeType ExtendKind = PreferredExtendType;
880 
881   // Get the list of the values's legal parts.
882   unsigned NumRegs = Regs.size();
883   SmallVector<SDValue, 8> Parts(NumRegs);
884   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
885     unsigned NumParts = RegCount[Value];
886 
887     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
888                                           *DAG.getContext(),
889                                           CallConv.getValue(), RegVTs[Value])
890                                     : RegVTs[Value];
891 
892     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
893       ExtendKind = ISD::ZERO_EXTEND;
894 
895     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
896                    NumParts, RegisterVT, V, CallConv, ExtendKind);
897     Part += NumParts;
898   }
899 
900   // Copy the parts into the registers.
901   SmallVector<SDValue, 8> Chains(NumRegs);
902   for (unsigned i = 0; i != NumRegs; ++i) {
903     SDValue Part;
904     if (!Flag) {
905       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
906     } else {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
908       *Flag = Part.getValue(1);
909     }
910 
911     Chains[i] = Part.getValue(0);
912   }
913 
914   if (NumRegs == 1 || Flag)
915     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
916     // flagged to it. That is the CopyToReg nodes and the user are considered
917     // a single scheduling unit. If we create a TokenFactor and return it as
918     // chain, then the TokenFactor is both a predecessor (operand) of the
919     // user as well as a successor (the TF operands are flagged to the user).
920     // c1, f1 = CopyToReg
921     // c2, f2 = CopyToReg
922     // c3     = TokenFactor c1, c2
923     // ...
924     //        = op c3, ..., f2
925     Chain = Chains[NumRegs-1];
926   else
927     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
928 }
929 
930 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
931                                         unsigned MatchingIdx, const SDLoc &dl,
932                                         SelectionDAG &DAG,
933                                         std::vector<SDValue> &Ops) const {
934   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
935 
936   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
937   if (HasMatching)
938     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
939   else if (!Regs.empty() &&
940            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
941     // Put the register class of the virtual registers in the flag word.  That
942     // way, later passes can recompute register class constraints for inline
943     // assembly as well as normal instructions.
944     // Don't do this for tied operands that can use the regclass information
945     // from the def.
946     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
949   }
950 
951   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952   Ops.push_back(Res);
953 
954   if (Code == InlineAsm::Kind_Clobber) {
955     // Clobbers should always have a 1:1 mapping with registers, and may
956     // reference registers that have illegal (e.g. vector) types. Hence, we
957     // shouldn't try to apply any sort of splitting logic to them.
958     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959            "No 1:1 mapping from clobbers to regs?");
960     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
961     (void)SP;
962     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964       assert(
965           (Regs[I] != SP ||
966            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967           "If we clobbered the stack pointer, MFI should know about it.");
968     }
969     return;
970   }
971 
972   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974     MVT RegisterVT = RegVTs[Value];
975     for (unsigned i = 0; i != NumRegs; ++i) {
976       assert(Reg < Regs.size() && "Mismatch in # registers expected");
977       unsigned TheReg = Regs[Reg++];
978       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
979     }
980   }
981 }
982 
983 SmallVector<std::pair<unsigned, unsigned>, 4>
984 RegsForValue::getRegsAndSizes() const {
985   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
986   unsigned I = 0;
987   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988     unsigned RegCount = std::get<0>(CountAndVT);
989     MVT RegisterVT = std::get<1>(CountAndVT);
990     unsigned RegisterSize = RegisterVT.getSizeInBits();
991     for (unsigned E = I + RegCount; I != E; ++I)
992       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993   }
994   return OutVec;
995 }
996 
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998                                const TargetLibraryInfo *li) {
999   AA = aa;
1000   GFI = gfi;
1001   LibInfo = li;
1002   DL = &DAG.getDataLayout();
1003   Context = DAG.getContext();
1004   LPadToCallSiteMap.clear();
1005 }
1006 
1007 void SelectionDAGBuilder::clear() {
1008   NodeMap.clear();
1009   UnusedArgNodeMap.clear();
1010   PendingLoads.clear();
1011   PendingExports.clear();
1012   CurInst = nullptr;
1013   HasTailCall = false;
1014   SDNodeOrder = LowestSDNodeOrder;
1015   StatepointLowering.clear();
1016 }
1017 
1018 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1019   DanglingDebugInfoMap.clear();
1020 }
1021 
1022 SDValue SelectionDAGBuilder::getRoot() {
1023   if (PendingLoads.empty())
1024     return DAG.getRoot();
1025 
1026   if (PendingLoads.size() == 1) {
1027     SDValue Root = PendingLoads[0];
1028     DAG.setRoot(Root);
1029     PendingLoads.clear();
1030     return Root;
1031   }
1032 
1033   // Otherwise, we have to make a token factor node.
1034   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1035   PendingLoads.clear();
1036   DAG.setRoot(Root);
1037   return Root;
1038 }
1039 
1040 SDValue SelectionDAGBuilder::getControlRoot() {
1041   SDValue Root = DAG.getRoot();
1042 
1043   if (PendingExports.empty())
1044     return Root;
1045 
1046   // Turn all of the CopyToReg chains into one factored node.
1047   if (Root.getOpcode() != ISD::EntryToken) {
1048     unsigned i = 0, e = PendingExports.size();
1049     for (; i != e; ++i) {
1050       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1051       if (PendingExports[i].getNode()->getOperand(0) == Root)
1052         break;  // Don't add the root if we already indirectly depend on it.
1053     }
1054 
1055     if (i == e)
1056       PendingExports.push_back(Root);
1057   }
1058 
1059   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1060                      PendingExports);
1061   PendingExports.clear();
1062   DAG.setRoot(Root);
1063   return Root;
1064 }
1065 
1066 void SelectionDAGBuilder::visit(const Instruction &I) {
1067   // Set up outgoing PHI node register values before emitting the terminator.
1068   if (I.isTerminator()) {
1069     HandlePHINodesInSuccessorBlocks(I.getParent());
1070   }
1071 
1072   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1073   if (!isa<DbgInfoIntrinsic>(I))
1074     ++SDNodeOrder;
1075 
1076   CurInst = &I;
1077 
1078   visit(I.getOpcode(), I);
1079 
1080   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1081     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1082     // maps to this instruction.
1083     // TODO: We could handle all flags (nsw, etc) here.
1084     // TODO: If an IR instruction maps to >1 node, only the final node will have
1085     //       flags set.
1086     if (SDNode *Node = getNodeForIRValue(&I)) {
1087       SDNodeFlags IncomingFlags;
1088       IncomingFlags.copyFMF(*FPMO);
1089       if (!Node->getFlags().isDefined())
1090         Node->setFlags(IncomingFlags);
1091       else
1092         Node->intersectFlagsWith(IncomingFlags);
1093     }
1094   }
1095 
1096   if (!I.isTerminator() && !HasTailCall &&
1097       !isStatepoint(&I)) // statepoints handle their exports internally
1098     CopyToExportRegsIfNeeded(&I);
1099 
1100   CurInst = nullptr;
1101 }
1102 
1103 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1104   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1105 }
1106 
1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1108   // Note: this doesn't use InstVisitor, because it has to work with
1109   // ConstantExpr's in addition to instructions.
1110   switch (Opcode) {
1111   default: llvm_unreachable("Unknown instruction type encountered!");
1112     // Build the switch statement using the Instruction.def file.
1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1114     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1115 #include "llvm/IR/Instruction.def"
1116   }
1117 }
1118 
1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1120                                                 const DIExpression *Expr) {
1121   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1122     const DbgValueInst *DI = DDI.getDI();
1123     DIVariable *DanglingVariable = DI->getVariable();
1124     DIExpression *DanglingExpr = DI->getExpression();
1125     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1126       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1127       return true;
1128     }
1129     return false;
1130   };
1131 
1132   for (auto &DDIMI : DanglingDebugInfoMap) {
1133     DanglingDebugInfoVector &DDIV = DDIMI.second;
1134     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1135   }
1136 }
1137 
1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1139 // generate the debug data structures now that we've seen its definition.
1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1141                                                    SDValue Val) {
1142   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1143   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1144     return;
1145 
1146   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1147   for (auto &DDI : DDIV) {
1148     const DbgValueInst *DI = DDI.getDI();
1149     assert(DI && "Ill-formed DanglingDebugInfo");
1150     DebugLoc dl = DDI.getdl();
1151     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1152     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1153     DILocalVariable *Variable = DI->getVariable();
1154     DIExpression *Expr = DI->getExpression();
1155     assert(Variable->isValidLocationForIntrinsic(dl) &&
1156            "Expected inlined-at fields to agree");
1157     SDDbgValue *SDV;
1158     if (Val.getNode()) {
1159       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1160         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1161                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1162         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1163         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1164         // inserted after the definition of Val when emitting the instructions
1165         // after ISel. An alternative could be to teach
1166         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1167         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1168                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1169                    << ValSDNodeOrder << "\n");
1170         SDV = getDbgValue(Val, Variable, Expr, dl,
1171                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1172         DAG.AddDbgValue(SDV, Val.getNode(), false);
1173       } else
1174         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1175                           << "in EmitFuncArgumentDbgValue\n");
1176     } else
1177       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1178   }
1179   DDIV.clear();
1180 }
1181 
1182 /// getCopyFromRegs - If there was virtual register allocated for the value V
1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1185   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1186   SDValue Result;
1187 
1188   if (It != FuncInfo.ValueMap.end()) {
1189     unsigned InReg = It->second;
1190 
1191     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1192                      DAG.getDataLayout(), InReg, Ty,
1193                      None); // This is not an ABI copy.
1194     SDValue Chain = DAG.getEntryNode();
1195     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1196                                  V);
1197     resolveDanglingDebugInfo(V, Result);
1198   }
1199 
1200   return Result;
1201 }
1202 
1203 /// getValue - Return an SDValue for the given Value.
1204 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1205   // If we already have an SDValue for this value, use it. It's important
1206   // to do this first, so that we don't create a CopyFromReg if we already
1207   // have a regular SDValue.
1208   SDValue &N = NodeMap[V];
1209   if (N.getNode()) return N;
1210 
1211   // If there's a virtual register allocated and initialized for this
1212   // value, use it.
1213   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1214     return copyFromReg;
1215 
1216   // Otherwise create a new SDValue and remember it.
1217   SDValue Val = getValueImpl(V);
1218   NodeMap[V] = Val;
1219   resolveDanglingDebugInfo(V, Val);
1220   return Val;
1221 }
1222 
1223 // Return true if SDValue exists for the given Value
1224 bool SelectionDAGBuilder::findValue(const Value *V) const {
1225   return (NodeMap.find(V) != NodeMap.end()) ||
1226     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1227 }
1228 
1229 /// getNonRegisterValue - Return an SDValue for the given Value, but
1230 /// don't look in FuncInfo.ValueMap for a virtual register.
1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1232   // If we already have an SDValue for this value, use it.
1233   SDValue &N = NodeMap[V];
1234   if (N.getNode()) {
1235     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1236       // Remove the debug location from the node as the node is about to be used
1237       // in a location which may differ from the original debug location.  This
1238       // is relevant to Constant and ConstantFP nodes because they can appear
1239       // as constant expressions inside PHI nodes.
1240       N->setDebugLoc(DebugLoc());
1241     }
1242     return N;
1243   }
1244 
1245   // Otherwise create a new SDValue and remember it.
1246   SDValue Val = getValueImpl(V);
1247   NodeMap[V] = Val;
1248   resolveDanglingDebugInfo(V, Val);
1249   return Val;
1250 }
1251 
1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1253 /// Create an SDValue for the given value.
1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1256 
1257   if (const Constant *C = dyn_cast<Constant>(V)) {
1258     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1259 
1260     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1261       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1262 
1263     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1264       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1265 
1266     if (isa<ConstantPointerNull>(C)) {
1267       unsigned AS = V->getType()->getPointerAddressSpace();
1268       return DAG.getConstant(0, getCurSDLoc(),
1269                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1270     }
1271 
1272     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1273       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1274 
1275     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1276       return DAG.getUNDEF(VT);
1277 
1278     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1279       visit(CE->getOpcode(), *CE);
1280       SDValue N1 = NodeMap[V];
1281       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1282       return N1;
1283     }
1284 
1285     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1286       SmallVector<SDValue, 4> Constants;
1287       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1288            OI != OE; ++OI) {
1289         SDNode *Val = getValue(*OI).getNode();
1290         // If the operand is an empty aggregate, there are no values.
1291         if (!Val) continue;
1292         // Add each leaf value from the operand to the Constants list
1293         // to form a flattened list of all the values.
1294         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295           Constants.push_back(SDValue(Val, i));
1296       }
1297 
1298       return DAG.getMergeValues(Constants, getCurSDLoc());
1299     }
1300 
1301     if (const ConstantDataSequential *CDS =
1302           dyn_cast<ConstantDataSequential>(C)) {
1303       SmallVector<SDValue, 4> Ops;
1304       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1305         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1306         // Add each leaf value from the operand to the Constants list
1307         // to form a flattened list of all the values.
1308         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1309           Ops.push_back(SDValue(Val, i));
1310       }
1311 
1312       if (isa<ArrayType>(CDS->getType()))
1313         return DAG.getMergeValues(Ops, getCurSDLoc());
1314       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1315     }
1316 
1317     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1318       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1319              "Unknown struct or array constant!");
1320 
1321       SmallVector<EVT, 4> ValueVTs;
1322       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1323       unsigned NumElts = ValueVTs.size();
1324       if (NumElts == 0)
1325         return SDValue(); // empty struct
1326       SmallVector<SDValue, 4> Constants(NumElts);
1327       for (unsigned i = 0; i != NumElts; ++i) {
1328         EVT EltVT = ValueVTs[i];
1329         if (isa<UndefValue>(C))
1330           Constants[i] = DAG.getUNDEF(EltVT);
1331         else if (EltVT.isFloatingPoint())
1332           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1333         else
1334           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1335       }
1336 
1337       return DAG.getMergeValues(Constants, getCurSDLoc());
1338     }
1339 
1340     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1341       return DAG.getBlockAddress(BA, VT);
1342 
1343     VectorType *VecTy = cast<VectorType>(V->getType());
1344     unsigned NumElements = VecTy->getNumElements();
1345 
1346     // Now that we know the number and type of the elements, get that number of
1347     // elements into the Ops array based on what kind of constant it is.
1348     SmallVector<SDValue, 16> Ops;
1349     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1350       for (unsigned i = 0; i != NumElements; ++i)
1351         Ops.push_back(getValue(CV->getOperand(i)));
1352     } else {
1353       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1354       EVT EltVT =
1355           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1356 
1357       SDValue Op;
1358       if (EltVT.isFloatingPoint())
1359         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1360       else
1361         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1362       Ops.assign(NumElements, Op);
1363     }
1364 
1365     // Create a BUILD_VECTOR node.
1366     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1367   }
1368 
1369   // If this is a static alloca, generate it as the frameindex instead of
1370   // computation.
1371   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1372     DenseMap<const AllocaInst*, int>::iterator SI =
1373       FuncInfo.StaticAllocaMap.find(AI);
1374     if (SI != FuncInfo.StaticAllocaMap.end())
1375       return DAG.getFrameIndex(SI->second,
1376                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1377   }
1378 
1379   // If this is an instruction which fast-isel has deferred, select it now.
1380   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1381     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1382 
1383     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1384                      Inst->getType(), getABIRegCopyCC(V));
1385     SDValue Chain = DAG.getEntryNode();
1386     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1387   }
1388 
1389   llvm_unreachable("Can't get register for value!");
1390 }
1391 
1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1393   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1394   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1395   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1396   bool IsSEH = isAsynchronousEHPersonality(Pers);
1397   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1398   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1399   if (!IsSEH)
1400     CatchPadMBB->setIsEHScopeEntry();
1401   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1402   if (IsMSVCCXX || IsCoreCLR)
1403     CatchPadMBB->setIsEHFuncletEntry();
1404   // Wasm does not need catchpads anymore
1405   if (!IsWasmCXX)
1406     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1407                             getControlRoot()));
1408 }
1409 
1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1411   // Update machine-CFG edge.
1412   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1413   FuncInfo.MBB->addSuccessor(TargetMBB);
1414 
1415   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1416   bool IsSEH = isAsynchronousEHPersonality(Pers);
1417   if (IsSEH) {
1418     // If this is not a fall-through branch or optimizations are switched off,
1419     // emit the branch.
1420     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1421         TM.getOptLevel() == CodeGenOpt::None)
1422       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1423                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1424     return;
1425   }
1426 
1427   // Figure out the funclet membership for the catchret's successor.
1428   // This will be used by the FuncletLayout pass to determine how to order the
1429   // BB's.
1430   // A 'catchret' returns to the outer scope's color.
1431   Value *ParentPad = I.getCatchSwitchParentPad();
1432   const BasicBlock *SuccessorColor;
1433   if (isa<ConstantTokenNone>(ParentPad))
1434     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1435   else
1436     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1437   assert(SuccessorColor && "No parent funclet for catchret!");
1438   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1439   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1440 
1441   // Create the terminator node.
1442   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1443                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1444                             DAG.getBasicBlock(SuccessorColorMBB));
1445   DAG.setRoot(Ret);
1446 }
1447 
1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1449   // Don't emit any special code for the cleanuppad instruction. It just marks
1450   // the start of an EH scope/funclet.
1451   FuncInfo.MBB->setIsEHScopeEntry();
1452   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1453   if (Pers != EHPersonality::Wasm_CXX) {
1454     FuncInfo.MBB->setIsEHFuncletEntry();
1455     FuncInfo.MBB->setIsCleanupFuncletEntry();
1456   }
1457 }
1458 
1459 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1460 // the control flow always stops at the single catch pad, as it does for a
1461 // cleanup pad. In case the exception caught is not of the types the catch pad
1462 // catches, it will be rethrown by a rethrow.
1463 static void findWasmUnwindDestinations(
1464     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1465     BranchProbability Prob,
1466     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1467         &UnwindDests) {
1468   while (EHPadBB) {
1469     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1470     if (isa<CleanupPadInst>(Pad)) {
1471       // Stop on cleanup pads.
1472       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1473       UnwindDests.back().first->setIsEHScopeEntry();
1474       break;
1475     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1476       // Add the catchpad handlers to the possible destinations. We don't
1477       // continue to the unwind destination of the catchswitch for wasm.
1478       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1479         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1480         UnwindDests.back().first->setIsEHScopeEntry();
1481       }
1482       break;
1483     } else {
1484       continue;
1485     }
1486   }
1487 }
1488 
1489 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1490 /// many places it could ultimately go. In the IR, we have a single unwind
1491 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1492 /// This function skips over imaginary basic blocks that hold catchswitch
1493 /// instructions, and finds all the "real" machine
1494 /// basic block destinations. As those destinations may not be successors of
1495 /// EHPadBB, here we also calculate the edge probability to those destinations.
1496 /// The passed-in Prob is the edge probability to EHPadBB.
1497 static void findUnwindDestinations(
1498     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1499     BranchProbability Prob,
1500     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1501         &UnwindDests) {
1502   EHPersonality Personality =
1503     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1504   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1505   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1506   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1507   bool IsSEH = isAsynchronousEHPersonality(Personality);
1508 
1509   if (IsWasmCXX) {
1510     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1511     return;
1512   }
1513 
1514   while (EHPadBB) {
1515     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1516     BasicBlock *NewEHPadBB = nullptr;
1517     if (isa<LandingPadInst>(Pad)) {
1518       // Stop on landingpads. They are not funclets.
1519       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1520       break;
1521     } else if (isa<CleanupPadInst>(Pad)) {
1522       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1523       // personalities.
1524       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1525       UnwindDests.back().first->setIsEHScopeEntry();
1526       UnwindDests.back().first->setIsEHFuncletEntry();
1527       break;
1528     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1529       // Add the catchpad handlers to the possible destinations.
1530       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1531         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1532         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1533         if (IsMSVCCXX || IsCoreCLR)
1534           UnwindDests.back().first->setIsEHFuncletEntry();
1535         if (!IsSEH)
1536           UnwindDests.back().first->setIsEHScopeEntry();
1537       }
1538       NewEHPadBB = CatchSwitch->getUnwindDest();
1539     } else {
1540       continue;
1541     }
1542 
1543     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1544     if (BPI && NewEHPadBB)
1545       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1546     EHPadBB = NewEHPadBB;
1547   }
1548 }
1549 
1550 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1551   // Update successor info.
1552   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1553   auto UnwindDest = I.getUnwindDest();
1554   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1555   BranchProbability UnwindDestProb =
1556       (BPI && UnwindDest)
1557           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1558           : BranchProbability::getZero();
1559   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1560   for (auto &UnwindDest : UnwindDests) {
1561     UnwindDest.first->setIsEHPad();
1562     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1563   }
1564   FuncInfo.MBB->normalizeSuccProbs();
1565 
1566   // Create the terminator node.
1567   SDValue Ret =
1568       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1569   DAG.setRoot(Ret);
1570 }
1571 
1572 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1573   report_fatal_error("visitCatchSwitch not yet implemented!");
1574 }
1575 
1576 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1578   auto &DL = DAG.getDataLayout();
1579   SDValue Chain = getControlRoot();
1580   SmallVector<ISD::OutputArg, 8> Outs;
1581   SmallVector<SDValue, 8> OutVals;
1582 
1583   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1584   // lower
1585   //
1586   //   %val = call <ty> @llvm.experimental.deoptimize()
1587   //   ret <ty> %val
1588   //
1589   // differently.
1590   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1591     LowerDeoptimizingReturn();
1592     return;
1593   }
1594 
1595   if (!FuncInfo.CanLowerReturn) {
1596     unsigned DemoteReg = FuncInfo.DemoteRegister;
1597     const Function *F = I.getParent()->getParent();
1598 
1599     // Emit a store of the return value through the virtual register.
1600     // Leave Outs empty so that LowerReturn won't try to load return
1601     // registers the usual way.
1602     SmallVector<EVT, 1> PtrValueVTs;
1603     ComputeValueVTs(TLI, DL,
1604                     F->getReturnType()->getPointerTo(
1605                         DAG.getDataLayout().getAllocaAddrSpace()),
1606                     PtrValueVTs);
1607 
1608     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1609                                         DemoteReg, PtrValueVTs[0]);
1610     SDValue RetOp = getValue(I.getOperand(0));
1611 
1612     SmallVector<EVT, 4> ValueVTs;
1613     SmallVector<uint64_t, 4> Offsets;
1614     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1615     unsigned NumValues = ValueVTs.size();
1616 
1617     SmallVector<SDValue, 4> Chains(NumValues);
1618     for (unsigned i = 0; i != NumValues; ++i) {
1619       // An aggregate return value cannot wrap around the address space, so
1620       // offsets to its parts don't wrap either.
1621       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1622       Chains[i] = DAG.getStore(
1623           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1624           // FIXME: better loc info would be nice.
1625           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1626     }
1627 
1628     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1629                         MVT::Other, Chains);
1630   } else if (I.getNumOperands() != 0) {
1631     SmallVector<EVT, 4> ValueVTs;
1632     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1633     unsigned NumValues = ValueVTs.size();
1634     if (NumValues) {
1635       SDValue RetOp = getValue(I.getOperand(0));
1636 
1637       const Function *F = I.getParent()->getParent();
1638 
1639       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1640       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1641                                           Attribute::SExt))
1642         ExtendKind = ISD::SIGN_EXTEND;
1643       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1644                                                Attribute::ZExt))
1645         ExtendKind = ISD::ZERO_EXTEND;
1646 
1647       LLVMContext &Context = F->getContext();
1648       bool RetInReg = F->getAttributes().hasAttribute(
1649           AttributeList::ReturnIndex, Attribute::InReg);
1650 
1651       for (unsigned j = 0; j != NumValues; ++j) {
1652         EVT VT = ValueVTs[j];
1653 
1654         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1655           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1656 
1657         CallingConv::ID CC = F->getCallingConv();
1658 
1659         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1660         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1661         SmallVector<SDValue, 4> Parts(NumParts);
1662         getCopyToParts(DAG, getCurSDLoc(),
1663                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1664                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1665 
1666         // 'inreg' on function refers to return value
1667         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1668         if (RetInReg)
1669           Flags.setInReg();
1670 
1671         // Propagate extension type if any
1672         if (ExtendKind == ISD::SIGN_EXTEND)
1673           Flags.setSExt();
1674         else if (ExtendKind == ISD::ZERO_EXTEND)
1675           Flags.setZExt();
1676 
1677         for (unsigned i = 0; i < NumParts; ++i) {
1678           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1679                                         VT, /*isfixed=*/true, 0, 0));
1680           OutVals.push_back(Parts[i]);
1681         }
1682       }
1683     }
1684   }
1685 
1686   // Push in swifterror virtual register as the last element of Outs. This makes
1687   // sure swifterror virtual register will be returned in the swifterror
1688   // physical register.
1689   const Function *F = I.getParent()->getParent();
1690   if (TLI.supportSwiftError() &&
1691       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1692     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1693     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1694     Flags.setSwiftError();
1695     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1696                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1697                                   true /*isfixed*/, 1 /*origidx*/,
1698                                   0 /*partOffs*/));
1699     // Create SDNode for the swifterror virtual register.
1700     OutVals.push_back(
1701         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1702                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1703                         EVT(TLI.getPointerTy(DL))));
1704   }
1705 
1706   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1707   CallingConv::ID CallConv =
1708     DAG.getMachineFunction().getFunction().getCallingConv();
1709   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1710       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1711 
1712   // Verify that the target's LowerReturn behaved as expected.
1713   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1714          "LowerReturn didn't return a valid chain!");
1715 
1716   // Update the DAG with the new chain value resulting from return lowering.
1717   DAG.setRoot(Chain);
1718 }
1719 
1720 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1721 /// created for it, emit nodes to copy the value into the virtual
1722 /// registers.
1723 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1724   // Skip empty types
1725   if (V->getType()->isEmptyTy())
1726     return;
1727 
1728   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1729   if (VMI != FuncInfo.ValueMap.end()) {
1730     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1731     CopyValueToVirtualRegister(V, VMI->second);
1732   }
1733 }
1734 
1735 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1736 /// the current basic block, add it to ValueMap now so that we'll get a
1737 /// CopyTo/FromReg.
1738 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1739   // No need to export constants.
1740   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1741 
1742   // Already exported?
1743   if (FuncInfo.isExportedInst(V)) return;
1744 
1745   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1746   CopyValueToVirtualRegister(V, Reg);
1747 }
1748 
1749 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1750                                                      const BasicBlock *FromBB) {
1751   // The operands of the setcc have to be in this block.  We don't know
1752   // how to export them from some other block.
1753   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1754     // Can export from current BB.
1755     if (VI->getParent() == FromBB)
1756       return true;
1757 
1758     // Is already exported, noop.
1759     return FuncInfo.isExportedInst(V);
1760   }
1761 
1762   // If this is an argument, we can export it if the BB is the entry block or
1763   // if it is already exported.
1764   if (isa<Argument>(V)) {
1765     if (FromBB == &FromBB->getParent()->getEntryBlock())
1766       return true;
1767 
1768     // Otherwise, can only export this if it is already exported.
1769     return FuncInfo.isExportedInst(V);
1770   }
1771 
1772   // Otherwise, constants can always be exported.
1773   return true;
1774 }
1775 
1776 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1777 BranchProbability
1778 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1779                                         const MachineBasicBlock *Dst) const {
1780   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1781   const BasicBlock *SrcBB = Src->getBasicBlock();
1782   const BasicBlock *DstBB = Dst->getBasicBlock();
1783   if (!BPI) {
1784     // If BPI is not available, set the default probability as 1 / N, where N is
1785     // the number of successors.
1786     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1787     return BranchProbability(1, SuccSize);
1788   }
1789   return BPI->getEdgeProbability(SrcBB, DstBB);
1790 }
1791 
1792 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1793                                                MachineBasicBlock *Dst,
1794                                                BranchProbability Prob) {
1795   if (!FuncInfo.BPI)
1796     Src->addSuccessorWithoutProb(Dst);
1797   else {
1798     if (Prob.isUnknown())
1799       Prob = getEdgeProbability(Src, Dst);
1800     Src->addSuccessor(Dst, Prob);
1801   }
1802 }
1803 
1804 static bool InBlock(const Value *V, const BasicBlock *BB) {
1805   if (const Instruction *I = dyn_cast<Instruction>(V))
1806     return I->getParent() == BB;
1807   return true;
1808 }
1809 
1810 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1811 /// This function emits a branch and is used at the leaves of an OR or an
1812 /// AND operator tree.
1813 void
1814 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1815                                                   MachineBasicBlock *TBB,
1816                                                   MachineBasicBlock *FBB,
1817                                                   MachineBasicBlock *CurBB,
1818                                                   MachineBasicBlock *SwitchBB,
1819                                                   BranchProbability TProb,
1820                                                   BranchProbability FProb,
1821                                                   bool InvertCond) {
1822   const BasicBlock *BB = CurBB->getBasicBlock();
1823 
1824   // If the leaf of the tree is a comparison, merge the condition into
1825   // the caseblock.
1826   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1827     // The operands of the cmp have to be in this block.  We don't know
1828     // how to export them from some other block.  If this is the first block
1829     // of the sequence, no exporting is needed.
1830     if (CurBB == SwitchBB ||
1831         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1832          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1833       ISD::CondCode Condition;
1834       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1835         ICmpInst::Predicate Pred =
1836             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1837         Condition = getICmpCondCode(Pred);
1838       } else {
1839         const FCmpInst *FC = cast<FCmpInst>(Cond);
1840         FCmpInst::Predicate Pred =
1841             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1842         Condition = getFCmpCondCode(Pred);
1843         if (TM.Options.NoNaNsFPMath)
1844           Condition = getFCmpCodeWithoutNaN(Condition);
1845       }
1846 
1847       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1848                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1849       SwitchCases.push_back(CB);
1850       return;
1851     }
1852   }
1853 
1854   // Create a CaseBlock record representing this branch.
1855   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1856   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1857                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1858   SwitchCases.push_back(CB);
1859 }
1860 
1861 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1862                                                MachineBasicBlock *TBB,
1863                                                MachineBasicBlock *FBB,
1864                                                MachineBasicBlock *CurBB,
1865                                                MachineBasicBlock *SwitchBB,
1866                                                Instruction::BinaryOps Opc,
1867                                                BranchProbability TProb,
1868                                                BranchProbability FProb,
1869                                                bool InvertCond) {
1870   // Skip over not part of the tree and remember to invert op and operands at
1871   // next level.
1872   Value *NotCond;
1873   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
1874       InBlock(NotCond, CurBB->getBasicBlock())) {
1875     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1876                          !InvertCond);
1877     return;
1878   }
1879 
1880   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1881   // Compute the effective opcode for Cond, taking into account whether it needs
1882   // to be inverted, e.g.
1883   //   and (not (or A, B)), C
1884   // gets lowered as
1885   //   and (and (not A, not B), C)
1886   unsigned BOpc = 0;
1887   if (BOp) {
1888     BOpc = BOp->getOpcode();
1889     if (InvertCond) {
1890       if (BOpc == Instruction::And)
1891         BOpc = Instruction::Or;
1892       else if (BOpc == Instruction::Or)
1893         BOpc = Instruction::And;
1894     }
1895   }
1896 
1897   // If this node is not part of the or/and tree, emit it as a branch.
1898   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1899       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1900       BOp->getParent() != CurBB->getBasicBlock() ||
1901       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1902       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1903     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1904                                  TProb, FProb, InvertCond);
1905     return;
1906   }
1907 
1908   //  Create TmpBB after CurBB.
1909   MachineFunction::iterator BBI(CurBB);
1910   MachineFunction &MF = DAG.getMachineFunction();
1911   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1912   CurBB->getParent()->insert(++BBI, TmpBB);
1913 
1914   if (Opc == Instruction::Or) {
1915     // Codegen X | Y as:
1916     // BB1:
1917     //   jmp_if_X TBB
1918     //   jmp TmpBB
1919     // TmpBB:
1920     //   jmp_if_Y TBB
1921     //   jmp FBB
1922     //
1923 
1924     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1925     // The requirement is that
1926     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1927     //     = TrueProb for original BB.
1928     // Assuming the original probabilities are A and B, one choice is to set
1929     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1930     // A/(1+B) and 2B/(1+B). This choice assumes that
1931     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1932     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1933     // TmpBB, but the math is more complicated.
1934 
1935     auto NewTrueProb = TProb / 2;
1936     auto NewFalseProb = TProb / 2 + FProb;
1937     // Emit the LHS condition.
1938     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1939                          NewTrueProb, NewFalseProb, InvertCond);
1940 
1941     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1942     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1943     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1944     // Emit the RHS condition into TmpBB.
1945     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1946                          Probs[0], Probs[1], InvertCond);
1947   } else {
1948     assert(Opc == Instruction::And && "Unknown merge op!");
1949     // Codegen X & Y as:
1950     // BB1:
1951     //   jmp_if_X TmpBB
1952     //   jmp FBB
1953     // TmpBB:
1954     //   jmp_if_Y TBB
1955     //   jmp FBB
1956     //
1957     //  This requires creation of TmpBB after CurBB.
1958 
1959     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1960     // The requirement is that
1961     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1962     //     = FalseProb for original BB.
1963     // Assuming the original probabilities are A and B, one choice is to set
1964     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1965     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1966     // TrueProb for BB1 * FalseProb for TmpBB.
1967 
1968     auto NewTrueProb = TProb + FProb / 2;
1969     auto NewFalseProb = FProb / 2;
1970     // Emit the LHS condition.
1971     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1972                          NewTrueProb, NewFalseProb, InvertCond);
1973 
1974     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1975     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1976     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1977     // Emit the RHS condition into TmpBB.
1978     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1979                          Probs[0], Probs[1], InvertCond);
1980   }
1981 }
1982 
1983 /// If the set of cases should be emitted as a series of branches, return true.
1984 /// If we should emit this as a bunch of and/or'd together conditions, return
1985 /// false.
1986 bool
1987 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1988   if (Cases.size() != 2) return true;
1989 
1990   // If this is two comparisons of the same values or'd or and'd together, they
1991   // will get folded into a single comparison, so don't emit two blocks.
1992   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1993        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1994       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1995        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1996     return false;
1997   }
1998 
1999   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2000   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2001   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2002       Cases[0].CC == Cases[1].CC &&
2003       isa<Constant>(Cases[0].CmpRHS) &&
2004       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2005     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2006       return false;
2007     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2008       return false;
2009   }
2010 
2011   return true;
2012 }
2013 
2014 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2015   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2016 
2017   // Update machine-CFG edges.
2018   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2019 
2020   if (I.isUnconditional()) {
2021     // Update machine-CFG edges.
2022     BrMBB->addSuccessor(Succ0MBB);
2023 
2024     // If this is not a fall-through branch or optimizations are switched off,
2025     // emit the branch.
2026     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2027       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2028                               MVT::Other, getControlRoot(),
2029                               DAG.getBasicBlock(Succ0MBB)));
2030 
2031     return;
2032   }
2033 
2034   // If this condition is one of the special cases we handle, do special stuff
2035   // now.
2036   const Value *CondVal = I.getCondition();
2037   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2038 
2039   // If this is a series of conditions that are or'd or and'd together, emit
2040   // this as a sequence of branches instead of setcc's with and/or operations.
2041   // As long as jumps are not expensive, this should improve performance.
2042   // For example, instead of something like:
2043   //     cmp A, B
2044   //     C = seteq
2045   //     cmp D, E
2046   //     F = setle
2047   //     or C, F
2048   //     jnz foo
2049   // Emit:
2050   //     cmp A, B
2051   //     je foo
2052   //     cmp D, E
2053   //     jle foo
2054   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2055     Instruction::BinaryOps Opcode = BOp->getOpcode();
2056     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2057         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2058         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2059       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2060                            Opcode,
2061                            getEdgeProbability(BrMBB, Succ0MBB),
2062                            getEdgeProbability(BrMBB, Succ1MBB),
2063                            /*InvertCond=*/false);
2064       // If the compares in later blocks need to use values not currently
2065       // exported from this block, export them now.  This block should always
2066       // be the first entry.
2067       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2068 
2069       // Allow some cases to be rejected.
2070       if (ShouldEmitAsBranches(SwitchCases)) {
2071         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2072           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2073           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2074         }
2075 
2076         // Emit the branch for this block.
2077         visitSwitchCase(SwitchCases[0], BrMBB);
2078         SwitchCases.erase(SwitchCases.begin());
2079         return;
2080       }
2081 
2082       // Okay, we decided not to do this, remove any inserted MBB's and clear
2083       // SwitchCases.
2084       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2085         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2086 
2087       SwitchCases.clear();
2088     }
2089   }
2090 
2091   // Create a CaseBlock record representing this branch.
2092   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2093                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2094 
2095   // Use visitSwitchCase to actually insert the fast branch sequence for this
2096   // cond branch.
2097   visitSwitchCase(CB, BrMBB);
2098 }
2099 
2100 /// visitSwitchCase - Emits the necessary code to represent a single node in
2101 /// the binary search tree resulting from lowering a switch instruction.
2102 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2103                                           MachineBasicBlock *SwitchBB) {
2104   SDValue Cond;
2105   SDValue CondLHS = getValue(CB.CmpLHS);
2106   SDLoc dl = CB.DL;
2107 
2108   // Build the setcc now.
2109   if (!CB.CmpMHS) {
2110     // Fold "(X == true)" to X and "(X == false)" to !X to
2111     // handle common cases produced by branch lowering.
2112     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2113         CB.CC == ISD::SETEQ)
2114       Cond = CondLHS;
2115     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2116              CB.CC == ISD::SETEQ) {
2117       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2118       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2119     } else
2120       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2121   } else {
2122     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2123 
2124     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2125     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2126 
2127     SDValue CmpOp = getValue(CB.CmpMHS);
2128     EVT VT = CmpOp.getValueType();
2129 
2130     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2131       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2132                           ISD::SETLE);
2133     } else {
2134       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2135                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2136       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2137                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2138     }
2139   }
2140 
2141   // Update successor info
2142   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2143   // TrueBB and FalseBB are always different unless the incoming IR is
2144   // degenerate. This only happens when running llc on weird IR.
2145   if (CB.TrueBB != CB.FalseBB)
2146     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2147   SwitchBB->normalizeSuccProbs();
2148 
2149   // If the lhs block is the next block, invert the condition so that we can
2150   // fall through to the lhs instead of the rhs block.
2151   if (CB.TrueBB == NextBlock(SwitchBB)) {
2152     std::swap(CB.TrueBB, CB.FalseBB);
2153     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2154     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2155   }
2156 
2157   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2158                                MVT::Other, getControlRoot(), Cond,
2159                                DAG.getBasicBlock(CB.TrueBB));
2160 
2161   // Insert the false branch. Do this even if it's a fall through branch,
2162   // this makes it easier to do DAG optimizations which require inverting
2163   // the branch condition.
2164   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2165                        DAG.getBasicBlock(CB.FalseBB));
2166 
2167   DAG.setRoot(BrCond);
2168 }
2169 
2170 /// visitJumpTable - Emit JumpTable node in the current MBB
2171 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2172   // Emit the code for the jump table
2173   assert(JT.Reg != -1U && "Should lower JT Header first!");
2174   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2175   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2176                                      JT.Reg, PTy);
2177   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2178   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2179                                     MVT::Other, Index.getValue(1),
2180                                     Table, Index);
2181   DAG.setRoot(BrJumpTable);
2182 }
2183 
2184 /// visitJumpTableHeader - This function emits necessary code to produce index
2185 /// in the JumpTable from switch case.
2186 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2187                                                JumpTableHeader &JTH,
2188                                                MachineBasicBlock *SwitchBB) {
2189   SDLoc dl = getCurSDLoc();
2190 
2191   // Subtract the lowest switch case value from the value being switched on and
2192   // conditional branch to default mbb if the result is greater than the
2193   // difference between smallest and largest cases.
2194   SDValue SwitchOp = getValue(JTH.SValue);
2195   EVT VT = SwitchOp.getValueType();
2196   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2197                             DAG.getConstant(JTH.First, dl, VT));
2198 
2199   // The SDNode we just created, which holds the value being switched on minus
2200   // the smallest case value, needs to be copied to a virtual register so it
2201   // can be used as an index into the jump table in a subsequent basic block.
2202   // This value may be smaller or larger than the target's pointer type, and
2203   // therefore require extension or truncating.
2204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2205   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2206 
2207   unsigned JumpTableReg =
2208       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2209   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2210                                     JumpTableReg, SwitchOp);
2211   JT.Reg = JumpTableReg;
2212 
2213   // Emit the range check for the jump table, and branch to the default block
2214   // for the switch statement if the value being switched on exceeds the largest
2215   // case in the switch.
2216   SDValue CMP = DAG.getSetCC(
2217       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2218                                  Sub.getValueType()),
2219       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2220 
2221   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2222                                MVT::Other, CopyTo, CMP,
2223                                DAG.getBasicBlock(JT.Default));
2224 
2225   // Avoid emitting unnecessary branches to the next block.
2226   if (JT.MBB != NextBlock(SwitchBB))
2227     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2228                          DAG.getBasicBlock(JT.MBB));
2229 
2230   DAG.setRoot(BrCond);
2231 }
2232 
2233 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2234 /// variable if there exists one.
2235 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2236                                  SDValue &Chain) {
2237   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2238   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2239   MachineFunction &MF = DAG.getMachineFunction();
2240   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2241   MachineSDNode *Node =
2242       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2243   if (Global) {
2244     MachinePointerInfo MPInfo(Global);
2245     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2246                  MachineMemOperand::MODereferenceable;
2247     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2248         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2249     DAG.setNodeMemRefs(Node, {MemRef});
2250   }
2251   return SDValue(Node, 0);
2252 }
2253 
2254 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2255 /// tail spliced into a stack protector check success bb.
2256 ///
2257 /// For a high level explanation of how this fits into the stack protector
2258 /// generation see the comment on the declaration of class
2259 /// StackProtectorDescriptor.
2260 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2261                                                   MachineBasicBlock *ParentBB) {
2262 
2263   // First create the loads to the guard/stack slot for the comparison.
2264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2265   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2266 
2267   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2268   int FI = MFI.getStackProtectorIndex();
2269 
2270   SDValue Guard;
2271   SDLoc dl = getCurSDLoc();
2272   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2273   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2274   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2275 
2276   // Generate code to load the content of the guard slot.
2277   SDValue GuardVal = DAG.getLoad(
2278       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2279       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2280       MachineMemOperand::MOVolatile);
2281 
2282   if (TLI.useStackGuardXorFP())
2283     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2284 
2285   // Retrieve guard check function, nullptr if instrumentation is inlined.
2286   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2287     // The target provides a guard check function to validate the guard value.
2288     // Generate a call to that function with the content of the guard slot as
2289     // argument.
2290     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2291     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2292 
2293     TargetLowering::ArgListTy Args;
2294     TargetLowering::ArgListEntry Entry;
2295     Entry.Node = GuardVal;
2296     Entry.Ty = FnTy->getParamType(0);
2297     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2298       Entry.IsInReg = true;
2299     Args.push_back(Entry);
2300 
2301     TargetLowering::CallLoweringInfo CLI(DAG);
2302     CLI.setDebugLoc(getCurSDLoc())
2303         .setChain(DAG.getEntryNode())
2304         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2305                    getValue(GuardCheckFn), std::move(Args));
2306 
2307     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2308     DAG.setRoot(Result.second);
2309     return;
2310   }
2311 
2312   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2313   // Otherwise, emit a volatile load to retrieve the stack guard value.
2314   SDValue Chain = DAG.getEntryNode();
2315   if (TLI.useLoadStackGuardNode()) {
2316     Guard = getLoadStackGuard(DAG, dl, Chain);
2317   } else {
2318     const Value *IRGuard = TLI.getSDagStackGuard(M);
2319     SDValue GuardPtr = getValue(IRGuard);
2320 
2321     Guard =
2322         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2323                     Align, MachineMemOperand::MOVolatile);
2324   }
2325 
2326   // Perform the comparison via a subtract/getsetcc.
2327   EVT VT = Guard.getValueType();
2328   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2329 
2330   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2331                                                         *DAG.getContext(),
2332                                                         Sub.getValueType()),
2333                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2334 
2335   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2336   // branch to failure MBB.
2337   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2338                                MVT::Other, GuardVal.getOperand(0),
2339                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2340   // Otherwise branch to success MBB.
2341   SDValue Br = DAG.getNode(ISD::BR, dl,
2342                            MVT::Other, BrCond,
2343                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2344 
2345   DAG.setRoot(Br);
2346 }
2347 
2348 /// Codegen the failure basic block for a stack protector check.
2349 ///
2350 /// A failure stack protector machine basic block consists simply of a call to
2351 /// __stack_chk_fail().
2352 ///
2353 /// For a high level explanation of how this fits into the stack protector
2354 /// generation see the comment on the declaration of class
2355 /// StackProtectorDescriptor.
2356 void
2357 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2359   SDValue Chain =
2360       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2361                       None, false, getCurSDLoc(), false, false).second;
2362   DAG.setRoot(Chain);
2363 }
2364 
2365 /// visitBitTestHeader - This function emits necessary code to produce value
2366 /// suitable for "bit tests"
2367 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2368                                              MachineBasicBlock *SwitchBB) {
2369   SDLoc dl = getCurSDLoc();
2370 
2371   // Subtract the minimum value
2372   SDValue SwitchOp = getValue(B.SValue);
2373   EVT VT = SwitchOp.getValueType();
2374   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2375                             DAG.getConstant(B.First, dl, VT));
2376 
2377   // Check range
2378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2379   SDValue RangeCmp = DAG.getSetCC(
2380       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2381                                  Sub.getValueType()),
2382       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2383 
2384   // Determine the type of the test operands.
2385   bool UsePtrType = false;
2386   if (!TLI.isTypeLegal(VT))
2387     UsePtrType = true;
2388   else {
2389     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2390       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2391         // Switch table case range are encoded into series of masks.
2392         // Just use pointer type, it's guaranteed to fit.
2393         UsePtrType = true;
2394         break;
2395       }
2396   }
2397   if (UsePtrType) {
2398     VT = TLI.getPointerTy(DAG.getDataLayout());
2399     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2400   }
2401 
2402   B.RegVT = VT.getSimpleVT();
2403   B.Reg = FuncInfo.CreateReg(B.RegVT);
2404   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2405 
2406   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2407 
2408   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2409   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2410   SwitchBB->normalizeSuccProbs();
2411 
2412   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2413                                 MVT::Other, CopyTo, RangeCmp,
2414                                 DAG.getBasicBlock(B.Default));
2415 
2416   // Avoid emitting unnecessary branches to the next block.
2417   if (MBB != NextBlock(SwitchBB))
2418     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2419                           DAG.getBasicBlock(MBB));
2420 
2421   DAG.setRoot(BrRange);
2422 }
2423 
2424 /// visitBitTestCase - this function produces one "bit test"
2425 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2426                                            MachineBasicBlock* NextMBB,
2427                                            BranchProbability BranchProbToNext,
2428                                            unsigned Reg,
2429                                            BitTestCase &B,
2430                                            MachineBasicBlock *SwitchBB) {
2431   SDLoc dl = getCurSDLoc();
2432   MVT VT = BB.RegVT;
2433   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2434   SDValue Cmp;
2435   unsigned PopCount = countPopulation(B.Mask);
2436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2437   if (PopCount == 1) {
2438     // Testing for a single bit; just compare the shift count with what it
2439     // would need to be to shift a 1 bit in that position.
2440     Cmp = DAG.getSetCC(
2441         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2442         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2443         ISD::SETEQ);
2444   } else if (PopCount == BB.Range) {
2445     // There is only one zero bit in the range, test for it directly.
2446     Cmp = DAG.getSetCC(
2447         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2448         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2449         ISD::SETNE);
2450   } else {
2451     // Make desired shift
2452     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2453                                     DAG.getConstant(1, dl, VT), ShiftOp);
2454 
2455     // Emit bit tests and jumps
2456     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2457                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2458     Cmp = DAG.getSetCC(
2459         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2460         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2461   }
2462 
2463   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2464   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2465   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2466   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2467   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2468   // one as they are relative probabilities (and thus work more like weights),
2469   // and hence we need to normalize them to let the sum of them become one.
2470   SwitchBB->normalizeSuccProbs();
2471 
2472   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2473                               MVT::Other, getControlRoot(),
2474                               Cmp, DAG.getBasicBlock(B.TargetBB));
2475 
2476   // Avoid emitting unnecessary branches to the next block.
2477   if (NextMBB != NextBlock(SwitchBB))
2478     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2479                         DAG.getBasicBlock(NextMBB));
2480 
2481   DAG.setRoot(BrAnd);
2482 }
2483 
2484 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2485   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2486 
2487   // Retrieve successors. Look through artificial IR level blocks like
2488   // catchswitch for successors.
2489   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2490   const BasicBlock *EHPadBB = I.getSuccessor(1);
2491 
2492   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2493   // have to do anything here to lower funclet bundles.
2494   assert(!I.hasOperandBundlesOtherThan(
2495              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2496          "Cannot lower invokes with arbitrary operand bundles yet!");
2497 
2498   const Value *Callee(I.getCalledValue());
2499   const Function *Fn = dyn_cast<Function>(Callee);
2500   if (isa<InlineAsm>(Callee))
2501     visitInlineAsm(&I);
2502   else if (Fn && Fn->isIntrinsic()) {
2503     switch (Fn->getIntrinsicID()) {
2504     default:
2505       llvm_unreachable("Cannot invoke this intrinsic");
2506     case Intrinsic::donothing:
2507       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2508       break;
2509     case Intrinsic::experimental_patchpoint_void:
2510     case Intrinsic::experimental_patchpoint_i64:
2511       visitPatchpoint(&I, EHPadBB);
2512       break;
2513     case Intrinsic::experimental_gc_statepoint:
2514       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2515       break;
2516     }
2517   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2518     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2519     // Eventually we will support lowering the @llvm.experimental.deoptimize
2520     // intrinsic, and right now there are no plans to support other intrinsics
2521     // with deopt state.
2522     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2523   } else {
2524     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2525   }
2526 
2527   // If the value of the invoke is used outside of its defining block, make it
2528   // available as a virtual register.
2529   // We already took care of the exported value for the statepoint instruction
2530   // during call to the LowerStatepoint.
2531   if (!isStatepoint(I)) {
2532     CopyToExportRegsIfNeeded(&I);
2533   }
2534 
2535   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2536   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2537   BranchProbability EHPadBBProb =
2538       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2539           : BranchProbability::getZero();
2540   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2541 
2542   // Update successor info.
2543   addSuccessorWithProb(InvokeMBB, Return);
2544   for (auto &UnwindDest : UnwindDests) {
2545     UnwindDest.first->setIsEHPad();
2546     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2547   }
2548   InvokeMBB->normalizeSuccProbs();
2549 
2550   // Drop into normal successor.
2551   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2552                           DAG.getBasicBlock(Return)));
2553 }
2554 
2555 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2556   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2557 
2558   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2559   // have to do anything here to lower funclet bundles.
2560   assert(!I.hasOperandBundlesOtherThan(
2561              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2562          "Cannot lower callbrs with arbitrary operand bundles yet!");
2563 
2564   assert(isa<InlineAsm>(I.getCalledValue()) &&
2565          "Only know how to handle inlineasm callbr");
2566   visitInlineAsm(&I);
2567 
2568   // Retrieve successors.
2569   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2570 
2571   // Update successor info.
2572   addSuccessorWithProb(CallBrMBB, Return);
2573   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2574     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2575     addSuccessorWithProb(CallBrMBB, Target);
2576   }
2577   CallBrMBB->normalizeSuccProbs();
2578 
2579   // Drop into default successor.
2580   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2581                           MVT::Other, getControlRoot(),
2582                           DAG.getBasicBlock(Return)));
2583 }
2584 
2585 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2586   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2587 }
2588 
2589 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2590   assert(FuncInfo.MBB->isEHPad() &&
2591          "Call to landingpad not in landing pad!");
2592 
2593   // If there aren't registers to copy the values into (e.g., during SjLj
2594   // exceptions), then don't bother to create these DAG nodes.
2595   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2596   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2597   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2598       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2599     return;
2600 
2601   // If landingpad's return type is token type, we don't create DAG nodes
2602   // for its exception pointer and selector value. The extraction of exception
2603   // pointer or selector value from token type landingpads is not currently
2604   // supported.
2605   if (LP.getType()->isTokenTy())
2606     return;
2607 
2608   SmallVector<EVT, 2> ValueVTs;
2609   SDLoc dl = getCurSDLoc();
2610   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2611   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2612 
2613   // Get the two live-in registers as SDValues. The physregs have already been
2614   // copied into virtual registers.
2615   SDValue Ops[2];
2616   if (FuncInfo.ExceptionPointerVirtReg) {
2617     Ops[0] = DAG.getZExtOrTrunc(
2618         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2619                            FuncInfo.ExceptionPointerVirtReg,
2620                            TLI.getPointerTy(DAG.getDataLayout())),
2621         dl, ValueVTs[0]);
2622   } else {
2623     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2624   }
2625   Ops[1] = DAG.getZExtOrTrunc(
2626       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2627                          FuncInfo.ExceptionSelectorVirtReg,
2628                          TLI.getPointerTy(DAG.getDataLayout())),
2629       dl, ValueVTs[1]);
2630 
2631   // Merge into one.
2632   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2633                             DAG.getVTList(ValueVTs), Ops);
2634   setValue(&LP, Res);
2635 }
2636 
2637 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2638 #ifndef NDEBUG
2639   for (const CaseCluster &CC : Clusters)
2640     assert(CC.Low == CC.High && "Input clusters must be single-case");
2641 #endif
2642 
2643   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2644     return a.Low->getValue().slt(b.Low->getValue());
2645   });
2646 
2647   // Merge adjacent clusters with the same destination.
2648   const unsigned N = Clusters.size();
2649   unsigned DstIndex = 0;
2650   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2651     CaseCluster &CC = Clusters[SrcIndex];
2652     const ConstantInt *CaseVal = CC.Low;
2653     MachineBasicBlock *Succ = CC.MBB;
2654 
2655     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2656         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2657       // If this case has the same successor and is a neighbour, merge it into
2658       // the previous cluster.
2659       Clusters[DstIndex - 1].High = CaseVal;
2660       Clusters[DstIndex - 1].Prob += CC.Prob;
2661     } else {
2662       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2663                    sizeof(Clusters[SrcIndex]));
2664     }
2665   }
2666   Clusters.resize(DstIndex);
2667 }
2668 
2669 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2670                                            MachineBasicBlock *Last) {
2671   // Update JTCases.
2672   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2673     if (JTCases[i].first.HeaderBB == First)
2674       JTCases[i].first.HeaderBB = Last;
2675 
2676   // Update BitTestCases.
2677   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2678     if (BitTestCases[i].Parent == First)
2679       BitTestCases[i].Parent = Last;
2680 }
2681 
2682 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2683   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2684 
2685   // Update machine-CFG edges with unique successors.
2686   SmallSet<BasicBlock*, 32> Done;
2687   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2688     BasicBlock *BB = I.getSuccessor(i);
2689     bool Inserted = Done.insert(BB).second;
2690     if (!Inserted)
2691         continue;
2692 
2693     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2694     addSuccessorWithProb(IndirectBrMBB, Succ);
2695   }
2696   IndirectBrMBB->normalizeSuccProbs();
2697 
2698   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2699                           MVT::Other, getControlRoot(),
2700                           getValue(I.getAddress())));
2701 }
2702 
2703 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2704   if (!DAG.getTarget().Options.TrapUnreachable)
2705     return;
2706 
2707   // We may be able to ignore unreachable behind a noreturn call.
2708   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2709     const BasicBlock &BB = *I.getParent();
2710     if (&I != &BB.front()) {
2711       BasicBlock::const_iterator PredI =
2712         std::prev(BasicBlock::const_iterator(&I));
2713       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2714         if (Call->doesNotReturn())
2715           return;
2716       }
2717     }
2718   }
2719 
2720   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2721 }
2722 
2723 void SelectionDAGBuilder::visitFSub(const User &I) {
2724   // -0.0 - X --> fneg
2725   Type *Ty = I.getType();
2726   if (isa<Constant>(I.getOperand(0)) &&
2727       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2728     SDValue Op2 = getValue(I.getOperand(1));
2729     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2730                              Op2.getValueType(), Op2));
2731     return;
2732   }
2733 
2734   visitBinary(I, ISD::FSUB);
2735 }
2736 
2737 /// Checks if the given instruction performs a vector reduction, in which case
2738 /// we have the freedom to alter the elements in the result as long as the
2739 /// reduction of them stays unchanged.
2740 static bool isVectorReductionOp(const User *I) {
2741   const Instruction *Inst = dyn_cast<Instruction>(I);
2742   if (!Inst || !Inst->getType()->isVectorTy())
2743     return false;
2744 
2745   auto OpCode = Inst->getOpcode();
2746   switch (OpCode) {
2747   case Instruction::Add:
2748   case Instruction::Mul:
2749   case Instruction::And:
2750   case Instruction::Or:
2751   case Instruction::Xor:
2752     break;
2753   case Instruction::FAdd:
2754   case Instruction::FMul:
2755     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2756       if (FPOp->getFastMathFlags().isFast())
2757         break;
2758     LLVM_FALLTHROUGH;
2759   default:
2760     return false;
2761   }
2762 
2763   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2764   // Ensure the reduction size is a power of 2.
2765   if (!isPowerOf2_32(ElemNum))
2766     return false;
2767 
2768   unsigned ElemNumToReduce = ElemNum;
2769 
2770   // Do DFS search on the def-use chain from the given instruction. We only
2771   // allow four kinds of operations during the search until we reach the
2772   // instruction that extracts the first element from the vector:
2773   //
2774   //   1. The reduction operation of the same opcode as the given instruction.
2775   //
2776   //   2. PHI node.
2777   //
2778   //   3. ShuffleVector instruction together with a reduction operation that
2779   //      does a partial reduction.
2780   //
2781   //   4. ExtractElement that extracts the first element from the vector, and we
2782   //      stop searching the def-use chain here.
2783   //
2784   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2785   // from 1-3 to the stack to continue the DFS. The given instruction is not
2786   // a reduction operation if we meet any other instructions other than those
2787   // listed above.
2788 
2789   SmallVector<const User *, 16> UsersToVisit{Inst};
2790   SmallPtrSet<const User *, 16> Visited;
2791   bool ReduxExtracted = false;
2792 
2793   while (!UsersToVisit.empty()) {
2794     auto User = UsersToVisit.back();
2795     UsersToVisit.pop_back();
2796     if (!Visited.insert(User).second)
2797       continue;
2798 
2799     for (const auto &U : User->users()) {
2800       auto Inst = dyn_cast<Instruction>(U);
2801       if (!Inst)
2802         return false;
2803 
2804       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2805         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2806           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2807             return false;
2808         UsersToVisit.push_back(U);
2809       } else if (const ShuffleVectorInst *ShufInst =
2810                      dyn_cast<ShuffleVectorInst>(U)) {
2811         // Detect the following pattern: A ShuffleVector instruction together
2812         // with a reduction that do partial reduction on the first and second
2813         // ElemNumToReduce / 2 elements, and store the result in
2814         // ElemNumToReduce / 2 elements in another vector.
2815 
2816         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2817         if (ResultElements < ElemNum)
2818           return false;
2819 
2820         if (ElemNumToReduce == 1)
2821           return false;
2822         if (!isa<UndefValue>(U->getOperand(1)))
2823           return false;
2824         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2825           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2826             return false;
2827         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2828           if (ShufInst->getMaskValue(i) != -1)
2829             return false;
2830 
2831         // There is only one user of this ShuffleVector instruction, which
2832         // must be a reduction operation.
2833         if (!U->hasOneUse())
2834           return false;
2835 
2836         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2837         if (!U2 || U2->getOpcode() != OpCode)
2838           return false;
2839 
2840         // Check operands of the reduction operation.
2841         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2842             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2843           UsersToVisit.push_back(U2);
2844           ElemNumToReduce /= 2;
2845         } else
2846           return false;
2847       } else if (isa<ExtractElementInst>(U)) {
2848         // At this moment we should have reduced all elements in the vector.
2849         if (ElemNumToReduce != 1)
2850           return false;
2851 
2852         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2853         if (!Val || !Val->isZero())
2854           return false;
2855 
2856         ReduxExtracted = true;
2857       } else
2858         return false;
2859     }
2860   }
2861   return ReduxExtracted;
2862 }
2863 
2864 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2865   SDNodeFlags Flags;
2866 
2867   SDValue Op = getValue(I.getOperand(0));
2868   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2869                                     Op, Flags);
2870   setValue(&I, UnNodeValue);
2871 }
2872 
2873 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2874   SDNodeFlags Flags;
2875   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2876     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2877     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2878   }
2879   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2880     Flags.setExact(ExactOp->isExact());
2881   }
2882   if (isVectorReductionOp(&I)) {
2883     Flags.setVectorReduction(true);
2884     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2885   }
2886 
2887   SDValue Op1 = getValue(I.getOperand(0));
2888   SDValue Op2 = getValue(I.getOperand(1));
2889   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2890                                      Op1, Op2, Flags);
2891   setValue(&I, BinNodeValue);
2892 }
2893 
2894 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2895   SDValue Op1 = getValue(I.getOperand(0));
2896   SDValue Op2 = getValue(I.getOperand(1));
2897 
2898   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2899       Op1.getValueType(), DAG.getDataLayout());
2900 
2901   // Coerce the shift amount to the right type if we can.
2902   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2903     unsigned ShiftSize = ShiftTy.getSizeInBits();
2904     unsigned Op2Size = Op2.getValueSizeInBits();
2905     SDLoc DL = getCurSDLoc();
2906 
2907     // If the operand is smaller than the shift count type, promote it.
2908     if (ShiftSize > Op2Size)
2909       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2910 
2911     // If the operand is larger than the shift count type but the shift
2912     // count type has enough bits to represent any shift value, truncate
2913     // it now. This is a common case and it exposes the truncate to
2914     // optimization early.
2915     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2916       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2917     // Otherwise we'll need to temporarily settle for some other convenient
2918     // type.  Type legalization will make adjustments once the shiftee is split.
2919     else
2920       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2921   }
2922 
2923   bool nuw = false;
2924   bool nsw = false;
2925   bool exact = false;
2926 
2927   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2928 
2929     if (const OverflowingBinaryOperator *OFBinOp =
2930             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2931       nuw = OFBinOp->hasNoUnsignedWrap();
2932       nsw = OFBinOp->hasNoSignedWrap();
2933     }
2934     if (const PossiblyExactOperator *ExactOp =
2935             dyn_cast<const PossiblyExactOperator>(&I))
2936       exact = ExactOp->isExact();
2937   }
2938   SDNodeFlags Flags;
2939   Flags.setExact(exact);
2940   Flags.setNoSignedWrap(nsw);
2941   Flags.setNoUnsignedWrap(nuw);
2942   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2943                             Flags);
2944   setValue(&I, Res);
2945 }
2946 
2947 void SelectionDAGBuilder::visitSDiv(const User &I) {
2948   SDValue Op1 = getValue(I.getOperand(0));
2949   SDValue Op2 = getValue(I.getOperand(1));
2950 
2951   SDNodeFlags Flags;
2952   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2953                  cast<PossiblyExactOperator>(&I)->isExact());
2954   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2955                            Op2, Flags));
2956 }
2957 
2958 void SelectionDAGBuilder::visitICmp(const User &I) {
2959   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2960   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2961     predicate = IC->getPredicate();
2962   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2963     predicate = ICmpInst::Predicate(IC->getPredicate());
2964   SDValue Op1 = getValue(I.getOperand(0));
2965   SDValue Op2 = getValue(I.getOperand(1));
2966   ISD::CondCode Opcode = getICmpCondCode(predicate);
2967 
2968   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2969                                                         I.getType());
2970   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2971 }
2972 
2973 void SelectionDAGBuilder::visitFCmp(const User &I) {
2974   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2975   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2976     predicate = FC->getPredicate();
2977   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2978     predicate = FCmpInst::Predicate(FC->getPredicate());
2979   SDValue Op1 = getValue(I.getOperand(0));
2980   SDValue Op2 = getValue(I.getOperand(1));
2981 
2982   ISD::CondCode Condition = getFCmpCondCode(predicate);
2983   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2984   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2985     Condition = getFCmpCodeWithoutNaN(Condition);
2986 
2987   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2988                                                         I.getType());
2989   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2990 }
2991 
2992 // Check if the condition of the select has one use or two users that are both
2993 // selects with the same condition.
2994 static bool hasOnlySelectUsers(const Value *Cond) {
2995   return llvm::all_of(Cond->users(), [](const Value *V) {
2996     return isa<SelectInst>(V);
2997   });
2998 }
2999 
3000 void SelectionDAGBuilder::visitSelect(const User &I) {
3001   SmallVector<EVT, 4> ValueVTs;
3002   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3003                   ValueVTs);
3004   unsigned NumValues = ValueVTs.size();
3005   if (NumValues == 0) return;
3006 
3007   SmallVector<SDValue, 4> Values(NumValues);
3008   SDValue Cond     = getValue(I.getOperand(0));
3009   SDValue LHSVal   = getValue(I.getOperand(1));
3010   SDValue RHSVal   = getValue(I.getOperand(2));
3011   auto BaseOps = {Cond};
3012   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3013     ISD::VSELECT : ISD::SELECT;
3014 
3015   // Min/max matching is only viable if all output VTs are the same.
3016   if (is_splat(ValueVTs)) {
3017     EVT VT = ValueVTs[0];
3018     LLVMContext &Ctx = *DAG.getContext();
3019     auto &TLI = DAG.getTargetLoweringInfo();
3020 
3021     // We care about the legality of the operation after it has been type
3022     // legalized.
3023     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3024            VT != TLI.getTypeToTransformTo(Ctx, VT))
3025       VT = TLI.getTypeToTransformTo(Ctx, VT);
3026 
3027     // If the vselect is legal, assume we want to leave this as a vector setcc +
3028     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3029     // min/max is legal on the scalar type.
3030     bool UseScalarMinMax = VT.isVector() &&
3031       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3032 
3033     Value *LHS, *RHS;
3034     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3035     ISD::NodeType Opc = ISD::DELETED_NODE;
3036     switch (SPR.Flavor) {
3037     case SPF_UMAX:    Opc = ISD::UMAX; break;
3038     case SPF_UMIN:    Opc = ISD::UMIN; break;
3039     case SPF_SMAX:    Opc = ISD::SMAX; break;
3040     case SPF_SMIN:    Opc = ISD::SMIN; break;
3041     case SPF_FMINNUM:
3042       switch (SPR.NaNBehavior) {
3043       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3044       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3045       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3046       case SPNB_RETURNS_ANY: {
3047         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3048           Opc = ISD::FMINNUM;
3049         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3050           Opc = ISD::FMINIMUM;
3051         else if (UseScalarMinMax)
3052           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3053             ISD::FMINNUM : ISD::FMINIMUM;
3054         break;
3055       }
3056       }
3057       break;
3058     case SPF_FMAXNUM:
3059       switch (SPR.NaNBehavior) {
3060       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3061       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3062       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3063       case SPNB_RETURNS_ANY:
3064 
3065         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3066           Opc = ISD::FMAXNUM;
3067         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3068           Opc = ISD::FMAXIMUM;
3069         else if (UseScalarMinMax)
3070           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3071             ISD::FMAXNUM : ISD::FMAXIMUM;
3072         break;
3073       }
3074       break;
3075     default: break;
3076     }
3077 
3078     if (Opc != ISD::DELETED_NODE &&
3079         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3080          (UseScalarMinMax &&
3081           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3082         // If the underlying comparison instruction is used by any other
3083         // instruction, the consumed instructions won't be destroyed, so it is
3084         // not profitable to convert to a min/max.
3085         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3086       OpCode = Opc;
3087       LHSVal = getValue(LHS);
3088       RHSVal = getValue(RHS);
3089       BaseOps = {};
3090     }
3091   }
3092 
3093   for (unsigned i = 0; i != NumValues; ++i) {
3094     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3095     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3096     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3097     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3098                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3099                             Ops);
3100   }
3101 
3102   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3103                            DAG.getVTList(ValueVTs), Values));
3104 }
3105 
3106 void SelectionDAGBuilder::visitTrunc(const User &I) {
3107   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3108   SDValue N = getValue(I.getOperand(0));
3109   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3110                                                         I.getType());
3111   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3112 }
3113 
3114 void SelectionDAGBuilder::visitZExt(const User &I) {
3115   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3116   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3117   SDValue N = getValue(I.getOperand(0));
3118   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3119                                                         I.getType());
3120   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3121 }
3122 
3123 void SelectionDAGBuilder::visitSExt(const User &I) {
3124   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3125   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3126   SDValue N = getValue(I.getOperand(0));
3127   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3128                                                         I.getType());
3129   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3130 }
3131 
3132 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3133   // FPTrunc is never a no-op cast, no need to check
3134   SDValue N = getValue(I.getOperand(0));
3135   SDLoc dl = getCurSDLoc();
3136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3137   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3138   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3139                            DAG.getTargetConstant(
3140                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3141 }
3142 
3143 void SelectionDAGBuilder::visitFPExt(const User &I) {
3144   // FPExt is never a no-op cast, no need to check
3145   SDValue N = getValue(I.getOperand(0));
3146   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3147                                                         I.getType());
3148   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3149 }
3150 
3151 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3152   // FPToUI is never a no-op cast, no need to check
3153   SDValue N = getValue(I.getOperand(0));
3154   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3155                                                         I.getType());
3156   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3157 }
3158 
3159 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3160   // FPToSI is never a no-op cast, no need to check
3161   SDValue N = getValue(I.getOperand(0));
3162   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3163                                                         I.getType());
3164   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3165 }
3166 
3167 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3168   // UIToFP is never a no-op cast, no need to check
3169   SDValue N = getValue(I.getOperand(0));
3170   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3171                                                         I.getType());
3172   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3173 }
3174 
3175 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3176   // SIToFP is never a no-op cast, no need to check
3177   SDValue N = getValue(I.getOperand(0));
3178   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3179                                                         I.getType());
3180   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3181 }
3182 
3183 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3184   // What to do depends on the size of the integer and the size of the pointer.
3185   // We can either truncate, zero extend, or no-op, accordingly.
3186   SDValue N = getValue(I.getOperand(0));
3187   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3188                                                         I.getType());
3189   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3190 }
3191 
3192 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3193   // What to do depends on the size of the integer and the size of the pointer.
3194   // We can either truncate, zero extend, or no-op, accordingly.
3195   SDValue N = getValue(I.getOperand(0));
3196   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3197                                                         I.getType());
3198   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3199 }
3200 
3201 void SelectionDAGBuilder::visitBitCast(const User &I) {
3202   SDValue N = getValue(I.getOperand(0));
3203   SDLoc dl = getCurSDLoc();
3204   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3205                                                         I.getType());
3206 
3207   // BitCast assures us that source and destination are the same size so this is
3208   // either a BITCAST or a no-op.
3209   if (DestVT != N.getValueType())
3210     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3211                              DestVT, N)); // convert types.
3212   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3213   // might fold any kind of constant expression to an integer constant and that
3214   // is not what we are looking for. Only recognize a bitcast of a genuine
3215   // constant integer as an opaque constant.
3216   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3217     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3218                                  /*isOpaque*/true));
3219   else
3220     setValue(&I, N);            // noop cast.
3221 }
3222 
3223 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3224   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3225   const Value *SV = I.getOperand(0);
3226   SDValue N = getValue(SV);
3227   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3228 
3229   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3230   unsigned DestAS = I.getType()->getPointerAddressSpace();
3231 
3232   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3233     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3234 
3235   setValue(&I, N);
3236 }
3237 
3238 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3239   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3240   SDValue InVec = getValue(I.getOperand(0));
3241   SDValue InVal = getValue(I.getOperand(1));
3242   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3243                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3244   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3245                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3246                            InVec, InVal, InIdx));
3247 }
3248 
3249 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3250   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3251   SDValue InVec = getValue(I.getOperand(0));
3252   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3253                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3254   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3255                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3256                            InVec, InIdx));
3257 }
3258 
3259 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3260   SDValue Src1 = getValue(I.getOperand(0));
3261   SDValue Src2 = getValue(I.getOperand(1));
3262   SDLoc DL = getCurSDLoc();
3263 
3264   SmallVector<int, 8> Mask;
3265   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3266   unsigned MaskNumElts = Mask.size();
3267 
3268   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3269   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3270   EVT SrcVT = Src1.getValueType();
3271   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3272 
3273   if (SrcNumElts == MaskNumElts) {
3274     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3275     return;
3276   }
3277 
3278   // Normalize the shuffle vector since mask and vector length don't match.
3279   if (SrcNumElts < MaskNumElts) {
3280     // Mask is longer than the source vectors. We can use concatenate vector to
3281     // make the mask and vectors lengths match.
3282 
3283     if (MaskNumElts % SrcNumElts == 0) {
3284       // Mask length is a multiple of the source vector length.
3285       // Check if the shuffle is some kind of concatenation of the input
3286       // vectors.
3287       unsigned NumConcat = MaskNumElts / SrcNumElts;
3288       bool IsConcat = true;
3289       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3290       for (unsigned i = 0; i != MaskNumElts; ++i) {
3291         int Idx = Mask[i];
3292         if (Idx < 0)
3293           continue;
3294         // Ensure the indices in each SrcVT sized piece are sequential and that
3295         // the same source is used for the whole piece.
3296         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3297             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3298              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3299           IsConcat = false;
3300           break;
3301         }
3302         // Remember which source this index came from.
3303         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3304       }
3305 
3306       // The shuffle is concatenating multiple vectors together. Just emit
3307       // a CONCAT_VECTORS operation.
3308       if (IsConcat) {
3309         SmallVector<SDValue, 8> ConcatOps;
3310         for (auto Src : ConcatSrcs) {
3311           if (Src < 0)
3312             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3313           else if (Src == 0)
3314             ConcatOps.push_back(Src1);
3315           else
3316             ConcatOps.push_back(Src2);
3317         }
3318         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3319         return;
3320       }
3321     }
3322 
3323     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3324     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3325     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3326                                     PaddedMaskNumElts);
3327 
3328     // Pad both vectors with undefs to make them the same length as the mask.
3329     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3330 
3331     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3332     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3333     MOps1[0] = Src1;
3334     MOps2[0] = Src2;
3335 
3336     Src1 = Src1.isUndef()
3337                ? DAG.getUNDEF(PaddedVT)
3338                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3339     Src2 = Src2.isUndef()
3340                ? DAG.getUNDEF(PaddedVT)
3341                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3342 
3343     // Readjust mask for new input vector length.
3344     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3345     for (unsigned i = 0; i != MaskNumElts; ++i) {
3346       int Idx = Mask[i];
3347       if (Idx >= (int)SrcNumElts)
3348         Idx -= SrcNumElts - PaddedMaskNumElts;
3349       MappedOps[i] = Idx;
3350     }
3351 
3352     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3353 
3354     // If the concatenated vector was padded, extract a subvector with the
3355     // correct number of elements.
3356     if (MaskNumElts != PaddedMaskNumElts)
3357       Result = DAG.getNode(
3358           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3359           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3360 
3361     setValue(&I, Result);
3362     return;
3363   }
3364 
3365   if (SrcNumElts > MaskNumElts) {
3366     // Analyze the access pattern of the vector to see if we can extract
3367     // two subvectors and do the shuffle.
3368     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3369     bool CanExtract = true;
3370     for (int Idx : Mask) {
3371       unsigned Input = 0;
3372       if (Idx < 0)
3373         continue;
3374 
3375       if (Idx >= (int)SrcNumElts) {
3376         Input = 1;
3377         Idx -= SrcNumElts;
3378       }
3379 
3380       // If all the indices come from the same MaskNumElts sized portion of
3381       // the sources we can use extract. Also make sure the extract wouldn't
3382       // extract past the end of the source.
3383       int NewStartIdx = alignDown(Idx, MaskNumElts);
3384       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3385           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3386         CanExtract = false;
3387       // Make sure we always update StartIdx as we use it to track if all
3388       // elements are undef.
3389       StartIdx[Input] = NewStartIdx;
3390     }
3391 
3392     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3393       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3394       return;
3395     }
3396     if (CanExtract) {
3397       // Extract appropriate subvector and generate a vector shuffle
3398       for (unsigned Input = 0; Input < 2; ++Input) {
3399         SDValue &Src = Input == 0 ? Src1 : Src2;
3400         if (StartIdx[Input] < 0)
3401           Src = DAG.getUNDEF(VT);
3402         else {
3403           Src = DAG.getNode(
3404               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3405               DAG.getConstant(StartIdx[Input], DL,
3406                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3407         }
3408       }
3409 
3410       // Calculate new mask.
3411       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3412       for (int &Idx : MappedOps) {
3413         if (Idx >= (int)SrcNumElts)
3414           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3415         else if (Idx >= 0)
3416           Idx -= StartIdx[0];
3417       }
3418 
3419       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3420       return;
3421     }
3422   }
3423 
3424   // We can't use either concat vectors or extract subvectors so fall back to
3425   // replacing the shuffle with extract and build vector.
3426   // to insert and build vector.
3427   EVT EltVT = VT.getVectorElementType();
3428   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3429   SmallVector<SDValue,8> Ops;
3430   for (int Idx : Mask) {
3431     SDValue Res;
3432 
3433     if (Idx < 0) {
3434       Res = DAG.getUNDEF(EltVT);
3435     } else {
3436       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3437       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3438 
3439       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3440                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3441     }
3442 
3443     Ops.push_back(Res);
3444   }
3445 
3446   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3447 }
3448 
3449 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3450   ArrayRef<unsigned> Indices;
3451   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3452     Indices = IV->getIndices();
3453   else
3454     Indices = cast<ConstantExpr>(&I)->getIndices();
3455 
3456   const Value *Op0 = I.getOperand(0);
3457   const Value *Op1 = I.getOperand(1);
3458   Type *AggTy = I.getType();
3459   Type *ValTy = Op1->getType();
3460   bool IntoUndef = isa<UndefValue>(Op0);
3461   bool FromUndef = isa<UndefValue>(Op1);
3462 
3463   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3464 
3465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3466   SmallVector<EVT, 4> AggValueVTs;
3467   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3468   SmallVector<EVT, 4> ValValueVTs;
3469   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3470 
3471   unsigned NumAggValues = AggValueVTs.size();
3472   unsigned NumValValues = ValValueVTs.size();
3473   SmallVector<SDValue, 4> Values(NumAggValues);
3474 
3475   // Ignore an insertvalue that produces an empty object
3476   if (!NumAggValues) {
3477     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3478     return;
3479   }
3480 
3481   SDValue Agg = getValue(Op0);
3482   unsigned i = 0;
3483   // Copy the beginning value(s) from the original aggregate.
3484   for (; i != LinearIndex; ++i)
3485     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3486                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3487   // Copy values from the inserted value(s).
3488   if (NumValValues) {
3489     SDValue Val = getValue(Op1);
3490     for (; i != LinearIndex + NumValValues; ++i)
3491       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3492                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3493   }
3494   // Copy remaining value(s) from the original aggregate.
3495   for (; i != NumAggValues; ++i)
3496     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3497                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3498 
3499   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3500                            DAG.getVTList(AggValueVTs), Values));
3501 }
3502 
3503 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3504   ArrayRef<unsigned> Indices;
3505   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3506     Indices = EV->getIndices();
3507   else
3508     Indices = cast<ConstantExpr>(&I)->getIndices();
3509 
3510   const Value *Op0 = I.getOperand(0);
3511   Type *AggTy = Op0->getType();
3512   Type *ValTy = I.getType();
3513   bool OutOfUndef = isa<UndefValue>(Op0);
3514 
3515   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3516 
3517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3518   SmallVector<EVT, 4> ValValueVTs;
3519   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3520 
3521   unsigned NumValValues = ValValueVTs.size();
3522 
3523   // Ignore a extractvalue that produces an empty object
3524   if (!NumValValues) {
3525     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3526     return;
3527   }
3528 
3529   SmallVector<SDValue, 4> Values(NumValValues);
3530 
3531   SDValue Agg = getValue(Op0);
3532   // Copy out the selected value(s).
3533   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3534     Values[i - LinearIndex] =
3535       OutOfUndef ?
3536         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3537         SDValue(Agg.getNode(), Agg.getResNo() + i);
3538 
3539   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3540                            DAG.getVTList(ValValueVTs), Values));
3541 }
3542 
3543 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3544   Value *Op0 = I.getOperand(0);
3545   // Note that the pointer operand may be a vector of pointers. Take the scalar
3546   // element which holds a pointer.
3547   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3548   SDValue N = getValue(Op0);
3549   SDLoc dl = getCurSDLoc();
3550 
3551   // Normalize Vector GEP - all scalar operands should be converted to the
3552   // splat vector.
3553   unsigned VectorWidth = I.getType()->isVectorTy() ?
3554     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3555 
3556   if (VectorWidth && !N.getValueType().isVector()) {
3557     LLVMContext &Context = *DAG.getContext();
3558     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3559     N = DAG.getSplatBuildVector(VT, dl, N);
3560   }
3561 
3562   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3563        GTI != E; ++GTI) {
3564     const Value *Idx = GTI.getOperand();
3565     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3566       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3567       if (Field) {
3568         // N = N + Offset
3569         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3570 
3571         // In an inbounds GEP with an offset that is nonnegative even when
3572         // interpreted as signed, assume there is no unsigned overflow.
3573         SDNodeFlags Flags;
3574         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3575           Flags.setNoUnsignedWrap(true);
3576 
3577         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3578                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3579       }
3580     } else {
3581       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3582       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3583       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3584 
3585       // If this is a scalar constant or a splat vector of constants,
3586       // handle it quickly.
3587       const auto *CI = dyn_cast<ConstantInt>(Idx);
3588       if (!CI && isa<ConstantDataVector>(Idx) &&
3589           cast<ConstantDataVector>(Idx)->getSplatValue())
3590         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3591 
3592       if (CI) {
3593         if (CI->isZero())
3594           continue;
3595         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3596         LLVMContext &Context = *DAG.getContext();
3597         SDValue OffsVal = VectorWidth ?
3598           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3599           DAG.getConstant(Offs, dl, IdxTy);
3600 
3601         // In an inbouds GEP with an offset that is nonnegative even when
3602         // interpreted as signed, assume there is no unsigned overflow.
3603         SDNodeFlags Flags;
3604         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3605           Flags.setNoUnsignedWrap(true);
3606 
3607         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3608         continue;
3609       }
3610 
3611       // N = N + Idx * ElementSize;
3612       SDValue IdxN = getValue(Idx);
3613 
3614       if (!IdxN.getValueType().isVector() && VectorWidth) {
3615         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3616         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3617       }
3618 
3619       // If the index is smaller or larger than intptr_t, truncate or extend
3620       // it.
3621       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3622 
3623       // If this is a multiply by a power of two, turn it into a shl
3624       // immediately.  This is a very common case.
3625       if (ElementSize != 1) {
3626         if (ElementSize.isPowerOf2()) {
3627           unsigned Amt = ElementSize.logBase2();
3628           IdxN = DAG.getNode(ISD::SHL, dl,
3629                              N.getValueType(), IdxN,
3630                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3631         } else {
3632           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3633           IdxN = DAG.getNode(ISD::MUL, dl,
3634                              N.getValueType(), IdxN, Scale);
3635         }
3636       }
3637 
3638       N = DAG.getNode(ISD::ADD, dl,
3639                       N.getValueType(), N, IdxN);
3640     }
3641   }
3642 
3643   setValue(&I, N);
3644 }
3645 
3646 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3647   // If this is a fixed sized alloca in the entry block of the function,
3648   // allocate it statically on the stack.
3649   if (FuncInfo.StaticAllocaMap.count(&I))
3650     return;   // getValue will auto-populate this.
3651 
3652   SDLoc dl = getCurSDLoc();
3653   Type *Ty = I.getAllocatedType();
3654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3655   auto &DL = DAG.getDataLayout();
3656   uint64_t TySize = DL.getTypeAllocSize(Ty);
3657   unsigned Align =
3658       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3659 
3660   SDValue AllocSize = getValue(I.getArraySize());
3661 
3662   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3663   if (AllocSize.getValueType() != IntPtr)
3664     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3665 
3666   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3667                           AllocSize,
3668                           DAG.getConstant(TySize, dl, IntPtr));
3669 
3670   // Handle alignment.  If the requested alignment is less than or equal to
3671   // the stack alignment, ignore it.  If the size is greater than or equal to
3672   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3673   unsigned StackAlign =
3674       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3675   if (Align <= StackAlign)
3676     Align = 0;
3677 
3678   // Round the size of the allocation up to the stack alignment size
3679   // by add SA-1 to the size. This doesn't overflow because we're computing
3680   // an address inside an alloca.
3681   SDNodeFlags Flags;
3682   Flags.setNoUnsignedWrap(true);
3683   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3684                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3685 
3686   // Mask out the low bits for alignment purposes.
3687   AllocSize =
3688       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3689                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3690 
3691   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3692   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3693   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3694   setValue(&I, DSA);
3695   DAG.setRoot(DSA.getValue(1));
3696 
3697   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3698 }
3699 
3700 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3701   if (I.isAtomic())
3702     return visitAtomicLoad(I);
3703 
3704   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3705   const Value *SV = I.getOperand(0);
3706   if (TLI.supportSwiftError()) {
3707     // Swifterror values can come from either a function parameter with
3708     // swifterror attribute or an alloca with swifterror attribute.
3709     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3710       if (Arg->hasSwiftErrorAttr())
3711         return visitLoadFromSwiftError(I);
3712     }
3713 
3714     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3715       if (Alloca->isSwiftError())
3716         return visitLoadFromSwiftError(I);
3717     }
3718   }
3719 
3720   SDValue Ptr = getValue(SV);
3721 
3722   Type *Ty = I.getType();
3723 
3724   bool isVolatile = I.isVolatile();
3725   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3726   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3727   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3728   unsigned Alignment = I.getAlignment();
3729 
3730   AAMDNodes AAInfo;
3731   I.getAAMetadata(AAInfo);
3732   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3733 
3734   SmallVector<EVT, 4> ValueVTs;
3735   SmallVector<uint64_t, 4> Offsets;
3736   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3737   unsigned NumValues = ValueVTs.size();
3738   if (NumValues == 0)
3739     return;
3740 
3741   SDValue Root;
3742   bool ConstantMemory = false;
3743   if (isVolatile || NumValues > MaxParallelChains)
3744     // Serialize volatile loads with other side effects.
3745     Root = getRoot();
3746   else if (AA &&
3747            AA->pointsToConstantMemory(MemoryLocation(
3748                SV,
3749                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3750                AAInfo))) {
3751     // Do not serialize (non-volatile) loads of constant memory with anything.
3752     Root = DAG.getEntryNode();
3753     ConstantMemory = true;
3754   } else {
3755     // Do not serialize non-volatile loads against each other.
3756     Root = DAG.getRoot();
3757   }
3758 
3759   SDLoc dl = getCurSDLoc();
3760 
3761   if (isVolatile)
3762     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3763 
3764   // An aggregate load cannot wrap around the address space, so offsets to its
3765   // parts don't wrap either.
3766   SDNodeFlags Flags;
3767   Flags.setNoUnsignedWrap(true);
3768 
3769   SmallVector<SDValue, 4> Values(NumValues);
3770   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3771   EVT PtrVT = Ptr.getValueType();
3772   unsigned ChainI = 0;
3773   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3774     // Serializing loads here may result in excessive register pressure, and
3775     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3776     // could recover a bit by hoisting nodes upward in the chain by recognizing
3777     // they are side-effect free or do not alias. The optimizer should really
3778     // avoid this case by converting large object/array copies to llvm.memcpy
3779     // (MaxParallelChains should always remain as failsafe).
3780     if (ChainI == MaxParallelChains) {
3781       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3782       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3783                                   makeArrayRef(Chains.data(), ChainI));
3784       Root = Chain;
3785       ChainI = 0;
3786     }
3787     SDValue A = DAG.getNode(ISD::ADD, dl,
3788                             PtrVT, Ptr,
3789                             DAG.getConstant(Offsets[i], dl, PtrVT),
3790                             Flags);
3791     auto MMOFlags = MachineMemOperand::MONone;
3792     if (isVolatile)
3793       MMOFlags |= MachineMemOperand::MOVolatile;
3794     if (isNonTemporal)
3795       MMOFlags |= MachineMemOperand::MONonTemporal;
3796     if (isInvariant)
3797       MMOFlags |= MachineMemOperand::MOInvariant;
3798     if (isDereferenceable)
3799       MMOFlags |= MachineMemOperand::MODereferenceable;
3800     MMOFlags |= TLI.getMMOFlags(I);
3801 
3802     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3803                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3804                             MMOFlags, AAInfo, Ranges);
3805 
3806     Values[i] = L;
3807     Chains[ChainI] = L.getValue(1);
3808   }
3809 
3810   if (!ConstantMemory) {
3811     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3812                                 makeArrayRef(Chains.data(), ChainI));
3813     if (isVolatile)
3814       DAG.setRoot(Chain);
3815     else
3816       PendingLoads.push_back(Chain);
3817   }
3818 
3819   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3820                            DAG.getVTList(ValueVTs), Values));
3821 }
3822 
3823 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3824   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3825          "call visitStoreToSwiftError when backend supports swifterror");
3826 
3827   SmallVector<EVT, 4> ValueVTs;
3828   SmallVector<uint64_t, 4> Offsets;
3829   const Value *SrcV = I.getOperand(0);
3830   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3831                   SrcV->getType(), ValueVTs, &Offsets);
3832   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3833          "expect a single EVT for swifterror");
3834 
3835   SDValue Src = getValue(SrcV);
3836   // Create a virtual register, then update the virtual register.
3837   unsigned VReg; bool CreatedVReg;
3838   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3839   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3840   // Chain can be getRoot or getControlRoot.
3841   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3842                                       SDValue(Src.getNode(), Src.getResNo()));
3843   DAG.setRoot(CopyNode);
3844   if (CreatedVReg)
3845     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3846 }
3847 
3848 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3849   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3850          "call visitLoadFromSwiftError when backend supports swifterror");
3851 
3852   assert(!I.isVolatile() &&
3853          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3854          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3855          "Support volatile, non temporal, invariant for load_from_swift_error");
3856 
3857   const Value *SV = I.getOperand(0);
3858   Type *Ty = I.getType();
3859   AAMDNodes AAInfo;
3860   I.getAAMetadata(AAInfo);
3861   assert(
3862       (!AA ||
3863        !AA->pointsToConstantMemory(MemoryLocation(
3864            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3865            AAInfo))) &&
3866       "load_from_swift_error should not be constant memory");
3867 
3868   SmallVector<EVT, 4> ValueVTs;
3869   SmallVector<uint64_t, 4> Offsets;
3870   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3871                   ValueVTs, &Offsets);
3872   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3873          "expect a single EVT for swifterror");
3874 
3875   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3876   SDValue L = DAG.getCopyFromReg(
3877       getRoot(), getCurSDLoc(),
3878       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3879       ValueVTs[0]);
3880 
3881   setValue(&I, L);
3882 }
3883 
3884 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3885   if (I.isAtomic())
3886     return visitAtomicStore(I);
3887 
3888   const Value *SrcV = I.getOperand(0);
3889   const Value *PtrV = I.getOperand(1);
3890 
3891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3892   if (TLI.supportSwiftError()) {
3893     // Swifterror values can come from either a function parameter with
3894     // swifterror attribute or an alloca with swifterror attribute.
3895     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3896       if (Arg->hasSwiftErrorAttr())
3897         return visitStoreToSwiftError(I);
3898     }
3899 
3900     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3901       if (Alloca->isSwiftError())
3902         return visitStoreToSwiftError(I);
3903     }
3904   }
3905 
3906   SmallVector<EVT, 4> ValueVTs;
3907   SmallVector<uint64_t, 4> Offsets;
3908   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3909                   SrcV->getType(), ValueVTs, &Offsets);
3910   unsigned NumValues = ValueVTs.size();
3911   if (NumValues == 0)
3912     return;
3913 
3914   // Get the lowered operands. Note that we do this after
3915   // checking if NumResults is zero, because with zero results
3916   // the operands won't have values in the map.
3917   SDValue Src = getValue(SrcV);
3918   SDValue Ptr = getValue(PtrV);
3919 
3920   SDValue Root = getRoot();
3921   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3922   SDLoc dl = getCurSDLoc();
3923   EVT PtrVT = Ptr.getValueType();
3924   unsigned Alignment = I.getAlignment();
3925   AAMDNodes AAInfo;
3926   I.getAAMetadata(AAInfo);
3927 
3928   auto MMOFlags = MachineMemOperand::MONone;
3929   if (I.isVolatile())
3930     MMOFlags |= MachineMemOperand::MOVolatile;
3931   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3932     MMOFlags |= MachineMemOperand::MONonTemporal;
3933   MMOFlags |= TLI.getMMOFlags(I);
3934 
3935   // An aggregate load cannot wrap around the address space, so offsets to its
3936   // parts don't wrap either.
3937   SDNodeFlags Flags;
3938   Flags.setNoUnsignedWrap(true);
3939 
3940   unsigned ChainI = 0;
3941   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3942     // See visitLoad comments.
3943     if (ChainI == MaxParallelChains) {
3944       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3945                                   makeArrayRef(Chains.data(), ChainI));
3946       Root = Chain;
3947       ChainI = 0;
3948     }
3949     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3950                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3951     SDValue St = DAG.getStore(
3952         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3953         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3954     Chains[ChainI] = St;
3955   }
3956 
3957   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3958                                   makeArrayRef(Chains.data(), ChainI));
3959   DAG.setRoot(StoreNode);
3960 }
3961 
3962 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3963                                            bool IsCompressing) {
3964   SDLoc sdl = getCurSDLoc();
3965 
3966   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3967                            unsigned& Alignment) {
3968     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3969     Src0 = I.getArgOperand(0);
3970     Ptr = I.getArgOperand(1);
3971     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3972     Mask = I.getArgOperand(3);
3973   };
3974   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3975                            unsigned& Alignment) {
3976     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3977     Src0 = I.getArgOperand(0);
3978     Ptr = I.getArgOperand(1);
3979     Mask = I.getArgOperand(2);
3980     Alignment = 0;
3981   };
3982 
3983   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3984   unsigned Alignment;
3985   if (IsCompressing)
3986     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3987   else
3988     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3989 
3990   SDValue Ptr = getValue(PtrOperand);
3991   SDValue Src0 = getValue(Src0Operand);
3992   SDValue Mask = getValue(MaskOperand);
3993 
3994   EVT VT = Src0.getValueType();
3995   if (!Alignment)
3996     Alignment = DAG.getEVTAlignment(VT);
3997 
3998   AAMDNodes AAInfo;
3999   I.getAAMetadata(AAInfo);
4000 
4001   MachineMemOperand *MMO =
4002     DAG.getMachineFunction().
4003     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4004                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4005                           Alignment, AAInfo);
4006   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4007                                          MMO, false /* Truncating */,
4008                                          IsCompressing);
4009   DAG.setRoot(StoreNode);
4010   setValue(&I, StoreNode);
4011 }
4012 
4013 // Get a uniform base for the Gather/Scatter intrinsic.
4014 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4015 // We try to represent it as a base pointer + vector of indices.
4016 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4017 // The first operand of the GEP may be a single pointer or a vector of pointers
4018 // Example:
4019 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4020 //  or
4021 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4022 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4023 //
4024 // When the first GEP operand is a single pointer - it is the uniform base we
4025 // are looking for. If first operand of the GEP is a splat vector - we
4026 // extract the splat value and use it as a uniform base.
4027 // In all other cases the function returns 'false'.
4028 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4029                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4030   SelectionDAG& DAG = SDB->DAG;
4031   LLVMContext &Context = *DAG.getContext();
4032 
4033   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4034   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4035   if (!GEP)
4036     return false;
4037 
4038   const Value *GEPPtr = GEP->getPointerOperand();
4039   if (!GEPPtr->getType()->isVectorTy())
4040     Ptr = GEPPtr;
4041   else if (!(Ptr = getSplatValue(GEPPtr)))
4042     return false;
4043 
4044   unsigned FinalIndex = GEP->getNumOperands() - 1;
4045   Value *IndexVal = GEP->getOperand(FinalIndex);
4046 
4047   // Ensure all the other indices are 0.
4048   for (unsigned i = 1; i < FinalIndex; ++i) {
4049     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4050     if (!C || !C->isZero())
4051       return false;
4052   }
4053 
4054   // The operands of the GEP may be defined in another basic block.
4055   // In this case we'll not find nodes for the operands.
4056   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4057     return false;
4058 
4059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4060   const DataLayout &DL = DAG.getDataLayout();
4061   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4062                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4063   Base = SDB->getValue(Ptr);
4064   Index = SDB->getValue(IndexVal);
4065 
4066   if (!Index.getValueType().isVector()) {
4067     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4068     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4069     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4070   }
4071   return true;
4072 }
4073 
4074 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4075   SDLoc sdl = getCurSDLoc();
4076 
4077   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4078   const Value *Ptr = I.getArgOperand(1);
4079   SDValue Src0 = getValue(I.getArgOperand(0));
4080   SDValue Mask = getValue(I.getArgOperand(3));
4081   EVT VT = Src0.getValueType();
4082   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4083   if (!Alignment)
4084     Alignment = DAG.getEVTAlignment(VT);
4085   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4086 
4087   AAMDNodes AAInfo;
4088   I.getAAMetadata(AAInfo);
4089 
4090   SDValue Base;
4091   SDValue Index;
4092   SDValue Scale;
4093   const Value *BasePtr = Ptr;
4094   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4095 
4096   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4097   MachineMemOperand *MMO = DAG.getMachineFunction().
4098     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4099                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4100                          Alignment, AAInfo);
4101   if (!UniformBase) {
4102     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4103     Index = getValue(Ptr);
4104     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4105   }
4106   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4107   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4108                                          Ops, MMO);
4109   DAG.setRoot(Scatter);
4110   setValue(&I, Scatter);
4111 }
4112 
4113 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4114   SDLoc sdl = getCurSDLoc();
4115 
4116   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4117                            unsigned& Alignment) {
4118     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4119     Ptr = I.getArgOperand(0);
4120     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4121     Mask = I.getArgOperand(2);
4122     Src0 = I.getArgOperand(3);
4123   };
4124   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4125                            unsigned& Alignment) {
4126     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4127     Ptr = I.getArgOperand(0);
4128     Alignment = 0;
4129     Mask = I.getArgOperand(1);
4130     Src0 = I.getArgOperand(2);
4131   };
4132 
4133   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4134   unsigned Alignment;
4135   if (IsExpanding)
4136     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4137   else
4138     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4139 
4140   SDValue Ptr = getValue(PtrOperand);
4141   SDValue Src0 = getValue(Src0Operand);
4142   SDValue Mask = getValue(MaskOperand);
4143 
4144   EVT VT = Src0.getValueType();
4145   if (!Alignment)
4146     Alignment = DAG.getEVTAlignment(VT);
4147 
4148   AAMDNodes AAInfo;
4149   I.getAAMetadata(AAInfo);
4150   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4151 
4152   // Do not serialize masked loads of constant memory with anything.
4153   bool AddToChain =
4154       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4155                  PtrOperand,
4156                  LocationSize::precise(
4157                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4158                  AAInfo));
4159   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4160 
4161   MachineMemOperand *MMO =
4162     DAG.getMachineFunction().
4163     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4164                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4165                           Alignment, AAInfo, Ranges);
4166 
4167   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4168                                    ISD::NON_EXTLOAD, IsExpanding);
4169   if (AddToChain)
4170     PendingLoads.push_back(Load.getValue(1));
4171   setValue(&I, Load);
4172 }
4173 
4174 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4175   SDLoc sdl = getCurSDLoc();
4176 
4177   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4178   const Value *Ptr = I.getArgOperand(0);
4179   SDValue Src0 = getValue(I.getArgOperand(3));
4180   SDValue Mask = getValue(I.getArgOperand(2));
4181 
4182   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4183   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4184   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4185   if (!Alignment)
4186     Alignment = DAG.getEVTAlignment(VT);
4187 
4188   AAMDNodes AAInfo;
4189   I.getAAMetadata(AAInfo);
4190   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4191 
4192   SDValue Root = DAG.getRoot();
4193   SDValue Base;
4194   SDValue Index;
4195   SDValue Scale;
4196   const Value *BasePtr = Ptr;
4197   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4198   bool ConstantMemory = false;
4199   if (UniformBase && AA &&
4200       AA->pointsToConstantMemory(
4201           MemoryLocation(BasePtr,
4202                          LocationSize::precise(
4203                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4204                          AAInfo))) {
4205     // Do not serialize (non-volatile) loads of constant memory with anything.
4206     Root = DAG.getEntryNode();
4207     ConstantMemory = true;
4208   }
4209 
4210   MachineMemOperand *MMO =
4211     DAG.getMachineFunction().
4212     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4213                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4214                          Alignment, AAInfo, Ranges);
4215 
4216   if (!UniformBase) {
4217     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4218     Index = getValue(Ptr);
4219     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4220   }
4221   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4222   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4223                                        Ops, MMO);
4224 
4225   SDValue OutChain = Gather.getValue(1);
4226   if (!ConstantMemory)
4227     PendingLoads.push_back(OutChain);
4228   setValue(&I, Gather);
4229 }
4230 
4231 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4232   SDLoc dl = getCurSDLoc();
4233   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4234   AtomicOrdering FailureOrder = I.getFailureOrdering();
4235   SyncScope::ID SSID = I.getSyncScopeID();
4236 
4237   SDValue InChain = getRoot();
4238 
4239   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4240   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4241   SDValue L = DAG.getAtomicCmpSwap(
4242       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4243       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4244       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4245       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4246 
4247   SDValue OutChain = L.getValue(2);
4248 
4249   setValue(&I, L);
4250   DAG.setRoot(OutChain);
4251 }
4252 
4253 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4254   SDLoc dl = getCurSDLoc();
4255   ISD::NodeType NT;
4256   switch (I.getOperation()) {
4257   default: llvm_unreachable("Unknown atomicrmw operation");
4258   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4259   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4260   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4261   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4262   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4263   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4264   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4265   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4266   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4267   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4268   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4269   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4270   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4271   }
4272   AtomicOrdering Order = I.getOrdering();
4273   SyncScope::ID SSID = I.getSyncScopeID();
4274 
4275   SDValue InChain = getRoot();
4276 
4277   SDValue L =
4278     DAG.getAtomic(NT, dl,
4279                   getValue(I.getValOperand()).getSimpleValueType(),
4280                   InChain,
4281                   getValue(I.getPointerOperand()),
4282                   getValue(I.getValOperand()),
4283                   I.getPointerOperand(),
4284                   /* Alignment=*/ 0, Order, SSID);
4285 
4286   SDValue OutChain = L.getValue(1);
4287 
4288   setValue(&I, L);
4289   DAG.setRoot(OutChain);
4290 }
4291 
4292 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4293   SDLoc dl = getCurSDLoc();
4294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4295   SDValue Ops[3];
4296   Ops[0] = getRoot();
4297   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4298                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4299   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4300                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4301   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4302 }
4303 
4304 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4305   SDLoc dl = getCurSDLoc();
4306   AtomicOrdering Order = I.getOrdering();
4307   SyncScope::ID SSID = I.getSyncScopeID();
4308 
4309   SDValue InChain = getRoot();
4310 
4311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4312   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4313 
4314   if (!TLI.supportsUnalignedAtomics() &&
4315       I.getAlignment() < VT.getStoreSize())
4316     report_fatal_error("Cannot generate unaligned atomic load");
4317 
4318   MachineMemOperand *MMO =
4319       DAG.getMachineFunction().
4320       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4321                            MachineMemOperand::MOVolatile |
4322                            MachineMemOperand::MOLoad,
4323                            VT.getStoreSize(),
4324                            I.getAlignment() ? I.getAlignment() :
4325                                               DAG.getEVTAlignment(VT),
4326                            AAMDNodes(), nullptr, SSID, Order);
4327 
4328   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4329   SDValue L =
4330       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4331                     getValue(I.getPointerOperand()), MMO);
4332 
4333   SDValue OutChain = L.getValue(1);
4334 
4335   setValue(&I, L);
4336   DAG.setRoot(OutChain);
4337 }
4338 
4339 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4340   SDLoc dl = getCurSDLoc();
4341 
4342   AtomicOrdering Order = I.getOrdering();
4343   SyncScope::ID SSID = I.getSyncScopeID();
4344 
4345   SDValue InChain = getRoot();
4346 
4347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4348   EVT VT =
4349       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4350 
4351   if (I.getAlignment() < VT.getStoreSize())
4352     report_fatal_error("Cannot generate unaligned atomic store");
4353 
4354   SDValue OutChain =
4355     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4356                   InChain,
4357                   getValue(I.getPointerOperand()),
4358                   getValue(I.getValueOperand()),
4359                   I.getPointerOperand(), I.getAlignment(),
4360                   Order, SSID);
4361 
4362   DAG.setRoot(OutChain);
4363 }
4364 
4365 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4366 /// node.
4367 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4368                                                unsigned Intrinsic) {
4369   // Ignore the callsite's attributes. A specific call site may be marked with
4370   // readnone, but the lowering code will expect the chain based on the
4371   // definition.
4372   const Function *F = I.getCalledFunction();
4373   bool HasChain = !F->doesNotAccessMemory();
4374   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4375 
4376   // Build the operand list.
4377   SmallVector<SDValue, 8> Ops;
4378   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4379     if (OnlyLoad) {
4380       // We don't need to serialize loads against other loads.
4381       Ops.push_back(DAG.getRoot());
4382     } else {
4383       Ops.push_back(getRoot());
4384     }
4385   }
4386 
4387   // Info is set by getTgtMemInstrinsic
4388   TargetLowering::IntrinsicInfo Info;
4389   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4390   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4391                                                DAG.getMachineFunction(),
4392                                                Intrinsic);
4393 
4394   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4395   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4396       Info.opc == ISD::INTRINSIC_W_CHAIN)
4397     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4398                                         TLI.getPointerTy(DAG.getDataLayout())));
4399 
4400   // Add all operands of the call to the operand list.
4401   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4402     SDValue Op = getValue(I.getArgOperand(i));
4403     Ops.push_back(Op);
4404   }
4405 
4406   SmallVector<EVT, 4> ValueVTs;
4407   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4408 
4409   if (HasChain)
4410     ValueVTs.push_back(MVT::Other);
4411 
4412   SDVTList VTs = DAG.getVTList(ValueVTs);
4413 
4414   // Create the node.
4415   SDValue Result;
4416   if (IsTgtIntrinsic) {
4417     // This is target intrinsic that touches memory
4418     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4419       Ops, Info.memVT,
4420       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4421       Info.flags, Info.size);
4422   } else if (!HasChain) {
4423     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4424   } else if (!I.getType()->isVoidTy()) {
4425     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4426   } else {
4427     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4428   }
4429 
4430   if (HasChain) {
4431     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4432     if (OnlyLoad)
4433       PendingLoads.push_back(Chain);
4434     else
4435       DAG.setRoot(Chain);
4436   }
4437 
4438   if (!I.getType()->isVoidTy()) {
4439     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4440       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4441       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4442     } else
4443       Result = lowerRangeToAssertZExt(DAG, I, Result);
4444 
4445     setValue(&I, Result);
4446   }
4447 }
4448 
4449 /// GetSignificand - Get the significand and build it into a floating-point
4450 /// number with exponent of 1:
4451 ///
4452 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4453 ///
4454 /// where Op is the hexadecimal representation of floating point value.
4455 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4456   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4457                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4458   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4459                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4460   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4461 }
4462 
4463 /// GetExponent - Get the exponent:
4464 ///
4465 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4466 ///
4467 /// where Op is the hexadecimal representation of floating point value.
4468 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4469                            const TargetLowering &TLI, const SDLoc &dl) {
4470   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4471                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4472   SDValue t1 = DAG.getNode(
4473       ISD::SRL, dl, MVT::i32, t0,
4474       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4475   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4476                            DAG.getConstant(127, dl, MVT::i32));
4477   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4478 }
4479 
4480 /// getF32Constant - Get 32-bit floating point constant.
4481 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4482                               const SDLoc &dl) {
4483   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4484                            MVT::f32);
4485 }
4486 
4487 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4488                                        SelectionDAG &DAG) {
4489   // TODO: What fast-math-flags should be set on the floating-point nodes?
4490 
4491   //   IntegerPartOfX = ((int32_t)(t0);
4492   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4493 
4494   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4495   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4496   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4497 
4498   //   IntegerPartOfX <<= 23;
4499   IntegerPartOfX = DAG.getNode(
4500       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4501       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4502                                   DAG.getDataLayout())));
4503 
4504   SDValue TwoToFractionalPartOfX;
4505   if (LimitFloatPrecision <= 6) {
4506     // For floating-point precision of 6:
4507     //
4508     //   TwoToFractionalPartOfX =
4509     //     0.997535578f +
4510     //       (0.735607626f + 0.252464424f * x) * x;
4511     //
4512     // error 0.0144103317, which is 6 bits
4513     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4514                              getF32Constant(DAG, 0x3e814304, dl));
4515     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4516                              getF32Constant(DAG, 0x3f3c50c8, dl));
4517     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4518     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4519                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4520   } else if (LimitFloatPrecision <= 12) {
4521     // For floating-point precision of 12:
4522     //
4523     //   TwoToFractionalPartOfX =
4524     //     0.999892986f +
4525     //       (0.696457318f +
4526     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4527     //
4528     // error 0.000107046256, which is 13 to 14 bits
4529     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4530                              getF32Constant(DAG, 0x3da235e3, dl));
4531     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4532                              getF32Constant(DAG, 0x3e65b8f3, dl));
4533     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4534     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4535                              getF32Constant(DAG, 0x3f324b07, dl));
4536     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4537     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4538                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4539   } else { // LimitFloatPrecision <= 18
4540     // For floating-point precision of 18:
4541     //
4542     //   TwoToFractionalPartOfX =
4543     //     0.999999982f +
4544     //       (0.693148872f +
4545     //         (0.240227044f +
4546     //           (0.554906021e-1f +
4547     //             (0.961591928e-2f +
4548     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4549     // error 2.47208000*10^(-7), which is better than 18 bits
4550     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4551                              getF32Constant(DAG, 0x3924b03e, dl));
4552     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4553                              getF32Constant(DAG, 0x3ab24b87, dl));
4554     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4555     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4556                              getF32Constant(DAG, 0x3c1d8c17, dl));
4557     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4558     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4559                              getF32Constant(DAG, 0x3d634a1d, dl));
4560     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4561     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4562                              getF32Constant(DAG, 0x3e75fe14, dl));
4563     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4564     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4565                               getF32Constant(DAG, 0x3f317234, dl));
4566     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4567     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4568                                          getF32Constant(DAG, 0x3f800000, dl));
4569   }
4570 
4571   // Add the exponent into the result in integer domain.
4572   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4573   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4574                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4575 }
4576 
4577 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4578 /// limited-precision mode.
4579 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4580                          const TargetLowering &TLI) {
4581   if (Op.getValueType() == MVT::f32 &&
4582       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4583 
4584     // Put the exponent in the right bit position for later addition to the
4585     // final result:
4586     //
4587     //   #define LOG2OFe 1.4426950f
4588     //   t0 = Op * LOG2OFe
4589 
4590     // TODO: What fast-math-flags should be set here?
4591     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4592                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4593     return getLimitedPrecisionExp2(t0, dl, DAG);
4594   }
4595 
4596   // No special expansion.
4597   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4598 }
4599 
4600 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4601 /// limited-precision mode.
4602 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4603                          const TargetLowering &TLI) {
4604   // TODO: What fast-math-flags should be set on the floating-point nodes?
4605 
4606   if (Op.getValueType() == MVT::f32 &&
4607       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4608     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4609 
4610     // Scale the exponent by log(2) [0.69314718f].
4611     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4612     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4613                                         getF32Constant(DAG, 0x3f317218, dl));
4614 
4615     // Get the significand and build it into a floating-point number with
4616     // exponent of 1.
4617     SDValue X = GetSignificand(DAG, Op1, dl);
4618 
4619     SDValue LogOfMantissa;
4620     if (LimitFloatPrecision <= 6) {
4621       // For floating-point precision of 6:
4622       //
4623       //   LogofMantissa =
4624       //     -1.1609546f +
4625       //       (1.4034025f - 0.23903021f * x) * x;
4626       //
4627       // error 0.0034276066, which is better than 8 bits
4628       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4629                                getF32Constant(DAG, 0xbe74c456, dl));
4630       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4631                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4632       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4633       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4634                                   getF32Constant(DAG, 0x3f949a29, dl));
4635     } else if (LimitFloatPrecision <= 12) {
4636       // For floating-point precision of 12:
4637       //
4638       //   LogOfMantissa =
4639       //     -1.7417939f +
4640       //       (2.8212026f +
4641       //         (-1.4699568f +
4642       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4643       //
4644       // error 0.000061011436, which is 14 bits
4645       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4646                                getF32Constant(DAG, 0xbd67b6d6, dl));
4647       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4648                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4649       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4650       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4651                                getF32Constant(DAG, 0x3fbc278b, dl));
4652       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4653       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4654                                getF32Constant(DAG, 0x40348e95, dl));
4655       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4656       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4657                                   getF32Constant(DAG, 0x3fdef31a, dl));
4658     } else { // LimitFloatPrecision <= 18
4659       // For floating-point precision of 18:
4660       //
4661       //   LogOfMantissa =
4662       //     -2.1072184f +
4663       //       (4.2372794f +
4664       //         (-3.7029485f +
4665       //           (2.2781945f +
4666       //             (-0.87823314f +
4667       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4668       //
4669       // error 0.0000023660568, which is better than 18 bits
4670       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4671                                getF32Constant(DAG, 0xbc91e5ac, dl));
4672       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4673                                getF32Constant(DAG, 0x3e4350aa, dl));
4674       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4675       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4676                                getF32Constant(DAG, 0x3f60d3e3, dl));
4677       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4678       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4679                                getF32Constant(DAG, 0x4011cdf0, dl));
4680       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4681       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4682                                getF32Constant(DAG, 0x406cfd1c, dl));
4683       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4684       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4685                                getF32Constant(DAG, 0x408797cb, dl));
4686       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4687       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4688                                   getF32Constant(DAG, 0x4006dcab, dl));
4689     }
4690 
4691     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4692   }
4693 
4694   // No special expansion.
4695   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4696 }
4697 
4698 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4699 /// limited-precision mode.
4700 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4701                           const TargetLowering &TLI) {
4702   // TODO: What fast-math-flags should be set on the floating-point nodes?
4703 
4704   if (Op.getValueType() == MVT::f32 &&
4705       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4706     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4707 
4708     // Get the exponent.
4709     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4710 
4711     // Get the significand and build it into a floating-point number with
4712     // exponent of 1.
4713     SDValue X = GetSignificand(DAG, Op1, dl);
4714 
4715     // Different possible minimax approximations of significand in
4716     // floating-point for various degrees of accuracy over [1,2].
4717     SDValue Log2ofMantissa;
4718     if (LimitFloatPrecision <= 6) {
4719       // For floating-point precision of 6:
4720       //
4721       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4722       //
4723       // error 0.0049451742, which is more than 7 bits
4724       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4725                                getF32Constant(DAG, 0xbeb08fe0, dl));
4726       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4727                                getF32Constant(DAG, 0x40019463, dl));
4728       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4729       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4730                                    getF32Constant(DAG, 0x3fd6633d, dl));
4731     } else if (LimitFloatPrecision <= 12) {
4732       // For floating-point precision of 12:
4733       //
4734       //   Log2ofMantissa =
4735       //     -2.51285454f +
4736       //       (4.07009056f +
4737       //         (-2.12067489f +
4738       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4739       //
4740       // error 0.0000876136000, which is better than 13 bits
4741       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4742                                getF32Constant(DAG, 0xbda7262e, dl));
4743       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4744                                getF32Constant(DAG, 0x3f25280b, dl));
4745       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4746       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4747                                getF32Constant(DAG, 0x4007b923, dl));
4748       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4749       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4750                                getF32Constant(DAG, 0x40823e2f, dl));
4751       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4752       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4753                                    getF32Constant(DAG, 0x4020d29c, dl));
4754     } else { // LimitFloatPrecision <= 18
4755       // For floating-point precision of 18:
4756       //
4757       //   Log2ofMantissa =
4758       //     -3.0400495f +
4759       //       (6.1129976f +
4760       //         (-5.3420409f +
4761       //           (3.2865683f +
4762       //             (-1.2669343f +
4763       //               (0.27515199f -
4764       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4765       //
4766       // error 0.0000018516, which is better than 18 bits
4767       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4768                                getF32Constant(DAG, 0xbcd2769e, dl));
4769       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4770                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4771       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4772       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4773                                getF32Constant(DAG, 0x3fa22ae7, dl));
4774       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4775       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4776                                getF32Constant(DAG, 0x40525723, dl));
4777       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4778       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4779                                getF32Constant(DAG, 0x40aaf200, dl));
4780       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4781       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4782                                getF32Constant(DAG, 0x40c39dad, dl));
4783       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4784       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4785                                    getF32Constant(DAG, 0x4042902c, dl));
4786     }
4787 
4788     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4789   }
4790 
4791   // No special expansion.
4792   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4793 }
4794 
4795 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4796 /// limited-precision mode.
4797 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4798                            const TargetLowering &TLI) {
4799   // TODO: What fast-math-flags should be set on the floating-point nodes?
4800 
4801   if (Op.getValueType() == MVT::f32 &&
4802       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4803     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4804 
4805     // Scale the exponent by log10(2) [0.30102999f].
4806     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4807     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4808                                         getF32Constant(DAG, 0x3e9a209a, dl));
4809 
4810     // Get the significand and build it into a floating-point number with
4811     // exponent of 1.
4812     SDValue X = GetSignificand(DAG, Op1, dl);
4813 
4814     SDValue Log10ofMantissa;
4815     if (LimitFloatPrecision <= 6) {
4816       // For floating-point precision of 6:
4817       //
4818       //   Log10ofMantissa =
4819       //     -0.50419619f +
4820       //       (0.60948995f - 0.10380950f * x) * x;
4821       //
4822       // error 0.0014886165, which is 6 bits
4823       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4824                                getF32Constant(DAG, 0xbdd49a13, dl));
4825       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4826                                getF32Constant(DAG, 0x3f1c0789, dl));
4827       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4828       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4829                                     getF32Constant(DAG, 0x3f011300, dl));
4830     } else if (LimitFloatPrecision <= 12) {
4831       // For floating-point precision of 12:
4832       //
4833       //   Log10ofMantissa =
4834       //     -0.64831180f +
4835       //       (0.91751397f +
4836       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4837       //
4838       // error 0.00019228036, which is better than 12 bits
4839       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4840                                getF32Constant(DAG, 0x3d431f31, dl));
4841       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4842                                getF32Constant(DAG, 0x3ea21fb2, dl));
4843       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4844       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4845                                getF32Constant(DAG, 0x3f6ae232, dl));
4846       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4847       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4848                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4849     } else { // LimitFloatPrecision <= 18
4850       // For floating-point precision of 18:
4851       //
4852       //   Log10ofMantissa =
4853       //     -0.84299375f +
4854       //       (1.5327582f +
4855       //         (-1.0688956f +
4856       //           (0.49102474f +
4857       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4858       //
4859       // error 0.0000037995730, which is better than 18 bits
4860       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4861                                getF32Constant(DAG, 0x3c5d51ce, dl));
4862       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4863                                getF32Constant(DAG, 0x3e00685a, dl));
4864       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4865       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4866                                getF32Constant(DAG, 0x3efb6798, dl));
4867       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4868       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4869                                getF32Constant(DAG, 0x3f88d192, dl));
4870       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4871       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4872                                getF32Constant(DAG, 0x3fc4316c, dl));
4873       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4874       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4875                                     getF32Constant(DAG, 0x3f57ce70, dl));
4876     }
4877 
4878     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4879   }
4880 
4881   // No special expansion.
4882   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4883 }
4884 
4885 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4886 /// limited-precision mode.
4887 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4888                           const TargetLowering &TLI) {
4889   if (Op.getValueType() == MVT::f32 &&
4890       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4891     return getLimitedPrecisionExp2(Op, dl, DAG);
4892 
4893   // No special expansion.
4894   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4895 }
4896 
4897 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4898 /// limited-precision mode with x == 10.0f.
4899 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4900                          SelectionDAG &DAG, const TargetLowering &TLI) {
4901   bool IsExp10 = false;
4902   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4903       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4904     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4905       APFloat Ten(10.0f);
4906       IsExp10 = LHSC->isExactlyValue(Ten);
4907     }
4908   }
4909 
4910   // TODO: What fast-math-flags should be set on the FMUL node?
4911   if (IsExp10) {
4912     // Put the exponent in the right bit position for later addition to the
4913     // final result:
4914     //
4915     //   #define LOG2OF10 3.3219281f
4916     //   t0 = Op * LOG2OF10;
4917     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4918                              getF32Constant(DAG, 0x40549a78, dl));
4919     return getLimitedPrecisionExp2(t0, dl, DAG);
4920   }
4921 
4922   // No special expansion.
4923   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4924 }
4925 
4926 /// ExpandPowI - Expand a llvm.powi intrinsic.
4927 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4928                           SelectionDAG &DAG) {
4929   // If RHS is a constant, we can expand this out to a multiplication tree,
4930   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4931   // optimizing for size, we only want to do this if the expansion would produce
4932   // a small number of multiplies, otherwise we do the full expansion.
4933   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4934     // Get the exponent as a positive value.
4935     unsigned Val = RHSC->getSExtValue();
4936     if ((int)Val < 0) Val = -Val;
4937 
4938     // powi(x, 0) -> 1.0
4939     if (Val == 0)
4940       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4941 
4942     const Function &F = DAG.getMachineFunction().getFunction();
4943     if (!F.optForSize() ||
4944         // If optimizing for size, don't insert too many multiplies.
4945         // This inserts up to 5 multiplies.
4946         countPopulation(Val) + Log2_32(Val) < 7) {
4947       // We use the simple binary decomposition method to generate the multiply
4948       // sequence.  There are more optimal ways to do this (for example,
4949       // powi(x,15) generates one more multiply than it should), but this has
4950       // the benefit of being both really simple and much better than a libcall.
4951       SDValue Res;  // Logically starts equal to 1.0
4952       SDValue CurSquare = LHS;
4953       // TODO: Intrinsics should have fast-math-flags that propagate to these
4954       // nodes.
4955       while (Val) {
4956         if (Val & 1) {
4957           if (Res.getNode())
4958             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4959           else
4960             Res = CurSquare;  // 1.0*CurSquare.
4961         }
4962 
4963         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4964                                 CurSquare, CurSquare);
4965         Val >>= 1;
4966       }
4967 
4968       // If the original was negative, invert the result, producing 1/(x*x*x).
4969       if (RHSC->getSExtValue() < 0)
4970         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4971                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4972       return Res;
4973     }
4974   }
4975 
4976   // Otherwise, expand to a libcall.
4977   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4978 }
4979 
4980 // getUnderlyingArgReg - Find underlying register used for a truncated or
4981 // bitcasted argument.
4982 static unsigned getUnderlyingArgReg(const SDValue &N) {
4983   switch (N.getOpcode()) {
4984   case ISD::CopyFromReg:
4985     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4986   case ISD::BITCAST:
4987   case ISD::AssertZext:
4988   case ISD::AssertSext:
4989   case ISD::TRUNCATE:
4990     return getUnderlyingArgReg(N.getOperand(0));
4991   default:
4992     return 0;
4993   }
4994 }
4995 
4996 /// If the DbgValueInst is a dbg_value of a function argument, create the
4997 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4998 /// instruction selection, they will be inserted to the entry BB.
4999 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5000     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5001     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5002   const Argument *Arg = dyn_cast<Argument>(V);
5003   if (!Arg)
5004     return false;
5005 
5006   MachineFunction &MF = DAG.getMachineFunction();
5007   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5008 
5009   bool IsIndirect = false;
5010   Optional<MachineOperand> Op;
5011   // Some arguments' frame index is recorded during argument lowering.
5012   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5013   if (FI != std::numeric_limits<int>::max())
5014     Op = MachineOperand::CreateFI(FI);
5015 
5016   if (!Op && N.getNode()) {
5017     unsigned Reg = getUnderlyingArgReg(N);
5018     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5019       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5020       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5021       if (PR)
5022         Reg = PR;
5023     }
5024     if (Reg) {
5025       Op = MachineOperand::CreateReg(Reg, false);
5026       IsIndirect = IsDbgDeclare;
5027     }
5028   }
5029 
5030   if (!Op && N.getNode())
5031     // Check if frame index is available.
5032     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
5033       if (FrameIndexSDNode *FINode =
5034           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5035         Op = MachineOperand::CreateFI(FINode->getIndex());
5036 
5037   if (!Op) {
5038     // Check if ValueMap has reg number.
5039     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5040     if (VMI != FuncInfo.ValueMap.end()) {
5041       const auto &TLI = DAG.getTargetLoweringInfo();
5042       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5043                        V->getType(), getABIRegCopyCC(V));
5044       if (RFV.occupiesMultipleRegs()) {
5045         unsigned Offset = 0;
5046         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5047           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5048           auto FragmentExpr = DIExpression::createFragmentExpression(
5049               Expr, Offset, RegAndSize.second);
5050           if (!FragmentExpr)
5051             continue;
5052           FuncInfo.ArgDbgValues.push_back(
5053               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5054                       Op->getReg(), Variable, *FragmentExpr));
5055           Offset += RegAndSize.second;
5056         }
5057         return true;
5058       }
5059       Op = MachineOperand::CreateReg(VMI->second, false);
5060       IsIndirect = IsDbgDeclare;
5061     }
5062   }
5063 
5064   if (!Op)
5065     return false;
5066 
5067   assert(Variable->isValidLocationForIntrinsic(DL) &&
5068          "Expected inlined-at fields to agree");
5069   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5070   FuncInfo.ArgDbgValues.push_back(
5071       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5072               *Op, Variable, Expr));
5073 
5074   return true;
5075 }
5076 
5077 /// Return the appropriate SDDbgValue based on N.
5078 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5079                                              DILocalVariable *Variable,
5080                                              DIExpression *Expr,
5081                                              const DebugLoc &dl,
5082                                              unsigned DbgSDNodeOrder) {
5083   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5084     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5085     // stack slot locations.
5086     //
5087     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5088     // debug values here after optimization:
5089     //
5090     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5091     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5092     //
5093     // Both describe the direct values of their associated variables.
5094     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5095                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5096   }
5097   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5098                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5099 }
5100 
5101 // VisualStudio defines setjmp as _setjmp
5102 #if defined(_MSC_VER) && defined(setjmp) && \
5103                          !defined(setjmp_undefined_for_msvc)
5104 #  pragma push_macro("setjmp")
5105 #  undef setjmp
5106 #  define setjmp_undefined_for_msvc
5107 #endif
5108 
5109 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5110   switch (Intrinsic) {
5111   case Intrinsic::smul_fix:
5112     return ISD::SMULFIX;
5113   case Intrinsic::umul_fix:
5114     return ISD::UMULFIX;
5115   default:
5116     llvm_unreachable("Unhandled fixed point intrinsic");
5117   }
5118 }
5119 
5120 /// Lower the call to the specified intrinsic function. If we want to emit this
5121 /// as a call to a named external function, return the name. Otherwise, lower it
5122 /// and return null.
5123 const char *
5124 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5126   SDLoc sdl = getCurSDLoc();
5127   DebugLoc dl = getCurDebugLoc();
5128   SDValue Res;
5129 
5130   switch (Intrinsic) {
5131   default:
5132     // By default, turn this into a target intrinsic node.
5133     visitTargetIntrinsic(I, Intrinsic);
5134     return nullptr;
5135   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5136   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5137   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5138   case Intrinsic::returnaddress:
5139     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5140                              TLI.getPointerTy(DAG.getDataLayout()),
5141                              getValue(I.getArgOperand(0))));
5142     return nullptr;
5143   case Intrinsic::addressofreturnaddress:
5144     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5145                              TLI.getPointerTy(DAG.getDataLayout())));
5146     return nullptr;
5147   case Intrinsic::sponentry:
5148     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5149                              TLI.getPointerTy(DAG.getDataLayout())));
5150     return nullptr;
5151   case Intrinsic::frameaddress:
5152     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5153                              TLI.getPointerTy(DAG.getDataLayout()),
5154                              getValue(I.getArgOperand(0))));
5155     return nullptr;
5156   case Intrinsic::read_register: {
5157     Value *Reg = I.getArgOperand(0);
5158     SDValue Chain = getRoot();
5159     SDValue RegName =
5160         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5161     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5162     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5163       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5164     setValue(&I, Res);
5165     DAG.setRoot(Res.getValue(1));
5166     return nullptr;
5167   }
5168   case Intrinsic::write_register: {
5169     Value *Reg = I.getArgOperand(0);
5170     Value *RegValue = I.getArgOperand(1);
5171     SDValue Chain = getRoot();
5172     SDValue RegName =
5173         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5174     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5175                             RegName, getValue(RegValue)));
5176     return nullptr;
5177   }
5178   case Intrinsic::setjmp:
5179     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5180   case Intrinsic::longjmp:
5181     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5182   case Intrinsic::memcpy: {
5183     const auto &MCI = cast<MemCpyInst>(I);
5184     SDValue Op1 = getValue(I.getArgOperand(0));
5185     SDValue Op2 = getValue(I.getArgOperand(1));
5186     SDValue Op3 = getValue(I.getArgOperand(2));
5187     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5188     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5189     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5190     unsigned Align = MinAlign(DstAlign, SrcAlign);
5191     bool isVol = MCI.isVolatile();
5192     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5193     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5194     // node.
5195     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5196                                false, isTC,
5197                                MachinePointerInfo(I.getArgOperand(0)),
5198                                MachinePointerInfo(I.getArgOperand(1)));
5199     updateDAGForMaybeTailCall(MC);
5200     return nullptr;
5201   }
5202   case Intrinsic::memset: {
5203     const auto &MSI = cast<MemSetInst>(I);
5204     SDValue Op1 = getValue(I.getArgOperand(0));
5205     SDValue Op2 = getValue(I.getArgOperand(1));
5206     SDValue Op3 = getValue(I.getArgOperand(2));
5207     // @llvm.memset defines 0 and 1 to both mean no alignment.
5208     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5209     bool isVol = MSI.isVolatile();
5210     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5211     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5212                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5213     updateDAGForMaybeTailCall(MS);
5214     return nullptr;
5215   }
5216   case Intrinsic::memmove: {
5217     const auto &MMI = cast<MemMoveInst>(I);
5218     SDValue Op1 = getValue(I.getArgOperand(0));
5219     SDValue Op2 = getValue(I.getArgOperand(1));
5220     SDValue Op3 = getValue(I.getArgOperand(2));
5221     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5222     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5223     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5224     unsigned Align = MinAlign(DstAlign, SrcAlign);
5225     bool isVol = MMI.isVolatile();
5226     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5227     // FIXME: Support passing different dest/src alignments to the memmove DAG
5228     // node.
5229     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5230                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5231                                 MachinePointerInfo(I.getArgOperand(1)));
5232     updateDAGForMaybeTailCall(MM);
5233     return nullptr;
5234   }
5235   case Intrinsic::memcpy_element_unordered_atomic: {
5236     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5237     SDValue Dst = getValue(MI.getRawDest());
5238     SDValue Src = getValue(MI.getRawSource());
5239     SDValue Length = getValue(MI.getLength());
5240 
5241     unsigned DstAlign = MI.getDestAlignment();
5242     unsigned SrcAlign = MI.getSourceAlignment();
5243     Type *LengthTy = MI.getLength()->getType();
5244     unsigned ElemSz = MI.getElementSizeInBytes();
5245     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5246     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5247                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5248                                      MachinePointerInfo(MI.getRawDest()),
5249                                      MachinePointerInfo(MI.getRawSource()));
5250     updateDAGForMaybeTailCall(MC);
5251     return nullptr;
5252   }
5253   case Intrinsic::memmove_element_unordered_atomic: {
5254     auto &MI = cast<AtomicMemMoveInst>(I);
5255     SDValue Dst = getValue(MI.getRawDest());
5256     SDValue Src = getValue(MI.getRawSource());
5257     SDValue Length = getValue(MI.getLength());
5258 
5259     unsigned DstAlign = MI.getDestAlignment();
5260     unsigned SrcAlign = MI.getSourceAlignment();
5261     Type *LengthTy = MI.getLength()->getType();
5262     unsigned ElemSz = MI.getElementSizeInBytes();
5263     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5264     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5265                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5266                                       MachinePointerInfo(MI.getRawDest()),
5267                                       MachinePointerInfo(MI.getRawSource()));
5268     updateDAGForMaybeTailCall(MC);
5269     return nullptr;
5270   }
5271   case Intrinsic::memset_element_unordered_atomic: {
5272     auto &MI = cast<AtomicMemSetInst>(I);
5273     SDValue Dst = getValue(MI.getRawDest());
5274     SDValue Val = getValue(MI.getValue());
5275     SDValue Length = getValue(MI.getLength());
5276 
5277     unsigned DstAlign = MI.getDestAlignment();
5278     Type *LengthTy = MI.getLength()->getType();
5279     unsigned ElemSz = MI.getElementSizeInBytes();
5280     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5281     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5282                                      LengthTy, ElemSz, isTC,
5283                                      MachinePointerInfo(MI.getRawDest()));
5284     updateDAGForMaybeTailCall(MC);
5285     return nullptr;
5286   }
5287   case Intrinsic::dbg_addr:
5288   case Intrinsic::dbg_declare: {
5289     const auto &DI = cast<DbgVariableIntrinsic>(I);
5290     DILocalVariable *Variable = DI.getVariable();
5291     DIExpression *Expression = DI.getExpression();
5292     dropDanglingDebugInfo(Variable, Expression);
5293     assert(Variable && "Missing variable");
5294 
5295     // Check if address has undef value.
5296     const Value *Address = DI.getVariableLocation();
5297     if (!Address || isa<UndefValue>(Address) ||
5298         (Address->use_empty() && !isa<Argument>(Address))) {
5299       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5300       return nullptr;
5301     }
5302 
5303     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5304 
5305     // Check if this variable can be described by a frame index, typically
5306     // either as a static alloca or a byval parameter.
5307     int FI = std::numeric_limits<int>::max();
5308     if (const auto *AI =
5309             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5310       if (AI->isStaticAlloca()) {
5311         auto I = FuncInfo.StaticAllocaMap.find(AI);
5312         if (I != FuncInfo.StaticAllocaMap.end())
5313           FI = I->second;
5314       }
5315     } else if (const auto *Arg = dyn_cast<Argument>(
5316                    Address->stripInBoundsConstantOffsets())) {
5317       FI = FuncInfo.getArgumentFrameIndex(Arg);
5318     }
5319 
5320     // llvm.dbg.addr is control dependent and always generates indirect
5321     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5322     // the MachineFunction variable table.
5323     if (FI != std::numeric_limits<int>::max()) {
5324       if (Intrinsic == Intrinsic::dbg_addr) {
5325         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5326             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5327         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5328       }
5329       return nullptr;
5330     }
5331 
5332     SDValue &N = NodeMap[Address];
5333     if (!N.getNode() && isa<Argument>(Address))
5334       // Check unused arguments map.
5335       N = UnusedArgNodeMap[Address];
5336     SDDbgValue *SDV;
5337     if (N.getNode()) {
5338       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5339         Address = BCI->getOperand(0);
5340       // Parameters are handled specially.
5341       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5342       if (isParameter && FINode) {
5343         // Byval parameter. We have a frame index at this point.
5344         SDV =
5345             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5346                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5347       } else if (isa<Argument>(Address)) {
5348         // Address is an argument, so try to emit its dbg value using
5349         // virtual register info from the FuncInfo.ValueMap.
5350         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5351         return nullptr;
5352       } else {
5353         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5354                               true, dl, SDNodeOrder);
5355       }
5356       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5357     } else {
5358       // If Address is an argument then try to emit its dbg value using
5359       // virtual register info from the FuncInfo.ValueMap.
5360       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5361                                     N)) {
5362         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5363       }
5364     }
5365     return nullptr;
5366   }
5367   case Intrinsic::dbg_label: {
5368     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5369     DILabel *Label = DI.getLabel();
5370     assert(Label && "Missing label");
5371 
5372     SDDbgLabel *SDV;
5373     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5374     DAG.AddDbgLabel(SDV);
5375     return nullptr;
5376   }
5377   case Intrinsic::dbg_value: {
5378     const DbgValueInst &DI = cast<DbgValueInst>(I);
5379     assert(DI.getVariable() && "Missing variable");
5380 
5381     DILocalVariable *Variable = DI.getVariable();
5382     DIExpression *Expression = DI.getExpression();
5383     dropDanglingDebugInfo(Variable, Expression);
5384     const Value *V = DI.getValue();
5385     if (!V)
5386       return nullptr;
5387 
5388     SDDbgValue *SDV;
5389     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
5390         isa<ConstantPointerNull>(V)) {
5391       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5392       DAG.AddDbgValue(SDV, nullptr, false);
5393       return nullptr;
5394     }
5395 
5396     // If the Value is a frame index, we can create a FrameIndex debug value
5397     // without relying on the DAG at all.
5398     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
5399       auto SI = FuncInfo.StaticAllocaMap.find(AI);
5400       if (SI != FuncInfo.StaticAllocaMap.end()) {
5401         auto SDV =
5402             DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
5403                                       /*IsIndirect*/ false, dl, SDNodeOrder);
5404         // Do not attach the SDNodeDbgValue to an SDNode: this variable location
5405         // is still available even if the SDNode gets optimized out.
5406         DAG.AddDbgValue(SDV, nullptr, false);
5407         return nullptr;
5408       }
5409     }
5410 
5411     // Do not use getValue() in here; we don't want to generate code at
5412     // this point if it hasn't been done yet.
5413     SDValue N = NodeMap[V];
5414     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5415       N = UnusedArgNodeMap[V];
5416     if (N.getNode()) {
5417       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5418         return nullptr;
5419       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5420       DAG.AddDbgValue(SDV, N.getNode(), false);
5421       return nullptr;
5422     }
5423 
5424     // The value is not used in this block yet (or it would have an SDNode).
5425     // We still want the value to appear for the user if possible -- if it has
5426     // an associated VReg, we can refer to that instead.
5427     if (!isa<Argument>(V)) {
5428       auto VMI = FuncInfo.ValueMap.find(V);
5429       if (VMI != FuncInfo.ValueMap.end()) {
5430         unsigned Reg = VMI->second;
5431         // If this is a PHI node, it may be split up into several MI PHI nodes
5432         // (in FunctionLoweringInfo::set).
5433         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5434                          V->getType(), None);
5435         if (RFV.occupiesMultipleRegs()) {
5436           unsigned Offset = 0;
5437           unsigned BitsToDescribe = 0;
5438           if (auto VarSize = Variable->getSizeInBits())
5439             BitsToDescribe = *VarSize;
5440           if (auto Fragment = Expression->getFragmentInfo())
5441             BitsToDescribe = Fragment->SizeInBits;
5442           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5443             unsigned RegisterSize = RegAndSize.second;
5444             // Bail out if all bits are described already.
5445             if (Offset >= BitsToDescribe)
5446               break;
5447             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5448                 ? BitsToDescribe - Offset
5449                 : RegisterSize;
5450             auto FragmentExpr = DIExpression::createFragmentExpression(
5451                 Expression, Offset, FragmentSize);
5452             if (!FragmentExpr)
5453                 continue;
5454             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5455                                       false, dl, SDNodeOrder);
5456             DAG.AddDbgValue(SDV, nullptr, false);
5457             Offset += RegisterSize;
5458           }
5459         } else {
5460           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5461                                     SDNodeOrder);
5462           DAG.AddDbgValue(SDV, nullptr, false);
5463         }
5464         return nullptr;
5465       }
5466     }
5467 
5468     // TODO: When we get here we will either drop the dbg.value completely, or
5469     // we try to move it forward by letting it dangle for awhile. So we should
5470     // probably add an extra DbgValue to the DAG here, with a reference to
5471     // "noreg", to indicate that we have lost the debug location for the
5472     // variable.
5473 
5474     if (!V->use_empty() ) {
5475       // Do not call getValue(V) yet, as we don't want to generate code.
5476       // Remember it for later.
5477       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5478       return nullptr;
5479     }
5480 
5481     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5482     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5483     return nullptr;
5484   }
5485 
5486   case Intrinsic::eh_typeid_for: {
5487     // Find the type id for the given typeinfo.
5488     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5489     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5490     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5491     setValue(&I, Res);
5492     return nullptr;
5493   }
5494 
5495   case Intrinsic::eh_return_i32:
5496   case Intrinsic::eh_return_i64:
5497     DAG.getMachineFunction().setCallsEHReturn(true);
5498     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5499                             MVT::Other,
5500                             getControlRoot(),
5501                             getValue(I.getArgOperand(0)),
5502                             getValue(I.getArgOperand(1))));
5503     return nullptr;
5504   case Intrinsic::eh_unwind_init:
5505     DAG.getMachineFunction().setCallsUnwindInit(true);
5506     return nullptr;
5507   case Intrinsic::eh_dwarf_cfa:
5508     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5509                              TLI.getPointerTy(DAG.getDataLayout()),
5510                              getValue(I.getArgOperand(0))));
5511     return nullptr;
5512   case Intrinsic::eh_sjlj_callsite: {
5513     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5514     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5515     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5516     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5517 
5518     MMI.setCurrentCallSite(CI->getZExtValue());
5519     return nullptr;
5520   }
5521   case Intrinsic::eh_sjlj_functioncontext: {
5522     // Get and store the index of the function context.
5523     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5524     AllocaInst *FnCtx =
5525       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5526     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5527     MFI.setFunctionContextIndex(FI);
5528     return nullptr;
5529   }
5530   case Intrinsic::eh_sjlj_setjmp: {
5531     SDValue Ops[2];
5532     Ops[0] = getRoot();
5533     Ops[1] = getValue(I.getArgOperand(0));
5534     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5535                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5536     setValue(&I, Op.getValue(0));
5537     DAG.setRoot(Op.getValue(1));
5538     return nullptr;
5539   }
5540   case Intrinsic::eh_sjlj_longjmp:
5541     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5542                             getRoot(), getValue(I.getArgOperand(0))));
5543     return nullptr;
5544   case Intrinsic::eh_sjlj_setup_dispatch:
5545     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5546                             getRoot()));
5547     return nullptr;
5548   case Intrinsic::masked_gather:
5549     visitMaskedGather(I);
5550     return nullptr;
5551   case Intrinsic::masked_load:
5552     visitMaskedLoad(I);
5553     return nullptr;
5554   case Intrinsic::masked_scatter:
5555     visitMaskedScatter(I);
5556     return nullptr;
5557   case Intrinsic::masked_store:
5558     visitMaskedStore(I);
5559     return nullptr;
5560   case Intrinsic::masked_expandload:
5561     visitMaskedLoad(I, true /* IsExpanding */);
5562     return nullptr;
5563   case Intrinsic::masked_compressstore:
5564     visitMaskedStore(I, true /* IsCompressing */);
5565     return nullptr;
5566   case Intrinsic::x86_mmx_pslli_w:
5567   case Intrinsic::x86_mmx_pslli_d:
5568   case Intrinsic::x86_mmx_pslli_q:
5569   case Intrinsic::x86_mmx_psrli_w:
5570   case Intrinsic::x86_mmx_psrli_d:
5571   case Intrinsic::x86_mmx_psrli_q:
5572   case Intrinsic::x86_mmx_psrai_w:
5573   case Intrinsic::x86_mmx_psrai_d: {
5574     SDValue ShAmt = getValue(I.getArgOperand(1));
5575     if (isa<ConstantSDNode>(ShAmt)) {
5576       visitTargetIntrinsic(I, Intrinsic);
5577       return nullptr;
5578     }
5579     unsigned NewIntrinsic = 0;
5580     EVT ShAmtVT = MVT::v2i32;
5581     switch (Intrinsic) {
5582     case Intrinsic::x86_mmx_pslli_w:
5583       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5584       break;
5585     case Intrinsic::x86_mmx_pslli_d:
5586       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5587       break;
5588     case Intrinsic::x86_mmx_pslli_q:
5589       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5590       break;
5591     case Intrinsic::x86_mmx_psrli_w:
5592       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5593       break;
5594     case Intrinsic::x86_mmx_psrli_d:
5595       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5596       break;
5597     case Intrinsic::x86_mmx_psrli_q:
5598       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5599       break;
5600     case Intrinsic::x86_mmx_psrai_w:
5601       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5602       break;
5603     case Intrinsic::x86_mmx_psrai_d:
5604       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5605       break;
5606     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5607     }
5608 
5609     // The vector shift intrinsics with scalars uses 32b shift amounts but
5610     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5611     // to be zero.
5612     // We must do this early because v2i32 is not a legal type.
5613     SDValue ShOps[2];
5614     ShOps[0] = ShAmt;
5615     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5616     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5617     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5618     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5619     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5620                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5621                        getValue(I.getArgOperand(0)), ShAmt);
5622     setValue(&I, Res);
5623     return nullptr;
5624   }
5625   case Intrinsic::powi:
5626     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5627                             getValue(I.getArgOperand(1)), DAG));
5628     return nullptr;
5629   case Intrinsic::log:
5630     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5631     return nullptr;
5632   case Intrinsic::log2:
5633     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5634     return nullptr;
5635   case Intrinsic::log10:
5636     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5637     return nullptr;
5638   case Intrinsic::exp:
5639     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5640     return nullptr;
5641   case Intrinsic::exp2:
5642     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5643     return nullptr;
5644   case Intrinsic::pow:
5645     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5646                            getValue(I.getArgOperand(1)), DAG, TLI));
5647     return nullptr;
5648   case Intrinsic::sqrt:
5649   case Intrinsic::fabs:
5650   case Intrinsic::sin:
5651   case Intrinsic::cos:
5652   case Intrinsic::floor:
5653   case Intrinsic::ceil:
5654   case Intrinsic::trunc:
5655   case Intrinsic::rint:
5656   case Intrinsic::nearbyint:
5657   case Intrinsic::round:
5658   case Intrinsic::canonicalize: {
5659     unsigned Opcode;
5660     switch (Intrinsic) {
5661     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5662     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5663     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5664     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5665     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5666     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5667     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5668     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5669     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5670     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5671     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5672     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5673     }
5674 
5675     setValue(&I, DAG.getNode(Opcode, sdl,
5676                              getValue(I.getArgOperand(0)).getValueType(),
5677                              getValue(I.getArgOperand(0))));
5678     return nullptr;
5679   }
5680   case Intrinsic::minnum: {
5681     auto VT = getValue(I.getArgOperand(0)).getValueType();
5682     unsigned Opc =
5683         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5684             ? ISD::FMINIMUM
5685             : ISD::FMINNUM;
5686     setValue(&I, DAG.getNode(Opc, sdl, VT,
5687                              getValue(I.getArgOperand(0)),
5688                              getValue(I.getArgOperand(1))));
5689     return nullptr;
5690   }
5691   case Intrinsic::maxnum: {
5692     auto VT = getValue(I.getArgOperand(0)).getValueType();
5693     unsigned Opc =
5694         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5695             ? ISD::FMAXIMUM
5696             : ISD::FMAXNUM;
5697     setValue(&I, DAG.getNode(Opc, sdl, VT,
5698                              getValue(I.getArgOperand(0)),
5699                              getValue(I.getArgOperand(1))));
5700     return nullptr;
5701   }
5702   case Intrinsic::minimum:
5703     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5704                              getValue(I.getArgOperand(0)).getValueType(),
5705                              getValue(I.getArgOperand(0)),
5706                              getValue(I.getArgOperand(1))));
5707     return nullptr;
5708   case Intrinsic::maximum:
5709     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5710                              getValue(I.getArgOperand(0)).getValueType(),
5711                              getValue(I.getArgOperand(0)),
5712                              getValue(I.getArgOperand(1))));
5713     return nullptr;
5714   case Intrinsic::copysign:
5715     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5716                              getValue(I.getArgOperand(0)).getValueType(),
5717                              getValue(I.getArgOperand(0)),
5718                              getValue(I.getArgOperand(1))));
5719     return nullptr;
5720   case Intrinsic::fma:
5721     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5722                              getValue(I.getArgOperand(0)).getValueType(),
5723                              getValue(I.getArgOperand(0)),
5724                              getValue(I.getArgOperand(1)),
5725                              getValue(I.getArgOperand(2))));
5726     return nullptr;
5727   case Intrinsic::experimental_constrained_fadd:
5728   case Intrinsic::experimental_constrained_fsub:
5729   case Intrinsic::experimental_constrained_fmul:
5730   case Intrinsic::experimental_constrained_fdiv:
5731   case Intrinsic::experimental_constrained_frem:
5732   case Intrinsic::experimental_constrained_fma:
5733   case Intrinsic::experimental_constrained_sqrt:
5734   case Intrinsic::experimental_constrained_pow:
5735   case Intrinsic::experimental_constrained_powi:
5736   case Intrinsic::experimental_constrained_sin:
5737   case Intrinsic::experimental_constrained_cos:
5738   case Intrinsic::experimental_constrained_exp:
5739   case Intrinsic::experimental_constrained_exp2:
5740   case Intrinsic::experimental_constrained_log:
5741   case Intrinsic::experimental_constrained_log10:
5742   case Intrinsic::experimental_constrained_log2:
5743   case Intrinsic::experimental_constrained_rint:
5744   case Intrinsic::experimental_constrained_nearbyint:
5745   case Intrinsic::experimental_constrained_maxnum:
5746   case Intrinsic::experimental_constrained_minnum:
5747   case Intrinsic::experimental_constrained_ceil:
5748   case Intrinsic::experimental_constrained_floor:
5749   case Intrinsic::experimental_constrained_round:
5750   case Intrinsic::experimental_constrained_trunc:
5751     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5752     return nullptr;
5753   case Intrinsic::fmuladd: {
5754     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5755     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5756         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5757       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5758                                getValue(I.getArgOperand(0)).getValueType(),
5759                                getValue(I.getArgOperand(0)),
5760                                getValue(I.getArgOperand(1)),
5761                                getValue(I.getArgOperand(2))));
5762     } else {
5763       // TODO: Intrinsic calls should have fast-math-flags.
5764       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5765                                 getValue(I.getArgOperand(0)).getValueType(),
5766                                 getValue(I.getArgOperand(0)),
5767                                 getValue(I.getArgOperand(1)));
5768       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5769                                 getValue(I.getArgOperand(0)).getValueType(),
5770                                 Mul,
5771                                 getValue(I.getArgOperand(2)));
5772       setValue(&I, Add);
5773     }
5774     return nullptr;
5775   }
5776   case Intrinsic::convert_to_fp16:
5777     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5778                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5779                                          getValue(I.getArgOperand(0)),
5780                                          DAG.getTargetConstant(0, sdl,
5781                                                                MVT::i32))));
5782     return nullptr;
5783   case Intrinsic::convert_from_fp16:
5784     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5785                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5786                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5787                                          getValue(I.getArgOperand(0)))));
5788     return nullptr;
5789   case Intrinsic::pcmarker: {
5790     SDValue Tmp = getValue(I.getArgOperand(0));
5791     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5792     return nullptr;
5793   }
5794   case Intrinsic::readcyclecounter: {
5795     SDValue Op = getRoot();
5796     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5797                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5798     setValue(&I, Res);
5799     DAG.setRoot(Res.getValue(1));
5800     return nullptr;
5801   }
5802   case Intrinsic::bitreverse:
5803     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5804                              getValue(I.getArgOperand(0)).getValueType(),
5805                              getValue(I.getArgOperand(0))));
5806     return nullptr;
5807   case Intrinsic::bswap:
5808     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5809                              getValue(I.getArgOperand(0)).getValueType(),
5810                              getValue(I.getArgOperand(0))));
5811     return nullptr;
5812   case Intrinsic::cttz: {
5813     SDValue Arg = getValue(I.getArgOperand(0));
5814     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5815     EVT Ty = Arg.getValueType();
5816     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5817                              sdl, Ty, Arg));
5818     return nullptr;
5819   }
5820   case Intrinsic::ctlz: {
5821     SDValue Arg = getValue(I.getArgOperand(0));
5822     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5823     EVT Ty = Arg.getValueType();
5824     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5825                              sdl, Ty, Arg));
5826     return nullptr;
5827   }
5828   case Intrinsic::ctpop: {
5829     SDValue Arg = getValue(I.getArgOperand(0));
5830     EVT Ty = Arg.getValueType();
5831     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5832     return nullptr;
5833   }
5834   case Intrinsic::fshl:
5835   case Intrinsic::fshr: {
5836     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5837     SDValue X = getValue(I.getArgOperand(0));
5838     SDValue Y = getValue(I.getArgOperand(1));
5839     SDValue Z = getValue(I.getArgOperand(2));
5840     EVT VT = X.getValueType();
5841     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5842     SDValue Zero = DAG.getConstant(0, sdl, VT);
5843     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5844 
5845     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
5846     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
5847       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
5848       return nullptr;
5849     }
5850 
5851     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5852     // avoid the select that is necessary in the general case to filter out
5853     // the 0-shift possibility that leads to UB.
5854     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5855       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5856       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5857         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5858         return nullptr;
5859       }
5860 
5861       // Some targets only rotate one way. Try the opposite direction.
5862       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5863       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5864         // Negate the shift amount because it is safe to ignore the high bits.
5865         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5866         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5867         return nullptr;
5868       }
5869 
5870       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5871       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5872       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5873       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5874       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5875       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5876       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5877       return nullptr;
5878     }
5879 
5880     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5881     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5882     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5883     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5884     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5885     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5886 
5887     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5888     // and that is undefined. We must compare and select to avoid UB.
5889     EVT CCVT = MVT::i1;
5890     if (VT.isVector())
5891       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5892 
5893     // For fshl, 0-shift returns the 1st arg (X).
5894     // For fshr, 0-shift returns the 2nd arg (Y).
5895     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5896     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5897     return nullptr;
5898   }
5899   case Intrinsic::sadd_sat: {
5900     SDValue Op1 = getValue(I.getArgOperand(0));
5901     SDValue Op2 = getValue(I.getArgOperand(1));
5902     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5903     return nullptr;
5904   }
5905   case Intrinsic::uadd_sat: {
5906     SDValue Op1 = getValue(I.getArgOperand(0));
5907     SDValue Op2 = getValue(I.getArgOperand(1));
5908     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5909     return nullptr;
5910   }
5911   case Intrinsic::ssub_sat: {
5912     SDValue Op1 = getValue(I.getArgOperand(0));
5913     SDValue Op2 = getValue(I.getArgOperand(1));
5914     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5915     return nullptr;
5916   }
5917   case Intrinsic::usub_sat: {
5918     SDValue Op1 = getValue(I.getArgOperand(0));
5919     SDValue Op2 = getValue(I.getArgOperand(1));
5920     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5921     return nullptr;
5922   }
5923   case Intrinsic::smul_fix:
5924   case Intrinsic::umul_fix: {
5925     SDValue Op1 = getValue(I.getArgOperand(0));
5926     SDValue Op2 = getValue(I.getArgOperand(1));
5927     SDValue Op3 = getValue(I.getArgOperand(2));
5928     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
5929                              Op1.getValueType(), Op1, Op2, Op3));
5930     return nullptr;
5931   }
5932   case Intrinsic::stacksave: {
5933     SDValue Op = getRoot();
5934     Res = DAG.getNode(
5935         ISD::STACKSAVE, sdl,
5936         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5937     setValue(&I, Res);
5938     DAG.setRoot(Res.getValue(1));
5939     return nullptr;
5940   }
5941   case Intrinsic::stackrestore:
5942     Res = getValue(I.getArgOperand(0));
5943     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5944     return nullptr;
5945   case Intrinsic::get_dynamic_area_offset: {
5946     SDValue Op = getRoot();
5947     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5948     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5949     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5950     // target.
5951     if (PtrTy != ResTy)
5952       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5953                          " intrinsic!");
5954     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5955                       Op);
5956     DAG.setRoot(Op);
5957     setValue(&I, Res);
5958     return nullptr;
5959   }
5960   case Intrinsic::stackguard: {
5961     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5962     MachineFunction &MF = DAG.getMachineFunction();
5963     const Module &M = *MF.getFunction().getParent();
5964     SDValue Chain = getRoot();
5965     if (TLI.useLoadStackGuardNode()) {
5966       Res = getLoadStackGuard(DAG, sdl, Chain);
5967     } else {
5968       const Value *Global = TLI.getSDagStackGuard(M);
5969       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5970       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5971                         MachinePointerInfo(Global, 0), Align,
5972                         MachineMemOperand::MOVolatile);
5973     }
5974     if (TLI.useStackGuardXorFP())
5975       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5976     DAG.setRoot(Chain);
5977     setValue(&I, Res);
5978     return nullptr;
5979   }
5980   case Intrinsic::stackprotector: {
5981     // Emit code into the DAG to store the stack guard onto the stack.
5982     MachineFunction &MF = DAG.getMachineFunction();
5983     MachineFrameInfo &MFI = MF.getFrameInfo();
5984     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5985     SDValue Src, Chain = getRoot();
5986 
5987     if (TLI.useLoadStackGuardNode())
5988       Src = getLoadStackGuard(DAG, sdl, Chain);
5989     else
5990       Src = getValue(I.getArgOperand(0));   // The guard's value.
5991 
5992     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5993 
5994     int FI = FuncInfo.StaticAllocaMap[Slot];
5995     MFI.setStackProtectorIndex(FI);
5996 
5997     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5998 
5999     // Store the stack protector onto the stack.
6000     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6001                                                  DAG.getMachineFunction(), FI),
6002                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6003     setValue(&I, Res);
6004     DAG.setRoot(Res);
6005     return nullptr;
6006   }
6007   case Intrinsic::objectsize: {
6008     // If we don't know by now, we're never going to know.
6009     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6010 
6011     assert(CI && "Non-constant type in __builtin_object_size?");
6012 
6013     SDValue Arg = getValue(I.getCalledValue());
6014     EVT Ty = Arg.getValueType();
6015 
6016     if (CI->isZero())
6017       Res = DAG.getConstant(-1ULL, sdl, Ty);
6018     else
6019       Res = DAG.getConstant(0, sdl, Ty);
6020 
6021     setValue(&I, Res);
6022     return nullptr;
6023   }
6024 
6025   case Intrinsic::is_constant:
6026     // If this wasn't constant-folded away by now, then it's not a
6027     // constant.
6028     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6029     return nullptr;
6030 
6031   case Intrinsic::annotation:
6032   case Intrinsic::ptr_annotation:
6033   case Intrinsic::launder_invariant_group:
6034   case Intrinsic::strip_invariant_group:
6035     // Drop the intrinsic, but forward the value
6036     setValue(&I, getValue(I.getOperand(0)));
6037     return nullptr;
6038   case Intrinsic::assume:
6039   case Intrinsic::var_annotation:
6040   case Intrinsic::sideeffect:
6041     // Discard annotate attributes, assumptions, and artificial side-effects.
6042     return nullptr;
6043 
6044   case Intrinsic::codeview_annotation: {
6045     // Emit a label associated with this metadata.
6046     MachineFunction &MF = DAG.getMachineFunction();
6047     MCSymbol *Label =
6048         MF.getMMI().getContext().createTempSymbol("annotation", true);
6049     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6050     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6051     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6052     DAG.setRoot(Res);
6053     return nullptr;
6054   }
6055 
6056   case Intrinsic::init_trampoline: {
6057     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6058 
6059     SDValue Ops[6];
6060     Ops[0] = getRoot();
6061     Ops[1] = getValue(I.getArgOperand(0));
6062     Ops[2] = getValue(I.getArgOperand(1));
6063     Ops[3] = getValue(I.getArgOperand(2));
6064     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6065     Ops[5] = DAG.getSrcValue(F);
6066 
6067     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6068 
6069     DAG.setRoot(Res);
6070     return nullptr;
6071   }
6072   case Intrinsic::adjust_trampoline:
6073     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6074                              TLI.getPointerTy(DAG.getDataLayout()),
6075                              getValue(I.getArgOperand(0))));
6076     return nullptr;
6077   case Intrinsic::gcroot: {
6078     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6079            "only valid in functions with gc specified, enforced by Verifier");
6080     assert(GFI && "implied by previous");
6081     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6082     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6083 
6084     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6085     GFI->addStackRoot(FI->getIndex(), TypeMap);
6086     return nullptr;
6087   }
6088   case Intrinsic::gcread:
6089   case Intrinsic::gcwrite:
6090     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6091   case Intrinsic::flt_rounds:
6092     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6093     return nullptr;
6094 
6095   case Intrinsic::expect:
6096     // Just replace __builtin_expect(exp, c) with EXP.
6097     setValue(&I, getValue(I.getArgOperand(0)));
6098     return nullptr;
6099 
6100   case Intrinsic::debugtrap:
6101   case Intrinsic::trap: {
6102     StringRef TrapFuncName =
6103         I.getAttributes()
6104             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6105             .getValueAsString();
6106     if (TrapFuncName.empty()) {
6107       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6108         ISD::TRAP : ISD::DEBUGTRAP;
6109       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6110       return nullptr;
6111     }
6112     TargetLowering::ArgListTy Args;
6113 
6114     TargetLowering::CallLoweringInfo CLI(DAG);
6115     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6116         CallingConv::C, I.getType(),
6117         DAG.getExternalSymbol(TrapFuncName.data(),
6118                               TLI.getPointerTy(DAG.getDataLayout())),
6119         std::move(Args));
6120 
6121     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6122     DAG.setRoot(Result.second);
6123     return nullptr;
6124   }
6125 
6126   case Intrinsic::uadd_with_overflow:
6127   case Intrinsic::sadd_with_overflow:
6128   case Intrinsic::usub_with_overflow:
6129   case Intrinsic::ssub_with_overflow:
6130   case Intrinsic::umul_with_overflow:
6131   case Intrinsic::smul_with_overflow: {
6132     ISD::NodeType Op;
6133     switch (Intrinsic) {
6134     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6135     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6136     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6137     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6138     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6139     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6140     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6141     }
6142     SDValue Op1 = getValue(I.getArgOperand(0));
6143     SDValue Op2 = getValue(I.getArgOperand(1));
6144 
6145     EVT ResultVT = Op1.getValueType();
6146     EVT OverflowVT = MVT::i1;
6147     if (ResultVT.isVector())
6148       OverflowVT = EVT::getVectorVT(
6149           *Context, OverflowVT, ResultVT.getVectorNumElements());
6150 
6151     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6152     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6153     return nullptr;
6154   }
6155   case Intrinsic::prefetch: {
6156     SDValue Ops[5];
6157     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6158     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6159     Ops[0] = DAG.getRoot();
6160     Ops[1] = getValue(I.getArgOperand(0));
6161     Ops[2] = getValue(I.getArgOperand(1));
6162     Ops[3] = getValue(I.getArgOperand(2));
6163     Ops[4] = getValue(I.getArgOperand(3));
6164     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6165                                              DAG.getVTList(MVT::Other), Ops,
6166                                              EVT::getIntegerVT(*Context, 8),
6167                                              MachinePointerInfo(I.getArgOperand(0)),
6168                                              0, /* align */
6169                                              Flags);
6170 
6171     // Chain the prefetch in parallell with any pending loads, to stay out of
6172     // the way of later optimizations.
6173     PendingLoads.push_back(Result);
6174     Result = getRoot();
6175     DAG.setRoot(Result);
6176     return nullptr;
6177   }
6178   case Intrinsic::lifetime_start:
6179   case Intrinsic::lifetime_end: {
6180     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6181     // Stack coloring is not enabled in O0, discard region information.
6182     if (TM.getOptLevel() == CodeGenOpt::None)
6183       return nullptr;
6184 
6185     SmallVector<Value *, 4> Allocas;
6186     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6187 
6188     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6189            E = Allocas.end(); Object != E; ++Object) {
6190       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6191 
6192       // Could not find an Alloca.
6193       if (!LifetimeObject)
6194         continue;
6195 
6196       // First check that the Alloca is static, otherwise it won't have a
6197       // valid frame index.
6198       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6199       if (SI == FuncInfo.StaticAllocaMap.end())
6200         return nullptr;
6201 
6202       int FI = SI->second;
6203 
6204       SDValue Ops[2];
6205       Ops[0] = getRoot();
6206       Ops[1] =
6207           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6208       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6209 
6210       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6211       DAG.setRoot(Res);
6212     }
6213     return nullptr;
6214   }
6215   case Intrinsic::invariant_start:
6216     // Discard region information.
6217     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6218     return nullptr;
6219   case Intrinsic::invariant_end:
6220     // Discard region information.
6221     return nullptr;
6222   case Intrinsic::clear_cache:
6223     return TLI.getClearCacheBuiltinName();
6224   case Intrinsic::donothing:
6225     // ignore
6226     return nullptr;
6227   case Intrinsic::experimental_stackmap:
6228     visitStackmap(I);
6229     return nullptr;
6230   case Intrinsic::experimental_patchpoint_void:
6231   case Intrinsic::experimental_patchpoint_i64:
6232     visitPatchpoint(&I);
6233     return nullptr;
6234   case Intrinsic::experimental_gc_statepoint:
6235     LowerStatepoint(ImmutableStatepoint(&I));
6236     return nullptr;
6237   case Intrinsic::experimental_gc_result:
6238     visitGCResult(cast<GCResultInst>(I));
6239     return nullptr;
6240   case Intrinsic::experimental_gc_relocate:
6241     visitGCRelocate(cast<GCRelocateInst>(I));
6242     return nullptr;
6243   case Intrinsic::instrprof_increment:
6244     llvm_unreachable("instrprof failed to lower an increment");
6245   case Intrinsic::instrprof_value_profile:
6246     llvm_unreachable("instrprof failed to lower a value profiling call");
6247   case Intrinsic::localescape: {
6248     MachineFunction &MF = DAG.getMachineFunction();
6249     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6250 
6251     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6252     // is the same on all targets.
6253     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6254       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6255       if (isa<ConstantPointerNull>(Arg))
6256         continue; // Skip null pointers. They represent a hole in index space.
6257       AllocaInst *Slot = cast<AllocaInst>(Arg);
6258       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6259              "can only escape static allocas");
6260       int FI = FuncInfo.StaticAllocaMap[Slot];
6261       MCSymbol *FrameAllocSym =
6262           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6263               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6264       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6265               TII->get(TargetOpcode::LOCAL_ESCAPE))
6266           .addSym(FrameAllocSym)
6267           .addFrameIndex(FI);
6268     }
6269 
6270     return nullptr;
6271   }
6272 
6273   case Intrinsic::localrecover: {
6274     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6275     MachineFunction &MF = DAG.getMachineFunction();
6276     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6277 
6278     // Get the symbol that defines the frame offset.
6279     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6280     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6281     unsigned IdxVal =
6282         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6283     MCSymbol *FrameAllocSym =
6284         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6285             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6286 
6287     // Create a MCSymbol for the label to avoid any target lowering
6288     // that would make this PC relative.
6289     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6290     SDValue OffsetVal =
6291         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6292 
6293     // Add the offset to the FP.
6294     Value *FP = I.getArgOperand(1);
6295     SDValue FPVal = getValue(FP);
6296     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6297     setValue(&I, Add);
6298 
6299     return nullptr;
6300   }
6301 
6302   case Intrinsic::eh_exceptionpointer:
6303   case Intrinsic::eh_exceptioncode: {
6304     // Get the exception pointer vreg, copy from it, and resize it to fit.
6305     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6306     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6307     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6308     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6309     SDValue N =
6310         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6311     if (Intrinsic == Intrinsic::eh_exceptioncode)
6312       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6313     setValue(&I, N);
6314     return nullptr;
6315   }
6316   case Intrinsic::xray_customevent: {
6317     // Here we want to make sure that the intrinsic behaves as if it has a
6318     // specific calling convention, and only for x86_64.
6319     // FIXME: Support other platforms later.
6320     const auto &Triple = DAG.getTarget().getTargetTriple();
6321     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6322       return nullptr;
6323 
6324     SDLoc DL = getCurSDLoc();
6325     SmallVector<SDValue, 8> Ops;
6326 
6327     // We want to say that we always want the arguments in registers.
6328     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6329     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6330     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6331     SDValue Chain = getRoot();
6332     Ops.push_back(LogEntryVal);
6333     Ops.push_back(StrSizeVal);
6334     Ops.push_back(Chain);
6335 
6336     // We need to enforce the calling convention for the callsite, so that
6337     // argument ordering is enforced correctly, and that register allocation can
6338     // see that some registers may be assumed clobbered and have to preserve
6339     // them across calls to the intrinsic.
6340     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6341                                            DL, NodeTys, Ops);
6342     SDValue patchableNode = SDValue(MN, 0);
6343     DAG.setRoot(patchableNode);
6344     setValue(&I, patchableNode);
6345     return nullptr;
6346   }
6347   case Intrinsic::xray_typedevent: {
6348     // Here we want to make sure that the intrinsic behaves as if it has a
6349     // specific calling convention, and only for x86_64.
6350     // FIXME: Support other platforms later.
6351     const auto &Triple = DAG.getTarget().getTargetTriple();
6352     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6353       return nullptr;
6354 
6355     SDLoc DL = getCurSDLoc();
6356     SmallVector<SDValue, 8> Ops;
6357 
6358     // We want to say that we always want the arguments in registers.
6359     // It's unclear to me how manipulating the selection DAG here forces callers
6360     // to provide arguments in registers instead of on the stack.
6361     SDValue LogTypeId = getValue(I.getArgOperand(0));
6362     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6363     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6364     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6365     SDValue Chain = getRoot();
6366     Ops.push_back(LogTypeId);
6367     Ops.push_back(LogEntryVal);
6368     Ops.push_back(StrSizeVal);
6369     Ops.push_back(Chain);
6370 
6371     // We need to enforce the calling convention for the callsite, so that
6372     // argument ordering is enforced correctly, and that register allocation can
6373     // see that some registers may be assumed clobbered and have to preserve
6374     // them across calls to the intrinsic.
6375     MachineSDNode *MN = DAG.getMachineNode(
6376         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6377     SDValue patchableNode = SDValue(MN, 0);
6378     DAG.setRoot(patchableNode);
6379     setValue(&I, patchableNode);
6380     return nullptr;
6381   }
6382   case Intrinsic::experimental_deoptimize:
6383     LowerDeoptimizeCall(&I);
6384     return nullptr;
6385 
6386   case Intrinsic::experimental_vector_reduce_fadd:
6387   case Intrinsic::experimental_vector_reduce_fmul:
6388   case Intrinsic::experimental_vector_reduce_add:
6389   case Intrinsic::experimental_vector_reduce_mul:
6390   case Intrinsic::experimental_vector_reduce_and:
6391   case Intrinsic::experimental_vector_reduce_or:
6392   case Intrinsic::experimental_vector_reduce_xor:
6393   case Intrinsic::experimental_vector_reduce_smax:
6394   case Intrinsic::experimental_vector_reduce_smin:
6395   case Intrinsic::experimental_vector_reduce_umax:
6396   case Intrinsic::experimental_vector_reduce_umin:
6397   case Intrinsic::experimental_vector_reduce_fmax:
6398   case Intrinsic::experimental_vector_reduce_fmin:
6399     visitVectorReduce(I, Intrinsic);
6400     return nullptr;
6401 
6402   case Intrinsic::icall_branch_funnel: {
6403     SmallVector<SDValue, 16> Ops;
6404     Ops.push_back(DAG.getRoot());
6405     Ops.push_back(getValue(I.getArgOperand(0)));
6406 
6407     int64_t Offset;
6408     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6409         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6410     if (!Base)
6411       report_fatal_error(
6412           "llvm.icall.branch.funnel operand must be a GlobalValue");
6413     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6414 
6415     struct BranchFunnelTarget {
6416       int64_t Offset;
6417       SDValue Target;
6418     };
6419     SmallVector<BranchFunnelTarget, 8> Targets;
6420 
6421     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6422       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6423           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6424       if (ElemBase != Base)
6425         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6426                            "to the same GlobalValue");
6427 
6428       SDValue Val = getValue(I.getArgOperand(Op + 1));
6429       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6430       if (!GA)
6431         report_fatal_error(
6432             "llvm.icall.branch.funnel operand must be a GlobalValue");
6433       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6434                                      GA->getGlobal(), getCurSDLoc(),
6435                                      Val.getValueType(), GA->getOffset())});
6436     }
6437     llvm::sort(Targets,
6438                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6439                  return T1.Offset < T2.Offset;
6440                });
6441 
6442     for (auto &T : Targets) {
6443       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6444       Ops.push_back(T.Target);
6445     }
6446 
6447     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6448                                  getCurSDLoc(), MVT::Other, Ops),
6449               0);
6450     DAG.setRoot(N);
6451     setValue(&I, N);
6452     HasTailCall = true;
6453     return nullptr;
6454   }
6455 
6456   case Intrinsic::wasm_landingpad_index:
6457     // Information this intrinsic contained has been transferred to
6458     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6459     // delete it now.
6460     return nullptr;
6461   }
6462 }
6463 
6464 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6465     const ConstrainedFPIntrinsic &FPI) {
6466   SDLoc sdl = getCurSDLoc();
6467   unsigned Opcode;
6468   switch (FPI.getIntrinsicID()) {
6469   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6470   case Intrinsic::experimental_constrained_fadd:
6471     Opcode = ISD::STRICT_FADD;
6472     break;
6473   case Intrinsic::experimental_constrained_fsub:
6474     Opcode = ISD::STRICT_FSUB;
6475     break;
6476   case Intrinsic::experimental_constrained_fmul:
6477     Opcode = ISD::STRICT_FMUL;
6478     break;
6479   case Intrinsic::experimental_constrained_fdiv:
6480     Opcode = ISD::STRICT_FDIV;
6481     break;
6482   case Intrinsic::experimental_constrained_frem:
6483     Opcode = ISD::STRICT_FREM;
6484     break;
6485   case Intrinsic::experimental_constrained_fma:
6486     Opcode = ISD::STRICT_FMA;
6487     break;
6488   case Intrinsic::experimental_constrained_sqrt:
6489     Opcode = ISD::STRICT_FSQRT;
6490     break;
6491   case Intrinsic::experimental_constrained_pow:
6492     Opcode = ISD::STRICT_FPOW;
6493     break;
6494   case Intrinsic::experimental_constrained_powi:
6495     Opcode = ISD::STRICT_FPOWI;
6496     break;
6497   case Intrinsic::experimental_constrained_sin:
6498     Opcode = ISD::STRICT_FSIN;
6499     break;
6500   case Intrinsic::experimental_constrained_cos:
6501     Opcode = ISD::STRICT_FCOS;
6502     break;
6503   case Intrinsic::experimental_constrained_exp:
6504     Opcode = ISD::STRICT_FEXP;
6505     break;
6506   case Intrinsic::experimental_constrained_exp2:
6507     Opcode = ISD::STRICT_FEXP2;
6508     break;
6509   case Intrinsic::experimental_constrained_log:
6510     Opcode = ISD::STRICT_FLOG;
6511     break;
6512   case Intrinsic::experimental_constrained_log10:
6513     Opcode = ISD::STRICT_FLOG10;
6514     break;
6515   case Intrinsic::experimental_constrained_log2:
6516     Opcode = ISD::STRICT_FLOG2;
6517     break;
6518   case Intrinsic::experimental_constrained_rint:
6519     Opcode = ISD::STRICT_FRINT;
6520     break;
6521   case Intrinsic::experimental_constrained_nearbyint:
6522     Opcode = ISD::STRICT_FNEARBYINT;
6523     break;
6524   case Intrinsic::experimental_constrained_maxnum:
6525     Opcode = ISD::STRICT_FMAXNUM;
6526     break;
6527   case Intrinsic::experimental_constrained_minnum:
6528     Opcode = ISD::STRICT_FMINNUM;
6529     break;
6530   case Intrinsic::experimental_constrained_ceil:
6531     Opcode = ISD::STRICT_FCEIL;
6532     break;
6533   case Intrinsic::experimental_constrained_floor:
6534     Opcode = ISD::STRICT_FFLOOR;
6535     break;
6536   case Intrinsic::experimental_constrained_round:
6537     Opcode = ISD::STRICT_FROUND;
6538     break;
6539   case Intrinsic::experimental_constrained_trunc:
6540     Opcode = ISD::STRICT_FTRUNC;
6541     break;
6542   }
6543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6544   SDValue Chain = getRoot();
6545   SmallVector<EVT, 4> ValueVTs;
6546   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6547   ValueVTs.push_back(MVT::Other); // Out chain
6548 
6549   SDVTList VTs = DAG.getVTList(ValueVTs);
6550   SDValue Result;
6551   if (FPI.isUnaryOp())
6552     Result = DAG.getNode(Opcode, sdl, VTs,
6553                          { Chain, getValue(FPI.getArgOperand(0)) });
6554   else if (FPI.isTernaryOp())
6555     Result = DAG.getNode(Opcode, sdl, VTs,
6556                          { Chain, getValue(FPI.getArgOperand(0)),
6557                                   getValue(FPI.getArgOperand(1)),
6558                                   getValue(FPI.getArgOperand(2)) });
6559   else
6560     Result = DAG.getNode(Opcode, sdl, VTs,
6561                          { Chain, getValue(FPI.getArgOperand(0)),
6562                            getValue(FPI.getArgOperand(1))  });
6563 
6564   assert(Result.getNode()->getNumValues() == 2);
6565   SDValue OutChain = Result.getValue(1);
6566   DAG.setRoot(OutChain);
6567   SDValue FPResult = Result.getValue(0);
6568   setValue(&FPI, FPResult);
6569 }
6570 
6571 std::pair<SDValue, SDValue>
6572 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6573                                     const BasicBlock *EHPadBB) {
6574   MachineFunction &MF = DAG.getMachineFunction();
6575   MachineModuleInfo &MMI = MF.getMMI();
6576   MCSymbol *BeginLabel = nullptr;
6577 
6578   if (EHPadBB) {
6579     // Insert a label before the invoke call to mark the try range.  This can be
6580     // used to detect deletion of the invoke via the MachineModuleInfo.
6581     BeginLabel = MMI.getContext().createTempSymbol();
6582 
6583     // For SjLj, keep track of which landing pads go with which invokes
6584     // so as to maintain the ordering of pads in the LSDA.
6585     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6586     if (CallSiteIndex) {
6587       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6588       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6589 
6590       // Now that the call site is handled, stop tracking it.
6591       MMI.setCurrentCallSite(0);
6592     }
6593 
6594     // Both PendingLoads and PendingExports must be flushed here;
6595     // this call might not return.
6596     (void)getRoot();
6597     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6598 
6599     CLI.setChain(getRoot());
6600   }
6601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6602   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6603 
6604   assert((CLI.IsTailCall || Result.second.getNode()) &&
6605          "Non-null chain expected with non-tail call!");
6606   assert((Result.second.getNode() || !Result.first.getNode()) &&
6607          "Null value expected with tail call!");
6608 
6609   if (!Result.second.getNode()) {
6610     // As a special case, a null chain means that a tail call has been emitted
6611     // and the DAG root is already updated.
6612     HasTailCall = true;
6613 
6614     // Since there's no actual continuation from this block, nothing can be
6615     // relying on us setting vregs for them.
6616     PendingExports.clear();
6617   } else {
6618     DAG.setRoot(Result.second);
6619   }
6620 
6621   if (EHPadBB) {
6622     // Insert a label at the end of the invoke call to mark the try range.  This
6623     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6624     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6625     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6626 
6627     // Inform MachineModuleInfo of range.
6628     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6629     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6630     // actually use outlined funclets and their LSDA info style.
6631     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6632       assert(CLI.CS);
6633       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6634       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6635                                 BeginLabel, EndLabel);
6636     } else if (!isScopedEHPersonality(Pers)) {
6637       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6638     }
6639   }
6640 
6641   return Result;
6642 }
6643 
6644 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6645                                       bool isTailCall,
6646                                       const BasicBlock *EHPadBB) {
6647   auto &DL = DAG.getDataLayout();
6648   FunctionType *FTy = CS.getFunctionType();
6649   Type *RetTy = CS.getType();
6650 
6651   TargetLowering::ArgListTy Args;
6652   Args.reserve(CS.arg_size());
6653 
6654   const Value *SwiftErrorVal = nullptr;
6655   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6656 
6657   // We can't tail call inside a function with a swifterror argument. Lowering
6658   // does not support this yet. It would have to move into the swifterror
6659   // register before the call.
6660   auto *Caller = CS.getInstruction()->getParent()->getParent();
6661   if (TLI.supportSwiftError() &&
6662       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6663     isTailCall = false;
6664 
6665   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6666        i != e; ++i) {
6667     TargetLowering::ArgListEntry Entry;
6668     const Value *V = *i;
6669 
6670     // Skip empty types
6671     if (V->getType()->isEmptyTy())
6672       continue;
6673 
6674     SDValue ArgNode = getValue(V);
6675     Entry.Node = ArgNode; Entry.Ty = V->getType();
6676 
6677     Entry.setAttributes(&CS, i - CS.arg_begin());
6678 
6679     // Use swifterror virtual register as input to the call.
6680     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6681       SwiftErrorVal = V;
6682       // We find the virtual register for the actual swifterror argument.
6683       // Instead of using the Value, we use the virtual register instead.
6684       Entry.Node = DAG.getRegister(FuncInfo
6685                                        .getOrCreateSwiftErrorVRegUseAt(
6686                                            CS.getInstruction(), FuncInfo.MBB, V)
6687                                        .first,
6688                                    EVT(TLI.getPointerTy(DL)));
6689     }
6690 
6691     Args.push_back(Entry);
6692 
6693     // If we have an explicit sret argument that is an Instruction, (i.e., it
6694     // might point to function-local memory), we can't meaningfully tail-call.
6695     if (Entry.IsSRet && isa<Instruction>(V))
6696       isTailCall = false;
6697   }
6698 
6699   // Check if target-independent constraints permit a tail call here.
6700   // Target-dependent constraints are checked within TLI->LowerCallTo.
6701   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6702     isTailCall = false;
6703 
6704   // Disable tail calls if there is an swifterror argument. Targets have not
6705   // been updated to support tail calls.
6706   if (TLI.supportSwiftError() && SwiftErrorVal)
6707     isTailCall = false;
6708 
6709   TargetLowering::CallLoweringInfo CLI(DAG);
6710   CLI.setDebugLoc(getCurSDLoc())
6711       .setChain(getRoot())
6712       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6713       .setTailCall(isTailCall)
6714       .setConvergent(CS.isConvergent());
6715   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6716 
6717   if (Result.first.getNode()) {
6718     const Instruction *Inst = CS.getInstruction();
6719     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6720     setValue(Inst, Result.first);
6721   }
6722 
6723   // The last element of CLI.InVals has the SDValue for swifterror return.
6724   // Here we copy it to a virtual register and update SwiftErrorMap for
6725   // book-keeping.
6726   if (SwiftErrorVal && TLI.supportSwiftError()) {
6727     // Get the last element of InVals.
6728     SDValue Src = CLI.InVals.back();
6729     unsigned VReg; bool CreatedVReg;
6730     std::tie(VReg, CreatedVReg) =
6731         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6732     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6733     // We update the virtual register for the actual swifterror argument.
6734     if (CreatedVReg)
6735       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6736     DAG.setRoot(CopyNode);
6737   }
6738 }
6739 
6740 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6741                              SelectionDAGBuilder &Builder) {
6742   // Check to see if this load can be trivially constant folded, e.g. if the
6743   // input is from a string literal.
6744   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6745     // Cast pointer to the type we really want to load.
6746     Type *LoadTy =
6747         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6748     if (LoadVT.isVector())
6749       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6750 
6751     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6752                                          PointerType::getUnqual(LoadTy));
6753 
6754     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6755             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6756       return Builder.getValue(LoadCst);
6757   }
6758 
6759   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6760   // still constant memory, the input chain can be the entry node.
6761   SDValue Root;
6762   bool ConstantMemory = false;
6763 
6764   // Do not serialize (non-volatile) loads of constant memory with anything.
6765   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6766     Root = Builder.DAG.getEntryNode();
6767     ConstantMemory = true;
6768   } else {
6769     // Do not serialize non-volatile loads against each other.
6770     Root = Builder.DAG.getRoot();
6771   }
6772 
6773   SDValue Ptr = Builder.getValue(PtrVal);
6774   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6775                                         Ptr, MachinePointerInfo(PtrVal),
6776                                         /* Alignment = */ 1);
6777 
6778   if (!ConstantMemory)
6779     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6780   return LoadVal;
6781 }
6782 
6783 /// Record the value for an instruction that produces an integer result,
6784 /// converting the type where necessary.
6785 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6786                                                   SDValue Value,
6787                                                   bool IsSigned) {
6788   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6789                                                     I.getType(), true);
6790   if (IsSigned)
6791     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6792   else
6793     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6794   setValue(&I, Value);
6795 }
6796 
6797 /// See if we can lower a memcmp call into an optimized form. If so, return
6798 /// true and lower it. Otherwise return false, and it will be lowered like a
6799 /// normal call.
6800 /// The caller already checked that \p I calls the appropriate LibFunc with a
6801 /// correct prototype.
6802 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6803   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6804   const Value *Size = I.getArgOperand(2);
6805   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6806   if (CSize && CSize->getZExtValue() == 0) {
6807     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6808                                                           I.getType(), true);
6809     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6810     return true;
6811   }
6812 
6813   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6814   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6815       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6816       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6817   if (Res.first.getNode()) {
6818     processIntegerCallValue(I, Res.first, true);
6819     PendingLoads.push_back(Res.second);
6820     return true;
6821   }
6822 
6823   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6824   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6825   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6826     return false;
6827 
6828   // If the target has a fast compare for the given size, it will return a
6829   // preferred load type for that size. Require that the load VT is legal and
6830   // that the target supports unaligned loads of that type. Otherwise, return
6831   // INVALID.
6832   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6833     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6834     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6835     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6836       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6837       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6838       // TODO: Check alignment of src and dest ptrs.
6839       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6840       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6841       if (!TLI.isTypeLegal(LVT) ||
6842           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6843           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6844         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6845     }
6846 
6847     return LVT;
6848   };
6849 
6850   // This turns into unaligned loads. We only do this if the target natively
6851   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6852   // we'll only produce a small number of byte loads.
6853   MVT LoadVT;
6854   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6855   switch (NumBitsToCompare) {
6856   default:
6857     return false;
6858   case 16:
6859     LoadVT = MVT::i16;
6860     break;
6861   case 32:
6862     LoadVT = MVT::i32;
6863     break;
6864   case 64:
6865   case 128:
6866   case 256:
6867     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6868     break;
6869   }
6870 
6871   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6872     return false;
6873 
6874   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6875   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6876 
6877   // Bitcast to a wide integer type if the loads are vectors.
6878   if (LoadVT.isVector()) {
6879     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6880     LoadL = DAG.getBitcast(CmpVT, LoadL);
6881     LoadR = DAG.getBitcast(CmpVT, LoadR);
6882   }
6883 
6884   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6885   processIntegerCallValue(I, Cmp, false);
6886   return true;
6887 }
6888 
6889 /// See if we can lower a memchr call into an optimized form. If so, return
6890 /// true and lower it. Otherwise return false, and it will be lowered like a
6891 /// normal call.
6892 /// The caller already checked that \p I calls the appropriate LibFunc with a
6893 /// correct prototype.
6894 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6895   const Value *Src = I.getArgOperand(0);
6896   const Value *Char = I.getArgOperand(1);
6897   const Value *Length = I.getArgOperand(2);
6898 
6899   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6900   std::pair<SDValue, SDValue> Res =
6901     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6902                                 getValue(Src), getValue(Char), getValue(Length),
6903                                 MachinePointerInfo(Src));
6904   if (Res.first.getNode()) {
6905     setValue(&I, Res.first);
6906     PendingLoads.push_back(Res.second);
6907     return true;
6908   }
6909 
6910   return false;
6911 }
6912 
6913 /// See if we can lower a mempcpy call into an optimized form. If so, return
6914 /// true and lower it. Otherwise return false, and it will be lowered like a
6915 /// normal call.
6916 /// The caller already checked that \p I calls the appropriate LibFunc with a
6917 /// correct prototype.
6918 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6919   SDValue Dst = getValue(I.getArgOperand(0));
6920   SDValue Src = getValue(I.getArgOperand(1));
6921   SDValue Size = getValue(I.getArgOperand(2));
6922 
6923   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6924   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6925   unsigned Align = std::min(DstAlign, SrcAlign);
6926   if (Align == 0) // Alignment of one or both could not be inferred.
6927     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6928 
6929   bool isVol = false;
6930   SDLoc sdl = getCurSDLoc();
6931 
6932   // In the mempcpy context we need to pass in a false value for isTailCall
6933   // because the return pointer needs to be adjusted by the size of
6934   // the copied memory.
6935   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6936                              false, /*isTailCall=*/false,
6937                              MachinePointerInfo(I.getArgOperand(0)),
6938                              MachinePointerInfo(I.getArgOperand(1)));
6939   assert(MC.getNode() != nullptr &&
6940          "** memcpy should not be lowered as TailCall in mempcpy context **");
6941   DAG.setRoot(MC);
6942 
6943   // Check if Size needs to be truncated or extended.
6944   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6945 
6946   // Adjust return pointer to point just past the last dst byte.
6947   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6948                                     Dst, Size);
6949   setValue(&I, DstPlusSize);
6950   return true;
6951 }
6952 
6953 /// See if we can lower a strcpy call into an optimized form.  If so, return
6954 /// true and lower it, otherwise return false and it will be lowered like a
6955 /// normal call.
6956 /// The caller already checked that \p I calls the appropriate LibFunc with a
6957 /// correct prototype.
6958 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6959   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6960 
6961   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6962   std::pair<SDValue, SDValue> Res =
6963     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6964                                 getValue(Arg0), getValue(Arg1),
6965                                 MachinePointerInfo(Arg0),
6966                                 MachinePointerInfo(Arg1), isStpcpy);
6967   if (Res.first.getNode()) {
6968     setValue(&I, Res.first);
6969     DAG.setRoot(Res.second);
6970     return true;
6971   }
6972 
6973   return false;
6974 }
6975 
6976 /// See if we can lower a strcmp call into an optimized form.  If so, return
6977 /// true and lower it, otherwise return false and it will be lowered like a
6978 /// normal call.
6979 /// The caller already checked that \p I calls the appropriate LibFunc with a
6980 /// correct prototype.
6981 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6982   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6983 
6984   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6985   std::pair<SDValue, SDValue> Res =
6986     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6987                                 getValue(Arg0), getValue(Arg1),
6988                                 MachinePointerInfo(Arg0),
6989                                 MachinePointerInfo(Arg1));
6990   if (Res.first.getNode()) {
6991     processIntegerCallValue(I, Res.first, true);
6992     PendingLoads.push_back(Res.second);
6993     return true;
6994   }
6995 
6996   return false;
6997 }
6998 
6999 /// See if we can lower a strlen call into an optimized form.  If so, return
7000 /// true and lower it, otherwise return false and it will be lowered like a
7001 /// normal call.
7002 /// The caller already checked that \p I calls the appropriate LibFunc with a
7003 /// correct prototype.
7004 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7005   const Value *Arg0 = I.getArgOperand(0);
7006 
7007   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7008   std::pair<SDValue, SDValue> Res =
7009     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7010                                 getValue(Arg0), MachinePointerInfo(Arg0));
7011   if (Res.first.getNode()) {
7012     processIntegerCallValue(I, Res.first, false);
7013     PendingLoads.push_back(Res.second);
7014     return true;
7015   }
7016 
7017   return false;
7018 }
7019 
7020 /// See if we can lower a strnlen call into an optimized form.  If so, return
7021 /// true and lower it, otherwise return false and it will be lowered like a
7022 /// normal call.
7023 /// The caller already checked that \p I calls the appropriate LibFunc with a
7024 /// correct prototype.
7025 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7026   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7027 
7028   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7029   std::pair<SDValue, SDValue> Res =
7030     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7031                                  getValue(Arg0), getValue(Arg1),
7032                                  MachinePointerInfo(Arg0));
7033   if (Res.first.getNode()) {
7034     processIntegerCallValue(I, Res.first, false);
7035     PendingLoads.push_back(Res.second);
7036     return true;
7037   }
7038 
7039   return false;
7040 }
7041 
7042 /// See if we can lower a unary floating-point operation into an SDNode with
7043 /// the specified Opcode.  If so, return true and lower it, otherwise return
7044 /// false and it will be lowered like a normal call.
7045 /// The caller already checked that \p I calls the appropriate LibFunc with a
7046 /// correct prototype.
7047 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7048                                               unsigned Opcode) {
7049   // We already checked this call's prototype; verify it doesn't modify errno.
7050   if (!I.onlyReadsMemory())
7051     return false;
7052 
7053   SDValue Tmp = getValue(I.getArgOperand(0));
7054   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7055   return true;
7056 }
7057 
7058 /// See if we can lower a binary floating-point operation into an SDNode with
7059 /// the specified Opcode. If so, return true and lower it. Otherwise return
7060 /// false, and it will be lowered like a normal call.
7061 /// The caller already checked that \p I calls the appropriate LibFunc with a
7062 /// correct prototype.
7063 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7064                                                unsigned Opcode) {
7065   // We already checked this call's prototype; verify it doesn't modify errno.
7066   if (!I.onlyReadsMemory())
7067     return false;
7068 
7069   SDValue Tmp0 = getValue(I.getArgOperand(0));
7070   SDValue Tmp1 = getValue(I.getArgOperand(1));
7071   EVT VT = Tmp0.getValueType();
7072   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7073   return true;
7074 }
7075 
7076 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7077   // Handle inline assembly differently.
7078   if (isa<InlineAsm>(I.getCalledValue())) {
7079     visitInlineAsm(&I);
7080     return;
7081   }
7082 
7083   const char *RenameFn = nullptr;
7084   if (Function *F = I.getCalledFunction()) {
7085     if (F->isDeclaration()) {
7086       // Is this an LLVM intrinsic or a target-specific intrinsic?
7087       unsigned IID = F->getIntrinsicID();
7088       if (!IID)
7089         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7090           IID = II->getIntrinsicID(F);
7091 
7092       if (IID) {
7093         RenameFn = visitIntrinsicCall(I, IID);
7094         if (!RenameFn)
7095           return;
7096       }
7097     }
7098 
7099     // Check for well-known libc/libm calls.  If the function is internal, it
7100     // can't be a library call.  Don't do the check if marked as nobuiltin for
7101     // some reason or the call site requires strict floating point semantics.
7102     LibFunc Func;
7103     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7104         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7105         LibInfo->hasOptimizedCodeGen(Func)) {
7106       switch (Func) {
7107       default: break;
7108       case LibFunc_copysign:
7109       case LibFunc_copysignf:
7110       case LibFunc_copysignl:
7111         // We already checked this call's prototype; verify it doesn't modify
7112         // errno.
7113         if (I.onlyReadsMemory()) {
7114           SDValue LHS = getValue(I.getArgOperand(0));
7115           SDValue RHS = getValue(I.getArgOperand(1));
7116           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7117                                    LHS.getValueType(), LHS, RHS));
7118           return;
7119         }
7120         break;
7121       case LibFunc_fabs:
7122       case LibFunc_fabsf:
7123       case LibFunc_fabsl:
7124         if (visitUnaryFloatCall(I, ISD::FABS))
7125           return;
7126         break;
7127       case LibFunc_fmin:
7128       case LibFunc_fminf:
7129       case LibFunc_fminl:
7130         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7131           return;
7132         break;
7133       case LibFunc_fmax:
7134       case LibFunc_fmaxf:
7135       case LibFunc_fmaxl:
7136         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7137           return;
7138         break;
7139       case LibFunc_sin:
7140       case LibFunc_sinf:
7141       case LibFunc_sinl:
7142         if (visitUnaryFloatCall(I, ISD::FSIN))
7143           return;
7144         break;
7145       case LibFunc_cos:
7146       case LibFunc_cosf:
7147       case LibFunc_cosl:
7148         if (visitUnaryFloatCall(I, ISD::FCOS))
7149           return;
7150         break;
7151       case LibFunc_sqrt:
7152       case LibFunc_sqrtf:
7153       case LibFunc_sqrtl:
7154       case LibFunc_sqrt_finite:
7155       case LibFunc_sqrtf_finite:
7156       case LibFunc_sqrtl_finite:
7157         if (visitUnaryFloatCall(I, ISD::FSQRT))
7158           return;
7159         break;
7160       case LibFunc_floor:
7161       case LibFunc_floorf:
7162       case LibFunc_floorl:
7163         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7164           return;
7165         break;
7166       case LibFunc_nearbyint:
7167       case LibFunc_nearbyintf:
7168       case LibFunc_nearbyintl:
7169         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7170           return;
7171         break;
7172       case LibFunc_ceil:
7173       case LibFunc_ceilf:
7174       case LibFunc_ceill:
7175         if (visitUnaryFloatCall(I, ISD::FCEIL))
7176           return;
7177         break;
7178       case LibFunc_rint:
7179       case LibFunc_rintf:
7180       case LibFunc_rintl:
7181         if (visitUnaryFloatCall(I, ISD::FRINT))
7182           return;
7183         break;
7184       case LibFunc_round:
7185       case LibFunc_roundf:
7186       case LibFunc_roundl:
7187         if (visitUnaryFloatCall(I, ISD::FROUND))
7188           return;
7189         break;
7190       case LibFunc_trunc:
7191       case LibFunc_truncf:
7192       case LibFunc_truncl:
7193         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7194           return;
7195         break;
7196       case LibFunc_log2:
7197       case LibFunc_log2f:
7198       case LibFunc_log2l:
7199         if (visitUnaryFloatCall(I, ISD::FLOG2))
7200           return;
7201         break;
7202       case LibFunc_exp2:
7203       case LibFunc_exp2f:
7204       case LibFunc_exp2l:
7205         if (visitUnaryFloatCall(I, ISD::FEXP2))
7206           return;
7207         break;
7208       case LibFunc_memcmp:
7209         if (visitMemCmpCall(I))
7210           return;
7211         break;
7212       case LibFunc_mempcpy:
7213         if (visitMemPCpyCall(I))
7214           return;
7215         break;
7216       case LibFunc_memchr:
7217         if (visitMemChrCall(I))
7218           return;
7219         break;
7220       case LibFunc_strcpy:
7221         if (visitStrCpyCall(I, false))
7222           return;
7223         break;
7224       case LibFunc_stpcpy:
7225         if (visitStrCpyCall(I, true))
7226           return;
7227         break;
7228       case LibFunc_strcmp:
7229         if (visitStrCmpCall(I))
7230           return;
7231         break;
7232       case LibFunc_strlen:
7233         if (visitStrLenCall(I))
7234           return;
7235         break;
7236       case LibFunc_strnlen:
7237         if (visitStrNLenCall(I))
7238           return;
7239         break;
7240       }
7241     }
7242   }
7243 
7244   SDValue Callee;
7245   if (!RenameFn)
7246     Callee = getValue(I.getCalledValue());
7247   else
7248     Callee = DAG.getExternalSymbol(
7249         RenameFn,
7250         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7251 
7252   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7253   // have to do anything here to lower funclet bundles.
7254   assert(!I.hasOperandBundlesOtherThan(
7255              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7256          "Cannot lower calls with arbitrary operand bundles!");
7257 
7258   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7259     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7260   else
7261     // Check if we can potentially perform a tail call. More detailed checking
7262     // is be done within LowerCallTo, after more information about the call is
7263     // known.
7264     LowerCallTo(&I, Callee, I.isTailCall());
7265 }
7266 
7267 namespace {
7268 
7269 /// AsmOperandInfo - This contains information for each constraint that we are
7270 /// lowering.
7271 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7272 public:
7273   /// CallOperand - If this is the result output operand or a clobber
7274   /// this is null, otherwise it is the incoming operand to the CallInst.
7275   /// This gets modified as the asm is processed.
7276   SDValue CallOperand;
7277 
7278   /// AssignedRegs - If this is a register or register class operand, this
7279   /// contains the set of register corresponding to the operand.
7280   RegsForValue AssignedRegs;
7281 
7282   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7283     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7284   }
7285 
7286   /// Whether or not this operand accesses memory
7287   bool hasMemory(const TargetLowering &TLI) const {
7288     // Indirect operand accesses access memory.
7289     if (isIndirect)
7290       return true;
7291 
7292     for (const auto &Code : Codes)
7293       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7294         return true;
7295 
7296     return false;
7297   }
7298 
7299   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7300   /// corresponds to.  If there is no Value* for this operand, it returns
7301   /// MVT::Other.
7302   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7303                            const DataLayout &DL) const {
7304     if (!CallOperandVal) return MVT::Other;
7305 
7306     if (isa<BasicBlock>(CallOperandVal))
7307       return TLI.getPointerTy(DL);
7308 
7309     llvm::Type *OpTy = CallOperandVal->getType();
7310 
7311     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7312     // If this is an indirect operand, the operand is a pointer to the
7313     // accessed type.
7314     if (isIndirect) {
7315       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7316       if (!PtrTy)
7317         report_fatal_error("Indirect operand for inline asm not a pointer!");
7318       OpTy = PtrTy->getElementType();
7319     }
7320 
7321     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7322     if (StructType *STy = dyn_cast<StructType>(OpTy))
7323       if (STy->getNumElements() == 1)
7324         OpTy = STy->getElementType(0);
7325 
7326     // If OpTy is not a single value, it may be a struct/union that we
7327     // can tile with integers.
7328     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7329       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7330       switch (BitSize) {
7331       default: break;
7332       case 1:
7333       case 8:
7334       case 16:
7335       case 32:
7336       case 64:
7337       case 128:
7338         OpTy = IntegerType::get(Context, BitSize);
7339         break;
7340       }
7341     }
7342 
7343     return TLI.getValueType(DL, OpTy, true);
7344   }
7345 };
7346 
7347 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7348 
7349 } // end anonymous namespace
7350 
7351 /// Make sure that the output operand \p OpInfo and its corresponding input
7352 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7353 /// out).
7354 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7355                                SDISelAsmOperandInfo &MatchingOpInfo,
7356                                SelectionDAG &DAG) {
7357   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7358     return;
7359 
7360   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7361   const auto &TLI = DAG.getTargetLoweringInfo();
7362 
7363   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7364       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7365                                        OpInfo.ConstraintVT);
7366   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7367       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7368                                        MatchingOpInfo.ConstraintVT);
7369   if ((OpInfo.ConstraintVT.isInteger() !=
7370        MatchingOpInfo.ConstraintVT.isInteger()) ||
7371       (MatchRC.second != InputRC.second)) {
7372     // FIXME: error out in a more elegant fashion
7373     report_fatal_error("Unsupported asm: input constraint"
7374                        " with a matching output constraint of"
7375                        " incompatible type!");
7376   }
7377   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7378 }
7379 
7380 /// Get a direct memory input to behave well as an indirect operand.
7381 /// This may introduce stores, hence the need for a \p Chain.
7382 /// \return The (possibly updated) chain.
7383 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7384                                         SDISelAsmOperandInfo &OpInfo,
7385                                         SelectionDAG &DAG) {
7386   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7387 
7388   // If we don't have an indirect input, put it in the constpool if we can,
7389   // otherwise spill it to a stack slot.
7390   // TODO: This isn't quite right. We need to handle these according to
7391   // the addressing mode that the constraint wants. Also, this may take
7392   // an additional register for the computation and we don't want that
7393   // either.
7394 
7395   // If the operand is a float, integer, or vector constant, spill to a
7396   // constant pool entry to get its address.
7397   const Value *OpVal = OpInfo.CallOperandVal;
7398   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7399       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7400     OpInfo.CallOperand = DAG.getConstantPool(
7401         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7402     return Chain;
7403   }
7404 
7405   // Otherwise, create a stack slot and emit a store to it before the asm.
7406   Type *Ty = OpVal->getType();
7407   auto &DL = DAG.getDataLayout();
7408   uint64_t TySize = DL.getTypeAllocSize(Ty);
7409   unsigned Align = DL.getPrefTypeAlignment(Ty);
7410   MachineFunction &MF = DAG.getMachineFunction();
7411   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7412   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7413   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7414                        MachinePointerInfo::getFixedStack(MF, SSFI));
7415   OpInfo.CallOperand = StackSlot;
7416 
7417   return Chain;
7418 }
7419 
7420 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7421 /// specified operand.  We prefer to assign virtual registers, to allow the
7422 /// register allocator to handle the assignment process.  However, if the asm
7423 /// uses features that we can't model on machineinstrs, we have SDISel do the
7424 /// allocation.  This produces generally horrible, but correct, code.
7425 ///
7426 ///   OpInfo describes the operand
7427 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7428 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7429                                  SDISelAsmOperandInfo &OpInfo,
7430                                  SDISelAsmOperandInfo &RefOpInfo) {
7431   LLVMContext &Context = *DAG.getContext();
7432   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7433 
7434   MachineFunction &MF = DAG.getMachineFunction();
7435   SmallVector<unsigned, 4> Regs;
7436   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7437 
7438   // No work to do for memory operations.
7439   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7440     return;
7441 
7442   // If this is a constraint for a single physreg, or a constraint for a
7443   // register class, find it.
7444   unsigned AssignedReg;
7445   const TargetRegisterClass *RC;
7446   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7447       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7448   // RC is unset only on failure. Return immediately.
7449   if (!RC)
7450     return;
7451 
7452   // Get the actual register value type.  This is important, because the user
7453   // may have asked for (e.g.) the AX register in i32 type.  We need to
7454   // remember that AX is actually i16 to get the right extension.
7455   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7456 
7457   if (OpInfo.ConstraintVT != MVT::Other) {
7458     // If this is an FP operand in an integer register (or visa versa), or more
7459     // generally if the operand value disagrees with the register class we plan
7460     // to stick it in, fix the operand type.
7461     //
7462     // If this is an input value, the bitcast to the new type is done now.
7463     // Bitcast for output value is done at the end of visitInlineAsm().
7464     if ((OpInfo.Type == InlineAsm::isOutput ||
7465          OpInfo.Type == InlineAsm::isInput) &&
7466         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7467       // Try to convert to the first EVT that the reg class contains.  If the
7468       // types are identical size, use a bitcast to convert (e.g. two differing
7469       // vector types).  Note: output bitcast is done at the end of
7470       // visitInlineAsm().
7471       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7472         // Exclude indirect inputs while they are unsupported because the code
7473         // to perform the load is missing and thus OpInfo.CallOperand still
7474         // refers to the input address rather than the pointed-to value.
7475         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7476           OpInfo.CallOperand =
7477               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7478         OpInfo.ConstraintVT = RegVT;
7479         // If the operand is an FP value and we want it in integer registers,
7480         // use the corresponding integer type. This turns an f64 value into
7481         // i64, which can be passed with two i32 values on a 32-bit machine.
7482       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7483         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7484         if (OpInfo.Type == InlineAsm::isInput)
7485           OpInfo.CallOperand =
7486               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7487         OpInfo.ConstraintVT = VT;
7488       }
7489     }
7490   }
7491 
7492   // No need to allocate a matching input constraint since the constraint it's
7493   // matching to has already been allocated.
7494   if (OpInfo.isMatchingInputConstraint())
7495     return;
7496 
7497   EVT ValueVT = OpInfo.ConstraintVT;
7498   if (OpInfo.ConstraintVT == MVT::Other)
7499     ValueVT = RegVT;
7500 
7501   // Initialize NumRegs.
7502   unsigned NumRegs = 1;
7503   if (OpInfo.ConstraintVT != MVT::Other)
7504     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7505 
7506   // If this is a constraint for a specific physical register, like {r17},
7507   // assign it now.
7508 
7509   // If this associated to a specific register, initialize iterator to correct
7510   // place. If virtual, make sure we have enough registers
7511 
7512   // Initialize iterator if necessary
7513   TargetRegisterClass::iterator I = RC->begin();
7514   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7515 
7516   // Do not check for single registers.
7517   if (AssignedReg) {
7518       for (; *I != AssignedReg; ++I)
7519         assert(I != RC->end() && "AssignedReg should be member of RC");
7520   }
7521 
7522   for (; NumRegs; --NumRegs, ++I) {
7523     assert(I != RC->end() && "Ran out of registers to allocate!");
7524     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7525     Regs.push_back(R);
7526   }
7527 
7528   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7529 }
7530 
7531 static unsigned
7532 findMatchingInlineAsmOperand(unsigned OperandNo,
7533                              const std::vector<SDValue> &AsmNodeOperands) {
7534   // Scan until we find the definition we already emitted of this operand.
7535   unsigned CurOp = InlineAsm::Op_FirstOperand;
7536   for (; OperandNo; --OperandNo) {
7537     // Advance to the next operand.
7538     unsigned OpFlag =
7539         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7540     assert((InlineAsm::isRegDefKind(OpFlag) ||
7541             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7542             InlineAsm::isMemKind(OpFlag)) &&
7543            "Skipped past definitions?");
7544     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7545   }
7546   return CurOp;
7547 }
7548 
7549 namespace {
7550 
7551 class ExtraFlags {
7552   unsigned Flags = 0;
7553 
7554 public:
7555   explicit ExtraFlags(ImmutableCallSite CS) {
7556     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7557     if (IA->hasSideEffects())
7558       Flags |= InlineAsm::Extra_HasSideEffects;
7559     if (IA->isAlignStack())
7560       Flags |= InlineAsm::Extra_IsAlignStack;
7561     if (CS.isConvergent())
7562       Flags |= InlineAsm::Extra_IsConvergent;
7563     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7564   }
7565 
7566   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7567     // Ideally, we would only check against memory constraints.  However, the
7568     // meaning of an Other constraint can be target-specific and we can't easily
7569     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7570     // for Other constraints as well.
7571     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7572         OpInfo.ConstraintType == TargetLowering::C_Other) {
7573       if (OpInfo.Type == InlineAsm::isInput)
7574         Flags |= InlineAsm::Extra_MayLoad;
7575       else if (OpInfo.Type == InlineAsm::isOutput)
7576         Flags |= InlineAsm::Extra_MayStore;
7577       else if (OpInfo.Type == InlineAsm::isClobber)
7578         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7579     }
7580   }
7581 
7582   unsigned get() const { return Flags; }
7583 };
7584 
7585 } // end anonymous namespace
7586 
7587 /// visitInlineAsm - Handle a call to an InlineAsm object.
7588 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7589   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7590 
7591   /// ConstraintOperands - Information about all of the constraints.
7592   SDISelAsmOperandInfoVector ConstraintOperands;
7593 
7594   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7595   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7596       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7597 
7598   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7599   // AsmDialect, MayLoad, MayStore).
7600   bool HasSideEffect = IA->hasSideEffects();
7601   ExtraFlags ExtraInfo(CS);
7602 
7603   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7604   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7605   for (auto &T : TargetConstraints) {
7606     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7607     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7608 
7609     // Compute the value type for each operand.
7610     if (OpInfo.Type == InlineAsm::isInput ||
7611         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7612       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7613 
7614       // Process the call argument. BasicBlocks are labels, currently appearing
7615       // only in asm's.
7616       const Instruction *I = CS.getInstruction();
7617       if (isa<CallBrInst>(I) &&
7618           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7619                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7620         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7621         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7622         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7623       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7624         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7625       } else {
7626         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7627       }
7628 
7629       OpInfo.ConstraintVT =
7630           OpInfo
7631               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7632               .getSimpleVT();
7633     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7634       // The return value of the call is this value.  As such, there is no
7635       // corresponding argument.
7636       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7637       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7638         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7639             DAG.getDataLayout(), STy->getElementType(ResNo));
7640       } else {
7641         assert(ResNo == 0 && "Asm only has one result!");
7642         OpInfo.ConstraintVT =
7643             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7644       }
7645       ++ResNo;
7646     } else {
7647       OpInfo.ConstraintVT = MVT::Other;
7648     }
7649 
7650     if (!HasSideEffect)
7651       HasSideEffect = OpInfo.hasMemory(TLI);
7652 
7653     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7654     // FIXME: Could we compute this on OpInfo rather than T?
7655 
7656     // Compute the constraint code and ConstraintType to use.
7657     TLI.ComputeConstraintToUse(T, SDValue());
7658 
7659     ExtraInfo.update(T);
7660   }
7661 
7662   // We won't need to flush pending loads if this asm doesn't touch
7663   // memory and is nonvolatile.
7664   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7665 
7666   // Second pass over the constraints: compute which constraint option to use.
7667   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7668     // If this is an output operand with a matching input operand, look up the
7669     // matching input. If their types mismatch, e.g. one is an integer, the
7670     // other is floating point, or their sizes are different, flag it as an
7671     // error.
7672     if (OpInfo.hasMatchingInput()) {
7673       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7674       patchMatchingInput(OpInfo, Input, DAG);
7675     }
7676 
7677     // Compute the constraint code and ConstraintType to use.
7678     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7679 
7680     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7681         OpInfo.Type == InlineAsm::isClobber)
7682       continue;
7683 
7684     // If this is a memory input, and if the operand is not indirect, do what we
7685     // need to provide an address for the memory input.
7686     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7687         !OpInfo.isIndirect) {
7688       assert((OpInfo.isMultipleAlternative ||
7689               (OpInfo.Type == InlineAsm::isInput)) &&
7690              "Can only indirectify direct input operands!");
7691 
7692       // Memory operands really want the address of the value.
7693       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7694 
7695       // There is no longer a Value* corresponding to this operand.
7696       OpInfo.CallOperandVal = nullptr;
7697 
7698       // It is now an indirect operand.
7699       OpInfo.isIndirect = true;
7700     }
7701 
7702   }
7703 
7704   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7705   std::vector<SDValue> AsmNodeOperands;
7706   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7707   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7708       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7709 
7710   // If we have a !srcloc metadata node associated with it, we want to attach
7711   // this to the ultimately generated inline asm machineinstr.  To do this, we
7712   // pass in the third operand as this (potentially null) inline asm MDNode.
7713   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7714   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7715 
7716   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7717   // bits as operand 3.
7718   AsmNodeOperands.push_back(DAG.getTargetConstant(
7719       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7720 
7721   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7722   // this, assign virtual and physical registers for inputs and otput.
7723   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7724     // Assign Registers.
7725     SDISelAsmOperandInfo &RefOpInfo =
7726         OpInfo.isMatchingInputConstraint()
7727             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7728             : OpInfo;
7729     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7730 
7731     switch (OpInfo.Type) {
7732     case InlineAsm::isOutput:
7733       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7734           (OpInfo.ConstraintType == TargetLowering::C_Other &&
7735            OpInfo.isIndirect)) {
7736         unsigned ConstraintID =
7737             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7738         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7739                "Failed to convert memory constraint code to constraint id.");
7740 
7741         // Add information to the INLINEASM node to know about this output.
7742         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7743         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7744         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7745                                                         MVT::i32));
7746         AsmNodeOperands.push_back(OpInfo.CallOperand);
7747         break;
7748       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
7749                   !OpInfo.isIndirect) ||
7750                  OpInfo.ConstraintType == TargetLowering::C_Register ||
7751                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7752         // Otherwise, this outputs to a register (directly for C_Register /
7753         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
7754         // register that we can use.
7755         if (OpInfo.AssignedRegs.Regs.empty()) {
7756           emitInlineAsmError(
7757               CS, "couldn't allocate output register for constraint '" +
7758                       Twine(OpInfo.ConstraintCode) + "'");
7759           return;
7760         }
7761 
7762         // Add information to the INLINEASM node to know that this register is
7763         // set.
7764         OpInfo.AssignedRegs.AddInlineAsmOperands(
7765             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7766                                   : InlineAsm::Kind_RegDef,
7767             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7768       }
7769       break;
7770 
7771     case InlineAsm::isInput: {
7772       SDValue InOperandVal = OpInfo.CallOperand;
7773 
7774       if (OpInfo.isMatchingInputConstraint()) {
7775         // If this is required to match an output register we have already set,
7776         // just use its register.
7777         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7778                                                   AsmNodeOperands);
7779         unsigned OpFlag =
7780           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7781         if (InlineAsm::isRegDefKind(OpFlag) ||
7782             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7783           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7784           if (OpInfo.isIndirect) {
7785             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7786             emitInlineAsmError(CS, "inline asm not supported yet:"
7787                                    " don't know how to handle tied "
7788                                    "indirect register inputs");
7789             return;
7790           }
7791 
7792           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7793           SmallVector<unsigned, 4> Regs;
7794 
7795           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7796             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7797             MachineRegisterInfo &RegInfo =
7798                 DAG.getMachineFunction().getRegInfo();
7799             for (unsigned i = 0; i != NumRegs; ++i)
7800               Regs.push_back(RegInfo.createVirtualRegister(RC));
7801           } else {
7802             emitInlineAsmError(CS, "inline asm error: This value type register "
7803                                    "class is not natively supported!");
7804             return;
7805           }
7806 
7807           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7808 
7809           SDLoc dl = getCurSDLoc();
7810           // Use the produced MatchedRegs object to
7811           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7812                                     CS.getInstruction());
7813           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7814                                            true, OpInfo.getMatchedOperand(), dl,
7815                                            DAG, AsmNodeOperands);
7816           break;
7817         }
7818 
7819         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7820         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7821                "Unexpected number of operands");
7822         // Add information to the INLINEASM node to know about this input.
7823         // See InlineAsm.h isUseOperandTiedToDef.
7824         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7825         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7826                                                     OpInfo.getMatchedOperand());
7827         AsmNodeOperands.push_back(DAG.getTargetConstant(
7828             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7829         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7830         break;
7831       }
7832 
7833       // Treat indirect 'X' constraint as memory.
7834       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7835           OpInfo.isIndirect)
7836         OpInfo.ConstraintType = TargetLowering::C_Memory;
7837 
7838       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7839         std::vector<SDValue> Ops;
7840         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7841                                           Ops, DAG);
7842         if (Ops.empty()) {
7843           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7844                                      Twine(OpInfo.ConstraintCode) + "'");
7845           return;
7846         }
7847 
7848         // Add information to the INLINEASM node to know about this input.
7849         unsigned ResOpType =
7850           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7851         AsmNodeOperands.push_back(DAG.getTargetConstant(
7852             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7853         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7854         break;
7855       }
7856 
7857       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7858         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7859         assert(InOperandVal.getValueType() ==
7860                    TLI.getPointerTy(DAG.getDataLayout()) &&
7861                "Memory operands expect pointer values");
7862 
7863         unsigned ConstraintID =
7864             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7865         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7866                "Failed to convert memory constraint code to constraint id.");
7867 
7868         // Add information to the INLINEASM node to know about this input.
7869         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7870         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7871         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7872                                                         getCurSDLoc(),
7873                                                         MVT::i32));
7874         AsmNodeOperands.push_back(InOperandVal);
7875         break;
7876       }
7877 
7878       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7879               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7880              "Unknown constraint type!");
7881 
7882       // TODO: Support this.
7883       if (OpInfo.isIndirect) {
7884         emitInlineAsmError(
7885             CS, "Don't know how to handle indirect register inputs yet "
7886                 "for constraint '" +
7887                     Twine(OpInfo.ConstraintCode) + "'");
7888         return;
7889       }
7890 
7891       // Copy the input into the appropriate registers.
7892       if (OpInfo.AssignedRegs.Regs.empty()) {
7893         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7894                                    Twine(OpInfo.ConstraintCode) + "'");
7895         return;
7896       }
7897 
7898       SDLoc dl = getCurSDLoc();
7899 
7900       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7901                                         Chain, &Flag, CS.getInstruction());
7902 
7903       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7904                                                dl, DAG, AsmNodeOperands);
7905       break;
7906     }
7907     case InlineAsm::isClobber:
7908       // Add the clobbered value to the operand list, so that the register
7909       // allocator is aware that the physreg got clobbered.
7910       if (!OpInfo.AssignedRegs.Regs.empty())
7911         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7912                                                  false, 0, getCurSDLoc(), DAG,
7913                                                  AsmNodeOperands);
7914       break;
7915     }
7916   }
7917 
7918   // Finish up input operands.  Set the input chain and add the flag last.
7919   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7920   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7921 
7922   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM;
7923   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
7924                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7925   Flag = Chain.getValue(1);
7926 
7927   // Do additional work to generate outputs.
7928 
7929   SmallVector<EVT, 1> ResultVTs;
7930   SmallVector<SDValue, 1> ResultValues;
7931   SmallVector<SDValue, 8> OutChains;
7932 
7933   llvm::Type *CSResultType = CS.getType();
7934   ArrayRef<Type *> ResultTypes;
7935   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
7936     ResultTypes = StructResult->elements();
7937   else if (!CSResultType->isVoidTy())
7938     ResultTypes = makeArrayRef(CSResultType);
7939 
7940   auto CurResultType = ResultTypes.begin();
7941   auto handleRegAssign = [&](SDValue V) {
7942     assert(CurResultType != ResultTypes.end() && "Unexpected value");
7943     assert((*CurResultType)->isSized() && "Unexpected unsized type");
7944     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
7945     ++CurResultType;
7946     // If the type of the inline asm call site return value is different but has
7947     // same size as the type of the asm output bitcast it.  One example of this
7948     // is for vectors with different width / number of elements.  This can
7949     // happen for register classes that can contain multiple different value
7950     // types.  The preg or vreg allocated may not have the same VT as was
7951     // expected.
7952     //
7953     // This can also happen for a return value that disagrees with the register
7954     // class it is put in, eg. a double in a general-purpose register on a
7955     // 32-bit machine.
7956     if (ResultVT != V.getValueType() &&
7957         ResultVT.getSizeInBits() == V.getValueSizeInBits())
7958       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
7959     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
7960              V.getValueType().isInteger()) {
7961       // If a result value was tied to an input value, the computed result
7962       // may have a wider width than the expected result.  Extract the
7963       // relevant portion.
7964       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
7965     }
7966     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
7967     ResultVTs.push_back(ResultVT);
7968     ResultValues.push_back(V);
7969   };
7970 
7971   // Deal with output operands.
7972   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7973     if (OpInfo.Type == InlineAsm::isOutput) {
7974       SDValue Val;
7975       // Skip trivial output operands.
7976       if (OpInfo.AssignedRegs.Regs.empty())
7977         continue;
7978 
7979       switch (OpInfo.ConstraintType) {
7980       case TargetLowering::C_Register:
7981       case TargetLowering::C_RegisterClass:
7982         Val = OpInfo.AssignedRegs.getCopyFromRegs(
7983             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
7984         break;
7985       case TargetLowering::C_Other:
7986         Val = TLI.LowerAsmOutputForConstraint(Chain, &Flag, getCurSDLoc(),
7987                                               OpInfo, DAG);
7988         break;
7989       case TargetLowering::C_Memory:
7990         break; // Already handled.
7991       case TargetLowering::C_Unknown:
7992         assert(false && "Unexpected unknown constraint");
7993       }
7994 
7995       // Indirect output manifest as stores. Record output chains.
7996       if (OpInfo.isIndirect) {
7997 
7998         const Value *Ptr = OpInfo.CallOperandVal;
7999         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8000         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8001                                      MachinePointerInfo(Ptr));
8002         OutChains.push_back(Store);
8003       } else {
8004         // generate CopyFromRegs to associated registers.
8005         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8006         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8007           for (const SDValue &V : Val->op_values())
8008             handleRegAssign(V);
8009         } else
8010           handleRegAssign(Val);
8011       }
8012     }
8013   }
8014 
8015   // Set results.
8016   if (!ResultValues.empty()) {
8017     assert(CurResultType == ResultTypes.end() &&
8018            "Mismatch in number of ResultTypes");
8019     assert(ResultValues.size() == ResultTypes.size() &&
8020            "Mismatch in number of output operands in asm result");
8021 
8022     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8023                             DAG.getVTList(ResultVTs), ResultValues);
8024     setValue(CS.getInstruction(), V);
8025   }
8026 
8027   // Collect store chains.
8028   if (!OutChains.empty())
8029     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8030 
8031   // Only Update Root if inline assembly has a memory effect.
8032   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8033     DAG.setRoot(Chain);
8034 }
8035 
8036 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8037                                              const Twine &Message) {
8038   LLVMContext &Ctx = *DAG.getContext();
8039   Ctx.emitError(CS.getInstruction(), Message);
8040 
8041   // Make sure we leave the DAG in a valid state
8042   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8043   SmallVector<EVT, 1> ValueVTs;
8044   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8045 
8046   if (ValueVTs.empty())
8047     return;
8048 
8049   SmallVector<SDValue, 1> Ops;
8050   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8051     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8052 
8053   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8054 }
8055 
8056 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8057   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8058                           MVT::Other, getRoot(),
8059                           getValue(I.getArgOperand(0)),
8060                           DAG.getSrcValue(I.getArgOperand(0))));
8061 }
8062 
8063 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8064   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8065   const DataLayout &DL = DAG.getDataLayout();
8066   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8067                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8068                            DAG.getSrcValue(I.getOperand(0)),
8069                            DL.getABITypeAlignment(I.getType()));
8070   setValue(&I, V);
8071   DAG.setRoot(V.getValue(1));
8072 }
8073 
8074 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8075   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8076                           MVT::Other, getRoot(),
8077                           getValue(I.getArgOperand(0)),
8078                           DAG.getSrcValue(I.getArgOperand(0))));
8079 }
8080 
8081 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8082   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8083                           MVT::Other, getRoot(),
8084                           getValue(I.getArgOperand(0)),
8085                           getValue(I.getArgOperand(1)),
8086                           DAG.getSrcValue(I.getArgOperand(0)),
8087                           DAG.getSrcValue(I.getArgOperand(1))));
8088 }
8089 
8090 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8091                                                     const Instruction &I,
8092                                                     SDValue Op) {
8093   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8094   if (!Range)
8095     return Op;
8096 
8097   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8098   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8099     return Op;
8100 
8101   APInt Lo = CR.getUnsignedMin();
8102   if (!Lo.isMinValue())
8103     return Op;
8104 
8105   APInt Hi = CR.getUnsignedMax();
8106   unsigned Bits = std::max(Hi.getActiveBits(),
8107                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8108 
8109   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8110 
8111   SDLoc SL = getCurSDLoc();
8112 
8113   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8114                              DAG.getValueType(SmallVT));
8115   unsigned NumVals = Op.getNode()->getNumValues();
8116   if (NumVals == 1)
8117     return ZExt;
8118 
8119   SmallVector<SDValue, 4> Ops;
8120 
8121   Ops.push_back(ZExt);
8122   for (unsigned I = 1; I != NumVals; ++I)
8123     Ops.push_back(Op.getValue(I));
8124 
8125   return DAG.getMergeValues(Ops, SL);
8126 }
8127 
8128 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8129 /// the call being lowered.
8130 ///
8131 /// This is a helper for lowering intrinsics that follow a target calling
8132 /// convention or require stack pointer adjustment. Only a subset of the
8133 /// intrinsic's operands need to participate in the calling convention.
8134 void SelectionDAGBuilder::populateCallLoweringInfo(
8135     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
8136     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8137     bool IsPatchPoint) {
8138   TargetLowering::ArgListTy Args;
8139   Args.reserve(NumArgs);
8140 
8141   // Populate the argument list.
8142   // Attributes for args start at offset 1, after the return attribute.
8143   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8144        ArgI != ArgE; ++ArgI) {
8145     const Value *V = CS->getOperand(ArgI);
8146 
8147     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8148 
8149     TargetLowering::ArgListEntry Entry;
8150     Entry.Node = getValue(V);
8151     Entry.Ty = V->getType();
8152     Entry.setAttributes(&CS, ArgI);
8153     Args.push_back(Entry);
8154   }
8155 
8156   CLI.setDebugLoc(getCurSDLoc())
8157       .setChain(getRoot())
8158       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8159       .setDiscardResult(CS->use_empty())
8160       .setIsPatchPoint(IsPatchPoint);
8161 }
8162 
8163 /// Add a stack map intrinsic call's live variable operands to a stackmap
8164 /// or patchpoint target node's operand list.
8165 ///
8166 /// Constants are converted to TargetConstants purely as an optimization to
8167 /// avoid constant materialization and register allocation.
8168 ///
8169 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8170 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8171 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8172 /// address materialization and register allocation, but may also be required
8173 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8174 /// alloca in the entry block, then the runtime may assume that the alloca's
8175 /// StackMap location can be read immediately after compilation and that the
8176 /// location is valid at any point during execution (this is similar to the
8177 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8178 /// only available in a register, then the runtime would need to trap when
8179 /// execution reaches the StackMap in order to read the alloca's location.
8180 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8181                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8182                                 SelectionDAGBuilder &Builder) {
8183   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8184     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8185     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8186       Ops.push_back(
8187         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8188       Ops.push_back(
8189         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8190     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8191       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8192       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8193           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8194     } else
8195       Ops.push_back(OpVal);
8196   }
8197 }
8198 
8199 /// Lower llvm.experimental.stackmap directly to its target opcode.
8200 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8201   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8202   //                                  [live variables...])
8203 
8204   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8205 
8206   SDValue Chain, InFlag, Callee, NullPtr;
8207   SmallVector<SDValue, 32> Ops;
8208 
8209   SDLoc DL = getCurSDLoc();
8210   Callee = getValue(CI.getCalledValue());
8211   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8212 
8213   // The stackmap intrinsic only records the live variables (the arguemnts
8214   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8215   // intrinsic, this won't be lowered to a function call. This means we don't
8216   // have to worry about calling conventions and target specific lowering code.
8217   // Instead we perform the call lowering right here.
8218   //
8219   // chain, flag = CALLSEQ_START(chain, 0, 0)
8220   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8221   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8222   //
8223   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8224   InFlag = Chain.getValue(1);
8225 
8226   // Add the <id> and <numBytes> constants.
8227   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8228   Ops.push_back(DAG.getTargetConstant(
8229                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8230   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8231   Ops.push_back(DAG.getTargetConstant(
8232                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8233                   MVT::i32));
8234 
8235   // Push live variables for the stack map.
8236   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8237 
8238   // We are not pushing any register mask info here on the operands list,
8239   // because the stackmap doesn't clobber anything.
8240 
8241   // Push the chain and the glue flag.
8242   Ops.push_back(Chain);
8243   Ops.push_back(InFlag);
8244 
8245   // Create the STACKMAP node.
8246   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8247   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8248   Chain = SDValue(SM, 0);
8249   InFlag = Chain.getValue(1);
8250 
8251   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8252 
8253   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8254 
8255   // Set the root to the target-lowered call chain.
8256   DAG.setRoot(Chain);
8257 
8258   // Inform the Frame Information that we have a stackmap in this function.
8259   FuncInfo.MF->getFrameInfo().setHasStackMap();
8260 }
8261 
8262 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8263 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8264                                           const BasicBlock *EHPadBB) {
8265   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8266   //                                                 i32 <numBytes>,
8267   //                                                 i8* <target>,
8268   //                                                 i32 <numArgs>,
8269   //                                                 [Args...],
8270   //                                                 [live variables...])
8271 
8272   CallingConv::ID CC = CS.getCallingConv();
8273   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8274   bool HasDef = !CS->getType()->isVoidTy();
8275   SDLoc dl = getCurSDLoc();
8276   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8277 
8278   // Handle immediate and symbolic callees.
8279   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8280     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8281                                    /*isTarget=*/true);
8282   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8283     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8284                                          SDLoc(SymbolicCallee),
8285                                          SymbolicCallee->getValueType(0));
8286 
8287   // Get the real number of arguments participating in the call <numArgs>
8288   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8289   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8290 
8291   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8292   // Intrinsics include all meta-operands up to but not including CC.
8293   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8294   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8295          "Not enough arguments provided to the patchpoint intrinsic");
8296 
8297   // For AnyRegCC the arguments are lowered later on manually.
8298   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8299   Type *ReturnTy =
8300     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8301 
8302   TargetLowering::CallLoweringInfo CLI(DAG);
8303   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8304                            true);
8305   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8306 
8307   SDNode *CallEnd = Result.second.getNode();
8308   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8309     CallEnd = CallEnd->getOperand(0).getNode();
8310 
8311   /// Get a call instruction from the call sequence chain.
8312   /// Tail calls are not allowed.
8313   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8314          "Expected a callseq node.");
8315   SDNode *Call = CallEnd->getOperand(0).getNode();
8316   bool HasGlue = Call->getGluedNode();
8317 
8318   // Replace the target specific call node with the patchable intrinsic.
8319   SmallVector<SDValue, 8> Ops;
8320 
8321   // Add the <id> and <numBytes> constants.
8322   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8323   Ops.push_back(DAG.getTargetConstant(
8324                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8325   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8326   Ops.push_back(DAG.getTargetConstant(
8327                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8328                   MVT::i32));
8329 
8330   // Add the callee.
8331   Ops.push_back(Callee);
8332 
8333   // Adjust <numArgs> to account for any arguments that have been passed on the
8334   // stack instead.
8335   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8336   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8337   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8338   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8339 
8340   // Add the calling convention
8341   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8342 
8343   // Add the arguments we omitted previously. The register allocator should
8344   // place these in any free register.
8345   if (IsAnyRegCC)
8346     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8347       Ops.push_back(getValue(CS.getArgument(i)));
8348 
8349   // Push the arguments from the call instruction up to the register mask.
8350   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8351   Ops.append(Call->op_begin() + 2, e);
8352 
8353   // Push live variables for the stack map.
8354   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8355 
8356   // Push the register mask info.
8357   if (HasGlue)
8358     Ops.push_back(*(Call->op_end()-2));
8359   else
8360     Ops.push_back(*(Call->op_end()-1));
8361 
8362   // Push the chain (this is originally the first operand of the call, but
8363   // becomes now the last or second to last operand).
8364   Ops.push_back(*(Call->op_begin()));
8365 
8366   // Push the glue flag (last operand).
8367   if (HasGlue)
8368     Ops.push_back(*(Call->op_end()-1));
8369 
8370   SDVTList NodeTys;
8371   if (IsAnyRegCC && HasDef) {
8372     // Create the return types based on the intrinsic definition
8373     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8374     SmallVector<EVT, 3> ValueVTs;
8375     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8376     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8377 
8378     // There is always a chain and a glue type at the end
8379     ValueVTs.push_back(MVT::Other);
8380     ValueVTs.push_back(MVT::Glue);
8381     NodeTys = DAG.getVTList(ValueVTs);
8382   } else
8383     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8384 
8385   // Replace the target specific call node with a PATCHPOINT node.
8386   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8387                                          dl, NodeTys, Ops);
8388 
8389   // Update the NodeMap.
8390   if (HasDef) {
8391     if (IsAnyRegCC)
8392       setValue(CS.getInstruction(), SDValue(MN, 0));
8393     else
8394       setValue(CS.getInstruction(), Result.first);
8395   }
8396 
8397   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8398   // call sequence. Furthermore the location of the chain and glue can change
8399   // when the AnyReg calling convention is used and the intrinsic returns a
8400   // value.
8401   if (IsAnyRegCC && HasDef) {
8402     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8403     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8404     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8405   } else
8406     DAG.ReplaceAllUsesWith(Call, MN);
8407   DAG.DeleteNode(Call);
8408 
8409   // Inform the Frame Information that we have a patchpoint in this function.
8410   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8411 }
8412 
8413 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8414                                             unsigned Intrinsic) {
8415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8416   SDValue Op1 = getValue(I.getArgOperand(0));
8417   SDValue Op2;
8418   if (I.getNumArgOperands() > 1)
8419     Op2 = getValue(I.getArgOperand(1));
8420   SDLoc dl = getCurSDLoc();
8421   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8422   SDValue Res;
8423   FastMathFlags FMF;
8424   if (isa<FPMathOperator>(I))
8425     FMF = I.getFastMathFlags();
8426 
8427   switch (Intrinsic) {
8428   case Intrinsic::experimental_vector_reduce_fadd:
8429     if (FMF.isFast())
8430       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8431     else
8432       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8433     break;
8434   case Intrinsic::experimental_vector_reduce_fmul:
8435     if (FMF.isFast())
8436       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8437     else
8438       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8439     break;
8440   case Intrinsic::experimental_vector_reduce_add:
8441     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8442     break;
8443   case Intrinsic::experimental_vector_reduce_mul:
8444     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8445     break;
8446   case Intrinsic::experimental_vector_reduce_and:
8447     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8448     break;
8449   case Intrinsic::experimental_vector_reduce_or:
8450     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8451     break;
8452   case Intrinsic::experimental_vector_reduce_xor:
8453     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8454     break;
8455   case Intrinsic::experimental_vector_reduce_smax:
8456     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8457     break;
8458   case Intrinsic::experimental_vector_reduce_smin:
8459     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8460     break;
8461   case Intrinsic::experimental_vector_reduce_umax:
8462     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8463     break;
8464   case Intrinsic::experimental_vector_reduce_umin:
8465     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8466     break;
8467   case Intrinsic::experimental_vector_reduce_fmax:
8468     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8469     break;
8470   case Intrinsic::experimental_vector_reduce_fmin:
8471     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8472     break;
8473   default:
8474     llvm_unreachable("Unhandled vector reduce intrinsic");
8475   }
8476   setValue(&I, Res);
8477 }
8478 
8479 /// Returns an AttributeList representing the attributes applied to the return
8480 /// value of the given call.
8481 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8482   SmallVector<Attribute::AttrKind, 2> Attrs;
8483   if (CLI.RetSExt)
8484     Attrs.push_back(Attribute::SExt);
8485   if (CLI.RetZExt)
8486     Attrs.push_back(Attribute::ZExt);
8487   if (CLI.IsInReg)
8488     Attrs.push_back(Attribute::InReg);
8489 
8490   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8491                             Attrs);
8492 }
8493 
8494 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8495 /// implementation, which just calls LowerCall.
8496 /// FIXME: When all targets are
8497 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8498 std::pair<SDValue, SDValue>
8499 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8500   // Handle the incoming return values from the call.
8501   CLI.Ins.clear();
8502   Type *OrigRetTy = CLI.RetTy;
8503   SmallVector<EVT, 4> RetTys;
8504   SmallVector<uint64_t, 4> Offsets;
8505   auto &DL = CLI.DAG.getDataLayout();
8506   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8507 
8508   if (CLI.IsPostTypeLegalization) {
8509     // If we are lowering a libcall after legalization, split the return type.
8510     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8511     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8512     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8513       EVT RetVT = OldRetTys[i];
8514       uint64_t Offset = OldOffsets[i];
8515       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8516       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8517       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8518       RetTys.append(NumRegs, RegisterVT);
8519       for (unsigned j = 0; j != NumRegs; ++j)
8520         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8521     }
8522   }
8523 
8524   SmallVector<ISD::OutputArg, 4> Outs;
8525   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8526 
8527   bool CanLowerReturn =
8528       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8529                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8530 
8531   SDValue DemoteStackSlot;
8532   int DemoteStackIdx = -100;
8533   if (!CanLowerReturn) {
8534     // FIXME: equivalent assert?
8535     // assert(!CS.hasInAllocaArgument() &&
8536     //        "sret demotion is incompatible with inalloca");
8537     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8538     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8539     MachineFunction &MF = CLI.DAG.getMachineFunction();
8540     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8541     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8542                                               DL.getAllocaAddrSpace());
8543 
8544     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8545     ArgListEntry Entry;
8546     Entry.Node = DemoteStackSlot;
8547     Entry.Ty = StackSlotPtrType;
8548     Entry.IsSExt = false;
8549     Entry.IsZExt = false;
8550     Entry.IsInReg = false;
8551     Entry.IsSRet = true;
8552     Entry.IsNest = false;
8553     Entry.IsByVal = false;
8554     Entry.IsReturned = false;
8555     Entry.IsSwiftSelf = false;
8556     Entry.IsSwiftError = false;
8557     Entry.Alignment = Align;
8558     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8559     CLI.NumFixedArgs += 1;
8560     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8561 
8562     // sret demotion isn't compatible with tail-calls, since the sret argument
8563     // points into the callers stack frame.
8564     CLI.IsTailCall = false;
8565   } else {
8566     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8567       EVT VT = RetTys[I];
8568       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8569                                                      CLI.CallConv, VT);
8570       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8571                                                        CLI.CallConv, VT);
8572       for (unsigned i = 0; i != NumRegs; ++i) {
8573         ISD::InputArg MyFlags;
8574         MyFlags.VT = RegisterVT;
8575         MyFlags.ArgVT = VT;
8576         MyFlags.Used = CLI.IsReturnValueUsed;
8577         if (CLI.RetSExt)
8578           MyFlags.Flags.setSExt();
8579         if (CLI.RetZExt)
8580           MyFlags.Flags.setZExt();
8581         if (CLI.IsInReg)
8582           MyFlags.Flags.setInReg();
8583         CLI.Ins.push_back(MyFlags);
8584       }
8585     }
8586   }
8587 
8588   // We push in swifterror return as the last element of CLI.Ins.
8589   ArgListTy &Args = CLI.getArgs();
8590   if (supportSwiftError()) {
8591     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8592       if (Args[i].IsSwiftError) {
8593         ISD::InputArg MyFlags;
8594         MyFlags.VT = getPointerTy(DL);
8595         MyFlags.ArgVT = EVT(getPointerTy(DL));
8596         MyFlags.Flags.setSwiftError();
8597         CLI.Ins.push_back(MyFlags);
8598       }
8599     }
8600   }
8601 
8602   // Handle all of the outgoing arguments.
8603   CLI.Outs.clear();
8604   CLI.OutVals.clear();
8605   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8606     SmallVector<EVT, 4> ValueVTs;
8607     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8608     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8609     Type *FinalType = Args[i].Ty;
8610     if (Args[i].IsByVal)
8611       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8612     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8613         FinalType, CLI.CallConv, CLI.IsVarArg);
8614     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8615          ++Value) {
8616       EVT VT = ValueVTs[Value];
8617       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8618       SDValue Op = SDValue(Args[i].Node.getNode(),
8619                            Args[i].Node.getResNo() + Value);
8620       ISD::ArgFlagsTy Flags;
8621 
8622       // Certain targets (such as MIPS), may have a different ABI alignment
8623       // for a type depending on the context. Give the target a chance to
8624       // specify the alignment it wants.
8625       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8626 
8627       if (Args[i].IsZExt)
8628         Flags.setZExt();
8629       if (Args[i].IsSExt)
8630         Flags.setSExt();
8631       if (Args[i].IsInReg) {
8632         // If we are using vectorcall calling convention, a structure that is
8633         // passed InReg - is surely an HVA
8634         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8635             isa<StructType>(FinalType)) {
8636           // The first value of a structure is marked
8637           if (0 == Value)
8638             Flags.setHvaStart();
8639           Flags.setHva();
8640         }
8641         // Set InReg Flag
8642         Flags.setInReg();
8643       }
8644       if (Args[i].IsSRet)
8645         Flags.setSRet();
8646       if (Args[i].IsSwiftSelf)
8647         Flags.setSwiftSelf();
8648       if (Args[i].IsSwiftError)
8649         Flags.setSwiftError();
8650       if (Args[i].IsByVal)
8651         Flags.setByVal();
8652       if (Args[i].IsInAlloca) {
8653         Flags.setInAlloca();
8654         // Set the byval flag for CCAssignFn callbacks that don't know about
8655         // inalloca.  This way we can know how many bytes we should've allocated
8656         // and how many bytes a callee cleanup function will pop.  If we port
8657         // inalloca to more targets, we'll have to add custom inalloca handling
8658         // in the various CC lowering callbacks.
8659         Flags.setByVal();
8660       }
8661       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8662         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8663         Type *ElementTy = Ty->getElementType();
8664         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8665         // For ByVal, alignment should come from FE.  BE will guess if this
8666         // info is not there but there are cases it cannot get right.
8667         unsigned FrameAlign;
8668         if (Args[i].Alignment)
8669           FrameAlign = Args[i].Alignment;
8670         else
8671           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8672         Flags.setByValAlign(FrameAlign);
8673       }
8674       if (Args[i].IsNest)
8675         Flags.setNest();
8676       if (NeedsRegBlock)
8677         Flags.setInConsecutiveRegs();
8678       Flags.setOrigAlign(OriginalAlignment);
8679 
8680       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8681                                                  CLI.CallConv, VT);
8682       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8683                                                         CLI.CallConv, VT);
8684       SmallVector<SDValue, 4> Parts(NumParts);
8685       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8686 
8687       if (Args[i].IsSExt)
8688         ExtendKind = ISD::SIGN_EXTEND;
8689       else if (Args[i].IsZExt)
8690         ExtendKind = ISD::ZERO_EXTEND;
8691 
8692       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8693       // for now.
8694       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8695           CanLowerReturn) {
8696         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8697                "unexpected use of 'returned'");
8698         // Before passing 'returned' to the target lowering code, ensure that
8699         // either the register MVT and the actual EVT are the same size or that
8700         // the return value and argument are extended in the same way; in these
8701         // cases it's safe to pass the argument register value unchanged as the
8702         // return register value (although it's at the target's option whether
8703         // to do so)
8704         // TODO: allow code generation to take advantage of partially preserved
8705         // registers rather than clobbering the entire register when the
8706         // parameter extension method is not compatible with the return
8707         // extension method
8708         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8709             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8710              CLI.RetZExt == Args[i].IsZExt))
8711           Flags.setReturned();
8712       }
8713 
8714       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8715                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8716 
8717       for (unsigned j = 0; j != NumParts; ++j) {
8718         // if it isn't first piece, alignment must be 1
8719         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8720                                i < CLI.NumFixedArgs,
8721                                i, j*Parts[j].getValueType().getStoreSize());
8722         if (NumParts > 1 && j == 0)
8723           MyFlags.Flags.setSplit();
8724         else if (j != 0) {
8725           MyFlags.Flags.setOrigAlign(1);
8726           if (j == NumParts - 1)
8727             MyFlags.Flags.setSplitEnd();
8728         }
8729 
8730         CLI.Outs.push_back(MyFlags);
8731         CLI.OutVals.push_back(Parts[j]);
8732       }
8733 
8734       if (NeedsRegBlock && Value == NumValues - 1)
8735         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8736     }
8737   }
8738 
8739   SmallVector<SDValue, 4> InVals;
8740   CLI.Chain = LowerCall(CLI, InVals);
8741 
8742   // Update CLI.InVals to use outside of this function.
8743   CLI.InVals = InVals;
8744 
8745   // Verify that the target's LowerCall behaved as expected.
8746   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8747          "LowerCall didn't return a valid chain!");
8748   assert((!CLI.IsTailCall || InVals.empty()) &&
8749          "LowerCall emitted a return value for a tail call!");
8750   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8751          "LowerCall didn't emit the correct number of values!");
8752 
8753   // For a tail call, the return value is merely live-out and there aren't
8754   // any nodes in the DAG representing it. Return a special value to
8755   // indicate that a tail call has been emitted and no more Instructions
8756   // should be processed in the current block.
8757   if (CLI.IsTailCall) {
8758     CLI.DAG.setRoot(CLI.Chain);
8759     return std::make_pair(SDValue(), SDValue());
8760   }
8761 
8762 #ifndef NDEBUG
8763   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8764     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8765     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8766            "LowerCall emitted a value with the wrong type!");
8767   }
8768 #endif
8769 
8770   SmallVector<SDValue, 4> ReturnValues;
8771   if (!CanLowerReturn) {
8772     // The instruction result is the result of loading from the
8773     // hidden sret parameter.
8774     SmallVector<EVT, 1> PVTs;
8775     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8776 
8777     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8778     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8779     EVT PtrVT = PVTs[0];
8780 
8781     unsigned NumValues = RetTys.size();
8782     ReturnValues.resize(NumValues);
8783     SmallVector<SDValue, 4> Chains(NumValues);
8784 
8785     // An aggregate return value cannot wrap around the address space, so
8786     // offsets to its parts don't wrap either.
8787     SDNodeFlags Flags;
8788     Flags.setNoUnsignedWrap(true);
8789 
8790     for (unsigned i = 0; i < NumValues; ++i) {
8791       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8792                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8793                                                         PtrVT), Flags);
8794       SDValue L = CLI.DAG.getLoad(
8795           RetTys[i], CLI.DL, CLI.Chain, Add,
8796           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8797                                             DemoteStackIdx, Offsets[i]),
8798           /* Alignment = */ 1);
8799       ReturnValues[i] = L;
8800       Chains[i] = L.getValue(1);
8801     }
8802 
8803     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8804   } else {
8805     // Collect the legal value parts into potentially illegal values
8806     // that correspond to the original function's return values.
8807     Optional<ISD::NodeType> AssertOp;
8808     if (CLI.RetSExt)
8809       AssertOp = ISD::AssertSext;
8810     else if (CLI.RetZExt)
8811       AssertOp = ISD::AssertZext;
8812     unsigned CurReg = 0;
8813     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8814       EVT VT = RetTys[I];
8815       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8816                                                      CLI.CallConv, VT);
8817       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8818                                                        CLI.CallConv, VT);
8819 
8820       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8821                                               NumRegs, RegisterVT, VT, nullptr,
8822                                               CLI.CallConv, AssertOp));
8823       CurReg += NumRegs;
8824     }
8825 
8826     // For a function returning void, there is no return value. We can't create
8827     // such a node, so we just return a null return value in that case. In
8828     // that case, nothing will actually look at the value.
8829     if (ReturnValues.empty())
8830       return std::make_pair(SDValue(), CLI.Chain);
8831   }
8832 
8833   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8834                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8835   return std::make_pair(Res, CLI.Chain);
8836 }
8837 
8838 void TargetLowering::LowerOperationWrapper(SDNode *N,
8839                                            SmallVectorImpl<SDValue> &Results,
8840                                            SelectionDAG &DAG) const {
8841   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8842     Results.push_back(Res);
8843 }
8844 
8845 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8846   llvm_unreachable("LowerOperation not implemented for this target!");
8847 }
8848 
8849 void
8850 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8851   SDValue Op = getNonRegisterValue(V);
8852   assert((Op.getOpcode() != ISD::CopyFromReg ||
8853           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8854          "Copy from a reg to the same reg!");
8855   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8856 
8857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8858   // If this is an InlineAsm we have to match the registers required, not the
8859   // notional registers required by the type.
8860 
8861   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8862                    None); // This is not an ABI copy.
8863   SDValue Chain = DAG.getEntryNode();
8864 
8865   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8866                               FuncInfo.PreferredExtendType.end())
8867                                  ? ISD::ANY_EXTEND
8868                                  : FuncInfo.PreferredExtendType[V];
8869   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8870   PendingExports.push_back(Chain);
8871 }
8872 
8873 #include "llvm/CodeGen/SelectionDAGISel.h"
8874 
8875 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8876 /// entry block, return true.  This includes arguments used by switches, since
8877 /// the switch may expand into multiple basic blocks.
8878 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8879   // With FastISel active, we may be splitting blocks, so force creation
8880   // of virtual registers for all non-dead arguments.
8881   if (FastISel)
8882     return A->use_empty();
8883 
8884   const BasicBlock &Entry = A->getParent()->front();
8885   for (const User *U : A->users())
8886     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8887       return false;  // Use not in entry block.
8888 
8889   return true;
8890 }
8891 
8892 using ArgCopyElisionMapTy =
8893     DenseMap<const Argument *,
8894              std::pair<const AllocaInst *, const StoreInst *>>;
8895 
8896 /// Scan the entry block of the function in FuncInfo for arguments that look
8897 /// like copies into a local alloca. Record any copied arguments in
8898 /// ArgCopyElisionCandidates.
8899 static void
8900 findArgumentCopyElisionCandidates(const DataLayout &DL,
8901                                   FunctionLoweringInfo *FuncInfo,
8902                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8903   // Record the state of every static alloca used in the entry block. Argument
8904   // allocas are all used in the entry block, so we need approximately as many
8905   // entries as we have arguments.
8906   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8907   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8908   unsigned NumArgs = FuncInfo->Fn->arg_size();
8909   StaticAllocas.reserve(NumArgs * 2);
8910 
8911   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8912     if (!V)
8913       return nullptr;
8914     V = V->stripPointerCasts();
8915     const auto *AI = dyn_cast<AllocaInst>(V);
8916     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8917       return nullptr;
8918     auto Iter = StaticAllocas.insert({AI, Unknown});
8919     return &Iter.first->second;
8920   };
8921 
8922   // Look for stores of arguments to static allocas. Look through bitcasts and
8923   // GEPs to handle type coercions, as long as the alloca is fully initialized
8924   // by the store. Any non-store use of an alloca escapes it and any subsequent
8925   // unanalyzed store might write it.
8926   // FIXME: Handle structs initialized with multiple stores.
8927   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8928     // Look for stores, and handle non-store uses conservatively.
8929     const auto *SI = dyn_cast<StoreInst>(&I);
8930     if (!SI) {
8931       // We will look through cast uses, so ignore them completely.
8932       if (I.isCast())
8933         continue;
8934       // Ignore debug info intrinsics, they don't escape or store to allocas.
8935       if (isa<DbgInfoIntrinsic>(I))
8936         continue;
8937       // This is an unknown instruction. Assume it escapes or writes to all
8938       // static alloca operands.
8939       for (const Use &U : I.operands()) {
8940         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8941           *Info = StaticAllocaInfo::Clobbered;
8942       }
8943       continue;
8944     }
8945 
8946     // If the stored value is a static alloca, mark it as escaped.
8947     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8948       *Info = StaticAllocaInfo::Clobbered;
8949 
8950     // Check if the destination is a static alloca.
8951     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8952     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8953     if (!Info)
8954       continue;
8955     const AllocaInst *AI = cast<AllocaInst>(Dst);
8956 
8957     // Skip allocas that have been initialized or clobbered.
8958     if (*Info != StaticAllocaInfo::Unknown)
8959       continue;
8960 
8961     // Check if the stored value is an argument, and that this store fully
8962     // initializes the alloca. Don't elide copies from the same argument twice.
8963     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8964     const auto *Arg = dyn_cast<Argument>(Val);
8965     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8966         Arg->getType()->isEmptyTy() ||
8967         DL.getTypeStoreSize(Arg->getType()) !=
8968             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8969         ArgCopyElisionCandidates.count(Arg)) {
8970       *Info = StaticAllocaInfo::Clobbered;
8971       continue;
8972     }
8973 
8974     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8975                       << '\n');
8976 
8977     // Mark this alloca and store for argument copy elision.
8978     *Info = StaticAllocaInfo::Elidable;
8979     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8980 
8981     // Stop scanning if we've seen all arguments. This will happen early in -O0
8982     // builds, which is useful, because -O0 builds have large entry blocks and
8983     // many allocas.
8984     if (ArgCopyElisionCandidates.size() == NumArgs)
8985       break;
8986   }
8987 }
8988 
8989 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8990 /// ArgVal is a load from a suitable fixed stack object.
8991 static void tryToElideArgumentCopy(
8992     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8993     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8994     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8995     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8996     SDValue ArgVal, bool &ArgHasUses) {
8997   // Check if this is a load from a fixed stack object.
8998   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8999   if (!LNode)
9000     return;
9001   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9002   if (!FINode)
9003     return;
9004 
9005   // Check that the fixed stack object is the right size and alignment.
9006   // Look at the alignment that the user wrote on the alloca instead of looking
9007   // at the stack object.
9008   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9009   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9010   const AllocaInst *AI = ArgCopyIter->second.first;
9011   int FixedIndex = FINode->getIndex();
9012   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9013   int OldIndex = AllocaIndex;
9014   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9015   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9016     LLVM_DEBUG(
9017         dbgs() << "  argument copy elision failed due to bad fixed stack "
9018                   "object size\n");
9019     return;
9020   }
9021   unsigned RequiredAlignment = AI->getAlignment();
9022   if (!RequiredAlignment) {
9023     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9024         AI->getAllocatedType());
9025   }
9026   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9027     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9028                          "greater than stack argument alignment ("
9029                       << RequiredAlignment << " vs "
9030                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9031     return;
9032   }
9033 
9034   // Perform the elision. Delete the old stack object and replace its only use
9035   // in the variable info map. Mark the stack object as mutable.
9036   LLVM_DEBUG({
9037     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9038            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9039            << '\n';
9040   });
9041   MFI.RemoveStackObject(OldIndex);
9042   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9043   AllocaIndex = FixedIndex;
9044   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9045   Chains.push_back(ArgVal.getValue(1));
9046 
9047   // Avoid emitting code for the store implementing the copy.
9048   const StoreInst *SI = ArgCopyIter->second.second;
9049   ElidedArgCopyInstrs.insert(SI);
9050 
9051   // Check for uses of the argument again so that we can avoid exporting ArgVal
9052   // if it is't used by anything other than the store.
9053   for (const Value *U : Arg.users()) {
9054     if (U != SI) {
9055       ArgHasUses = true;
9056       break;
9057     }
9058   }
9059 }
9060 
9061 void SelectionDAGISel::LowerArguments(const Function &F) {
9062   SelectionDAG &DAG = SDB->DAG;
9063   SDLoc dl = SDB->getCurSDLoc();
9064   const DataLayout &DL = DAG.getDataLayout();
9065   SmallVector<ISD::InputArg, 16> Ins;
9066 
9067   if (!FuncInfo->CanLowerReturn) {
9068     // Put in an sret pointer parameter before all the other parameters.
9069     SmallVector<EVT, 1> ValueVTs;
9070     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9071                     F.getReturnType()->getPointerTo(
9072                         DAG.getDataLayout().getAllocaAddrSpace()),
9073                     ValueVTs);
9074 
9075     // NOTE: Assuming that a pointer will never break down to more than one VT
9076     // or one register.
9077     ISD::ArgFlagsTy Flags;
9078     Flags.setSRet();
9079     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9080     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9081                          ISD::InputArg::NoArgIndex, 0);
9082     Ins.push_back(RetArg);
9083   }
9084 
9085   // Look for stores of arguments to static allocas. Mark such arguments with a
9086   // flag to ask the target to give us the memory location of that argument if
9087   // available.
9088   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9089   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9090 
9091   // Set up the incoming argument description vector.
9092   for (const Argument &Arg : F.args()) {
9093     unsigned ArgNo = Arg.getArgNo();
9094     SmallVector<EVT, 4> ValueVTs;
9095     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9096     bool isArgValueUsed = !Arg.use_empty();
9097     unsigned PartBase = 0;
9098     Type *FinalType = Arg.getType();
9099     if (Arg.hasAttribute(Attribute::ByVal))
9100       FinalType = cast<PointerType>(FinalType)->getElementType();
9101     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9102         FinalType, F.getCallingConv(), F.isVarArg());
9103     for (unsigned Value = 0, NumValues = ValueVTs.size();
9104          Value != NumValues; ++Value) {
9105       EVT VT = ValueVTs[Value];
9106       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9107       ISD::ArgFlagsTy Flags;
9108 
9109       // Certain targets (such as MIPS), may have a different ABI alignment
9110       // for a type depending on the context. Give the target a chance to
9111       // specify the alignment it wants.
9112       unsigned OriginalAlignment =
9113           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9114 
9115       if (Arg.hasAttribute(Attribute::ZExt))
9116         Flags.setZExt();
9117       if (Arg.hasAttribute(Attribute::SExt))
9118         Flags.setSExt();
9119       if (Arg.hasAttribute(Attribute::InReg)) {
9120         // If we are using vectorcall calling convention, a structure that is
9121         // passed InReg - is surely an HVA
9122         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9123             isa<StructType>(Arg.getType())) {
9124           // The first value of a structure is marked
9125           if (0 == Value)
9126             Flags.setHvaStart();
9127           Flags.setHva();
9128         }
9129         // Set InReg Flag
9130         Flags.setInReg();
9131       }
9132       if (Arg.hasAttribute(Attribute::StructRet))
9133         Flags.setSRet();
9134       if (Arg.hasAttribute(Attribute::SwiftSelf))
9135         Flags.setSwiftSelf();
9136       if (Arg.hasAttribute(Attribute::SwiftError))
9137         Flags.setSwiftError();
9138       if (Arg.hasAttribute(Attribute::ByVal))
9139         Flags.setByVal();
9140       if (Arg.hasAttribute(Attribute::InAlloca)) {
9141         Flags.setInAlloca();
9142         // Set the byval flag for CCAssignFn callbacks that don't know about
9143         // inalloca.  This way we can know how many bytes we should've allocated
9144         // and how many bytes a callee cleanup function will pop.  If we port
9145         // inalloca to more targets, we'll have to add custom inalloca handling
9146         // in the various CC lowering callbacks.
9147         Flags.setByVal();
9148       }
9149       if (F.getCallingConv() == CallingConv::X86_INTR) {
9150         // IA Interrupt passes frame (1st parameter) by value in the stack.
9151         if (ArgNo == 0)
9152           Flags.setByVal();
9153       }
9154       if (Flags.isByVal() || Flags.isInAlloca()) {
9155         PointerType *Ty = cast<PointerType>(Arg.getType());
9156         Type *ElementTy = Ty->getElementType();
9157         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9158         // For ByVal, alignment should be passed from FE.  BE will guess if
9159         // this info is not there but there are cases it cannot get right.
9160         unsigned FrameAlign;
9161         if (Arg.getParamAlignment())
9162           FrameAlign = Arg.getParamAlignment();
9163         else
9164           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9165         Flags.setByValAlign(FrameAlign);
9166       }
9167       if (Arg.hasAttribute(Attribute::Nest))
9168         Flags.setNest();
9169       if (NeedsRegBlock)
9170         Flags.setInConsecutiveRegs();
9171       Flags.setOrigAlign(OriginalAlignment);
9172       if (ArgCopyElisionCandidates.count(&Arg))
9173         Flags.setCopyElisionCandidate();
9174 
9175       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9176           *CurDAG->getContext(), F.getCallingConv(), VT);
9177       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9178           *CurDAG->getContext(), F.getCallingConv(), VT);
9179       for (unsigned i = 0; i != NumRegs; ++i) {
9180         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9181                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9182         if (NumRegs > 1 && i == 0)
9183           MyFlags.Flags.setSplit();
9184         // if it isn't first piece, alignment must be 1
9185         else if (i > 0) {
9186           MyFlags.Flags.setOrigAlign(1);
9187           if (i == NumRegs - 1)
9188             MyFlags.Flags.setSplitEnd();
9189         }
9190         Ins.push_back(MyFlags);
9191       }
9192       if (NeedsRegBlock && Value == NumValues - 1)
9193         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9194       PartBase += VT.getStoreSize();
9195     }
9196   }
9197 
9198   // Call the target to set up the argument values.
9199   SmallVector<SDValue, 8> InVals;
9200   SDValue NewRoot = TLI->LowerFormalArguments(
9201       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9202 
9203   // Verify that the target's LowerFormalArguments behaved as expected.
9204   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9205          "LowerFormalArguments didn't return a valid chain!");
9206   assert(InVals.size() == Ins.size() &&
9207          "LowerFormalArguments didn't emit the correct number of values!");
9208   LLVM_DEBUG({
9209     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9210       assert(InVals[i].getNode() &&
9211              "LowerFormalArguments emitted a null value!");
9212       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9213              "LowerFormalArguments emitted a value with the wrong type!");
9214     }
9215   });
9216 
9217   // Update the DAG with the new chain value resulting from argument lowering.
9218   DAG.setRoot(NewRoot);
9219 
9220   // Set up the argument values.
9221   unsigned i = 0;
9222   if (!FuncInfo->CanLowerReturn) {
9223     // Create a virtual register for the sret pointer, and put in a copy
9224     // from the sret argument into it.
9225     SmallVector<EVT, 1> ValueVTs;
9226     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9227                     F.getReturnType()->getPointerTo(
9228                         DAG.getDataLayout().getAllocaAddrSpace()),
9229                     ValueVTs);
9230     MVT VT = ValueVTs[0].getSimpleVT();
9231     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9232     Optional<ISD::NodeType> AssertOp = None;
9233     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9234                                         nullptr, F.getCallingConv(), AssertOp);
9235 
9236     MachineFunction& MF = SDB->DAG.getMachineFunction();
9237     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9238     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9239     FuncInfo->DemoteRegister = SRetReg;
9240     NewRoot =
9241         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9242     DAG.setRoot(NewRoot);
9243 
9244     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9245     ++i;
9246   }
9247 
9248   SmallVector<SDValue, 4> Chains;
9249   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9250   for (const Argument &Arg : F.args()) {
9251     SmallVector<SDValue, 4> ArgValues;
9252     SmallVector<EVT, 4> ValueVTs;
9253     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9254     unsigned NumValues = ValueVTs.size();
9255     if (NumValues == 0)
9256       continue;
9257 
9258     bool ArgHasUses = !Arg.use_empty();
9259 
9260     // Elide the copying store if the target loaded this argument from a
9261     // suitable fixed stack object.
9262     if (Ins[i].Flags.isCopyElisionCandidate()) {
9263       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9264                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9265                              InVals[i], ArgHasUses);
9266     }
9267 
9268     // If this argument is unused then remember its value. It is used to generate
9269     // debugging information.
9270     bool isSwiftErrorArg =
9271         TLI->supportSwiftError() &&
9272         Arg.hasAttribute(Attribute::SwiftError);
9273     if (!ArgHasUses && !isSwiftErrorArg) {
9274       SDB->setUnusedArgValue(&Arg, InVals[i]);
9275 
9276       // Also remember any frame index for use in FastISel.
9277       if (FrameIndexSDNode *FI =
9278           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9279         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9280     }
9281 
9282     for (unsigned Val = 0; Val != NumValues; ++Val) {
9283       EVT VT = ValueVTs[Val];
9284       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9285                                                       F.getCallingConv(), VT);
9286       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9287           *CurDAG->getContext(), F.getCallingConv(), VT);
9288 
9289       // Even an apparant 'unused' swifterror argument needs to be returned. So
9290       // we do generate a copy for it that can be used on return from the
9291       // function.
9292       if (ArgHasUses || isSwiftErrorArg) {
9293         Optional<ISD::NodeType> AssertOp;
9294         if (Arg.hasAttribute(Attribute::SExt))
9295           AssertOp = ISD::AssertSext;
9296         else if (Arg.hasAttribute(Attribute::ZExt))
9297           AssertOp = ISD::AssertZext;
9298 
9299         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9300                                              PartVT, VT, nullptr,
9301                                              F.getCallingConv(), AssertOp));
9302       }
9303 
9304       i += NumParts;
9305     }
9306 
9307     // We don't need to do anything else for unused arguments.
9308     if (ArgValues.empty())
9309       continue;
9310 
9311     // Note down frame index.
9312     if (FrameIndexSDNode *FI =
9313         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9314       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9315 
9316     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9317                                      SDB->getCurSDLoc());
9318 
9319     SDB->setValue(&Arg, Res);
9320     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9321       // We want to associate the argument with the frame index, among
9322       // involved operands, that correspond to the lowest address. The
9323       // getCopyFromParts function, called earlier, is swapping the order of
9324       // the operands to BUILD_PAIR depending on endianness. The result of
9325       // that swapping is that the least significant bits of the argument will
9326       // be in the first operand of the BUILD_PAIR node, and the most
9327       // significant bits will be in the second operand.
9328       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9329       if (LoadSDNode *LNode =
9330           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9331         if (FrameIndexSDNode *FI =
9332             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9333           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9334     }
9335 
9336     // Update the SwiftErrorVRegDefMap.
9337     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9338       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9339       if (TargetRegisterInfo::isVirtualRegister(Reg))
9340         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9341                                            FuncInfo->SwiftErrorArg, Reg);
9342     }
9343 
9344     // If this argument is live outside of the entry block, insert a copy from
9345     // wherever we got it to the vreg that other BB's will reference it as.
9346     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9347       // If we can, though, try to skip creating an unnecessary vreg.
9348       // FIXME: This isn't very clean... it would be nice to make this more
9349       // general.  It's also subtly incompatible with the hacks FastISel
9350       // uses with vregs.
9351       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9352       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9353         FuncInfo->ValueMap[&Arg] = Reg;
9354         continue;
9355       }
9356     }
9357     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9358       FuncInfo->InitializeRegForValue(&Arg);
9359       SDB->CopyToExportRegsIfNeeded(&Arg);
9360     }
9361   }
9362 
9363   if (!Chains.empty()) {
9364     Chains.push_back(NewRoot);
9365     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9366   }
9367 
9368   DAG.setRoot(NewRoot);
9369 
9370   assert(i == InVals.size() && "Argument register count mismatch!");
9371 
9372   // If any argument copy elisions occurred and we have debug info, update the
9373   // stale frame indices used in the dbg.declare variable info table.
9374   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9375   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9376     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9377       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9378       if (I != ArgCopyElisionFrameIndexMap.end())
9379         VI.Slot = I->second;
9380     }
9381   }
9382 
9383   // Finally, if the target has anything special to do, allow it to do so.
9384   EmitFunctionEntryCode();
9385 }
9386 
9387 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9388 /// ensure constants are generated when needed.  Remember the virtual registers
9389 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9390 /// directly add them, because expansion might result in multiple MBB's for one
9391 /// BB.  As such, the start of the BB might correspond to a different MBB than
9392 /// the end.
9393 void
9394 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9395   const Instruction *TI = LLVMBB->getTerminator();
9396 
9397   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9398 
9399   // Check PHI nodes in successors that expect a value to be available from this
9400   // block.
9401   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9402     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9403     if (!isa<PHINode>(SuccBB->begin())) continue;
9404     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9405 
9406     // If this terminator has multiple identical successors (common for
9407     // switches), only handle each succ once.
9408     if (!SuccsHandled.insert(SuccMBB).second)
9409       continue;
9410 
9411     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9412 
9413     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9414     // nodes and Machine PHI nodes, but the incoming operands have not been
9415     // emitted yet.
9416     for (const PHINode &PN : SuccBB->phis()) {
9417       // Ignore dead phi's.
9418       if (PN.use_empty())
9419         continue;
9420 
9421       // Skip empty types
9422       if (PN.getType()->isEmptyTy())
9423         continue;
9424 
9425       unsigned Reg;
9426       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9427 
9428       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9429         unsigned &RegOut = ConstantsOut[C];
9430         if (RegOut == 0) {
9431           RegOut = FuncInfo.CreateRegs(C->getType());
9432           CopyValueToVirtualRegister(C, RegOut);
9433         }
9434         Reg = RegOut;
9435       } else {
9436         DenseMap<const Value *, unsigned>::iterator I =
9437           FuncInfo.ValueMap.find(PHIOp);
9438         if (I != FuncInfo.ValueMap.end())
9439           Reg = I->second;
9440         else {
9441           assert(isa<AllocaInst>(PHIOp) &&
9442                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9443                  "Didn't codegen value into a register!??");
9444           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9445           CopyValueToVirtualRegister(PHIOp, Reg);
9446         }
9447       }
9448 
9449       // Remember that this register needs to added to the machine PHI node as
9450       // the input for this MBB.
9451       SmallVector<EVT, 4> ValueVTs;
9452       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9453       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9454       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9455         EVT VT = ValueVTs[vti];
9456         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9457         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9458           FuncInfo.PHINodesToUpdate.push_back(
9459               std::make_pair(&*MBBI++, Reg + i));
9460         Reg += NumRegisters;
9461       }
9462     }
9463   }
9464 
9465   ConstantsOut.clear();
9466 }
9467 
9468 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9469 /// is 0.
9470 MachineBasicBlock *
9471 SelectionDAGBuilder::StackProtectorDescriptor::
9472 AddSuccessorMBB(const BasicBlock *BB,
9473                 MachineBasicBlock *ParentMBB,
9474                 bool IsLikely,
9475                 MachineBasicBlock *SuccMBB) {
9476   // If SuccBB has not been created yet, create it.
9477   if (!SuccMBB) {
9478     MachineFunction *MF = ParentMBB->getParent();
9479     MachineFunction::iterator BBI(ParentMBB);
9480     SuccMBB = MF->CreateMachineBasicBlock(BB);
9481     MF->insert(++BBI, SuccMBB);
9482   }
9483   // Add it as a successor of ParentMBB.
9484   ParentMBB->addSuccessor(
9485       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9486   return SuccMBB;
9487 }
9488 
9489 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9490   MachineFunction::iterator I(MBB);
9491   if (++I == FuncInfo.MF->end())
9492     return nullptr;
9493   return &*I;
9494 }
9495 
9496 /// During lowering new call nodes can be created (such as memset, etc.).
9497 /// Those will become new roots of the current DAG, but complications arise
9498 /// when they are tail calls. In such cases, the call lowering will update
9499 /// the root, but the builder still needs to know that a tail call has been
9500 /// lowered in order to avoid generating an additional return.
9501 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9502   // If the node is null, we do have a tail call.
9503   if (MaybeTC.getNode() != nullptr)
9504     DAG.setRoot(MaybeTC);
9505   else
9506     HasTailCall = true;
9507 }
9508 
9509 uint64_t
9510 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9511                                        unsigned First, unsigned Last) const {
9512   assert(Last >= First);
9513   const APInt &LowCase = Clusters[First].Low->getValue();
9514   const APInt &HighCase = Clusters[Last].High->getValue();
9515   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9516 
9517   // FIXME: A range of consecutive cases has 100% density, but only requires one
9518   // comparison to lower. We should discriminate against such consecutive ranges
9519   // in jump tables.
9520 
9521   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9522 }
9523 
9524 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9525     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9526     unsigned Last) const {
9527   assert(Last >= First);
9528   assert(TotalCases[Last] >= TotalCases[First]);
9529   uint64_t NumCases =
9530       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9531   return NumCases;
9532 }
9533 
9534 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9535                                          unsigned First, unsigned Last,
9536                                          const SwitchInst *SI,
9537                                          MachineBasicBlock *DefaultMBB,
9538                                          CaseCluster &JTCluster) {
9539   assert(First <= Last);
9540 
9541   auto Prob = BranchProbability::getZero();
9542   unsigned NumCmps = 0;
9543   std::vector<MachineBasicBlock*> Table;
9544   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9545 
9546   // Initialize probabilities in JTProbs.
9547   for (unsigned I = First; I <= Last; ++I)
9548     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9549 
9550   for (unsigned I = First; I <= Last; ++I) {
9551     assert(Clusters[I].Kind == CC_Range);
9552     Prob += Clusters[I].Prob;
9553     const APInt &Low = Clusters[I].Low->getValue();
9554     const APInt &High = Clusters[I].High->getValue();
9555     NumCmps += (Low == High) ? 1 : 2;
9556     if (I != First) {
9557       // Fill the gap between this and the previous cluster.
9558       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9559       assert(PreviousHigh.slt(Low));
9560       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9561       for (uint64_t J = 0; J < Gap; J++)
9562         Table.push_back(DefaultMBB);
9563     }
9564     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9565     for (uint64_t J = 0; J < ClusterSize; ++J)
9566       Table.push_back(Clusters[I].MBB);
9567     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9568   }
9569 
9570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9571   unsigned NumDests = JTProbs.size();
9572   if (TLI.isSuitableForBitTests(
9573           NumDests, NumCmps, Clusters[First].Low->getValue(),
9574           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9575     // Clusters[First..Last] should be lowered as bit tests instead.
9576     return false;
9577   }
9578 
9579   // Create the MBB that will load from and jump through the table.
9580   // Note: We create it here, but it's not inserted into the function yet.
9581   MachineFunction *CurMF = FuncInfo.MF;
9582   MachineBasicBlock *JumpTableMBB =
9583       CurMF->CreateMachineBasicBlock(SI->getParent());
9584 
9585   // Add successors. Note: use table order for determinism.
9586   SmallPtrSet<MachineBasicBlock *, 8> Done;
9587   for (MachineBasicBlock *Succ : Table) {
9588     if (Done.count(Succ))
9589       continue;
9590     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9591     Done.insert(Succ);
9592   }
9593   JumpTableMBB->normalizeSuccProbs();
9594 
9595   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9596                      ->createJumpTableIndex(Table);
9597 
9598   // Set up the jump table info.
9599   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9600   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9601                       Clusters[Last].High->getValue(), SI->getCondition(),
9602                       nullptr, false);
9603   JTCases.emplace_back(std::move(JTH), std::move(JT));
9604 
9605   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9606                                      JTCases.size() - 1, Prob);
9607   return true;
9608 }
9609 
9610 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9611                                          const SwitchInst *SI,
9612                                          MachineBasicBlock *DefaultMBB) {
9613 #ifndef NDEBUG
9614   // Clusters must be non-empty, sorted, and only contain Range clusters.
9615   assert(!Clusters.empty());
9616   for (CaseCluster &C : Clusters)
9617     assert(C.Kind == CC_Range);
9618   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9619     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9620 #endif
9621 
9622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9623   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9624     return;
9625 
9626   const int64_t N = Clusters.size();
9627   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9628   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9629 
9630   if (N < 2 || N < MinJumpTableEntries)
9631     return;
9632 
9633   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9634   SmallVector<unsigned, 8> TotalCases(N);
9635   for (unsigned i = 0; i < N; ++i) {
9636     const APInt &Hi = Clusters[i].High->getValue();
9637     const APInt &Lo = Clusters[i].Low->getValue();
9638     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9639     if (i != 0)
9640       TotalCases[i] += TotalCases[i - 1];
9641   }
9642 
9643   // Cheap case: the whole range may be suitable for jump table.
9644   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9645   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9646   assert(NumCases < UINT64_MAX / 100);
9647   assert(Range >= NumCases);
9648   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9649     CaseCluster JTCluster;
9650     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9651       Clusters[0] = JTCluster;
9652       Clusters.resize(1);
9653       return;
9654     }
9655   }
9656 
9657   // The algorithm below is not suitable for -O0.
9658   if (TM.getOptLevel() == CodeGenOpt::None)
9659     return;
9660 
9661   // Split Clusters into minimum number of dense partitions. The algorithm uses
9662   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9663   // for the Case Statement'" (1994), but builds the MinPartitions array in
9664   // reverse order to make it easier to reconstruct the partitions in ascending
9665   // order. In the choice between two optimal partitionings, it picks the one
9666   // which yields more jump tables.
9667 
9668   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9669   SmallVector<unsigned, 8> MinPartitions(N);
9670   // LastElement[i] is the last element of the partition starting at i.
9671   SmallVector<unsigned, 8> LastElement(N);
9672   // PartitionsScore[i] is used to break ties when choosing between two
9673   // partitionings resulting in the same number of partitions.
9674   SmallVector<unsigned, 8> PartitionsScore(N);
9675   // For PartitionsScore, a small number of comparisons is considered as good as
9676   // a jump table and a single comparison is considered better than a jump
9677   // table.
9678   enum PartitionScores : unsigned {
9679     NoTable = 0,
9680     Table = 1,
9681     FewCases = 1,
9682     SingleCase = 2
9683   };
9684 
9685   // Base case: There is only one way to partition Clusters[N-1].
9686   MinPartitions[N - 1] = 1;
9687   LastElement[N - 1] = N - 1;
9688   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9689 
9690   // Note: loop indexes are signed to avoid underflow.
9691   for (int64_t i = N - 2; i >= 0; i--) {
9692     // Find optimal partitioning of Clusters[i..N-1].
9693     // Baseline: Put Clusters[i] into a partition on its own.
9694     MinPartitions[i] = MinPartitions[i + 1] + 1;
9695     LastElement[i] = i;
9696     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9697 
9698     // Search for a solution that results in fewer partitions.
9699     for (int64_t j = N - 1; j > i; j--) {
9700       // Try building a partition from Clusters[i..j].
9701       uint64_t Range = getJumpTableRange(Clusters, i, j);
9702       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9703       assert(NumCases < UINT64_MAX / 100);
9704       assert(Range >= NumCases);
9705       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9706         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9707         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9708         int64_t NumEntries = j - i + 1;
9709 
9710         if (NumEntries == 1)
9711           Score += PartitionScores::SingleCase;
9712         else if (NumEntries <= SmallNumberOfEntries)
9713           Score += PartitionScores::FewCases;
9714         else if (NumEntries >= MinJumpTableEntries)
9715           Score += PartitionScores::Table;
9716 
9717         // If this leads to fewer partitions, or to the same number of
9718         // partitions with better score, it is a better partitioning.
9719         if (NumPartitions < MinPartitions[i] ||
9720             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9721           MinPartitions[i] = NumPartitions;
9722           LastElement[i] = j;
9723           PartitionsScore[i] = Score;
9724         }
9725       }
9726     }
9727   }
9728 
9729   // Iterate over the partitions, replacing some with jump tables in-place.
9730   unsigned DstIndex = 0;
9731   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9732     Last = LastElement[First];
9733     assert(Last >= First);
9734     assert(DstIndex <= First);
9735     unsigned NumClusters = Last - First + 1;
9736 
9737     CaseCluster JTCluster;
9738     if (NumClusters >= MinJumpTableEntries &&
9739         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9740       Clusters[DstIndex++] = JTCluster;
9741     } else {
9742       for (unsigned I = First; I <= Last; ++I)
9743         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9744     }
9745   }
9746   Clusters.resize(DstIndex);
9747 }
9748 
9749 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9750                                         unsigned First, unsigned Last,
9751                                         const SwitchInst *SI,
9752                                         CaseCluster &BTCluster) {
9753   assert(First <= Last);
9754   if (First == Last)
9755     return false;
9756 
9757   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9758   unsigned NumCmps = 0;
9759   for (int64_t I = First; I <= Last; ++I) {
9760     assert(Clusters[I].Kind == CC_Range);
9761     Dests.set(Clusters[I].MBB->getNumber());
9762     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9763   }
9764   unsigned NumDests = Dests.count();
9765 
9766   APInt Low = Clusters[First].Low->getValue();
9767   APInt High = Clusters[Last].High->getValue();
9768   assert(Low.slt(High));
9769 
9770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9771   const DataLayout &DL = DAG.getDataLayout();
9772   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9773     return false;
9774 
9775   APInt LowBound;
9776   APInt CmpRange;
9777 
9778   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9779   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9780          "Case range must fit in bit mask!");
9781 
9782   // Check if the clusters cover a contiguous range such that no value in the
9783   // range will jump to the default statement.
9784   bool ContiguousRange = true;
9785   for (int64_t I = First + 1; I <= Last; ++I) {
9786     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9787       ContiguousRange = false;
9788       break;
9789     }
9790   }
9791 
9792   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9793     // Optimize the case where all the case values fit in a word without having
9794     // to subtract minValue. In this case, we can optimize away the subtraction.
9795     LowBound = APInt::getNullValue(Low.getBitWidth());
9796     CmpRange = High;
9797     ContiguousRange = false;
9798   } else {
9799     LowBound = Low;
9800     CmpRange = High - Low;
9801   }
9802 
9803   CaseBitsVector CBV;
9804   auto TotalProb = BranchProbability::getZero();
9805   for (unsigned i = First; i <= Last; ++i) {
9806     // Find the CaseBits for this destination.
9807     unsigned j;
9808     for (j = 0; j < CBV.size(); ++j)
9809       if (CBV[j].BB == Clusters[i].MBB)
9810         break;
9811     if (j == CBV.size())
9812       CBV.push_back(
9813           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9814     CaseBits *CB = &CBV[j];
9815 
9816     // Update Mask, Bits and ExtraProb.
9817     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9818     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9819     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9820     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9821     CB->Bits += Hi - Lo + 1;
9822     CB->ExtraProb += Clusters[i].Prob;
9823     TotalProb += Clusters[i].Prob;
9824   }
9825 
9826   BitTestInfo BTI;
9827   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9828     // Sort by probability first, number of bits second, bit mask third.
9829     if (a.ExtraProb != b.ExtraProb)
9830       return a.ExtraProb > b.ExtraProb;
9831     if (a.Bits != b.Bits)
9832       return a.Bits > b.Bits;
9833     return a.Mask < b.Mask;
9834   });
9835 
9836   for (auto &CB : CBV) {
9837     MachineBasicBlock *BitTestBB =
9838         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9839     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9840   }
9841   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9842                             SI->getCondition(), -1U, MVT::Other, false,
9843                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9844                             TotalProb);
9845 
9846   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9847                                     BitTestCases.size() - 1, TotalProb);
9848   return true;
9849 }
9850 
9851 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9852                                               const SwitchInst *SI) {
9853 // Partition Clusters into as few subsets as possible, where each subset has a
9854 // range that fits in a machine word and has <= 3 unique destinations.
9855 
9856 #ifndef NDEBUG
9857   // Clusters must be sorted and contain Range or JumpTable clusters.
9858   assert(!Clusters.empty());
9859   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9860   for (const CaseCluster &C : Clusters)
9861     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9862   for (unsigned i = 1; i < Clusters.size(); ++i)
9863     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9864 #endif
9865 
9866   // The algorithm below is not suitable for -O0.
9867   if (TM.getOptLevel() == CodeGenOpt::None)
9868     return;
9869 
9870   // If target does not have legal shift left, do not emit bit tests at all.
9871   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9872   const DataLayout &DL = DAG.getDataLayout();
9873 
9874   EVT PTy = TLI.getPointerTy(DL);
9875   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9876     return;
9877 
9878   int BitWidth = PTy.getSizeInBits();
9879   const int64_t N = Clusters.size();
9880 
9881   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9882   SmallVector<unsigned, 8> MinPartitions(N);
9883   // LastElement[i] is the last element of the partition starting at i.
9884   SmallVector<unsigned, 8> LastElement(N);
9885 
9886   // FIXME: This might not be the best algorithm for finding bit test clusters.
9887 
9888   // Base case: There is only one way to partition Clusters[N-1].
9889   MinPartitions[N - 1] = 1;
9890   LastElement[N - 1] = N - 1;
9891 
9892   // Note: loop indexes are signed to avoid underflow.
9893   for (int64_t i = N - 2; i >= 0; --i) {
9894     // Find optimal partitioning of Clusters[i..N-1].
9895     // Baseline: Put Clusters[i] into a partition on its own.
9896     MinPartitions[i] = MinPartitions[i + 1] + 1;
9897     LastElement[i] = i;
9898 
9899     // Search for a solution that results in fewer partitions.
9900     // Note: the search is limited by BitWidth, reducing time complexity.
9901     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9902       // Try building a partition from Clusters[i..j].
9903 
9904       // Check the range.
9905       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9906                                Clusters[j].High->getValue(), DL))
9907         continue;
9908 
9909       // Check nbr of destinations and cluster types.
9910       // FIXME: This works, but doesn't seem very efficient.
9911       bool RangesOnly = true;
9912       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9913       for (int64_t k = i; k <= j; k++) {
9914         if (Clusters[k].Kind != CC_Range) {
9915           RangesOnly = false;
9916           break;
9917         }
9918         Dests.set(Clusters[k].MBB->getNumber());
9919       }
9920       if (!RangesOnly || Dests.count() > 3)
9921         break;
9922 
9923       // Check if it's a better partition.
9924       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9925       if (NumPartitions < MinPartitions[i]) {
9926         // Found a better partition.
9927         MinPartitions[i] = NumPartitions;
9928         LastElement[i] = j;
9929       }
9930     }
9931   }
9932 
9933   // Iterate over the partitions, replacing with bit-test clusters in-place.
9934   unsigned DstIndex = 0;
9935   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9936     Last = LastElement[First];
9937     assert(First <= Last);
9938     assert(DstIndex <= First);
9939 
9940     CaseCluster BitTestCluster;
9941     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9942       Clusters[DstIndex++] = BitTestCluster;
9943     } else {
9944       size_t NumClusters = Last - First + 1;
9945       std::memmove(&Clusters[DstIndex], &Clusters[First],
9946                    sizeof(Clusters[0]) * NumClusters);
9947       DstIndex += NumClusters;
9948     }
9949   }
9950   Clusters.resize(DstIndex);
9951 }
9952 
9953 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9954                                         MachineBasicBlock *SwitchMBB,
9955                                         MachineBasicBlock *DefaultMBB) {
9956   MachineFunction *CurMF = FuncInfo.MF;
9957   MachineBasicBlock *NextMBB = nullptr;
9958   MachineFunction::iterator BBI(W.MBB);
9959   if (++BBI != FuncInfo.MF->end())
9960     NextMBB = &*BBI;
9961 
9962   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9963 
9964   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9965 
9966   if (Size == 2 && W.MBB == SwitchMBB) {
9967     // If any two of the cases has the same destination, and if one value
9968     // is the same as the other, but has one bit unset that the other has set,
9969     // use bit manipulation to do two compares at once.  For example:
9970     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9971     // TODO: This could be extended to merge any 2 cases in switches with 3
9972     // cases.
9973     // TODO: Handle cases where W.CaseBB != SwitchBB.
9974     CaseCluster &Small = *W.FirstCluster;
9975     CaseCluster &Big = *W.LastCluster;
9976 
9977     if (Small.Low == Small.High && Big.Low == Big.High &&
9978         Small.MBB == Big.MBB) {
9979       const APInt &SmallValue = Small.Low->getValue();
9980       const APInt &BigValue = Big.Low->getValue();
9981 
9982       // Check that there is only one bit different.
9983       APInt CommonBit = BigValue ^ SmallValue;
9984       if (CommonBit.isPowerOf2()) {
9985         SDValue CondLHS = getValue(Cond);
9986         EVT VT = CondLHS.getValueType();
9987         SDLoc DL = getCurSDLoc();
9988 
9989         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9990                                  DAG.getConstant(CommonBit, DL, VT));
9991         SDValue Cond = DAG.getSetCC(
9992             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9993             ISD::SETEQ);
9994 
9995         // Update successor info.
9996         // Both Small and Big will jump to Small.BB, so we sum up the
9997         // probabilities.
9998         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9999         if (BPI)
10000           addSuccessorWithProb(
10001               SwitchMBB, DefaultMBB,
10002               // The default destination is the first successor in IR.
10003               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10004         else
10005           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10006 
10007         // Insert the true branch.
10008         SDValue BrCond =
10009             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10010                         DAG.getBasicBlock(Small.MBB));
10011         // Insert the false branch.
10012         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10013                              DAG.getBasicBlock(DefaultMBB));
10014 
10015         DAG.setRoot(BrCond);
10016         return;
10017       }
10018     }
10019   }
10020 
10021   if (TM.getOptLevel() != CodeGenOpt::None) {
10022     // Here, we order cases by probability so the most likely case will be
10023     // checked first. However, two clusters can have the same probability in
10024     // which case their relative ordering is non-deterministic. So we use Low
10025     // as a tie-breaker as clusters are guaranteed to never overlap.
10026     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10027                [](const CaseCluster &a, const CaseCluster &b) {
10028       return a.Prob != b.Prob ?
10029              a.Prob > b.Prob :
10030              a.Low->getValue().slt(b.Low->getValue());
10031     });
10032 
10033     // Rearrange the case blocks so that the last one falls through if possible
10034     // without changing the order of probabilities.
10035     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10036       --I;
10037       if (I->Prob > W.LastCluster->Prob)
10038         break;
10039       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10040         std::swap(*I, *W.LastCluster);
10041         break;
10042       }
10043     }
10044   }
10045 
10046   // Compute total probability.
10047   BranchProbability DefaultProb = W.DefaultProb;
10048   BranchProbability UnhandledProbs = DefaultProb;
10049   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10050     UnhandledProbs += I->Prob;
10051 
10052   MachineBasicBlock *CurMBB = W.MBB;
10053   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10054     MachineBasicBlock *Fallthrough;
10055     if (I == W.LastCluster) {
10056       // For the last cluster, fall through to the default destination.
10057       Fallthrough = DefaultMBB;
10058     } else {
10059       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10060       CurMF->insert(BBI, Fallthrough);
10061       // Put Cond in a virtual register to make it available from the new blocks.
10062       ExportFromCurrentBlock(Cond);
10063     }
10064     UnhandledProbs -= I->Prob;
10065 
10066     switch (I->Kind) {
10067       case CC_JumpTable: {
10068         // FIXME: Optimize away range check based on pivot comparisons.
10069         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10070         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10071 
10072         // The jump block hasn't been inserted yet; insert it here.
10073         MachineBasicBlock *JumpMBB = JT->MBB;
10074         CurMF->insert(BBI, JumpMBB);
10075 
10076         auto JumpProb = I->Prob;
10077         auto FallthroughProb = UnhandledProbs;
10078 
10079         // If the default statement is a target of the jump table, we evenly
10080         // distribute the default probability to successors of CurMBB. Also
10081         // update the probability on the edge from JumpMBB to Fallthrough.
10082         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10083                                               SE = JumpMBB->succ_end();
10084              SI != SE; ++SI) {
10085           if (*SI == DefaultMBB) {
10086             JumpProb += DefaultProb / 2;
10087             FallthroughProb -= DefaultProb / 2;
10088             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10089             JumpMBB->normalizeSuccProbs();
10090             break;
10091           }
10092         }
10093 
10094         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10095         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10096         CurMBB->normalizeSuccProbs();
10097 
10098         // The jump table header will be inserted in our current block, do the
10099         // range check, and fall through to our fallthrough block.
10100         JTH->HeaderBB = CurMBB;
10101         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10102 
10103         // If we're in the right place, emit the jump table header right now.
10104         if (CurMBB == SwitchMBB) {
10105           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10106           JTH->Emitted = true;
10107         }
10108         break;
10109       }
10110       case CC_BitTests: {
10111         // FIXME: Optimize away range check based on pivot comparisons.
10112         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10113 
10114         // The bit test blocks haven't been inserted yet; insert them here.
10115         for (BitTestCase &BTC : BTB->Cases)
10116           CurMF->insert(BBI, BTC.ThisBB);
10117 
10118         // Fill in fields of the BitTestBlock.
10119         BTB->Parent = CurMBB;
10120         BTB->Default = Fallthrough;
10121 
10122         BTB->DefaultProb = UnhandledProbs;
10123         // If the cases in bit test don't form a contiguous range, we evenly
10124         // distribute the probability on the edge to Fallthrough to two
10125         // successors of CurMBB.
10126         if (!BTB->ContiguousRange) {
10127           BTB->Prob += DefaultProb / 2;
10128           BTB->DefaultProb -= DefaultProb / 2;
10129         }
10130 
10131         // If we're in the right place, emit the bit test header right now.
10132         if (CurMBB == SwitchMBB) {
10133           visitBitTestHeader(*BTB, SwitchMBB);
10134           BTB->Emitted = true;
10135         }
10136         break;
10137       }
10138       case CC_Range: {
10139         const Value *RHS, *LHS, *MHS;
10140         ISD::CondCode CC;
10141         if (I->Low == I->High) {
10142           // Check Cond == I->Low.
10143           CC = ISD::SETEQ;
10144           LHS = Cond;
10145           RHS=I->Low;
10146           MHS = nullptr;
10147         } else {
10148           // Check I->Low <= Cond <= I->High.
10149           CC = ISD::SETLE;
10150           LHS = I->Low;
10151           MHS = Cond;
10152           RHS = I->High;
10153         }
10154 
10155         // The false probability is the sum of all unhandled cases.
10156         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10157                      getCurSDLoc(), I->Prob, UnhandledProbs);
10158 
10159         if (CurMBB == SwitchMBB)
10160           visitSwitchCase(CB, SwitchMBB);
10161         else
10162           SwitchCases.push_back(CB);
10163 
10164         break;
10165       }
10166     }
10167     CurMBB = Fallthrough;
10168   }
10169 }
10170 
10171 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10172                                               CaseClusterIt First,
10173                                               CaseClusterIt Last) {
10174   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10175     if (X.Prob != CC.Prob)
10176       return X.Prob > CC.Prob;
10177 
10178     // Ties are broken by comparing the case value.
10179     return X.Low->getValue().slt(CC.Low->getValue());
10180   });
10181 }
10182 
10183 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10184                                         const SwitchWorkListItem &W,
10185                                         Value *Cond,
10186                                         MachineBasicBlock *SwitchMBB) {
10187   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10188          "Clusters not sorted?");
10189 
10190   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10191 
10192   // Balance the tree based on branch probabilities to create a near-optimal (in
10193   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10194   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10195   CaseClusterIt LastLeft = W.FirstCluster;
10196   CaseClusterIt FirstRight = W.LastCluster;
10197   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10198   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10199 
10200   // Move LastLeft and FirstRight towards each other from opposite directions to
10201   // find a partitioning of the clusters which balances the probability on both
10202   // sides. If LeftProb and RightProb are equal, alternate which side is
10203   // taken to ensure 0-probability nodes are distributed evenly.
10204   unsigned I = 0;
10205   while (LastLeft + 1 < FirstRight) {
10206     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10207       LeftProb += (++LastLeft)->Prob;
10208     else
10209       RightProb += (--FirstRight)->Prob;
10210     I++;
10211   }
10212 
10213   while (true) {
10214     // Our binary search tree differs from a typical BST in that ours can have up
10215     // to three values in each leaf. The pivot selection above doesn't take that
10216     // into account, which means the tree might require more nodes and be less
10217     // efficient. We compensate for this here.
10218 
10219     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10220     unsigned NumRight = W.LastCluster - FirstRight + 1;
10221 
10222     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10223       // If one side has less than 3 clusters, and the other has more than 3,
10224       // consider taking a cluster from the other side.
10225 
10226       if (NumLeft < NumRight) {
10227         // Consider moving the first cluster on the right to the left side.
10228         CaseCluster &CC = *FirstRight;
10229         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10230         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10231         if (LeftSideRank <= RightSideRank) {
10232           // Moving the cluster to the left does not demote it.
10233           ++LastLeft;
10234           ++FirstRight;
10235           continue;
10236         }
10237       } else {
10238         assert(NumRight < NumLeft);
10239         // Consider moving the last element on the left to the right side.
10240         CaseCluster &CC = *LastLeft;
10241         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10242         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10243         if (RightSideRank <= LeftSideRank) {
10244           // Moving the cluster to the right does not demot it.
10245           --LastLeft;
10246           --FirstRight;
10247           continue;
10248         }
10249       }
10250     }
10251     break;
10252   }
10253 
10254   assert(LastLeft + 1 == FirstRight);
10255   assert(LastLeft >= W.FirstCluster);
10256   assert(FirstRight <= W.LastCluster);
10257 
10258   // Use the first element on the right as pivot since we will make less-than
10259   // comparisons against it.
10260   CaseClusterIt PivotCluster = FirstRight;
10261   assert(PivotCluster > W.FirstCluster);
10262   assert(PivotCluster <= W.LastCluster);
10263 
10264   CaseClusterIt FirstLeft = W.FirstCluster;
10265   CaseClusterIt LastRight = W.LastCluster;
10266 
10267   const ConstantInt *Pivot = PivotCluster->Low;
10268 
10269   // New blocks will be inserted immediately after the current one.
10270   MachineFunction::iterator BBI(W.MBB);
10271   ++BBI;
10272 
10273   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10274   // we can branch to its destination directly if it's squeezed exactly in
10275   // between the known lower bound and Pivot - 1.
10276   MachineBasicBlock *LeftMBB;
10277   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10278       FirstLeft->Low == W.GE &&
10279       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10280     LeftMBB = FirstLeft->MBB;
10281   } else {
10282     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10283     FuncInfo.MF->insert(BBI, LeftMBB);
10284     WorkList.push_back(
10285         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10286     // Put Cond in a virtual register to make it available from the new blocks.
10287     ExportFromCurrentBlock(Cond);
10288   }
10289 
10290   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10291   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10292   // directly if RHS.High equals the current upper bound.
10293   MachineBasicBlock *RightMBB;
10294   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10295       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10296     RightMBB = FirstRight->MBB;
10297   } else {
10298     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10299     FuncInfo.MF->insert(BBI, RightMBB);
10300     WorkList.push_back(
10301         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10302     // Put Cond in a virtual register to make it available from the new blocks.
10303     ExportFromCurrentBlock(Cond);
10304   }
10305 
10306   // Create the CaseBlock record that will be used to lower the branch.
10307   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10308                getCurSDLoc(), LeftProb, RightProb);
10309 
10310   if (W.MBB == SwitchMBB)
10311     visitSwitchCase(CB, SwitchMBB);
10312   else
10313     SwitchCases.push_back(CB);
10314 }
10315 
10316 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10317 // from the swith statement.
10318 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10319                                             BranchProbability PeeledCaseProb) {
10320   if (PeeledCaseProb == BranchProbability::getOne())
10321     return BranchProbability::getZero();
10322   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10323 
10324   uint32_t Numerator = CaseProb.getNumerator();
10325   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10326   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10327 }
10328 
10329 // Try to peel the top probability case if it exceeds the threshold.
10330 // Return current MachineBasicBlock for the switch statement if the peeling
10331 // does not occur.
10332 // If the peeling is performed, return the newly created MachineBasicBlock
10333 // for the peeled switch statement. Also update Clusters to remove the peeled
10334 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10335 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10336     const SwitchInst &SI, CaseClusterVector &Clusters,
10337     BranchProbability &PeeledCaseProb) {
10338   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10339   // Don't perform if there is only one cluster or optimizing for size.
10340   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10341       TM.getOptLevel() == CodeGenOpt::None ||
10342       SwitchMBB->getParent()->getFunction().optForMinSize())
10343     return SwitchMBB;
10344 
10345   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10346   unsigned PeeledCaseIndex = 0;
10347   bool SwitchPeeled = false;
10348   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10349     CaseCluster &CC = Clusters[Index];
10350     if (CC.Prob < TopCaseProb)
10351       continue;
10352     TopCaseProb = CC.Prob;
10353     PeeledCaseIndex = Index;
10354     SwitchPeeled = true;
10355   }
10356   if (!SwitchPeeled)
10357     return SwitchMBB;
10358 
10359   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10360                     << TopCaseProb << "\n");
10361 
10362   // Record the MBB for the peeled switch statement.
10363   MachineFunction::iterator BBI(SwitchMBB);
10364   ++BBI;
10365   MachineBasicBlock *PeeledSwitchMBB =
10366       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10367   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10368 
10369   ExportFromCurrentBlock(SI.getCondition());
10370   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10371   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10372                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10373   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10374 
10375   Clusters.erase(PeeledCaseIt);
10376   for (CaseCluster &CC : Clusters) {
10377     LLVM_DEBUG(
10378         dbgs() << "Scale the probablity for one cluster, before scaling: "
10379                << CC.Prob << "\n");
10380     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10381     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10382   }
10383   PeeledCaseProb = TopCaseProb;
10384   return PeeledSwitchMBB;
10385 }
10386 
10387 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10388   // Extract cases from the switch.
10389   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10390   CaseClusterVector Clusters;
10391   Clusters.reserve(SI.getNumCases());
10392   for (auto I : SI.cases()) {
10393     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10394     const ConstantInt *CaseVal = I.getCaseValue();
10395     BranchProbability Prob =
10396         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10397             : BranchProbability(1, SI.getNumCases() + 1);
10398     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10399   }
10400 
10401   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10402 
10403   // Cluster adjacent cases with the same destination. We do this at all
10404   // optimization levels because it's cheap to do and will make codegen faster
10405   // if there are many clusters.
10406   sortAndRangeify(Clusters);
10407 
10408   if (TM.getOptLevel() != CodeGenOpt::None) {
10409     // Replace an unreachable default with the most popular destination.
10410     // FIXME: Exploit unreachable default more aggressively.
10411     bool UnreachableDefault =
10412         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10413     if (UnreachableDefault && !Clusters.empty()) {
10414       DenseMap<const BasicBlock *, unsigned> Popularity;
10415       unsigned MaxPop = 0;
10416       const BasicBlock *MaxBB = nullptr;
10417       for (auto I : SI.cases()) {
10418         const BasicBlock *BB = I.getCaseSuccessor();
10419         if (++Popularity[BB] > MaxPop) {
10420           MaxPop = Popularity[BB];
10421           MaxBB = BB;
10422         }
10423       }
10424       // Set new default.
10425       assert(MaxPop > 0 && MaxBB);
10426       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10427 
10428       // Remove cases that were pointing to the destination that is now the
10429       // default.
10430       CaseClusterVector New;
10431       New.reserve(Clusters.size());
10432       for (CaseCluster &CC : Clusters) {
10433         if (CC.MBB != DefaultMBB)
10434           New.push_back(CC);
10435       }
10436       Clusters = std::move(New);
10437     }
10438   }
10439 
10440   // The branch probablity of the peeled case.
10441   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10442   MachineBasicBlock *PeeledSwitchMBB =
10443       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10444 
10445   // If there is only the default destination, jump there directly.
10446   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10447   if (Clusters.empty()) {
10448     assert(PeeledSwitchMBB == SwitchMBB);
10449     SwitchMBB->addSuccessor(DefaultMBB);
10450     if (DefaultMBB != NextBlock(SwitchMBB)) {
10451       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10452                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10453     }
10454     return;
10455   }
10456 
10457   findJumpTables(Clusters, &SI, DefaultMBB);
10458   findBitTestClusters(Clusters, &SI);
10459 
10460   LLVM_DEBUG({
10461     dbgs() << "Case clusters: ";
10462     for (const CaseCluster &C : Clusters) {
10463       if (C.Kind == CC_JumpTable)
10464         dbgs() << "JT:";
10465       if (C.Kind == CC_BitTests)
10466         dbgs() << "BT:";
10467 
10468       C.Low->getValue().print(dbgs(), true);
10469       if (C.Low != C.High) {
10470         dbgs() << '-';
10471         C.High->getValue().print(dbgs(), true);
10472       }
10473       dbgs() << ' ';
10474     }
10475     dbgs() << '\n';
10476   });
10477 
10478   assert(!Clusters.empty());
10479   SwitchWorkList WorkList;
10480   CaseClusterIt First = Clusters.begin();
10481   CaseClusterIt Last = Clusters.end() - 1;
10482   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10483   // Scale the branchprobability for DefaultMBB if the peel occurs and
10484   // DefaultMBB is not replaced.
10485   if (PeeledCaseProb != BranchProbability::getZero() &&
10486       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10487     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10488   WorkList.push_back(
10489       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10490 
10491   while (!WorkList.empty()) {
10492     SwitchWorkListItem W = WorkList.back();
10493     WorkList.pop_back();
10494     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10495 
10496     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10497         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10498       // For optimized builds, lower large range as a balanced binary tree.
10499       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10500       continue;
10501     }
10502 
10503     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10504   }
10505 }
10506