xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7802be4a3d86743242273593d43a78df84ece8c1)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         IntermediateVT.isVector()
419             ? EVT::getVectorVT(
420                   *DAG.getContext(), IntermediateVT.getScalarType(),
421                   IntermediateVT.getVectorElementCount() * NumParts)
422             : EVT::getVectorVT(*DAG.getContext(),
423                                IntermediateVT.getScalarType(),
424                                NumIntermediates);
425     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
426                                                 : ISD::BUILD_VECTOR,
427                       DL, BuiltVectorTy, Ops);
428   }
429 
430   // There is now one part, held in Val.  Correct it to match ValueVT.
431   EVT PartEVT = Val.getValueType();
432 
433   if (PartEVT == ValueVT)
434     return Val;
435 
436   if (PartEVT.isVector()) {
437     // If the element type of the source/dest vectors are the same, but the
438     // parts vector has more elements than the value vector, then we have a
439     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
440     // elements we want.
441     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
442       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
443              "Cannot narrow, it would be a lossy transformation");
444       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
445                          DAG.getVectorIdxConstant(0, DL));
446     }
447 
448     // Vector/Vector bitcast.
449     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
450       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
451 
452     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
453       "Cannot handle this kind of promotion");
454     // Promoted vector extract
455     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
456 
457   }
458 
459   // Trivial bitcast if the types are the same size and the destination
460   // vector type is legal.
461   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
462       TLI.isTypeLegal(ValueVT))
463     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464 
465   if (ValueVT.getVectorNumElements() != 1) {
466      // Certain ABIs require that vectors are passed as integers. For vectors
467      // are the same size, this is an obvious bitcast.
468      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
469        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
470      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
471        // Bitcast Val back the original type and extract the corresponding
472        // vector we want.
473        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
474        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
475                                            ValueVT.getVectorElementType(), Elts);
476        Val = DAG.getBitcast(WiderVecType, Val);
477        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
478                           DAG.getVectorIdxConstant(0, DL));
479      }
480 
481      diagnosePossiblyInvalidConstraint(
482          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
483      return DAG.getUNDEF(ValueVT);
484   }
485 
486   // Handle cases such as i8 -> <1 x i1>
487   EVT ValueSVT = ValueVT.getVectorElementType();
488   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
489     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
490       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
491     else
492       Val = ValueVT.isFloatingPoint()
493                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
494                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
495   }
496 
497   return DAG.getBuildVector(ValueVT, DL, Val);
498 }
499 
500 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
501                                  SDValue Val, SDValue *Parts, unsigned NumParts,
502                                  MVT PartVT, const Value *V,
503                                  Optional<CallingConv::ID> CallConv);
504 
505 /// getCopyToParts - Create a series of nodes that contain the specified value
506 /// split into legal parts.  If the parts contain more bits than Val, then, for
507 /// integers, ExtendKind can be used to specify how to generate the extra bits.
508 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
509                            SDValue *Parts, unsigned NumParts, MVT PartVT,
510                            const Value *V,
511                            Optional<CallingConv::ID> CallConv = None,
512                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
513   EVT ValueVT = Val.getValueType();
514 
515   // Handle the vector case separately.
516   if (ValueVT.isVector())
517     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518                                 CallConv);
519 
520   unsigned PartBits = PartVT.getSizeInBits();
521   unsigned OrigNumParts = NumParts;
522   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
523          "Copying to an illegal type!");
524 
525   if (NumParts == 0)
526     return;
527 
528   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
529   EVT PartEVT = PartVT;
530   if (PartEVT == ValueVT) {
531     assert(NumParts == 1 && "No-op copy with multiple parts!");
532     Parts[0] = Val;
533     return;
534   }
535 
536   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537     // If the parts cover more bits than the value has, promote the value.
538     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539       assert(NumParts == 1 && "Do not know what to promote to!");
540       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541     } else {
542       if (ValueVT.isFloatingPoint()) {
543         // FP values need to be bitcast, then extended if they are being put
544         // into a larger container.
545         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
546         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547       }
548       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549              ValueVT.isInteger() &&
550              "Unknown mismatch!");
551       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553       if (PartVT == MVT::x86mmx)
554         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555     }
556   } else if (PartBits == ValueVT.getSizeInBits()) {
557     // Different types of the same size.
558     assert(NumParts == 1 && PartEVT != ValueVT);
559     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561     // If the parts cover less bits than value has, truncate the value.
562     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563            ValueVT.isInteger() &&
564            "Unknown mismatch!");
565     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567     if (PartVT == MVT::x86mmx)
568       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569   }
570 
571   // The value may have changed - recompute ValueVT.
572   ValueVT = Val.getValueType();
573   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574          "Failed to tile the value with PartVT!");
575 
576   if (NumParts == 1) {
577     if (PartEVT != ValueVT) {
578       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
579                                         "scalar-to-vector conversion failed");
580       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581     }
582 
583     Parts[0] = Val;
584     return;
585   }
586 
587   // Expand the value into multiple parts.
588   if (NumParts & (NumParts - 1)) {
589     // The number of parts is not a power of 2.  Split off and copy the tail.
590     assert(PartVT.isInteger() && ValueVT.isInteger() &&
591            "Do not know what to expand to!");
592     unsigned RoundParts = 1 << Log2_32(NumParts);
593     unsigned RoundBits = RoundParts * PartBits;
594     unsigned OddParts = NumParts - RoundParts;
595     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
597 
598     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599                    CallConv);
600 
601     if (DAG.getDataLayout().isBigEndian())
602       // The odd parts were reversed by getCopyToParts - unreverse them.
603       std::reverse(Parts + RoundParts, Parts + NumParts);
604 
605     NumParts = RoundParts;
606     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608   }
609 
610   // The number of parts is a power of 2.  Repeatedly bisect the value using
611   // EXTRACT_ELEMENT.
612   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
613                          EVT::getIntegerVT(*DAG.getContext(),
614                                            ValueVT.getSizeInBits()),
615                          Val);
616 
617   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618     for (unsigned i = 0; i < NumParts; i += StepSize) {
619       unsigned ThisBits = StepSize * PartBits / 2;
620       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621       SDValue &Part0 = Parts[i];
622       SDValue &Part1 = Parts[i+StepSize/2];
623 
624       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628 
629       if (ThisBits == PartBits && ThisVT != PartVT) {
630         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632       }
633     }
634   }
635 
636   if (DAG.getDataLayout().isBigEndian())
637     std::reverse(Parts, Parts + OrigNumParts);
638 }
639 
640 static SDValue widenVectorToPartType(SelectionDAG &DAG,
641                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
642   if (!PartVT.isVector())
643     return SDValue();
644 
645   EVT ValueVT = Val.getValueType();
646   unsigned PartNumElts = PartVT.getVectorNumElements();
647   unsigned ValueNumElts = ValueVT.getVectorNumElements();
648   if (PartNumElts > ValueNumElts &&
649       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
650     EVT ElementVT = PartVT.getVectorElementType();
651     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
652     // undef elements.
653     SmallVector<SDValue, 16> Ops;
654     DAG.ExtractVectorElements(Val, Ops);
655     SDValue EltUndef = DAG.getUNDEF(ElementVT);
656     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
657       Ops.push_back(EltUndef);
658 
659     // FIXME: Use CONCAT for 2x -> 4x.
660     return DAG.getBuildVector(PartVT, DL, Ops);
661   }
662 
663   return SDValue();
664 }
665 
666 /// getCopyToPartsVector - Create a series of nodes that contain the specified
667 /// value split into legal parts.
668 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
669                                  SDValue Val, SDValue *Parts, unsigned NumParts,
670                                  MVT PartVT, const Value *V,
671                                  Optional<CallingConv::ID> CallConv) {
672   EVT ValueVT = Val.getValueType();
673   assert(ValueVT.isVector() && "Not a vector");
674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
675   const bool IsABIRegCopy = CallConv.hasValue();
676 
677   if (NumParts == 1) {
678     EVT PartEVT = PartVT;
679     if (PartEVT == ValueVT) {
680       // Nothing to do.
681     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
682       // Bitconvert vector->vector case.
683       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
684     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
685       Val = Widened;
686     } else if (PartVT.isVector() &&
687                PartEVT.getVectorElementType().bitsGE(
688                  ValueVT.getVectorElementType()) &&
689                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
690 
691       // Promoted vector extract
692       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
693     } else {
694       if (ValueVT.getVectorNumElements() == 1) {
695         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
696                           DAG.getVectorIdxConstant(0, DL));
697       } else {
698         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
699                "lossy conversion of vector to scalar type");
700         EVT IntermediateType =
701             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
702         Val = DAG.getBitcast(IntermediateType, Val);
703         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
704       }
705     }
706 
707     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
708     Parts[0] = Val;
709     return;
710   }
711 
712   // Handle a multi-element vector.
713   EVT IntermediateVT;
714   MVT RegisterVT;
715   unsigned NumIntermediates;
716   unsigned NumRegs;
717   if (IsABIRegCopy) {
718     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
719         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
720         NumIntermediates, RegisterVT);
721   } else {
722     NumRegs =
723         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
724                                    NumIntermediates, RegisterVT);
725   }
726 
727   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
728   NumParts = NumRegs; // Silence a compiler warning.
729   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
730 
731   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
732     IntermediateVT.getVectorNumElements() : 1;
733 
734   // Convert the vector to the appropriate type if necessary.
735   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
736 
737   EVT BuiltVectorTy = EVT::getVectorVT(
738       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
739   if (ValueVT != BuiltVectorTy) {
740     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
741       Val = Widened;
742 
743     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
744   }
745 
746   // Split the vector into intermediate operands.
747   SmallVector<SDValue, 8> Ops(NumIntermediates);
748   for (unsigned i = 0; i != NumIntermediates; ++i) {
749     if (IntermediateVT.isVector()) {
750       Ops[i] =
751           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
752                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
753     } else {
754       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
755                            DAG.getVectorIdxConstant(i, DL));
756     }
757   }
758 
759   // Split the intermediate operands into legal parts.
760   if (NumParts == NumIntermediates) {
761     // If the register was not expanded, promote or copy the value,
762     // as appropriate.
763     for (unsigned i = 0; i != NumParts; ++i)
764       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
765   } else if (NumParts > 0) {
766     // If the intermediate type was expanded, split each the value into
767     // legal parts.
768     assert(NumIntermediates != 0 && "division by zero");
769     assert(NumParts % NumIntermediates == 0 &&
770            "Must expand into a divisible number of parts!");
771     unsigned Factor = NumParts / NumIntermediates;
772     for (unsigned i = 0; i != NumIntermediates; ++i)
773       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
774                      CallConv);
775   }
776 }
777 
778 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
779                            EVT valuevt, Optional<CallingConv::ID> CC)
780     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
781       RegCount(1, regs.size()), CallConv(CC) {}
782 
783 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
784                            const DataLayout &DL, unsigned Reg, Type *Ty,
785                            Optional<CallingConv::ID> CC) {
786   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
787 
788   CallConv = CC;
789 
790   for (EVT ValueVT : ValueVTs) {
791     unsigned NumRegs =
792         isABIMangled()
793             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
794             : TLI.getNumRegisters(Context, ValueVT);
795     MVT RegisterVT =
796         isABIMangled()
797             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
798             : TLI.getRegisterType(Context, ValueVT);
799     for (unsigned i = 0; i != NumRegs; ++i)
800       Regs.push_back(Reg + i);
801     RegVTs.push_back(RegisterVT);
802     RegCount.push_back(NumRegs);
803     Reg += NumRegs;
804   }
805 }
806 
807 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
808                                       FunctionLoweringInfo &FuncInfo,
809                                       const SDLoc &dl, SDValue &Chain,
810                                       SDValue *Flag, const Value *V) const {
811   // A Value with type {} or [0 x %t] needs no registers.
812   if (ValueVTs.empty())
813     return SDValue();
814 
815   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
816 
817   // Assemble the legal parts into the final values.
818   SmallVector<SDValue, 4> Values(ValueVTs.size());
819   SmallVector<SDValue, 8> Parts;
820   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
821     // Copy the legal parts from the registers.
822     EVT ValueVT = ValueVTs[Value];
823     unsigned NumRegs = RegCount[Value];
824     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
825                                           *DAG.getContext(),
826                                           CallConv.getValue(), RegVTs[Value])
827                                     : RegVTs[Value];
828 
829     Parts.resize(NumRegs);
830     for (unsigned i = 0; i != NumRegs; ++i) {
831       SDValue P;
832       if (!Flag) {
833         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
834       } else {
835         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
836         *Flag = P.getValue(2);
837       }
838 
839       Chain = P.getValue(1);
840       Parts[i] = P;
841 
842       // If the source register was virtual and if we know something about it,
843       // add an assert node.
844       if (!Register::isVirtualRegister(Regs[Part + i]) ||
845           !RegisterVT.isInteger())
846         continue;
847 
848       const FunctionLoweringInfo::LiveOutInfo *LOI =
849         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
850       if (!LOI)
851         continue;
852 
853       unsigned RegSize = RegisterVT.getScalarSizeInBits();
854       unsigned NumSignBits = LOI->NumSignBits;
855       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
856 
857       if (NumZeroBits == RegSize) {
858         // The current value is a zero.
859         // Explicitly express that as it would be easier for
860         // optimizations to kick in.
861         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
862         continue;
863       }
864 
865       // FIXME: We capture more information than the dag can represent.  For
866       // now, just use the tightest assertzext/assertsext possible.
867       bool isSExt;
868       EVT FromVT(MVT::Other);
869       if (NumZeroBits) {
870         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
871         isSExt = false;
872       } else if (NumSignBits > 1) {
873         FromVT =
874             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
875         isSExt = true;
876       } else {
877         continue;
878       }
879       // Add an assertion node.
880       assert(FromVT != MVT::Other);
881       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
882                              RegisterVT, P, DAG.getValueType(FromVT));
883     }
884 
885     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
886                                      RegisterVT, ValueVT, V, CallConv);
887     Part += NumRegs;
888     Parts.clear();
889   }
890 
891   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
892 }
893 
894 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
895                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
896                                  const Value *V,
897                                  ISD::NodeType PreferredExtendType) const {
898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
899   ISD::NodeType ExtendKind = PreferredExtendType;
900 
901   // Get the list of the values's legal parts.
902   unsigned NumRegs = Regs.size();
903   SmallVector<SDValue, 8> Parts(NumRegs);
904   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
905     unsigned NumParts = RegCount[Value];
906 
907     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
908                                           *DAG.getContext(),
909                                           CallConv.getValue(), RegVTs[Value])
910                                     : RegVTs[Value];
911 
912     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
913       ExtendKind = ISD::ZERO_EXTEND;
914 
915     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
916                    NumParts, RegisterVT, V, CallConv, ExtendKind);
917     Part += NumParts;
918   }
919 
920   // Copy the parts into the registers.
921   SmallVector<SDValue, 8> Chains(NumRegs);
922   for (unsigned i = 0; i != NumRegs; ++i) {
923     SDValue Part;
924     if (!Flag) {
925       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
926     } else {
927       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
928       *Flag = Part.getValue(1);
929     }
930 
931     Chains[i] = Part.getValue(0);
932   }
933 
934   if (NumRegs == 1 || Flag)
935     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
936     // flagged to it. That is the CopyToReg nodes and the user are considered
937     // a single scheduling unit. If we create a TokenFactor and return it as
938     // chain, then the TokenFactor is both a predecessor (operand) of the
939     // user as well as a successor (the TF operands are flagged to the user).
940     // c1, f1 = CopyToReg
941     // c2, f2 = CopyToReg
942     // c3     = TokenFactor c1, c2
943     // ...
944     //        = op c3, ..., f2
945     Chain = Chains[NumRegs-1];
946   else
947     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
948 }
949 
950 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
951                                         unsigned MatchingIdx, const SDLoc &dl,
952                                         SelectionDAG &DAG,
953                                         std::vector<SDValue> &Ops) const {
954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
955 
956   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
957   if (HasMatching)
958     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
959   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
960     // Put the register class of the virtual registers in the flag word.  That
961     // way, later passes can recompute register class constraints for inline
962     // assembly as well as normal instructions.
963     // Don't do this for tied operands that can use the regclass information
964     // from the def.
965     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
966     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
967     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
968   }
969 
970   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
971   Ops.push_back(Res);
972 
973   if (Code == InlineAsm::Kind_Clobber) {
974     // Clobbers should always have a 1:1 mapping with registers, and may
975     // reference registers that have illegal (e.g. vector) types. Hence, we
976     // shouldn't try to apply any sort of splitting logic to them.
977     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
978            "No 1:1 mapping from clobbers to regs?");
979     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
980     (void)SP;
981     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
982       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
983       assert(
984           (Regs[I] != SP ||
985            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
986           "If we clobbered the stack pointer, MFI should know about it.");
987     }
988     return;
989   }
990 
991   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
992     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
993     MVT RegisterVT = RegVTs[Value];
994     for (unsigned i = 0; i != NumRegs; ++i) {
995       assert(Reg < Regs.size() && "Mismatch in # registers expected");
996       unsigned TheReg = Regs[Reg++];
997       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
998     }
999   }
1000 }
1001 
1002 SmallVector<std::pair<unsigned, unsigned>, 4>
1003 RegsForValue::getRegsAndSizes() const {
1004   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1005   unsigned I = 0;
1006   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1007     unsigned RegCount = std::get<0>(CountAndVT);
1008     MVT RegisterVT = std::get<1>(CountAndVT);
1009     unsigned RegisterSize = RegisterVT.getSizeInBits();
1010     for (unsigned E = I + RegCount; I != E; ++I)
1011       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1012   }
1013   return OutVec;
1014 }
1015 
1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1017                                const TargetLibraryInfo *li) {
1018   AA = aa;
1019   GFI = gfi;
1020   LibInfo = li;
1021   DL = &DAG.getDataLayout();
1022   Context = DAG.getContext();
1023   LPadToCallSiteMap.clear();
1024   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1025 }
1026 
1027 void SelectionDAGBuilder::clear() {
1028   NodeMap.clear();
1029   UnusedArgNodeMap.clear();
1030   PendingLoads.clear();
1031   PendingExports.clear();
1032   PendingConstrainedFP.clear();
1033   PendingConstrainedFPStrict.clear();
1034   CurInst = nullptr;
1035   HasTailCall = false;
1036   SDNodeOrder = LowestSDNodeOrder;
1037   StatepointLowering.clear();
1038 }
1039 
1040 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1041   DanglingDebugInfoMap.clear();
1042 }
1043 
1044 // Update DAG root to include dependencies on Pending chains.
1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1046   SDValue Root = DAG.getRoot();
1047 
1048   if (Pending.empty())
1049     return Root;
1050 
1051   // Add current root to PendingChains, unless we already indirectly
1052   // depend on it.
1053   if (Root.getOpcode() != ISD::EntryToken) {
1054     unsigned i = 0, e = Pending.size();
1055     for (; i != e; ++i) {
1056       assert(Pending[i].getNode()->getNumOperands() > 1);
1057       if (Pending[i].getNode()->getOperand(0) == Root)
1058         break;  // Don't add the root if we already indirectly depend on it.
1059     }
1060 
1061     if (i == e)
1062       Pending.push_back(Root);
1063   }
1064 
1065   if (Pending.size() == 1)
1066     Root = Pending[0];
1067   else
1068     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1069 
1070   DAG.setRoot(Root);
1071   Pending.clear();
1072   return Root;
1073 }
1074 
1075 SDValue SelectionDAGBuilder::getMemoryRoot() {
1076   return updateRoot(PendingLoads);
1077 }
1078 
1079 SDValue SelectionDAGBuilder::getRoot() {
1080   // Chain up all pending constrained intrinsics together with all
1081   // pending loads, by simply appending them to PendingLoads and
1082   // then calling getMemoryRoot().
1083   PendingLoads.reserve(PendingLoads.size() +
1084                        PendingConstrainedFP.size() +
1085                        PendingConstrainedFPStrict.size());
1086   PendingLoads.append(PendingConstrainedFP.begin(),
1087                       PendingConstrainedFP.end());
1088   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1089                       PendingConstrainedFPStrict.end());
1090   PendingConstrainedFP.clear();
1091   PendingConstrainedFPStrict.clear();
1092   return getMemoryRoot();
1093 }
1094 
1095 SDValue SelectionDAGBuilder::getControlRoot() {
1096   // We need to emit pending fpexcept.strict constrained intrinsics,
1097   // so append them to the PendingExports list.
1098   PendingExports.append(PendingConstrainedFPStrict.begin(),
1099                         PendingConstrainedFPStrict.end());
1100   PendingConstrainedFPStrict.clear();
1101   return updateRoot(PendingExports);
1102 }
1103 
1104 void SelectionDAGBuilder::visit(const Instruction &I) {
1105   // Set up outgoing PHI node register values before emitting the terminator.
1106   if (I.isTerminator()) {
1107     HandlePHINodesInSuccessorBlocks(I.getParent());
1108   }
1109 
1110   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1111   if (!isa<DbgInfoIntrinsic>(I))
1112     ++SDNodeOrder;
1113 
1114   CurInst = &I;
1115 
1116   visit(I.getOpcode(), I);
1117 
1118   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1119     // ConstrainedFPIntrinsics handle their own FMF.
1120     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1121       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1122       // maps to this instruction.
1123       // TODO: We could handle all flags (nsw, etc) here.
1124       // TODO: If an IR instruction maps to >1 node, only the final node will have
1125       //       flags set.
1126       if (SDNode *Node = getNodeForIRValue(&I)) {
1127         SDNodeFlags IncomingFlags;
1128         IncomingFlags.copyFMF(*FPMO);
1129         if (!Node->getFlags().isDefined())
1130           Node->setFlags(IncomingFlags);
1131         else
1132           Node->intersectFlagsWith(IncomingFlags);
1133       }
1134     }
1135   }
1136 
1137   if (!I.isTerminator() && !HasTailCall &&
1138       !isStatepoint(&I)) // statepoints handle their exports internally
1139     CopyToExportRegsIfNeeded(&I);
1140 
1141   CurInst = nullptr;
1142 }
1143 
1144 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1145   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1146 }
1147 
1148 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1149   // Note: this doesn't use InstVisitor, because it has to work with
1150   // ConstantExpr's in addition to instructions.
1151   switch (Opcode) {
1152   default: llvm_unreachable("Unknown instruction type encountered!");
1153     // Build the switch statement using the Instruction.def file.
1154 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1155     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1156 #include "llvm/IR/Instruction.def"
1157   }
1158 }
1159 
1160 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1161                                                 const DIExpression *Expr) {
1162   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1163     const DbgValueInst *DI = DDI.getDI();
1164     DIVariable *DanglingVariable = DI->getVariable();
1165     DIExpression *DanglingExpr = DI->getExpression();
1166     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1167       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1168       return true;
1169     }
1170     return false;
1171   };
1172 
1173   for (auto &DDIMI : DanglingDebugInfoMap) {
1174     DanglingDebugInfoVector &DDIV = DDIMI.second;
1175 
1176     // If debug info is to be dropped, run it through final checks to see
1177     // whether it can be salvaged.
1178     for (auto &DDI : DDIV)
1179       if (isMatchingDbgValue(DDI))
1180         salvageUnresolvedDbgValue(DDI);
1181 
1182     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1183   }
1184 }
1185 
1186 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1187 // generate the debug data structures now that we've seen its definition.
1188 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1189                                                    SDValue Val) {
1190   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1191   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1192     return;
1193 
1194   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1195   for (auto &DDI : DDIV) {
1196     const DbgValueInst *DI = DDI.getDI();
1197     assert(DI && "Ill-formed DanglingDebugInfo");
1198     DebugLoc dl = DDI.getdl();
1199     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1200     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1201     DILocalVariable *Variable = DI->getVariable();
1202     DIExpression *Expr = DI->getExpression();
1203     assert(Variable->isValidLocationForIntrinsic(dl) &&
1204            "Expected inlined-at fields to agree");
1205     SDDbgValue *SDV;
1206     if (Val.getNode()) {
1207       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1208       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1209       // we couldn't resolve it directly when examining the DbgValue intrinsic
1210       // in the first place we should not be more successful here). Unless we
1211       // have some test case that prove this to be correct we should avoid
1212       // calling EmitFuncArgumentDbgValue here.
1213       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1214         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1215                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1216         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1217         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1218         // inserted after the definition of Val when emitting the instructions
1219         // after ISel. An alternative could be to teach
1220         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1221         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1222                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1223                    << ValSDNodeOrder << "\n");
1224         SDV = getDbgValue(Val, Variable, Expr, dl,
1225                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1226         DAG.AddDbgValue(SDV, Val.getNode(), false);
1227       } else
1228         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1229                           << "in EmitFuncArgumentDbgValue\n");
1230     } else {
1231       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1232       auto Undef =
1233           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1234       auto SDV =
1235           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1236       DAG.AddDbgValue(SDV, nullptr, false);
1237     }
1238   }
1239   DDIV.clear();
1240 }
1241 
1242 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1243   Value *V = DDI.getDI()->getValue();
1244   DILocalVariable *Var = DDI.getDI()->getVariable();
1245   DIExpression *Expr = DDI.getDI()->getExpression();
1246   DebugLoc DL = DDI.getdl();
1247   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1248   unsigned SDOrder = DDI.getSDNodeOrder();
1249 
1250   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1251   // that DW_OP_stack_value is desired.
1252   assert(isa<DbgValueInst>(DDI.getDI()));
1253   bool StackValue = true;
1254 
1255   // Can this Value can be encoded without any further work?
1256   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1257     return;
1258 
1259   // Attempt to salvage back through as many instructions as possible. Bail if
1260   // a non-instruction is seen, such as a constant expression or global
1261   // variable. FIXME: Further work could recover those too.
1262   while (isa<Instruction>(V)) {
1263     Instruction &VAsInst = *cast<Instruction>(V);
1264     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1265 
1266     // If we cannot salvage any further, and haven't yet found a suitable debug
1267     // expression, bail out.
1268     if (!NewExpr)
1269       break;
1270 
1271     // New value and expr now represent this debuginfo.
1272     V = VAsInst.getOperand(0);
1273     Expr = NewExpr;
1274 
1275     // Some kind of simplification occurred: check whether the operand of the
1276     // salvaged debug expression can be encoded in this DAG.
1277     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1278       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1279                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1280       return;
1281     }
1282   }
1283 
1284   // This was the final opportunity to salvage this debug information, and it
1285   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1286   // any earlier variable location.
1287   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1288   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1289   DAG.AddDbgValue(SDV, nullptr, false);
1290 
1291   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1292                     << "\n");
1293   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1294                     << "\n");
1295 }
1296 
1297 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1298                                            DIExpression *Expr, DebugLoc dl,
1299                                            DebugLoc InstDL, unsigned Order) {
1300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1301   SDDbgValue *SDV;
1302   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1303       isa<ConstantPointerNull>(V)) {
1304     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1305     DAG.AddDbgValue(SDV, nullptr, false);
1306     return true;
1307   }
1308 
1309   // If the Value is a frame index, we can create a FrameIndex debug value
1310   // without relying on the DAG at all.
1311   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1312     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1313     if (SI != FuncInfo.StaticAllocaMap.end()) {
1314       auto SDV =
1315           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1316                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1317       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1318       // is still available even if the SDNode gets optimized out.
1319       DAG.AddDbgValue(SDV, nullptr, false);
1320       return true;
1321     }
1322   }
1323 
1324   // Do not use getValue() in here; we don't want to generate code at
1325   // this point if it hasn't been done yet.
1326   SDValue N = NodeMap[V];
1327   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1328     N = UnusedArgNodeMap[V];
1329   if (N.getNode()) {
1330     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1331       return true;
1332     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1333     DAG.AddDbgValue(SDV, N.getNode(), false);
1334     return true;
1335   }
1336 
1337   // Special rules apply for the first dbg.values of parameter variables in a
1338   // function. Identify them by the fact they reference Argument Values, that
1339   // they're parameters, and they are parameters of the current function. We
1340   // need to let them dangle until they get an SDNode.
1341   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1342                        !InstDL.getInlinedAt();
1343   if (!IsParamOfFunc) {
1344     // The value is not used in this block yet (or it would have an SDNode).
1345     // We still want the value to appear for the user if possible -- if it has
1346     // an associated VReg, we can refer to that instead.
1347     auto VMI = FuncInfo.ValueMap.find(V);
1348     if (VMI != FuncInfo.ValueMap.end()) {
1349       unsigned Reg = VMI->second;
1350       // If this is a PHI node, it may be split up into several MI PHI nodes
1351       // (in FunctionLoweringInfo::set).
1352       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1353                        V->getType(), None);
1354       if (RFV.occupiesMultipleRegs()) {
1355         unsigned Offset = 0;
1356         unsigned BitsToDescribe = 0;
1357         if (auto VarSize = Var->getSizeInBits())
1358           BitsToDescribe = *VarSize;
1359         if (auto Fragment = Expr->getFragmentInfo())
1360           BitsToDescribe = Fragment->SizeInBits;
1361         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1362           unsigned RegisterSize = RegAndSize.second;
1363           // Bail out if all bits are described already.
1364           if (Offset >= BitsToDescribe)
1365             break;
1366           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1367               ? BitsToDescribe - Offset
1368               : RegisterSize;
1369           auto FragmentExpr = DIExpression::createFragmentExpression(
1370               Expr, Offset, FragmentSize);
1371           if (!FragmentExpr)
1372               continue;
1373           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1374                                     false, dl, SDNodeOrder);
1375           DAG.AddDbgValue(SDV, nullptr, false);
1376           Offset += RegisterSize;
1377         }
1378       } else {
1379         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1380         DAG.AddDbgValue(SDV, nullptr, false);
1381       }
1382       return true;
1383     }
1384   }
1385 
1386   return false;
1387 }
1388 
1389 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1390   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1391   for (auto &Pair : DanglingDebugInfoMap)
1392     for (auto &DDI : Pair.second)
1393       salvageUnresolvedDbgValue(DDI);
1394   clearDanglingDebugInfo();
1395 }
1396 
1397 /// getCopyFromRegs - If there was virtual register allocated for the value V
1398 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1399 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1400   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1401   SDValue Result;
1402 
1403   if (It != FuncInfo.ValueMap.end()) {
1404     unsigned InReg = It->second;
1405 
1406     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1407                      DAG.getDataLayout(), InReg, Ty,
1408                      None); // This is not an ABI copy.
1409     SDValue Chain = DAG.getEntryNode();
1410     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1411                                  V);
1412     resolveDanglingDebugInfo(V, Result);
1413   }
1414 
1415   return Result;
1416 }
1417 
1418 /// getValue - Return an SDValue for the given Value.
1419 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1420   // If we already have an SDValue for this value, use it. It's important
1421   // to do this first, so that we don't create a CopyFromReg if we already
1422   // have a regular SDValue.
1423   SDValue &N = NodeMap[V];
1424   if (N.getNode()) return N;
1425 
1426   // If there's a virtual register allocated and initialized for this
1427   // value, use it.
1428   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1429     return copyFromReg;
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 // Return true if SDValue exists for the given Value
1439 bool SelectionDAGBuilder::findValue(const Value *V) const {
1440   return (NodeMap.find(V) != NodeMap.end()) ||
1441     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1442 }
1443 
1444 /// getNonRegisterValue - Return an SDValue for the given Value, but
1445 /// don't look in FuncInfo.ValueMap for a virtual register.
1446 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1447   // If we already have an SDValue for this value, use it.
1448   SDValue &N = NodeMap[V];
1449   if (N.getNode()) {
1450     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1451       // Remove the debug location from the node as the node is about to be used
1452       // in a location which may differ from the original debug location.  This
1453       // is relevant to Constant and ConstantFP nodes because they can appear
1454       // as constant expressions inside PHI nodes.
1455       N->setDebugLoc(DebugLoc());
1456     }
1457     return N;
1458   }
1459 
1460   // Otherwise create a new SDValue and remember it.
1461   SDValue Val = getValueImpl(V);
1462   NodeMap[V] = Val;
1463   resolveDanglingDebugInfo(V, Val);
1464   return Val;
1465 }
1466 
1467 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1468 /// Create an SDValue for the given value.
1469 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1471 
1472   if (const Constant *C = dyn_cast<Constant>(V)) {
1473     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1474 
1475     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1476       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1477 
1478     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1479       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1480 
1481     if (isa<ConstantPointerNull>(C)) {
1482       unsigned AS = V->getType()->getPointerAddressSpace();
1483       return DAG.getConstant(0, getCurSDLoc(),
1484                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1485     }
1486 
1487     if (match(C, m_VScale(DAG.getDataLayout())))
1488       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1489 
1490     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1491       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1492 
1493     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1494       return DAG.getUNDEF(VT);
1495 
1496     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1497       visit(CE->getOpcode(), *CE);
1498       SDValue N1 = NodeMap[V];
1499       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1500       return N1;
1501     }
1502 
1503     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1504       SmallVector<SDValue, 4> Constants;
1505       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1506            OI != OE; ++OI) {
1507         SDNode *Val = getValue(*OI).getNode();
1508         // If the operand is an empty aggregate, there are no values.
1509         if (!Val) continue;
1510         // Add each leaf value from the operand to the Constants list
1511         // to form a flattened list of all the values.
1512         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1513           Constants.push_back(SDValue(Val, i));
1514       }
1515 
1516       return DAG.getMergeValues(Constants, getCurSDLoc());
1517     }
1518 
1519     if (const ConstantDataSequential *CDS =
1520           dyn_cast<ConstantDataSequential>(C)) {
1521       SmallVector<SDValue, 4> Ops;
1522       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1523         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1524         // Add each leaf value from the operand to the Constants list
1525         // to form a flattened list of all the values.
1526         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1527           Ops.push_back(SDValue(Val, i));
1528       }
1529 
1530       if (isa<ArrayType>(CDS->getType()))
1531         return DAG.getMergeValues(Ops, getCurSDLoc());
1532       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1533     }
1534 
1535     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1536       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1537              "Unknown struct or array constant!");
1538 
1539       SmallVector<EVT, 4> ValueVTs;
1540       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1541       unsigned NumElts = ValueVTs.size();
1542       if (NumElts == 0)
1543         return SDValue(); // empty struct
1544       SmallVector<SDValue, 4> Constants(NumElts);
1545       for (unsigned i = 0; i != NumElts; ++i) {
1546         EVT EltVT = ValueVTs[i];
1547         if (isa<UndefValue>(C))
1548           Constants[i] = DAG.getUNDEF(EltVT);
1549         else if (EltVT.isFloatingPoint())
1550           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1551         else
1552           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1553       }
1554 
1555       return DAG.getMergeValues(Constants, getCurSDLoc());
1556     }
1557 
1558     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1559       return DAG.getBlockAddress(BA, VT);
1560 
1561     VectorType *VecTy = cast<VectorType>(V->getType());
1562     unsigned NumElements = VecTy->getNumElements();
1563 
1564     // Now that we know the number and type of the elements, get that number of
1565     // elements into the Ops array based on what kind of constant it is.
1566     SmallVector<SDValue, 16> Ops;
1567     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1568       for (unsigned i = 0; i != NumElements; ++i)
1569         Ops.push_back(getValue(CV->getOperand(i)));
1570     } else {
1571       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1572       EVT EltVT =
1573           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1574 
1575       SDValue Op;
1576       if (EltVT.isFloatingPoint())
1577         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1578       else
1579         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1580       Ops.assign(NumElements, Op);
1581     }
1582 
1583     // Create a BUILD_VECTOR node.
1584     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1585   }
1586 
1587   // If this is a static alloca, generate it as the frameindex instead of
1588   // computation.
1589   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1590     DenseMap<const AllocaInst*, int>::iterator SI =
1591       FuncInfo.StaticAllocaMap.find(AI);
1592     if (SI != FuncInfo.StaticAllocaMap.end())
1593       return DAG.getFrameIndex(SI->second,
1594                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1595   }
1596 
1597   // If this is an instruction which fast-isel has deferred, select it now.
1598   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1599     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1600 
1601     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1602                      Inst->getType(), getABIRegCopyCC(V));
1603     SDValue Chain = DAG.getEntryNode();
1604     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1605   }
1606 
1607   llvm_unreachable("Can't get register for value!");
1608 }
1609 
1610 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1611   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1612   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1613   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1614   bool IsSEH = isAsynchronousEHPersonality(Pers);
1615   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1616   if (!IsSEH)
1617     CatchPadMBB->setIsEHScopeEntry();
1618   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1619   if (IsMSVCCXX || IsCoreCLR)
1620     CatchPadMBB->setIsEHFuncletEntry();
1621 }
1622 
1623 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1624   // Update machine-CFG edge.
1625   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1626   FuncInfo.MBB->addSuccessor(TargetMBB);
1627 
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   bool IsSEH = isAsynchronousEHPersonality(Pers);
1630   if (IsSEH) {
1631     // If this is not a fall-through branch or optimizations are switched off,
1632     // emit the branch.
1633     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1634         TM.getOptLevel() == CodeGenOpt::None)
1635       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1636                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1637     return;
1638   }
1639 
1640   // Figure out the funclet membership for the catchret's successor.
1641   // This will be used by the FuncletLayout pass to determine how to order the
1642   // BB's.
1643   // A 'catchret' returns to the outer scope's color.
1644   Value *ParentPad = I.getCatchSwitchParentPad();
1645   const BasicBlock *SuccessorColor;
1646   if (isa<ConstantTokenNone>(ParentPad))
1647     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1648   else
1649     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1650   assert(SuccessorColor && "No parent funclet for catchret!");
1651   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1652   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1653 
1654   // Create the terminator node.
1655   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1656                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1657                             DAG.getBasicBlock(SuccessorColorMBB));
1658   DAG.setRoot(Ret);
1659 }
1660 
1661 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1662   // Don't emit any special code for the cleanuppad instruction. It just marks
1663   // the start of an EH scope/funclet.
1664   FuncInfo.MBB->setIsEHScopeEntry();
1665   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1666   if (Pers != EHPersonality::Wasm_CXX) {
1667     FuncInfo.MBB->setIsEHFuncletEntry();
1668     FuncInfo.MBB->setIsCleanupFuncletEntry();
1669   }
1670 }
1671 
1672 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1673 // the control flow always stops at the single catch pad, as it does for a
1674 // cleanup pad. In case the exception caught is not of the types the catch pad
1675 // catches, it will be rethrown by a rethrow.
1676 static void findWasmUnwindDestinations(
1677     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1678     BranchProbability Prob,
1679     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1680         &UnwindDests) {
1681   while (EHPadBB) {
1682     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1683     if (isa<CleanupPadInst>(Pad)) {
1684       // Stop on cleanup pads.
1685       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1686       UnwindDests.back().first->setIsEHScopeEntry();
1687       break;
1688     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1689       // Add the catchpad handlers to the possible destinations. We don't
1690       // continue to the unwind destination of the catchswitch for wasm.
1691       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1692         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1693         UnwindDests.back().first->setIsEHScopeEntry();
1694       }
1695       break;
1696     } else {
1697       continue;
1698     }
1699   }
1700 }
1701 
1702 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1703 /// many places it could ultimately go. In the IR, we have a single unwind
1704 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1705 /// This function skips over imaginary basic blocks that hold catchswitch
1706 /// instructions, and finds all the "real" machine
1707 /// basic block destinations. As those destinations may not be successors of
1708 /// EHPadBB, here we also calculate the edge probability to those destinations.
1709 /// The passed-in Prob is the edge probability to EHPadBB.
1710 static void findUnwindDestinations(
1711     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1712     BranchProbability Prob,
1713     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1714         &UnwindDests) {
1715   EHPersonality Personality =
1716     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1717   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1718   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1719   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1720   bool IsSEH = isAsynchronousEHPersonality(Personality);
1721 
1722   if (IsWasmCXX) {
1723     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1724     assert(UnwindDests.size() <= 1 &&
1725            "There should be at most one unwind destination for wasm");
1726     return;
1727   }
1728 
1729   while (EHPadBB) {
1730     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1731     BasicBlock *NewEHPadBB = nullptr;
1732     if (isa<LandingPadInst>(Pad)) {
1733       // Stop on landingpads. They are not funclets.
1734       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1735       break;
1736     } else if (isa<CleanupPadInst>(Pad)) {
1737       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1738       // personalities.
1739       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1740       UnwindDests.back().first->setIsEHScopeEntry();
1741       UnwindDests.back().first->setIsEHFuncletEntry();
1742       break;
1743     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1744       // Add the catchpad handlers to the possible destinations.
1745       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1746         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1747         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1748         if (IsMSVCCXX || IsCoreCLR)
1749           UnwindDests.back().first->setIsEHFuncletEntry();
1750         if (!IsSEH)
1751           UnwindDests.back().first->setIsEHScopeEntry();
1752       }
1753       NewEHPadBB = CatchSwitch->getUnwindDest();
1754     } else {
1755       continue;
1756     }
1757 
1758     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1759     if (BPI && NewEHPadBB)
1760       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1761     EHPadBB = NewEHPadBB;
1762   }
1763 }
1764 
1765 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1766   // Update successor info.
1767   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1768   auto UnwindDest = I.getUnwindDest();
1769   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1770   BranchProbability UnwindDestProb =
1771       (BPI && UnwindDest)
1772           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1773           : BranchProbability::getZero();
1774   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1775   for (auto &UnwindDest : UnwindDests) {
1776     UnwindDest.first->setIsEHPad();
1777     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1778   }
1779   FuncInfo.MBB->normalizeSuccProbs();
1780 
1781   // Create the terminator node.
1782   SDValue Ret =
1783       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1784   DAG.setRoot(Ret);
1785 }
1786 
1787 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1788   report_fatal_error("visitCatchSwitch not yet implemented!");
1789 }
1790 
1791 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1793   auto &DL = DAG.getDataLayout();
1794   SDValue Chain = getControlRoot();
1795   SmallVector<ISD::OutputArg, 8> Outs;
1796   SmallVector<SDValue, 8> OutVals;
1797 
1798   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1799   // lower
1800   //
1801   //   %val = call <ty> @llvm.experimental.deoptimize()
1802   //   ret <ty> %val
1803   //
1804   // differently.
1805   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1806     LowerDeoptimizingReturn();
1807     return;
1808   }
1809 
1810   if (!FuncInfo.CanLowerReturn) {
1811     unsigned DemoteReg = FuncInfo.DemoteRegister;
1812     const Function *F = I.getParent()->getParent();
1813 
1814     // Emit a store of the return value through the virtual register.
1815     // Leave Outs empty so that LowerReturn won't try to load return
1816     // registers the usual way.
1817     SmallVector<EVT, 1> PtrValueVTs;
1818     ComputeValueVTs(TLI, DL,
1819                     F->getReturnType()->getPointerTo(
1820                         DAG.getDataLayout().getAllocaAddrSpace()),
1821                     PtrValueVTs);
1822 
1823     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1824                                         DemoteReg, PtrValueVTs[0]);
1825     SDValue RetOp = getValue(I.getOperand(0));
1826 
1827     SmallVector<EVT, 4> ValueVTs, MemVTs;
1828     SmallVector<uint64_t, 4> Offsets;
1829     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1830                     &Offsets);
1831     unsigned NumValues = ValueVTs.size();
1832 
1833     SmallVector<SDValue, 4> Chains(NumValues);
1834     for (unsigned i = 0; i != NumValues; ++i) {
1835       // An aggregate return value cannot wrap around the address space, so
1836       // offsets to its parts don't wrap either.
1837       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1838 
1839       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1840       if (MemVTs[i] != ValueVTs[i])
1841         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1842       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1843           // FIXME: better loc info would be nice.
1844           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1845     }
1846 
1847     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1848                         MVT::Other, Chains);
1849   } else if (I.getNumOperands() != 0) {
1850     SmallVector<EVT, 4> ValueVTs;
1851     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1852     unsigned NumValues = ValueVTs.size();
1853     if (NumValues) {
1854       SDValue RetOp = getValue(I.getOperand(0));
1855 
1856       const Function *F = I.getParent()->getParent();
1857 
1858       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1859           I.getOperand(0)->getType(), F->getCallingConv(),
1860           /*IsVarArg*/ false);
1861 
1862       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1863       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1864                                           Attribute::SExt))
1865         ExtendKind = ISD::SIGN_EXTEND;
1866       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1867                                                Attribute::ZExt))
1868         ExtendKind = ISD::ZERO_EXTEND;
1869 
1870       LLVMContext &Context = F->getContext();
1871       bool RetInReg = F->getAttributes().hasAttribute(
1872           AttributeList::ReturnIndex, Attribute::InReg);
1873 
1874       for (unsigned j = 0; j != NumValues; ++j) {
1875         EVT VT = ValueVTs[j];
1876 
1877         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1878           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1879 
1880         CallingConv::ID CC = F->getCallingConv();
1881 
1882         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1883         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1884         SmallVector<SDValue, 4> Parts(NumParts);
1885         getCopyToParts(DAG, getCurSDLoc(),
1886                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1887                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1888 
1889         // 'inreg' on function refers to return value
1890         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1891         if (RetInReg)
1892           Flags.setInReg();
1893 
1894         if (I.getOperand(0)->getType()->isPointerTy()) {
1895           Flags.setPointer();
1896           Flags.setPointerAddrSpace(
1897               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1898         }
1899 
1900         if (NeedsRegBlock) {
1901           Flags.setInConsecutiveRegs();
1902           if (j == NumValues - 1)
1903             Flags.setInConsecutiveRegsLast();
1904         }
1905 
1906         // Propagate extension type if any
1907         if (ExtendKind == ISD::SIGN_EXTEND)
1908           Flags.setSExt();
1909         else if (ExtendKind == ISD::ZERO_EXTEND)
1910           Flags.setZExt();
1911 
1912         for (unsigned i = 0; i < NumParts; ++i) {
1913           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1914                                         VT, /*isfixed=*/true, 0, 0));
1915           OutVals.push_back(Parts[i]);
1916         }
1917       }
1918     }
1919   }
1920 
1921   // Push in swifterror virtual register as the last element of Outs. This makes
1922   // sure swifterror virtual register will be returned in the swifterror
1923   // physical register.
1924   const Function *F = I.getParent()->getParent();
1925   if (TLI.supportSwiftError() &&
1926       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1927     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1928     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1929     Flags.setSwiftError();
1930     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1931                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1932                                   true /*isfixed*/, 1 /*origidx*/,
1933                                   0 /*partOffs*/));
1934     // Create SDNode for the swifterror virtual register.
1935     OutVals.push_back(
1936         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1937                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1938                         EVT(TLI.getPointerTy(DL))));
1939   }
1940 
1941   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1942   CallingConv::ID CallConv =
1943     DAG.getMachineFunction().getFunction().getCallingConv();
1944   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1945       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1946 
1947   // Verify that the target's LowerReturn behaved as expected.
1948   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1949          "LowerReturn didn't return a valid chain!");
1950 
1951   // Update the DAG with the new chain value resulting from return lowering.
1952   DAG.setRoot(Chain);
1953 }
1954 
1955 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1956 /// created for it, emit nodes to copy the value into the virtual
1957 /// registers.
1958 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1959   // Skip empty types
1960   if (V->getType()->isEmptyTy())
1961     return;
1962 
1963   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1964   if (VMI != FuncInfo.ValueMap.end()) {
1965     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1966     CopyValueToVirtualRegister(V, VMI->second);
1967   }
1968 }
1969 
1970 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1971 /// the current basic block, add it to ValueMap now so that we'll get a
1972 /// CopyTo/FromReg.
1973 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1974   // No need to export constants.
1975   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1976 
1977   // Already exported?
1978   if (FuncInfo.isExportedInst(V)) return;
1979 
1980   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1981   CopyValueToVirtualRegister(V, Reg);
1982 }
1983 
1984 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1985                                                      const BasicBlock *FromBB) {
1986   // The operands of the setcc have to be in this block.  We don't know
1987   // how to export them from some other block.
1988   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1989     // Can export from current BB.
1990     if (VI->getParent() == FromBB)
1991       return true;
1992 
1993     // Is already exported, noop.
1994     return FuncInfo.isExportedInst(V);
1995   }
1996 
1997   // If this is an argument, we can export it if the BB is the entry block or
1998   // if it is already exported.
1999   if (isa<Argument>(V)) {
2000     if (FromBB == &FromBB->getParent()->getEntryBlock())
2001       return true;
2002 
2003     // Otherwise, can only export this if it is already exported.
2004     return FuncInfo.isExportedInst(V);
2005   }
2006 
2007   // Otherwise, constants can always be exported.
2008   return true;
2009 }
2010 
2011 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2012 BranchProbability
2013 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2014                                         const MachineBasicBlock *Dst) const {
2015   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2016   const BasicBlock *SrcBB = Src->getBasicBlock();
2017   const BasicBlock *DstBB = Dst->getBasicBlock();
2018   if (!BPI) {
2019     // If BPI is not available, set the default probability as 1 / N, where N is
2020     // the number of successors.
2021     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2022     return BranchProbability(1, SuccSize);
2023   }
2024   return BPI->getEdgeProbability(SrcBB, DstBB);
2025 }
2026 
2027 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2028                                                MachineBasicBlock *Dst,
2029                                                BranchProbability Prob) {
2030   if (!FuncInfo.BPI)
2031     Src->addSuccessorWithoutProb(Dst);
2032   else {
2033     if (Prob.isUnknown())
2034       Prob = getEdgeProbability(Src, Dst);
2035     Src->addSuccessor(Dst, Prob);
2036   }
2037 }
2038 
2039 static bool InBlock(const Value *V, const BasicBlock *BB) {
2040   if (const Instruction *I = dyn_cast<Instruction>(V))
2041     return I->getParent() == BB;
2042   return true;
2043 }
2044 
2045 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2046 /// This function emits a branch and is used at the leaves of an OR or an
2047 /// AND operator tree.
2048 void
2049 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2050                                                   MachineBasicBlock *TBB,
2051                                                   MachineBasicBlock *FBB,
2052                                                   MachineBasicBlock *CurBB,
2053                                                   MachineBasicBlock *SwitchBB,
2054                                                   BranchProbability TProb,
2055                                                   BranchProbability FProb,
2056                                                   bool InvertCond) {
2057   const BasicBlock *BB = CurBB->getBasicBlock();
2058 
2059   // If the leaf of the tree is a comparison, merge the condition into
2060   // the caseblock.
2061   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2062     // The operands of the cmp have to be in this block.  We don't know
2063     // how to export them from some other block.  If this is the first block
2064     // of the sequence, no exporting is needed.
2065     if (CurBB == SwitchBB ||
2066         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2067          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2068       ISD::CondCode Condition;
2069       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2070         ICmpInst::Predicate Pred =
2071             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2072         Condition = getICmpCondCode(Pred);
2073       } else {
2074         const FCmpInst *FC = cast<FCmpInst>(Cond);
2075         FCmpInst::Predicate Pred =
2076             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2077         Condition = getFCmpCondCode(Pred);
2078         if (TM.Options.NoNaNsFPMath)
2079           Condition = getFCmpCodeWithoutNaN(Condition);
2080       }
2081 
2082       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2083                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2084       SL->SwitchCases.push_back(CB);
2085       return;
2086     }
2087   }
2088 
2089   // Create a CaseBlock record representing this branch.
2090   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2091   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2092                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2093   SL->SwitchCases.push_back(CB);
2094 }
2095 
2096 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2097                                                MachineBasicBlock *TBB,
2098                                                MachineBasicBlock *FBB,
2099                                                MachineBasicBlock *CurBB,
2100                                                MachineBasicBlock *SwitchBB,
2101                                                Instruction::BinaryOps Opc,
2102                                                BranchProbability TProb,
2103                                                BranchProbability FProb,
2104                                                bool InvertCond) {
2105   // Skip over not part of the tree and remember to invert op and operands at
2106   // next level.
2107   Value *NotCond;
2108   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2109       InBlock(NotCond, CurBB->getBasicBlock())) {
2110     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2111                          !InvertCond);
2112     return;
2113   }
2114 
2115   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2116   // Compute the effective opcode for Cond, taking into account whether it needs
2117   // to be inverted, e.g.
2118   //   and (not (or A, B)), C
2119   // gets lowered as
2120   //   and (and (not A, not B), C)
2121   unsigned BOpc = 0;
2122   if (BOp) {
2123     BOpc = BOp->getOpcode();
2124     if (InvertCond) {
2125       if (BOpc == Instruction::And)
2126         BOpc = Instruction::Or;
2127       else if (BOpc == Instruction::Or)
2128         BOpc = Instruction::And;
2129     }
2130   }
2131 
2132   // If this node is not part of the or/and tree, emit it as a branch.
2133   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2134       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2135       BOp->getParent() != CurBB->getBasicBlock() ||
2136       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2137       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2138     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2139                                  TProb, FProb, InvertCond);
2140     return;
2141   }
2142 
2143   //  Create TmpBB after CurBB.
2144   MachineFunction::iterator BBI(CurBB);
2145   MachineFunction &MF = DAG.getMachineFunction();
2146   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2147   CurBB->getParent()->insert(++BBI, TmpBB);
2148 
2149   if (Opc == Instruction::Or) {
2150     // Codegen X | Y as:
2151     // BB1:
2152     //   jmp_if_X TBB
2153     //   jmp TmpBB
2154     // TmpBB:
2155     //   jmp_if_Y TBB
2156     //   jmp FBB
2157     //
2158 
2159     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2160     // The requirement is that
2161     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2162     //     = TrueProb for original BB.
2163     // Assuming the original probabilities are A and B, one choice is to set
2164     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2165     // A/(1+B) and 2B/(1+B). This choice assumes that
2166     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2167     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2168     // TmpBB, but the math is more complicated.
2169 
2170     auto NewTrueProb = TProb / 2;
2171     auto NewFalseProb = TProb / 2 + FProb;
2172     // Emit the LHS condition.
2173     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2174                          NewTrueProb, NewFalseProb, InvertCond);
2175 
2176     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2177     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2178     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2179     // Emit the RHS condition into TmpBB.
2180     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2181                          Probs[0], Probs[1], InvertCond);
2182   } else {
2183     assert(Opc == Instruction::And && "Unknown merge op!");
2184     // Codegen X & Y as:
2185     // BB1:
2186     //   jmp_if_X TmpBB
2187     //   jmp FBB
2188     // TmpBB:
2189     //   jmp_if_Y TBB
2190     //   jmp FBB
2191     //
2192     //  This requires creation of TmpBB after CurBB.
2193 
2194     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2195     // The requirement is that
2196     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2197     //     = FalseProb for original BB.
2198     // Assuming the original probabilities are A and B, one choice is to set
2199     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2200     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2201     // TrueProb for BB1 * FalseProb for TmpBB.
2202 
2203     auto NewTrueProb = TProb + FProb / 2;
2204     auto NewFalseProb = FProb / 2;
2205     // Emit the LHS condition.
2206     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2207                          NewTrueProb, NewFalseProb, InvertCond);
2208 
2209     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2210     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2211     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2212     // Emit the RHS condition into TmpBB.
2213     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2214                          Probs[0], Probs[1], InvertCond);
2215   }
2216 }
2217 
2218 /// If the set of cases should be emitted as a series of branches, return true.
2219 /// If we should emit this as a bunch of and/or'd together conditions, return
2220 /// false.
2221 bool
2222 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2223   if (Cases.size() != 2) return true;
2224 
2225   // If this is two comparisons of the same values or'd or and'd together, they
2226   // will get folded into a single comparison, so don't emit two blocks.
2227   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2228        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2229       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2230        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2231     return false;
2232   }
2233 
2234   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2235   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2236   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2237       Cases[0].CC == Cases[1].CC &&
2238       isa<Constant>(Cases[0].CmpRHS) &&
2239       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2240     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2241       return false;
2242     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2243       return false;
2244   }
2245 
2246   return true;
2247 }
2248 
2249 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2250   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2251 
2252   // Update machine-CFG edges.
2253   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2254 
2255   if (I.isUnconditional()) {
2256     // Update machine-CFG edges.
2257     BrMBB->addSuccessor(Succ0MBB);
2258 
2259     // If this is not a fall-through branch or optimizations are switched off,
2260     // emit the branch.
2261     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2262       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2263                               MVT::Other, getControlRoot(),
2264                               DAG.getBasicBlock(Succ0MBB)));
2265 
2266     return;
2267   }
2268 
2269   // If this condition is one of the special cases we handle, do special stuff
2270   // now.
2271   const Value *CondVal = I.getCondition();
2272   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2273 
2274   // If this is a series of conditions that are or'd or and'd together, emit
2275   // this as a sequence of branches instead of setcc's with and/or operations.
2276   // As long as jumps are not expensive, this should improve performance.
2277   // For example, instead of something like:
2278   //     cmp A, B
2279   //     C = seteq
2280   //     cmp D, E
2281   //     F = setle
2282   //     or C, F
2283   //     jnz foo
2284   // Emit:
2285   //     cmp A, B
2286   //     je foo
2287   //     cmp D, E
2288   //     jle foo
2289   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2290     Instruction::BinaryOps Opcode = BOp->getOpcode();
2291     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2292         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2293         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2294       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2295                            Opcode,
2296                            getEdgeProbability(BrMBB, Succ0MBB),
2297                            getEdgeProbability(BrMBB, Succ1MBB),
2298                            /*InvertCond=*/false);
2299       // If the compares in later blocks need to use values not currently
2300       // exported from this block, export them now.  This block should always
2301       // be the first entry.
2302       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2303 
2304       // Allow some cases to be rejected.
2305       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2306         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2307           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2308           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2309         }
2310 
2311         // Emit the branch for this block.
2312         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2313         SL->SwitchCases.erase(SL->SwitchCases.begin());
2314         return;
2315       }
2316 
2317       // Okay, we decided not to do this, remove any inserted MBB's and clear
2318       // SwitchCases.
2319       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2320         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2321 
2322       SL->SwitchCases.clear();
2323     }
2324   }
2325 
2326   // Create a CaseBlock record representing this branch.
2327   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2328                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2329 
2330   // Use visitSwitchCase to actually insert the fast branch sequence for this
2331   // cond branch.
2332   visitSwitchCase(CB, BrMBB);
2333 }
2334 
2335 /// visitSwitchCase - Emits the necessary code to represent a single node in
2336 /// the binary search tree resulting from lowering a switch instruction.
2337 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2338                                           MachineBasicBlock *SwitchBB) {
2339   SDValue Cond;
2340   SDValue CondLHS = getValue(CB.CmpLHS);
2341   SDLoc dl = CB.DL;
2342 
2343   if (CB.CC == ISD::SETTRUE) {
2344     // Branch or fall through to TrueBB.
2345     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2346     SwitchBB->normalizeSuccProbs();
2347     if (CB.TrueBB != NextBlock(SwitchBB)) {
2348       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2349                               DAG.getBasicBlock(CB.TrueBB)));
2350     }
2351     return;
2352   }
2353 
2354   auto &TLI = DAG.getTargetLoweringInfo();
2355   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2356 
2357   // Build the setcc now.
2358   if (!CB.CmpMHS) {
2359     // Fold "(X == true)" to X and "(X == false)" to !X to
2360     // handle common cases produced by branch lowering.
2361     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2362         CB.CC == ISD::SETEQ)
2363       Cond = CondLHS;
2364     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2365              CB.CC == ISD::SETEQ) {
2366       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2367       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2368     } else {
2369       SDValue CondRHS = getValue(CB.CmpRHS);
2370 
2371       // If a pointer's DAG type is larger than its memory type then the DAG
2372       // values are zero-extended. This breaks signed comparisons so truncate
2373       // back to the underlying type before doing the compare.
2374       if (CondLHS.getValueType() != MemVT) {
2375         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2376         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2377       }
2378       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2379     }
2380   } else {
2381     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2382 
2383     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2384     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2385 
2386     SDValue CmpOp = getValue(CB.CmpMHS);
2387     EVT VT = CmpOp.getValueType();
2388 
2389     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2390       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2391                           ISD::SETLE);
2392     } else {
2393       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2394                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2395       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2396                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2397     }
2398   }
2399 
2400   // Update successor info
2401   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2402   // TrueBB and FalseBB are always different unless the incoming IR is
2403   // degenerate. This only happens when running llc on weird IR.
2404   if (CB.TrueBB != CB.FalseBB)
2405     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2406   SwitchBB->normalizeSuccProbs();
2407 
2408   // If the lhs block is the next block, invert the condition so that we can
2409   // fall through to the lhs instead of the rhs block.
2410   if (CB.TrueBB == NextBlock(SwitchBB)) {
2411     std::swap(CB.TrueBB, CB.FalseBB);
2412     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2413     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2414   }
2415 
2416   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2417                                MVT::Other, getControlRoot(), Cond,
2418                                DAG.getBasicBlock(CB.TrueBB));
2419 
2420   // Insert the false branch. Do this even if it's a fall through branch,
2421   // this makes it easier to do DAG optimizations which require inverting
2422   // the branch condition.
2423   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2424                        DAG.getBasicBlock(CB.FalseBB));
2425 
2426   DAG.setRoot(BrCond);
2427 }
2428 
2429 /// visitJumpTable - Emit JumpTable node in the current MBB
2430 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2431   // Emit the code for the jump table
2432   assert(JT.Reg != -1U && "Should lower JT Header first!");
2433   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2434   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2435                                      JT.Reg, PTy);
2436   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2437   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2438                                     MVT::Other, Index.getValue(1),
2439                                     Table, Index);
2440   DAG.setRoot(BrJumpTable);
2441 }
2442 
2443 /// visitJumpTableHeader - This function emits necessary code to produce index
2444 /// in the JumpTable from switch case.
2445 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2446                                                JumpTableHeader &JTH,
2447                                                MachineBasicBlock *SwitchBB) {
2448   SDLoc dl = getCurSDLoc();
2449 
2450   // Subtract the lowest switch case value from the value being switched on.
2451   SDValue SwitchOp = getValue(JTH.SValue);
2452   EVT VT = SwitchOp.getValueType();
2453   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2454                             DAG.getConstant(JTH.First, dl, VT));
2455 
2456   // The SDNode we just created, which holds the value being switched on minus
2457   // the smallest case value, needs to be copied to a virtual register so it
2458   // can be used as an index into the jump table in a subsequent basic block.
2459   // This value may be smaller or larger than the target's pointer type, and
2460   // therefore require extension or truncating.
2461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2462   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2463 
2464   unsigned JumpTableReg =
2465       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2466   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2467                                     JumpTableReg, SwitchOp);
2468   JT.Reg = JumpTableReg;
2469 
2470   if (!JTH.OmitRangeCheck) {
2471     // Emit the range check for the jump table, and branch to the default block
2472     // for the switch statement if the value being switched on exceeds the
2473     // largest case in the switch.
2474     SDValue CMP = DAG.getSetCC(
2475         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2476                                    Sub.getValueType()),
2477         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2478 
2479     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2480                                  MVT::Other, CopyTo, CMP,
2481                                  DAG.getBasicBlock(JT.Default));
2482 
2483     // Avoid emitting unnecessary branches to the next block.
2484     if (JT.MBB != NextBlock(SwitchBB))
2485       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2486                            DAG.getBasicBlock(JT.MBB));
2487 
2488     DAG.setRoot(BrCond);
2489   } else {
2490     // Avoid emitting unnecessary branches to the next block.
2491     if (JT.MBB != NextBlock(SwitchBB))
2492       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2493                               DAG.getBasicBlock(JT.MBB)));
2494     else
2495       DAG.setRoot(CopyTo);
2496   }
2497 }
2498 
2499 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2500 /// variable if there exists one.
2501 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2502                                  SDValue &Chain) {
2503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2504   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2505   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2506   MachineFunction &MF = DAG.getMachineFunction();
2507   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2508   MachineSDNode *Node =
2509       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2510   if (Global) {
2511     MachinePointerInfo MPInfo(Global);
2512     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2513                  MachineMemOperand::MODereferenceable;
2514     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2515         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2516     DAG.setNodeMemRefs(Node, {MemRef});
2517   }
2518   if (PtrTy != PtrMemTy)
2519     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2520   return SDValue(Node, 0);
2521 }
2522 
2523 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2524 /// tail spliced into a stack protector check success bb.
2525 ///
2526 /// For a high level explanation of how this fits into the stack protector
2527 /// generation see the comment on the declaration of class
2528 /// StackProtectorDescriptor.
2529 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2530                                                   MachineBasicBlock *ParentBB) {
2531 
2532   // First create the loads to the guard/stack slot for the comparison.
2533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2534   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2535   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2536 
2537   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2538   int FI = MFI.getStackProtectorIndex();
2539 
2540   SDValue Guard;
2541   SDLoc dl = getCurSDLoc();
2542   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2543   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2544   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2545 
2546   // Generate code to load the content of the guard slot.
2547   SDValue GuardVal = DAG.getLoad(
2548       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2549       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2550       MachineMemOperand::MOVolatile);
2551 
2552   if (TLI.useStackGuardXorFP())
2553     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2554 
2555   // Retrieve guard check function, nullptr if instrumentation is inlined.
2556   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2557     // The target provides a guard check function to validate the guard value.
2558     // Generate a call to that function with the content of the guard slot as
2559     // argument.
2560     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2561     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2562 
2563     TargetLowering::ArgListTy Args;
2564     TargetLowering::ArgListEntry Entry;
2565     Entry.Node = GuardVal;
2566     Entry.Ty = FnTy->getParamType(0);
2567     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2568       Entry.IsInReg = true;
2569     Args.push_back(Entry);
2570 
2571     TargetLowering::CallLoweringInfo CLI(DAG);
2572     CLI.setDebugLoc(getCurSDLoc())
2573         .setChain(DAG.getEntryNode())
2574         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2575                    getValue(GuardCheckFn), std::move(Args));
2576 
2577     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2578     DAG.setRoot(Result.second);
2579     return;
2580   }
2581 
2582   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2583   // Otherwise, emit a volatile load to retrieve the stack guard value.
2584   SDValue Chain = DAG.getEntryNode();
2585   if (TLI.useLoadStackGuardNode()) {
2586     Guard = getLoadStackGuard(DAG, dl, Chain);
2587   } else {
2588     const Value *IRGuard = TLI.getSDagStackGuard(M);
2589     SDValue GuardPtr = getValue(IRGuard);
2590 
2591     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2592                         MachinePointerInfo(IRGuard, 0), Align,
2593                         MachineMemOperand::MOVolatile);
2594   }
2595 
2596   // Perform the comparison via a getsetcc.
2597   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2598                                                         *DAG.getContext(),
2599                                                         Guard.getValueType()),
2600                              Guard, GuardVal, ISD::SETNE);
2601 
2602   // If the guard/stackslot do not equal, branch to failure MBB.
2603   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2604                                MVT::Other, GuardVal.getOperand(0),
2605                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2606   // Otherwise branch to success MBB.
2607   SDValue Br = DAG.getNode(ISD::BR, dl,
2608                            MVT::Other, BrCond,
2609                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2610 
2611   DAG.setRoot(Br);
2612 }
2613 
2614 /// Codegen the failure basic block for a stack protector check.
2615 ///
2616 /// A failure stack protector machine basic block consists simply of a call to
2617 /// __stack_chk_fail().
2618 ///
2619 /// For a high level explanation of how this fits into the stack protector
2620 /// generation see the comment on the declaration of class
2621 /// StackProtectorDescriptor.
2622 void
2623 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2624   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2625   TargetLowering::MakeLibCallOptions CallOptions;
2626   CallOptions.setDiscardResult(true);
2627   SDValue Chain =
2628       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2629                       None, CallOptions, getCurSDLoc()).second;
2630   // On PS4, the "return address" must still be within the calling function,
2631   // even if it's at the very end, so emit an explicit TRAP here.
2632   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2633   if (TM.getTargetTriple().isPS4CPU())
2634     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2635 
2636   DAG.setRoot(Chain);
2637 }
2638 
2639 /// visitBitTestHeader - This function emits necessary code to produce value
2640 /// suitable for "bit tests"
2641 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2642                                              MachineBasicBlock *SwitchBB) {
2643   SDLoc dl = getCurSDLoc();
2644 
2645   // Subtract the minimum value.
2646   SDValue SwitchOp = getValue(B.SValue);
2647   EVT VT = SwitchOp.getValueType();
2648   SDValue RangeSub =
2649       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2650 
2651   // Determine the type of the test operands.
2652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2653   bool UsePtrType = false;
2654   if (!TLI.isTypeLegal(VT)) {
2655     UsePtrType = true;
2656   } else {
2657     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2658       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2659         // Switch table case range are encoded into series of masks.
2660         // Just use pointer type, it's guaranteed to fit.
2661         UsePtrType = true;
2662         break;
2663       }
2664   }
2665   SDValue Sub = RangeSub;
2666   if (UsePtrType) {
2667     VT = TLI.getPointerTy(DAG.getDataLayout());
2668     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2669   }
2670 
2671   B.RegVT = VT.getSimpleVT();
2672   B.Reg = FuncInfo.CreateReg(B.RegVT);
2673   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2674 
2675   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2676 
2677   if (!B.OmitRangeCheck)
2678     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2679   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2680   SwitchBB->normalizeSuccProbs();
2681 
2682   SDValue Root = CopyTo;
2683   if (!B.OmitRangeCheck) {
2684     // Conditional branch to the default block.
2685     SDValue RangeCmp = DAG.getSetCC(dl,
2686         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2687                                RangeSub.getValueType()),
2688         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2689         ISD::SETUGT);
2690 
2691     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2692                        DAG.getBasicBlock(B.Default));
2693   }
2694 
2695   // Avoid emitting unnecessary branches to the next block.
2696   if (MBB != NextBlock(SwitchBB))
2697     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2698 
2699   DAG.setRoot(Root);
2700 }
2701 
2702 /// visitBitTestCase - this function produces one "bit test"
2703 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2704                                            MachineBasicBlock* NextMBB,
2705                                            BranchProbability BranchProbToNext,
2706                                            unsigned Reg,
2707                                            BitTestCase &B,
2708                                            MachineBasicBlock *SwitchBB) {
2709   SDLoc dl = getCurSDLoc();
2710   MVT VT = BB.RegVT;
2711   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2712   SDValue Cmp;
2713   unsigned PopCount = countPopulation(B.Mask);
2714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2715   if (PopCount == 1) {
2716     // Testing for a single bit; just compare the shift count with what it
2717     // would need to be to shift a 1 bit in that position.
2718     Cmp = DAG.getSetCC(
2719         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2720         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2721         ISD::SETEQ);
2722   } else if (PopCount == BB.Range) {
2723     // There is only one zero bit in the range, test for it directly.
2724     Cmp = DAG.getSetCC(
2725         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2726         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2727         ISD::SETNE);
2728   } else {
2729     // Make desired shift
2730     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2731                                     DAG.getConstant(1, dl, VT), ShiftOp);
2732 
2733     // Emit bit tests and jumps
2734     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2735                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2736     Cmp = DAG.getSetCC(
2737         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2738         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2739   }
2740 
2741   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2742   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2743   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2744   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2745   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2746   // one as they are relative probabilities (and thus work more like weights),
2747   // and hence we need to normalize them to let the sum of them become one.
2748   SwitchBB->normalizeSuccProbs();
2749 
2750   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2751                               MVT::Other, getControlRoot(),
2752                               Cmp, DAG.getBasicBlock(B.TargetBB));
2753 
2754   // Avoid emitting unnecessary branches to the next block.
2755   if (NextMBB != NextBlock(SwitchBB))
2756     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2757                         DAG.getBasicBlock(NextMBB));
2758 
2759   DAG.setRoot(BrAnd);
2760 }
2761 
2762 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2763   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2764 
2765   // Retrieve successors. Look through artificial IR level blocks like
2766   // catchswitch for successors.
2767   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2768   const BasicBlock *EHPadBB = I.getSuccessor(1);
2769 
2770   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2771   // have to do anything here to lower funclet bundles.
2772   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2773                                         LLVMContext::OB_funclet,
2774                                         LLVMContext::OB_cfguardtarget}) &&
2775          "Cannot lower invokes with arbitrary operand bundles yet!");
2776 
2777   const Value *Callee(I.getCalledValue());
2778   const Function *Fn = dyn_cast<Function>(Callee);
2779   if (isa<InlineAsm>(Callee))
2780     visitInlineAsm(&I);
2781   else if (Fn && Fn->isIntrinsic()) {
2782     switch (Fn->getIntrinsicID()) {
2783     default:
2784       llvm_unreachable("Cannot invoke this intrinsic");
2785     case Intrinsic::donothing:
2786       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2787       break;
2788     case Intrinsic::experimental_patchpoint_void:
2789     case Intrinsic::experimental_patchpoint_i64:
2790       visitPatchpoint(&I, EHPadBB);
2791       break;
2792     case Intrinsic::experimental_gc_statepoint:
2793       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2794       break;
2795     case Intrinsic::wasm_rethrow_in_catch: {
2796       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2797       // special because it can be invoked, so we manually lower it to a DAG
2798       // node here.
2799       SmallVector<SDValue, 8> Ops;
2800       Ops.push_back(getRoot()); // inchain
2801       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2802       Ops.push_back(
2803           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2804                                 TLI.getPointerTy(DAG.getDataLayout())));
2805       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2806       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2807       break;
2808     }
2809     }
2810   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2811     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2812     // Eventually we will support lowering the @llvm.experimental.deoptimize
2813     // intrinsic, and right now there are no plans to support other intrinsics
2814     // with deopt state.
2815     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2816   } else {
2817     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2818   }
2819 
2820   // If the value of the invoke is used outside of its defining block, make it
2821   // available as a virtual register.
2822   // We already took care of the exported value for the statepoint instruction
2823   // during call to the LowerStatepoint.
2824   if (!isStatepoint(I)) {
2825     CopyToExportRegsIfNeeded(&I);
2826   }
2827 
2828   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2829   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2830   BranchProbability EHPadBBProb =
2831       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2832           : BranchProbability::getZero();
2833   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2834 
2835   // Update successor info.
2836   addSuccessorWithProb(InvokeMBB, Return);
2837   for (auto &UnwindDest : UnwindDests) {
2838     UnwindDest.first->setIsEHPad();
2839     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2840   }
2841   InvokeMBB->normalizeSuccProbs();
2842 
2843   // Drop into normal successor.
2844   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2845                           DAG.getBasicBlock(Return)));
2846 }
2847 
2848 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2849   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2850 
2851   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2852   // have to do anything here to lower funclet bundles.
2853   assert(!I.hasOperandBundlesOtherThan(
2854              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2855          "Cannot lower callbrs with arbitrary operand bundles yet!");
2856 
2857   assert(isa<InlineAsm>(I.getCalledValue()) &&
2858          "Only know how to handle inlineasm callbr");
2859   visitInlineAsm(&I);
2860   CopyToExportRegsIfNeeded(&I);
2861 
2862   // Retrieve successors.
2863   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2864   Return->setInlineAsmBrDefaultTarget();
2865 
2866   // Update successor info.
2867   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2868   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2869     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2870     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2871     CallBrMBB->addInlineAsmBrIndirectTarget(Target);
2872   }
2873   CallBrMBB->normalizeSuccProbs();
2874 
2875   // Drop into default successor.
2876   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2877                           MVT::Other, getControlRoot(),
2878                           DAG.getBasicBlock(Return)));
2879 }
2880 
2881 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2882   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2883 }
2884 
2885 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2886   assert(FuncInfo.MBB->isEHPad() &&
2887          "Call to landingpad not in landing pad!");
2888 
2889   // If there aren't registers to copy the values into (e.g., during SjLj
2890   // exceptions), then don't bother to create these DAG nodes.
2891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2892   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2893   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2894       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2895     return;
2896 
2897   // If landingpad's return type is token type, we don't create DAG nodes
2898   // for its exception pointer and selector value. The extraction of exception
2899   // pointer or selector value from token type landingpads is not currently
2900   // supported.
2901   if (LP.getType()->isTokenTy())
2902     return;
2903 
2904   SmallVector<EVT, 2> ValueVTs;
2905   SDLoc dl = getCurSDLoc();
2906   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2907   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2908 
2909   // Get the two live-in registers as SDValues. The physregs have already been
2910   // copied into virtual registers.
2911   SDValue Ops[2];
2912   if (FuncInfo.ExceptionPointerVirtReg) {
2913     Ops[0] = DAG.getZExtOrTrunc(
2914         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2915                            FuncInfo.ExceptionPointerVirtReg,
2916                            TLI.getPointerTy(DAG.getDataLayout())),
2917         dl, ValueVTs[0]);
2918   } else {
2919     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2920   }
2921   Ops[1] = DAG.getZExtOrTrunc(
2922       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2923                          FuncInfo.ExceptionSelectorVirtReg,
2924                          TLI.getPointerTy(DAG.getDataLayout())),
2925       dl, ValueVTs[1]);
2926 
2927   // Merge into one.
2928   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2929                             DAG.getVTList(ValueVTs), Ops);
2930   setValue(&LP, Res);
2931 }
2932 
2933 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2934                                            MachineBasicBlock *Last) {
2935   // Update JTCases.
2936   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2937     if (SL->JTCases[i].first.HeaderBB == First)
2938       SL->JTCases[i].first.HeaderBB = Last;
2939 
2940   // Update BitTestCases.
2941   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2942     if (SL->BitTestCases[i].Parent == First)
2943       SL->BitTestCases[i].Parent = Last;
2944 }
2945 
2946 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2947   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2948 
2949   // Update machine-CFG edges with unique successors.
2950   SmallSet<BasicBlock*, 32> Done;
2951   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2952     BasicBlock *BB = I.getSuccessor(i);
2953     bool Inserted = Done.insert(BB).second;
2954     if (!Inserted)
2955         continue;
2956 
2957     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2958     addSuccessorWithProb(IndirectBrMBB, Succ);
2959   }
2960   IndirectBrMBB->normalizeSuccProbs();
2961 
2962   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2963                           MVT::Other, getControlRoot(),
2964                           getValue(I.getAddress())));
2965 }
2966 
2967 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2968   if (!DAG.getTarget().Options.TrapUnreachable)
2969     return;
2970 
2971   // We may be able to ignore unreachable behind a noreturn call.
2972   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2973     const BasicBlock &BB = *I.getParent();
2974     if (&I != &BB.front()) {
2975       BasicBlock::const_iterator PredI =
2976         std::prev(BasicBlock::const_iterator(&I));
2977       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2978         if (Call->doesNotReturn())
2979           return;
2980       }
2981     }
2982   }
2983 
2984   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2985 }
2986 
2987 void SelectionDAGBuilder::visitFSub(const User &I) {
2988   // -0.0 - X --> fneg
2989   Type *Ty = I.getType();
2990   if (isa<Constant>(I.getOperand(0)) &&
2991       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2992     SDValue Op2 = getValue(I.getOperand(1));
2993     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2994                              Op2.getValueType(), Op2));
2995     return;
2996   }
2997 
2998   visitBinary(I, ISD::FSUB);
2999 }
3000 
3001 /// Checks if the given instruction performs a vector reduction, in which case
3002 /// we have the freedom to alter the elements in the result as long as the
3003 /// reduction of them stays unchanged.
3004 static bool isVectorReductionOp(const User *I) {
3005   const Instruction *Inst = dyn_cast<Instruction>(I);
3006   if (!Inst || !Inst->getType()->isVectorTy())
3007     return false;
3008 
3009   auto OpCode = Inst->getOpcode();
3010   switch (OpCode) {
3011   case Instruction::Add:
3012   case Instruction::Mul:
3013   case Instruction::And:
3014   case Instruction::Or:
3015   case Instruction::Xor:
3016     break;
3017   case Instruction::FAdd:
3018   case Instruction::FMul:
3019     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3020       if (FPOp->getFastMathFlags().isFast())
3021         break;
3022     LLVM_FALLTHROUGH;
3023   default:
3024     return false;
3025   }
3026 
3027   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3028   // Ensure the reduction size is a power of 2.
3029   if (!isPowerOf2_32(ElemNum))
3030     return false;
3031 
3032   unsigned ElemNumToReduce = ElemNum;
3033 
3034   // Do DFS search on the def-use chain from the given instruction. We only
3035   // allow four kinds of operations during the search until we reach the
3036   // instruction that extracts the first element from the vector:
3037   //
3038   //   1. The reduction operation of the same opcode as the given instruction.
3039   //
3040   //   2. PHI node.
3041   //
3042   //   3. ShuffleVector instruction together with a reduction operation that
3043   //      does a partial reduction.
3044   //
3045   //   4. ExtractElement that extracts the first element from the vector, and we
3046   //      stop searching the def-use chain here.
3047   //
3048   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3049   // from 1-3 to the stack to continue the DFS. The given instruction is not
3050   // a reduction operation if we meet any other instructions other than those
3051   // listed above.
3052 
3053   SmallVector<const User *, 16> UsersToVisit{Inst};
3054   SmallPtrSet<const User *, 16> Visited;
3055   bool ReduxExtracted = false;
3056 
3057   while (!UsersToVisit.empty()) {
3058     auto User = UsersToVisit.back();
3059     UsersToVisit.pop_back();
3060     if (!Visited.insert(User).second)
3061       continue;
3062 
3063     for (const auto *U : User->users()) {
3064       auto Inst = dyn_cast<Instruction>(U);
3065       if (!Inst)
3066         return false;
3067 
3068       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3069         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3070           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3071             return false;
3072         UsersToVisit.push_back(U);
3073       } else if (const ShuffleVectorInst *ShufInst =
3074                      dyn_cast<ShuffleVectorInst>(U)) {
3075         // Detect the following pattern: A ShuffleVector instruction together
3076         // with a reduction that do partial reduction on the first and second
3077         // ElemNumToReduce / 2 elements, and store the result in
3078         // ElemNumToReduce / 2 elements in another vector.
3079 
3080         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3081         if (ResultElements < ElemNum)
3082           return false;
3083 
3084         if (ElemNumToReduce == 1)
3085           return false;
3086         if (!isa<UndefValue>(U->getOperand(1)))
3087           return false;
3088         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3089           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3090             return false;
3091         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3092           if (ShufInst->getMaskValue(i) != -1)
3093             return false;
3094 
3095         // There is only one user of this ShuffleVector instruction, which
3096         // must be a reduction operation.
3097         if (!U->hasOneUse())
3098           return false;
3099 
3100         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3101         if (!U2 || U2->getOpcode() != OpCode)
3102           return false;
3103 
3104         // Check operands of the reduction operation.
3105         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3106             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3107           UsersToVisit.push_back(U2);
3108           ElemNumToReduce /= 2;
3109         } else
3110           return false;
3111       } else if (isa<ExtractElementInst>(U)) {
3112         // At this moment we should have reduced all elements in the vector.
3113         if (ElemNumToReduce != 1)
3114           return false;
3115 
3116         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3117         if (!Val || !Val->isZero())
3118           return false;
3119 
3120         ReduxExtracted = true;
3121       } else
3122         return false;
3123     }
3124   }
3125   return ReduxExtracted;
3126 }
3127 
3128 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3129   SDNodeFlags Flags;
3130 
3131   SDValue Op = getValue(I.getOperand(0));
3132   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3133                                     Op, Flags);
3134   setValue(&I, UnNodeValue);
3135 }
3136 
3137 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3138   SDNodeFlags Flags;
3139   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3140     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3141     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3142   }
3143   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3144     Flags.setExact(ExactOp->isExact());
3145   }
3146   if (isVectorReductionOp(&I)) {
3147     Flags.setVectorReduction(true);
3148     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3149 
3150     // If no flags are set we will propagate the incoming flags, if any flags
3151     // are set, we will intersect them with the incoming flag and so we need to
3152     // copy the FMF flags here.
3153     if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
3154       Flags.copyFMF(*FPOp);
3155     }
3156   }
3157 
3158   SDValue Op1 = getValue(I.getOperand(0));
3159   SDValue Op2 = getValue(I.getOperand(1));
3160   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3161                                      Op1, Op2, Flags);
3162   setValue(&I, BinNodeValue);
3163 }
3164 
3165 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3166   SDValue Op1 = getValue(I.getOperand(0));
3167   SDValue Op2 = getValue(I.getOperand(1));
3168 
3169   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3170       Op1.getValueType(), DAG.getDataLayout());
3171 
3172   // Coerce the shift amount to the right type if we can.
3173   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3174     unsigned ShiftSize = ShiftTy.getSizeInBits();
3175     unsigned Op2Size = Op2.getValueSizeInBits();
3176     SDLoc DL = getCurSDLoc();
3177 
3178     // If the operand is smaller than the shift count type, promote it.
3179     if (ShiftSize > Op2Size)
3180       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3181 
3182     // If the operand is larger than the shift count type but the shift
3183     // count type has enough bits to represent any shift value, truncate
3184     // it now. This is a common case and it exposes the truncate to
3185     // optimization early.
3186     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3187       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3188     // Otherwise we'll need to temporarily settle for some other convenient
3189     // type.  Type legalization will make adjustments once the shiftee is split.
3190     else
3191       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3192   }
3193 
3194   bool nuw = false;
3195   bool nsw = false;
3196   bool exact = false;
3197 
3198   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3199 
3200     if (const OverflowingBinaryOperator *OFBinOp =
3201             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3202       nuw = OFBinOp->hasNoUnsignedWrap();
3203       nsw = OFBinOp->hasNoSignedWrap();
3204     }
3205     if (const PossiblyExactOperator *ExactOp =
3206             dyn_cast<const PossiblyExactOperator>(&I))
3207       exact = ExactOp->isExact();
3208   }
3209   SDNodeFlags Flags;
3210   Flags.setExact(exact);
3211   Flags.setNoSignedWrap(nsw);
3212   Flags.setNoUnsignedWrap(nuw);
3213   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3214                             Flags);
3215   setValue(&I, Res);
3216 }
3217 
3218 void SelectionDAGBuilder::visitSDiv(const User &I) {
3219   SDValue Op1 = getValue(I.getOperand(0));
3220   SDValue Op2 = getValue(I.getOperand(1));
3221 
3222   SDNodeFlags Flags;
3223   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3224                  cast<PossiblyExactOperator>(&I)->isExact());
3225   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3226                            Op2, Flags));
3227 }
3228 
3229 void SelectionDAGBuilder::visitICmp(const User &I) {
3230   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3231   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3232     predicate = IC->getPredicate();
3233   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3234     predicate = ICmpInst::Predicate(IC->getPredicate());
3235   SDValue Op1 = getValue(I.getOperand(0));
3236   SDValue Op2 = getValue(I.getOperand(1));
3237   ISD::CondCode Opcode = getICmpCondCode(predicate);
3238 
3239   auto &TLI = DAG.getTargetLoweringInfo();
3240   EVT MemVT =
3241       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3242 
3243   // If a pointer's DAG type is larger than its memory type then the DAG values
3244   // are zero-extended. This breaks signed comparisons so truncate back to the
3245   // underlying type before doing the compare.
3246   if (Op1.getValueType() != MemVT) {
3247     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3248     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3249   }
3250 
3251   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3252                                                         I.getType());
3253   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3254 }
3255 
3256 void SelectionDAGBuilder::visitFCmp(const User &I) {
3257   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3258   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3259     predicate = FC->getPredicate();
3260   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3261     predicate = FCmpInst::Predicate(FC->getPredicate());
3262   SDValue Op1 = getValue(I.getOperand(0));
3263   SDValue Op2 = getValue(I.getOperand(1));
3264 
3265   ISD::CondCode Condition = getFCmpCondCode(predicate);
3266   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3267   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3268     Condition = getFCmpCodeWithoutNaN(Condition);
3269 
3270   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3271                                                         I.getType());
3272   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3273 }
3274 
3275 // Check if the condition of the select has one use or two users that are both
3276 // selects with the same condition.
3277 static bool hasOnlySelectUsers(const Value *Cond) {
3278   return llvm::all_of(Cond->users(), [](const Value *V) {
3279     return isa<SelectInst>(V);
3280   });
3281 }
3282 
3283 void SelectionDAGBuilder::visitSelect(const User &I) {
3284   SmallVector<EVT, 4> ValueVTs;
3285   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3286                   ValueVTs);
3287   unsigned NumValues = ValueVTs.size();
3288   if (NumValues == 0) return;
3289 
3290   SmallVector<SDValue, 4> Values(NumValues);
3291   SDValue Cond     = getValue(I.getOperand(0));
3292   SDValue LHSVal   = getValue(I.getOperand(1));
3293   SDValue RHSVal   = getValue(I.getOperand(2));
3294   SmallVector<SDValue, 1> BaseOps(1, Cond);
3295   ISD::NodeType OpCode =
3296       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3297 
3298   bool IsUnaryAbs = false;
3299 
3300   // Min/max matching is only viable if all output VTs are the same.
3301   if (is_splat(ValueVTs)) {
3302     EVT VT = ValueVTs[0];
3303     LLVMContext &Ctx = *DAG.getContext();
3304     auto &TLI = DAG.getTargetLoweringInfo();
3305 
3306     // We care about the legality of the operation after it has been type
3307     // legalized.
3308     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3309       VT = TLI.getTypeToTransformTo(Ctx, VT);
3310 
3311     // If the vselect is legal, assume we want to leave this as a vector setcc +
3312     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3313     // min/max is legal on the scalar type.
3314     bool UseScalarMinMax = VT.isVector() &&
3315       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3316 
3317     Value *LHS, *RHS;
3318     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3319     ISD::NodeType Opc = ISD::DELETED_NODE;
3320     switch (SPR.Flavor) {
3321     case SPF_UMAX:    Opc = ISD::UMAX; break;
3322     case SPF_UMIN:    Opc = ISD::UMIN; break;
3323     case SPF_SMAX:    Opc = ISD::SMAX; break;
3324     case SPF_SMIN:    Opc = ISD::SMIN; break;
3325     case SPF_FMINNUM:
3326       switch (SPR.NaNBehavior) {
3327       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3328       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3329       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3330       case SPNB_RETURNS_ANY: {
3331         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3332           Opc = ISD::FMINNUM;
3333         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3334           Opc = ISD::FMINIMUM;
3335         else if (UseScalarMinMax)
3336           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3337             ISD::FMINNUM : ISD::FMINIMUM;
3338         break;
3339       }
3340       }
3341       break;
3342     case SPF_FMAXNUM:
3343       switch (SPR.NaNBehavior) {
3344       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3345       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3346       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3347       case SPNB_RETURNS_ANY:
3348 
3349         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3350           Opc = ISD::FMAXNUM;
3351         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3352           Opc = ISD::FMAXIMUM;
3353         else if (UseScalarMinMax)
3354           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3355             ISD::FMAXNUM : ISD::FMAXIMUM;
3356         break;
3357       }
3358       break;
3359     case SPF_ABS:
3360       IsUnaryAbs = true;
3361       Opc = ISD::ABS;
3362       break;
3363     case SPF_NABS:
3364       // TODO: we need to produce sub(0, abs(X)).
3365     default: break;
3366     }
3367 
3368     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3369         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3370          (UseScalarMinMax &&
3371           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3372         // If the underlying comparison instruction is used by any other
3373         // instruction, the consumed instructions won't be destroyed, so it is
3374         // not profitable to convert to a min/max.
3375         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3376       OpCode = Opc;
3377       LHSVal = getValue(LHS);
3378       RHSVal = getValue(RHS);
3379       BaseOps.clear();
3380     }
3381 
3382     if (IsUnaryAbs) {
3383       OpCode = Opc;
3384       LHSVal = getValue(LHS);
3385       BaseOps.clear();
3386     }
3387   }
3388 
3389   if (IsUnaryAbs) {
3390     for (unsigned i = 0; i != NumValues; ++i) {
3391       Values[i] =
3392           DAG.getNode(OpCode, getCurSDLoc(),
3393                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3394                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3395     }
3396   } else {
3397     for (unsigned i = 0; i != NumValues; ++i) {
3398       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3399       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3400       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3401       Values[i] = DAG.getNode(
3402           OpCode, getCurSDLoc(),
3403           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3404     }
3405   }
3406 
3407   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3408                            DAG.getVTList(ValueVTs), Values));
3409 }
3410 
3411 void SelectionDAGBuilder::visitTrunc(const User &I) {
3412   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3413   SDValue N = getValue(I.getOperand(0));
3414   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3415                                                         I.getType());
3416   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3417 }
3418 
3419 void SelectionDAGBuilder::visitZExt(const User &I) {
3420   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3421   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3422   SDValue N = getValue(I.getOperand(0));
3423   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3424                                                         I.getType());
3425   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3426 }
3427 
3428 void SelectionDAGBuilder::visitSExt(const User &I) {
3429   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3430   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3431   SDValue N = getValue(I.getOperand(0));
3432   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3433                                                         I.getType());
3434   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3435 }
3436 
3437 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3438   // FPTrunc is never a no-op cast, no need to check
3439   SDValue N = getValue(I.getOperand(0));
3440   SDLoc dl = getCurSDLoc();
3441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3442   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3443   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3444                            DAG.getTargetConstant(
3445                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3446 }
3447 
3448 void SelectionDAGBuilder::visitFPExt(const User &I) {
3449   // FPExt is never a no-op cast, no need to check
3450   SDValue N = getValue(I.getOperand(0));
3451   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3452                                                         I.getType());
3453   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3454 }
3455 
3456 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3457   // FPToUI is never a no-op cast, no need to check
3458   SDValue N = getValue(I.getOperand(0));
3459   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460                                                         I.getType());
3461   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3462 }
3463 
3464 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3465   // FPToSI is never a no-op cast, no need to check
3466   SDValue N = getValue(I.getOperand(0));
3467   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3468                                                         I.getType());
3469   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3470 }
3471 
3472 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3473   // UIToFP is never a no-op cast, no need to check
3474   SDValue N = getValue(I.getOperand(0));
3475   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3476                                                         I.getType());
3477   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3478 }
3479 
3480 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3481   // SIToFP is never a no-op cast, no need to check
3482   SDValue N = getValue(I.getOperand(0));
3483   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3484                                                         I.getType());
3485   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3486 }
3487 
3488 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3489   // What to do depends on the size of the integer and the size of the pointer.
3490   // We can either truncate, zero extend, or no-op, accordingly.
3491   SDValue N = getValue(I.getOperand(0));
3492   auto &TLI = DAG.getTargetLoweringInfo();
3493   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3494                                                         I.getType());
3495   EVT PtrMemVT =
3496       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3497   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3498   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3499   setValue(&I, N);
3500 }
3501 
3502 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3503   // What to do depends on the size of the integer and the size of the pointer.
3504   // We can either truncate, zero extend, or no-op, accordingly.
3505   SDValue N = getValue(I.getOperand(0));
3506   auto &TLI = DAG.getTargetLoweringInfo();
3507   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3508   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3509   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3510   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3511   setValue(&I, N);
3512 }
3513 
3514 void SelectionDAGBuilder::visitBitCast(const User &I) {
3515   SDValue N = getValue(I.getOperand(0));
3516   SDLoc dl = getCurSDLoc();
3517   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3518                                                         I.getType());
3519 
3520   // BitCast assures us that source and destination are the same size so this is
3521   // either a BITCAST or a no-op.
3522   if (DestVT != N.getValueType())
3523     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3524                              DestVT, N)); // convert types.
3525   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3526   // might fold any kind of constant expression to an integer constant and that
3527   // is not what we are looking for. Only recognize a bitcast of a genuine
3528   // constant integer as an opaque constant.
3529   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3530     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3531                                  /*isOpaque*/true));
3532   else
3533     setValue(&I, N);            // noop cast.
3534 }
3535 
3536 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3538   const Value *SV = I.getOperand(0);
3539   SDValue N = getValue(SV);
3540   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3541 
3542   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3543   unsigned DestAS = I.getType()->getPointerAddressSpace();
3544 
3545   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3546     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3547 
3548   setValue(&I, N);
3549 }
3550 
3551 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3552   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3553   SDValue InVec = getValue(I.getOperand(0));
3554   SDValue InVal = getValue(I.getOperand(1));
3555   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3556                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3557   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3558                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3559                            InVec, InVal, InIdx));
3560 }
3561 
3562 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3564   SDValue InVec = getValue(I.getOperand(0));
3565   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3566                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3567   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3568                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3569                            InVec, InIdx));
3570 }
3571 
3572 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3573   SDValue Src1 = getValue(I.getOperand(0));
3574   SDValue Src2 = getValue(I.getOperand(1));
3575   Constant *MaskV = cast<Constant>(I.getOperand(2));
3576   SDLoc DL = getCurSDLoc();
3577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3578   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3579   EVT SrcVT = Src1.getValueType();
3580   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3581 
3582   if (MaskV->isNullValue() && VT.isScalableVector()) {
3583     // Canonical splat form of first element of first input vector.
3584     SDValue FirstElt =
3585         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3586                     DAG.getVectorIdxConstant(0, DL));
3587     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3588     return;
3589   }
3590 
3591   // For now, we only handle splats for scalable vectors.
3592   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3593   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3594   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3595 
3596   SmallVector<int, 8> Mask;
3597   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3598   unsigned MaskNumElts = Mask.size();
3599 
3600   if (SrcNumElts == MaskNumElts) {
3601     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3602     return;
3603   }
3604 
3605   // Normalize the shuffle vector since mask and vector length don't match.
3606   if (SrcNumElts < MaskNumElts) {
3607     // Mask is longer than the source vectors. We can use concatenate vector to
3608     // make the mask and vectors lengths match.
3609 
3610     if (MaskNumElts % SrcNumElts == 0) {
3611       // Mask length is a multiple of the source vector length.
3612       // Check if the shuffle is some kind of concatenation of the input
3613       // vectors.
3614       unsigned NumConcat = MaskNumElts / SrcNumElts;
3615       bool IsConcat = true;
3616       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3617       for (unsigned i = 0; i != MaskNumElts; ++i) {
3618         int Idx = Mask[i];
3619         if (Idx < 0)
3620           continue;
3621         // Ensure the indices in each SrcVT sized piece are sequential and that
3622         // the same source is used for the whole piece.
3623         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3624             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3625              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3626           IsConcat = false;
3627           break;
3628         }
3629         // Remember which source this index came from.
3630         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3631       }
3632 
3633       // The shuffle is concatenating multiple vectors together. Just emit
3634       // a CONCAT_VECTORS operation.
3635       if (IsConcat) {
3636         SmallVector<SDValue, 8> ConcatOps;
3637         for (auto Src : ConcatSrcs) {
3638           if (Src < 0)
3639             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3640           else if (Src == 0)
3641             ConcatOps.push_back(Src1);
3642           else
3643             ConcatOps.push_back(Src2);
3644         }
3645         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3646         return;
3647       }
3648     }
3649 
3650     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3651     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3652     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3653                                     PaddedMaskNumElts);
3654 
3655     // Pad both vectors with undefs to make them the same length as the mask.
3656     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3657 
3658     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3659     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3660     MOps1[0] = Src1;
3661     MOps2[0] = Src2;
3662 
3663     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3664     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3665 
3666     // Readjust mask for new input vector length.
3667     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3668     for (unsigned i = 0; i != MaskNumElts; ++i) {
3669       int Idx = Mask[i];
3670       if (Idx >= (int)SrcNumElts)
3671         Idx -= SrcNumElts - PaddedMaskNumElts;
3672       MappedOps[i] = Idx;
3673     }
3674 
3675     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3676 
3677     // If the concatenated vector was padded, extract a subvector with the
3678     // correct number of elements.
3679     if (MaskNumElts != PaddedMaskNumElts)
3680       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3681                            DAG.getVectorIdxConstant(0, DL));
3682 
3683     setValue(&I, Result);
3684     return;
3685   }
3686 
3687   if (SrcNumElts > MaskNumElts) {
3688     // Analyze the access pattern of the vector to see if we can extract
3689     // two subvectors and do the shuffle.
3690     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3691     bool CanExtract = true;
3692     for (int Idx : Mask) {
3693       unsigned Input = 0;
3694       if (Idx < 0)
3695         continue;
3696 
3697       if (Idx >= (int)SrcNumElts) {
3698         Input = 1;
3699         Idx -= SrcNumElts;
3700       }
3701 
3702       // If all the indices come from the same MaskNumElts sized portion of
3703       // the sources we can use extract. Also make sure the extract wouldn't
3704       // extract past the end of the source.
3705       int NewStartIdx = alignDown(Idx, MaskNumElts);
3706       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3707           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3708         CanExtract = false;
3709       // Make sure we always update StartIdx as we use it to track if all
3710       // elements are undef.
3711       StartIdx[Input] = NewStartIdx;
3712     }
3713 
3714     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3715       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3716       return;
3717     }
3718     if (CanExtract) {
3719       // Extract appropriate subvector and generate a vector shuffle
3720       for (unsigned Input = 0; Input < 2; ++Input) {
3721         SDValue &Src = Input == 0 ? Src1 : Src2;
3722         if (StartIdx[Input] < 0)
3723           Src = DAG.getUNDEF(VT);
3724         else {
3725           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3726                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3727         }
3728       }
3729 
3730       // Calculate new mask.
3731       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3732       for (int &Idx : MappedOps) {
3733         if (Idx >= (int)SrcNumElts)
3734           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3735         else if (Idx >= 0)
3736           Idx -= StartIdx[0];
3737       }
3738 
3739       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3740       return;
3741     }
3742   }
3743 
3744   // We can't use either concat vectors or extract subvectors so fall back to
3745   // replacing the shuffle with extract and build vector.
3746   // to insert and build vector.
3747   EVT EltVT = VT.getVectorElementType();
3748   SmallVector<SDValue,8> Ops;
3749   for (int Idx : Mask) {
3750     SDValue Res;
3751 
3752     if (Idx < 0) {
3753       Res = DAG.getUNDEF(EltVT);
3754     } else {
3755       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3756       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3757 
3758       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3759                         DAG.getVectorIdxConstant(Idx, DL));
3760     }
3761 
3762     Ops.push_back(Res);
3763   }
3764 
3765   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3766 }
3767 
3768 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3769   ArrayRef<unsigned> Indices;
3770   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3771     Indices = IV->getIndices();
3772   else
3773     Indices = cast<ConstantExpr>(&I)->getIndices();
3774 
3775   const Value *Op0 = I.getOperand(0);
3776   const Value *Op1 = I.getOperand(1);
3777   Type *AggTy = I.getType();
3778   Type *ValTy = Op1->getType();
3779   bool IntoUndef = isa<UndefValue>(Op0);
3780   bool FromUndef = isa<UndefValue>(Op1);
3781 
3782   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3783 
3784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3785   SmallVector<EVT, 4> AggValueVTs;
3786   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3787   SmallVector<EVT, 4> ValValueVTs;
3788   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3789 
3790   unsigned NumAggValues = AggValueVTs.size();
3791   unsigned NumValValues = ValValueVTs.size();
3792   SmallVector<SDValue, 4> Values(NumAggValues);
3793 
3794   // Ignore an insertvalue that produces an empty object
3795   if (!NumAggValues) {
3796     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3797     return;
3798   }
3799 
3800   SDValue Agg = getValue(Op0);
3801   unsigned i = 0;
3802   // Copy the beginning value(s) from the original aggregate.
3803   for (; i != LinearIndex; ++i)
3804     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3805                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3806   // Copy values from the inserted value(s).
3807   if (NumValValues) {
3808     SDValue Val = getValue(Op1);
3809     for (; i != LinearIndex + NumValValues; ++i)
3810       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3811                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3812   }
3813   // Copy remaining value(s) from the original aggregate.
3814   for (; i != NumAggValues; ++i)
3815     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3816                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3817 
3818   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3819                            DAG.getVTList(AggValueVTs), Values));
3820 }
3821 
3822 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3823   ArrayRef<unsigned> Indices;
3824   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3825     Indices = EV->getIndices();
3826   else
3827     Indices = cast<ConstantExpr>(&I)->getIndices();
3828 
3829   const Value *Op0 = I.getOperand(0);
3830   Type *AggTy = Op0->getType();
3831   Type *ValTy = I.getType();
3832   bool OutOfUndef = isa<UndefValue>(Op0);
3833 
3834   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3835 
3836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3837   SmallVector<EVT, 4> ValValueVTs;
3838   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3839 
3840   unsigned NumValValues = ValValueVTs.size();
3841 
3842   // Ignore a extractvalue that produces an empty object
3843   if (!NumValValues) {
3844     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3845     return;
3846   }
3847 
3848   SmallVector<SDValue, 4> Values(NumValValues);
3849 
3850   SDValue Agg = getValue(Op0);
3851   // Copy out the selected value(s).
3852   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3853     Values[i - LinearIndex] =
3854       OutOfUndef ?
3855         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3856         SDValue(Agg.getNode(), Agg.getResNo() + i);
3857 
3858   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3859                            DAG.getVTList(ValValueVTs), Values));
3860 }
3861 
3862 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3863   Value *Op0 = I.getOperand(0);
3864   // Note that the pointer operand may be a vector of pointers. Take the scalar
3865   // element which holds a pointer.
3866   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3867   SDValue N = getValue(Op0);
3868   SDLoc dl = getCurSDLoc();
3869   auto &TLI = DAG.getTargetLoweringInfo();
3870   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3871   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3872 
3873   // Normalize Vector GEP - all scalar operands should be converted to the
3874   // splat vector.
3875   bool IsVectorGEP = I.getType()->isVectorTy();
3876   ElementCount VectorElementCount = IsVectorGEP ?
3877     I.getType()->getVectorElementCount() : ElementCount(0, false);
3878 
3879   if (IsVectorGEP && !N.getValueType().isVector()) {
3880     LLVMContext &Context = *DAG.getContext();
3881     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3882     if (VectorElementCount.Scalable)
3883       N = DAG.getSplatVector(VT, dl, N);
3884     else
3885       N = DAG.getSplatBuildVector(VT, dl, N);
3886   }
3887 
3888   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3889        GTI != E; ++GTI) {
3890     const Value *Idx = GTI.getOperand();
3891     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3892       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3893       if (Field) {
3894         // N = N + Offset
3895         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3896 
3897         // In an inbounds GEP with an offset that is nonnegative even when
3898         // interpreted as signed, assume there is no unsigned overflow.
3899         SDNodeFlags Flags;
3900         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3901           Flags.setNoUnsignedWrap(true);
3902 
3903         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3904                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3905       }
3906     } else {
3907       // IdxSize is the width of the arithmetic according to IR semantics.
3908       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3909       // (and fix up the result later).
3910       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3911       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3912       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3913       // We intentionally mask away the high bits here; ElementSize may not
3914       // fit in IdxTy.
3915       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3916       bool ElementScalable = ElementSize.isScalable();
3917 
3918       // If this is a scalar constant or a splat vector of constants,
3919       // handle it quickly.
3920       const auto *C = dyn_cast<Constant>(Idx);
3921       if (C && isa<VectorType>(C->getType()))
3922         C = C->getSplatValue();
3923 
3924       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3925       if (CI && CI->isZero())
3926         continue;
3927       if (CI && !ElementScalable) {
3928         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3929         LLVMContext &Context = *DAG.getContext();
3930         SDValue OffsVal;
3931         if (IsVectorGEP)
3932           OffsVal = DAG.getConstant(
3933               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3934         else
3935           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3936 
3937         // In an inbounds GEP with an offset that is nonnegative even when
3938         // interpreted as signed, assume there is no unsigned overflow.
3939         SDNodeFlags Flags;
3940         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3941           Flags.setNoUnsignedWrap(true);
3942 
3943         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3944 
3945         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3946         continue;
3947       }
3948 
3949       // N = N + Idx * ElementMul;
3950       SDValue IdxN = getValue(Idx);
3951 
3952       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3953         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3954                                   VectorElementCount);
3955         if (VectorElementCount.Scalable)
3956           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3957         else
3958           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3959       }
3960 
3961       // If the index is smaller or larger than intptr_t, truncate or extend
3962       // it.
3963       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3964 
3965       if (ElementScalable) {
3966         EVT VScaleTy = N.getValueType().getScalarType();
3967         SDValue VScale = DAG.getNode(
3968             ISD::VSCALE, dl, VScaleTy,
3969             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3970         if (IsVectorGEP)
3971           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3972         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3973       } else {
3974         // If this is a multiply by a power of two, turn it into a shl
3975         // immediately.  This is a very common case.
3976         if (ElementMul != 1) {
3977           if (ElementMul.isPowerOf2()) {
3978             unsigned Amt = ElementMul.logBase2();
3979             IdxN = DAG.getNode(ISD::SHL, dl,
3980                                N.getValueType(), IdxN,
3981                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3982           } else {
3983             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3984                                             IdxN.getValueType());
3985             IdxN = DAG.getNode(ISD::MUL, dl,
3986                                N.getValueType(), IdxN, Scale);
3987           }
3988         }
3989       }
3990 
3991       N = DAG.getNode(ISD::ADD, dl,
3992                       N.getValueType(), N, IdxN);
3993     }
3994   }
3995 
3996   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3997     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3998 
3999   setValue(&I, N);
4000 }
4001 
4002 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4003   // If this is a fixed sized alloca in the entry block of the function,
4004   // allocate it statically on the stack.
4005   if (FuncInfo.StaticAllocaMap.count(&I))
4006     return;   // getValue will auto-populate this.
4007 
4008   SDLoc dl = getCurSDLoc();
4009   Type *Ty = I.getAllocatedType();
4010   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4011   auto &DL = DAG.getDataLayout();
4012   uint64_t TySize = DL.getTypeAllocSize(Ty);
4013   MaybeAlign Alignment = max(DL.getPrefTypeAlign(Ty), I.getAlign());
4014 
4015   SDValue AllocSize = getValue(I.getArraySize());
4016 
4017   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4018   if (AllocSize.getValueType() != IntPtr)
4019     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4020 
4021   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4022                           AllocSize,
4023                           DAG.getConstant(TySize, dl, IntPtr));
4024 
4025   // Handle alignment.  If the requested alignment is less than or equal to
4026   // the stack alignment, ignore it.  If the size is greater than or equal to
4027   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4028   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4029   if (Alignment <= StackAlign)
4030     Alignment = None;
4031 
4032   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4033   // Round the size of the allocation up to the stack alignment size
4034   // by add SA-1 to the size. This doesn't overflow because we're computing
4035   // an address inside an alloca.
4036   SDNodeFlags Flags;
4037   Flags.setNoUnsignedWrap(true);
4038   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4039                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4040 
4041   // Mask out the low bits for alignment purposes.
4042   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4043                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4044 
4045   SDValue Ops[] = {
4046       getRoot(), AllocSize,
4047       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4048   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4049   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4050   setValue(&I, DSA);
4051   DAG.setRoot(DSA.getValue(1));
4052 
4053   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4054 }
4055 
4056 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4057   if (I.isAtomic())
4058     return visitAtomicLoad(I);
4059 
4060   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4061   const Value *SV = I.getOperand(0);
4062   if (TLI.supportSwiftError()) {
4063     // Swifterror values can come from either a function parameter with
4064     // swifterror attribute or an alloca with swifterror attribute.
4065     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4066       if (Arg->hasSwiftErrorAttr())
4067         return visitLoadFromSwiftError(I);
4068     }
4069 
4070     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4071       if (Alloca->isSwiftError())
4072         return visitLoadFromSwiftError(I);
4073     }
4074   }
4075 
4076   SDValue Ptr = getValue(SV);
4077 
4078   Type *Ty = I.getType();
4079   unsigned Alignment = I.getAlignment();
4080 
4081   AAMDNodes AAInfo;
4082   I.getAAMetadata(AAInfo);
4083   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4084 
4085   SmallVector<EVT, 4> ValueVTs, MemVTs;
4086   SmallVector<uint64_t, 4> Offsets;
4087   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4088   unsigned NumValues = ValueVTs.size();
4089   if (NumValues == 0)
4090     return;
4091 
4092   bool isVolatile = I.isVolatile();
4093 
4094   SDValue Root;
4095   bool ConstantMemory = false;
4096   if (isVolatile)
4097     // Serialize volatile loads with other side effects.
4098     Root = getRoot();
4099   else if (NumValues > MaxParallelChains)
4100     Root = getMemoryRoot();
4101   else if (AA &&
4102            AA->pointsToConstantMemory(MemoryLocation(
4103                SV,
4104                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4105                AAInfo))) {
4106     // Do not serialize (non-volatile) loads of constant memory with anything.
4107     Root = DAG.getEntryNode();
4108     ConstantMemory = true;
4109   } else {
4110     // Do not serialize non-volatile loads against each other.
4111     Root = DAG.getRoot();
4112   }
4113 
4114   SDLoc dl = getCurSDLoc();
4115 
4116   if (isVolatile)
4117     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4118 
4119   // An aggregate load cannot wrap around the address space, so offsets to its
4120   // parts don't wrap either.
4121   SDNodeFlags Flags;
4122   Flags.setNoUnsignedWrap(true);
4123 
4124   SmallVector<SDValue, 4> Values(NumValues);
4125   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4126   EVT PtrVT = Ptr.getValueType();
4127 
4128   MachineMemOperand::Flags MMOFlags
4129     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4130 
4131   unsigned ChainI = 0;
4132   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4133     // Serializing loads here may result in excessive register pressure, and
4134     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4135     // could recover a bit by hoisting nodes upward in the chain by recognizing
4136     // they are side-effect free or do not alias. The optimizer should really
4137     // avoid this case by converting large object/array copies to llvm.memcpy
4138     // (MaxParallelChains should always remain as failsafe).
4139     if (ChainI == MaxParallelChains) {
4140       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4141       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4142                                   makeArrayRef(Chains.data(), ChainI));
4143       Root = Chain;
4144       ChainI = 0;
4145     }
4146     SDValue A = DAG.getNode(ISD::ADD, dl,
4147                             PtrVT, Ptr,
4148                             DAG.getConstant(Offsets[i], dl, PtrVT),
4149                             Flags);
4150 
4151     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4152                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4153                             MMOFlags, AAInfo, Ranges);
4154     Chains[ChainI] = L.getValue(1);
4155 
4156     if (MemVTs[i] != ValueVTs[i])
4157       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4158 
4159     Values[i] = L;
4160   }
4161 
4162   if (!ConstantMemory) {
4163     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4164                                 makeArrayRef(Chains.data(), ChainI));
4165     if (isVolatile)
4166       DAG.setRoot(Chain);
4167     else
4168       PendingLoads.push_back(Chain);
4169   }
4170 
4171   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4172                            DAG.getVTList(ValueVTs), Values));
4173 }
4174 
4175 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4176   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4177          "call visitStoreToSwiftError when backend supports swifterror");
4178 
4179   SmallVector<EVT, 4> ValueVTs;
4180   SmallVector<uint64_t, 4> Offsets;
4181   const Value *SrcV = I.getOperand(0);
4182   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4183                   SrcV->getType(), ValueVTs, &Offsets);
4184   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4185          "expect a single EVT for swifterror");
4186 
4187   SDValue Src = getValue(SrcV);
4188   // Create a virtual register, then update the virtual register.
4189   Register VReg =
4190       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4191   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4192   // Chain can be getRoot or getControlRoot.
4193   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4194                                       SDValue(Src.getNode(), Src.getResNo()));
4195   DAG.setRoot(CopyNode);
4196 }
4197 
4198 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4199   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4200          "call visitLoadFromSwiftError when backend supports swifterror");
4201 
4202   assert(!I.isVolatile() &&
4203          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4204          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4205          "Support volatile, non temporal, invariant for load_from_swift_error");
4206 
4207   const Value *SV = I.getOperand(0);
4208   Type *Ty = I.getType();
4209   AAMDNodes AAInfo;
4210   I.getAAMetadata(AAInfo);
4211   assert(
4212       (!AA ||
4213        !AA->pointsToConstantMemory(MemoryLocation(
4214            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4215            AAInfo))) &&
4216       "load_from_swift_error should not be constant memory");
4217 
4218   SmallVector<EVT, 4> ValueVTs;
4219   SmallVector<uint64_t, 4> Offsets;
4220   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4221                   ValueVTs, &Offsets);
4222   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4223          "expect a single EVT for swifterror");
4224 
4225   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4226   SDValue L = DAG.getCopyFromReg(
4227       getRoot(), getCurSDLoc(),
4228       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4229 
4230   setValue(&I, L);
4231 }
4232 
4233 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4234   if (I.isAtomic())
4235     return visitAtomicStore(I);
4236 
4237   const Value *SrcV = I.getOperand(0);
4238   const Value *PtrV = I.getOperand(1);
4239 
4240   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4241   if (TLI.supportSwiftError()) {
4242     // Swifterror values can come from either a function parameter with
4243     // swifterror attribute or an alloca with swifterror attribute.
4244     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4245       if (Arg->hasSwiftErrorAttr())
4246         return visitStoreToSwiftError(I);
4247     }
4248 
4249     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4250       if (Alloca->isSwiftError())
4251         return visitStoreToSwiftError(I);
4252     }
4253   }
4254 
4255   SmallVector<EVT, 4> ValueVTs, MemVTs;
4256   SmallVector<uint64_t, 4> Offsets;
4257   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4258                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4259   unsigned NumValues = ValueVTs.size();
4260   if (NumValues == 0)
4261     return;
4262 
4263   // Get the lowered operands. Note that we do this after
4264   // checking if NumResults is zero, because with zero results
4265   // the operands won't have values in the map.
4266   SDValue Src = getValue(SrcV);
4267   SDValue Ptr = getValue(PtrV);
4268 
4269   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4270   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4271   SDLoc dl = getCurSDLoc();
4272   unsigned Alignment = I.getAlignment();
4273   AAMDNodes AAInfo;
4274   I.getAAMetadata(AAInfo);
4275 
4276   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4277 
4278   // An aggregate load cannot wrap around the address space, so offsets to its
4279   // parts don't wrap either.
4280   SDNodeFlags Flags;
4281   Flags.setNoUnsignedWrap(true);
4282 
4283   unsigned ChainI = 0;
4284   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4285     // See visitLoad comments.
4286     if (ChainI == MaxParallelChains) {
4287       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4288                                   makeArrayRef(Chains.data(), ChainI));
4289       Root = Chain;
4290       ChainI = 0;
4291     }
4292     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4293     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4294     if (MemVTs[i] != ValueVTs[i])
4295       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4296     SDValue St =
4297         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4298                      Alignment, MMOFlags, AAInfo);
4299     Chains[ChainI] = St;
4300   }
4301 
4302   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4303                                   makeArrayRef(Chains.data(), ChainI));
4304   DAG.setRoot(StoreNode);
4305 }
4306 
4307 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4308                                            bool IsCompressing) {
4309   SDLoc sdl = getCurSDLoc();
4310 
4311   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4312                            unsigned& Alignment) {
4313     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4314     Src0 = I.getArgOperand(0);
4315     Ptr = I.getArgOperand(1);
4316     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4317     Mask = I.getArgOperand(3);
4318   };
4319   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4320                            unsigned& Alignment) {
4321     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4322     Src0 = I.getArgOperand(0);
4323     Ptr = I.getArgOperand(1);
4324     Mask = I.getArgOperand(2);
4325     Alignment = 0;
4326   };
4327 
4328   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4329   unsigned Alignment;
4330   if (IsCompressing)
4331     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4332   else
4333     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4334 
4335   SDValue Ptr = getValue(PtrOperand);
4336   SDValue Src0 = getValue(Src0Operand);
4337   SDValue Mask = getValue(MaskOperand);
4338   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4339 
4340   EVT VT = Src0.getValueType();
4341   if (!Alignment)
4342     Alignment = DAG.getEVTAlignment(VT);
4343 
4344   AAMDNodes AAInfo;
4345   I.getAAMetadata(AAInfo);
4346 
4347   MachineMemOperand *MMO =
4348     DAG.getMachineFunction().
4349     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4350                           MachineMemOperand::MOStore,
4351                           // TODO: Make MachineMemOperands aware of scalable
4352                           // vectors.
4353                           VT.getStoreSize().getKnownMinSize(),
4354                           Alignment, AAInfo);
4355   SDValue StoreNode =
4356       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4357                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4358   DAG.setRoot(StoreNode);
4359   setValue(&I, StoreNode);
4360 }
4361 
4362 // Get a uniform base for the Gather/Scatter intrinsic.
4363 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4364 // We try to represent it as a base pointer + vector of indices.
4365 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4366 // The first operand of the GEP may be a single pointer or a vector of pointers
4367 // Example:
4368 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4369 //  or
4370 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4371 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4372 //
4373 // When the first GEP operand is a single pointer - it is the uniform base we
4374 // are looking for. If first operand of the GEP is a splat vector - we
4375 // extract the splat value and use it as a uniform base.
4376 // In all other cases the function returns 'false'.
4377 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4378                            ISD::MemIndexType &IndexType, SDValue &Scale,
4379                            SelectionDAGBuilder *SDB) {
4380   SelectionDAG& DAG = SDB->DAG;
4381   LLVMContext &Context = *DAG.getContext();
4382 
4383   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4384   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4385   if (!GEP)
4386     return false;
4387 
4388   const Value *BasePtr = GEP->getPointerOperand();
4389   if (BasePtr->getType()->isVectorTy()) {
4390     BasePtr = getSplatValue(BasePtr);
4391     if (!BasePtr)
4392       return false;
4393   }
4394 
4395   unsigned FinalIndex = GEP->getNumOperands() - 1;
4396   Value *IndexVal = GEP->getOperand(FinalIndex);
4397   gep_type_iterator GTI = gep_type_begin(*GEP);
4398 
4399   // Ensure all the other indices are 0.
4400   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4401     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4402     if (!C)
4403       return false;
4404     if (isa<VectorType>(C->getType()))
4405       C = C->getSplatValue();
4406     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4407     if (!CI || !CI->isZero())
4408       return false;
4409   }
4410 
4411   // The operands of the GEP may be defined in another basic block.
4412   // In this case we'll not find nodes for the operands.
4413   if (!SDB->findValue(BasePtr))
4414     return false;
4415   Constant *C = dyn_cast<Constant>(IndexVal);
4416   if (!C && !SDB->findValue(IndexVal))
4417     return false;
4418 
4419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4420   const DataLayout &DL = DAG.getDataLayout();
4421   StructType *STy = GTI.getStructTypeOrNull();
4422 
4423   if (STy) {
4424     const StructLayout *SL = DL.getStructLayout(STy);
4425     unsigned Field = cast<Constant>(IndexVal)->getUniqueInteger().getZExtValue();
4426     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4427     Index = DAG.getConstant(SL->getElementOffset(Field),
4428                             SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4429   } else {
4430     Scale = DAG.getTargetConstant(
4431                 DL.getTypeAllocSize(GEP->getResultElementType()),
4432                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4433     Index = SDB->getValue(IndexVal);
4434   }
4435   Base = SDB->getValue(BasePtr);
4436   IndexType = ISD::SIGNED_SCALED;
4437 
4438   if (STy || !Index.getValueType().isVector()) {
4439     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4440     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4441     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4442   }
4443   return true;
4444 }
4445 
4446 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4447   SDLoc sdl = getCurSDLoc();
4448 
4449   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4450   const Value *Ptr = I.getArgOperand(1);
4451   SDValue Src0 = getValue(I.getArgOperand(0));
4452   SDValue Mask = getValue(I.getArgOperand(3));
4453   EVT VT = Src0.getValueType();
4454   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4455   if (!Alignment)
4456     Alignment = DAG.getEVTAlignment(VT);
4457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4458 
4459   AAMDNodes AAInfo;
4460   I.getAAMetadata(AAInfo);
4461 
4462   SDValue Base;
4463   SDValue Index;
4464   ISD::MemIndexType IndexType;
4465   SDValue Scale;
4466   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4467 
4468   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4469   MachineMemOperand *MMO = DAG.getMachineFunction().
4470     getMachineMemOperand(MachinePointerInfo(AS),
4471                          MachineMemOperand::MOStore,
4472                          // TODO: Make MachineMemOperands aware of scalable
4473                          // vectors.
4474                          MemoryLocation::UnknownSize,
4475                          Alignment, AAInfo);
4476   if (!UniformBase) {
4477     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4478     Index = getValue(Ptr);
4479     IndexType = ISD::SIGNED_SCALED;
4480     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4481   }
4482   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4483   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4484                                          Ops, MMO, IndexType);
4485   DAG.setRoot(Scatter);
4486   setValue(&I, Scatter);
4487 }
4488 
4489 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4490   SDLoc sdl = getCurSDLoc();
4491 
4492   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4493                            unsigned& Alignment) {
4494     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4495     Ptr = I.getArgOperand(0);
4496     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4497     Mask = I.getArgOperand(2);
4498     Src0 = I.getArgOperand(3);
4499   };
4500   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4501                            unsigned& Alignment) {
4502     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4503     Ptr = I.getArgOperand(0);
4504     Alignment = 0;
4505     Mask = I.getArgOperand(1);
4506     Src0 = I.getArgOperand(2);
4507   };
4508 
4509   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4510   unsigned Alignment;
4511   if (IsExpanding)
4512     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4513   else
4514     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4515 
4516   SDValue Ptr = getValue(PtrOperand);
4517   SDValue Src0 = getValue(Src0Operand);
4518   SDValue Mask = getValue(MaskOperand);
4519   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4520 
4521   EVT VT = Src0.getValueType();
4522   if (!Alignment)
4523     Alignment = DAG.getEVTAlignment(VT);
4524 
4525   AAMDNodes AAInfo;
4526   I.getAAMetadata(AAInfo);
4527   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4528 
4529   // Do not serialize masked loads of constant memory with anything.
4530   MemoryLocation ML;
4531   if (VT.isScalableVector())
4532     ML = MemoryLocation(PtrOperand);
4533   else
4534     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4535                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4536                            AAInfo);
4537   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4538 
4539   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4540 
4541   MachineMemOperand *MMO =
4542     DAG.getMachineFunction().
4543     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4544                           MachineMemOperand::MOLoad,
4545                           // TODO: Make MachineMemOperands aware of scalable
4546                           // vectors.
4547                           VT.getStoreSize().getKnownMinSize(),
4548                           Alignment, AAInfo, Ranges);
4549 
4550   SDValue Load =
4551       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4552                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4553   if (AddToChain)
4554     PendingLoads.push_back(Load.getValue(1));
4555   setValue(&I, Load);
4556 }
4557 
4558 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4559   SDLoc sdl = getCurSDLoc();
4560 
4561   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4562   const Value *Ptr = I.getArgOperand(0);
4563   SDValue Src0 = getValue(I.getArgOperand(3));
4564   SDValue Mask = getValue(I.getArgOperand(2));
4565 
4566   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4567   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4568   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4569   if (!Alignment)
4570     Alignment = DAG.getEVTAlignment(VT);
4571 
4572   AAMDNodes AAInfo;
4573   I.getAAMetadata(AAInfo);
4574   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4575 
4576   SDValue Root = DAG.getRoot();
4577   SDValue Base;
4578   SDValue Index;
4579   ISD::MemIndexType IndexType;
4580   SDValue Scale;
4581   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this);
4582   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4583   MachineMemOperand *MMO =
4584     DAG.getMachineFunction().
4585     getMachineMemOperand(MachinePointerInfo(AS),
4586                          MachineMemOperand::MOLoad,
4587                          // TODO: Make MachineMemOperands aware of scalable
4588                          // vectors.
4589                          MemoryLocation::UnknownSize,
4590                          Alignment, AAInfo, Ranges);
4591 
4592   if (!UniformBase) {
4593     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4594     Index = getValue(Ptr);
4595     IndexType = ISD::SIGNED_SCALED;
4596     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4597   }
4598   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4599   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4600                                        Ops, MMO, IndexType);
4601 
4602   PendingLoads.push_back(Gather.getValue(1));
4603   setValue(&I, Gather);
4604 }
4605 
4606 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4607   SDLoc dl = getCurSDLoc();
4608   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4609   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4610   SyncScope::ID SSID = I.getSyncScopeID();
4611 
4612   SDValue InChain = getRoot();
4613 
4614   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4615   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4616 
4617   auto Alignment = DAG.getEVTAlignment(MemVT);
4618   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4619   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4620 
4621   MachineFunction &MF = DAG.getMachineFunction();
4622   MachineMemOperand *MMO =
4623     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4624                             Flags, MemVT.getStoreSize(), Alignment,
4625                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4626                             FailureOrdering);
4627 
4628   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4629                                    dl, MemVT, VTs, InChain,
4630                                    getValue(I.getPointerOperand()),
4631                                    getValue(I.getCompareOperand()),
4632                                    getValue(I.getNewValOperand()), MMO);
4633 
4634   SDValue OutChain = L.getValue(2);
4635 
4636   setValue(&I, L);
4637   DAG.setRoot(OutChain);
4638 }
4639 
4640 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4641   SDLoc dl = getCurSDLoc();
4642   ISD::NodeType NT;
4643   switch (I.getOperation()) {
4644   default: llvm_unreachable("Unknown atomicrmw operation");
4645   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4646   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4647   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4648   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4649   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4650   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4651   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4652   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4653   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4654   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4655   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4656   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4657   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4658   }
4659   AtomicOrdering Ordering = I.getOrdering();
4660   SyncScope::ID SSID = I.getSyncScopeID();
4661 
4662   SDValue InChain = getRoot();
4663 
4664   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4665   auto Alignment = DAG.getEVTAlignment(MemVT);
4666   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4667   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4668 
4669   MachineFunction &MF = DAG.getMachineFunction();
4670   MachineMemOperand *MMO =
4671     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4672                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4673                             nullptr, SSID, Ordering);
4674 
4675   SDValue L =
4676     DAG.getAtomic(NT, dl, MemVT, InChain,
4677                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4678                   MMO);
4679 
4680   SDValue OutChain = L.getValue(1);
4681 
4682   setValue(&I, L);
4683   DAG.setRoot(OutChain);
4684 }
4685 
4686 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4687   SDLoc dl = getCurSDLoc();
4688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689   SDValue Ops[3];
4690   Ops[0] = getRoot();
4691   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4692                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4693   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4694                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4695   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4696 }
4697 
4698 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4699   SDLoc dl = getCurSDLoc();
4700   AtomicOrdering Order = I.getOrdering();
4701   SyncScope::ID SSID = I.getSyncScopeID();
4702 
4703   SDValue InChain = getRoot();
4704 
4705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4706   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4707   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4708 
4709   if (!TLI.supportsUnalignedAtomics() &&
4710       I.getAlignment() < MemVT.getSizeInBits() / 8)
4711     report_fatal_error("Cannot generate unaligned atomic load");
4712 
4713   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4714 
4715   MachineMemOperand *MMO =
4716       DAG.getMachineFunction().
4717       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4718                            Flags, MemVT.getStoreSize(),
4719                            I.getAlignment() ? I.getAlignment() :
4720                                               DAG.getEVTAlignment(MemVT),
4721                            AAMDNodes(), nullptr, SSID, Order);
4722 
4723   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4724 
4725   SDValue Ptr = getValue(I.getPointerOperand());
4726 
4727   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4728     // TODO: Once this is better exercised by tests, it should be merged with
4729     // the normal path for loads to prevent future divergence.
4730     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4731     if (MemVT != VT)
4732       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4733 
4734     setValue(&I, L);
4735     SDValue OutChain = L.getValue(1);
4736     if (!I.isUnordered())
4737       DAG.setRoot(OutChain);
4738     else
4739       PendingLoads.push_back(OutChain);
4740     return;
4741   }
4742 
4743   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4744                             Ptr, MMO);
4745 
4746   SDValue OutChain = L.getValue(1);
4747   if (MemVT != VT)
4748     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4749 
4750   setValue(&I, L);
4751   DAG.setRoot(OutChain);
4752 }
4753 
4754 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4755   SDLoc dl = getCurSDLoc();
4756 
4757   AtomicOrdering Ordering = I.getOrdering();
4758   SyncScope::ID SSID = I.getSyncScopeID();
4759 
4760   SDValue InChain = getRoot();
4761 
4762   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4763   EVT MemVT =
4764       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4765 
4766   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4767     report_fatal_error("Cannot generate unaligned atomic store");
4768 
4769   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4770 
4771   MachineFunction &MF = DAG.getMachineFunction();
4772   MachineMemOperand *MMO =
4773     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4774                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4775                             nullptr, SSID, Ordering);
4776 
4777   SDValue Val = getValue(I.getValueOperand());
4778   if (Val.getValueType() != MemVT)
4779     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4780   SDValue Ptr = getValue(I.getPointerOperand());
4781 
4782   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4783     // TODO: Once this is better exercised by tests, it should be merged with
4784     // the normal path for stores to prevent future divergence.
4785     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4786     DAG.setRoot(S);
4787     return;
4788   }
4789   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4790                                    Ptr, Val, MMO);
4791 
4792 
4793   DAG.setRoot(OutChain);
4794 }
4795 
4796 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4797 /// node.
4798 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4799                                                unsigned Intrinsic) {
4800   // Ignore the callsite's attributes. A specific call site may be marked with
4801   // readnone, but the lowering code will expect the chain based on the
4802   // definition.
4803   const Function *F = I.getCalledFunction();
4804   bool HasChain = !F->doesNotAccessMemory();
4805   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4806 
4807   // Build the operand list.
4808   SmallVector<SDValue, 8> Ops;
4809   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4810     if (OnlyLoad) {
4811       // We don't need to serialize loads against other loads.
4812       Ops.push_back(DAG.getRoot());
4813     } else {
4814       Ops.push_back(getRoot());
4815     }
4816   }
4817 
4818   // Info is set by getTgtMemInstrinsic
4819   TargetLowering::IntrinsicInfo Info;
4820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4821   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4822                                                DAG.getMachineFunction(),
4823                                                Intrinsic);
4824 
4825   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4826   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4827       Info.opc == ISD::INTRINSIC_W_CHAIN)
4828     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4829                                         TLI.getPointerTy(DAG.getDataLayout())));
4830 
4831   // Add all operands of the call to the operand list.
4832   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4833     const Value *Arg = I.getArgOperand(i);
4834     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4835       Ops.push_back(getValue(Arg));
4836       continue;
4837     }
4838 
4839     // Use TargetConstant instead of a regular constant for immarg.
4840     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4841     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4842       assert(CI->getBitWidth() <= 64 &&
4843              "large intrinsic immediates not handled");
4844       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4845     } else {
4846       Ops.push_back(
4847           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4848     }
4849   }
4850 
4851   SmallVector<EVT, 4> ValueVTs;
4852   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4853 
4854   if (HasChain)
4855     ValueVTs.push_back(MVT::Other);
4856 
4857   SDVTList VTs = DAG.getVTList(ValueVTs);
4858 
4859   // Create the node.
4860   SDValue Result;
4861   if (IsTgtIntrinsic) {
4862     // This is target intrinsic that touches memory
4863     AAMDNodes AAInfo;
4864     I.getAAMetadata(AAInfo);
4865     Result = DAG.getMemIntrinsicNode(
4866         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4867         MachinePointerInfo(Info.ptrVal, Info.offset),
4868         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4869   } else if (!HasChain) {
4870     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4871   } else if (!I.getType()->isVoidTy()) {
4872     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4873   } else {
4874     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4875   }
4876 
4877   if (HasChain) {
4878     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4879     if (OnlyLoad)
4880       PendingLoads.push_back(Chain);
4881     else
4882       DAG.setRoot(Chain);
4883   }
4884 
4885   if (!I.getType()->isVoidTy()) {
4886     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4887       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4888       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4889     } else
4890       Result = lowerRangeToAssertZExt(DAG, I, Result);
4891 
4892     setValue(&I, Result);
4893   }
4894 }
4895 
4896 /// GetSignificand - Get the significand and build it into a floating-point
4897 /// number with exponent of 1:
4898 ///
4899 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4900 ///
4901 /// where Op is the hexadecimal representation of floating point value.
4902 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4903   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4904                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4905   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4906                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4907   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4908 }
4909 
4910 /// GetExponent - Get the exponent:
4911 ///
4912 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4913 ///
4914 /// where Op is the hexadecimal representation of floating point value.
4915 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4916                            const TargetLowering &TLI, const SDLoc &dl) {
4917   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4918                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4919   SDValue t1 = DAG.getNode(
4920       ISD::SRL, dl, MVT::i32, t0,
4921       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4922   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4923                            DAG.getConstant(127, dl, MVT::i32));
4924   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4925 }
4926 
4927 /// getF32Constant - Get 32-bit floating point constant.
4928 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4929                               const SDLoc &dl) {
4930   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4931                            MVT::f32);
4932 }
4933 
4934 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4935                                        SelectionDAG &DAG) {
4936   // TODO: What fast-math-flags should be set on the floating-point nodes?
4937 
4938   //   IntegerPartOfX = ((int32_t)(t0);
4939   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4940 
4941   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4942   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4943   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4944 
4945   //   IntegerPartOfX <<= 23;
4946   IntegerPartOfX = DAG.getNode(
4947       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4948       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4949                                   DAG.getDataLayout())));
4950 
4951   SDValue TwoToFractionalPartOfX;
4952   if (LimitFloatPrecision <= 6) {
4953     // For floating-point precision of 6:
4954     //
4955     //   TwoToFractionalPartOfX =
4956     //     0.997535578f +
4957     //       (0.735607626f + 0.252464424f * x) * x;
4958     //
4959     // error 0.0144103317, which is 6 bits
4960     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4961                              getF32Constant(DAG, 0x3e814304, dl));
4962     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4963                              getF32Constant(DAG, 0x3f3c50c8, dl));
4964     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4965     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4966                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4967   } else if (LimitFloatPrecision <= 12) {
4968     // For floating-point precision of 12:
4969     //
4970     //   TwoToFractionalPartOfX =
4971     //     0.999892986f +
4972     //       (0.696457318f +
4973     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4974     //
4975     // error 0.000107046256, which is 13 to 14 bits
4976     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4977                              getF32Constant(DAG, 0x3da235e3, dl));
4978     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4979                              getF32Constant(DAG, 0x3e65b8f3, dl));
4980     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4981     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4982                              getF32Constant(DAG, 0x3f324b07, dl));
4983     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4984     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4985                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4986   } else { // LimitFloatPrecision <= 18
4987     // For floating-point precision of 18:
4988     //
4989     //   TwoToFractionalPartOfX =
4990     //     0.999999982f +
4991     //       (0.693148872f +
4992     //         (0.240227044f +
4993     //           (0.554906021e-1f +
4994     //             (0.961591928e-2f +
4995     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4996     // error 2.47208000*10^(-7), which is better than 18 bits
4997     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4998                              getF32Constant(DAG, 0x3924b03e, dl));
4999     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5000                              getF32Constant(DAG, 0x3ab24b87, dl));
5001     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5002     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5003                              getF32Constant(DAG, 0x3c1d8c17, dl));
5004     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5005     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5006                              getF32Constant(DAG, 0x3d634a1d, dl));
5007     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5008     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5009                              getF32Constant(DAG, 0x3e75fe14, dl));
5010     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5011     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5012                               getF32Constant(DAG, 0x3f317234, dl));
5013     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5014     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5015                                          getF32Constant(DAG, 0x3f800000, dl));
5016   }
5017 
5018   // Add the exponent into the result in integer domain.
5019   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5020   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5021                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5022 }
5023 
5024 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5025 /// limited-precision mode.
5026 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5027                          const TargetLowering &TLI) {
5028   if (Op.getValueType() == MVT::f32 &&
5029       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5030 
5031     // Put the exponent in the right bit position for later addition to the
5032     // final result:
5033     //
5034     // t0 = Op * log2(e)
5035 
5036     // TODO: What fast-math-flags should be set here?
5037     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5038                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5039     return getLimitedPrecisionExp2(t0, dl, DAG);
5040   }
5041 
5042   // No special expansion.
5043   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5044 }
5045 
5046 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5047 /// limited-precision mode.
5048 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5049                          const TargetLowering &TLI) {
5050   // TODO: What fast-math-flags should be set on the floating-point nodes?
5051 
5052   if (Op.getValueType() == MVT::f32 &&
5053       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5054     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5055 
5056     // Scale the exponent by log(2).
5057     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5058     SDValue LogOfExponent =
5059         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5060                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5061 
5062     // Get the significand and build it into a floating-point number with
5063     // exponent of 1.
5064     SDValue X = GetSignificand(DAG, Op1, dl);
5065 
5066     SDValue LogOfMantissa;
5067     if (LimitFloatPrecision <= 6) {
5068       // For floating-point precision of 6:
5069       //
5070       //   LogofMantissa =
5071       //     -1.1609546f +
5072       //       (1.4034025f - 0.23903021f * x) * x;
5073       //
5074       // error 0.0034276066, which is better than 8 bits
5075       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5076                                getF32Constant(DAG, 0xbe74c456, dl));
5077       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5078                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5079       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5080       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5081                                   getF32Constant(DAG, 0x3f949a29, dl));
5082     } else if (LimitFloatPrecision <= 12) {
5083       // For floating-point precision of 12:
5084       //
5085       //   LogOfMantissa =
5086       //     -1.7417939f +
5087       //       (2.8212026f +
5088       //         (-1.4699568f +
5089       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5090       //
5091       // error 0.000061011436, which is 14 bits
5092       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5093                                getF32Constant(DAG, 0xbd67b6d6, dl));
5094       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5095                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5096       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5097       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5098                                getF32Constant(DAG, 0x3fbc278b, dl));
5099       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5100       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5101                                getF32Constant(DAG, 0x40348e95, dl));
5102       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5103       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5104                                   getF32Constant(DAG, 0x3fdef31a, dl));
5105     } else { // LimitFloatPrecision <= 18
5106       // For floating-point precision of 18:
5107       //
5108       //   LogOfMantissa =
5109       //     -2.1072184f +
5110       //       (4.2372794f +
5111       //         (-3.7029485f +
5112       //           (2.2781945f +
5113       //             (-0.87823314f +
5114       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5115       //
5116       // error 0.0000023660568, which is better than 18 bits
5117       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5118                                getF32Constant(DAG, 0xbc91e5ac, dl));
5119       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5120                                getF32Constant(DAG, 0x3e4350aa, dl));
5121       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5122       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5123                                getF32Constant(DAG, 0x3f60d3e3, dl));
5124       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5125       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5126                                getF32Constant(DAG, 0x4011cdf0, dl));
5127       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5128       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5129                                getF32Constant(DAG, 0x406cfd1c, dl));
5130       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5131       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5132                                getF32Constant(DAG, 0x408797cb, dl));
5133       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5134       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5135                                   getF32Constant(DAG, 0x4006dcab, dl));
5136     }
5137 
5138     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5139   }
5140 
5141   // No special expansion.
5142   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5143 }
5144 
5145 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5146 /// limited-precision mode.
5147 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5148                           const TargetLowering &TLI) {
5149   // TODO: What fast-math-flags should be set on the floating-point nodes?
5150 
5151   if (Op.getValueType() == MVT::f32 &&
5152       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5153     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5154 
5155     // Get the exponent.
5156     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5157 
5158     // Get the significand and build it into a floating-point number with
5159     // exponent of 1.
5160     SDValue X = GetSignificand(DAG, Op1, dl);
5161 
5162     // Different possible minimax approximations of significand in
5163     // floating-point for various degrees of accuracy over [1,2].
5164     SDValue Log2ofMantissa;
5165     if (LimitFloatPrecision <= 6) {
5166       // For floating-point precision of 6:
5167       //
5168       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5169       //
5170       // error 0.0049451742, which is more than 7 bits
5171       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5172                                getF32Constant(DAG, 0xbeb08fe0, dl));
5173       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5174                                getF32Constant(DAG, 0x40019463, dl));
5175       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5176       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5177                                    getF32Constant(DAG, 0x3fd6633d, dl));
5178     } else if (LimitFloatPrecision <= 12) {
5179       // For floating-point precision of 12:
5180       //
5181       //   Log2ofMantissa =
5182       //     -2.51285454f +
5183       //       (4.07009056f +
5184       //         (-2.12067489f +
5185       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5186       //
5187       // error 0.0000876136000, which is better than 13 bits
5188       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5189                                getF32Constant(DAG, 0xbda7262e, dl));
5190       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5191                                getF32Constant(DAG, 0x3f25280b, dl));
5192       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5193       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5194                                getF32Constant(DAG, 0x4007b923, dl));
5195       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5196       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5197                                getF32Constant(DAG, 0x40823e2f, dl));
5198       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5199       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5200                                    getF32Constant(DAG, 0x4020d29c, dl));
5201     } else { // LimitFloatPrecision <= 18
5202       // For floating-point precision of 18:
5203       //
5204       //   Log2ofMantissa =
5205       //     -3.0400495f +
5206       //       (6.1129976f +
5207       //         (-5.3420409f +
5208       //           (3.2865683f +
5209       //             (-1.2669343f +
5210       //               (0.27515199f -
5211       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5212       //
5213       // error 0.0000018516, which is better than 18 bits
5214       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5215                                getF32Constant(DAG, 0xbcd2769e, dl));
5216       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5217                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5218       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5219       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5220                                getF32Constant(DAG, 0x3fa22ae7, dl));
5221       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5222       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5223                                getF32Constant(DAG, 0x40525723, dl));
5224       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5225       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5226                                getF32Constant(DAG, 0x40aaf200, dl));
5227       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5228       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5229                                getF32Constant(DAG, 0x40c39dad, dl));
5230       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5231       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5232                                    getF32Constant(DAG, 0x4042902c, dl));
5233     }
5234 
5235     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5236   }
5237 
5238   // No special expansion.
5239   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5240 }
5241 
5242 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5243 /// limited-precision mode.
5244 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5245                            const TargetLowering &TLI) {
5246   // TODO: What fast-math-flags should be set on the floating-point nodes?
5247 
5248   if (Op.getValueType() == MVT::f32 &&
5249       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5250     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5251 
5252     // Scale the exponent by log10(2) [0.30102999f].
5253     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5254     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5255                                         getF32Constant(DAG, 0x3e9a209a, dl));
5256 
5257     // Get the significand and build it into a floating-point number with
5258     // exponent of 1.
5259     SDValue X = GetSignificand(DAG, Op1, dl);
5260 
5261     SDValue Log10ofMantissa;
5262     if (LimitFloatPrecision <= 6) {
5263       // For floating-point precision of 6:
5264       //
5265       //   Log10ofMantissa =
5266       //     -0.50419619f +
5267       //       (0.60948995f - 0.10380950f * x) * x;
5268       //
5269       // error 0.0014886165, which is 6 bits
5270       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5271                                getF32Constant(DAG, 0xbdd49a13, dl));
5272       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5273                                getF32Constant(DAG, 0x3f1c0789, dl));
5274       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5275       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5276                                     getF32Constant(DAG, 0x3f011300, dl));
5277     } else if (LimitFloatPrecision <= 12) {
5278       // For floating-point precision of 12:
5279       //
5280       //   Log10ofMantissa =
5281       //     -0.64831180f +
5282       //       (0.91751397f +
5283       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5284       //
5285       // error 0.00019228036, which is better than 12 bits
5286       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5287                                getF32Constant(DAG, 0x3d431f31, dl));
5288       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5289                                getF32Constant(DAG, 0x3ea21fb2, dl));
5290       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5291       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5292                                getF32Constant(DAG, 0x3f6ae232, dl));
5293       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5294       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5295                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5296     } else { // LimitFloatPrecision <= 18
5297       // For floating-point precision of 18:
5298       //
5299       //   Log10ofMantissa =
5300       //     -0.84299375f +
5301       //       (1.5327582f +
5302       //         (-1.0688956f +
5303       //           (0.49102474f +
5304       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5305       //
5306       // error 0.0000037995730, which is better than 18 bits
5307       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5308                                getF32Constant(DAG, 0x3c5d51ce, dl));
5309       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5310                                getF32Constant(DAG, 0x3e00685a, dl));
5311       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5312       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5313                                getF32Constant(DAG, 0x3efb6798, dl));
5314       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5315       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5316                                getF32Constant(DAG, 0x3f88d192, dl));
5317       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5318       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5319                                getF32Constant(DAG, 0x3fc4316c, dl));
5320       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5321       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5322                                     getF32Constant(DAG, 0x3f57ce70, dl));
5323     }
5324 
5325     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5326   }
5327 
5328   // No special expansion.
5329   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5330 }
5331 
5332 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5333 /// limited-precision mode.
5334 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5335                           const TargetLowering &TLI) {
5336   if (Op.getValueType() == MVT::f32 &&
5337       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5338     return getLimitedPrecisionExp2(Op, dl, DAG);
5339 
5340   // No special expansion.
5341   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5342 }
5343 
5344 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5345 /// limited-precision mode with x == 10.0f.
5346 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5347                          SelectionDAG &DAG, const TargetLowering &TLI) {
5348   bool IsExp10 = false;
5349   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5350       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5351     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5352       APFloat Ten(10.0f);
5353       IsExp10 = LHSC->isExactlyValue(Ten);
5354     }
5355   }
5356 
5357   // TODO: What fast-math-flags should be set on the FMUL node?
5358   if (IsExp10) {
5359     // Put the exponent in the right bit position for later addition to the
5360     // final result:
5361     //
5362     //   #define LOG2OF10 3.3219281f
5363     //   t0 = Op * LOG2OF10;
5364     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5365                              getF32Constant(DAG, 0x40549a78, dl));
5366     return getLimitedPrecisionExp2(t0, dl, DAG);
5367   }
5368 
5369   // No special expansion.
5370   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5371 }
5372 
5373 /// ExpandPowI - Expand a llvm.powi intrinsic.
5374 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5375                           SelectionDAG &DAG) {
5376   // If RHS is a constant, we can expand this out to a multiplication tree,
5377   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5378   // optimizing for size, we only want to do this if the expansion would produce
5379   // a small number of multiplies, otherwise we do the full expansion.
5380   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5381     // Get the exponent as a positive value.
5382     unsigned Val = RHSC->getSExtValue();
5383     if ((int)Val < 0) Val = -Val;
5384 
5385     // powi(x, 0) -> 1.0
5386     if (Val == 0)
5387       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5388 
5389     bool OptForSize = DAG.shouldOptForSize();
5390     if (!OptForSize ||
5391         // If optimizing for size, don't insert too many multiplies.
5392         // This inserts up to 5 multiplies.
5393         countPopulation(Val) + Log2_32(Val) < 7) {
5394       // We use the simple binary decomposition method to generate the multiply
5395       // sequence.  There are more optimal ways to do this (for example,
5396       // powi(x,15) generates one more multiply than it should), but this has
5397       // the benefit of being both really simple and much better than a libcall.
5398       SDValue Res;  // Logically starts equal to 1.0
5399       SDValue CurSquare = LHS;
5400       // TODO: Intrinsics should have fast-math-flags that propagate to these
5401       // nodes.
5402       while (Val) {
5403         if (Val & 1) {
5404           if (Res.getNode())
5405             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5406           else
5407             Res = CurSquare;  // 1.0*CurSquare.
5408         }
5409 
5410         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5411                                 CurSquare, CurSquare);
5412         Val >>= 1;
5413       }
5414 
5415       // If the original was negative, invert the result, producing 1/(x*x*x).
5416       if (RHSC->getSExtValue() < 0)
5417         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5418                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5419       return Res;
5420     }
5421   }
5422 
5423   // Otherwise, expand to a libcall.
5424   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5425 }
5426 
5427 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5428                             SDValue LHS, SDValue RHS, SDValue Scale,
5429                             SelectionDAG &DAG, const TargetLowering &TLI) {
5430   EVT VT = LHS.getValueType();
5431   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5432   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5433   LLVMContext &Ctx = *DAG.getContext();
5434 
5435   // If the type is legal but the operation isn't, this node might survive all
5436   // the way to operation legalization. If we end up there and we do not have
5437   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5438   // node.
5439 
5440   // Coax the legalizer into expanding the node during type legalization instead
5441   // by bumping the size by one bit. This will force it to Promote, enabling the
5442   // early expansion and avoiding the need to expand later.
5443 
5444   // We don't have to do this if Scale is 0; that can always be expanded, unless
5445   // it's a saturating signed operation. Those can experience true integer
5446   // division overflow, a case which we must avoid.
5447 
5448   // FIXME: We wouldn't have to do this (or any of the early
5449   // expansion/promotion) if it was possible to expand a libcall of an
5450   // illegal type during operation legalization. But it's not, so things
5451   // get a bit hacky.
5452   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5453   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5454       (TLI.isTypeLegal(VT) ||
5455        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5456     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5457         Opcode, VT, ScaleInt);
5458     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5459       EVT PromVT;
5460       if (VT.isScalarInteger())
5461         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5462       else if (VT.isVector()) {
5463         PromVT = VT.getVectorElementType();
5464         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5465         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5466       } else
5467         llvm_unreachable("Wrong VT for DIVFIX?");
5468       if (Signed) {
5469         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5470         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5471       } else {
5472         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5473         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5474       }
5475       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5476       // For saturating operations, we need to shift up the LHS to get the
5477       // proper saturation width, and then shift down again afterwards.
5478       if (Saturating)
5479         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5480                           DAG.getConstant(1, DL, ShiftTy));
5481       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5482       if (Saturating)
5483         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5484                           DAG.getConstant(1, DL, ShiftTy));
5485       return DAG.getZExtOrTrunc(Res, DL, VT);
5486     }
5487   }
5488 
5489   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5490 }
5491 
5492 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5493 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5494 static void
5495 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5496                      const SDValue &N) {
5497   switch (N.getOpcode()) {
5498   case ISD::CopyFromReg: {
5499     SDValue Op = N.getOperand(1);
5500     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5501                       Op.getValueType().getSizeInBits());
5502     return;
5503   }
5504   case ISD::BITCAST:
5505   case ISD::AssertZext:
5506   case ISD::AssertSext:
5507   case ISD::TRUNCATE:
5508     getUnderlyingArgRegs(Regs, N.getOperand(0));
5509     return;
5510   case ISD::BUILD_PAIR:
5511   case ISD::BUILD_VECTOR:
5512   case ISD::CONCAT_VECTORS:
5513     for (SDValue Op : N->op_values())
5514       getUnderlyingArgRegs(Regs, Op);
5515     return;
5516   default:
5517     return;
5518   }
5519 }
5520 
5521 /// If the DbgValueInst is a dbg_value of a function argument, create the
5522 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5523 /// instruction selection, they will be inserted to the entry BB.
5524 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5525     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5526     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5527   const Argument *Arg = dyn_cast<Argument>(V);
5528   if (!Arg)
5529     return false;
5530 
5531   if (!IsDbgDeclare) {
5532     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5533     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5534     // the entry block.
5535     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5536     if (!IsInEntryBlock)
5537       return false;
5538 
5539     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5540     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5541     // variable that also is a param.
5542     //
5543     // Although, if we are at the top of the entry block already, we can still
5544     // emit using ArgDbgValue. This might catch some situations when the
5545     // dbg.value refers to an argument that isn't used in the entry block, so
5546     // any CopyToReg node would be optimized out and the only way to express
5547     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5548     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5549     // we should only emit as ArgDbgValue if the Variable is an argument to the
5550     // current function, and the dbg.value intrinsic is found in the entry
5551     // block.
5552     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5553         !DL->getInlinedAt();
5554     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5555     if (!IsInPrologue && !VariableIsFunctionInputArg)
5556       return false;
5557 
5558     // Here we assume that a function argument on IR level only can be used to
5559     // describe one input parameter on source level. If we for example have
5560     // source code like this
5561     //
5562     //    struct A { long x, y; };
5563     //    void foo(struct A a, long b) {
5564     //      ...
5565     //      b = a.x;
5566     //      ...
5567     //    }
5568     //
5569     // and IR like this
5570     //
5571     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5572     //  entry:
5573     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5574     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5575     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5576     //    ...
5577     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5578     //    ...
5579     //
5580     // then the last dbg.value is describing a parameter "b" using a value that
5581     // is an argument. But since we already has used %a1 to describe a parameter
5582     // we should not handle that last dbg.value here (that would result in an
5583     // incorrect hoisting of the DBG_VALUE to the function entry).
5584     // Notice that we allow one dbg.value per IR level argument, to accommodate
5585     // for the situation with fragments above.
5586     if (VariableIsFunctionInputArg) {
5587       unsigned ArgNo = Arg->getArgNo();
5588       if (ArgNo >= FuncInfo.DescribedArgs.size())
5589         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5590       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5591         return false;
5592       FuncInfo.DescribedArgs.set(ArgNo);
5593     }
5594   }
5595 
5596   MachineFunction &MF = DAG.getMachineFunction();
5597   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5598 
5599   bool IsIndirect = false;
5600   Optional<MachineOperand> Op;
5601   // Some arguments' frame index is recorded during argument lowering.
5602   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5603   if (FI != std::numeric_limits<int>::max())
5604     Op = MachineOperand::CreateFI(FI);
5605 
5606   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5607   if (!Op && N.getNode()) {
5608     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5609     Register Reg;
5610     if (ArgRegsAndSizes.size() == 1)
5611       Reg = ArgRegsAndSizes.front().first;
5612 
5613     if (Reg && Reg.isVirtual()) {
5614       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5615       Register PR = RegInfo.getLiveInPhysReg(Reg);
5616       if (PR)
5617         Reg = PR;
5618     }
5619     if (Reg) {
5620       Op = MachineOperand::CreateReg(Reg, false);
5621       IsIndirect = IsDbgDeclare;
5622     }
5623   }
5624 
5625   if (!Op && N.getNode()) {
5626     // Check if frame index is available.
5627     SDValue LCandidate = peekThroughBitcasts(N);
5628     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5629       if (FrameIndexSDNode *FINode =
5630           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5631         Op = MachineOperand::CreateFI(FINode->getIndex());
5632   }
5633 
5634   if (!Op) {
5635     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5636     auto splitMultiRegDbgValue
5637       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5638       unsigned Offset = 0;
5639       for (auto RegAndSize : SplitRegs) {
5640         // If the expression is already a fragment, the current register
5641         // offset+size might extend beyond the fragment. In this case, only
5642         // the register bits that are inside the fragment are relevant.
5643         int RegFragmentSizeInBits = RegAndSize.second;
5644         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5645           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5646           // The register is entirely outside the expression fragment,
5647           // so is irrelevant for debug info.
5648           if (Offset >= ExprFragmentSizeInBits)
5649             break;
5650           // The register is partially outside the expression fragment, only
5651           // the low bits within the fragment are relevant for debug info.
5652           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5653             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5654           }
5655         }
5656 
5657         auto FragmentExpr = DIExpression::createFragmentExpression(
5658             Expr, Offset, RegFragmentSizeInBits);
5659         Offset += RegAndSize.second;
5660         // If a valid fragment expression cannot be created, the variable's
5661         // correct value cannot be determined and so it is set as Undef.
5662         if (!FragmentExpr) {
5663           SDDbgValue *SDV = DAG.getConstantDbgValue(
5664               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5665           DAG.AddDbgValue(SDV, nullptr, false);
5666           continue;
5667         }
5668         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5669         FuncInfo.ArgDbgValues.push_back(
5670           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5671                   RegAndSize.first, Variable, *FragmentExpr));
5672       }
5673     };
5674 
5675     // Check if ValueMap has reg number.
5676     DenseMap<const Value *, unsigned>::const_iterator
5677       VMI = FuncInfo.ValueMap.find(V);
5678     if (VMI != FuncInfo.ValueMap.end()) {
5679       const auto &TLI = DAG.getTargetLoweringInfo();
5680       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5681                        V->getType(), getABIRegCopyCC(V));
5682       if (RFV.occupiesMultipleRegs()) {
5683         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5684         return true;
5685       }
5686 
5687       Op = MachineOperand::CreateReg(VMI->second, false);
5688       IsIndirect = IsDbgDeclare;
5689     } else if (ArgRegsAndSizes.size() > 1) {
5690       // This was split due to the calling convention, and no virtual register
5691       // mapping exists for the value.
5692       splitMultiRegDbgValue(ArgRegsAndSizes);
5693       return true;
5694     }
5695   }
5696 
5697   if (!Op)
5698     return false;
5699 
5700   assert(Variable->isValidLocationForIntrinsic(DL) &&
5701          "Expected inlined-at fields to agree");
5702   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5703   FuncInfo.ArgDbgValues.push_back(
5704       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5705               *Op, Variable, Expr));
5706 
5707   return true;
5708 }
5709 
5710 /// Return the appropriate SDDbgValue based on N.
5711 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5712                                              DILocalVariable *Variable,
5713                                              DIExpression *Expr,
5714                                              const DebugLoc &dl,
5715                                              unsigned DbgSDNodeOrder) {
5716   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5717     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5718     // stack slot locations.
5719     //
5720     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5721     // debug values here after optimization:
5722     //
5723     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5724     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5725     //
5726     // Both describe the direct values of their associated variables.
5727     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5728                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5729   }
5730   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5731                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5732 }
5733 
5734 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5735   switch (Intrinsic) {
5736   case Intrinsic::smul_fix:
5737     return ISD::SMULFIX;
5738   case Intrinsic::umul_fix:
5739     return ISD::UMULFIX;
5740   case Intrinsic::smul_fix_sat:
5741     return ISD::SMULFIXSAT;
5742   case Intrinsic::umul_fix_sat:
5743     return ISD::UMULFIXSAT;
5744   case Intrinsic::sdiv_fix:
5745     return ISD::SDIVFIX;
5746   case Intrinsic::udiv_fix:
5747     return ISD::UDIVFIX;
5748   case Intrinsic::sdiv_fix_sat:
5749     return ISD::SDIVFIXSAT;
5750   case Intrinsic::udiv_fix_sat:
5751     return ISD::UDIVFIXSAT;
5752   default:
5753     llvm_unreachable("Unhandled fixed point intrinsic");
5754   }
5755 }
5756 
5757 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5758                                            const char *FunctionName) {
5759   assert(FunctionName && "FunctionName must not be nullptr");
5760   SDValue Callee = DAG.getExternalSymbol(
5761       FunctionName,
5762       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5763   LowerCallTo(&I, Callee, I.isTailCall());
5764 }
5765 
5766 /// Lower the call to the specified intrinsic function.
5767 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5768                                              unsigned Intrinsic) {
5769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5770   SDLoc sdl = getCurSDLoc();
5771   DebugLoc dl = getCurDebugLoc();
5772   SDValue Res;
5773 
5774   switch (Intrinsic) {
5775   default:
5776     // By default, turn this into a target intrinsic node.
5777     visitTargetIntrinsic(I, Intrinsic);
5778     return;
5779   case Intrinsic::vscale: {
5780     match(&I, m_VScale(DAG.getDataLayout()));
5781     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5782     setValue(&I,
5783              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5784     return;
5785   }
5786   case Intrinsic::vastart:  visitVAStart(I); return;
5787   case Intrinsic::vaend:    visitVAEnd(I); return;
5788   case Intrinsic::vacopy:   visitVACopy(I); return;
5789   case Intrinsic::returnaddress:
5790     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5791                              TLI.getPointerTy(DAG.getDataLayout()),
5792                              getValue(I.getArgOperand(0))));
5793     return;
5794   case Intrinsic::addressofreturnaddress:
5795     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5796                              TLI.getPointerTy(DAG.getDataLayout())));
5797     return;
5798   case Intrinsic::sponentry:
5799     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5800                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5801     return;
5802   case Intrinsic::frameaddress:
5803     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5804                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5805                              getValue(I.getArgOperand(0))));
5806     return;
5807   case Intrinsic::read_register: {
5808     Value *Reg = I.getArgOperand(0);
5809     SDValue Chain = getRoot();
5810     SDValue RegName =
5811         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5812     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5813     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5814       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5815     setValue(&I, Res);
5816     DAG.setRoot(Res.getValue(1));
5817     return;
5818   }
5819   case Intrinsic::write_register: {
5820     Value *Reg = I.getArgOperand(0);
5821     Value *RegValue = I.getArgOperand(1);
5822     SDValue Chain = getRoot();
5823     SDValue RegName =
5824         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5825     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5826                             RegName, getValue(RegValue)));
5827     return;
5828   }
5829   case Intrinsic::memcpy: {
5830     const auto &MCI = cast<MemCpyInst>(I);
5831     SDValue Op1 = getValue(I.getArgOperand(0));
5832     SDValue Op2 = getValue(I.getArgOperand(1));
5833     SDValue Op3 = getValue(I.getArgOperand(2));
5834     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5835     Align DstAlign = MCI.getDestAlign().valueOrOne();
5836     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5837     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5838     bool isVol = MCI.isVolatile();
5839     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5840     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5841     // node.
5842     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5843     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5844                                /* AlwaysInline */ false, isTC,
5845                                MachinePointerInfo(I.getArgOperand(0)),
5846                                MachinePointerInfo(I.getArgOperand(1)));
5847     updateDAGForMaybeTailCall(MC);
5848     return;
5849   }
5850   case Intrinsic::memcpy_inline: {
5851     const auto &MCI = cast<MemCpyInlineInst>(I);
5852     SDValue Dst = getValue(I.getArgOperand(0));
5853     SDValue Src = getValue(I.getArgOperand(1));
5854     SDValue Size = getValue(I.getArgOperand(2));
5855     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5856     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5857     Align DstAlign = MCI.getDestAlign().valueOrOne();
5858     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5859     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5860     bool isVol = MCI.isVolatile();
5861     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5862     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5863     // node.
5864     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5865                                /* AlwaysInline */ true, isTC,
5866                                MachinePointerInfo(I.getArgOperand(0)),
5867                                MachinePointerInfo(I.getArgOperand(1)));
5868     updateDAGForMaybeTailCall(MC);
5869     return;
5870   }
5871   case Intrinsic::memset: {
5872     const auto &MSI = cast<MemSetInst>(I);
5873     SDValue Op1 = getValue(I.getArgOperand(0));
5874     SDValue Op2 = getValue(I.getArgOperand(1));
5875     SDValue Op3 = getValue(I.getArgOperand(2));
5876     // @llvm.memset defines 0 and 1 to both mean no alignment.
5877     Align Alignment = MSI.getDestAlign().valueOrOne();
5878     bool isVol = MSI.isVolatile();
5879     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5880     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5881     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5882                                MachinePointerInfo(I.getArgOperand(0)));
5883     updateDAGForMaybeTailCall(MS);
5884     return;
5885   }
5886   case Intrinsic::memmove: {
5887     const auto &MMI = cast<MemMoveInst>(I);
5888     SDValue Op1 = getValue(I.getArgOperand(0));
5889     SDValue Op2 = getValue(I.getArgOperand(1));
5890     SDValue Op3 = getValue(I.getArgOperand(2));
5891     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5892     Align DstAlign = MMI.getDestAlign().valueOrOne();
5893     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5894     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5895     bool isVol = MMI.isVolatile();
5896     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5897     // FIXME: Support passing different dest/src alignments to the memmove DAG
5898     // node.
5899     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5900     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5901                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5902                                 MachinePointerInfo(I.getArgOperand(1)));
5903     updateDAGForMaybeTailCall(MM);
5904     return;
5905   }
5906   case Intrinsic::memcpy_element_unordered_atomic: {
5907     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5908     SDValue Dst = getValue(MI.getRawDest());
5909     SDValue Src = getValue(MI.getRawSource());
5910     SDValue Length = getValue(MI.getLength());
5911 
5912     unsigned DstAlign = MI.getDestAlignment();
5913     unsigned SrcAlign = MI.getSourceAlignment();
5914     Type *LengthTy = MI.getLength()->getType();
5915     unsigned ElemSz = MI.getElementSizeInBytes();
5916     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5917     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5918                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5919                                      MachinePointerInfo(MI.getRawDest()),
5920                                      MachinePointerInfo(MI.getRawSource()));
5921     updateDAGForMaybeTailCall(MC);
5922     return;
5923   }
5924   case Intrinsic::memmove_element_unordered_atomic: {
5925     auto &MI = cast<AtomicMemMoveInst>(I);
5926     SDValue Dst = getValue(MI.getRawDest());
5927     SDValue Src = getValue(MI.getRawSource());
5928     SDValue Length = getValue(MI.getLength());
5929 
5930     unsigned DstAlign = MI.getDestAlignment();
5931     unsigned SrcAlign = MI.getSourceAlignment();
5932     Type *LengthTy = MI.getLength()->getType();
5933     unsigned ElemSz = MI.getElementSizeInBytes();
5934     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5935     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5936                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5937                                       MachinePointerInfo(MI.getRawDest()),
5938                                       MachinePointerInfo(MI.getRawSource()));
5939     updateDAGForMaybeTailCall(MC);
5940     return;
5941   }
5942   case Intrinsic::memset_element_unordered_atomic: {
5943     auto &MI = cast<AtomicMemSetInst>(I);
5944     SDValue Dst = getValue(MI.getRawDest());
5945     SDValue Val = getValue(MI.getValue());
5946     SDValue Length = getValue(MI.getLength());
5947 
5948     unsigned DstAlign = MI.getDestAlignment();
5949     Type *LengthTy = MI.getLength()->getType();
5950     unsigned ElemSz = MI.getElementSizeInBytes();
5951     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5952     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5953                                      LengthTy, ElemSz, isTC,
5954                                      MachinePointerInfo(MI.getRawDest()));
5955     updateDAGForMaybeTailCall(MC);
5956     return;
5957   }
5958   case Intrinsic::dbg_addr:
5959   case Intrinsic::dbg_declare: {
5960     const auto &DI = cast<DbgVariableIntrinsic>(I);
5961     DILocalVariable *Variable = DI.getVariable();
5962     DIExpression *Expression = DI.getExpression();
5963     dropDanglingDebugInfo(Variable, Expression);
5964     assert(Variable && "Missing variable");
5965     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5966                       << "\n");
5967     // Check if address has undef value.
5968     const Value *Address = DI.getVariableLocation();
5969     if (!Address || isa<UndefValue>(Address) ||
5970         (Address->use_empty() && !isa<Argument>(Address))) {
5971       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5972                         << " (bad/undef/unused-arg address)\n");
5973       return;
5974     }
5975 
5976     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5977 
5978     // Check if this variable can be described by a frame index, typically
5979     // either as a static alloca or a byval parameter.
5980     int FI = std::numeric_limits<int>::max();
5981     if (const auto *AI =
5982             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5983       if (AI->isStaticAlloca()) {
5984         auto I = FuncInfo.StaticAllocaMap.find(AI);
5985         if (I != FuncInfo.StaticAllocaMap.end())
5986           FI = I->second;
5987       }
5988     } else if (const auto *Arg = dyn_cast<Argument>(
5989                    Address->stripInBoundsConstantOffsets())) {
5990       FI = FuncInfo.getArgumentFrameIndex(Arg);
5991     }
5992 
5993     // llvm.dbg.addr is control dependent and always generates indirect
5994     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5995     // the MachineFunction variable table.
5996     if (FI != std::numeric_limits<int>::max()) {
5997       if (Intrinsic == Intrinsic::dbg_addr) {
5998         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5999             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
6000         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
6001       } else {
6002         LLVM_DEBUG(dbgs() << "Skipping " << DI
6003                           << " (variable info stashed in MF side table)\n");
6004       }
6005       return;
6006     }
6007 
6008     SDValue &N = NodeMap[Address];
6009     if (!N.getNode() && isa<Argument>(Address))
6010       // Check unused arguments map.
6011       N = UnusedArgNodeMap[Address];
6012     SDDbgValue *SDV;
6013     if (N.getNode()) {
6014       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6015         Address = BCI->getOperand(0);
6016       // Parameters are handled specially.
6017       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6018       if (isParameter && FINode) {
6019         // Byval parameter. We have a frame index at this point.
6020         SDV =
6021             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6022                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6023       } else if (isa<Argument>(Address)) {
6024         // Address is an argument, so try to emit its dbg value using
6025         // virtual register info from the FuncInfo.ValueMap.
6026         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6027         return;
6028       } else {
6029         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6030                               true, dl, SDNodeOrder);
6031       }
6032       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
6033     } else {
6034       // If Address is an argument then try to emit its dbg value using
6035       // virtual register info from the FuncInfo.ValueMap.
6036       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6037                                     N)) {
6038         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6039                           << " (could not emit func-arg dbg_value)\n");
6040       }
6041     }
6042     return;
6043   }
6044   case Intrinsic::dbg_label: {
6045     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6046     DILabel *Label = DI.getLabel();
6047     assert(Label && "Missing label");
6048 
6049     SDDbgLabel *SDV;
6050     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6051     DAG.AddDbgLabel(SDV);
6052     return;
6053   }
6054   case Intrinsic::dbg_value: {
6055     const DbgValueInst &DI = cast<DbgValueInst>(I);
6056     assert(DI.getVariable() && "Missing variable");
6057 
6058     DILocalVariable *Variable = DI.getVariable();
6059     DIExpression *Expression = DI.getExpression();
6060     dropDanglingDebugInfo(Variable, Expression);
6061     const Value *V = DI.getValue();
6062     if (!V)
6063       return;
6064 
6065     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
6066         SDNodeOrder))
6067       return;
6068 
6069     // TODO: Dangling debug info will eventually either be resolved or produce
6070     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
6071     // between the original dbg.value location and its resolved DBG_VALUE, which
6072     // we should ideally fill with an extra Undef DBG_VALUE.
6073 
6074     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
6075     return;
6076   }
6077 
6078   case Intrinsic::eh_typeid_for: {
6079     // Find the type id for the given typeinfo.
6080     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6081     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6082     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6083     setValue(&I, Res);
6084     return;
6085   }
6086 
6087   case Intrinsic::eh_return_i32:
6088   case Intrinsic::eh_return_i64:
6089     DAG.getMachineFunction().setCallsEHReturn(true);
6090     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6091                             MVT::Other,
6092                             getControlRoot(),
6093                             getValue(I.getArgOperand(0)),
6094                             getValue(I.getArgOperand(1))));
6095     return;
6096   case Intrinsic::eh_unwind_init:
6097     DAG.getMachineFunction().setCallsUnwindInit(true);
6098     return;
6099   case Intrinsic::eh_dwarf_cfa:
6100     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6101                              TLI.getPointerTy(DAG.getDataLayout()),
6102                              getValue(I.getArgOperand(0))));
6103     return;
6104   case Intrinsic::eh_sjlj_callsite: {
6105     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6106     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6107     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6108     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6109 
6110     MMI.setCurrentCallSite(CI->getZExtValue());
6111     return;
6112   }
6113   case Intrinsic::eh_sjlj_functioncontext: {
6114     // Get and store the index of the function context.
6115     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6116     AllocaInst *FnCtx =
6117       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6118     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6119     MFI.setFunctionContextIndex(FI);
6120     return;
6121   }
6122   case Intrinsic::eh_sjlj_setjmp: {
6123     SDValue Ops[2];
6124     Ops[0] = getRoot();
6125     Ops[1] = getValue(I.getArgOperand(0));
6126     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6127                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6128     setValue(&I, Op.getValue(0));
6129     DAG.setRoot(Op.getValue(1));
6130     return;
6131   }
6132   case Intrinsic::eh_sjlj_longjmp:
6133     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6134                             getRoot(), getValue(I.getArgOperand(0))));
6135     return;
6136   case Intrinsic::eh_sjlj_setup_dispatch:
6137     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6138                             getRoot()));
6139     return;
6140   case Intrinsic::masked_gather:
6141     visitMaskedGather(I);
6142     return;
6143   case Intrinsic::masked_load:
6144     visitMaskedLoad(I);
6145     return;
6146   case Intrinsic::masked_scatter:
6147     visitMaskedScatter(I);
6148     return;
6149   case Intrinsic::masked_store:
6150     visitMaskedStore(I);
6151     return;
6152   case Intrinsic::masked_expandload:
6153     visitMaskedLoad(I, true /* IsExpanding */);
6154     return;
6155   case Intrinsic::masked_compressstore:
6156     visitMaskedStore(I, true /* IsCompressing */);
6157     return;
6158   case Intrinsic::powi:
6159     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6160                             getValue(I.getArgOperand(1)), DAG));
6161     return;
6162   case Intrinsic::log:
6163     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6164     return;
6165   case Intrinsic::log2:
6166     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6167     return;
6168   case Intrinsic::log10:
6169     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6170     return;
6171   case Intrinsic::exp:
6172     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6173     return;
6174   case Intrinsic::exp2:
6175     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6176     return;
6177   case Intrinsic::pow:
6178     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6179                            getValue(I.getArgOperand(1)), DAG, TLI));
6180     return;
6181   case Intrinsic::sqrt:
6182   case Intrinsic::fabs:
6183   case Intrinsic::sin:
6184   case Intrinsic::cos:
6185   case Intrinsic::floor:
6186   case Intrinsic::ceil:
6187   case Intrinsic::trunc:
6188   case Intrinsic::rint:
6189   case Intrinsic::nearbyint:
6190   case Intrinsic::round:
6191   case Intrinsic::canonicalize: {
6192     unsigned Opcode;
6193     switch (Intrinsic) {
6194     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6195     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6196     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6197     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6198     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6199     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6200     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6201     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6202     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6203     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6204     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6205     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6206     }
6207 
6208     setValue(&I, DAG.getNode(Opcode, sdl,
6209                              getValue(I.getArgOperand(0)).getValueType(),
6210                              getValue(I.getArgOperand(0))));
6211     return;
6212   }
6213   case Intrinsic::lround:
6214   case Intrinsic::llround:
6215   case Intrinsic::lrint:
6216   case Intrinsic::llrint: {
6217     unsigned Opcode;
6218     switch (Intrinsic) {
6219     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6220     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6221     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6222     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6223     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6224     }
6225 
6226     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6227     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6228                              getValue(I.getArgOperand(0))));
6229     return;
6230   }
6231   case Intrinsic::minnum:
6232     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6233                              getValue(I.getArgOperand(0)).getValueType(),
6234                              getValue(I.getArgOperand(0)),
6235                              getValue(I.getArgOperand(1))));
6236     return;
6237   case Intrinsic::maxnum:
6238     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6239                              getValue(I.getArgOperand(0)).getValueType(),
6240                              getValue(I.getArgOperand(0)),
6241                              getValue(I.getArgOperand(1))));
6242     return;
6243   case Intrinsic::minimum:
6244     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6245                              getValue(I.getArgOperand(0)).getValueType(),
6246                              getValue(I.getArgOperand(0)),
6247                              getValue(I.getArgOperand(1))));
6248     return;
6249   case Intrinsic::maximum:
6250     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6251                              getValue(I.getArgOperand(0)).getValueType(),
6252                              getValue(I.getArgOperand(0)),
6253                              getValue(I.getArgOperand(1))));
6254     return;
6255   case Intrinsic::copysign:
6256     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6257                              getValue(I.getArgOperand(0)).getValueType(),
6258                              getValue(I.getArgOperand(0)),
6259                              getValue(I.getArgOperand(1))));
6260     return;
6261   case Intrinsic::fma:
6262     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6263                              getValue(I.getArgOperand(0)).getValueType(),
6264                              getValue(I.getArgOperand(0)),
6265                              getValue(I.getArgOperand(1)),
6266                              getValue(I.getArgOperand(2))));
6267     return;
6268 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6269   case Intrinsic::INTRINSIC:
6270 #include "llvm/IR/ConstrainedOps.def"
6271     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6272     return;
6273   case Intrinsic::fmuladd: {
6274     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6275     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6276         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6277       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6278                                getValue(I.getArgOperand(0)).getValueType(),
6279                                getValue(I.getArgOperand(0)),
6280                                getValue(I.getArgOperand(1)),
6281                                getValue(I.getArgOperand(2))));
6282     } else {
6283       // TODO: Intrinsic calls should have fast-math-flags.
6284       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6285                                 getValue(I.getArgOperand(0)).getValueType(),
6286                                 getValue(I.getArgOperand(0)),
6287                                 getValue(I.getArgOperand(1)));
6288       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6289                                 getValue(I.getArgOperand(0)).getValueType(),
6290                                 Mul,
6291                                 getValue(I.getArgOperand(2)));
6292       setValue(&I, Add);
6293     }
6294     return;
6295   }
6296   case Intrinsic::convert_to_fp16:
6297     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6298                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6299                                          getValue(I.getArgOperand(0)),
6300                                          DAG.getTargetConstant(0, sdl,
6301                                                                MVT::i32))));
6302     return;
6303   case Intrinsic::convert_from_fp16:
6304     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6305                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6306                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6307                                          getValue(I.getArgOperand(0)))));
6308     return;
6309   case Intrinsic::pcmarker: {
6310     SDValue Tmp = getValue(I.getArgOperand(0));
6311     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6312     return;
6313   }
6314   case Intrinsic::readcyclecounter: {
6315     SDValue Op = getRoot();
6316     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6317                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6318     setValue(&I, Res);
6319     DAG.setRoot(Res.getValue(1));
6320     return;
6321   }
6322   case Intrinsic::bitreverse:
6323     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6324                              getValue(I.getArgOperand(0)).getValueType(),
6325                              getValue(I.getArgOperand(0))));
6326     return;
6327   case Intrinsic::bswap:
6328     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6329                              getValue(I.getArgOperand(0)).getValueType(),
6330                              getValue(I.getArgOperand(0))));
6331     return;
6332   case Intrinsic::cttz: {
6333     SDValue Arg = getValue(I.getArgOperand(0));
6334     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6335     EVT Ty = Arg.getValueType();
6336     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6337                              sdl, Ty, Arg));
6338     return;
6339   }
6340   case Intrinsic::ctlz: {
6341     SDValue Arg = getValue(I.getArgOperand(0));
6342     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6343     EVT Ty = Arg.getValueType();
6344     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6345                              sdl, Ty, Arg));
6346     return;
6347   }
6348   case Intrinsic::ctpop: {
6349     SDValue Arg = getValue(I.getArgOperand(0));
6350     EVT Ty = Arg.getValueType();
6351     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6352     return;
6353   }
6354   case Intrinsic::fshl:
6355   case Intrinsic::fshr: {
6356     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6357     SDValue X = getValue(I.getArgOperand(0));
6358     SDValue Y = getValue(I.getArgOperand(1));
6359     SDValue Z = getValue(I.getArgOperand(2));
6360     EVT VT = X.getValueType();
6361     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6362     SDValue Zero = DAG.getConstant(0, sdl, VT);
6363     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6364 
6365     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6366     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6367       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6368       return;
6369     }
6370 
6371     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6372     // avoid the select that is necessary in the general case to filter out
6373     // the 0-shift possibility that leads to UB.
6374     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6375       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6376       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6377         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6378         return;
6379       }
6380 
6381       // Some targets only rotate one way. Try the opposite direction.
6382       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6383       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6384         // Negate the shift amount because it is safe to ignore the high bits.
6385         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6386         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6387         return;
6388       }
6389 
6390       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6391       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6392       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6393       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6394       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6395       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6396       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6397       return;
6398     }
6399 
6400     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6401     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6402     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6403     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6404     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6405     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6406 
6407     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6408     // and that is undefined. We must compare and select to avoid UB.
6409     EVT CCVT = MVT::i1;
6410     if (VT.isVector())
6411       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6412 
6413     // For fshl, 0-shift returns the 1st arg (X).
6414     // For fshr, 0-shift returns the 2nd arg (Y).
6415     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6416     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6417     return;
6418   }
6419   case Intrinsic::sadd_sat: {
6420     SDValue Op1 = getValue(I.getArgOperand(0));
6421     SDValue Op2 = getValue(I.getArgOperand(1));
6422     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6423     return;
6424   }
6425   case Intrinsic::uadd_sat: {
6426     SDValue Op1 = getValue(I.getArgOperand(0));
6427     SDValue Op2 = getValue(I.getArgOperand(1));
6428     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6429     return;
6430   }
6431   case Intrinsic::ssub_sat: {
6432     SDValue Op1 = getValue(I.getArgOperand(0));
6433     SDValue Op2 = getValue(I.getArgOperand(1));
6434     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6435     return;
6436   }
6437   case Intrinsic::usub_sat: {
6438     SDValue Op1 = getValue(I.getArgOperand(0));
6439     SDValue Op2 = getValue(I.getArgOperand(1));
6440     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6441     return;
6442   }
6443   case Intrinsic::smul_fix:
6444   case Intrinsic::umul_fix:
6445   case Intrinsic::smul_fix_sat:
6446   case Intrinsic::umul_fix_sat: {
6447     SDValue Op1 = getValue(I.getArgOperand(0));
6448     SDValue Op2 = getValue(I.getArgOperand(1));
6449     SDValue Op3 = getValue(I.getArgOperand(2));
6450     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6451                              Op1.getValueType(), Op1, Op2, Op3));
6452     return;
6453   }
6454   case Intrinsic::sdiv_fix:
6455   case Intrinsic::udiv_fix:
6456   case Intrinsic::sdiv_fix_sat:
6457   case Intrinsic::udiv_fix_sat: {
6458     SDValue Op1 = getValue(I.getArgOperand(0));
6459     SDValue Op2 = getValue(I.getArgOperand(1));
6460     SDValue Op3 = getValue(I.getArgOperand(2));
6461     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6462                               Op1, Op2, Op3, DAG, TLI));
6463     return;
6464   }
6465   case Intrinsic::stacksave: {
6466     SDValue Op = getRoot();
6467     Res = DAG.getNode(
6468         ISD::STACKSAVE, sdl,
6469         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6470     setValue(&I, Res);
6471     DAG.setRoot(Res.getValue(1));
6472     return;
6473   }
6474   case Intrinsic::stackrestore:
6475     Res = getValue(I.getArgOperand(0));
6476     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6477     return;
6478   case Intrinsic::get_dynamic_area_offset: {
6479     SDValue Op = getRoot();
6480     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6481     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6482     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6483     // target.
6484     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6485       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6486                          " intrinsic!");
6487     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6488                       Op);
6489     DAG.setRoot(Op);
6490     setValue(&I, Res);
6491     return;
6492   }
6493   case Intrinsic::stackguard: {
6494     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6495     MachineFunction &MF = DAG.getMachineFunction();
6496     const Module &M = *MF.getFunction().getParent();
6497     SDValue Chain = getRoot();
6498     if (TLI.useLoadStackGuardNode()) {
6499       Res = getLoadStackGuard(DAG, sdl, Chain);
6500     } else {
6501       const Value *Global = TLI.getSDagStackGuard(M);
6502       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6503       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6504                         MachinePointerInfo(Global, 0), Align,
6505                         MachineMemOperand::MOVolatile);
6506     }
6507     if (TLI.useStackGuardXorFP())
6508       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6509     DAG.setRoot(Chain);
6510     setValue(&I, Res);
6511     return;
6512   }
6513   case Intrinsic::stackprotector: {
6514     // Emit code into the DAG to store the stack guard onto the stack.
6515     MachineFunction &MF = DAG.getMachineFunction();
6516     MachineFrameInfo &MFI = MF.getFrameInfo();
6517     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6518     SDValue Src, Chain = getRoot();
6519 
6520     if (TLI.useLoadStackGuardNode())
6521       Src = getLoadStackGuard(DAG, sdl, Chain);
6522     else
6523       Src = getValue(I.getArgOperand(0));   // The guard's value.
6524 
6525     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6526 
6527     int FI = FuncInfo.StaticAllocaMap[Slot];
6528     MFI.setStackProtectorIndex(FI);
6529 
6530     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6531 
6532     // Store the stack protector onto the stack.
6533     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6534                                                  DAG.getMachineFunction(), FI),
6535                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6536     setValue(&I, Res);
6537     DAG.setRoot(Res);
6538     return;
6539   }
6540   case Intrinsic::objectsize:
6541     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6542 
6543   case Intrinsic::is_constant:
6544     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6545 
6546   case Intrinsic::annotation:
6547   case Intrinsic::ptr_annotation:
6548   case Intrinsic::launder_invariant_group:
6549   case Intrinsic::strip_invariant_group:
6550     // Drop the intrinsic, but forward the value
6551     setValue(&I, getValue(I.getOperand(0)));
6552     return;
6553   case Intrinsic::assume:
6554   case Intrinsic::var_annotation:
6555   case Intrinsic::sideeffect:
6556     // Discard annotate attributes, assumptions, and artificial side-effects.
6557     return;
6558 
6559   case Intrinsic::codeview_annotation: {
6560     // Emit a label associated with this metadata.
6561     MachineFunction &MF = DAG.getMachineFunction();
6562     MCSymbol *Label =
6563         MF.getMMI().getContext().createTempSymbol("annotation", true);
6564     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6565     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6566     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6567     DAG.setRoot(Res);
6568     return;
6569   }
6570 
6571   case Intrinsic::init_trampoline: {
6572     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6573 
6574     SDValue Ops[6];
6575     Ops[0] = getRoot();
6576     Ops[1] = getValue(I.getArgOperand(0));
6577     Ops[2] = getValue(I.getArgOperand(1));
6578     Ops[3] = getValue(I.getArgOperand(2));
6579     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6580     Ops[5] = DAG.getSrcValue(F);
6581 
6582     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6583 
6584     DAG.setRoot(Res);
6585     return;
6586   }
6587   case Intrinsic::adjust_trampoline:
6588     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6589                              TLI.getPointerTy(DAG.getDataLayout()),
6590                              getValue(I.getArgOperand(0))));
6591     return;
6592   case Intrinsic::gcroot: {
6593     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6594            "only valid in functions with gc specified, enforced by Verifier");
6595     assert(GFI && "implied by previous");
6596     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6597     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6598 
6599     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6600     GFI->addStackRoot(FI->getIndex(), TypeMap);
6601     return;
6602   }
6603   case Intrinsic::gcread:
6604   case Intrinsic::gcwrite:
6605     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6606   case Intrinsic::flt_rounds:
6607     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6608     setValue(&I, Res);
6609     DAG.setRoot(Res.getValue(1));
6610     return;
6611 
6612   case Intrinsic::expect:
6613     // Just replace __builtin_expect(exp, c) with EXP.
6614     setValue(&I, getValue(I.getArgOperand(0)));
6615     return;
6616 
6617   case Intrinsic::debugtrap:
6618   case Intrinsic::trap: {
6619     StringRef TrapFuncName =
6620         I.getAttributes()
6621             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6622             .getValueAsString();
6623     if (TrapFuncName.empty()) {
6624       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6625         ISD::TRAP : ISD::DEBUGTRAP;
6626       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6627       return;
6628     }
6629     TargetLowering::ArgListTy Args;
6630 
6631     TargetLowering::CallLoweringInfo CLI(DAG);
6632     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6633         CallingConv::C, I.getType(),
6634         DAG.getExternalSymbol(TrapFuncName.data(),
6635                               TLI.getPointerTy(DAG.getDataLayout())),
6636         std::move(Args));
6637 
6638     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6639     DAG.setRoot(Result.second);
6640     return;
6641   }
6642 
6643   case Intrinsic::uadd_with_overflow:
6644   case Intrinsic::sadd_with_overflow:
6645   case Intrinsic::usub_with_overflow:
6646   case Intrinsic::ssub_with_overflow:
6647   case Intrinsic::umul_with_overflow:
6648   case Intrinsic::smul_with_overflow: {
6649     ISD::NodeType Op;
6650     switch (Intrinsic) {
6651     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6652     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6653     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6654     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6655     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6656     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6657     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6658     }
6659     SDValue Op1 = getValue(I.getArgOperand(0));
6660     SDValue Op2 = getValue(I.getArgOperand(1));
6661 
6662     EVT ResultVT = Op1.getValueType();
6663     EVT OverflowVT = MVT::i1;
6664     if (ResultVT.isVector())
6665       OverflowVT = EVT::getVectorVT(
6666           *Context, OverflowVT, ResultVT.getVectorNumElements());
6667 
6668     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6669     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6670     return;
6671   }
6672   case Intrinsic::prefetch: {
6673     SDValue Ops[5];
6674     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6675     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6676     Ops[0] = DAG.getRoot();
6677     Ops[1] = getValue(I.getArgOperand(0));
6678     Ops[2] = getValue(I.getArgOperand(1));
6679     Ops[3] = getValue(I.getArgOperand(2));
6680     Ops[4] = getValue(I.getArgOperand(3));
6681     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6682                                              DAG.getVTList(MVT::Other), Ops,
6683                                              EVT::getIntegerVT(*Context, 8),
6684                                              MachinePointerInfo(I.getArgOperand(0)),
6685                                              0, /* align */
6686                                              Flags);
6687 
6688     // Chain the prefetch in parallell with any pending loads, to stay out of
6689     // the way of later optimizations.
6690     PendingLoads.push_back(Result);
6691     Result = getRoot();
6692     DAG.setRoot(Result);
6693     return;
6694   }
6695   case Intrinsic::lifetime_start:
6696   case Intrinsic::lifetime_end: {
6697     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6698     // Stack coloring is not enabled in O0, discard region information.
6699     if (TM.getOptLevel() == CodeGenOpt::None)
6700       return;
6701 
6702     const int64_t ObjectSize =
6703         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6704     Value *const ObjectPtr = I.getArgOperand(1);
6705     SmallVector<const Value *, 4> Allocas;
6706     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6707 
6708     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6709            E = Allocas.end(); Object != E; ++Object) {
6710       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6711 
6712       // Could not find an Alloca.
6713       if (!LifetimeObject)
6714         continue;
6715 
6716       // First check that the Alloca is static, otherwise it won't have a
6717       // valid frame index.
6718       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6719       if (SI == FuncInfo.StaticAllocaMap.end())
6720         return;
6721 
6722       const int FrameIndex = SI->second;
6723       int64_t Offset;
6724       if (GetPointerBaseWithConstantOffset(
6725               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6726         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6727       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6728                                 Offset);
6729       DAG.setRoot(Res);
6730     }
6731     return;
6732   }
6733   case Intrinsic::invariant_start:
6734     // Discard region information.
6735     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6736     return;
6737   case Intrinsic::invariant_end:
6738     // Discard region information.
6739     return;
6740   case Intrinsic::clear_cache:
6741     /// FunctionName may be null.
6742     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6743       lowerCallToExternalSymbol(I, FunctionName);
6744     return;
6745   case Intrinsic::donothing:
6746     // ignore
6747     return;
6748   case Intrinsic::experimental_stackmap:
6749     visitStackmap(I);
6750     return;
6751   case Intrinsic::experimental_patchpoint_void:
6752   case Intrinsic::experimental_patchpoint_i64:
6753     visitPatchpoint(&I);
6754     return;
6755   case Intrinsic::experimental_gc_statepoint:
6756     LowerStatepoint(ImmutableStatepoint(&I));
6757     return;
6758   case Intrinsic::experimental_gc_result:
6759     visitGCResult(cast<GCResultInst>(I));
6760     return;
6761   case Intrinsic::experimental_gc_relocate:
6762     visitGCRelocate(cast<GCRelocateInst>(I));
6763     return;
6764   case Intrinsic::instrprof_increment:
6765     llvm_unreachable("instrprof failed to lower an increment");
6766   case Intrinsic::instrprof_value_profile:
6767     llvm_unreachable("instrprof failed to lower a value profiling call");
6768   case Intrinsic::localescape: {
6769     MachineFunction &MF = DAG.getMachineFunction();
6770     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6771 
6772     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6773     // is the same on all targets.
6774     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6775       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6776       if (isa<ConstantPointerNull>(Arg))
6777         continue; // Skip null pointers. They represent a hole in index space.
6778       AllocaInst *Slot = cast<AllocaInst>(Arg);
6779       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6780              "can only escape static allocas");
6781       int FI = FuncInfo.StaticAllocaMap[Slot];
6782       MCSymbol *FrameAllocSym =
6783           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6784               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6785       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6786               TII->get(TargetOpcode::LOCAL_ESCAPE))
6787           .addSym(FrameAllocSym)
6788           .addFrameIndex(FI);
6789     }
6790 
6791     return;
6792   }
6793 
6794   case Intrinsic::localrecover: {
6795     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6796     MachineFunction &MF = DAG.getMachineFunction();
6797     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6798 
6799     // Get the symbol that defines the frame offset.
6800     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6801     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6802     unsigned IdxVal =
6803         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6804     MCSymbol *FrameAllocSym =
6805         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6806             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6807 
6808     // Create a MCSymbol for the label to avoid any target lowering
6809     // that would make this PC relative.
6810     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6811     SDValue OffsetVal =
6812         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6813 
6814     // Add the offset to the FP.
6815     Value *FP = I.getArgOperand(1);
6816     SDValue FPVal = getValue(FP);
6817     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6818     setValue(&I, Add);
6819 
6820     return;
6821   }
6822 
6823   case Intrinsic::eh_exceptionpointer:
6824   case Intrinsic::eh_exceptioncode: {
6825     // Get the exception pointer vreg, copy from it, and resize it to fit.
6826     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6827     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6828     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6829     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6830     SDValue N =
6831         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6832     if (Intrinsic == Intrinsic::eh_exceptioncode)
6833       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6834     setValue(&I, N);
6835     return;
6836   }
6837   case Intrinsic::xray_customevent: {
6838     // Here we want to make sure that the intrinsic behaves as if it has a
6839     // specific calling convention, and only for x86_64.
6840     // FIXME: Support other platforms later.
6841     const auto &Triple = DAG.getTarget().getTargetTriple();
6842     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6843       return;
6844 
6845     SDLoc DL = getCurSDLoc();
6846     SmallVector<SDValue, 8> Ops;
6847 
6848     // We want to say that we always want the arguments in registers.
6849     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6850     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6851     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6852     SDValue Chain = getRoot();
6853     Ops.push_back(LogEntryVal);
6854     Ops.push_back(StrSizeVal);
6855     Ops.push_back(Chain);
6856 
6857     // We need to enforce the calling convention for the callsite, so that
6858     // argument ordering is enforced correctly, and that register allocation can
6859     // see that some registers may be assumed clobbered and have to preserve
6860     // them across calls to the intrinsic.
6861     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6862                                            DL, NodeTys, Ops);
6863     SDValue patchableNode = SDValue(MN, 0);
6864     DAG.setRoot(patchableNode);
6865     setValue(&I, patchableNode);
6866     return;
6867   }
6868   case Intrinsic::xray_typedevent: {
6869     // Here we want to make sure that the intrinsic behaves as if it has a
6870     // specific calling convention, and only for x86_64.
6871     // FIXME: Support other platforms later.
6872     const auto &Triple = DAG.getTarget().getTargetTriple();
6873     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6874       return;
6875 
6876     SDLoc DL = getCurSDLoc();
6877     SmallVector<SDValue, 8> Ops;
6878 
6879     // We want to say that we always want the arguments in registers.
6880     // It's unclear to me how manipulating the selection DAG here forces callers
6881     // to provide arguments in registers instead of on the stack.
6882     SDValue LogTypeId = getValue(I.getArgOperand(0));
6883     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6884     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6885     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6886     SDValue Chain = getRoot();
6887     Ops.push_back(LogTypeId);
6888     Ops.push_back(LogEntryVal);
6889     Ops.push_back(StrSizeVal);
6890     Ops.push_back(Chain);
6891 
6892     // We need to enforce the calling convention for the callsite, so that
6893     // argument ordering is enforced correctly, and that register allocation can
6894     // see that some registers may be assumed clobbered and have to preserve
6895     // them across calls to the intrinsic.
6896     MachineSDNode *MN = DAG.getMachineNode(
6897         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6898     SDValue patchableNode = SDValue(MN, 0);
6899     DAG.setRoot(patchableNode);
6900     setValue(&I, patchableNode);
6901     return;
6902   }
6903   case Intrinsic::experimental_deoptimize:
6904     LowerDeoptimizeCall(&I);
6905     return;
6906 
6907   case Intrinsic::experimental_vector_reduce_v2_fadd:
6908   case Intrinsic::experimental_vector_reduce_v2_fmul:
6909   case Intrinsic::experimental_vector_reduce_add:
6910   case Intrinsic::experimental_vector_reduce_mul:
6911   case Intrinsic::experimental_vector_reduce_and:
6912   case Intrinsic::experimental_vector_reduce_or:
6913   case Intrinsic::experimental_vector_reduce_xor:
6914   case Intrinsic::experimental_vector_reduce_smax:
6915   case Intrinsic::experimental_vector_reduce_smin:
6916   case Intrinsic::experimental_vector_reduce_umax:
6917   case Intrinsic::experimental_vector_reduce_umin:
6918   case Intrinsic::experimental_vector_reduce_fmax:
6919   case Intrinsic::experimental_vector_reduce_fmin:
6920     visitVectorReduce(I, Intrinsic);
6921     return;
6922 
6923   case Intrinsic::icall_branch_funnel: {
6924     SmallVector<SDValue, 16> Ops;
6925     Ops.push_back(getValue(I.getArgOperand(0)));
6926 
6927     int64_t Offset;
6928     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6929         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6930     if (!Base)
6931       report_fatal_error(
6932           "llvm.icall.branch.funnel operand must be a GlobalValue");
6933     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6934 
6935     struct BranchFunnelTarget {
6936       int64_t Offset;
6937       SDValue Target;
6938     };
6939     SmallVector<BranchFunnelTarget, 8> Targets;
6940 
6941     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6942       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6943           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6944       if (ElemBase != Base)
6945         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6946                            "to the same GlobalValue");
6947 
6948       SDValue Val = getValue(I.getArgOperand(Op + 1));
6949       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6950       if (!GA)
6951         report_fatal_error(
6952             "llvm.icall.branch.funnel operand must be a GlobalValue");
6953       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6954                                      GA->getGlobal(), getCurSDLoc(),
6955                                      Val.getValueType(), GA->getOffset())});
6956     }
6957     llvm::sort(Targets,
6958                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6959                  return T1.Offset < T2.Offset;
6960                });
6961 
6962     for (auto &T : Targets) {
6963       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6964       Ops.push_back(T.Target);
6965     }
6966 
6967     Ops.push_back(DAG.getRoot()); // Chain
6968     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6969                                  getCurSDLoc(), MVT::Other, Ops),
6970               0);
6971     DAG.setRoot(N);
6972     setValue(&I, N);
6973     HasTailCall = true;
6974     return;
6975   }
6976 
6977   case Intrinsic::wasm_landingpad_index:
6978     // Information this intrinsic contained has been transferred to
6979     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6980     // delete it now.
6981     return;
6982 
6983   case Intrinsic::aarch64_settag:
6984   case Intrinsic::aarch64_settag_zero: {
6985     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6986     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6987     SDValue Val = TSI.EmitTargetCodeForSetTag(
6988         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6989         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6990         ZeroMemory);
6991     DAG.setRoot(Val);
6992     setValue(&I, Val);
6993     return;
6994   }
6995   case Intrinsic::ptrmask: {
6996     SDValue Ptr = getValue(I.getOperand(0));
6997     SDValue Const = getValue(I.getOperand(1));
6998 
6999     EVT DestVT =
7000         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7001 
7002     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
7003                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
7004     return;
7005   }
7006   }
7007 }
7008 
7009 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7010     const ConstrainedFPIntrinsic &FPI) {
7011   SDLoc sdl = getCurSDLoc();
7012 
7013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7014   SmallVector<EVT, 4> ValueVTs;
7015   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7016   ValueVTs.push_back(MVT::Other); // Out chain
7017 
7018   // We do not need to serialize constrained FP intrinsics against
7019   // each other or against (nonvolatile) loads, so they can be
7020   // chained like loads.
7021   SDValue Chain = DAG.getRoot();
7022   SmallVector<SDValue, 4> Opers;
7023   Opers.push_back(Chain);
7024   if (FPI.isUnaryOp()) {
7025     Opers.push_back(getValue(FPI.getArgOperand(0)));
7026   } else if (FPI.isTernaryOp()) {
7027     Opers.push_back(getValue(FPI.getArgOperand(0)));
7028     Opers.push_back(getValue(FPI.getArgOperand(1)));
7029     Opers.push_back(getValue(FPI.getArgOperand(2)));
7030   } else {
7031     Opers.push_back(getValue(FPI.getArgOperand(0)));
7032     Opers.push_back(getValue(FPI.getArgOperand(1)));
7033   }
7034 
7035   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7036     assert(Result.getNode()->getNumValues() == 2);
7037 
7038     // Push node to the appropriate list so that future instructions can be
7039     // chained up correctly.
7040     SDValue OutChain = Result.getValue(1);
7041     switch (EB) {
7042     case fp::ExceptionBehavior::ebIgnore:
7043       // The only reason why ebIgnore nodes still need to be chained is that
7044       // they might depend on the current rounding mode, and therefore must
7045       // not be moved across instruction that may change that mode.
7046       LLVM_FALLTHROUGH;
7047     case fp::ExceptionBehavior::ebMayTrap:
7048       // These must not be moved across calls or instructions that may change
7049       // floating-point exception masks.
7050       PendingConstrainedFP.push_back(OutChain);
7051       break;
7052     case fp::ExceptionBehavior::ebStrict:
7053       // These must not be moved across calls or instructions that may change
7054       // floating-point exception masks or read floating-point exception flags.
7055       // In addition, they cannot be optimized out even if unused.
7056       PendingConstrainedFPStrict.push_back(OutChain);
7057       break;
7058     }
7059   };
7060 
7061   SDVTList VTs = DAG.getVTList(ValueVTs);
7062   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7063 
7064   SDNodeFlags Flags;
7065   if (EB == fp::ExceptionBehavior::ebIgnore)
7066     Flags.setNoFPExcept(true);
7067 
7068   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7069     Flags.copyFMF(*FPOp);
7070 
7071   unsigned Opcode;
7072   switch (FPI.getIntrinsicID()) {
7073   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7074 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7075   case Intrinsic::INTRINSIC:                                                   \
7076     Opcode = ISD::STRICT_##DAGN;                                               \
7077     break;
7078 #include "llvm/IR/ConstrainedOps.def"
7079   case Intrinsic::experimental_constrained_fmuladd: {
7080     Opcode = ISD::STRICT_FMA;
7081     // Break fmuladd into fmul and fadd.
7082     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7083         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7084                                         ValueVTs[0])) {
7085       Opers.pop_back();
7086       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7087       pushOutChain(Mul, EB);
7088       Opcode = ISD::STRICT_FADD;
7089       Opers.clear();
7090       Opers.push_back(Mul.getValue(1));
7091       Opers.push_back(Mul.getValue(0));
7092       Opers.push_back(getValue(FPI.getArgOperand(2)));
7093     }
7094     break;
7095   }
7096   }
7097 
7098   // A few strict DAG nodes carry additional operands that are not
7099   // set up by the default code above.
7100   switch (Opcode) {
7101   default: break;
7102   case ISD::STRICT_FP_ROUND:
7103     Opers.push_back(
7104         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7105     break;
7106   case ISD::STRICT_FSETCC:
7107   case ISD::STRICT_FSETCCS: {
7108     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7109     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7110     break;
7111   }
7112   }
7113 
7114   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7115   pushOutChain(Result, EB);
7116 
7117   SDValue FPResult = Result.getValue(0);
7118   setValue(&FPI, FPResult);
7119 }
7120 
7121 std::pair<SDValue, SDValue>
7122 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7123                                     const BasicBlock *EHPadBB) {
7124   MachineFunction &MF = DAG.getMachineFunction();
7125   MachineModuleInfo &MMI = MF.getMMI();
7126   MCSymbol *BeginLabel = nullptr;
7127 
7128   if (EHPadBB) {
7129     // Insert a label before the invoke call to mark the try range.  This can be
7130     // used to detect deletion of the invoke via the MachineModuleInfo.
7131     BeginLabel = MMI.getContext().createTempSymbol();
7132 
7133     // For SjLj, keep track of which landing pads go with which invokes
7134     // so as to maintain the ordering of pads in the LSDA.
7135     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7136     if (CallSiteIndex) {
7137       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7138       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7139 
7140       // Now that the call site is handled, stop tracking it.
7141       MMI.setCurrentCallSite(0);
7142     }
7143 
7144     // Both PendingLoads and PendingExports must be flushed here;
7145     // this call might not return.
7146     (void)getRoot();
7147     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7148 
7149     CLI.setChain(getRoot());
7150   }
7151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7152   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7153 
7154   assert((CLI.IsTailCall || Result.second.getNode()) &&
7155          "Non-null chain expected with non-tail call!");
7156   assert((Result.second.getNode() || !Result.first.getNode()) &&
7157          "Null value expected with tail call!");
7158 
7159   if (!Result.second.getNode()) {
7160     // As a special case, a null chain means that a tail call has been emitted
7161     // and the DAG root is already updated.
7162     HasTailCall = true;
7163 
7164     // Since there's no actual continuation from this block, nothing can be
7165     // relying on us setting vregs for them.
7166     PendingExports.clear();
7167   } else {
7168     DAG.setRoot(Result.second);
7169   }
7170 
7171   if (EHPadBB) {
7172     // Insert a label at the end of the invoke call to mark the try range.  This
7173     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7174     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7175     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7176 
7177     // Inform MachineModuleInfo of range.
7178     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7179     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7180     // actually use outlined funclets and their LSDA info style.
7181     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7182       assert(CLI.CS);
7183       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7184       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7185                                 BeginLabel, EndLabel);
7186     } else if (!isScopedEHPersonality(Pers)) {
7187       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7188     }
7189   }
7190 
7191   return Result;
7192 }
7193 
7194 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7195                                       bool isTailCall,
7196                                       const BasicBlock *EHPadBB) {
7197   auto &DL = DAG.getDataLayout();
7198   FunctionType *FTy = CS.getFunctionType();
7199   Type *RetTy = CS.getType();
7200 
7201   TargetLowering::ArgListTy Args;
7202   Args.reserve(CS.arg_size());
7203 
7204   const Value *SwiftErrorVal = nullptr;
7205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7206 
7207   if (isTailCall) {
7208     // Avoid emitting tail calls in functions with the disable-tail-calls
7209     // attribute.
7210     auto *Caller = CS.getInstruction()->getParent()->getParent();
7211     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7212         "true")
7213       isTailCall = false;
7214 
7215     // We can't tail call inside a function with a swifterror argument. Lowering
7216     // does not support this yet. It would have to move into the swifterror
7217     // register before the call.
7218     if (TLI.supportSwiftError() &&
7219         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7220       isTailCall = false;
7221   }
7222 
7223   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7224        i != e; ++i) {
7225     TargetLowering::ArgListEntry Entry;
7226     const Value *V = *i;
7227 
7228     // Skip empty types
7229     if (V->getType()->isEmptyTy())
7230       continue;
7231 
7232     SDValue ArgNode = getValue(V);
7233     Entry.Node = ArgNode; Entry.Ty = V->getType();
7234 
7235     Entry.setAttributes(&CS, i - CS.arg_begin());
7236 
7237     // Use swifterror virtual register as input to the call.
7238     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7239       SwiftErrorVal = V;
7240       // We find the virtual register for the actual swifterror argument.
7241       // Instead of using the Value, we use the virtual register instead.
7242       Entry.Node = DAG.getRegister(
7243           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7244           EVT(TLI.getPointerTy(DL)));
7245     }
7246 
7247     Args.push_back(Entry);
7248 
7249     // If we have an explicit sret argument that is an Instruction, (i.e., it
7250     // might point to function-local memory), we can't meaningfully tail-call.
7251     if (Entry.IsSRet && isa<Instruction>(V))
7252       isTailCall = false;
7253   }
7254 
7255   // If call site has a cfguardtarget operand bundle, create and add an
7256   // additional ArgListEntry.
7257   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7258     TargetLowering::ArgListEntry Entry;
7259     Value *V = Bundle->Inputs[0];
7260     SDValue ArgNode = getValue(V);
7261     Entry.Node = ArgNode;
7262     Entry.Ty = V->getType();
7263     Entry.IsCFGuardTarget = true;
7264     Args.push_back(Entry);
7265   }
7266 
7267   // Check if target-independent constraints permit a tail call here.
7268   // Target-dependent constraints are checked within TLI->LowerCallTo.
7269   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7270     isTailCall = false;
7271 
7272   // Disable tail calls if there is an swifterror argument. Targets have not
7273   // been updated to support tail calls.
7274   if (TLI.supportSwiftError() && SwiftErrorVal)
7275     isTailCall = false;
7276 
7277   TargetLowering::CallLoweringInfo CLI(DAG);
7278   CLI.setDebugLoc(getCurSDLoc())
7279       .setChain(getRoot())
7280       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7281       .setTailCall(isTailCall)
7282       .setConvergent(CS.isConvergent());
7283   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7284 
7285   if (Result.first.getNode()) {
7286     const Instruction *Inst = CS.getInstruction();
7287     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7288     setValue(Inst, Result.first);
7289   }
7290 
7291   // The last element of CLI.InVals has the SDValue for swifterror return.
7292   // Here we copy it to a virtual register and update SwiftErrorMap for
7293   // book-keeping.
7294   if (SwiftErrorVal && TLI.supportSwiftError()) {
7295     // Get the last element of InVals.
7296     SDValue Src = CLI.InVals.back();
7297     Register VReg = SwiftError.getOrCreateVRegDefAt(
7298         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7299     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7300     DAG.setRoot(CopyNode);
7301   }
7302 }
7303 
7304 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7305                              SelectionDAGBuilder &Builder) {
7306   // Check to see if this load can be trivially constant folded, e.g. if the
7307   // input is from a string literal.
7308   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7309     // Cast pointer to the type we really want to load.
7310     Type *LoadTy =
7311         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7312     if (LoadVT.isVector())
7313       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7314 
7315     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7316                                          PointerType::getUnqual(LoadTy));
7317 
7318     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7319             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7320       return Builder.getValue(LoadCst);
7321   }
7322 
7323   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7324   // still constant memory, the input chain can be the entry node.
7325   SDValue Root;
7326   bool ConstantMemory = false;
7327 
7328   // Do not serialize (non-volatile) loads of constant memory with anything.
7329   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7330     Root = Builder.DAG.getEntryNode();
7331     ConstantMemory = true;
7332   } else {
7333     // Do not serialize non-volatile loads against each other.
7334     Root = Builder.DAG.getRoot();
7335   }
7336 
7337   SDValue Ptr = Builder.getValue(PtrVal);
7338   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7339                                         Ptr, MachinePointerInfo(PtrVal),
7340                                         /* Alignment = */ 1);
7341 
7342   if (!ConstantMemory)
7343     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7344   return LoadVal;
7345 }
7346 
7347 /// Record the value for an instruction that produces an integer result,
7348 /// converting the type where necessary.
7349 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7350                                                   SDValue Value,
7351                                                   bool IsSigned) {
7352   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7353                                                     I.getType(), true);
7354   if (IsSigned)
7355     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7356   else
7357     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7358   setValue(&I, Value);
7359 }
7360 
7361 /// See if we can lower a memcmp call into an optimized form. If so, return
7362 /// true and lower it. Otherwise return false, and it will be lowered like a
7363 /// normal call.
7364 /// The caller already checked that \p I calls the appropriate LibFunc with a
7365 /// correct prototype.
7366 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7367   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7368   const Value *Size = I.getArgOperand(2);
7369   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7370   if (CSize && CSize->getZExtValue() == 0) {
7371     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7372                                                           I.getType(), true);
7373     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7374     return true;
7375   }
7376 
7377   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7378   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7379       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7380       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7381   if (Res.first.getNode()) {
7382     processIntegerCallValue(I, Res.first, true);
7383     PendingLoads.push_back(Res.second);
7384     return true;
7385   }
7386 
7387   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7388   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7389   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7390     return false;
7391 
7392   // If the target has a fast compare for the given size, it will return a
7393   // preferred load type for that size. Require that the load VT is legal and
7394   // that the target supports unaligned loads of that type. Otherwise, return
7395   // INVALID.
7396   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7397     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7398     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7399     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7400       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7401       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7402       // TODO: Check alignment of src and dest ptrs.
7403       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7404       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7405       if (!TLI.isTypeLegal(LVT) ||
7406           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7407           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7408         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7409     }
7410 
7411     return LVT;
7412   };
7413 
7414   // This turns into unaligned loads. We only do this if the target natively
7415   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7416   // we'll only produce a small number of byte loads.
7417   MVT LoadVT;
7418   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7419   switch (NumBitsToCompare) {
7420   default:
7421     return false;
7422   case 16:
7423     LoadVT = MVT::i16;
7424     break;
7425   case 32:
7426     LoadVT = MVT::i32;
7427     break;
7428   case 64:
7429   case 128:
7430   case 256:
7431     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7432     break;
7433   }
7434 
7435   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7436     return false;
7437 
7438   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7439   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7440 
7441   // Bitcast to a wide integer type if the loads are vectors.
7442   if (LoadVT.isVector()) {
7443     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7444     LoadL = DAG.getBitcast(CmpVT, LoadL);
7445     LoadR = DAG.getBitcast(CmpVT, LoadR);
7446   }
7447 
7448   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7449   processIntegerCallValue(I, Cmp, false);
7450   return true;
7451 }
7452 
7453 /// See if we can lower a memchr call into an optimized form. If so, return
7454 /// true and lower it. Otherwise return false, and it will be lowered like a
7455 /// normal call.
7456 /// The caller already checked that \p I calls the appropriate LibFunc with a
7457 /// correct prototype.
7458 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7459   const Value *Src = I.getArgOperand(0);
7460   const Value *Char = I.getArgOperand(1);
7461   const Value *Length = I.getArgOperand(2);
7462 
7463   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7464   std::pair<SDValue, SDValue> Res =
7465     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7466                                 getValue(Src), getValue(Char), getValue(Length),
7467                                 MachinePointerInfo(Src));
7468   if (Res.first.getNode()) {
7469     setValue(&I, Res.first);
7470     PendingLoads.push_back(Res.second);
7471     return true;
7472   }
7473 
7474   return false;
7475 }
7476 
7477 /// See if we can lower a mempcpy call into an optimized form. If so, return
7478 /// true and lower it. Otherwise return false, and it will be lowered like a
7479 /// normal call.
7480 /// The caller already checked that \p I calls the appropriate LibFunc with a
7481 /// correct prototype.
7482 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7483   SDValue Dst = getValue(I.getArgOperand(0));
7484   SDValue Src = getValue(I.getArgOperand(1));
7485   SDValue Size = getValue(I.getArgOperand(2));
7486 
7487   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7488   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7489   // DAG::getMemcpy needs Alignment to be defined.
7490   Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign));
7491 
7492   bool isVol = false;
7493   SDLoc sdl = getCurSDLoc();
7494 
7495   // In the mempcpy context we need to pass in a false value for isTailCall
7496   // because the return pointer needs to be adjusted by the size of
7497   // the copied memory.
7498   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7499   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7500                              /*isTailCall=*/false,
7501                              MachinePointerInfo(I.getArgOperand(0)),
7502                              MachinePointerInfo(I.getArgOperand(1)));
7503   assert(MC.getNode() != nullptr &&
7504          "** memcpy should not be lowered as TailCall in mempcpy context **");
7505   DAG.setRoot(MC);
7506 
7507   // Check if Size needs to be truncated or extended.
7508   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7509 
7510   // Adjust return pointer to point just past the last dst byte.
7511   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7512                                     Dst, Size);
7513   setValue(&I, DstPlusSize);
7514   return true;
7515 }
7516 
7517 /// See if we can lower a strcpy call into an optimized form.  If so, return
7518 /// true and lower it, otherwise return false and it will be lowered like a
7519 /// normal call.
7520 /// The caller already checked that \p I calls the appropriate LibFunc with a
7521 /// correct prototype.
7522 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7523   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7524 
7525   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7526   std::pair<SDValue, SDValue> Res =
7527     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7528                                 getValue(Arg0), getValue(Arg1),
7529                                 MachinePointerInfo(Arg0),
7530                                 MachinePointerInfo(Arg1), isStpcpy);
7531   if (Res.first.getNode()) {
7532     setValue(&I, Res.first);
7533     DAG.setRoot(Res.second);
7534     return true;
7535   }
7536 
7537   return false;
7538 }
7539 
7540 /// See if we can lower a strcmp call into an optimized form.  If so, return
7541 /// true and lower it, otherwise return false and it will be lowered like a
7542 /// normal call.
7543 /// The caller already checked that \p I calls the appropriate LibFunc with a
7544 /// correct prototype.
7545 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7546   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7547 
7548   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7549   std::pair<SDValue, SDValue> Res =
7550     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7551                                 getValue(Arg0), getValue(Arg1),
7552                                 MachinePointerInfo(Arg0),
7553                                 MachinePointerInfo(Arg1));
7554   if (Res.first.getNode()) {
7555     processIntegerCallValue(I, Res.first, true);
7556     PendingLoads.push_back(Res.second);
7557     return true;
7558   }
7559 
7560   return false;
7561 }
7562 
7563 /// See if we can lower a strlen call into an optimized form.  If so, return
7564 /// true and lower it, otherwise return false and it will be lowered like a
7565 /// normal call.
7566 /// The caller already checked that \p I calls the appropriate LibFunc with a
7567 /// correct prototype.
7568 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7569   const Value *Arg0 = I.getArgOperand(0);
7570 
7571   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7572   std::pair<SDValue, SDValue> Res =
7573     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7574                                 getValue(Arg0), MachinePointerInfo(Arg0));
7575   if (Res.first.getNode()) {
7576     processIntegerCallValue(I, Res.first, false);
7577     PendingLoads.push_back(Res.second);
7578     return true;
7579   }
7580 
7581   return false;
7582 }
7583 
7584 /// See if we can lower a strnlen call into an optimized form.  If so, return
7585 /// true and lower it, otherwise return false and it will be lowered like a
7586 /// normal call.
7587 /// The caller already checked that \p I calls the appropriate LibFunc with a
7588 /// correct prototype.
7589 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7590   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7591 
7592   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7593   std::pair<SDValue, SDValue> Res =
7594     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7595                                  getValue(Arg0), getValue(Arg1),
7596                                  MachinePointerInfo(Arg0));
7597   if (Res.first.getNode()) {
7598     processIntegerCallValue(I, Res.first, false);
7599     PendingLoads.push_back(Res.second);
7600     return true;
7601   }
7602 
7603   return false;
7604 }
7605 
7606 /// See if we can lower a unary floating-point operation into an SDNode with
7607 /// the specified Opcode.  If so, return true and lower it, otherwise return
7608 /// false and it will be lowered like a normal call.
7609 /// The caller already checked that \p I calls the appropriate LibFunc with a
7610 /// correct prototype.
7611 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7612                                               unsigned Opcode) {
7613   // We already checked this call's prototype; verify it doesn't modify errno.
7614   if (!I.onlyReadsMemory())
7615     return false;
7616 
7617   SDValue Tmp = getValue(I.getArgOperand(0));
7618   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7619   return true;
7620 }
7621 
7622 /// See if we can lower a binary floating-point operation into an SDNode with
7623 /// the specified Opcode. If so, return true and lower it. Otherwise return
7624 /// false, and it will be lowered like a normal call.
7625 /// The caller already checked that \p I calls the appropriate LibFunc with a
7626 /// correct prototype.
7627 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7628                                                unsigned Opcode) {
7629   // We already checked this call's prototype; verify it doesn't modify errno.
7630   if (!I.onlyReadsMemory())
7631     return false;
7632 
7633   SDValue Tmp0 = getValue(I.getArgOperand(0));
7634   SDValue Tmp1 = getValue(I.getArgOperand(1));
7635   EVT VT = Tmp0.getValueType();
7636   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7637   return true;
7638 }
7639 
7640 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7641   // Handle inline assembly differently.
7642   if (isa<InlineAsm>(I.getCalledValue())) {
7643     visitInlineAsm(&I);
7644     return;
7645   }
7646 
7647   if (Function *F = I.getCalledFunction()) {
7648     if (F->isDeclaration()) {
7649       // Is this an LLVM intrinsic or a target-specific intrinsic?
7650       unsigned IID = F->getIntrinsicID();
7651       if (!IID)
7652         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7653           IID = II->getIntrinsicID(F);
7654 
7655       if (IID) {
7656         visitIntrinsicCall(I, IID);
7657         return;
7658       }
7659     }
7660 
7661     // Check for well-known libc/libm calls.  If the function is internal, it
7662     // can't be a library call.  Don't do the check if marked as nobuiltin for
7663     // some reason or the call site requires strict floating point semantics.
7664     LibFunc Func;
7665     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7666         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7667         LibInfo->hasOptimizedCodeGen(Func)) {
7668       switch (Func) {
7669       default: break;
7670       case LibFunc_copysign:
7671       case LibFunc_copysignf:
7672       case LibFunc_copysignl:
7673         // We already checked this call's prototype; verify it doesn't modify
7674         // errno.
7675         if (I.onlyReadsMemory()) {
7676           SDValue LHS = getValue(I.getArgOperand(0));
7677           SDValue RHS = getValue(I.getArgOperand(1));
7678           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7679                                    LHS.getValueType(), LHS, RHS));
7680           return;
7681         }
7682         break;
7683       case LibFunc_fabs:
7684       case LibFunc_fabsf:
7685       case LibFunc_fabsl:
7686         if (visitUnaryFloatCall(I, ISD::FABS))
7687           return;
7688         break;
7689       case LibFunc_fmin:
7690       case LibFunc_fminf:
7691       case LibFunc_fminl:
7692         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7693           return;
7694         break;
7695       case LibFunc_fmax:
7696       case LibFunc_fmaxf:
7697       case LibFunc_fmaxl:
7698         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7699           return;
7700         break;
7701       case LibFunc_sin:
7702       case LibFunc_sinf:
7703       case LibFunc_sinl:
7704         if (visitUnaryFloatCall(I, ISD::FSIN))
7705           return;
7706         break;
7707       case LibFunc_cos:
7708       case LibFunc_cosf:
7709       case LibFunc_cosl:
7710         if (visitUnaryFloatCall(I, ISD::FCOS))
7711           return;
7712         break;
7713       case LibFunc_sqrt:
7714       case LibFunc_sqrtf:
7715       case LibFunc_sqrtl:
7716       case LibFunc_sqrt_finite:
7717       case LibFunc_sqrtf_finite:
7718       case LibFunc_sqrtl_finite:
7719         if (visitUnaryFloatCall(I, ISD::FSQRT))
7720           return;
7721         break;
7722       case LibFunc_floor:
7723       case LibFunc_floorf:
7724       case LibFunc_floorl:
7725         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7726           return;
7727         break;
7728       case LibFunc_nearbyint:
7729       case LibFunc_nearbyintf:
7730       case LibFunc_nearbyintl:
7731         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7732           return;
7733         break;
7734       case LibFunc_ceil:
7735       case LibFunc_ceilf:
7736       case LibFunc_ceill:
7737         if (visitUnaryFloatCall(I, ISD::FCEIL))
7738           return;
7739         break;
7740       case LibFunc_rint:
7741       case LibFunc_rintf:
7742       case LibFunc_rintl:
7743         if (visitUnaryFloatCall(I, ISD::FRINT))
7744           return;
7745         break;
7746       case LibFunc_round:
7747       case LibFunc_roundf:
7748       case LibFunc_roundl:
7749         if (visitUnaryFloatCall(I, ISD::FROUND))
7750           return;
7751         break;
7752       case LibFunc_trunc:
7753       case LibFunc_truncf:
7754       case LibFunc_truncl:
7755         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7756           return;
7757         break;
7758       case LibFunc_log2:
7759       case LibFunc_log2f:
7760       case LibFunc_log2l:
7761         if (visitUnaryFloatCall(I, ISD::FLOG2))
7762           return;
7763         break;
7764       case LibFunc_exp2:
7765       case LibFunc_exp2f:
7766       case LibFunc_exp2l:
7767         if (visitUnaryFloatCall(I, ISD::FEXP2))
7768           return;
7769         break;
7770       case LibFunc_memcmp:
7771         if (visitMemCmpCall(I))
7772           return;
7773         break;
7774       case LibFunc_mempcpy:
7775         if (visitMemPCpyCall(I))
7776           return;
7777         break;
7778       case LibFunc_memchr:
7779         if (visitMemChrCall(I))
7780           return;
7781         break;
7782       case LibFunc_strcpy:
7783         if (visitStrCpyCall(I, false))
7784           return;
7785         break;
7786       case LibFunc_stpcpy:
7787         if (visitStrCpyCall(I, true))
7788           return;
7789         break;
7790       case LibFunc_strcmp:
7791         if (visitStrCmpCall(I))
7792           return;
7793         break;
7794       case LibFunc_strlen:
7795         if (visitStrLenCall(I))
7796           return;
7797         break;
7798       case LibFunc_strnlen:
7799         if (visitStrNLenCall(I))
7800           return;
7801         break;
7802       }
7803     }
7804   }
7805 
7806   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7807   // have to do anything here to lower funclet bundles.
7808   // CFGuardTarget bundles are lowered in LowerCallTo.
7809   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7810                                         LLVMContext::OB_funclet,
7811                                         LLVMContext::OB_cfguardtarget}) &&
7812          "Cannot lower calls with arbitrary operand bundles!");
7813 
7814   SDValue Callee = getValue(I.getCalledValue());
7815 
7816   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7817     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7818   else
7819     // Check if we can potentially perform a tail call. More detailed checking
7820     // is be done within LowerCallTo, after more information about the call is
7821     // known.
7822     LowerCallTo(&I, Callee, I.isTailCall());
7823 }
7824 
7825 namespace {
7826 
7827 /// AsmOperandInfo - This contains information for each constraint that we are
7828 /// lowering.
7829 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7830 public:
7831   /// CallOperand - If this is the result output operand or a clobber
7832   /// this is null, otherwise it is the incoming operand to the CallInst.
7833   /// This gets modified as the asm is processed.
7834   SDValue CallOperand;
7835 
7836   /// AssignedRegs - If this is a register or register class operand, this
7837   /// contains the set of register corresponding to the operand.
7838   RegsForValue AssignedRegs;
7839 
7840   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7841     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7842   }
7843 
7844   /// Whether or not this operand accesses memory
7845   bool hasMemory(const TargetLowering &TLI) const {
7846     // Indirect operand accesses access memory.
7847     if (isIndirect)
7848       return true;
7849 
7850     for (const auto &Code : Codes)
7851       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7852         return true;
7853 
7854     return false;
7855   }
7856 
7857   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7858   /// corresponds to.  If there is no Value* for this operand, it returns
7859   /// MVT::Other.
7860   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7861                            const DataLayout &DL) const {
7862     if (!CallOperandVal) return MVT::Other;
7863 
7864     if (isa<BasicBlock>(CallOperandVal))
7865       return TLI.getPointerTy(DL);
7866 
7867     llvm::Type *OpTy = CallOperandVal->getType();
7868 
7869     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7870     // If this is an indirect operand, the operand is a pointer to the
7871     // accessed type.
7872     if (isIndirect) {
7873       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7874       if (!PtrTy)
7875         report_fatal_error("Indirect operand for inline asm not a pointer!");
7876       OpTy = PtrTy->getElementType();
7877     }
7878 
7879     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7880     if (StructType *STy = dyn_cast<StructType>(OpTy))
7881       if (STy->getNumElements() == 1)
7882         OpTy = STy->getElementType(0);
7883 
7884     // If OpTy is not a single value, it may be a struct/union that we
7885     // can tile with integers.
7886     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7887       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7888       switch (BitSize) {
7889       default: break;
7890       case 1:
7891       case 8:
7892       case 16:
7893       case 32:
7894       case 64:
7895       case 128:
7896         OpTy = IntegerType::get(Context, BitSize);
7897         break;
7898       }
7899     }
7900 
7901     return TLI.getValueType(DL, OpTy, true);
7902   }
7903 };
7904 
7905 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7906 
7907 } // end anonymous namespace
7908 
7909 /// Make sure that the output operand \p OpInfo and its corresponding input
7910 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7911 /// out).
7912 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7913                                SDISelAsmOperandInfo &MatchingOpInfo,
7914                                SelectionDAG &DAG) {
7915   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7916     return;
7917 
7918   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7919   const auto &TLI = DAG.getTargetLoweringInfo();
7920 
7921   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7922       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7923                                        OpInfo.ConstraintVT);
7924   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7925       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7926                                        MatchingOpInfo.ConstraintVT);
7927   if ((OpInfo.ConstraintVT.isInteger() !=
7928        MatchingOpInfo.ConstraintVT.isInteger()) ||
7929       (MatchRC.second != InputRC.second)) {
7930     // FIXME: error out in a more elegant fashion
7931     report_fatal_error("Unsupported asm: input constraint"
7932                        " with a matching output constraint of"
7933                        " incompatible type!");
7934   }
7935   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7936 }
7937 
7938 /// Get a direct memory input to behave well as an indirect operand.
7939 /// This may introduce stores, hence the need for a \p Chain.
7940 /// \return The (possibly updated) chain.
7941 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7942                                         SDISelAsmOperandInfo &OpInfo,
7943                                         SelectionDAG &DAG) {
7944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7945 
7946   // If we don't have an indirect input, put it in the constpool if we can,
7947   // otherwise spill it to a stack slot.
7948   // TODO: This isn't quite right. We need to handle these according to
7949   // the addressing mode that the constraint wants. Also, this may take
7950   // an additional register for the computation and we don't want that
7951   // either.
7952 
7953   // If the operand is a float, integer, or vector constant, spill to a
7954   // constant pool entry to get its address.
7955   const Value *OpVal = OpInfo.CallOperandVal;
7956   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7957       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7958     OpInfo.CallOperand = DAG.getConstantPool(
7959         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7960     return Chain;
7961   }
7962 
7963   // Otherwise, create a stack slot and emit a store to it before the asm.
7964   Type *Ty = OpVal->getType();
7965   auto &DL = DAG.getDataLayout();
7966   uint64_t TySize = DL.getTypeAllocSize(Ty);
7967   unsigned Align = DL.getPrefTypeAlignment(Ty);
7968   MachineFunction &MF = DAG.getMachineFunction();
7969   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7970   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7971   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7972                             MachinePointerInfo::getFixedStack(MF, SSFI),
7973                             TLI.getMemValueType(DL, Ty));
7974   OpInfo.CallOperand = StackSlot;
7975 
7976   return Chain;
7977 }
7978 
7979 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7980 /// specified operand.  We prefer to assign virtual registers, to allow the
7981 /// register allocator to handle the assignment process.  However, if the asm
7982 /// uses features that we can't model on machineinstrs, we have SDISel do the
7983 /// allocation.  This produces generally horrible, but correct, code.
7984 ///
7985 ///   OpInfo describes the operand
7986 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7987 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7988                                  SDISelAsmOperandInfo &OpInfo,
7989                                  SDISelAsmOperandInfo &RefOpInfo) {
7990   LLVMContext &Context = *DAG.getContext();
7991   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7992 
7993   MachineFunction &MF = DAG.getMachineFunction();
7994   SmallVector<unsigned, 4> Regs;
7995   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7996 
7997   // No work to do for memory operations.
7998   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7999     return;
8000 
8001   // If this is a constraint for a single physreg, or a constraint for a
8002   // register class, find it.
8003   unsigned AssignedReg;
8004   const TargetRegisterClass *RC;
8005   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8006       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8007   // RC is unset only on failure. Return immediately.
8008   if (!RC)
8009     return;
8010 
8011   // Get the actual register value type.  This is important, because the user
8012   // may have asked for (e.g.) the AX register in i32 type.  We need to
8013   // remember that AX is actually i16 to get the right extension.
8014   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8015 
8016   if (OpInfo.ConstraintVT != MVT::Other) {
8017     // If this is an FP operand in an integer register (or visa versa), or more
8018     // generally if the operand value disagrees with the register class we plan
8019     // to stick it in, fix the operand type.
8020     //
8021     // If this is an input value, the bitcast to the new type is done now.
8022     // Bitcast for output value is done at the end of visitInlineAsm().
8023     if ((OpInfo.Type == InlineAsm::isOutput ||
8024          OpInfo.Type == InlineAsm::isInput) &&
8025         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8026       // Try to convert to the first EVT that the reg class contains.  If the
8027       // types are identical size, use a bitcast to convert (e.g. two differing
8028       // vector types).  Note: output bitcast is done at the end of
8029       // visitInlineAsm().
8030       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8031         // Exclude indirect inputs while they are unsupported because the code
8032         // to perform the load is missing and thus OpInfo.CallOperand still
8033         // refers to the input address rather than the pointed-to value.
8034         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8035           OpInfo.CallOperand =
8036               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8037         OpInfo.ConstraintVT = RegVT;
8038         // If the operand is an FP value and we want it in integer registers,
8039         // use the corresponding integer type. This turns an f64 value into
8040         // i64, which can be passed with two i32 values on a 32-bit machine.
8041       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8042         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8043         if (OpInfo.Type == InlineAsm::isInput)
8044           OpInfo.CallOperand =
8045               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8046         OpInfo.ConstraintVT = VT;
8047       }
8048     }
8049   }
8050 
8051   // No need to allocate a matching input constraint since the constraint it's
8052   // matching to has already been allocated.
8053   if (OpInfo.isMatchingInputConstraint())
8054     return;
8055 
8056   EVT ValueVT = OpInfo.ConstraintVT;
8057   if (OpInfo.ConstraintVT == MVT::Other)
8058     ValueVT = RegVT;
8059 
8060   // Initialize NumRegs.
8061   unsigned NumRegs = 1;
8062   if (OpInfo.ConstraintVT != MVT::Other)
8063     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8064 
8065   // If this is a constraint for a specific physical register, like {r17},
8066   // assign it now.
8067 
8068   // If this associated to a specific register, initialize iterator to correct
8069   // place. If virtual, make sure we have enough registers
8070 
8071   // Initialize iterator if necessary
8072   TargetRegisterClass::iterator I = RC->begin();
8073   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8074 
8075   // Do not check for single registers.
8076   if (AssignedReg) {
8077       for (; *I != AssignedReg; ++I)
8078         assert(I != RC->end() && "AssignedReg should be member of RC");
8079   }
8080 
8081   for (; NumRegs; --NumRegs, ++I) {
8082     assert(I != RC->end() && "Ran out of registers to allocate!");
8083     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8084     Regs.push_back(R);
8085   }
8086 
8087   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8088 }
8089 
8090 static unsigned
8091 findMatchingInlineAsmOperand(unsigned OperandNo,
8092                              const std::vector<SDValue> &AsmNodeOperands) {
8093   // Scan until we find the definition we already emitted of this operand.
8094   unsigned CurOp = InlineAsm::Op_FirstOperand;
8095   for (; OperandNo; --OperandNo) {
8096     // Advance to the next operand.
8097     unsigned OpFlag =
8098         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8099     assert((InlineAsm::isRegDefKind(OpFlag) ||
8100             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8101             InlineAsm::isMemKind(OpFlag)) &&
8102            "Skipped past definitions?");
8103     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8104   }
8105   return CurOp;
8106 }
8107 
8108 namespace {
8109 
8110 class ExtraFlags {
8111   unsigned Flags = 0;
8112 
8113 public:
8114   explicit ExtraFlags(ImmutableCallSite CS) {
8115     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8116     if (IA->hasSideEffects())
8117       Flags |= InlineAsm::Extra_HasSideEffects;
8118     if (IA->isAlignStack())
8119       Flags |= InlineAsm::Extra_IsAlignStack;
8120     if (CS.isConvergent())
8121       Flags |= InlineAsm::Extra_IsConvergent;
8122     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8123   }
8124 
8125   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8126     // Ideally, we would only check against memory constraints.  However, the
8127     // meaning of an Other constraint can be target-specific and we can't easily
8128     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8129     // for Other constraints as well.
8130     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8131         OpInfo.ConstraintType == TargetLowering::C_Other) {
8132       if (OpInfo.Type == InlineAsm::isInput)
8133         Flags |= InlineAsm::Extra_MayLoad;
8134       else if (OpInfo.Type == InlineAsm::isOutput)
8135         Flags |= InlineAsm::Extra_MayStore;
8136       else if (OpInfo.Type == InlineAsm::isClobber)
8137         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8138     }
8139   }
8140 
8141   unsigned get() const { return Flags; }
8142 };
8143 
8144 } // end anonymous namespace
8145 
8146 /// visitInlineAsm - Handle a call to an InlineAsm object.
8147 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8148   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8149 
8150   /// ConstraintOperands - Information about all of the constraints.
8151   SDISelAsmOperandInfoVector ConstraintOperands;
8152 
8153   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8154   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8155       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8156 
8157   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8158   // AsmDialect, MayLoad, MayStore).
8159   bool HasSideEffect = IA->hasSideEffects();
8160   ExtraFlags ExtraInfo(CS);
8161 
8162   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8163   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8164   unsigned NumMatchingOps = 0;
8165   for (auto &T : TargetConstraints) {
8166     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8167     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8168 
8169     // Compute the value type for each operand.
8170     if (OpInfo.Type == InlineAsm::isInput ||
8171         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8172       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8173 
8174       // Process the call argument. BasicBlocks are labels, currently appearing
8175       // only in asm's.
8176       const Instruction *I = CS.getInstruction();
8177       if (isa<CallBrInst>(I) &&
8178           ArgNo - 1 >= (cast<CallBrInst>(I)->getNumArgOperands() -
8179                         cast<CallBrInst>(I)->getNumIndirectDests() -
8180                         NumMatchingOps) &&
8181           (NumMatchingOps == 0 ||
8182            ArgNo - 1 < (cast<CallBrInst>(I)->getNumArgOperands() -
8183                         NumMatchingOps))) {
8184         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8185         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8186         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8187       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8188         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8189       } else {
8190         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8191       }
8192 
8193       OpInfo.ConstraintVT =
8194           OpInfo
8195               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8196               .getSimpleVT();
8197     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8198       // The return value of the call is this value.  As such, there is no
8199       // corresponding argument.
8200       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8201       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8202         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8203             DAG.getDataLayout(), STy->getElementType(ResNo));
8204       } else {
8205         assert(ResNo == 0 && "Asm only has one result!");
8206         OpInfo.ConstraintVT =
8207             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8208       }
8209       ++ResNo;
8210     } else {
8211       OpInfo.ConstraintVT = MVT::Other;
8212     }
8213 
8214     if (OpInfo.hasMatchingInput())
8215       ++NumMatchingOps;
8216 
8217     if (!HasSideEffect)
8218       HasSideEffect = OpInfo.hasMemory(TLI);
8219 
8220     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8221     // FIXME: Could we compute this on OpInfo rather than T?
8222 
8223     // Compute the constraint code and ConstraintType to use.
8224     TLI.ComputeConstraintToUse(T, SDValue());
8225 
8226     if (T.ConstraintType == TargetLowering::C_Immediate &&
8227         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8228       // We've delayed emitting a diagnostic like the "n" constraint because
8229       // inlining could cause an integer showing up.
8230       return emitInlineAsmError(
8231           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8232                   "integer constant expression");
8233 
8234     ExtraInfo.update(T);
8235   }
8236 
8237 
8238   // We won't need to flush pending loads if this asm doesn't touch
8239   // memory and is nonvolatile.
8240   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8241 
8242   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8243   if (IsCallBr) {
8244     // If this is a callbr we need to flush pending exports since inlineasm_br
8245     // is a terminator. We need to do this before nodes are glued to
8246     // the inlineasm_br node.
8247     Chain = getControlRoot();
8248   }
8249 
8250   // Second pass over the constraints: compute which constraint option to use.
8251   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8252     // If this is an output operand with a matching input operand, look up the
8253     // matching input. If their types mismatch, e.g. one is an integer, the
8254     // other is floating point, or their sizes are different, flag it as an
8255     // error.
8256     if (OpInfo.hasMatchingInput()) {
8257       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8258       patchMatchingInput(OpInfo, Input, DAG);
8259     }
8260 
8261     // Compute the constraint code and ConstraintType to use.
8262     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8263 
8264     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8265         OpInfo.Type == InlineAsm::isClobber)
8266       continue;
8267 
8268     // If this is a memory input, and if the operand is not indirect, do what we
8269     // need to provide an address for the memory input.
8270     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8271         !OpInfo.isIndirect) {
8272       assert((OpInfo.isMultipleAlternative ||
8273               (OpInfo.Type == InlineAsm::isInput)) &&
8274              "Can only indirectify direct input operands!");
8275 
8276       // Memory operands really want the address of the value.
8277       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8278 
8279       // There is no longer a Value* corresponding to this operand.
8280       OpInfo.CallOperandVal = nullptr;
8281 
8282       // It is now an indirect operand.
8283       OpInfo.isIndirect = true;
8284     }
8285 
8286   }
8287 
8288   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8289   std::vector<SDValue> AsmNodeOperands;
8290   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8291   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8292       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8293 
8294   // If we have a !srcloc metadata node associated with it, we want to attach
8295   // this to the ultimately generated inline asm machineinstr.  To do this, we
8296   // pass in the third operand as this (potentially null) inline asm MDNode.
8297   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8298   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8299 
8300   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8301   // bits as operand 3.
8302   AsmNodeOperands.push_back(DAG.getTargetConstant(
8303       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8304 
8305   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8306   // this, assign virtual and physical registers for inputs and otput.
8307   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8308     // Assign Registers.
8309     SDISelAsmOperandInfo &RefOpInfo =
8310         OpInfo.isMatchingInputConstraint()
8311             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8312             : OpInfo;
8313     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8314 
8315     switch (OpInfo.Type) {
8316     case InlineAsm::isOutput:
8317       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8318         unsigned ConstraintID =
8319             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8320         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8321                "Failed to convert memory constraint code to constraint id.");
8322 
8323         // Add information to the INLINEASM node to know about this output.
8324         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8325         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8326         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8327                                                         MVT::i32));
8328         AsmNodeOperands.push_back(OpInfo.CallOperand);
8329       } else {
8330         // Otherwise, this outputs to a register (directly for C_Register /
8331         // C_RegisterClass, and a target-defined fashion for
8332         // C_Immediate/C_Other). Find a register that we can use.
8333         if (OpInfo.AssignedRegs.Regs.empty()) {
8334           emitInlineAsmError(
8335               CS, "couldn't allocate output register for constraint '" +
8336                       Twine(OpInfo.ConstraintCode) + "'");
8337           return;
8338         }
8339 
8340         // Add information to the INLINEASM node to know that this register is
8341         // set.
8342         OpInfo.AssignedRegs.AddInlineAsmOperands(
8343             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8344                                   : InlineAsm::Kind_RegDef,
8345             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8346       }
8347       break;
8348 
8349     case InlineAsm::isInput: {
8350       SDValue InOperandVal = OpInfo.CallOperand;
8351 
8352       if (OpInfo.isMatchingInputConstraint()) {
8353         // If this is required to match an output register we have already set,
8354         // just use its register.
8355         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8356                                                   AsmNodeOperands);
8357         unsigned OpFlag =
8358           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8359         if (InlineAsm::isRegDefKind(OpFlag) ||
8360             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8361           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8362           if (OpInfo.isIndirect) {
8363             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8364             emitInlineAsmError(CS, "inline asm not supported yet:"
8365                                    " don't know how to handle tied "
8366                                    "indirect register inputs");
8367             return;
8368           }
8369 
8370           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8371           SmallVector<unsigned, 4> Regs;
8372 
8373           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8374             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8375             MachineRegisterInfo &RegInfo =
8376                 DAG.getMachineFunction().getRegInfo();
8377             for (unsigned i = 0; i != NumRegs; ++i)
8378               Regs.push_back(RegInfo.createVirtualRegister(RC));
8379           } else {
8380             emitInlineAsmError(CS, "inline asm error: This value type register "
8381                                    "class is not natively supported!");
8382             return;
8383           }
8384 
8385           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8386 
8387           SDLoc dl = getCurSDLoc();
8388           // Use the produced MatchedRegs object to
8389           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8390                                     CS.getInstruction());
8391           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8392                                            true, OpInfo.getMatchedOperand(), dl,
8393                                            DAG, AsmNodeOperands);
8394           break;
8395         }
8396 
8397         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8398         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8399                "Unexpected number of operands");
8400         // Add information to the INLINEASM node to know about this input.
8401         // See InlineAsm.h isUseOperandTiedToDef.
8402         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8403         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8404                                                     OpInfo.getMatchedOperand());
8405         AsmNodeOperands.push_back(DAG.getTargetConstant(
8406             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8407         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8408         break;
8409       }
8410 
8411       // Treat indirect 'X' constraint as memory.
8412       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8413           OpInfo.isIndirect)
8414         OpInfo.ConstraintType = TargetLowering::C_Memory;
8415 
8416       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8417           OpInfo.ConstraintType == TargetLowering::C_Other) {
8418         std::vector<SDValue> Ops;
8419         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8420                                           Ops, DAG);
8421         if (Ops.empty()) {
8422           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8423             if (isa<ConstantSDNode>(InOperandVal)) {
8424               emitInlineAsmError(CS, "value out of range for constraint '" +
8425                                  Twine(OpInfo.ConstraintCode) + "'");
8426               return;
8427             }
8428 
8429           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8430                                      Twine(OpInfo.ConstraintCode) + "'");
8431           return;
8432         }
8433 
8434         // Add information to the INLINEASM node to know about this input.
8435         unsigned ResOpType =
8436           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8437         AsmNodeOperands.push_back(DAG.getTargetConstant(
8438             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8439         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8440         break;
8441       }
8442 
8443       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8444         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8445         assert(InOperandVal.getValueType() ==
8446                    TLI.getPointerTy(DAG.getDataLayout()) &&
8447                "Memory operands expect pointer values");
8448 
8449         unsigned ConstraintID =
8450             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8451         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8452                "Failed to convert memory constraint code to constraint id.");
8453 
8454         // Add information to the INLINEASM node to know about this input.
8455         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8456         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8457         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8458                                                         getCurSDLoc(),
8459                                                         MVT::i32));
8460         AsmNodeOperands.push_back(InOperandVal);
8461         break;
8462       }
8463 
8464       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8465               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8466              "Unknown constraint type!");
8467 
8468       // TODO: Support this.
8469       if (OpInfo.isIndirect) {
8470         emitInlineAsmError(
8471             CS, "Don't know how to handle indirect register inputs yet "
8472                 "for constraint '" +
8473                     Twine(OpInfo.ConstraintCode) + "'");
8474         return;
8475       }
8476 
8477       // Copy the input into the appropriate registers.
8478       if (OpInfo.AssignedRegs.Regs.empty()) {
8479         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8480                                    Twine(OpInfo.ConstraintCode) + "'");
8481         return;
8482       }
8483 
8484       SDLoc dl = getCurSDLoc();
8485 
8486       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8487                                         Chain, &Flag, CS.getInstruction());
8488 
8489       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8490                                                dl, DAG, AsmNodeOperands);
8491       break;
8492     }
8493     case InlineAsm::isClobber:
8494       // Add the clobbered value to the operand list, so that the register
8495       // allocator is aware that the physreg got clobbered.
8496       if (!OpInfo.AssignedRegs.Regs.empty())
8497         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8498                                                  false, 0, getCurSDLoc(), DAG,
8499                                                  AsmNodeOperands);
8500       break;
8501     }
8502   }
8503 
8504   // Finish up input operands.  Set the input chain and add the flag last.
8505   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8506   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8507 
8508   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8509   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8510                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8511   Flag = Chain.getValue(1);
8512 
8513   // Do additional work to generate outputs.
8514 
8515   SmallVector<EVT, 1> ResultVTs;
8516   SmallVector<SDValue, 1> ResultValues;
8517   SmallVector<SDValue, 8> OutChains;
8518 
8519   llvm::Type *CSResultType = CS.getType();
8520   ArrayRef<Type *> ResultTypes;
8521   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8522     ResultTypes = StructResult->elements();
8523   else if (!CSResultType->isVoidTy())
8524     ResultTypes = makeArrayRef(CSResultType);
8525 
8526   auto CurResultType = ResultTypes.begin();
8527   auto handleRegAssign = [&](SDValue V) {
8528     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8529     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8530     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8531     ++CurResultType;
8532     // If the type of the inline asm call site return value is different but has
8533     // same size as the type of the asm output bitcast it.  One example of this
8534     // is for vectors with different width / number of elements.  This can
8535     // happen for register classes that can contain multiple different value
8536     // types.  The preg or vreg allocated may not have the same VT as was
8537     // expected.
8538     //
8539     // This can also happen for a return value that disagrees with the register
8540     // class it is put in, eg. a double in a general-purpose register on a
8541     // 32-bit machine.
8542     if (ResultVT != V.getValueType() &&
8543         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8544       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8545     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8546              V.getValueType().isInteger()) {
8547       // If a result value was tied to an input value, the computed result
8548       // may have a wider width than the expected result.  Extract the
8549       // relevant portion.
8550       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8551     }
8552     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8553     ResultVTs.push_back(ResultVT);
8554     ResultValues.push_back(V);
8555   };
8556 
8557   // Deal with output operands.
8558   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8559     if (OpInfo.Type == InlineAsm::isOutput) {
8560       SDValue Val;
8561       // Skip trivial output operands.
8562       if (OpInfo.AssignedRegs.Regs.empty())
8563         continue;
8564 
8565       switch (OpInfo.ConstraintType) {
8566       case TargetLowering::C_Register:
8567       case TargetLowering::C_RegisterClass:
8568         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8569             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8570         break;
8571       case TargetLowering::C_Immediate:
8572       case TargetLowering::C_Other:
8573         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8574                                               OpInfo, DAG);
8575         break;
8576       case TargetLowering::C_Memory:
8577         break; // Already handled.
8578       case TargetLowering::C_Unknown:
8579         assert(false && "Unexpected unknown constraint");
8580       }
8581 
8582       // Indirect output manifest as stores. Record output chains.
8583       if (OpInfo.isIndirect) {
8584         const Value *Ptr = OpInfo.CallOperandVal;
8585         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8586         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8587                                      MachinePointerInfo(Ptr));
8588         OutChains.push_back(Store);
8589       } else {
8590         // generate CopyFromRegs to associated registers.
8591         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8592         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8593           for (const SDValue &V : Val->op_values())
8594             handleRegAssign(V);
8595         } else
8596           handleRegAssign(Val);
8597       }
8598     }
8599   }
8600 
8601   // Set results.
8602   if (!ResultValues.empty()) {
8603     assert(CurResultType == ResultTypes.end() &&
8604            "Mismatch in number of ResultTypes");
8605     assert(ResultValues.size() == ResultTypes.size() &&
8606            "Mismatch in number of output operands in asm result");
8607 
8608     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8609                             DAG.getVTList(ResultVTs), ResultValues);
8610     setValue(CS.getInstruction(), V);
8611   }
8612 
8613   // Collect store chains.
8614   if (!OutChains.empty())
8615     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8616 
8617   // Only Update Root if inline assembly has a memory effect.
8618   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8619     DAG.setRoot(Chain);
8620 }
8621 
8622 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8623                                              const Twine &Message) {
8624   LLVMContext &Ctx = *DAG.getContext();
8625   Ctx.emitError(CS.getInstruction(), Message);
8626 
8627   // Make sure we leave the DAG in a valid state
8628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8629   SmallVector<EVT, 1> ValueVTs;
8630   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8631 
8632   if (ValueVTs.empty())
8633     return;
8634 
8635   SmallVector<SDValue, 1> Ops;
8636   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8637     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8638 
8639   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8640 }
8641 
8642 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8643   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8644                           MVT::Other, getRoot(),
8645                           getValue(I.getArgOperand(0)),
8646                           DAG.getSrcValue(I.getArgOperand(0))));
8647 }
8648 
8649 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8651   const DataLayout &DL = DAG.getDataLayout();
8652   SDValue V = DAG.getVAArg(
8653       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8654       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8655       DL.getABITypeAlignment(I.getType()));
8656   DAG.setRoot(V.getValue(1));
8657 
8658   if (I.getType()->isPointerTy())
8659     V = DAG.getPtrExtOrTrunc(
8660         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8661   setValue(&I, V);
8662 }
8663 
8664 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8665   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8666                           MVT::Other, getRoot(),
8667                           getValue(I.getArgOperand(0)),
8668                           DAG.getSrcValue(I.getArgOperand(0))));
8669 }
8670 
8671 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8672   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8673                           MVT::Other, getRoot(),
8674                           getValue(I.getArgOperand(0)),
8675                           getValue(I.getArgOperand(1)),
8676                           DAG.getSrcValue(I.getArgOperand(0)),
8677                           DAG.getSrcValue(I.getArgOperand(1))));
8678 }
8679 
8680 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8681                                                     const Instruction &I,
8682                                                     SDValue Op) {
8683   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8684   if (!Range)
8685     return Op;
8686 
8687   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8688   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8689     return Op;
8690 
8691   APInt Lo = CR.getUnsignedMin();
8692   if (!Lo.isMinValue())
8693     return Op;
8694 
8695   APInt Hi = CR.getUnsignedMax();
8696   unsigned Bits = std::max(Hi.getActiveBits(),
8697                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8698 
8699   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8700 
8701   SDLoc SL = getCurSDLoc();
8702 
8703   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8704                              DAG.getValueType(SmallVT));
8705   unsigned NumVals = Op.getNode()->getNumValues();
8706   if (NumVals == 1)
8707     return ZExt;
8708 
8709   SmallVector<SDValue, 4> Ops;
8710 
8711   Ops.push_back(ZExt);
8712   for (unsigned I = 1; I != NumVals; ++I)
8713     Ops.push_back(Op.getValue(I));
8714 
8715   return DAG.getMergeValues(Ops, SL);
8716 }
8717 
8718 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8719 /// the call being lowered.
8720 ///
8721 /// This is a helper for lowering intrinsics that follow a target calling
8722 /// convention or require stack pointer adjustment. Only a subset of the
8723 /// intrinsic's operands need to participate in the calling convention.
8724 void SelectionDAGBuilder::populateCallLoweringInfo(
8725     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8726     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8727     bool IsPatchPoint) {
8728   TargetLowering::ArgListTy Args;
8729   Args.reserve(NumArgs);
8730 
8731   // Populate the argument list.
8732   // Attributes for args start at offset 1, after the return attribute.
8733   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8734        ArgI != ArgE; ++ArgI) {
8735     const Value *V = Call->getOperand(ArgI);
8736 
8737     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8738 
8739     TargetLowering::ArgListEntry Entry;
8740     Entry.Node = getValue(V);
8741     Entry.Ty = V->getType();
8742     Entry.setAttributes(Call, ArgI);
8743     Args.push_back(Entry);
8744   }
8745 
8746   CLI.setDebugLoc(getCurSDLoc())
8747       .setChain(getRoot())
8748       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8749       .setDiscardResult(Call->use_empty())
8750       .setIsPatchPoint(IsPatchPoint);
8751 }
8752 
8753 /// Add a stack map intrinsic call's live variable operands to a stackmap
8754 /// or patchpoint target node's operand list.
8755 ///
8756 /// Constants are converted to TargetConstants purely as an optimization to
8757 /// avoid constant materialization and register allocation.
8758 ///
8759 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8760 /// generate addess computation nodes, and so FinalizeISel can convert the
8761 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8762 /// address materialization and register allocation, but may also be required
8763 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8764 /// alloca in the entry block, then the runtime may assume that the alloca's
8765 /// StackMap location can be read immediately after compilation and that the
8766 /// location is valid at any point during execution (this is similar to the
8767 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8768 /// only available in a register, then the runtime would need to trap when
8769 /// execution reaches the StackMap in order to read the alloca's location.
8770 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8771                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8772                                 SelectionDAGBuilder &Builder) {
8773   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8774     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8775     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8776       Ops.push_back(
8777         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8778       Ops.push_back(
8779         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8780     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8781       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8782       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8783           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8784     } else
8785       Ops.push_back(OpVal);
8786   }
8787 }
8788 
8789 /// Lower llvm.experimental.stackmap directly to its target opcode.
8790 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8791   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8792   //                                  [live variables...])
8793 
8794   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8795 
8796   SDValue Chain, InFlag, Callee, NullPtr;
8797   SmallVector<SDValue, 32> Ops;
8798 
8799   SDLoc DL = getCurSDLoc();
8800   Callee = getValue(CI.getCalledValue());
8801   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8802 
8803   // The stackmap intrinsic only records the live variables (the arguments
8804   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8805   // intrinsic, this won't be lowered to a function call. This means we don't
8806   // have to worry about calling conventions and target specific lowering code.
8807   // Instead we perform the call lowering right here.
8808   //
8809   // chain, flag = CALLSEQ_START(chain, 0, 0)
8810   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8811   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8812   //
8813   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8814   InFlag = Chain.getValue(1);
8815 
8816   // Add the <id> and <numBytes> constants.
8817   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8818   Ops.push_back(DAG.getTargetConstant(
8819                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8820   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8821   Ops.push_back(DAG.getTargetConstant(
8822                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8823                   MVT::i32));
8824 
8825   // Push live variables for the stack map.
8826   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8827 
8828   // We are not pushing any register mask info here on the operands list,
8829   // because the stackmap doesn't clobber anything.
8830 
8831   // Push the chain and the glue flag.
8832   Ops.push_back(Chain);
8833   Ops.push_back(InFlag);
8834 
8835   // Create the STACKMAP node.
8836   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8837   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8838   Chain = SDValue(SM, 0);
8839   InFlag = Chain.getValue(1);
8840 
8841   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8842 
8843   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8844 
8845   // Set the root to the target-lowered call chain.
8846   DAG.setRoot(Chain);
8847 
8848   // Inform the Frame Information that we have a stackmap in this function.
8849   FuncInfo.MF->getFrameInfo().setHasStackMap();
8850 }
8851 
8852 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8853 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8854                                           const BasicBlock *EHPadBB) {
8855   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8856   //                                                 i32 <numBytes>,
8857   //                                                 i8* <target>,
8858   //                                                 i32 <numArgs>,
8859   //                                                 [Args...],
8860   //                                                 [live variables...])
8861 
8862   CallingConv::ID CC = CS.getCallingConv();
8863   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8864   bool HasDef = !CS->getType()->isVoidTy();
8865   SDLoc dl = getCurSDLoc();
8866   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8867 
8868   // Handle immediate and symbolic callees.
8869   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8870     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8871                                    /*isTarget=*/true);
8872   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8873     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8874                                          SDLoc(SymbolicCallee),
8875                                          SymbolicCallee->getValueType(0));
8876 
8877   // Get the real number of arguments participating in the call <numArgs>
8878   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8879   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8880 
8881   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8882   // Intrinsics include all meta-operands up to but not including CC.
8883   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8884   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8885          "Not enough arguments provided to the patchpoint intrinsic");
8886 
8887   // For AnyRegCC the arguments are lowered later on manually.
8888   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8889   Type *ReturnTy =
8890     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8891 
8892   TargetLowering::CallLoweringInfo CLI(DAG);
8893   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8894                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8895   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8896 
8897   SDNode *CallEnd = Result.second.getNode();
8898   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8899     CallEnd = CallEnd->getOperand(0).getNode();
8900 
8901   /// Get a call instruction from the call sequence chain.
8902   /// Tail calls are not allowed.
8903   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8904          "Expected a callseq node.");
8905   SDNode *Call = CallEnd->getOperand(0).getNode();
8906   bool HasGlue = Call->getGluedNode();
8907 
8908   // Replace the target specific call node with the patchable intrinsic.
8909   SmallVector<SDValue, 8> Ops;
8910 
8911   // Add the <id> and <numBytes> constants.
8912   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8913   Ops.push_back(DAG.getTargetConstant(
8914                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8915   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8916   Ops.push_back(DAG.getTargetConstant(
8917                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8918                   MVT::i32));
8919 
8920   // Add the callee.
8921   Ops.push_back(Callee);
8922 
8923   // Adjust <numArgs> to account for any arguments that have been passed on the
8924   // stack instead.
8925   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8926   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8927   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8928   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8929 
8930   // Add the calling convention
8931   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8932 
8933   // Add the arguments we omitted previously. The register allocator should
8934   // place these in any free register.
8935   if (IsAnyRegCC)
8936     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8937       Ops.push_back(getValue(CS.getArgument(i)));
8938 
8939   // Push the arguments from the call instruction up to the register mask.
8940   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8941   Ops.append(Call->op_begin() + 2, e);
8942 
8943   // Push live variables for the stack map.
8944   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8945 
8946   // Push the register mask info.
8947   if (HasGlue)
8948     Ops.push_back(*(Call->op_end()-2));
8949   else
8950     Ops.push_back(*(Call->op_end()-1));
8951 
8952   // Push the chain (this is originally the first operand of the call, but
8953   // becomes now the last or second to last operand).
8954   Ops.push_back(*(Call->op_begin()));
8955 
8956   // Push the glue flag (last operand).
8957   if (HasGlue)
8958     Ops.push_back(*(Call->op_end()-1));
8959 
8960   SDVTList NodeTys;
8961   if (IsAnyRegCC && HasDef) {
8962     // Create the return types based on the intrinsic definition
8963     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8964     SmallVector<EVT, 3> ValueVTs;
8965     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8966     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8967 
8968     // There is always a chain and a glue type at the end
8969     ValueVTs.push_back(MVT::Other);
8970     ValueVTs.push_back(MVT::Glue);
8971     NodeTys = DAG.getVTList(ValueVTs);
8972   } else
8973     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8974 
8975   // Replace the target specific call node with a PATCHPOINT node.
8976   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8977                                          dl, NodeTys, Ops);
8978 
8979   // Update the NodeMap.
8980   if (HasDef) {
8981     if (IsAnyRegCC)
8982       setValue(CS.getInstruction(), SDValue(MN, 0));
8983     else
8984       setValue(CS.getInstruction(), Result.first);
8985   }
8986 
8987   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8988   // call sequence. Furthermore the location of the chain and glue can change
8989   // when the AnyReg calling convention is used and the intrinsic returns a
8990   // value.
8991   if (IsAnyRegCC && HasDef) {
8992     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8993     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8994     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8995   } else
8996     DAG.ReplaceAllUsesWith(Call, MN);
8997   DAG.DeleteNode(Call);
8998 
8999   // Inform the Frame Information that we have a patchpoint in this function.
9000   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9001 }
9002 
9003 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9004                                             unsigned Intrinsic) {
9005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9006   SDValue Op1 = getValue(I.getArgOperand(0));
9007   SDValue Op2;
9008   if (I.getNumArgOperands() > 1)
9009     Op2 = getValue(I.getArgOperand(1));
9010   SDLoc dl = getCurSDLoc();
9011   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9012   SDValue Res;
9013   FastMathFlags FMF;
9014   if (isa<FPMathOperator>(I))
9015     FMF = I.getFastMathFlags();
9016 
9017   switch (Intrinsic) {
9018   case Intrinsic::experimental_vector_reduce_v2_fadd:
9019     if (FMF.allowReassoc())
9020       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9021                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
9022     else
9023       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
9024     break;
9025   case Intrinsic::experimental_vector_reduce_v2_fmul:
9026     if (FMF.allowReassoc())
9027       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9028                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
9029     else
9030       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
9031     break;
9032   case Intrinsic::experimental_vector_reduce_add:
9033     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9034     break;
9035   case Intrinsic::experimental_vector_reduce_mul:
9036     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9037     break;
9038   case Intrinsic::experimental_vector_reduce_and:
9039     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9040     break;
9041   case Intrinsic::experimental_vector_reduce_or:
9042     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9043     break;
9044   case Intrinsic::experimental_vector_reduce_xor:
9045     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9046     break;
9047   case Intrinsic::experimental_vector_reduce_smax:
9048     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9049     break;
9050   case Intrinsic::experimental_vector_reduce_smin:
9051     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9052     break;
9053   case Intrinsic::experimental_vector_reduce_umax:
9054     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9055     break;
9056   case Intrinsic::experimental_vector_reduce_umin:
9057     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9058     break;
9059   case Intrinsic::experimental_vector_reduce_fmax:
9060     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9061     break;
9062   case Intrinsic::experimental_vector_reduce_fmin:
9063     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9064     break;
9065   default:
9066     llvm_unreachable("Unhandled vector reduce intrinsic");
9067   }
9068   setValue(&I, Res);
9069 }
9070 
9071 /// Returns an AttributeList representing the attributes applied to the return
9072 /// value of the given call.
9073 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9074   SmallVector<Attribute::AttrKind, 2> Attrs;
9075   if (CLI.RetSExt)
9076     Attrs.push_back(Attribute::SExt);
9077   if (CLI.RetZExt)
9078     Attrs.push_back(Attribute::ZExt);
9079   if (CLI.IsInReg)
9080     Attrs.push_back(Attribute::InReg);
9081 
9082   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9083                             Attrs);
9084 }
9085 
9086 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9087 /// implementation, which just calls LowerCall.
9088 /// FIXME: When all targets are
9089 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9090 std::pair<SDValue, SDValue>
9091 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9092   // Handle the incoming return values from the call.
9093   CLI.Ins.clear();
9094   Type *OrigRetTy = CLI.RetTy;
9095   SmallVector<EVT, 4> RetTys;
9096   SmallVector<uint64_t, 4> Offsets;
9097   auto &DL = CLI.DAG.getDataLayout();
9098   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9099 
9100   if (CLI.IsPostTypeLegalization) {
9101     // If we are lowering a libcall after legalization, split the return type.
9102     SmallVector<EVT, 4> OldRetTys;
9103     SmallVector<uint64_t, 4> OldOffsets;
9104     RetTys.swap(OldRetTys);
9105     Offsets.swap(OldOffsets);
9106 
9107     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9108       EVT RetVT = OldRetTys[i];
9109       uint64_t Offset = OldOffsets[i];
9110       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9111       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9112       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9113       RetTys.append(NumRegs, RegisterVT);
9114       for (unsigned j = 0; j != NumRegs; ++j)
9115         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9116     }
9117   }
9118 
9119   SmallVector<ISD::OutputArg, 4> Outs;
9120   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9121 
9122   bool CanLowerReturn =
9123       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9124                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9125 
9126   SDValue DemoteStackSlot;
9127   int DemoteStackIdx = -100;
9128   if (!CanLowerReturn) {
9129     // FIXME: equivalent assert?
9130     // assert(!CS.hasInAllocaArgument() &&
9131     //        "sret demotion is incompatible with inalloca");
9132     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9133     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9134     MachineFunction &MF = CLI.DAG.getMachineFunction();
9135     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9136     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9137                                               DL.getAllocaAddrSpace());
9138 
9139     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9140     ArgListEntry Entry;
9141     Entry.Node = DemoteStackSlot;
9142     Entry.Ty = StackSlotPtrType;
9143     Entry.IsSExt = false;
9144     Entry.IsZExt = false;
9145     Entry.IsInReg = false;
9146     Entry.IsSRet = true;
9147     Entry.IsNest = false;
9148     Entry.IsByVal = false;
9149     Entry.IsReturned = false;
9150     Entry.IsSwiftSelf = false;
9151     Entry.IsSwiftError = false;
9152     Entry.IsCFGuardTarget = false;
9153     Entry.Alignment = Align;
9154     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9155     CLI.NumFixedArgs += 1;
9156     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9157 
9158     // sret demotion isn't compatible with tail-calls, since the sret argument
9159     // points into the callers stack frame.
9160     CLI.IsTailCall = false;
9161   } else {
9162     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9163         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9164     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9165       ISD::ArgFlagsTy Flags;
9166       if (NeedsRegBlock) {
9167         Flags.setInConsecutiveRegs();
9168         if (I == RetTys.size() - 1)
9169           Flags.setInConsecutiveRegsLast();
9170       }
9171       EVT VT = RetTys[I];
9172       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9173                                                      CLI.CallConv, VT);
9174       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9175                                                        CLI.CallConv, VT);
9176       for (unsigned i = 0; i != NumRegs; ++i) {
9177         ISD::InputArg MyFlags;
9178         MyFlags.Flags = Flags;
9179         MyFlags.VT = RegisterVT;
9180         MyFlags.ArgVT = VT;
9181         MyFlags.Used = CLI.IsReturnValueUsed;
9182         if (CLI.RetTy->isPointerTy()) {
9183           MyFlags.Flags.setPointer();
9184           MyFlags.Flags.setPointerAddrSpace(
9185               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9186         }
9187         if (CLI.RetSExt)
9188           MyFlags.Flags.setSExt();
9189         if (CLI.RetZExt)
9190           MyFlags.Flags.setZExt();
9191         if (CLI.IsInReg)
9192           MyFlags.Flags.setInReg();
9193         CLI.Ins.push_back(MyFlags);
9194       }
9195     }
9196   }
9197 
9198   // We push in swifterror return as the last element of CLI.Ins.
9199   ArgListTy &Args = CLI.getArgs();
9200   if (supportSwiftError()) {
9201     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9202       if (Args[i].IsSwiftError) {
9203         ISD::InputArg MyFlags;
9204         MyFlags.VT = getPointerTy(DL);
9205         MyFlags.ArgVT = EVT(getPointerTy(DL));
9206         MyFlags.Flags.setSwiftError();
9207         CLI.Ins.push_back(MyFlags);
9208       }
9209     }
9210   }
9211 
9212   // Handle all of the outgoing arguments.
9213   CLI.Outs.clear();
9214   CLI.OutVals.clear();
9215   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9216     SmallVector<EVT, 4> ValueVTs;
9217     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9218     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9219     Type *FinalType = Args[i].Ty;
9220     if (Args[i].IsByVal)
9221       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9222     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9223         FinalType, CLI.CallConv, CLI.IsVarArg);
9224     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9225          ++Value) {
9226       EVT VT = ValueVTs[Value];
9227       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9228       SDValue Op = SDValue(Args[i].Node.getNode(),
9229                            Args[i].Node.getResNo() + Value);
9230       ISD::ArgFlagsTy Flags;
9231 
9232       // Certain targets (such as MIPS), may have a different ABI alignment
9233       // for a type depending on the context. Give the target a chance to
9234       // specify the alignment it wants.
9235       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9236 
9237       if (Args[i].Ty->isPointerTy()) {
9238         Flags.setPointer();
9239         Flags.setPointerAddrSpace(
9240             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9241       }
9242       if (Args[i].IsZExt)
9243         Flags.setZExt();
9244       if (Args[i].IsSExt)
9245         Flags.setSExt();
9246       if (Args[i].IsInReg) {
9247         // If we are using vectorcall calling convention, a structure that is
9248         // passed InReg - is surely an HVA
9249         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9250             isa<StructType>(FinalType)) {
9251           // The first value of a structure is marked
9252           if (0 == Value)
9253             Flags.setHvaStart();
9254           Flags.setHva();
9255         }
9256         // Set InReg Flag
9257         Flags.setInReg();
9258       }
9259       if (Args[i].IsSRet)
9260         Flags.setSRet();
9261       if (Args[i].IsSwiftSelf)
9262         Flags.setSwiftSelf();
9263       if (Args[i].IsSwiftError)
9264         Flags.setSwiftError();
9265       if (Args[i].IsCFGuardTarget)
9266         Flags.setCFGuardTarget();
9267       if (Args[i].IsByVal)
9268         Flags.setByVal();
9269       if (Args[i].IsInAlloca) {
9270         Flags.setInAlloca();
9271         // Set the byval flag for CCAssignFn callbacks that don't know about
9272         // inalloca.  This way we can know how many bytes we should've allocated
9273         // and how many bytes a callee cleanup function will pop.  If we port
9274         // inalloca to more targets, we'll have to add custom inalloca handling
9275         // in the various CC lowering callbacks.
9276         Flags.setByVal();
9277       }
9278       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9279         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9280         Type *ElementTy = Ty->getElementType();
9281 
9282         unsigned FrameSize = DL.getTypeAllocSize(
9283             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9284         Flags.setByValSize(FrameSize);
9285 
9286         // info is not there but there are cases it cannot get right.
9287         unsigned FrameAlign;
9288         if (Args[i].Alignment)
9289           FrameAlign = Args[i].Alignment;
9290         else
9291           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9292         Flags.setByValAlign(Align(FrameAlign));
9293       }
9294       if (Args[i].IsNest)
9295         Flags.setNest();
9296       if (NeedsRegBlock)
9297         Flags.setInConsecutiveRegs();
9298       Flags.setOrigAlign(OriginalAlignment);
9299 
9300       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9301                                                  CLI.CallConv, VT);
9302       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9303                                                         CLI.CallConv, VT);
9304       SmallVector<SDValue, 4> Parts(NumParts);
9305       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9306 
9307       if (Args[i].IsSExt)
9308         ExtendKind = ISD::SIGN_EXTEND;
9309       else if (Args[i].IsZExt)
9310         ExtendKind = ISD::ZERO_EXTEND;
9311 
9312       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9313       // for now.
9314       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9315           CanLowerReturn) {
9316         assert((CLI.RetTy == Args[i].Ty ||
9317                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9318                  CLI.RetTy->getPointerAddressSpace() ==
9319                      Args[i].Ty->getPointerAddressSpace())) &&
9320                RetTys.size() == NumValues && "unexpected use of 'returned'");
9321         // Before passing 'returned' to the target lowering code, ensure that
9322         // either the register MVT and the actual EVT are the same size or that
9323         // the return value and argument are extended in the same way; in these
9324         // cases it's safe to pass the argument register value unchanged as the
9325         // return register value (although it's at the target's option whether
9326         // to do so)
9327         // TODO: allow code generation to take advantage of partially preserved
9328         // registers rather than clobbering the entire register when the
9329         // parameter extension method is not compatible with the return
9330         // extension method
9331         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9332             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9333              CLI.RetZExt == Args[i].IsZExt))
9334           Flags.setReturned();
9335       }
9336 
9337       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9338                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9339 
9340       for (unsigned j = 0; j != NumParts; ++j) {
9341         // if it isn't first piece, alignment must be 1
9342         // For scalable vectors the scalable part is currently handled
9343         // by individual targets, so we just use the known minimum size here.
9344         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9345                     i < CLI.NumFixedArgs, i,
9346                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9347         if (NumParts > 1 && j == 0)
9348           MyFlags.Flags.setSplit();
9349         else if (j != 0) {
9350           MyFlags.Flags.setOrigAlign(Align(1));
9351           if (j == NumParts - 1)
9352             MyFlags.Flags.setSplitEnd();
9353         }
9354 
9355         CLI.Outs.push_back(MyFlags);
9356         CLI.OutVals.push_back(Parts[j]);
9357       }
9358 
9359       if (NeedsRegBlock && Value == NumValues - 1)
9360         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9361     }
9362   }
9363 
9364   SmallVector<SDValue, 4> InVals;
9365   CLI.Chain = LowerCall(CLI, InVals);
9366 
9367   // Update CLI.InVals to use outside of this function.
9368   CLI.InVals = InVals;
9369 
9370   // Verify that the target's LowerCall behaved as expected.
9371   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9372          "LowerCall didn't return a valid chain!");
9373   assert((!CLI.IsTailCall || InVals.empty()) &&
9374          "LowerCall emitted a return value for a tail call!");
9375   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9376          "LowerCall didn't emit the correct number of values!");
9377 
9378   // For a tail call, the return value is merely live-out and there aren't
9379   // any nodes in the DAG representing it. Return a special value to
9380   // indicate that a tail call has been emitted and no more Instructions
9381   // should be processed in the current block.
9382   if (CLI.IsTailCall) {
9383     CLI.DAG.setRoot(CLI.Chain);
9384     return std::make_pair(SDValue(), SDValue());
9385   }
9386 
9387 #ifndef NDEBUG
9388   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9389     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9390     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9391            "LowerCall emitted a value with the wrong type!");
9392   }
9393 #endif
9394 
9395   SmallVector<SDValue, 4> ReturnValues;
9396   if (!CanLowerReturn) {
9397     // The instruction result is the result of loading from the
9398     // hidden sret parameter.
9399     SmallVector<EVT, 1> PVTs;
9400     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9401 
9402     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9403     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9404     EVT PtrVT = PVTs[0];
9405 
9406     unsigned NumValues = RetTys.size();
9407     ReturnValues.resize(NumValues);
9408     SmallVector<SDValue, 4> Chains(NumValues);
9409 
9410     // An aggregate return value cannot wrap around the address space, so
9411     // offsets to its parts don't wrap either.
9412     SDNodeFlags Flags;
9413     Flags.setNoUnsignedWrap(true);
9414 
9415     for (unsigned i = 0; i < NumValues; ++i) {
9416       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9417                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9418                                                         PtrVT), Flags);
9419       SDValue L = CLI.DAG.getLoad(
9420           RetTys[i], CLI.DL, CLI.Chain, Add,
9421           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9422                                             DemoteStackIdx, Offsets[i]),
9423           /* Alignment = */ 1);
9424       ReturnValues[i] = L;
9425       Chains[i] = L.getValue(1);
9426     }
9427 
9428     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9429   } else {
9430     // Collect the legal value parts into potentially illegal values
9431     // that correspond to the original function's return values.
9432     Optional<ISD::NodeType> AssertOp;
9433     if (CLI.RetSExt)
9434       AssertOp = ISD::AssertSext;
9435     else if (CLI.RetZExt)
9436       AssertOp = ISD::AssertZext;
9437     unsigned CurReg = 0;
9438     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9439       EVT VT = RetTys[I];
9440       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9441                                                      CLI.CallConv, VT);
9442       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9443                                                        CLI.CallConv, VT);
9444 
9445       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9446                                               NumRegs, RegisterVT, VT, nullptr,
9447                                               CLI.CallConv, AssertOp));
9448       CurReg += NumRegs;
9449     }
9450 
9451     // For a function returning void, there is no return value. We can't create
9452     // such a node, so we just return a null return value in that case. In
9453     // that case, nothing will actually look at the value.
9454     if (ReturnValues.empty())
9455       return std::make_pair(SDValue(), CLI.Chain);
9456   }
9457 
9458   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9459                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9460   return std::make_pair(Res, CLI.Chain);
9461 }
9462 
9463 void TargetLowering::LowerOperationWrapper(SDNode *N,
9464                                            SmallVectorImpl<SDValue> &Results,
9465                                            SelectionDAG &DAG) const {
9466   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9467     Results.push_back(Res);
9468 }
9469 
9470 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9471   llvm_unreachable("LowerOperation not implemented for this target!");
9472 }
9473 
9474 void
9475 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9476   SDValue Op = getNonRegisterValue(V);
9477   assert((Op.getOpcode() != ISD::CopyFromReg ||
9478           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9479          "Copy from a reg to the same reg!");
9480   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9481 
9482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9483   // If this is an InlineAsm we have to match the registers required, not the
9484   // notional registers required by the type.
9485 
9486   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9487                    None); // This is not an ABI copy.
9488   SDValue Chain = DAG.getEntryNode();
9489 
9490   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9491                               FuncInfo.PreferredExtendType.end())
9492                                  ? ISD::ANY_EXTEND
9493                                  : FuncInfo.PreferredExtendType[V];
9494   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9495   PendingExports.push_back(Chain);
9496 }
9497 
9498 #include "llvm/CodeGen/SelectionDAGISel.h"
9499 
9500 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9501 /// entry block, return true.  This includes arguments used by switches, since
9502 /// the switch may expand into multiple basic blocks.
9503 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9504   // With FastISel active, we may be splitting blocks, so force creation
9505   // of virtual registers for all non-dead arguments.
9506   if (FastISel)
9507     return A->use_empty();
9508 
9509   const BasicBlock &Entry = A->getParent()->front();
9510   for (const User *U : A->users())
9511     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9512       return false;  // Use not in entry block.
9513 
9514   return true;
9515 }
9516 
9517 using ArgCopyElisionMapTy =
9518     DenseMap<const Argument *,
9519              std::pair<const AllocaInst *, const StoreInst *>>;
9520 
9521 /// Scan the entry block of the function in FuncInfo for arguments that look
9522 /// like copies into a local alloca. Record any copied arguments in
9523 /// ArgCopyElisionCandidates.
9524 static void
9525 findArgumentCopyElisionCandidates(const DataLayout &DL,
9526                                   FunctionLoweringInfo *FuncInfo,
9527                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9528   // Record the state of every static alloca used in the entry block. Argument
9529   // allocas are all used in the entry block, so we need approximately as many
9530   // entries as we have arguments.
9531   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9532   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9533   unsigned NumArgs = FuncInfo->Fn->arg_size();
9534   StaticAllocas.reserve(NumArgs * 2);
9535 
9536   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9537     if (!V)
9538       return nullptr;
9539     V = V->stripPointerCasts();
9540     const auto *AI = dyn_cast<AllocaInst>(V);
9541     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9542       return nullptr;
9543     auto Iter = StaticAllocas.insert({AI, Unknown});
9544     return &Iter.first->second;
9545   };
9546 
9547   // Look for stores of arguments to static allocas. Look through bitcasts and
9548   // GEPs to handle type coercions, as long as the alloca is fully initialized
9549   // by the store. Any non-store use of an alloca escapes it and any subsequent
9550   // unanalyzed store might write it.
9551   // FIXME: Handle structs initialized with multiple stores.
9552   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9553     // Look for stores, and handle non-store uses conservatively.
9554     const auto *SI = dyn_cast<StoreInst>(&I);
9555     if (!SI) {
9556       // We will look through cast uses, so ignore them completely.
9557       if (I.isCast())
9558         continue;
9559       // Ignore debug info intrinsics, they don't escape or store to allocas.
9560       if (isa<DbgInfoIntrinsic>(I))
9561         continue;
9562       // This is an unknown instruction. Assume it escapes or writes to all
9563       // static alloca operands.
9564       for (const Use &U : I.operands()) {
9565         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9566           *Info = StaticAllocaInfo::Clobbered;
9567       }
9568       continue;
9569     }
9570 
9571     // If the stored value is a static alloca, mark it as escaped.
9572     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9573       *Info = StaticAllocaInfo::Clobbered;
9574 
9575     // Check if the destination is a static alloca.
9576     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9577     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9578     if (!Info)
9579       continue;
9580     const AllocaInst *AI = cast<AllocaInst>(Dst);
9581 
9582     // Skip allocas that have been initialized or clobbered.
9583     if (*Info != StaticAllocaInfo::Unknown)
9584       continue;
9585 
9586     // Check if the stored value is an argument, and that this store fully
9587     // initializes the alloca. Don't elide copies from the same argument twice.
9588     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9589     const auto *Arg = dyn_cast<Argument>(Val);
9590     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9591         Arg->getType()->isEmptyTy() ||
9592         DL.getTypeStoreSize(Arg->getType()) !=
9593             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9594         ArgCopyElisionCandidates.count(Arg)) {
9595       *Info = StaticAllocaInfo::Clobbered;
9596       continue;
9597     }
9598 
9599     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9600                       << '\n');
9601 
9602     // Mark this alloca and store for argument copy elision.
9603     *Info = StaticAllocaInfo::Elidable;
9604     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9605 
9606     // Stop scanning if we've seen all arguments. This will happen early in -O0
9607     // builds, which is useful, because -O0 builds have large entry blocks and
9608     // many allocas.
9609     if (ArgCopyElisionCandidates.size() == NumArgs)
9610       break;
9611   }
9612 }
9613 
9614 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9615 /// ArgVal is a load from a suitable fixed stack object.
9616 static void tryToElideArgumentCopy(
9617     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9618     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9619     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9620     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9621     SDValue ArgVal, bool &ArgHasUses) {
9622   // Check if this is a load from a fixed stack object.
9623   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9624   if (!LNode)
9625     return;
9626   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9627   if (!FINode)
9628     return;
9629 
9630   // Check that the fixed stack object is the right size and alignment.
9631   // Look at the alignment that the user wrote on the alloca instead of looking
9632   // at the stack object.
9633   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9634   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9635   const AllocaInst *AI = ArgCopyIter->second.first;
9636   int FixedIndex = FINode->getIndex();
9637   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9638   int OldIndex = AllocaIndex;
9639   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9640   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9641     LLVM_DEBUG(
9642         dbgs() << "  argument copy elision failed due to bad fixed stack "
9643                   "object size\n");
9644     return;
9645   }
9646   unsigned RequiredAlignment = AI->getAlignment();
9647   if (!RequiredAlignment) {
9648     RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9649         AI->getAllocatedType());
9650   }
9651   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9652     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9653                          "greater than stack argument alignment ("
9654                       << RequiredAlignment << " vs "
9655                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9656     return;
9657   }
9658 
9659   // Perform the elision. Delete the old stack object and replace its only use
9660   // in the variable info map. Mark the stack object as mutable.
9661   LLVM_DEBUG({
9662     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9663            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9664            << '\n';
9665   });
9666   MFI.RemoveStackObject(OldIndex);
9667   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9668   AllocaIndex = FixedIndex;
9669   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9670   Chains.push_back(ArgVal.getValue(1));
9671 
9672   // Avoid emitting code for the store implementing the copy.
9673   const StoreInst *SI = ArgCopyIter->second.second;
9674   ElidedArgCopyInstrs.insert(SI);
9675 
9676   // Check for uses of the argument again so that we can avoid exporting ArgVal
9677   // if it is't used by anything other than the store.
9678   for (const Value *U : Arg.users()) {
9679     if (U != SI) {
9680       ArgHasUses = true;
9681       break;
9682     }
9683   }
9684 }
9685 
9686 void SelectionDAGISel::LowerArguments(const Function &F) {
9687   SelectionDAG &DAG = SDB->DAG;
9688   SDLoc dl = SDB->getCurSDLoc();
9689   const DataLayout &DL = DAG.getDataLayout();
9690   SmallVector<ISD::InputArg, 16> Ins;
9691 
9692   if (!FuncInfo->CanLowerReturn) {
9693     // Put in an sret pointer parameter before all the other parameters.
9694     SmallVector<EVT, 1> ValueVTs;
9695     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9696                     F.getReturnType()->getPointerTo(
9697                         DAG.getDataLayout().getAllocaAddrSpace()),
9698                     ValueVTs);
9699 
9700     // NOTE: Assuming that a pointer will never break down to more than one VT
9701     // or one register.
9702     ISD::ArgFlagsTy Flags;
9703     Flags.setSRet();
9704     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9705     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9706                          ISD::InputArg::NoArgIndex, 0);
9707     Ins.push_back(RetArg);
9708   }
9709 
9710   // Look for stores of arguments to static allocas. Mark such arguments with a
9711   // flag to ask the target to give us the memory location of that argument if
9712   // available.
9713   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9714   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9715                                     ArgCopyElisionCandidates);
9716 
9717   // Set up the incoming argument description vector.
9718   for (const Argument &Arg : F.args()) {
9719     unsigned ArgNo = Arg.getArgNo();
9720     SmallVector<EVT, 4> ValueVTs;
9721     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9722     bool isArgValueUsed = !Arg.use_empty();
9723     unsigned PartBase = 0;
9724     Type *FinalType = Arg.getType();
9725     if (Arg.hasAttribute(Attribute::ByVal))
9726       FinalType = Arg.getParamByValType();
9727     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9728         FinalType, F.getCallingConv(), F.isVarArg());
9729     for (unsigned Value = 0, NumValues = ValueVTs.size();
9730          Value != NumValues; ++Value) {
9731       EVT VT = ValueVTs[Value];
9732       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9733       ISD::ArgFlagsTy Flags;
9734 
9735       // Certain targets (such as MIPS), may have a different ABI alignment
9736       // for a type depending on the context. Give the target a chance to
9737       // specify the alignment it wants.
9738       const Align OriginalAlignment(
9739           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9740 
9741       if (Arg.getType()->isPointerTy()) {
9742         Flags.setPointer();
9743         Flags.setPointerAddrSpace(
9744             cast<PointerType>(Arg.getType())->getAddressSpace());
9745       }
9746       if (Arg.hasAttribute(Attribute::ZExt))
9747         Flags.setZExt();
9748       if (Arg.hasAttribute(Attribute::SExt))
9749         Flags.setSExt();
9750       if (Arg.hasAttribute(Attribute::InReg)) {
9751         // If we are using vectorcall calling convention, a structure that is
9752         // passed InReg - is surely an HVA
9753         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9754             isa<StructType>(Arg.getType())) {
9755           // The first value of a structure is marked
9756           if (0 == Value)
9757             Flags.setHvaStart();
9758           Flags.setHva();
9759         }
9760         // Set InReg Flag
9761         Flags.setInReg();
9762       }
9763       if (Arg.hasAttribute(Attribute::StructRet))
9764         Flags.setSRet();
9765       if (Arg.hasAttribute(Attribute::SwiftSelf))
9766         Flags.setSwiftSelf();
9767       if (Arg.hasAttribute(Attribute::SwiftError))
9768         Flags.setSwiftError();
9769       if (Arg.hasAttribute(Attribute::ByVal))
9770         Flags.setByVal();
9771       if (Arg.hasAttribute(Attribute::InAlloca)) {
9772         Flags.setInAlloca();
9773         // Set the byval flag for CCAssignFn callbacks that don't know about
9774         // inalloca.  This way we can know how many bytes we should've allocated
9775         // and how many bytes a callee cleanup function will pop.  If we port
9776         // inalloca to more targets, we'll have to add custom inalloca handling
9777         // in the various CC lowering callbacks.
9778         Flags.setByVal();
9779       }
9780       if (F.getCallingConv() == CallingConv::X86_INTR) {
9781         // IA Interrupt passes frame (1st parameter) by value in the stack.
9782         if (ArgNo == 0)
9783           Flags.setByVal();
9784       }
9785       if (Flags.isByVal() || Flags.isInAlloca()) {
9786         Type *ElementTy = Arg.getParamByValType();
9787 
9788         // For ByVal, size and alignment should be passed from FE.  BE will
9789         // guess if this info is not there but there are cases it cannot get
9790         // right.
9791         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9792         Flags.setByValSize(FrameSize);
9793 
9794         unsigned FrameAlign;
9795         if (Arg.getParamAlignment())
9796           FrameAlign = Arg.getParamAlignment();
9797         else
9798           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9799         Flags.setByValAlign(Align(FrameAlign));
9800       }
9801       if (Arg.hasAttribute(Attribute::Nest))
9802         Flags.setNest();
9803       if (NeedsRegBlock)
9804         Flags.setInConsecutiveRegs();
9805       Flags.setOrigAlign(OriginalAlignment);
9806       if (ArgCopyElisionCandidates.count(&Arg))
9807         Flags.setCopyElisionCandidate();
9808       if (Arg.hasAttribute(Attribute::Returned))
9809         Flags.setReturned();
9810 
9811       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9812           *CurDAG->getContext(), F.getCallingConv(), VT);
9813       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9814           *CurDAG->getContext(), F.getCallingConv(), VT);
9815       for (unsigned i = 0; i != NumRegs; ++i) {
9816         // For scalable vectors, use the minimum size; individual targets
9817         // are responsible for handling scalable vector arguments and
9818         // return values.
9819         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9820                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9821         if (NumRegs > 1 && i == 0)
9822           MyFlags.Flags.setSplit();
9823         // if it isn't first piece, alignment must be 1
9824         else if (i > 0) {
9825           MyFlags.Flags.setOrigAlign(Align(1));
9826           if (i == NumRegs - 1)
9827             MyFlags.Flags.setSplitEnd();
9828         }
9829         Ins.push_back(MyFlags);
9830       }
9831       if (NeedsRegBlock && Value == NumValues - 1)
9832         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9833       PartBase += VT.getStoreSize().getKnownMinSize();
9834     }
9835   }
9836 
9837   // Call the target to set up the argument values.
9838   SmallVector<SDValue, 8> InVals;
9839   SDValue NewRoot = TLI->LowerFormalArguments(
9840       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9841 
9842   // Verify that the target's LowerFormalArguments behaved as expected.
9843   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9844          "LowerFormalArguments didn't return a valid chain!");
9845   assert(InVals.size() == Ins.size() &&
9846          "LowerFormalArguments didn't emit the correct number of values!");
9847   LLVM_DEBUG({
9848     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9849       assert(InVals[i].getNode() &&
9850              "LowerFormalArguments emitted a null value!");
9851       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9852              "LowerFormalArguments emitted a value with the wrong type!");
9853     }
9854   });
9855 
9856   // Update the DAG with the new chain value resulting from argument lowering.
9857   DAG.setRoot(NewRoot);
9858 
9859   // Set up the argument values.
9860   unsigned i = 0;
9861   if (!FuncInfo->CanLowerReturn) {
9862     // Create a virtual register for the sret pointer, and put in a copy
9863     // from the sret argument into it.
9864     SmallVector<EVT, 1> ValueVTs;
9865     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9866                     F.getReturnType()->getPointerTo(
9867                         DAG.getDataLayout().getAllocaAddrSpace()),
9868                     ValueVTs);
9869     MVT VT = ValueVTs[0].getSimpleVT();
9870     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9871     Optional<ISD::NodeType> AssertOp = None;
9872     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9873                                         nullptr, F.getCallingConv(), AssertOp);
9874 
9875     MachineFunction& MF = SDB->DAG.getMachineFunction();
9876     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9877     Register SRetReg =
9878         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9879     FuncInfo->DemoteRegister = SRetReg;
9880     NewRoot =
9881         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9882     DAG.setRoot(NewRoot);
9883 
9884     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9885     ++i;
9886   }
9887 
9888   SmallVector<SDValue, 4> Chains;
9889   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9890   for (const Argument &Arg : F.args()) {
9891     SmallVector<SDValue, 4> ArgValues;
9892     SmallVector<EVT, 4> ValueVTs;
9893     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9894     unsigned NumValues = ValueVTs.size();
9895     if (NumValues == 0)
9896       continue;
9897 
9898     bool ArgHasUses = !Arg.use_empty();
9899 
9900     // Elide the copying store if the target loaded this argument from a
9901     // suitable fixed stack object.
9902     if (Ins[i].Flags.isCopyElisionCandidate()) {
9903       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9904                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9905                              InVals[i], ArgHasUses);
9906     }
9907 
9908     // If this argument is unused then remember its value. It is used to generate
9909     // debugging information.
9910     bool isSwiftErrorArg =
9911         TLI->supportSwiftError() &&
9912         Arg.hasAttribute(Attribute::SwiftError);
9913     if (!ArgHasUses && !isSwiftErrorArg) {
9914       SDB->setUnusedArgValue(&Arg, InVals[i]);
9915 
9916       // Also remember any frame index for use in FastISel.
9917       if (FrameIndexSDNode *FI =
9918           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9919         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9920     }
9921 
9922     for (unsigned Val = 0; Val != NumValues; ++Val) {
9923       EVT VT = ValueVTs[Val];
9924       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9925                                                       F.getCallingConv(), VT);
9926       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9927           *CurDAG->getContext(), F.getCallingConv(), VT);
9928 
9929       // Even an apparent 'unused' swifterror argument needs to be returned. So
9930       // we do generate a copy for it that can be used on return from the
9931       // function.
9932       if (ArgHasUses || isSwiftErrorArg) {
9933         Optional<ISD::NodeType> AssertOp;
9934         if (Arg.hasAttribute(Attribute::SExt))
9935           AssertOp = ISD::AssertSext;
9936         else if (Arg.hasAttribute(Attribute::ZExt))
9937           AssertOp = ISD::AssertZext;
9938 
9939         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9940                                              PartVT, VT, nullptr,
9941                                              F.getCallingConv(), AssertOp));
9942       }
9943 
9944       i += NumParts;
9945     }
9946 
9947     // We don't need to do anything else for unused arguments.
9948     if (ArgValues.empty())
9949       continue;
9950 
9951     // Note down frame index.
9952     if (FrameIndexSDNode *FI =
9953         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9954       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9955 
9956     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9957                                      SDB->getCurSDLoc());
9958 
9959     SDB->setValue(&Arg, Res);
9960     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9961       // We want to associate the argument with the frame index, among
9962       // involved operands, that correspond to the lowest address. The
9963       // getCopyFromParts function, called earlier, is swapping the order of
9964       // the operands to BUILD_PAIR depending on endianness. The result of
9965       // that swapping is that the least significant bits of the argument will
9966       // be in the first operand of the BUILD_PAIR node, and the most
9967       // significant bits will be in the second operand.
9968       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9969       if (LoadSDNode *LNode =
9970           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9971         if (FrameIndexSDNode *FI =
9972             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9973           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9974     }
9975 
9976     // Analyses past this point are naive and don't expect an assertion.
9977     if (Res.getOpcode() == ISD::AssertZext)
9978       Res = Res.getOperand(0);
9979 
9980     // Update the SwiftErrorVRegDefMap.
9981     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9982       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9983       if (Register::isVirtualRegister(Reg))
9984         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9985                                    Reg);
9986     }
9987 
9988     // If this argument is live outside of the entry block, insert a copy from
9989     // wherever we got it to the vreg that other BB's will reference it as.
9990     if (Res.getOpcode() == ISD::CopyFromReg) {
9991       // If we can, though, try to skip creating an unnecessary vreg.
9992       // FIXME: This isn't very clean... it would be nice to make this more
9993       // general.
9994       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9995       if (Register::isVirtualRegister(Reg)) {
9996         FuncInfo->ValueMap[&Arg] = Reg;
9997         continue;
9998       }
9999     }
10000     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10001       FuncInfo->InitializeRegForValue(&Arg);
10002       SDB->CopyToExportRegsIfNeeded(&Arg);
10003     }
10004   }
10005 
10006   if (!Chains.empty()) {
10007     Chains.push_back(NewRoot);
10008     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10009   }
10010 
10011   DAG.setRoot(NewRoot);
10012 
10013   assert(i == InVals.size() && "Argument register count mismatch!");
10014 
10015   // If any argument copy elisions occurred and we have debug info, update the
10016   // stale frame indices used in the dbg.declare variable info table.
10017   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10018   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10019     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10020       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10021       if (I != ArgCopyElisionFrameIndexMap.end())
10022         VI.Slot = I->second;
10023     }
10024   }
10025 
10026   // Finally, if the target has anything special to do, allow it to do so.
10027   emitFunctionEntryCode();
10028 }
10029 
10030 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10031 /// ensure constants are generated when needed.  Remember the virtual registers
10032 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10033 /// directly add them, because expansion might result in multiple MBB's for one
10034 /// BB.  As such, the start of the BB might correspond to a different MBB than
10035 /// the end.
10036 void
10037 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10038   const Instruction *TI = LLVMBB->getTerminator();
10039 
10040   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10041 
10042   // Check PHI nodes in successors that expect a value to be available from this
10043   // block.
10044   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10045     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10046     if (!isa<PHINode>(SuccBB->begin())) continue;
10047     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10048 
10049     // If this terminator has multiple identical successors (common for
10050     // switches), only handle each succ once.
10051     if (!SuccsHandled.insert(SuccMBB).second)
10052       continue;
10053 
10054     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10055 
10056     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10057     // nodes and Machine PHI nodes, but the incoming operands have not been
10058     // emitted yet.
10059     for (const PHINode &PN : SuccBB->phis()) {
10060       // Ignore dead phi's.
10061       if (PN.use_empty())
10062         continue;
10063 
10064       // Skip empty types
10065       if (PN.getType()->isEmptyTy())
10066         continue;
10067 
10068       unsigned Reg;
10069       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10070 
10071       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10072         unsigned &RegOut = ConstantsOut[C];
10073         if (RegOut == 0) {
10074           RegOut = FuncInfo.CreateRegs(C);
10075           CopyValueToVirtualRegister(C, RegOut);
10076         }
10077         Reg = RegOut;
10078       } else {
10079         DenseMap<const Value *, unsigned>::iterator I =
10080           FuncInfo.ValueMap.find(PHIOp);
10081         if (I != FuncInfo.ValueMap.end())
10082           Reg = I->second;
10083         else {
10084           assert(isa<AllocaInst>(PHIOp) &&
10085                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10086                  "Didn't codegen value into a register!??");
10087           Reg = FuncInfo.CreateRegs(PHIOp);
10088           CopyValueToVirtualRegister(PHIOp, Reg);
10089         }
10090       }
10091 
10092       // Remember that this register needs to added to the machine PHI node as
10093       // the input for this MBB.
10094       SmallVector<EVT, 4> ValueVTs;
10095       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10096       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10097       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10098         EVT VT = ValueVTs[vti];
10099         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10100         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10101           FuncInfo.PHINodesToUpdate.push_back(
10102               std::make_pair(&*MBBI++, Reg + i));
10103         Reg += NumRegisters;
10104       }
10105     }
10106   }
10107 
10108   ConstantsOut.clear();
10109 }
10110 
10111 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10112 /// is 0.
10113 MachineBasicBlock *
10114 SelectionDAGBuilder::StackProtectorDescriptor::
10115 AddSuccessorMBB(const BasicBlock *BB,
10116                 MachineBasicBlock *ParentMBB,
10117                 bool IsLikely,
10118                 MachineBasicBlock *SuccMBB) {
10119   // If SuccBB has not been created yet, create it.
10120   if (!SuccMBB) {
10121     MachineFunction *MF = ParentMBB->getParent();
10122     MachineFunction::iterator BBI(ParentMBB);
10123     SuccMBB = MF->CreateMachineBasicBlock(BB);
10124     MF->insert(++BBI, SuccMBB);
10125   }
10126   // Add it as a successor of ParentMBB.
10127   ParentMBB->addSuccessor(
10128       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10129   return SuccMBB;
10130 }
10131 
10132 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10133   MachineFunction::iterator I(MBB);
10134   if (++I == FuncInfo.MF->end())
10135     return nullptr;
10136   return &*I;
10137 }
10138 
10139 /// During lowering new call nodes can be created (such as memset, etc.).
10140 /// Those will become new roots of the current DAG, but complications arise
10141 /// when they are tail calls. In such cases, the call lowering will update
10142 /// the root, but the builder still needs to know that a tail call has been
10143 /// lowered in order to avoid generating an additional return.
10144 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10145   // If the node is null, we do have a tail call.
10146   if (MaybeTC.getNode() != nullptr)
10147     DAG.setRoot(MaybeTC);
10148   else
10149     HasTailCall = true;
10150 }
10151 
10152 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10153                                         MachineBasicBlock *SwitchMBB,
10154                                         MachineBasicBlock *DefaultMBB) {
10155   MachineFunction *CurMF = FuncInfo.MF;
10156   MachineBasicBlock *NextMBB = nullptr;
10157   MachineFunction::iterator BBI(W.MBB);
10158   if (++BBI != FuncInfo.MF->end())
10159     NextMBB = &*BBI;
10160 
10161   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10162 
10163   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10164 
10165   if (Size == 2 && W.MBB == SwitchMBB) {
10166     // If any two of the cases has the same destination, and if one value
10167     // is the same as the other, but has one bit unset that the other has set,
10168     // use bit manipulation to do two compares at once.  For example:
10169     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10170     // TODO: This could be extended to merge any 2 cases in switches with 3
10171     // cases.
10172     // TODO: Handle cases where W.CaseBB != SwitchBB.
10173     CaseCluster &Small = *W.FirstCluster;
10174     CaseCluster &Big = *W.LastCluster;
10175 
10176     if (Small.Low == Small.High && Big.Low == Big.High &&
10177         Small.MBB == Big.MBB) {
10178       const APInt &SmallValue = Small.Low->getValue();
10179       const APInt &BigValue = Big.Low->getValue();
10180 
10181       // Check that there is only one bit different.
10182       APInt CommonBit = BigValue ^ SmallValue;
10183       if (CommonBit.isPowerOf2()) {
10184         SDValue CondLHS = getValue(Cond);
10185         EVT VT = CondLHS.getValueType();
10186         SDLoc DL = getCurSDLoc();
10187 
10188         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10189                                  DAG.getConstant(CommonBit, DL, VT));
10190         SDValue Cond = DAG.getSetCC(
10191             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10192             ISD::SETEQ);
10193 
10194         // Update successor info.
10195         // Both Small and Big will jump to Small.BB, so we sum up the
10196         // probabilities.
10197         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10198         if (BPI)
10199           addSuccessorWithProb(
10200               SwitchMBB, DefaultMBB,
10201               // The default destination is the first successor in IR.
10202               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10203         else
10204           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10205 
10206         // Insert the true branch.
10207         SDValue BrCond =
10208             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10209                         DAG.getBasicBlock(Small.MBB));
10210         // Insert the false branch.
10211         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10212                              DAG.getBasicBlock(DefaultMBB));
10213 
10214         DAG.setRoot(BrCond);
10215         return;
10216       }
10217     }
10218   }
10219 
10220   if (TM.getOptLevel() != CodeGenOpt::None) {
10221     // Here, we order cases by probability so the most likely case will be
10222     // checked first. However, two clusters can have the same probability in
10223     // which case their relative ordering is non-deterministic. So we use Low
10224     // as a tie-breaker as clusters are guaranteed to never overlap.
10225     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10226                [](const CaseCluster &a, const CaseCluster &b) {
10227       return a.Prob != b.Prob ?
10228              a.Prob > b.Prob :
10229              a.Low->getValue().slt(b.Low->getValue());
10230     });
10231 
10232     // Rearrange the case blocks so that the last one falls through if possible
10233     // without changing the order of probabilities.
10234     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10235       --I;
10236       if (I->Prob > W.LastCluster->Prob)
10237         break;
10238       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10239         std::swap(*I, *W.LastCluster);
10240         break;
10241       }
10242     }
10243   }
10244 
10245   // Compute total probability.
10246   BranchProbability DefaultProb = W.DefaultProb;
10247   BranchProbability UnhandledProbs = DefaultProb;
10248   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10249     UnhandledProbs += I->Prob;
10250 
10251   MachineBasicBlock *CurMBB = W.MBB;
10252   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10253     bool FallthroughUnreachable = false;
10254     MachineBasicBlock *Fallthrough;
10255     if (I == W.LastCluster) {
10256       // For the last cluster, fall through to the default destination.
10257       Fallthrough = DefaultMBB;
10258       FallthroughUnreachable = isa<UnreachableInst>(
10259           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10260     } else {
10261       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10262       CurMF->insert(BBI, Fallthrough);
10263       // Put Cond in a virtual register to make it available from the new blocks.
10264       ExportFromCurrentBlock(Cond);
10265     }
10266     UnhandledProbs -= I->Prob;
10267 
10268     switch (I->Kind) {
10269       case CC_JumpTable: {
10270         // FIXME: Optimize away range check based on pivot comparisons.
10271         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10272         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10273 
10274         // The jump block hasn't been inserted yet; insert it here.
10275         MachineBasicBlock *JumpMBB = JT->MBB;
10276         CurMF->insert(BBI, JumpMBB);
10277 
10278         auto JumpProb = I->Prob;
10279         auto FallthroughProb = UnhandledProbs;
10280 
10281         // If the default statement is a target of the jump table, we evenly
10282         // distribute the default probability to successors of CurMBB. Also
10283         // update the probability on the edge from JumpMBB to Fallthrough.
10284         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10285                                               SE = JumpMBB->succ_end();
10286              SI != SE; ++SI) {
10287           if (*SI == DefaultMBB) {
10288             JumpProb += DefaultProb / 2;
10289             FallthroughProb -= DefaultProb / 2;
10290             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10291             JumpMBB->normalizeSuccProbs();
10292             break;
10293           }
10294         }
10295 
10296         if (FallthroughUnreachable) {
10297           // Skip the range check if the fallthrough block is unreachable.
10298           JTH->OmitRangeCheck = true;
10299         }
10300 
10301         if (!JTH->OmitRangeCheck)
10302           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10303         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10304         CurMBB->normalizeSuccProbs();
10305 
10306         // The jump table header will be inserted in our current block, do the
10307         // range check, and fall through to our fallthrough block.
10308         JTH->HeaderBB = CurMBB;
10309         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10310 
10311         // If we're in the right place, emit the jump table header right now.
10312         if (CurMBB == SwitchMBB) {
10313           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10314           JTH->Emitted = true;
10315         }
10316         break;
10317       }
10318       case CC_BitTests: {
10319         // FIXME: Optimize away range check based on pivot comparisons.
10320         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10321 
10322         // The bit test blocks haven't been inserted yet; insert them here.
10323         for (BitTestCase &BTC : BTB->Cases)
10324           CurMF->insert(BBI, BTC.ThisBB);
10325 
10326         // Fill in fields of the BitTestBlock.
10327         BTB->Parent = CurMBB;
10328         BTB->Default = Fallthrough;
10329 
10330         BTB->DefaultProb = UnhandledProbs;
10331         // If the cases in bit test don't form a contiguous range, we evenly
10332         // distribute the probability on the edge to Fallthrough to two
10333         // successors of CurMBB.
10334         if (!BTB->ContiguousRange) {
10335           BTB->Prob += DefaultProb / 2;
10336           BTB->DefaultProb -= DefaultProb / 2;
10337         }
10338 
10339         if (FallthroughUnreachable) {
10340           // Skip the range check if the fallthrough block is unreachable.
10341           BTB->OmitRangeCheck = true;
10342         }
10343 
10344         // If we're in the right place, emit the bit test header right now.
10345         if (CurMBB == SwitchMBB) {
10346           visitBitTestHeader(*BTB, SwitchMBB);
10347           BTB->Emitted = true;
10348         }
10349         break;
10350       }
10351       case CC_Range: {
10352         const Value *RHS, *LHS, *MHS;
10353         ISD::CondCode CC;
10354         if (I->Low == I->High) {
10355           // Check Cond == I->Low.
10356           CC = ISD::SETEQ;
10357           LHS = Cond;
10358           RHS=I->Low;
10359           MHS = nullptr;
10360         } else {
10361           // Check I->Low <= Cond <= I->High.
10362           CC = ISD::SETLE;
10363           LHS = I->Low;
10364           MHS = Cond;
10365           RHS = I->High;
10366         }
10367 
10368         // If Fallthrough is unreachable, fold away the comparison.
10369         if (FallthroughUnreachable)
10370           CC = ISD::SETTRUE;
10371 
10372         // The false probability is the sum of all unhandled cases.
10373         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10374                      getCurSDLoc(), I->Prob, UnhandledProbs);
10375 
10376         if (CurMBB == SwitchMBB)
10377           visitSwitchCase(CB, SwitchMBB);
10378         else
10379           SL->SwitchCases.push_back(CB);
10380 
10381         break;
10382       }
10383     }
10384     CurMBB = Fallthrough;
10385   }
10386 }
10387 
10388 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10389                                               CaseClusterIt First,
10390                                               CaseClusterIt Last) {
10391   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10392     if (X.Prob != CC.Prob)
10393       return X.Prob > CC.Prob;
10394 
10395     // Ties are broken by comparing the case value.
10396     return X.Low->getValue().slt(CC.Low->getValue());
10397   });
10398 }
10399 
10400 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10401                                         const SwitchWorkListItem &W,
10402                                         Value *Cond,
10403                                         MachineBasicBlock *SwitchMBB) {
10404   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10405          "Clusters not sorted?");
10406 
10407   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10408 
10409   // Balance the tree based on branch probabilities to create a near-optimal (in
10410   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10411   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10412   CaseClusterIt LastLeft = W.FirstCluster;
10413   CaseClusterIt FirstRight = W.LastCluster;
10414   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10415   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10416 
10417   // Move LastLeft and FirstRight towards each other from opposite directions to
10418   // find a partitioning of the clusters which balances the probability on both
10419   // sides. If LeftProb and RightProb are equal, alternate which side is
10420   // taken to ensure 0-probability nodes are distributed evenly.
10421   unsigned I = 0;
10422   while (LastLeft + 1 < FirstRight) {
10423     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10424       LeftProb += (++LastLeft)->Prob;
10425     else
10426       RightProb += (--FirstRight)->Prob;
10427     I++;
10428   }
10429 
10430   while (true) {
10431     // Our binary search tree differs from a typical BST in that ours can have up
10432     // to three values in each leaf. The pivot selection above doesn't take that
10433     // into account, which means the tree might require more nodes and be less
10434     // efficient. We compensate for this here.
10435 
10436     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10437     unsigned NumRight = W.LastCluster - FirstRight + 1;
10438 
10439     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10440       // If one side has less than 3 clusters, and the other has more than 3,
10441       // consider taking a cluster from the other side.
10442 
10443       if (NumLeft < NumRight) {
10444         // Consider moving the first cluster on the right to the left side.
10445         CaseCluster &CC = *FirstRight;
10446         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10447         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10448         if (LeftSideRank <= RightSideRank) {
10449           // Moving the cluster to the left does not demote it.
10450           ++LastLeft;
10451           ++FirstRight;
10452           continue;
10453         }
10454       } else {
10455         assert(NumRight < NumLeft);
10456         // Consider moving the last element on the left to the right side.
10457         CaseCluster &CC = *LastLeft;
10458         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10459         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10460         if (RightSideRank <= LeftSideRank) {
10461           // Moving the cluster to the right does not demot it.
10462           --LastLeft;
10463           --FirstRight;
10464           continue;
10465         }
10466       }
10467     }
10468     break;
10469   }
10470 
10471   assert(LastLeft + 1 == FirstRight);
10472   assert(LastLeft >= W.FirstCluster);
10473   assert(FirstRight <= W.LastCluster);
10474 
10475   // Use the first element on the right as pivot since we will make less-than
10476   // comparisons against it.
10477   CaseClusterIt PivotCluster = FirstRight;
10478   assert(PivotCluster > W.FirstCluster);
10479   assert(PivotCluster <= W.LastCluster);
10480 
10481   CaseClusterIt FirstLeft = W.FirstCluster;
10482   CaseClusterIt LastRight = W.LastCluster;
10483 
10484   const ConstantInt *Pivot = PivotCluster->Low;
10485 
10486   // New blocks will be inserted immediately after the current one.
10487   MachineFunction::iterator BBI(W.MBB);
10488   ++BBI;
10489 
10490   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10491   // we can branch to its destination directly if it's squeezed exactly in
10492   // between the known lower bound and Pivot - 1.
10493   MachineBasicBlock *LeftMBB;
10494   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10495       FirstLeft->Low == W.GE &&
10496       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10497     LeftMBB = FirstLeft->MBB;
10498   } else {
10499     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10500     FuncInfo.MF->insert(BBI, LeftMBB);
10501     WorkList.push_back(
10502         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10503     // Put Cond in a virtual register to make it available from the new blocks.
10504     ExportFromCurrentBlock(Cond);
10505   }
10506 
10507   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10508   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10509   // directly if RHS.High equals the current upper bound.
10510   MachineBasicBlock *RightMBB;
10511   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10512       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10513     RightMBB = FirstRight->MBB;
10514   } else {
10515     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10516     FuncInfo.MF->insert(BBI, RightMBB);
10517     WorkList.push_back(
10518         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10519     // Put Cond in a virtual register to make it available from the new blocks.
10520     ExportFromCurrentBlock(Cond);
10521   }
10522 
10523   // Create the CaseBlock record that will be used to lower the branch.
10524   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10525                getCurSDLoc(), LeftProb, RightProb);
10526 
10527   if (W.MBB == SwitchMBB)
10528     visitSwitchCase(CB, SwitchMBB);
10529   else
10530     SL->SwitchCases.push_back(CB);
10531 }
10532 
10533 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10534 // from the swith statement.
10535 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10536                                             BranchProbability PeeledCaseProb) {
10537   if (PeeledCaseProb == BranchProbability::getOne())
10538     return BranchProbability::getZero();
10539   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10540 
10541   uint32_t Numerator = CaseProb.getNumerator();
10542   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10543   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10544 }
10545 
10546 // Try to peel the top probability case if it exceeds the threshold.
10547 // Return current MachineBasicBlock for the switch statement if the peeling
10548 // does not occur.
10549 // If the peeling is performed, return the newly created MachineBasicBlock
10550 // for the peeled switch statement. Also update Clusters to remove the peeled
10551 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10552 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10553     const SwitchInst &SI, CaseClusterVector &Clusters,
10554     BranchProbability &PeeledCaseProb) {
10555   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10556   // Don't perform if there is only one cluster or optimizing for size.
10557   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10558       TM.getOptLevel() == CodeGenOpt::None ||
10559       SwitchMBB->getParent()->getFunction().hasMinSize())
10560     return SwitchMBB;
10561 
10562   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10563   unsigned PeeledCaseIndex = 0;
10564   bool SwitchPeeled = false;
10565   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10566     CaseCluster &CC = Clusters[Index];
10567     if (CC.Prob < TopCaseProb)
10568       continue;
10569     TopCaseProb = CC.Prob;
10570     PeeledCaseIndex = Index;
10571     SwitchPeeled = true;
10572   }
10573   if (!SwitchPeeled)
10574     return SwitchMBB;
10575 
10576   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10577                     << TopCaseProb << "\n");
10578 
10579   // Record the MBB for the peeled switch statement.
10580   MachineFunction::iterator BBI(SwitchMBB);
10581   ++BBI;
10582   MachineBasicBlock *PeeledSwitchMBB =
10583       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10584   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10585 
10586   ExportFromCurrentBlock(SI.getCondition());
10587   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10588   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10589                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10590   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10591 
10592   Clusters.erase(PeeledCaseIt);
10593   for (CaseCluster &CC : Clusters) {
10594     LLVM_DEBUG(
10595         dbgs() << "Scale the probablity for one cluster, before scaling: "
10596                << CC.Prob << "\n");
10597     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10598     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10599   }
10600   PeeledCaseProb = TopCaseProb;
10601   return PeeledSwitchMBB;
10602 }
10603 
10604 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10605   // Extract cases from the switch.
10606   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10607   CaseClusterVector Clusters;
10608   Clusters.reserve(SI.getNumCases());
10609   for (auto I : SI.cases()) {
10610     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10611     const ConstantInt *CaseVal = I.getCaseValue();
10612     BranchProbability Prob =
10613         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10614             : BranchProbability(1, SI.getNumCases() + 1);
10615     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10616   }
10617 
10618   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10619 
10620   // Cluster adjacent cases with the same destination. We do this at all
10621   // optimization levels because it's cheap to do and will make codegen faster
10622   // if there are many clusters.
10623   sortAndRangeify(Clusters);
10624 
10625   // The branch probablity of the peeled case.
10626   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10627   MachineBasicBlock *PeeledSwitchMBB =
10628       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10629 
10630   // If there is only the default destination, jump there directly.
10631   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10632   if (Clusters.empty()) {
10633     assert(PeeledSwitchMBB == SwitchMBB);
10634     SwitchMBB->addSuccessor(DefaultMBB);
10635     if (DefaultMBB != NextBlock(SwitchMBB)) {
10636       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10637                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10638     }
10639     return;
10640   }
10641 
10642   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10643   SL->findBitTestClusters(Clusters, &SI);
10644 
10645   LLVM_DEBUG({
10646     dbgs() << "Case clusters: ";
10647     for (const CaseCluster &C : Clusters) {
10648       if (C.Kind == CC_JumpTable)
10649         dbgs() << "JT:";
10650       if (C.Kind == CC_BitTests)
10651         dbgs() << "BT:";
10652 
10653       C.Low->getValue().print(dbgs(), true);
10654       if (C.Low != C.High) {
10655         dbgs() << '-';
10656         C.High->getValue().print(dbgs(), true);
10657       }
10658       dbgs() << ' ';
10659     }
10660     dbgs() << '\n';
10661   });
10662 
10663   assert(!Clusters.empty());
10664   SwitchWorkList WorkList;
10665   CaseClusterIt First = Clusters.begin();
10666   CaseClusterIt Last = Clusters.end() - 1;
10667   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10668   // Scale the branchprobability for DefaultMBB if the peel occurs and
10669   // DefaultMBB is not replaced.
10670   if (PeeledCaseProb != BranchProbability::getZero() &&
10671       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10672     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10673   WorkList.push_back(
10674       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10675 
10676   while (!WorkList.empty()) {
10677     SwitchWorkListItem W = WorkList.back();
10678     WorkList.pop_back();
10679     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10680 
10681     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10682         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10683       // For optimized builds, lower large range as a balanced binary tree.
10684       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10685       continue;
10686     }
10687 
10688     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10689   }
10690 }
10691 
10692 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10693   SDNodeFlags Flags;
10694 
10695   SDValue Op = getValue(I.getOperand(0));
10696   if (I.getOperand(0)->getType()->isAggregateType()) {
10697     EVT VT = Op.getValueType();
10698     SmallVector<SDValue, 1> Values;
10699     for (unsigned i = 0; i < Op.getNumOperands(); ++i) {
10700       SDValue Arg(Op.getNode(), i);
10701       SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), VT, Arg, Flags);
10702       Values.push_back(UnNodeValue);
10703     }
10704     SDValue MergedValue = DAG.getMergeValues(Values, getCurSDLoc());
10705     setValue(&I, MergedValue);
10706   } else {
10707     SDValue UnNodeValue = DAG.getNode(ISD::FREEZE, getCurSDLoc(), Op.getValueType(),
10708                                       Op, Flags);
10709     setValue(&I, UnNodeValue);
10710   }
10711 }
10712