xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7634905a73652d26a7b36ec63c6511cc732aa7e7)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RuntimeLibcalls.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
48 #include "llvm/CodeGen/StackMaps.h"
49 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
50 #include "llvm/CodeGen/TargetFrameLowering.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetOpcodes.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/WinEHFuncInfo.h"
56 #include "llvm/IR/Argument.h"
57 #include "llvm/IR/Attributes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/Constant.h"
62 #include "llvm/IR/ConstantRange.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfo.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/EHPersonalities.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/TargetParser/Triple.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include <cstddef>
102 #include <iterator>
103 #include <limits>
104 #include <optional>
105 #include <tuple>
106 
107 using namespace llvm;
108 using namespace PatternMatch;
109 using namespace SwitchCG;
110 
111 #define DEBUG_TYPE "isel"
112 
113 /// LimitFloatPrecision - Generate low-precision inline sequences for
114 /// some float libcalls (6, 8 or 12 bits).
115 static unsigned LimitFloatPrecision;
116 
117 static cl::opt<bool>
118     InsertAssertAlign("insert-assert-align", cl::init(true),
119                       cl::desc("Insert the experimental `assertalign` node."),
120                       cl::ReallyHidden);
121 
122 static cl::opt<unsigned, true>
123     LimitFPPrecision("limit-float-precision",
124                      cl::desc("Generate low-precision inline sequences "
125                               "for some float libcalls"),
126                      cl::location(LimitFloatPrecision), cl::Hidden,
127                      cl::init(0));
128 
129 static cl::opt<unsigned> SwitchPeelThreshold(
130     "switch-peel-threshold", cl::Hidden, cl::init(66),
131     cl::desc("Set the case probability threshold for peeling the case from a "
132              "switch statement. A value greater than 100 will void this "
133              "optimization"));
134 
135 // Limit the width of DAG chains. This is important in general to prevent
136 // DAG-based analysis from blowing up. For example, alias analysis and
137 // load clustering may not complete in reasonable time. It is difficult to
138 // recognize and avoid this situation within each individual analysis, and
139 // future analyses are likely to have the same behavior. Limiting DAG width is
140 // the safe approach and will be especially important with global DAGs.
141 //
142 // MaxParallelChains default is arbitrarily high to avoid affecting
143 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
144 // sequence over this should have been converted to llvm.memcpy by the
145 // frontend. It is easy to induce this behavior with .ll code such as:
146 // %buffer = alloca [4096 x i8]
147 // %data = load [4096 x i8]* %argPtr
148 // store [4096 x i8] %data, [4096 x i8]* %buffer
149 static const unsigned MaxParallelChains = 64;
150 
151 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
152                                       const SDValue *Parts, unsigned NumParts,
153                                       MVT PartVT, EVT ValueVT, const Value *V,
154                                       std::optional<CallingConv::ID> CC);
155 
156 /// getCopyFromParts - Create a value that contains the specified legal parts
157 /// combined into the value they represent.  If the parts combine to a type
158 /// larger than ValueVT then AssertOp can be used to specify whether the extra
159 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
160 /// (ISD::AssertSext).
161 static SDValue
162 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
163                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
164                  std::optional<CallingConv::ID> CC = std::nullopt,
165                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
166   // Let the target assemble the parts if it wants to
167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
168   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
169                                                    PartVT, ValueVT, CC))
170     return Val;
171 
172   if (ValueVT.isVector())
173     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
174                                   CC);
175 
176   assert(NumParts > 0 && "No parts to assemble!");
177   SDValue Val = Parts[0];
178 
179   if (NumParts > 1) {
180     // Assemble the value from multiple parts.
181     if (ValueVT.isInteger()) {
182       unsigned PartBits = PartVT.getSizeInBits();
183       unsigned ValueBits = ValueVT.getSizeInBits();
184 
185       // Assemble the power of 2 part.
186       unsigned RoundParts = llvm::bit_floor(NumParts);
187       unsigned RoundBits = PartBits * RoundParts;
188       EVT RoundVT = RoundBits == ValueBits ?
189         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
190       SDValue Lo, Hi;
191 
192       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
193 
194       if (RoundParts > 2) {
195         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
196                               PartVT, HalfVT, V);
197         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
198                               RoundParts / 2, PartVT, HalfVT, V);
199       } else {
200         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
201         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
202       }
203 
204       if (DAG.getDataLayout().isBigEndian())
205         std::swap(Lo, Hi);
206 
207       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
208 
209       if (RoundParts < NumParts) {
210         // Assemble the trailing non-power-of-2 part.
211         unsigned OddParts = NumParts - RoundParts;
212         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
213         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
214                               OddVT, V, CC);
215 
216         // Combine the round and odd parts.
217         Lo = Val;
218         if (DAG.getDataLayout().isBigEndian())
219           std::swap(Lo, Hi);
220         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
221         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
222         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
223                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
224                                          TLI.getShiftAmountTy(
225                                              TotalVT, DAG.getDataLayout())));
226         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
227         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
228       }
229     } else if (PartVT.isFloatingPoint()) {
230       // FP split into multiple FP parts (for ppcf128)
231       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
232              "Unexpected split");
233       SDValue Lo, Hi;
234       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
235       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
236       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
237         std::swap(Lo, Hi);
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
239     } else {
240       // FP split into integer parts (soft fp)
241       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
242              !PartVT.isVector() && "Unexpected split");
243       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
244       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
245     }
246   }
247 
248   // There is now one part, held in Val.  Correct it to match ValueVT.
249   // PartEVT is the type of the register class that holds the value.
250   // ValueVT is the type of the inline asm operation.
251   EVT PartEVT = Val.getValueType();
252 
253   if (PartEVT == ValueVT)
254     return Val;
255 
256   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
257       ValueVT.bitsLT(PartEVT)) {
258     // For an FP value in an integer part, we need to truncate to the right
259     // width first.
260     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
261     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
262   }
263 
264   // Handle types that have the same size.
265   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
266     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
267 
268   // Handle types with different sizes.
269   if (PartEVT.isInteger() && ValueVT.isInteger()) {
270     if (ValueVT.bitsLT(PartEVT)) {
271       // For a truncate, see if we have any information to
272       // indicate whether the truncated bits will always be
273       // zero or sign-extension.
274       if (AssertOp)
275         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
276                           DAG.getValueType(ValueVT));
277       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
278     }
279     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
280   }
281 
282   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
283     // FP_ROUND's are always exact here.
284     if (ValueVT.bitsLT(Val.getValueType()))
285       return DAG.getNode(
286           ISD::FP_ROUND, DL, ValueVT, Val,
287           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
288 
289     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
290   }
291 
292   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
293   // then truncating.
294   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
295       ValueVT.bitsLT(PartEVT)) {
296     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
297     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
298   }
299 
300   report_fatal_error("Unknown mismatch in getCopyFromParts!");
301 }
302 
303 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
304                                               const Twine &ErrMsg) {
305   const Instruction *I = dyn_cast_or_null<Instruction>(V);
306   if (!V)
307     return Ctx.emitError(ErrMsg);
308 
309   const char *AsmError = ", possible invalid constraint for vector type";
310   if (const CallInst *CI = dyn_cast<CallInst>(I))
311     if (CI->isInlineAsm())
312       return Ctx.emitError(I, ErrMsg + AsmError);
313 
314   return Ctx.emitError(I, ErrMsg);
315 }
316 
317 /// getCopyFromPartsVector - Create a value that contains the specified legal
318 /// parts combined into the value they represent.  If the parts combine to a
319 /// type larger than ValueVT then AssertOp can be used to specify whether the
320 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
321 /// ValueVT (ISD::AssertSext).
322 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
323                                       const SDValue *Parts, unsigned NumParts,
324                                       MVT PartVT, EVT ValueVT, const Value *V,
325                                       std::optional<CallingConv::ID> CallConv) {
326   assert(ValueVT.isVector() && "Not a vector value");
327   assert(NumParts > 0 && "No parts to assemble!");
328   const bool IsABIRegCopy = CallConv.has_value();
329 
330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
331   SDValue Val = Parts[0];
332 
333   // Handle a multi-element vector.
334   if (NumParts > 1) {
335     EVT IntermediateVT;
336     MVT RegisterVT;
337     unsigned NumIntermediates;
338     unsigned NumRegs;
339 
340     if (IsABIRegCopy) {
341       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
342           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
343           NumIntermediates, RegisterVT);
344     } else {
345       NumRegs =
346           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
347                                      NumIntermediates, RegisterVT);
348     }
349 
350     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
351     NumParts = NumRegs; // Silence a compiler warning.
352     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
353     assert(RegisterVT.getSizeInBits() ==
354            Parts[0].getSimpleValueType().getSizeInBits() &&
355            "Part type sizes don't match!");
356 
357     // Assemble the parts into intermediate operands.
358     SmallVector<SDValue, 8> Ops(NumIntermediates);
359     if (NumIntermediates == NumParts) {
360       // If the register was not expanded, truncate or copy the value,
361       // as appropriate.
362       for (unsigned i = 0; i != NumParts; ++i)
363         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
364                                   PartVT, IntermediateVT, V, CallConv);
365     } else if (NumParts > 0) {
366       // If the intermediate type was expanded, build the intermediate
367       // operands from the parts.
368       assert(NumParts % NumIntermediates == 0 &&
369              "Must expand into a divisible number of parts!");
370       unsigned Factor = NumParts / NumIntermediates;
371       for (unsigned i = 0; i != NumIntermediates; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
373                                   PartVT, IntermediateVT, V, CallConv);
374     }
375 
376     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
377     // intermediate operands.
378     EVT BuiltVectorTy =
379         IntermediateVT.isVector()
380             ? EVT::getVectorVT(
381                   *DAG.getContext(), IntermediateVT.getScalarType(),
382                   IntermediateVT.getVectorElementCount() * NumParts)
383             : EVT::getVectorVT(*DAG.getContext(),
384                                IntermediateVT.getScalarType(),
385                                NumIntermediates);
386     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
387                                                 : ISD::BUILD_VECTOR,
388                       DL, BuiltVectorTy, Ops);
389   }
390 
391   // There is now one part, held in Val.  Correct it to match ValueVT.
392   EVT PartEVT = Val.getValueType();
393 
394   if (PartEVT == ValueVT)
395     return Val;
396 
397   if (PartEVT.isVector()) {
398     // Vector/Vector bitcast.
399     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
400       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401 
402     // If the parts vector has more elements than the value vector, then we
403     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
404     // Extract the elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
419         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420 
421       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
422       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
423         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
424     }
425 
426     // Promoted vector extract
427     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
428   }
429 
430   // Trivial bitcast if the types are the same size and the destination
431   // vector type is legal.
432   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
433       TLI.isTypeLegal(ValueVT))
434     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436   if (ValueVT.getVectorNumElements() != 1) {
437      // Certain ABIs require that vectors are passed as integers. For vectors
438      // are the same size, this is an obvious bitcast.
439      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
440        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441      } else if (ValueVT.bitsLT(PartEVT)) {
442        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
443        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
444        // Drop the extra bits.
445        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
446        return DAG.getBitcast(ValueVT, Val);
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     unsigned ValueSize = ValueSVT.getSizeInBits();
458     if (ValueSize == PartEVT.getSizeInBits()) {
459       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
460     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
461       // It's possible a scalar floating point type gets softened to integer and
462       // then promoted to a larger integer. If PartEVT is the larger integer
463       // we need to truncate it and then bitcast to the FP type.
464       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
465       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
466       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
467       Val = DAG.getBitcast(ValueSVT, Val);
468     } else {
469       Val = ValueVT.isFloatingPoint()
470                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
471                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
472     }
473   }
474 
475   return DAG.getBuildVector(ValueVT, DL, Val);
476 }
477 
478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
479                                  SDValue Val, SDValue *Parts, unsigned NumParts,
480                                  MVT PartVT, const Value *V,
481                                  std::optional<CallingConv::ID> CallConv);
482 
483 /// getCopyToParts - Create a series of nodes that contain the specified value
484 /// split into legal parts.  If the parts contain more bits than Val, then, for
485 /// integers, ExtendKind can be used to specify how to generate the extra bits.
486 static void
487 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
488                unsigned NumParts, MVT PartVT, const Value *V,
489                std::optional<CallingConv::ID> CallConv = std::nullopt,
490                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
491   // Let the target split the parts if it wants to
492   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
493   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
494                                       CallConv))
495     return;
496   EVT ValueVT = Val.getValueType();
497 
498   // Handle the vector case separately.
499   if (ValueVT.isVector())
500     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
501                                 CallConv);
502 
503   unsigned OrigNumParts = NumParts;
504   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
505          "Copying to an illegal type!");
506 
507   if (NumParts == 0)
508     return;
509 
510   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
511   EVT PartEVT = PartVT;
512   if (PartEVT == ValueVT) {
513     assert(NumParts == 1 && "No-op copy with multiple parts!");
514     Parts[0] = Val;
515     return;
516   }
517 
518   unsigned PartBits = PartVT.getSizeInBits();
519   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
520     // If the parts cover more bits than the value has, promote the value.
521     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
522       assert(NumParts == 1 && "Do not know what to promote to!");
523       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
524     } else {
525       if (ValueVT.isFloatingPoint()) {
526         // FP values need to be bitcast, then extended if they are being put
527         // into a larger container.
528         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
529         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
530       }
531       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
532              ValueVT.isInteger() &&
533              "Unknown mismatch!");
534       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
535       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
536       if (PartVT == MVT::x86mmx)
537         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538     }
539   } else if (PartBits == ValueVT.getSizeInBits()) {
540     // Different types of the same size.
541     assert(NumParts == 1 && PartEVT != ValueVT);
542     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
543   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
544     // If the parts cover less bits than value has, truncate the value.
545     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
546            ValueVT.isInteger() &&
547            "Unknown mismatch!");
548     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
549     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
550     if (PartVT == MVT::x86mmx)
551       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
552   }
553 
554   // The value may have changed - recompute ValueVT.
555   ValueVT = Val.getValueType();
556   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
557          "Failed to tile the value with PartVT!");
558 
559   if (NumParts == 1) {
560     if (PartEVT != ValueVT) {
561       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
562                                         "scalar-to-vector conversion failed");
563       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
564     }
565 
566     Parts[0] = Val;
567     return;
568   }
569 
570   // Expand the value into multiple parts.
571   if (NumParts & (NumParts - 1)) {
572     // The number of parts is not a power of 2.  Split off and copy the tail.
573     assert(PartVT.isInteger() && ValueVT.isInteger() &&
574            "Do not know what to expand to!");
575     unsigned RoundParts = llvm::bit_floor(NumParts);
576     unsigned RoundBits = RoundParts * PartBits;
577     unsigned OddParts = NumParts - RoundParts;
578     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
579       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
580 
581     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
582                    CallConv);
583 
584     if (DAG.getDataLayout().isBigEndian())
585       // The odd parts were reversed by getCopyToParts - unreverse them.
586       std::reverse(Parts + RoundParts, Parts + NumParts);
587 
588     NumParts = RoundParts;
589     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
590     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
591   }
592 
593   // The number of parts is a power of 2.  Repeatedly bisect the value using
594   // EXTRACT_ELEMENT.
595   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
596                          EVT::getIntegerVT(*DAG.getContext(),
597                                            ValueVT.getSizeInBits()),
598                          Val);
599 
600   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
601     for (unsigned i = 0; i < NumParts; i += StepSize) {
602       unsigned ThisBits = StepSize * PartBits / 2;
603       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
604       SDValue &Part0 = Parts[i];
605       SDValue &Part1 = Parts[i+StepSize/2];
606 
607       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
608                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
609       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
610                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
611 
612       if (ThisBits == PartBits && ThisVT != PartVT) {
613         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
614         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
615       }
616     }
617   }
618 
619   if (DAG.getDataLayout().isBigEndian())
620     std::reverse(Parts, Parts + OrigNumParts);
621 }
622 
623 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
624                                      const SDLoc &DL, EVT PartVT) {
625   if (!PartVT.isVector())
626     return SDValue();
627 
628   EVT ValueVT = Val.getValueType();
629   EVT PartEVT = PartVT.getVectorElementType();
630   EVT ValueEVT = ValueVT.getVectorElementType();
631   ElementCount PartNumElts = PartVT.getVectorElementCount();
632   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
633 
634   // We only support widening vectors with equivalent element types and
635   // fixed/scalable properties. If a target needs to widen a fixed-length type
636   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
637   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
638       PartNumElts.isScalable() != ValueNumElts.isScalable())
639     return SDValue();
640 
641   // Have a try for bf16 because some targets share its ABI with fp16.
642   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
643     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
644            "Cannot widen to illegal type");
645     Val = DAG.getNode(ISD::BITCAST, DL,
646                       ValueVT.changeVectorElementType(MVT::f16), Val);
647   } else if (PartEVT != ValueEVT) {
648     return SDValue();
649   }
650 
651   // Widening a scalable vector to another scalable vector is done by inserting
652   // the vector into a larger undef one.
653   if (PartNumElts.isScalable())
654     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
655                        Val, DAG.getVectorIdxConstant(0, DL));
656 
657   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
658   // undef elements.
659   SmallVector<SDValue, 16> Ops;
660   DAG.ExtractVectorElements(Val, Ops);
661   SDValue EltUndef = DAG.getUNDEF(PartEVT);
662   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
663 
664   // FIXME: Use CONCAT for 2x -> 4x.
665   return DAG.getBuildVector(PartVT, DL, Ops);
666 }
667 
668 /// getCopyToPartsVector - Create a series of nodes that contain the specified
669 /// value split into legal parts.
670 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
671                                  SDValue Val, SDValue *Parts, unsigned NumParts,
672                                  MVT PartVT, const Value *V,
673                                  std::optional<CallingConv::ID> CallConv) {
674   EVT ValueVT = Val.getValueType();
675   assert(ValueVT.isVector() && "Not a vector");
676   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
677   const bool IsABIRegCopy = CallConv.has_value();
678 
679   if (NumParts == 1) {
680     EVT PartEVT = PartVT;
681     if (PartEVT == ValueVT) {
682       // Nothing to do.
683     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
684       // Bitconvert vector->vector case.
685       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
686     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
687       Val = Widened;
688     } else if (PartVT.isVector() &&
689                PartEVT.getVectorElementType().bitsGE(
690                    ValueVT.getVectorElementType()) &&
691                PartEVT.getVectorElementCount() ==
692                    ValueVT.getVectorElementCount()) {
693 
694       // Promoted vector extract
695       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
696     } else if (PartEVT.isVector() &&
697                PartEVT.getVectorElementType() !=
698                    ValueVT.getVectorElementType() &&
699                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
700                    TargetLowering::TypeWidenVector) {
701       // Combination of widening and promotion.
702       EVT WidenVT =
703           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
704                            PartVT.getVectorElementCount());
705       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
706       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
707     } else {
708       // Don't extract an integer from a float vector. This can happen if the
709       // FP type gets softened to integer and then promoted. The promotion
710       // prevents it from being picked up by the earlier bitcast case.
711       if (ValueVT.getVectorElementCount().isScalar() &&
712           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
713         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
714                           DAG.getVectorIdxConstant(0, DL));
715       } else {
716         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
717         assert(PartVT.getFixedSizeInBits() > ValueSize &&
718                "lossy conversion of vector to scalar type");
719         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
720         Val = DAG.getBitcast(IntermediateType, Val);
721         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
722       }
723     }
724 
725     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
726     Parts[0] = Val;
727     return;
728   }
729 
730   // Handle a multi-element vector.
731   EVT IntermediateVT;
732   MVT RegisterVT;
733   unsigned NumIntermediates;
734   unsigned NumRegs;
735   if (IsABIRegCopy) {
736     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
737         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
738         RegisterVT);
739   } else {
740     NumRegs =
741         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
742                                    NumIntermediates, RegisterVT);
743   }
744 
745   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
746   NumParts = NumRegs; // Silence a compiler warning.
747   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
748 
749   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
750          "Mixing scalable and fixed vectors when copying in parts");
751 
752   std::optional<ElementCount> DestEltCnt;
753 
754   if (IntermediateVT.isVector())
755     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
756   else
757     DestEltCnt = ElementCount::getFixed(NumIntermediates);
758 
759   EVT BuiltVectorTy = EVT::getVectorVT(
760       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
761 
762   if (ValueVT == BuiltVectorTy) {
763     // Nothing to do.
764   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
765     // Bitconvert vector->vector case.
766     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
767   } else {
768     if (BuiltVectorTy.getVectorElementType().bitsGT(
769             ValueVT.getVectorElementType())) {
770       // Integer promotion.
771       ValueVT = EVT::getVectorVT(*DAG.getContext(),
772                                  BuiltVectorTy.getVectorElementType(),
773                                  ValueVT.getVectorElementCount());
774       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
775     }
776 
777     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
778       Val = Widened;
779     }
780   }
781 
782   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
783 
784   // Split the vector into intermediate operands.
785   SmallVector<SDValue, 8> Ops(NumIntermediates);
786   for (unsigned i = 0; i != NumIntermediates; ++i) {
787     if (IntermediateVT.isVector()) {
788       // This does something sensible for scalable vectors - see the
789       // definition of EXTRACT_SUBVECTOR for further details.
790       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
791       Ops[i] =
792           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
793                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
794     } else {
795       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
796                            DAG.getVectorIdxConstant(i, DL));
797     }
798   }
799 
800   // Split the intermediate operands into legal parts.
801   if (NumParts == NumIntermediates) {
802     // If the register was not expanded, promote or copy the value,
803     // as appropriate.
804     for (unsigned i = 0; i != NumParts; ++i)
805       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
806   } else if (NumParts > 0) {
807     // If the intermediate type was expanded, split each the value into
808     // legal parts.
809     assert(NumIntermediates != 0 && "division by zero");
810     assert(NumParts % NumIntermediates == 0 &&
811            "Must expand into a divisible number of parts!");
812     unsigned Factor = NumParts / NumIntermediates;
813     for (unsigned i = 0; i != NumIntermediates; ++i)
814       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
815                      CallConv);
816   }
817 }
818 
819 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
820                            EVT valuevt, std::optional<CallingConv::ID> CC)
821     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
822       RegCount(1, regs.size()), CallConv(CC) {}
823 
824 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
825                            const DataLayout &DL, unsigned Reg, Type *Ty,
826                            std::optional<CallingConv::ID> CC) {
827   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
828 
829   CallConv = CC;
830 
831   for (EVT ValueVT : ValueVTs) {
832     unsigned NumRegs =
833         isABIMangled()
834             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
835             : TLI.getNumRegisters(Context, ValueVT);
836     MVT RegisterVT =
837         isABIMangled()
838             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
839             : TLI.getRegisterType(Context, ValueVT);
840     for (unsigned i = 0; i != NumRegs; ++i)
841       Regs.push_back(Reg + i);
842     RegVTs.push_back(RegisterVT);
843     RegCount.push_back(NumRegs);
844     Reg += NumRegs;
845   }
846 }
847 
848 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
849                                       FunctionLoweringInfo &FuncInfo,
850                                       const SDLoc &dl, SDValue &Chain,
851                                       SDValue *Glue, const Value *V) const {
852   // A Value with type {} or [0 x %t] needs no registers.
853   if (ValueVTs.empty())
854     return SDValue();
855 
856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
857 
858   // Assemble the legal parts into the final values.
859   SmallVector<SDValue, 4> Values(ValueVTs.size());
860   SmallVector<SDValue, 8> Parts;
861   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
862     // Copy the legal parts from the registers.
863     EVT ValueVT = ValueVTs[Value];
864     unsigned NumRegs = RegCount[Value];
865     MVT RegisterVT = isABIMangled()
866                          ? TLI.getRegisterTypeForCallingConv(
867                                *DAG.getContext(), *CallConv, RegVTs[Value])
868                          : RegVTs[Value];
869 
870     Parts.resize(NumRegs);
871     for (unsigned i = 0; i != NumRegs; ++i) {
872       SDValue P;
873       if (!Glue) {
874         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
875       } else {
876         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
877         *Glue = P.getValue(2);
878       }
879 
880       Chain = P.getValue(1);
881       Parts[i] = P;
882 
883       // If the source register was virtual and if we know something about it,
884       // add an assert node.
885       if (!Register::isVirtualRegister(Regs[Part + i]) ||
886           !RegisterVT.isInteger())
887         continue;
888 
889       const FunctionLoweringInfo::LiveOutInfo *LOI =
890         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
891       if (!LOI)
892         continue;
893 
894       unsigned RegSize = RegisterVT.getScalarSizeInBits();
895       unsigned NumSignBits = LOI->NumSignBits;
896       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
897 
898       if (NumZeroBits == RegSize) {
899         // The current value is a zero.
900         // Explicitly express that as it would be easier for
901         // optimizations to kick in.
902         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
903         continue;
904       }
905 
906       // FIXME: We capture more information than the dag can represent.  For
907       // now, just use the tightest assertzext/assertsext possible.
908       bool isSExt;
909       EVT FromVT(MVT::Other);
910       if (NumZeroBits) {
911         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
912         isSExt = false;
913       } else if (NumSignBits > 1) {
914         FromVT =
915             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
916         isSExt = true;
917       } else {
918         continue;
919       }
920       // Add an assertion node.
921       assert(FromVT != MVT::Other);
922       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
923                              RegisterVT, P, DAG.getValueType(FromVT));
924     }
925 
926     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
927                                      RegisterVT, ValueVT, V, CallConv);
928     Part += NumRegs;
929     Parts.clear();
930   }
931 
932   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
933 }
934 
935 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
936                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
937                                  const Value *V,
938                                  ISD::NodeType PreferredExtendType) const {
939   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
940   ISD::NodeType ExtendKind = PreferredExtendType;
941 
942   // Get the list of the values's legal parts.
943   unsigned NumRegs = Regs.size();
944   SmallVector<SDValue, 8> Parts(NumRegs);
945   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
946     unsigned NumParts = RegCount[Value];
947 
948     MVT RegisterVT = isABIMangled()
949                          ? TLI.getRegisterTypeForCallingConv(
950                                *DAG.getContext(), *CallConv, RegVTs[Value])
951                          : RegVTs[Value];
952 
953     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
954       ExtendKind = ISD::ZERO_EXTEND;
955 
956     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
957                    NumParts, RegisterVT, V, CallConv, ExtendKind);
958     Part += NumParts;
959   }
960 
961   // Copy the parts into the registers.
962   SmallVector<SDValue, 8> Chains(NumRegs);
963   for (unsigned i = 0; i != NumRegs; ++i) {
964     SDValue Part;
965     if (!Glue) {
966       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
967     } else {
968       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
969       *Glue = Part.getValue(1);
970     }
971 
972     Chains[i] = Part.getValue(0);
973   }
974 
975   if (NumRegs == 1 || Glue)
976     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
977     // flagged to it. That is the CopyToReg nodes and the user are considered
978     // a single scheduling unit. If we create a TokenFactor and return it as
979     // chain, then the TokenFactor is both a predecessor (operand) of the
980     // user as well as a successor (the TF operands are flagged to the user).
981     // c1, f1 = CopyToReg
982     // c2, f2 = CopyToReg
983     // c3     = TokenFactor c1, c2
984     // ...
985     //        = op c3, ..., f2
986     Chain = Chains[NumRegs-1];
987   else
988     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
989 }
990 
991 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
992                                         unsigned MatchingIdx, const SDLoc &dl,
993                                         SelectionDAG &DAG,
994                                         std::vector<SDValue> &Ops) const {
995   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
996 
997   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
998   if (HasMatching)
999     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
1000   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1001     // Put the register class of the virtual registers in the flag word.  That
1002     // way, later passes can recompute register class constraints for inline
1003     // assembly as well as normal instructions.
1004     // Don't do this for tied operands that can use the regclass information
1005     // from the def.
1006     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1007     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1008     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
1009   }
1010 
1011   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1012   Ops.push_back(Res);
1013 
1014   if (Code == InlineAsm::Kind_Clobber) {
1015     // Clobbers should always have a 1:1 mapping with registers, and may
1016     // reference registers that have illegal (e.g. vector) types. Hence, we
1017     // shouldn't try to apply any sort of splitting logic to them.
1018     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1019            "No 1:1 mapping from clobbers to regs?");
1020     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1021     (void)SP;
1022     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1023       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1024       assert(
1025           (Regs[I] != SP ||
1026            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1027           "If we clobbered the stack pointer, MFI should know about it.");
1028     }
1029     return;
1030   }
1031 
1032   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1033     MVT RegisterVT = RegVTs[Value];
1034     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1035                                            RegisterVT);
1036     for (unsigned i = 0; i != NumRegs; ++i) {
1037       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1038       unsigned TheReg = Regs[Reg++];
1039       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1040     }
1041   }
1042 }
1043 
1044 SmallVector<std::pair<unsigned, TypeSize>, 4>
1045 RegsForValue::getRegsAndSizes() const {
1046   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1047   unsigned I = 0;
1048   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1049     unsigned RegCount = std::get<0>(CountAndVT);
1050     MVT RegisterVT = std::get<1>(CountAndVT);
1051     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1052     for (unsigned E = I + RegCount; I != E; ++I)
1053       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1054   }
1055   return OutVec;
1056 }
1057 
1058 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1059                                AssumptionCache *ac,
1060                                const TargetLibraryInfo *li) {
1061   AA = aa;
1062   AC = ac;
1063   GFI = gfi;
1064   LibInfo = li;
1065   Context = DAG.getContext();
1066   LPadToCallSiteMap.clear();
1067   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1068   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1069       *DAG.getMachineFunction().getFunction().getParent());
1070 }
1071 
1072 void SelectionDAGBuilder::clear() {
1073   NodeMap.clear();
1074   UnusedArgNodeMap.clear();
1075   PendingLoads.clear();
1076   PendingExports.clear();
1077   PendingConstrainedFP.clear();
1078   PendingConstrainedFPStrict.clear();
1079   CurInst = nullptr;
1080   HasTailCall = false;
1081   SDNodeOrder = LowestSDNodeOrder;
1082   StatepointLowering.clear();
1083 }
1084 
1085 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1086   DanglingDebugInfoMap.clear();
1087 }
1088 
1089 // Update DAG root to include dependencies on Pending chains.
1090 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1091   SDValue Root = DAG.getRoot();
1092 
1093   if (Pending.empty())
1094     return Root;
1095 
1096   // Add current root to PendingChains, unless we already indirectly
1097   // depend on it.
1098   if (Root.getOpcode() != ISD::EntryToken) {
1099     unsigned i = 0, e = Pending.size();
1100     for (; i != e; ++i) {
1101       assert(Pending[i].getNode()->getNumOperands() > 1);
1102       if (Pending[i].getNode()->getOperand(0) == Root)
1103         break;  // Don't add the root if we already indirectly depend on it.
1104     }
1105 
1106     if (i == e)
1107       Pending.push_back(Root);
1108   }
1109 
1110   if (Pending.size() == 1)
1111     Root = Pending[0];
1112   else
1113     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1114 
1115   DAG.setRoot(Root);
1116   Pending.clear();
1117   return Root;
1118 }
1119 
1120 SDValue SelectionDAGBuilder::getMemoryRoot() {
1121   return updateRoot(PendingLoads);
1122 }
1123 
1124 SDValue SelectionDAGBuilder::getRoot() {
1125   // Chain up all pending constrained intrinsics together with all
1126   // pending loads, by simply appending them to PendingLoads and
1127   // then calling getMemoryRoot().
1128   PendingLoads.reserve(PendingLoads.size() +
1129                        PendingConstrainedFP.size() +
1130                        PendingConstrainedFPStrict.size());
1131   PendingLoads.append(PendingConstrainedFP.begin(),
1132                       PendingConstrainedFP.end());
1133   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1134                       PendingConstrainedFPStrict.end());
1135   PendingConstrainedFP.clear();
1136   PendingConstrainedFPStrict.clear();
1137   return getMemoryRoot();
1138 }
1139 
1140 SDValue SelectionDAGBuilder::getControlRoot() {
1141   // We need to emit pending fpexcept.strict constrained intrinsics,
1142   // so append them to the PendingExports list.
1143   PendingExports.append(PendingConstrainedFPStrict.begin(),
1144                         PendingConstrainedFPStrict.end());
1145   PendingConstrainedFPStrict.clear();
1146   return updateRoot(PendingExports);
1147 }
1148 
1149 void SelectionDAGBuilder::visit(const Instruction &I) {
1150   // Set up outgoing PHI node register values before emitting the terminator.
1151   if (I.isTerminator()) {
1152     HandlePHINodesInSuccessorBlocks(I.getParent());
1153   }
1154 
1155   // Add SDDbgValue nodes for any var locs here. Do so before updating
1156   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1157   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1158     // Add SDDbgValue nodes for any var locs here. Do so before updating
1159     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1160     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1161          It != End; ++It) {
1162       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1163       dropDanglingDebugInfo(Var, It->Expr);
1164       if (It->Values.isKillLocation(It->Expr)) {
1165         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1166         continue;
1167       }
1168       SmallVector<Value *> Values(It->Values.location_ops());
1169       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1170                             It->Values.hasArgList()))
1171         addDanglingDebugInfo(It, SDNodeOrder);
1172     }
1173   }
1174 
1175   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1176   if (!isa<DbgInfoIntrinsic>(I))
1177     ++SDNodeOrder;
1178 
1179   CurInst = &I;
1180 
1181   // Set inserted listener only if required.
1182   bool NodeInserted = false;
1183   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1184   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1185   if (PCSectionsMD) {
1186     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1187         DAG, [&](SDNode *) { NodeInserted = true; });
1188   }
1189 
1190   visit(I.getOpcode(), I);
1191 
1192   if (!I.isTerminator() && !HasTailCall &&
1193       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1194     CopyToExportRegsIfNeeded(&I);
1195 
1196   // Handle metadata.
1197   if (PCSectionsMD) {
1198     auto It = NodeMap.find(&I);
1199     if (It != NodeMap.end()) {
1200       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1201     } else if (NodeInserted) {
1202       // This should not happen; if it does, don't let it go unnoticed so we can
1203       // fix it. Relevant visit*() function is probably missing a setValue().
1204       errs() << "warning: loosing !pcsections metadata ["
1205              << I.getModule()->getName() << "]\n";
1206       LLVM_DEBUG(I.dump());
1207       assert(false);
1208     }
1209   }
1210 
1211   CurInst = nullptr;
1212 }
1213 
1214 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1215   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1216 }
1217 
1218 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1219   // Note: this doesn't use InstVisitor, because it has to work with
1220   // ConstantExpr's in addition to instructions.
1221   switch (Opcode) {
1222   default: llvm_unreachable("Unknown instruction type encountered!");
1223     // Build the switch statement using the Instruction.def file.
1224 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1225     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1226 #include "llvm/IR/Instruction.def"
1227   }
1228 }
1229 
1230 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1231                                             DILocalVariable *Variable,
1232                                             DebugLoc DL, unsigned Order,
1233                                             RawLocationWrapper Values,
1234                                             DIExpression *Expression) {
1235   if (!Values.hasArgList())
1236     return false;
1237   // For variadic dbg_values we will now insert an undef.
1238   // FIXME: We can potentially recover these!
1239   SmallVector<SDDbgOperand, 2> Locs;
1240   for (const Value *V : Values.location_ops()) {
1241     auto *Undef = UndefValue::get(V->getType());
1242     Locs.push_back(SDDbgOperand::fromConst(Undef));
1243   }
1244   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1245                                         /*IsIndirect=*/false, DL, Order,
1246                                         /*IsVariadic=*/true);
1247   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1248   return true;
1249 }
1250 
1251 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1252                                                unsigned Order) {
1253   if (!handleDanglingVariadicDebugInfo(
1254           DAG,
1255           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1256                                             ->getVariable(VarLoc->VariableID)
1257                                             .getVariable()),
1258           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1259     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1260         VarLoc, Order);
1261   }
1262 }
1263 
1264 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1265                                                unsigned Order) {
1266   // We treat variadic dbg_values differently at this stage.
1267   if (!handleDanglingVariadicDebugInfo(
1268           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1269           DI->getWrappedLocation(), DI->getExpression())) {
1270     // TODO: Dangling debug info will eventually either be resolved or produce
1271     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1272     // between the original dbg.value location and its resolved DBG_VALUE,
1273     // which we should ideally fill with an extra Undef DBG_VALUE.
1274     assert(DI->getNumVariableLocationOps() == 1 &&
1275            "DbgValueInst without an ArgList should have a single location "
1276            "operand.");
1277     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1278   }
1279 }
1280 
1281 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1282                                                 const DIExpression *Expr) {
1283   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1284     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1285     DIExpression *DanglingExpr = DDI.getExpression();
1286     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1287       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1288                         << "\n");
1289       return true;
1290     }
1291     return false;
1292   };
1293 
1294   for (auto &DDIMI : DanglingDebugInfoMap) {
1295     DanglingDebugInfoVector &DDIV = DDIMI.second;
1296 
1297     // If debug info is to be dropped, run it through final checks to see
1298     // whether it can be salvaged.
1299     for (auto &DDI : DDIV)
1300       if (isMatchingDbgValue(DDI))
1301         salvageUnresolvedDbgValue(DDI);
1302 
1303     erase_if(DDIV, isMatchingDbgValue);
1304   }
1305 }
1306 
1307 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1308 // generate the debug data structures now that we've seen its definition.
1309 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1310                                                    SDValue Val) {
1311   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1312   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1313     return;
1314 
1315   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1316   for (auto &DDI : DDIV) {
1317     DebugLoc DL = DDI.getDebugLoc();
1318     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1319     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1320     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1321     DIExpression *Expr = DDI.getExpression();
1322     assert(Variable->isValidLocationForIntrinsic(DL) &&
1323            "Expected inlined-at fields to agree");
1324     SDDbgValue *SDV;
1325     if (Val.getNode()) {
1326       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1327       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1328       // we couldn't resolve it directly when examining the DbgValue intrinsic
1329       // in the first place we should not be more successful here). Unless we
1330       // have some test case that prove this to be correct we should avoid
1331       // calling EmitFuncArgumentDbgValue here.
1332       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1333                                     FuncArgumentDbgValueKind::Value, Val)) {
1334         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1335                           << "\n");
1336         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1337         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1338         // inserted after the definition of Val when emitting the instructions
1339         // after ISel. An alternative could be to teach
1340         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1341         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1342                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1343                    << ValSDNodeOrder << "\n");
1344         SDV = getDbgValue(Val, Variable, Expr, DL,
1345                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1346         DAG.AddDbgValue(SDV, false);
1347       } else
1348         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1349                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1350     } else {
1351       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1352       auto Undef = UndefValue::get(V->getType());
1353       auto SDV =
1354           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1355       DAG.AddDbgValue(SDV, false);
1356     }
1357   }
1358   DDIV.clear();
1359 }
1360 
1361 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1362   // TODO: For the variadic implementation, instead of only checking the fail
1363   // state of `handleDebugValue`, we need know specifically which values were
1364   // invalid, so that we attempt to salvage only those values when processing
1365   // a DIArgList.
1366   Value *V = DDI.getVariableLocationOp(0);
1367   Value *OrigV = V;
1368   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1369   DIExpression *Expr = DDI.getExpression();
1370   DebugLoc DL = DDI.getDebugLoc();
1371   unsigned SDOrder = DDI.getSDNodeOrder();
1372 
1373   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1374   // that DW_OP_stack_value is desired.
1375   bool StackValue = true;
1376 
1377   // Can this Value can be encoded without any further work?
1378   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1379     return;
1380 
1381   // Attempt to salvage back through as many instructions as possible. Bail if
1382   // a non-instruction is seen, such as a constant expression or global
1383   // variable. FIXME: Further work could recover those too.
1384   while (isa<Instruction>(V)) {
1385     Instruction &VAsInst = *cast<Instruction>(V);
1386     // Temporary "0", awaiting real implementation.
1387     SmallVector<uint64_t, 16> Ops;
1388     SmallVector<Value *, 4> AdditionalValues;
1389     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1390                              AdditionalValues);
1391     // If we cannot salvage any further, and haven't yet found a suitable debug
1392     // expression, bail out.
1393     if (!V)
1394       break;
1395 
1396     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1397     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1398     // here for variadic dbg_values, remove that condition.
1399     if (!AdditionalValues.empty())
1400       break;
1401 
1402     // New value and expr now represent this debuginfo.
1403     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1404 
1405     // Some kind of simplification occurred: check whether the operand of the
1406     // salvaged debug expression can be encoded in this DAG.
1407     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1408       LLVM_DEBUG(
1409           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1410                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1411       return;
1412     }
1413   }
1414 
1415   // This was the final opportunity to salvage this debug information, and it
1416   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1417   // any earlier variable location.
1418   assert(OrigV && "V shouldn't be null");
1419   auto *Undef = UndefValue::get(OrigV->getType());
1420   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1421   DAG.AddDbgValue(SDV, false);
1422   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1423                     << "\n");
1424 }
1425 
1426 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1427                                                DIExpression *Expr,
1428                                                DebugLoc DbgLoc,
1429                                                unsigned Order) {
1430   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1431   DIExpression *NewExpr =
1432       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1433   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1434                    /*IsVariadic*/ false);
1435 }
1436 
1437 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1438                                            DILocalVariable *Var,
1439                                            DIExpression *Expr, DebugLoc DbgLoc,
1440                                            unsigned Order, bool IsVariadic) {
1441   if (Values.empty())
1442     return true;
1443   SmallVector<SDDbgOperand> LocationOps;
1444   SmallVector<SDNode *> Dependencies;
1445   for (const Value *V : Values) {
1446     // Constant value.
1447     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1448         isa<ConstantPointerNull>(V)) {
1449       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1450       continue;
1451     }
1452 
1453     // Look through IntToPtr constants.
1454     if (auto *CE = dyn_cast<ConstantExpr>(V))
1455       if (CE->getOpcode() == Instruction::IntToPtr) {
1456         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1457         continue;
1458       }
1459 
1460     // If the Value is a frame index, we can create a FrameIndex debug value
1461     // without relying on the DAG at all.
1462     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1463       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1464       if (SI != FuncInfo.StaticAllocaMap.end()) {
1465         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1466         continue;
1467       }
1468     }
1469 
1470     // Do not use getValue() in here; we don't want to generate code at
1471     // this point if it hasn't been done yet.
1472     SDValue N = NodeMap[V];
1473     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1474       N = UnusedArgNodeMap[V];
1475     if (N.getNode()) {
1476       // Only emit func arg dbg value for non-variadic dbg.values for now.
1477       if (!IsVariadic &&
1478           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1479                                    FuncArgumentDbgValueKind::Value, N))
1480         return true;
1481       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1482         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1483         // describe stack slot locations.
1484         //
1485         // Consider "int x = 0; int *px = &x;". There are two kinds of
1486         // interesting debug values here after optimization:
1487         //
1488         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1489         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1490         //
1491         // Both describe the direct values of their associated variables.
1492         Dependencies.push_back(N.getNode());
1493         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1494         continue;
1495       }
1496       LocationOps.emplace_back(
1497           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1498       continue;
1499     }
1500 
1501     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1502     // Special rules apply for the first dbg.values of parameter variables in a
1503     // function. Identify them by the fact they reference Argument Values, that
1504     // they're parameters, and they are parameters of the current function. We
1505     // need to let them dangle until they get an SDNode.
1506     bool IsParamOfFunc =
1507         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1508     if (IsParamOfFunc)
1509       return false;
1510 
1511     // The value is not used in this block yet (or it would have an SDNode).
1512     // We still want the value to appear for the user if possible -- if it has
1513     // an associated VReg, we can refer to that instead.
1514     auto VMI = FuncInfo.ValueMap.find(V);
1515     if (VMI != FuncInfo.ValueMap.end()) {
1516       unsigned Reg = VMI->second;
1517       // If this is a PHI node, it may be split up into several MI PHI nodes
1518       // (in FunctionLoweringInfo::set).
1519       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1520                        V->getType(), std::nullopt);
1521       if (RFV.occupiesMultipleRegs()) {
1522         // FIXME: We could potentially support variadic dbg_values here.
1523         if (IsVariadic)
1524           return false;
1525         unsigned Offset = 0;
1526         unsigned BitsToDescribe = 0;
1527         if (auto VarSize = Var->getSizeInBits())
1528           BitsToDescribe = *VarSize;
1529         if (auto Fragment = Expr->getFragmentInfo())
1530           BitsToDescribe = Fragment->SizeInBits;
1531         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1532           // Bail out if all bits are described already.
1533           if (Offset >= BitsToDescribe)
1534             break;
1535           // TODO: handle scalable vectors.
1536           unsigned RegisterSize = RegAndSize.second;
1537           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1538                                       ? BitsToDescribe - Offset
1539                                       : RegisterSize;
1540           auto FragmentExpr = DIExpression::createFragmentExpression(
1541               Expr, Offset, FragmentSize);
1542           if (!FragmentExpr)
1543             continue;
1544           SDDbgValue *SDV = DAG.getVRegDbgValue(
1545               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1546           DAG.AddDbgValue(SDV, false);
1547           Offset += RegisterSize;
1548         }
1549         return true;
1550       }
1551       // We can use simple vreg locations for variadic dbg_values as well.
1552       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1553       continue;
1554     }
1555     // We failed to create a SDDbgOperand for V.
1556     return false;
1557   }
1558 
1559   // We have created a SDDbgOperand for each Value in Values.
1560   // Should use Order instead of SDNodeOrder?
1561   assert(!LocationOps.empty());
1562   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1563                                         /*IsIndirect=*/false, DbgLoc,
1564                                         SDNodeOrder, IsVariadic);
1565   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1566   return true;
1567 }
1568 
1569 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1570   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1571   for (auto &Pair : DanglingDebugInfoMap)
1572     for (auto &DDI : Pair.second)
1573       salvageUnresolvedDbgValue(DDI);
1574   clearDanglingDebugInfo();
1575 }
1576 
1577 /// getCopyFromRegs - If there was virtual register allocated for the value V
1578 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1579 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1580   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1581   SDValue Result;
1582 
1583   if (It != FuncInfo.ValueMap.end()) {
1584     Register InReg = It->second;
1585 
1586     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1587                      DAG.getDataLayout(), InReg, Ty,
1588                      std::nullopt); // This is not an ABI copy.
1589     SDValue Chain = DAG.getEntryNode();
1590     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1591                                  V);
1592     resolveDanglingDebugInfo(V, Result);
1593   }
1594 
1595   return Result;
1596 }
1597 
1598 /// getValue - Return an SDValue for the given Value.
1599 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1600   // If we already have an SDValue for this value, use it. It's important
1601   // to do this first, so that we don't create a CopyFromReg if we already
1602   // have a regular SDValue.
1603   SDValue &N = NodeMap[V];
1604   if (N.getNode()) return N;
1605 
1606   // If there's a virtual register allocated and initialized for this
1607   // value, use it.
1608   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1609     return copyFromReg;
1610 
1611   // Otherwise create a new SDValue and remember it.
1612   SDValue Val = getValueImpl(V);
1613   NodeMap[V] = Val;
1614   resolveDanglingDebugInfo(V, Val);
1615   return Val;
1616 }
1617 
1618 /// getNonRegisterValue - Return an SDValue for the given Value, but
1619 /// don't look in FuncInfo.ValueMap for a virtual register.
1620 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1621   // If we already have an SDValue for this value, use it.
1622   SDValue &N = NodeMap[V];
1623   if (N.getNode()) {
1624     if (isIntOrFPConstant(N)) {
1625       // Remove the debug location from the node as the node is about to be used
1626       // in a location which may differ from the original debug location.  This
1627       // is relevant to Constant and ConstantFP nodes because they can appear
1628       // as constant expressions inside PHI nodes.
1629       N->setDebugLoc(DebugLoc());
1630     }
1631     return N;
1632   }
1633 
1634   // Otherwise create a new SDValue and remember it.
1635   SDValue Val = getValueImpl(V);
1636   NodeMap[V] = Val;
1637   resolveDanglingDebugInfo(V, Val);
1638   return Val;
1639 }
1640 
1641 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1642 /// Create an SDValue for the given value.
1643 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1644   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1645 
1646   if (const Constant *C = dyn_cast<Constant>(V)) {
1647     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1648 
1649     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1650       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1651 
1652     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1653       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1654 
1655     if (isa<ConstantPointerNull>(C)) {
1656       unsigned AS = V->getType()->getPointerAddressSpace();
1657       return DAG.getConstant(0, getCurSDLoc(),
1658                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1659     }
1660 
1661     if (match(C, m_VScale()))
1662       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1663 
1664     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1665       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1666 
1667     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1668       return DAG.getUNDEF(VT);
1669 
1670     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1671       visit(CE->getOpcode(), *CE);
1672       SDValue N1 = NodeMap[V];
1673       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1674       return N1;
1675     }
1676 
1677     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1678       SmallVector<SDValue, 4> Constants;
1679       for (const Use &U : C->operands()) {
1680         SDNode *Val = getValue(U).getNode();
1681         // If the operand is an empty aggregate, there are no values.
1682         if (!Val) continue;
1683         // Add each leaf value from the operand to the Constants list
1684         // to form a flattened list of all the values.
1685         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1686           Constants.push_back(SDValue(Val, i));
1687       }
1688 
1689       return DAG.getMergeValues(Constants, getCurSDLoc());
1690     }
1691 
1692     if (const ConstantDataSequential *CDS =
1693           dyn_cast<ConstantDataSequential>(C)) {
1694       SmallVector<SDValue, 4> Ops;
1695       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1696         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1697         // Add each leaf value from the operand to the Constants list
1698         // to form a flattened list of all the values.
1699         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1700           Ops.push_back(SDValue(Val, i));
1701       }
1702 
1703       if (isa<ArrayType>(CDS->getType()))
1704         return DAG.getMergeValues(Ops, getCurSDLoc());
1705       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1706     }
1707 
1708     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1709       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1710              "Unknown struct or array constant!");
1711 
1712       SmallVector<EVT, 4> ValueVTs;
1713       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1714       unsigned NumElts = ValueVTs.size();
1715       if (NumElts == 0)
1716         return SDValue(); // empty struct
1717       SmallVector<SDValue, 4> Constants(NumElts);
1718       for (unsigned i = 0; i != NumElts; ++i) {
1719         EVT EltVT = ValueVTs[i];
1720         if (isa<UndefValue>(C))
1721           Constants[i] = DAG.getUNDEF(EltVT);
1722         else if (EltVT.isFloatingPoint())
1723           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1724         else
1725           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1726       }
1727 
1728       return DAG.getMergeValues(Constants, getCurSDLoc());
1729     }
1730 
1731     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1732       return DAG.getBlockAddress(BA, VT);
1733 
1734     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1735       return getValue(Equiv->getGlobalValue());
1736 
1737     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1738       return getValue(NC->getGlobalValue());
1739 
1740     VectorType *VecTy = cast<VectorType>(V->getType());
1741 
1742     // Now that we know the number and type of the elements, get that number of
1743     // elements into the Ops array based on what kind of constant it is.
1744     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1745       SmallVector<SDValue, 16> Ops;
1746       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1747       for (unsigned i = 0; i != NumElements; ++i)
1748         Ops.push_back(getValue(CV->getOperand(i)));
1749 
1750       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1751     }
1752 
1753     if (isa<ConstantAggregateZero>(C)) {
1754       EVT EltVT =
1755           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1756 
1757       SDValue Op;
1758       if (EltVT.isFloatingPoint())
1759         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1760       else
1761         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1762 
1763       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1764     }
1765 
1766     llvm_unreachable("Unknown vector constant");
1767   }
1768 
1769   // If this is a static alloca, generate it as the frameindex instead of
1770   // computation.
1771   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1772     DenseMap<const AllocaInst*, int>::iterator SI =
1773       FuncInfo.StaticAllocaMap.find(AI);
1774     if (SI != FuncInfo.StaticAllocaMap.end())
1775       return DAG.getFrameIndex(
1776           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1777   }
1778 
1779   // If this is an instruction which fast-isel has deferred, select it now.
1780   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1781     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1782 
1783     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1784                      Inst->getType(), std::nullopt);
1785     SDValue Chain = DAG.getEntryNode();
1786     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1787   }
1788 
1789   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1790     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1791 
1792   if (const auto *BB = dyn_cast<BasicBlock>(V))
1793     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1794 
1795   llvm_unreachable("Can't get register for value!");
1796 }
1797 
1798 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1799   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1800   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1801   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1802   bool IsSEH = isAsynchronousEHPersonality(Pers);
1803   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1804   if (!IsSEH)
1805     CatchPadMBB->setIsEHScopeEntry();
1806   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1807   if (IsMSVCCXX || IsCoreCLR)
1808     CatchPadMBB->setIsEHFuncletEntry();
1809 }
1810 
1811 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1812   // Update machine-CFG edge.
1813   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1814   FuncInfo.MBB->addSuccessor(TargetMBB);
1815   TargetMBB->setIsEHCatchretTarget(true);
1816   DAG.getMachineFunction().setHasEHCatchret(true);
1817 
1818   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1819   bool IsSEH = isAsynchronousEHPersonality(Pers);
1820   if (IsSEH) {
1821     // If this is not a fall-through branch or optimizations are switched off,
1822     // emit the branch.
1823     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1824         TM.getOptLevel() == CodeGenOpt::None)
1825       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1826                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1827     return;
1828   }
1829 
1830   // Figure out the funclet membership for the catchret's successor.
1831   // This will be used by the FuncletLayout pass to determine how to order the
1832   // BB's.
1833   // A 'catchret' returns to the outer scope's color.
1834   Value *ParentPad = I.getCatchSwitchParentPad();
1835   const BasicBlock *SuccessorColor;
1836   if (isa<ConstantTokenNone>(ParentPad))
1837     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1838   else
1839     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1840   assert(SuccessorColor && "No parent funclet for catchret!");
1841   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1842   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1843 
1844   // Create the terminator node.
1845   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1846                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1847                             DAG.getBasicBlock(SuccessorColorMBB));
1848   DAG.setRoot(Ret);
1849 }
1850 
1851 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1852   // Don't emit any special code for the cleanuppad instruction. It just marks
1853   // the start of an EH scope/funclet.
1854   FuncInfo.MBB->setIsEHScopeEntry();
1855   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1856   if (Pers != EHPersonality::Wasm_CXX) {
1857     FuncInfo.MBB->setIsEHFuncletEntry();
1858     FuncInfo.MBB->setIsCleanupFuncletEntry();
1859   }
1860 }
1861 
1862 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1863 // not match, it is OK to add only the first unwind destination catchpad to the
1864 // successors, because there will be at least one invoke instruction within the
1865 // catch scope that points to the next unwind destination, if one exists, so
1866 // CFGSort cannot mess up with BB sorting order.
1867 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1868 // call within them, and catchpads only consisting of 'catch (...)' have a
1869 // '__cxa_end_catch' call within them, both of which generate invokes in case
1870 // the next unwind destination exists, i.e., the next unwind destination is not
1871 // the caller.)
1872 //
1873 // Having at most one EH pad successor is also simpler and helps later
1874 // transformations.
1875 //
1876 // For example,
1877 // current:
1878 //   invoke void @foo to ... unwind label %catch.dispatch
1879 // catch.dispatch:
1880 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1881 // catch.start:
1882 //   ...
1883 //   ... in this BB or some other child BB dominated by this BB there will be an
1884 //   invoke that points to 'next' BB as an unwind destination
1885 //
1886 // next: ; We don't need to add this to 'current' BB's successor
1887 //   ...
1888 static void findWasmUnwindDestinations(
1889     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1890     BranchProbability Prob,
1891     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1892         &UnwindDests) {
1893   while (EHPadBB) {
1894     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1895     if (isa<CleanupPadInst>(Pad)) {
1896       // Stop on cleanup pads.
1897       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1898       UnwindDests.back().first->setIsEHScopeEntry();
1899       break;
1900     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1901       // Add the catchpad handlers to the possible destinations. We don't
1902       // continue to the unwind destination of the catchswitch for wasm.
1903       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1904         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1905         UnwindDests.back().first->setIsEHScopeEntry();
1906       }
1907       break;
1908     } else {
1909       continue;
1910     }
1911   }
1912 }
1913 
1914 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1915 /// many places it could ultimately go. In the IR, we have a single unwind
1916 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1917 /// This function skips over imaginary basic blocks that hold catchswitch
1918 /// instructions, and finds all the "real" machine
1919 /// basic block destinations. As those destinations may not be successors of
1920 /// EHPadBB, here we also calculate the edge probability to those destinations.
1921 /// The passed-in Prob is the edge probability to EHPadBB.
1922 static void findUnwindDestinations(
1923     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1924     BranchProbability Prob,
1925     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1926         &UnwindDests) {
1927   EHPersonality Personality =
1928     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1929   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1930   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1931   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1932   bool IsSEH = isAsynchronousEHPersonality(Personality);
1933 
1934   if (IsWasmCXX) {
1935     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1936     assert(UnwindDests.size() <= 1 &&
1937            "There should be at most one unwind destination for wasm");
1938     return;
1939   }
1940 
1941   while (EHPadBB) {
1942     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1943     BasicBlock *NewEHPadBB = nullptr;
1944     if (isa<LandingPadInst>(Pad)) {
1945       // Stop on landingpads. They are not funclets.
1946       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1947       break;
1948     } else if (isa<CleanupPadInst>(Pad)) {
1949       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1950       // personalities.
1951       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1952       UnwindDests.back().first->setIsEHScopeEntry();
1953       UnwindDests.back().first->setIsEHFuncletEntry();
1954       break;
1955     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1956       // Add the catchpad handlers to the possible destinations.
1957       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1958         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1959         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1960         if (IsMSVCCXX || IsCoreCLR)
1961           UnwindDests.back().first->setIsEHFuncletEntry();
1962         if (!IsSEH)
1963           UnwindDests.back().first->setIsEHScopeEntry();
1964       }
1965       NewEHPadBB = CatchSwitch->getUnwindDest();
1966     } else {
1967       continue;
1968     }
1969 
1970     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1971     if (BPI && NewEHPadBB)
1972       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1973     EHPadBB = NewEHPadBB;
1974   }
1975 }
1976 
1977 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1978   // Update successor info.
1979   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1980   auto UnwindDest = I.getUnwindDest();
1981   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1982   BranchProbability UnwindDestProb =
1983       (BPI && UnwindDest)
1984           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1985           : BranchProbability::getZero();
1986   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1987   for (auto &UnwindDest : UnwindDests) {
1988     UnwindDest.first->setIsEHPad();
1989     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1990   }
1991   FuncInfo.MBB->normalizeSuccProbs();
1992 
1993   // Create the terminator node.
1994   SDValue Ret =
1995       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1996   DAG.setRoot(Ret);
1997 }
1998 
1999 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2000   report_fatal_error("visitCatchSwitch not yet implemented!");
2001 }
2002 
2003 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2005   auto &DL = DAG.getDataLayout();
2006   SDValue Chain = getControlRoot();
2007   SmallVector<ISD::OutputArg, 8> Outs;
2008   SmallVector<SDValue, 8> OutVals;
2009 
2010   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2011   // lower
2012   //
2013   //   %val = call <ty> @llvm.experimental.deoptimize()
2014   //   ret <ty> %val
2015   //
2016   // differently.
2017   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2018     LowerDeoptimizingReturn();
2019     return;
2020   }
2021 
2022   if (!FuncInfo.CanLowerReturn) {
2023     unsigned DemoteReg = FuncInfo.DemoteRegister;
2024     const Function *F = I.getParent()->getParent();
2025 
2026     // Emit a store of the return value through the virtual register.
2027     // Leave Outs empty so that LowerReturn won't try to load return
2028     // registers the usual way.
2029     SmallVector<EVT, 1> PtrValueVTs;
2030     ComputeValueVTs(TLI, DL,
2031                     F->getReturnType()->getPointerTo(
2032                         DAG.getDataLayout().getAllocaAddrSpace()),
2033                     PtrValueVTs);
2034 
2035     SDValue RetPtr =
2036         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2037     SDValue RetOp = getValue(I.getOperand(0));
2038 
2039     SmallVector<EVT, 4> ValueVTs, MemVTs;
2040     SmallVector<uint64_t, 4> Offsets;
2041     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2042                     &Offsets, 0);
2043     unsigned NumValues = ValueVTs.size();
2044 
2045     SmallVector<SDValue, 4> Chains(NumValues);
2046     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2047     for (unsigned i = 0; i != NumValues; ++i) {
2048       // An aggregate return value cannot wrap around the address space, so
2049       // offsets to its parts don't wrap either.
2050       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2051                                            TypeSize::Fixed(Offsets[i]));
2052 
2053       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2054       if (MemVTs[i] != ValueVTs[i])
2055         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2056       Chains[i] = DAG.getStore(
2057           Chain, getCurSDLoc(), Val,
2058           // FIXME: better loc info would be nice.
2059           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2060           commonAlignment(BaseAlign, Offsets[i]));
2061     }
2062 
2063     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2064                         MVT::Other, Chains);
2065   } else if (I.getNumOperands() != 0) {
2066     SmallVector<EVT, 4> ValueVTs;
2067     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2068     unsigned NumValues = ValueVTs.size();
2069     if (NumValues) {
2070       SDValue RetOp = getValue(I.getOperand(0));
2071 
2072       const Function *F = I.getParent()->getParent();
2073 
2074       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2075           I.getOperand(0)->getType(), F->getCallingConv(),
2076           /*IsVarArg*/ false, DL);
2077 
2078       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2079       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2080         ExtendKind = ISD::SIGN_EXTEND;
2081       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2082         ExtendKind = ISD::ZERO_EXTEND;
2083 
2084       LLVMContext &Context = F->getContext();
2085       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2086 
2087       for (unsigned j = 0; j != NumValues; ++j) {
2088         EVT VT = ValueVTs[j];
2089 
2090         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2091           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2092 
2093         CallingConv::ID CC = F->getCallingConv();
2094 
2095         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2096         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2097         SmallVector<SDValue, 4> Parts(NumParts);
2098         getCopyToParts(DAG, getCurSDLoc(),
2099                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2100                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2101 
2102         // 'inreg' on function refers to return value
2103         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2104         if (RetInReg)
2105           Flags.setInReg();
2106 
2107         if (I.getOperand(0)->getType()->isPointerTy()) {
2108           Flags.setPointer();
2109           Flags.setPointerAddrSpace(
2110               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2111         }
2112 
2113         if (NeedsRegBlock) {
2114           Flags.setInConsecutiveRegs();
2115           if (j == NumValues - 1)
2116             Flags.setInConsecutiveRegsLast();
2117         }
2118 
2119         // Propagate extension type if any
2120         if (ExtendKind == ISD::SIGN_EXTEND)
2121           Flags.setSExt();
2122         else if (ExtendKind == ISD::ZERO_EXTEND)
2123           Flags.setZExt();
2124 
2125         for (unsigned i = 0; i < NumParts; ++i) {
2126           Outs.push_back(ISD::OutputArg(Flags,
2127                                         Parts[i].getValueType().getSimpleVT(),
2128                                         VT, /*isfixed=*/true, 0, 0));
2129           OutVals.push_back(Parts[i]);
2130         }
2131       }
2132     }
2133   }
2134 
2135   // Push in swifterror virtual register as the last element of Outs. This makes
2136   // sure swifterror virtual register will be returned in the swifterror
2137   // physical register.
2138   const Function *F = I.getParent()->getParent();
2139   if (TLI.supportSwiftError() &&
2140       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2141     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2142     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2143     Flags.setSwiftError();
2144     Outs.push_back(ISD::OutputArg(
2145         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2146         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2147     // Create SDNode for the swifterror virtual register.
2148     OutVals.push_back(
2149         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2150                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2151                         EVT(TLI.getPointerTy(DL))));
2152   }
2153 
2154   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2155   CallingConv::ID CallConv =
2156     DAG.getMachineFunction().getFunction().getCallingConv();
2157   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2158       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2159 
2160   // Verify that the target's LowerReturn behaved as expected.
2161   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2162          "LowerReturn didn't return a valid chain!");
2163 
2164   // Update the DAG with the new chain value resulting from return lowering.
2165   DAG.setRoot(Chain);
2166 }
2167 
2168 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2169 /// created for it, emit nodes to copy the value into the virtual
2170 /// registers.
2171 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2172   // Skip empty types
2173   if (V->getType()->isEmptyTy())
2174     return;
2175 
2176   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2177   if (VMI != FuncInfo.ValueMap.end()) {
2178     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2179            "Unused value assigned virtual registers!");
2180     CopyValueToVirtualRegister(V, VMI->second);
2181   }
2182 }
2183 
2184 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2185 /// the current basic block, add it to ValueMap now so that we'll get a
2186 /// CopyTo/FromReg.
2187 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2188   // No need to export constants.
2189   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2190 
2191   // Already exported?
2192   if (FuncInfo.isExportedInst(V)) return;
2193 
2194   Register Reg = FuncInfo.InitializeRegForValue(V);
2195   CopyValueToVirtualRegister(V, Reg);
2196 }
2197 
2198 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2199                                                      const BasicBlock *FromBB) {
2200   // The operands of the setcc have to be in this block.  We don't know
2201   // how to export them from some other block.
2202   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2203     // Can export from current BB.
2204     if (VI->getParent() == FromBB)
2205       return true;
2206 
2207     // Is already exported, noop.
2208     return FuncInfo.isExportedInst(V);
2209   }
2210 
2211   // If this is an argument, we can export it if the BB is the entry block or
2212   // if it is already exported.
2213   if (isa<Argument>(V)) {
2214     if (FromBB->isEntryBlock())
2215       return true;
2216 
2217     // Otherwise, can only export this if it is already exported.
2218     return FuncInfo.isExportedInst(V);
2219   }
2220 
2221   // Otherwise, constants can always be exported.
2222   return true;
2223 }
2224 
2225 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2226 BranchProbability
2227 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2228                                         const MachineBasicBlock *Dst) const {
2229   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2230   const BasicBlock *SrcBB = Src->getBasicBlock();
2231   const BasicBlock *DstBB = Dst->getBasicBlock();
2232   if (!BPI) {
2233     // If BPI is not available, set the default probability as 1 / N, where N is
2234     // the number of successors.
2235     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2236     return BranchProbability(1, SuccSize);
2237   }
2238   return BPI->getEdgeProbability(SrcBB, DstBB);
2239 }
2240 
2241 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2242                                                MachineBasicBlock *Dst,
2243                                                BranchProbability Prob) {
2244   if (!FuncInfo.BPI)
2245     Src->addSuccessorWithoutProb(Dst);
2246   else {
2247     if (Prob.isUnknown())
2248       Prob = getEdgeProbability(Src, Dst);
2249     Src->addSuccessor(Dst, Prob);
2250   }
2251 }
2252 
2253 static bool InBlock(const Value *V, const BasicBlock *BB) {
2254   if (const Instruction *I = dyn_cast<Instruction>(V))
2255     return I->getParent() == BB;
2256   return true;
2257 }
2258 
2259 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2260 /// This function emits a branch and is used at the leaves of an OR or an
2261 /// AND operator tree.
2262 void
2263 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2264                                                   MachineBasicBlock *TBB,
2265                                                   MachineBasicBlock *FBB,
2266                                                   MachineBasicBlock *CurBB,
2267                                                   MachineBasicBlock *SwitchBB,
2268                                                   BranchProbability TProb,
2269                                                   BranchProbability FProb,
2270                                                   bool InvertCond) {
2271   const BasicBlock *BB = CurBB->getBasicBlock();
2272 
2273   // If the leaf of the tree is a comparison, merge the condition into
2274   // the caseblock.
2275   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2276     // The operands of the cmp have to be in this block.  We don't know
2277     // how to export them from some other block.  If this is the first block
2278     // of the sequence, no exporting is needed.
2279     if (CurBB == SwitchBB ||
2280         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2281          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2282       ISD::CondCode Condition;
2283       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2284         ICmpInst::Predicate Pred =
2285             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2286         Condition = getICmpCondCode(Pred);
2287       } else {
2288         const FCmpInst *FC = cast<FCmpInst>(Cond);
2289         FCmpInst::Predicate Pred =
2290             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2291         Condition = getFCmpCondCode(Pred);
2292         if (TM.Options.NoNaNsFPMath)
2293           Condition = getFCmpCodeWithoutNaN(Condition);
2294       }
2295 
2296       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2297                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2298       SL->SwitchCases.push_back(CB);
2299       return;
2300     }
2301   }
2302 
2303   // Create a CaseBlock record representing this branch.
2304   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2305   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2306                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2307   SL->SwitchCases.push_back(CB);
2308 }
2309 
2310 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2311                                                MachineBasicBlock *TBB,
2312                                                MachineBasicBlock *FBB,
2313                                                MachineBasicBlock *CurBB,
2314                                                MachineBasicBlock *SwitchBB,
2315                                                Instruction::BinaryOps Opc,
2316                                                BranchProbability TProb,
2317                                                BranchProbability FProb,
2318                                                bool InvertCond) {
2319   // Skip over not part of the tree and remember to invert op and operands at
2320   // next level.
2321   Value *NotCond;
2322   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2323       InBlock(NotCond, CurBB->getBasicBlock())) {
2324     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2325                          !InvertCond);
2326     return;
2327   }
2328 
2329   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2330   const Value *BOpOp0, *BOpOp1;
2331   // Compute the effective opcode for Cond, taking into account whether it needs
2332   // to be inverted, e.g.
2333   //   and (not (or A, B)), C
2334   // gets lowered as
2335   //   and (and (not A, not B), C)
2336   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2337   if (BOp) {
2338     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2339                ? Instruction::And
2340                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2341                       ? Instruction::Or
2342                       : (Instruction::BinaryOps)0);
2343     if (InvertCond) {
2344       if (BOpc == Instruction::And)
2345         BOpc = Instruction::Or;
2346       else if (BOpc == Instruction::Or)
2347         BOpc = Instruction::And;
2348     }
2349   }
2350 
2351   // If this node is not part of the or/and tree, emit it as a branch.
2352   // Note that all nodes in the tree should have same opcode.
2353   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2354   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2355       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2356       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2357     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2358                                  TProb, FProb, InvertCond);
2359     return;
2360   }
2361 
2362   //  Create TmpBB after CurBB.
2363   MachineFunction::iterator BBI(CurBB);
2364   MachineFunction &MF = DAG.getMachineFunction();
2365   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2366   CurBB->getParent()->insert(++BBI, TmpBB);
2367 
2368   if (Opc == Instruction::Or) {
2369     // Codegen X | Y as:
2370     // BB1:
2371     //   jmp_if_X TBB
2372     //   jmp TmpBB
2373     // TmpBB:
2374     //   jmp_if_Y TBB
2375     //   jmp FBB
2376     //
2377 
2378     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2379     // The requirement is that
2380     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2381     //     = TrueProb for original BB.
2382     // Assuming the original probabilities are A and B, one choice is to set
2383     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2384     // A/(1+B) and 2B/(1+B). This choice assumes that
2385     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2386     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2387     // TmpBB, but the math is more complicated.
2388 
2389     auto NewTrueProb = TProb / 2;
2390     auto NewFalseProb = TProb / 2 + FProb;
2391     // Emit the LHS condition.
2392     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2393                          NewFalseProb, InvertCond);
2394 
2395     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2396     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2397     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2398     // Emit the RHS condition into TmpBB.
2399     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2400                          Probs[1], InvertCond);
2401   } else {
2402     assert(Opc == Instruction::And && "Unknown merge op!");
2403     // Codegen X & Y as:
2404     // BB1:
2405     //   jmp_if_X TmpBB
2406     //   jmp FBB
2407     // TmpBB:
2408     //   jmp_if_Y TBB
2409     //   jmp FBB
2410     //
2411     //  This requires creation of TmpBB after CurBB.
2412 
2413     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2414     // The requirement is that
2415     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2416     //     = FalseProb for original BB.
2417     // Assuming the original probabilities are A and B, one choice is to set
2418     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2419     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2420     // TrueProb for BB1 * FalseProb for TmpBB.
2421 
2422     auto NewTrueProb = TProb + FProb / 2;
2423     auto NewFalseProb = FProb / 2;
2424     // Emit the LHS condition.
2425     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2426                          NewFalseProb, InvertCond);
2427 
2428     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2429     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2430     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2431     // Emit the RHS condition into TmpBB.
2432     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2433                          Probs[1], InvertCond);
2434   }
2435 }
2436 
2437 /// If the set of cases should be emitted as a series of branches, return true.
2438 /// If we should emit this as a bunch of and/or'd together conditions, return
2439 /// false.
2440 bool
2441 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2442   if (Cases.size() != 2) return true;
2443 
2444   // If this is two comparisons of the same values or'd or and'd together, they
2445   // will get folded into a single comparison, so don't emit two blocks.
2446   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2447        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2448       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2449        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2450     return false;
2451   }
2452 
2453   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2454   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2455   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2456       Cases[0].CC == Cases[1].CC &&
2457       isa<Constant>(Cases[0].CmpRHS) &&
2458       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2459     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2460       return false;
2461     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2462       return false;
2463   }
2464 
2465   return true;
2466 }
2467 
2468 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2469   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2470 
2471   // Update machine-CFG edges.
2472   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2473 
2474   if (I.isUnconditional()) {
2475     // Update machine-CFG edges.
2476     BrMBB->addSuccessor(Succ0MBB);
2477 
2478     // If this is not a fall-through branch or optimizations are switched off,
2479     // emit the branch.
2480     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2481       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2482                               MVT::Other, getControlRoot(),
2483                               DAG.getBasicBlock(Succ0MBB)));
2484 
2485     return;
2486   }
2487 
2488   // If this condition is one of the special cases we handle, do special stuff
2489   // now.
2490   const Value *CondVal = I.getCondition();
2491   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2492 
2493   // If this is a series of conditions that are or'd or and'd together, emit
2494   // this as a sequence of branches instead of setcc's with and/or operations.
2495   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2496   // unpredictable branches, and vector extracts because those jumps are likely
2497   // expensive for any target), this should improve performance.
2498   // For example, instead of something like:
2499   //     cmp A, B
2500   //     C = seteq
2501   //     cmp D, E
2502   //     F = setle
2503   //     or C, F
2504   //     jnz foo
2505   // Emit:
2506   //     cmp A, B
2507   //     je foo
2508   //     cmp D, E
2509   //     jle foo
2510   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2511   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2512       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2513     Value *Vec;
2514     const Value *BOp0, *BOp1;
2515     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2516     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2517       Opcode = Instruction::And;
2518     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2519       Opcode = Instruction::Or;
2520 
2521     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2522                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2523       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2524                            getEdgeProbability(BrMBB, Succ0MBB),
2525                            getEdgeProbability(BrMBB, Succ1MBB),
2526                            /*InvertCond=*/false);
2527       // If the compares in later blocks need to use values not currently
2528       // exported from this block, export them now.  This block should always
2529       // be the first entry.
2530       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2531 
2532       // Allow some cases to be rejected.
2533       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2534         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2535           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2536           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2537         }
2538 
2539         // Emit the branch for this block.
2540         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2541         SL->SwitchCases.erase(SL->SwitchCases.begin());
2542         return;
2543       }
2544 
2545       // Okay, we decided not to do this, remove any inserted MBB's and clear
2546       // SwitchCases.
2547       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2548         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2549 
2550       SL->SwitchCases.clear();
2551     }
2552   }
2553 
2554   // Create a CaseBlock record representing this branch.
2555   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2556                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2557 
2558   // Use visitSwitchCase to actually insert the fast branch sequence for this
2559   // cond branch.
2560   visitSwitchCase(CB, BrMBB);
2561 }
2562 
2563 /// visitSwitchCase - Emits the necessary code to represent a single node in
2564 /// the binary search tree resulting from lowering a switch instruction.
2565 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2566                                           MachineBasicBlock *SwitchBB) {
2567   SDValue Cond;
2568   SDValue CondLHS = getValue(CB.CmpLHS);
2569   SDLoc dl = CB.DL;
2570 
2571   if (CB.CC == ISD::SETTRUE) {
2572     // Branch or fall through to TrueBB.
2573     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2574     SwitchBB->normalizeSuccProbs();
2575     if (CB.TrueBB != NextBlock(SwitchBB)) {
2576       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2577                               DAG.getBasicBlock(CB.TrueBB)));
2578     }
2579     return;
2580   }
2581 
2582   auto &TLI = DAG.getTargetLoweringInfo();
2583   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2584 
2585   // Build the setcc now.
2586   if (!CB.CmpMHS) {
2587     // Fold "(X == true)" to X and "(X == false)" to !X to
2588     // handle common cases produced by branch lowering.
2589     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2590         CB.CC == ISD::SETEQ)
2591       Cond = CondLHS;
2592     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2593              CB.CC == ISD::SETEQ) {
2594       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2595       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2596     } else {
2597       SDValue CondRHS = getValue(CB.CmpRHS);
2598 
2599       // If a pointer's DAG type is larger than its memory type then the DAG
2600       // values are zero-extended. This breaks signed comparisons so truncate
2601       // back to the underlying type before doing the compare.
2602       if (CondLHS.getValueType() != MemVT) {
2603         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2604         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2605       }
2606       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2607     }
2608   } else {
2609     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2610 
2611     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2612     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2613 
2614     SDValue CmpOp = getValue(CB.CmpMHS);
2615     EVT VT = CmpOp.getValueType();
2616 
2617     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2618       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2619                           ISD::SETLE);
2620     } else {
2621       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2622                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2623       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2624                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2625     }
2626   }
2627 
2628   // Update successor info
2629   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2630   // TrueBB and FalseBB are always different unless the incoming IR is
2631   // degenerate. This only happens when running llc on weird IR.
2632   if (CB.TrueBB != CB.FalseBB)
2633     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2634   SwitchBB->normalizeSuccProbs();
2635 
2636   // If the lhs block is the next block, invert the condition so that we can
2637   // fall through to the lhs instead of the rhs block.
2638   if (CB.TrueBB == NextBlock(SwitchBB)) {
2639     std::swap(CB.TrueBB, CB.FalseBB);
2640     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2641     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2642   }
2643 
2644   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2645                                MVT::Other, getControlRoot(), Cond,
2646                                DAG.getBasicBlock(CB.TrueBB));
2647 
2648   setValue(CurInst, BrCond);
2649 
2650   // Insert the false branch. Do this even if it's a fall through branch,
2651   // this makes it easier to do DAG optimizations which require inverting
2652   // the branch condition.
2653   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2654                        DAG.getBasicBlock(CB.FalseBB));
2655 
2656   DAG.setRoot(BrCond);
2657 }
2658 
2659 /// visitJumpTable - Emit JumpTable node in the current MBB
2660 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2661   // Emit the code for the jump table
2662   assert(JT.Reg != -1U && "Should lower JT Header first!");
2663   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2664   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2665                                      JT.Reg, PTy);
2666   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2667   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2668                                     MVT::Other, Index.getValue(1),
2669                                     Table, Index);
2670   DAG.setRoot(BrJumpTable);
2671 }
2672 
2673 /// visitJumpTableHeader - This function emits necessary code to produce index
2674 /// in the JumpTable from switch case.
2675 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2676                                                JumpTableHeader &JTH,
2677                                                MachineBasicBlock *SwitchBB) {
2678   SDLoc dl = getCurSDLoc();
2679 
2680   // Subtract the lowest switch case value from the value being switched on.
2681   SDValue SwitchOp = getValue(JTH.SValue);
2682   EVT VT = SwitchOp.getValueType();
2683   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2684                             DAG.getConstant(JTH.First, dl, VT));
2685 
2686   // The SDNode we just created, which holds the value being switched on minus
2687   // the smallest case value, needs to be copied to a virtual register so it
2688   // can be used as an index into the jump table in a subsequent basic block.
2689   // This value may be smaller or larger than the target's pointer type, and
2690   // therefore require extension or truncating.
2691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2692   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2693 
2694   unsigned JumpTableReg =
2695       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2696   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2697                                     JumpTableReg, SwitchOp);
2698   JT.Reg = JumpTableReg;
2699 
2700   if (!JTH.FallthroughUnreachable) {
2701     // Emit the range check for the jump table, and branch to the default block
2702     // for the switch statement if the value being switched on exceeds the
2703     // largest case in the switch.
2704     SDValue CMP = DAG.getSetCC(
2705         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2706                                    Sub.getValueType()),
2707         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2708 
2709     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2710                                  MVT::Other, CopyTo, CMP,
2711                                  DAG.getBasicBlock(JT.Default));
2712 
2713     // Avoid emitting unnecessary branches to the next block.
2714     if (JT.MBB != NextBlock(SwitchBB))
2715       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2716                            DAG.getBasicBlock(JT.MBB));
2717 
2718     DAG.setRoot(BrCond);
2719   } else {
2720     // Avoid emitting unnecessary branches to the next block.
2721     if (JT.MBB != NextBlock(SwitchBB))
2722       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2723                               DAG.getBasicBlock(JT.MBB)));
2724     else
2725       DAG.setRoot(CopyTo);
2726   }
2727 }
2728 
2729 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2730 /// variable if there exists one.
2731 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2732                                  SDValue &Chain) {
2733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2734   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2735   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2736   MachineFunction &MF = DAG.getMachineFunction();
2737   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2738   MachineSDNode *Node =
2739       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2740   if (Global) {
2741     MachinePointerInfo MPInfo(Global);
2742     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2743                  MachineMemOperand::MODereferenceable;
2744     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2745         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2746     DAG.setNodeMemRefs(Node, {MemRef});
2747   }
2748   if (PtrTy != PtrMemTy)
2749     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2750   return SDValue(Node, 0);
2751 }
2752 
2753 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2754 /// tail spliced into a stack protector check success bb.
2755 ///
2756 /// For a high level explanation of how this fits into the stack protector
2757 /// generation see the comment on the declaration of class
2758 /// StackProtectorDescriptor.
2759 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2760                                                   MachineBasicBlock *ParentBB) {
2761 
2762   // First create the loads to the guard/stack slot for the comparison.
2763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2764   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2765   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2766 
2767   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2768   int FI = MFI.getStackProtectorIndex();
2769 
2770   SDValue Guard;
2771   SDLoc dl = getCurSDLoc();
2772   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2773   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2774   Align Align =
2775       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2776 
2777   // Generate code to load the content of the guard slot.
2778   SDValue GuardVal = DAG.getLoad(
2779       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2780       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2781       MachineMemOperand::MOVolatile);
2782 
2783   if (TLI.useStackGuardXorFP())
2784     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2785 
2786   // Retrieve guard check function, nullptr if instrumentation is inlined.
2787   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2788     // The target provides a guard check function to validate the guard value.
2789     // Generate a call to that function with the content of the guard slot as
2790     // argument.
2791     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2792     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2793 
2794     TargetLowering::ArgListTy Args;
2795     TargetLowering::ArgListEntry Entry;
2796     Entry.Node = GuardVal;
2797     Entry.Ty = FnTy->getParamType(0);
2798     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2799       Entry.IsInReg = true;
2800     Args.push_back(Entry);
2801 
2802     TargetLowering::CallLoweringInfo CLI(DAG);
2803     CLI.setDebugLoc(getCurSDLoc())
2804         .setChain(DAG.getEntryNode())
2805         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2806                    getValue(GuardCheckFn), std::move(Args));
2807 
2808     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2809     DAG.setRoot(Result.second);
2810     return;
2811   }
2812 
2813   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2814   // Otherwise, emit a volatile load to retrieve the stack guard value.
2815   SDValue Chain = DAG.getEntryNode();
2816   if (TLI.useLoadStackGuardNode()) {
2817     Guard = getLoadStackGuard(DAG, dl, Chain);
2818   } else {
2819     const Value *IRGuard = TLI.getSDagStackGuard(M);
2820     SDValue GuardPtr = getValue(IRGuard);
2821 
2822     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2823                         MachinePointerInfo(IRGuard, 0), Align,
2824                         MachineMemOperand::MOVolatile);
2825   }
2826 
2827   // Perform the comparison via a getsetcc.
2828   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2829                                                         *DAG.getContext(),
2830                                                         Guard.getValueType()),
2831                              Guard, GuardVal, ISD::SETNE);
2832 
2833   // If the guard/stackslot do not equal, branch to failure MBB.
2834   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2835                                MVT::Other, GuardVal.getOperand(0),
2836                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2837   // Otherwise branch to success MBB.
2838   SDValue Br = DAG.getNode(ISD::BR, dl,
2839                            MVT::Other, BrCond,
2840                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2841 
2842   DAG.setRoot(Br);
2843 }
2844 
2845 /// Codegen the failure basic block for a stack protector check.
2846 ///
2847 /// A failure stack protector machine basic block consists simply of a call to
2848 /// __stack_chk_fail().
2849 ///
2850 /// For a high level explanation of how this fits into the stack protector
2851 /// generation see the comment on the declaration of class
2852 /// StackProtectorDescriptor.
2853 void
2854 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2855   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2856   TargetLowering::MakeLibCallOptions CallOptions;
2857   CallOptions.setDiscardResult(true);
2858   SDValue Chain =
2859       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2860                       std::nullopt, CallOptions, getCurSDLoc())
2861           .second;
2862   // On PS4/PS5, the "return address" must still be within the calling
2863   // function, even if it's at the very end, so emit an explicit TRAP here.
2864   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2865   if (TM.getTargetTriple().isPS())
2866     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2867   // WebAssembly needs an unreachable instruction after a non-returning call,
2868   // because the function return type can be different from __stack_chk_fail's
2869   // return type (void).
2870   if (TM.getTargetTriple().isWasm())
2871     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2872 
2873   DAG.setRoot(Chain);
2874 }
2875 
2876 /// visitBitTestHeader - This function emits necessary code to produce value
2877 /// suitable for "bit tests"
2878 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2879                                              MachineBasicBlock *SwitchBB) {
2880   SDLoc dl = getCurSDLoc();
2881 
2882   // Subtract the minimum value.
2883   SDValue SwitchOp = getValue(B.SValue);
2884   EVT VT = SwitchOp.getValueType();
2885   SDValue RangeSub =
2886       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2887 
2888   // Determine the type of the test operands.
2889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2890   bool UsePtrType = false;
2891   if (!TLI.isTypeLegal(VT)) {
2892     UsePtrType = true;
2893   } else {
2894     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2895       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2896         // Switch table case range are encoded into series of masks.
2897         // Just use pointer type, it's guaranteed to fit.
2898         UsePtrType = true;
2899         break;
2900       }
2901   }
2902   SDValue Sub = RangeSub;
2903   if (UsePtrType) {
2904     VT = TLI.getPointerTy(DAG.getDataLayout());
2905     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2906   }
2907 
2908   B.RegVT = VT.getSimpleVT();
2909   B.Reg = FuncInfo.CreateReg(B.RegVT);
2910   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2911 
2912   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2913 
2914   if (!B.FallthroughUnreachable)
2915     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2916   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2917   SwitchBB->normalizeSuccProbs();
2918 
2919   SDValue Root = CopyTo;
2920   if (!B.FallthroughUnreachable) {
2921     // Conditional branch to the default block.
2922     SDValue RangeCmp = DAG.getSetCC(dl,
2923         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2924                                RangeSub.getValueType()),
2925         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2926         ISD::SETUGT);
2927 
2928     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2929                        DAG.getBasicBlock(B.Default));
2930   }
2931 
2932   // Avoid emitting unnecessary branches to the next block.
2933   if (MBB != NextBlock(SwitchBB))
2934     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2935 
2936   DAG.setRoot(Root);
2937 }
2938 
2939 /// visitBitTestCase - this function produces one "bit test"
2940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2941                                            MachineBasicBlock* NextMBB,
2942                                            BranchProbability BranchProbToNext,
2943                                            unsigned Reg,
2944                                            BitTestCase &B,
2945                                            MachineBasicBlock *SwitchBB) {
2946   SDLoc dl = getCurSDLoc();
2947   MVT VT = BB.RegVT;
2948   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2949   SDValue Cmp;
2950   unsigned PopCount = llvm::popcount(B.Mask);
2951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2952   if (PopCount == 1) {
2953     // Testing for a single bit; just compare the shift count with what it
2954     // would need to be to shift a 1 bit in that position.
2955     Cmp = DAG.getSetCC(
2956         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2957         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2958         ISD::SETEQ);
2959   } else if (PopCount == BB.Range) {
2960     // There is only one zero bit in the range, test for it directly.
2961     Cmp = DAG.getSetCC(
2962         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2963         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2964   } else {
2965     // Make desired shift
2966     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2967                                     DAG.getConstant(1, dl, VT), ShiftOp);
2968 
2969     // Emit bit tests and jumps
2970     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2971                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2972     Cmp = DAG.getSetCC(
2973         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2974         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2975   }
2976 
2977   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2978   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2979   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2980   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2981   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2982   // one as they are relative probabilities (and thus work more like weights),
2983   // and hence we need to normalize them to let the sum of them become one.
2984   SwitchBB->normalizeSuccProbs();
2985 
2986   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2987                               MVT::Other, getControlRoot(),
2988                               Cmp, DAG.getBasicBlock(B.TargetBB));
2989 
2990   // Avoid emitting unnecessary branches to the next block.
2991   if (NextMBB != NextBlock(SwitchBB))
2992     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2993                         DAG.getBasicBlock(NextMBB));
2994 
2995   DAG.setRoot(BrAnd);
2996 }
2997 
2998 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2999   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3000 
3001   // Retrieve successors. Look through artificial IR level blocks like
3002   // catchswitch for successors.
3003   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3004   const BasicBlock *EHPadBB = I.getSuccessor(1);
3005   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3006 
3007   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3008   // have to do anything here to lower funclet bundles.
3009   assert(!I.hasOperandBundlesOtherThan(
3010              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3011               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3012               LLVMContext::OB_cfguardtarget,
3013               LLVMContext::OB_clang_arc_attachedcall}) &&
3014          "Cannot lower invokes with arbitrary operand bundles yet!");
3015 
3016   const Value *Callee(I.getCalledOperand());
3017   const Function *Fn = dyn_cast<Function>(Callee);
3018   if (isa<InlineAsm>(Callee))
3019     visitInlineAsm(I, EHPadBB);
3020   else if (Fn && Fn->isIntrinsic()) {
3021     switch (Fn->getIntrinsicID()) {
3022     default:
3023       llvm_unreachable("Cannot invoke this intrinsic");
3024     case Intrinsic::donothing:
3025       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3026     case Intrinsic::seh_try_begin:
3027     case Intrinsic::seh_scope_begin:
3028     case Intrinsic::seh_try_end:
3029     case Intrinsic::seh_scope_end:
3030       if (EHPadMBB)
3031           // a block referenced by EH table
3032           // so dtor-funclet not removed by opts
3033           EHPadMBB->setMachineBlockAddressTaken();
3034       break;
3035     case Intrinsic::experimental_patchpoint_void:
3036     case Intrinsic::experimental_patchpoint_i64:
3037       visitPatchpoint(I, EHPadBB);
3038       break;
3039     case Intrinsic::experimental_gc_statepoint:
3040       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3041       break;
3042     case Intrinsic::wasm_rethrow: {
3043       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3044       // special because it can be invoked, so we manually lower it to a DAG
3045       // node here.
3046       SmallVector<SDValue, 8> Ops;
3047       Ops.push_back(getRoot()); // inchain
3048       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3049       Ops.push_back(
3050           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3051                                 TLI.getPointerTy(DAG.getDataLayout())));
3052       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3053       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3054       break;
3055     }
3056     }
3057   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3058     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3059     // Eventually we will support lowering the @llvm.experimental.deoptimize
3060     // intrinsic, and right now there are no plans to support other intrinsics
3061     // with deopt state.
3062     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3063   } else {
3064     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3065   }
3066 
3067   // If the value of the invoke is used outside of its defining block, make it
3068   // available as a virtual register.
3069   // We already took care of the exported value for the statepoint instruction
3070   // during call to the LowerStatepoint.
3071   if (!isa<GCStatepointInst>(I)) {
3072     CopyToExportRegsIfNeeded(&I);
3073   }
3074 
3075   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3076   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3077   BranchProbability EHPadBBProb =
3078       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3079           : BranchProbability::getZero();
3080   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3081 
3082   // Update successor info.
3083   addSuccessorWithProb(InvokeMBB, Return);
3084   for (auto &UnwindDest : UnwindDests) {
3085     UnwindDest.first->setIsEHPad();
3086     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3087   }
3088   InvokeMBB->normalizeSuccProbs();
3089 
3090   // Drop into normal successor.
3091   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3092                           DAG.getBasicBlock(Return)));
3093 }
3094 
3095 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3096   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3097 
3098   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3099   // have to do anything here to lower funclet bundles.
3100   assert(!I.hasOperandBundlesOtherThan(
3101              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3102          "Cannot lower callbrs with arbitrary operand bundles yet!");
3103 
3104   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3105   visitInlineAsm(I);
3106   CopyToExportRegsIfNeeded(&I);
3107 
3108   // Retrieve successors.
3109   SmallPtrSet<BasicBlock *, 8> Dests;
3110   Dests.insert(I.getDefaultDest());
3111   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3112 
3113   // Update successor info.
3114   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3115   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3116     BasicBlock *Dest = I.getIndirectDest(i);
3117     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3118     Target->setIsInlineAsmBrIndirectTarget();
3119     Target->setMachineBlockAddressTaken();
3120     Target->setLabelMustBeEmitted();
3121     // Don't add duplicate machine successors.
3122     if (Dests.insert(Dest).second)
3123       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3124   }
3125   CallBrMBB->normalizeSuccProbs();
3126 
3127   // Drop into default successor.
3128   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3129                           MVT::Other, getControlRoot(),
3130                           DAG.getBasicBlock(Return)));
3131 }
3132 
3133 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3134   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3135 }
3136 
3137 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3138   assert(FuncInfo.MBB->isEHPad() &&
3139          "Call to landingpad not in landing pad!");
3140 
3141   // If there aren't registers to copy the values into (e.g., during SjLj
3142   // exceptions), then don't bother to create these DAG nodes.
3143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3144   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3145   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3146       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3147     return;
3148 
3149   // If landingpad's return type is token type, we don't create DAG nodes
3150   // for its exception pointer and selector value. The extraction of exception
3151   // pointer or selector value from token type landingpads is not currently
3152   // supported.
3153   if (LP.getType()->isTokenTy())
3154     return;
3155 
3156   SmallVector<EVT, 2> ValueVTs;
3157   SDLoc dl = getCurSDLoc();
3158   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3159   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3160 
3161   // Get the two live-in registers as SDValues. The physregs have already been
3162   // copied into virtual registers.
3163   SDValue Ops[2];
3164   if (FuncInfo.ExceptionPointerVirtReg) {
3165     Ops[0] = DAG.getZExtOrTrunc(
3166         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3167                            FuncInfo.ExceptionPointerVirtReg,
3168                            TLI.getPointerTy(DAG.getDataLayout())),
3169         dl, ValueVTs[0]);
3170   } else {
3171     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3172   }
3173   Ops[1] = DAG.getZExtOrTrunc(
3174       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3175                          FuncInfo.ExceptionSelectorVirtReg,
3176                          TLI.getPointerTy(DAG.getDataLayout())),
3177       dl, ValueVTs[1]);
3178 
3179   // Merge into one.
3180   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3181                             DAG.getVTList(ValueVTs), Ops);
3182   setValue(&LP, Res);
3183 }
3184 
3185 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3186                                            MachineBasicBlock *Last) {
3187   // Update JTCases.
3188   for (JumpTableBlock &JTB : SL->JTCases)
3189     if (JTB.first.HeaderBB == First)
3190       JTB.first.HeaderBB = Last;
3191 
3192   // Update BitTestCases.
3193   for (BitTestBlock &BTB : SL->BitTestCases)
3194     if (BTB.Parent == First)
3195       BTB.Parent = Last;
3196 }
3197 
3198 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3199   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3200 
3201   // Update machine-CFG edges with unique successors.
3202   SmallSet<BasicBlock*, 32> Done;
3203   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3204     BasicBlock *BB = I.getSuccessor(i);
3205     bool Inserted = Done.insert(BB).second;
3206     if (!Inserted)
3207         continue;
3208 
3209     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3210     addSuccessorWithProb(IndirectBrMBB, Succ);
3211   }
3212   IndirectBrMBB->normalizeSuccProbs();
3213 
3214   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3215                           MVT::Other, getControlRoot(),
3216                           getValue(I.getAddress())));
3217 }
3218 
3219 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3220   if (!DAG.getTarget().Options.TrapUnreachable)
3221     return;
3222 
3223   // We may be able to ignore unreachable behind a noreturn call.
3224   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3225     const BasicBlock &BB = *I.getParent();
3226     if (&I != &BB.front()) {
3227       BasicBlock::const_iterator PredI =
3228         std::prev(BasicBlock::const_iterator(&I));
3229       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3230         if (Call->doesNotReturn())
3231           return;
3232       }
3233     }
3234   }
3235 
3236   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3237 }
3238 
3239 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3240   SDNodeFlags Flags;
3241   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3242     Flags.copyFMF(*FPOp);
3243 
3244   SDValue Op = getValue(I.getOperand(0));
3245   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3246                                     Op, Flags);
3247   setValue(&I, UnNodeValue);
3248 }
3249 
3250 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3251   SDNodeFlags Flags;
3252   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3253     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3254     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3255   }
3256   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3257     Flags.setExact(ExactOp->isExact());
3258   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3259     Flags.copyFMF(*FPOp);
3260 
3261   SDValue Op1 = getValue(I.getOperand(0));
3262   SDValue Op2 = getValue(I.getOperand(1));
3263   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3264                                      Op1, Op2, Flags);
3265   setValue(&I, BinNodeValue);
3266 }
3267 
3268 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3269   SDValue Op1 = getValue(I.getOperand(0));
3270   SDValue Op2 = getValue(I.getOperand(1));
3271 
3272   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3273       Op1.getValueType(), DAG.getDataLayout());
3274 
3275   // Coerce the shift amount to the right type if we can. This exposes the
3276   // truncate or zext to optimization early.
3277   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3278     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3279            "Unexpected shift type");
3280     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3281   }
3282 
3283   bool nuw = false;
3284   bool nsw = false;
3285   bool exact = false;
3286 
3287   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3288 
3289     if (const OverflowingBinaryOperator *OFBinOp =
3290             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3291       nuw = OFBinOp->hasNoUnsignedWrap();
3292       nsw = OFBinOp->hasNoSignedWrap();
3293     }
3294     if (const PossiblyExactOperator *ExactOp =
3295             dyn_cast<const PossiblyExactOperator>(&I))
3296       exact = ExactOp->isExact();
3297   }
3298   SDNodeFlags Flags;
3299   Flags.setExact(exact);
3300   Flags.setNoSignedWrap(nsw);
3301   Flags.setNoUnsignedWrap(nuw);
3302   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3303                             Flags);
3304   setValue(&I, Res);
3305 }
3306 
3307 void SelectionDAGBuilder::visitSDiv(const User &I) {
3308   SDValue Op1 = getValue(I.getOperand(0));
3309   SDValue Op2 = getValue(I.getOperand(1));
3310 
3311   SDNodeFlags Flags;
3312   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3313                  cast<PossiblyExactOperator>(&I)->isExact());
3314   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3315                            Op2, Flags));
3316 }
3317 
3318 void SelectionDAGBuilder::visitICmp(const User &I) {
3319   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3320   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3321     predicate = IC->getPredicate();
3322   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3323     predicate = ICmpInst::Predicate(IC->getPredicate());
3324   SDValue Op1 = getValue(I.getOperand(0));
3325   SDValue Op2 = getValue(I.getOperand(1));
3326   ISD::CondCode Opcode = getICmpCondCode(predicate);
3327 
3328   auto &TLI = DAG.getTargetLoweringInfo();
3329   EVT MemVT =
3330       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3331 
3332   // If a pointer's DAG type is larger than its memory type then the DAG values
3333   // are zero-extended. This breaks signed comparisons so truncate back to the
3334   // underlying type before doing the compare.
3335   if (Op1.getValueType() != MemVT) {
3336     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3337     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3338   }
3339 
3340   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3341                                                         I.getType());
3342   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3343 }
3344 
3345 void SelectionDAGBuilder::visitFCmp(const User &I) {
3346   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3347   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3348     predicate = FC->getPredicate();
3349   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3350     predicate = FCmpInst::Predicate(FC->getPredicate());
3351   SDValue Op1 = getValue(I.getOperand(0));
3352   SDValue Op2 = getValue(I.getOperand(1));
3353 
3354   ISD::CondCode Condition = getFCmpCondCode(predicate);
3355   auto *FPMO = cast<FPMathOperator>(&I);
3356   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3357     Condition = getFCmpCodeWithoutNaN(Condition);
3358 
3359   SDNodeFlags Flags;
3360   Flags.copyFMF(*FPMO);
3361   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3362 
3363   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3364                                                         I.getType());
3365   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3366 }
3367 
3368 // Check if the condition of the select has one use or two users that are both
3369 // selects with the same condition.
3370 static bool hasOnlySelectUsers(const Value *Cond) {
3371   return llvm::all_of(Cond->users(), [](const Value *V) {
3372     return isa<SelectInst>(V);
3373   });
3374 }
3375 
3376 void SelectionDAGBuilder::visitSelect(const User &I) {
3377   SmallVector<EVT, 4> ValueVTs;
3378   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3379                   ValueVTs);
3380   unsigned NumValues = ValueVTs.size();
3381   if (NumValues == 0) return;
3382 
3383   SmallVector<SDValue, 4> Values(NumValues);
3384   SDValue Cond     = getValue(I.getOperand(0));
3385   SDValue LHSVal   = getValue(I.getOperand(1));
3386   SDValue RHSVal   = getValue(I.getOperand(2));
3387   SmallVector<SDValue, 1> BaseOps(1, Cond);
3388   ISD::NodeType OpCode =
3389       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3390 
3391   bool IsUnaryAbs = false;
3392   bool Negate = false;
3393 
3394   SDNodeFlags Flags;
3395   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3396     Flags.copyFMF(*FPOp);
3397 
3398   Flags.setUnpredictable(
3399       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3400 
3401   // Min/max matching is only viable if all output VTs are the same.
3402   if (all_equal(ValueVTs)) {
3403     EVT VT = ValueVTs[0];
3404     LLVMContext &Ctx = *DAG.getContext();
3405     auto &TLI = DAG.getTargetLoweringInfo();
3406 
3407     // We care about the legality of the operation after it has been type
3408     // legalized.
3409     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3410       VT = TLI.getTypeToTransformTo(Ctx, VT);
3411 
3412     // If the vselect is legal, assume we want to leave this as a vector setcc +
3413     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3414     // min/max is legal on the scalar type.
3415     bool UseScalarMinMax = VT.isVector() &&
3416       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3417 
3418     // ValueTracking's select pattern matching does not account for -0.0,
3419     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3420     // -0.0 is less than +0.0.
3421     Value *LHS, *RHS;
3422     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3423     ISD::NodeType Opc = ISD::DELETED_NODE;
3424     switch (SPR.Flavor) {
3425     case SPF_UMAX:    Opc = ISD::UMAX; break;
3426     case SPF_UMIN:    Opc = ISD::UMIN; break;
3427     case SPF_SMAX:    Opc = ISD::SMAX; break;
3428     case SPF_SMIN:    Opc = ISD::SMIN; break;
3429     case SPF_FMINNUM:
3430       switch (SPR.NaNBehavior) {
3431       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3432       case SPNB_RETURNS_NAN: break;
3433       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3434       case SPNB_RETURNS_ANY:
3435         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3436             (UseScalarMinMax &&
3437              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3438           Opc = ISD::FMINNUM;
3439         break;
3440       }
3441       break;
3442     case SPF_FMAXNUM:
3443       switch (SPR.NaNBehavior) {
3444       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3445       case SPNB_RETURNS_NAN: break;
3446       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3447       case SPNB_RETURNS_ANY:
3448         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3449             (UseScalarMinMax &&
3450              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3451           Opc = ISD::FMAXNUM;
3452         break;
3453       }
3454       break;
3455     case SPF_NABS:
3456       Negate = true;
3457       [[fallthrough]];
3458     case SPF_ABS:
3459       IsUnaryAbs = true;
3460       Opc = ISD::ABS;
3461       break;
3462     default: break;
3463     }
3464 
3465     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3466         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3467          (UseScalarMinMax &&
3468           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3469         // If the underlying comparison instruction is used by any other
3470         // instruction, the consumed instructions won't be destroyed, so it is
3471         // not profitable to convert to a min/max.
3472         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3473       OpCode = Opc;
3474       LHSVal = getValue(LHS);
3475       RHSVal = getValue(RHS);
3476       BaseOps.clear();
3477     }
3478 
3479     if (IsUnaryAbs) {
3480       OpCode = Opc;
3481       LHSVal = getValue(LHS);
3482       BaseOps.clear();
3483     }
3484   }
3485 
3486   if (IsUnaryAbs) {
3487     for (unsigned i = 0; i != NumValues; ++i) {
3488       SDLoc dl = getCurSDLoc();
3489       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3490       Values[i] =
3491           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3492       if (Negate)
3493         Values[i] = DAG.getNegative(Values[i], dl, VT);
3494     }
3495   } else {
3496     for (unsigned i = 0; i != NumValues; ++i) {
3497       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3498       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3499       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3500       Values[i] = DAG.getNode(
3501           OpCode, getCurSDLoc(),
3502           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3503     }
3504   }
3505 
3506   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3507                            DAG.getVTList(ValueVTs), Values));
3508 }
3509 
3510 void SelectionDAGBuilder::visitTrunc(const User &I) {
3511   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3512   SDValue N = getValue(I.getOperand(0));
3513   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3514                                                         I.getType());
3515   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3516 }
3517 
3518 void SelectionDAGBuilder::visitZExt(const User &I) {
3519   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3520   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3521   SDValue N = getValue(I.getOperand(0));
3522   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3523                                                         I.getType());
3524   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3525 }
3526 
3527 void SelectionDAGBuilder::visitSExt(const User &I) {
3528   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3529   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3530   SDValue N = getValue(I.getOperand(0));
3531   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3532                                                         I.getType());
3533   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3534 }
3535 
3536 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3537   // FPTrunc is never a no-op cast, no need to check
3538   SDValue N = getValue(I.getOperand(0));
3539   SDLoc dl = getCurSDLoc();
3540   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3541   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3542   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3543                            DAG.getTargetConstant(
3544                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3545 }
3546 
3547 void SelectionDAGBuilder::visitFPExt(const User &I) {
3548   // FPExt is never a no-op cast, no need to check
3549   SDValue N = getValue(I.getOperand(0));
3550   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3551                                                         I.getType());
3552   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3553 }
3554 
3555 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3556   // FPToUI is never a no-op cast, no need to check
3557   SDValue N = getValue(I.getOperand(0));
3558   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3559                                                         I.getType());
3560   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3561 }
3562 
3563 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3564   // FPToSI is never a no-op cast, no need to check
3565   SDValue N = getValue(I.getOperand(0));
3566   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3567                                                         I.getType());
3568   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3569 }
3570 
3571 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3572   // UIToFP is never a no-op cast, no need to check
3573   SDValue N = getValue(I.getOperand(0));
3574   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3575                                                         I.getType());
3576   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3577 }
3578 
3579 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3580   // SIToFP is never a no-op cast, no need to check
3581   SDValue N = getValue(I.getOperand(0));
3582   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3583                                                         I.getType());
3584   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3585 }
3586 
3587 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3588   // What to do depends on the size of the integer and the size of the pointer.
3589   // We can either truncate, zero extend, or no-op, accordingly.
3590   SDValue N = getValue(I.getOperand(0));
3591   auto &TLI = DAG.getTargetLoweringInfo();
3592   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3593                                                         I.getType());
3594   EVT PtrMemVT =
3595       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3596   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3597   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3598   setValue(&I, N);
3599 }
3600 
3601 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3602   // What to do depends on the size of the integer and the size of the pointer.
3603   // We can either truncate, zero extend, or no-op, accordingly.
3604   SDValue N = getValue(I.getOperand(0));
3605   auto &TLI = DAG.getTargetLoweringInfo();
3606   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3607   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3608   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3609   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3610   setValue(&I, N);
3611 }
3612 
3613 void SelectionDAGBuilder::visitBitCast(const User &I) {
3614   SDValue N = getValue(I.getOperand(0));
3615   SDLoc dl = getCurSDLoc();
3616   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3617                                                         I.getType());
3618 
3619   // BitCast assures us that source and destination are the same size so this is
3620   // either a BITCAST or a no-op.
3621   if (DestVT != N.getValueType())
3622     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3623                              DestVT, N)); // convert types.
3624   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3625   // might fold any kind of constant expression to an integer constant and that
3626   // is not what we are looking for. Only recognize a bitcast of a genuine
3627   // constant integer as an opaque constant.
3628   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3629     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3630                                  /*isOpaque*/true));
3631   else
3632     setValue(&I, N);            // noop cast.
3633 }
3634 
3635 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3637   const Value *SV = I.getOperand(0);
3638   SDValue N = getValue(SV);
3639   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3640 
3641   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3642   unsigned DestAS = I.getType()->getPointerAddressSpace();
3643 
3644   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3645     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3646 
3647   setValue(&I, N);
3648 }
3649 
3650 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3652   SDValue InVec = getValue(I.getOperand(0));
3653   SDValue InVal = getValue(I.getOperand(1));
3654   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3655                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3656   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3657                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3658                            InVec, InVal, InIdx));
3659 }
3660 
3661 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3663   SDValue InVec = getValue(I.getOperand(0));
3664   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3665                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3666   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3667                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3668                            InVec, InIdx));
3669 }
3670 
3671 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3672   SDValue Src1 = getValue(I.getOperand(0));
3673   SDValue Src2 = getValue(I.getOperand(1));
3674   ArrayRef<int> Mask;
3675   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3676     Mask = SVI->getShuffleMask();
3677   else
3678     Mask = cast<ConstantExpr>(I).getShuffleMask();
3679   SDLoc DL = getCurSDLoc();
3680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3681   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3682   EVT SrcVT = Src1.getValueType();
3683 
3684   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3685       VT.isScalableVector()) {
3686     // Canonical splat form of first element of first input vector.
3687     SDValue FirstElt =
3688         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3689                     DAG.getVectorIdxConstant(0, DL));
3690     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3691     return;
3692   }
3693 
3694   // For now, we only handle splats for scalable vectors.
3695   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3696   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3697   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3698 
3699   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3700   unsigned MaskNumElts = Mask.size();
3701 
3702   if (SrcNumElts == MaskNumElts) {
3703     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3704     return;
3705   }
3706 
3707   // Normalize the shuffle vector since mask and vector length don't match.
3708   if (SrcNumElts < MaskNumElts) {
3709     // Mask is longer than the source vectors. We can use concatenate vector to
3710     // make the mask and vectors lengths match.
3711 
3712     if (MaskNumElts % SrcNumElts == 0) {
3713       // Mask length is a multiple of the source vector length.
3714       // Check if the shuffle is some kind of concatenation of the input
3715       // vectors.
3716       unsigned NumConcat = MaskNumElts / SrcNumElts;
3717       bool IsConcat = true;
3718       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3719       for (unsigned i = 0; i != MaskNumElts; ++i) {
3720         int Idx = Mask[i];
3721         if (Idx < 0)
3722           continue;
3723         // Ensure the indices in each SrcVT sized piece are sequential and that
3724         // the same source is used for the whole piece.
3725         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3726             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3727              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3728           IsConcat = false;
3729           break;
3730         }
3731         // Remember which source this index came from.
3732         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3733       }
3734 
3735       // The shuffle is concatenating multiple vectors together. Just emit
3736       // a CONCAT_VECTORS operation.
3737       if (IsConcat) {
3738         SmallVector<SDValue, 8> ConcatOps;
3739         for (auto Src : ConcatSrcs) {
3740           if (Src < 0)
3741             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3742           else if (Src == 0)
3743             ConcatOps.push_back(Src1);
3744           else
3745             ConcatOps.push_back(Src2);
3746         }
3747         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3748         return;
3749       }
3750     }
3751 
3752     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3753     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3754     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3755                                     PaddedMaskNumElts);
3756 
3757     // Pad both vectors with undefs to make them the same length as the mask.
3758     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3759 
3760     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3761     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3762     MOps1[0] = Src1;
3763     MOps2[0] = Src2;
3764 
3765     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3766     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3767 
3768     // Readjust mask for new input vector length.
3769     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3770     for (unsigned i = 0; i != MaskNumElts; ++i) {
3771       int Idx = Mask[i];
3772       if (Idx >= (int)SrcNumElts)
3773         Idx -= SrcNumElts - PaddedMaskNumElts;
3774       MappedOps[i] = Idx;
3775     }
3776 
3777     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3778 
3779     // If the concatenated vector was padded, extract a subvector with the
3780     // correct number of elements.
3781     if (MaskNumElts != PaddedMaskNumElts)
3782       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3783                            DAG.getVectorIdxConstant(0, DL));
3784 
3785     setValue(&I, Result);
3786     return;
3787   }
3788 
3789   if (SrcNumElts > MaskNumElts) {
3790     // Analyze the access pattern of the vector to see if we can extract
3791     // two subvectors and do the shuffle.
3792     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3793     bool CanExtract = true;
3794     for (int Idx : Mask) {
3795       unsigned Input = 0;
3796       if (Idx < 0)
3797         continue;
3798 
3799       if (Idx >= (int)SrcNumElts) {
3800         Input = 1;
3801         Idx -= SrcNumElts;
3802       }
3803 
3804       // If all the indices come from the same MaskNumElts sized portion of
3805       // the sources we can use extract. Also make sure the extract wouldn't
3806       // extract past the end of the source.
3807       int NewStartIdx = alignDown(Idx, MaskNumElts);
3808       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3809           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3810         CanExtract = false;
3811       // Make sure we always update StartIdx as we use it to track if all
3812       // elements are undef.
3813       StartIdx[Input] = NewStartIdx;
3814     }
3815 
3816     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3817       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3818       return;
3819     }
3820     if (CanExtract) {
3821       // Extract appropriate subvector and generate a vector shuffle
3822       for (unsigned Input = 0; Input < 2; ++Input) {
3823         SDValue &Src = Input == 0 ? Src1 : Src2;
3824         if (StartIdx[Input] < 0)
3825           Src = DAG.getUNDEF(VT);
3826         else {
3827           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3828                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3829         }
3830       }
3831 
3832       // Calculate new mask.
3833       SmallVector<int, 8> MappedOps(Mask);
3834       for (int &Idx : MappedOps) {
3835         if (Idx >= (int)SrcNumElts)
3836           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3837         else if (Idx >= 0)
3838           Idx -= StartIdx[0];
3839       }
3840 
3841       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3842       return;
3843     }
3844   }
3845 
3846   // We can't use either concat vectors or extract subvectors so fall back to
3847   // replacing the shuffle with extract and build vector.
3848   // to insert and build vector.
3849   EVT EltVT = VT.getVectorElementType();
3850   SmallVector<SDValue,8> Ops;
3851   for (int Idx : Mask) {
3852     SDValue Res;
3853 
3854     if (Idx < 0) {
3855       Res = DAG.getUNDEF(EltVT);
3856     } else {
3857       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3858       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3859 
3860       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3861                         DAG.getVectorIdxConstant(Idx, DL));
3862     }
3863 
3864     Ops.push_back(Res);
3865   }
3866 
3867   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3868 }
3869 
3870 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3871   ArrayRef<unsigned> Indices = I.getIndices();
3872   const Value *Op0 = I.getOperand(0);
3873   const Value *Op1 = I.getOperand(1);
3874   Type *AggTy = I.getType();
3875   Type *ValTy = Op1->getType();
3876   bool IntoUndef = isa<UndefValue>(Op0);
3877   bool FromUndef = isa<UndefValue>(Op1);
3878 
3879   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3880 
3881   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3882   SmallVector<EVT, 4> AggValueVTs;
3883   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3884   SmallVector<EVT, 4> ValValueVTs;
3885   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3886 
3887   unsigned NumAggValues = AggValueVTs.size();
3888   unsigned NumValValues = ValValueVTs.size();
3889   SmallVector<SDValue, 4> Values(NumAggValues);
3890 
3891   // Ignore an insertvalue that produces an empty object
3892   if (!NumAggValues) {
3893     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3894     return;
3895   }
3896 
3897   SDValue Agg = getValue(Op0);
3898   unsigned i = 0;
3899   // Copy the beginning value(s) from the original aggregate.
3900   for (; i != LinearIndex; ++i)
3901     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3902                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3903   // Copy values from the inserted value(s).
3904   if (NumValValues) {
3905     SDValue Val = getValue(Op1);
3906     for (; i != LinearIndex + NumValValues; ++i)
3907       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3908                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3909   }
3910   // Copy remaining value(s) from the original aggregate.
3911   for (; i != NumAggValues; ++i)
3912     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3913                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3914 
3915   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3916                            DAG.getVTList(AggValueVTs), Values));
3917 }
3918 
3919 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3920   ArrayRef<unsigned> Indices = I.getIndices();
3921   const Value *Op0 = I.getOperand(0);
3922   Type *AggTy = Op0->getType();
3923   Type *ValTy = I.getType();
3924   bool OutOfUndef = isa<UndefValue>(Op0);
3925 
3926   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3927 
3928   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3929   SmallVector<EVT, 4> ValValueVTs;
3930   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3931 
3932   unsigned NumValValues = ValValueVTs.size();
3933 
3934   // Ignore a extractvalue that produces an empty object
3935   if (!NumValValues) {
3936     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3937     return;
3938   }
3939 
3940   SmallVector<SDValue, 4> Values(NumValValues);
3941 
3942   SDValue Agg = getValue(Op0);
3943   // Copy out the selected value(s).
3944   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3945     Values[i - LinearIndex] =
3946       OutOfUndef ?
3947         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3948         SDValue(Agg.getNode(), Agg.getResNo() + i);
3949 
3950   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3951                            DAG.getVTList(ValValueVTs), Values));
3952 }
3953 
3954 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3955   Value *Op0 = I.getOperand(0);
3956   // Note that the pointer operand may be a vector of pointers. Take the scalar
3957   // element which holds a pointer.
3958   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3959   SDValue N = getValue(Op0);
3960   SDLoc dl = getCurSDLoc();
3961   auto &TLI = DAG.getTargetLoweringInfo();
3962 
3963   // Normalize Vector GEP - all scalar operands should be converted to the
3964   // splat vector.
3965   bool IsVectorGEP = I.getType()->isVectorTy();
3966   ElementCount VectorElementCount =
3967       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3968                   : ElementCount::getFixed(0);
3969 
3970   if (IsVectorGEP && !N.getValueType().isVector()) {
3971     LLVMContext &Context = *DAG.getContext();
3972     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3973     N = DAG.getSplat(VT, dl, N);
3974   }
3975 
3976   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3977        GTI != E; ++GTI) {
3978     const Value *Idx = GTI.getOperand();
3979     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3980       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3981       if (Field) {
3982         // N = N + Offset
3983         uint64_t Offset =
3984             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3985 
3986         // In an inbounds GEP with an offset that is nonnegative even when
3987         // interpreted as signed, assume there is no unsigned overflow.
3988         SDNodeFlags Flags;
3989         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3990           Flags.setNoUnsignedWrap(true);
3991 
3992         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3993                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3994       }
3995     } else {
3996       // IdxSize is the width of the arithmetic according to IR semantics.
3997       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3998       // (and fix up the result later).
3999       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4000       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4001       TypeSize ElementSize =
4002           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4003       // We intentionally mask away the high bits here; ElementSize may not
4004       // fit in IdxTy.
4005       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4006       bool ElementScalable = ElementSize.isScalable();
4007 
4008       // If this is a scalar constant or a splat vector of constants,
4009       // handle it quickly.
4010       const auto *C = dyn_cast<Constant>(Idx);
4011       if (C && isa<VectorType>(C->getType()))
4012         C = C->getSplatValue();
4013 
4014       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4015       if (CI && CI->isZero())
4016         continue;
4017       if (CI && !ElementScalable) {
4018         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4019         LLVMContext &Context = *DAG.getContext();
4020         SDValue OffsVal;
4021         if (IsVectorGEP)
4022           OffsVal = DAG.getConstant(
4023               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4024         else
4025           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4026 
4027         // In an inbounds GEP with an offset that is nonnegative even when
4028         // interpreted as signed, assume there is no unsigned overflow.
4029         SDNodeFlags Flags;
4030         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4031           Flags.setNoUnsignedWrap(true);
4032 
4033         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4034 
4035         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4036         continue;
4037       }
4038 
4039       // N = N + Idx * ElementMul;
4040       SDValue IdxN = getValue(Idx);
4041 
4042       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4043         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4044                                   VectorElementCount);
4045         IdxN = DAG.getSplat(VT, dl, IdxN);
4046       }
4047 
4048       // If the index is smaller or larger than intptr_t, truncate or extend
4049       // it.
4050       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4051 
4052       if (ElementScalable) {
4053         EVT VScaleTy = N.getValueType().getScalarType();
4054         SDValue VScale = DAG.getNode(
4055             ISD::VSCALE, dl, VScaleTy,
4056             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4057         if (IsVectorGEP)
4058           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4059         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4060       } else {
4061         // If this is a multiply by a power of two, turn it into a shl
4062         // immediately.  This is a very common case.
4063         if (ElementMul != 1) {
4064           if (ElementMul.isPowerOf2()) {
4065             unsigned Amt = ElementMul.logBase2();
4066             IdxN = DAG.getNode(ISD::SHL, dl,
4067                                N.getValueType(), IdxN,
4068                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4069           } else {
4070             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4071                                             IdxN.getValueType());
4072             IdxN = DAG.getNode(ISD::MUL, dl,
4073                                N.getValueType(), IdxN, Scale);
4074           }
4075         }
4076       }
4077 
4078       N = DAG.getNode(ISD::ADD, dl,
4079                       N.getValueType(), N, IdxN);
4080     }
4081   }
4082 
4083   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4084   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4085   if (IsVectorGEP) {
4086     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4087     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4088   }
4089 
4090   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4091     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4092 
4093   setValue(&I, N);
4094 }
4095 
4096 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4097   // If this is a fixed sized alloca in the entry block of the function,
4098   // allocate it statically on the stack.
4099   if (FuncInfo.StaticAllocaMap.count(&I))
4100     return;   // getValue will auto-populate this.
4101 
4102   SDLoc dl = getCurSDLoc();
4103   Type *Ty = I.getAllocatedType();
4104   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4105   auto &DL = DAG.getDataLayout();
4106   TypeSize TySize = DL.getTypeAllocSize(Ty);
4107   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4108 
4109   SDValue AllocSize = getValue(I.getArraySize());
4110 
4111   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4112   if (AllocSize.getValueType() != IntPtr)
4113     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4114 
4115   if (TySize.isScalable())
4116     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4117                             DAG.getVScale(dl, IntPtr,
4118                                           APInt(IntPtr.getScalarSizeInBits(),
4119                                                 TySize.getKnownMinValue())));
4120   else
4121     AllocSize =
4122         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4123                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4124 
4125   // Handle alignment.  If the requested alignment is less than or equal to
4126   // the stack alignment, ignore it.  If the size is greater than or equal to
4127   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4128   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4129   if (*Alignment <= StackAlign)
4130     Alignment = std::nullopt;
4131 
4132   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4133   // Round the size of the allocation up to the stack alignment size
4134   // by add SA-1 to the size. This doesn't overflow because we're computing
4135   // an address inside an alloca.
4136   SDNodeFlags Flags;
4137   Flags.setNoUnsignedWrap(true);
4138   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4139                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4140 
4141   // Mask out the low bits for alignment purposes.
4142   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4143                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4144 
4145   SDValue Ops[] = {
4146       getRoot(), AllocSize,
4147       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4148   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4149   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4150   setValue(&I, DSA);
4151   DAG.setRoot(DSA.getValue(1));
4152 
4153   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4154 }
4155 
4156 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4157   if (I.isAtomic())
4158     return visitAtomicLoad(I);
4159 
4160   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4161   const Value *SV = I.getOperand(0);
4162   if (TLI.supportSwiftError()) {
4163     // Swifterror values can come from either a function parameter with
4164     // swifterror attribute or an alloca with swifterror attribute.
4165     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4166       if (Arg->hasSwiftErrorAttr())
4167         return visitLoadFromSwiftError(I);
4168     }
4169 
4170     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4171       if (Alloca->isSwiftError())
4172         return visitLoadFromSwiftError(I);
4173     }
4174   }
4175 
4176   SDValue Ptr = getValue(SV);
4177 
4178   Type *Ty = I.getType();
4179   SmallVector<EVT, 4> ValueVTs, MemVTs;
4180   SmallVector<uint64_t, 4> Offsets;
4181   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4182   unsigned NumValues = ValueVTs.size();
4183   if (NumValues == 0)
4184     return;
4185 
4186   Align Alignment = I.getAlign();
4187   AAMDNodes AAInfo = I.getAAMetadata();
4188   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4189   bool isVolatile = I.isVolatile();
4190   MachineMemOperand::Flags MMOFlags =
4191       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4192 
4193   SDValue Root;
4194   bool ConstantMemory = false;
4195   if (isVolatile)
4196     // Serialize volatile loads with other side effects.
4197     Root = getRoot();
4198   else if (NumValues > MaxParallelChains)
4199     Root = getMemoryRoot();
4200   else if (AA &&
4201            AA->pointsToConstantMemory(MemoryLocation(
4202                SV,
4203                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4204                AAInfo))) {
4205     // Do not serialize (non-volatile) loads of constant memory with anything.
4206     Root = DAG.getEntryNode();
4207     ConstantMemory = true;
4208     MMOFlags |= MachineMemOperand::MOInvariant;
4209   } else {
4210     // Do not serialize non-volatile loads against each other.
4211     Root = DAG.getRoot();
4212   }
4213 
4214   SDLoc dl = getCurSDLoc();
4215 
4216   if (isVolatile)
4217     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4218 
4219   // An aggregate load cannot wrap around the address space, so offsets to its
4220   // parts don't wrap either.
4221   SDNodeFlags Flags;
4222   Flags.setNoUnsignedWrap(true);
4223 
4224   SmallVector<SDValue, 4> Values(NumValues);
4225   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4226   EVT PtrVT = Ptr.getValueType();
4227 
4228   unsigned ChainI = 0;
4229   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4230     // Serializing loads here may result in excessive register pressure, and
4231     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4232     // could recover a bit by hoisting nodes upward in the chain by recognizing
4233     // they are side-effect free or do not alias. The optimizer should really
4234     // avoid this case by converting large object/array copies to llvm.memcpy
4235     // (MaxParallelChains should always remain as failsafe).
4236     if (ChainI == MaxParallelChains) {
4237       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4238       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4239                                   ArrayRef(Chains.data(), ChainI));
4240       Root = Chain;
4241       ChainI = 0;
4242     }
4243     SDValue A = DAG.getNode(ISD::ADD, dl,
4244                             PtrVT, Ptr,
4245                             DAG.getConstant(Offsets[i], dl, PtrVT),
4246                             Flags);
4247 
4248     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4249                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4250                             MMOFlags, AAInfo, Ranges);
4251     Chains[ChainI] = L.getValue(1);
4252 
4253     if (MemVTs[i] != ValueVTs[i])
4254       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4255 
4256     Values[i] = L;
4257   }
4258 
4259   if (!ConstantMemory) {
4260     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4261                                 ArrayRef(Chains.data(), ChainI));
4262     if (isVolatile)
4263       DAG.setRoot(Chain);
4264     else
4265       PendingLoads.push_back(Chain);
4266   }
4267 
4268   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4269                            DAG.getVTList(ValueVTs), Values));
4270 }
4271 
4272 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4273   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4274          "call visitStoreToSwiftError when backend supports swifterror");
4275 
4276   SmallVector<EVT, 4> ValueVTs;
4277   SmallVector<uint64_t, 4> Offsets;
4278   const Value *SrcV = I.getOperand(0);
4279   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4280                   SrcV->getType(), ValueVTs, &Offsets, 0);
4281   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4282          "expect a single EVT for swifterror");
4283 
4284   SDValue Src = getValue(SrcV);
4285   // Create a virtual register, then update the virtual register.
4286   Register VReg =
4287       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4288   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4289   // Chain can be getRoot or getControlRoot.
4290   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4291                                       SDValue(Src.getNode(), Src.getResNo()));
4292   DAG.setRoot(CopyNode);
4293 }
4294 
4295 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4296   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4297          "call visitLoadFromSwiftError when backend supports swifterror");
4298 
4299   assert(!I.isVolatile() &&
4300          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4301          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4302          "Support volatile, non temporal, invariant for load_from_swift_error");
4303 
4304   const Value *SV = I.getOperand(0);
4305   Type *Ty = I.getType();
4306   assert(
4307       (!AA ||
4308        !AA->pointsToConstantMemory(MemoryLocation(
4309            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4310            I.getAAMetadata()))) &&
4311       "load_from_swift_error should not be constant memory");
4312 
4313   SmallVector<EVT, 4> ValueVTs;
4314   SmallVector<uint64_t, 4> Offsets;
4315   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4316                   ValueVTs, &Offsets, 0);
4317   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4318          "expect a single EVT for swifterror");
4319 
4320   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4321   SDValue L = DAG.getCopyFromReg(
4322       getRoot(), getCurSDLoc(),
4323       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4324 
4325   setValue(&I, L);
4326 }
4327 
4328 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4329   if (I.isAtomic())
4330     return visitAtomicStore(I);
4331 
4332   const Value *SrcV = I.getOperand(0);
4333   const Value *PtrV = I.getOperand(1);
4334 
4335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4336   if (TLI.supportSwiftError()) {
4337     // Swifterror values can come from either a function parameter with
4338     // swifterror attribute or an alloca with swifterror attribute.
4339     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4340       if (Arg->hasSwiftErrorAttr())
4341         return visitStoreToSwiftError(I);
4342     }
4343 
4344     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4345       if (Alloca->isSwiftError())
4346         return visitStoreToSwiftError(I);
4347     }
4348   }
4349 
4350   SmallVector<EVT, 4> ValueVTs, MemVTs;
4351   SmallVector<uint64_t, 4> Offsets;
4352   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4353                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4354   unsigned NumValues = ValueVTs.size();
4355   if (NumValues == 0)
4356     return;
4357 
4358   // Get the lowered operands. Note that we do this after
4359   // checking if NumResults is zero, because with zero results
4360   // the operands won't have values in the map.
4361   SDValue Src = getValue(SrcV);
4362   SDValue Ptr = getValue(PtrV);
4363 
4364   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4365   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4366   SDLoc dl = getCurSDLoc();
4367   Align Alignment = I.getAlign();
4368   AAMDNodes AAInfo = I.getAAMetadata();
4369 
4370   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4371 
4372   // An aggregate load cannot wrap around the address space, so offsets to its
4373   // parts don't wrap either.
4374   SDNodeFlags Flags;
4375   Flags.setNoUnsignedWrap(true);
4376 
4377   unsigned ChainI = 0;
4378   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4379     // See visitLoad comments.
4380     if (ChainI == MaxParallelChains) {
4381       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4382                                   ArrayRef(Chains.data(), ChainI));
4383       Root = Chain;
4384       ChainI = 0;
4385     }
4386     SDValue Add =
4387         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4388     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4389     if (MemVTs[i] != ValueVTs[i])
4390       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4391     SDValue St =
4392         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4393                      Alignment, MMOFlags, AAInfo);
4394     Chains[ChainI] = St;
4395   }
4396 
4397   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4398                                   ArrayRef(Chains.data(), ChainI));
4399   setValue(&I, StoreNode);
4400   DAG.setRoot(StoreNode);
4401 }
4402 
4403 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4404                                            bool IsCompressing) {
4405   SDLoc sdl = getCurSDLoc();
4406 
4407   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4408                                MaybeAlign &Alignment) {
4409     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4410     Src0 = I.getArgOperand(0);
4411     Ptr = I.getArgOperand(1);
4412     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4413     Mask = I.getArgOperand(3);
4414   };
4415   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4416                                     MaybeAlign &Alignment) {
4417     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4418     Src0 = I.getArgOperand(0);
4419     Ptr = I.getArgOperand(1);
4420     Mask = I.getArgOperand(2);
4421     Alignment = std::nullopt;
4422   };
4423 
4424   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4425   MaybeAlign Alignment;
4426   if (IsCompressing)
4427     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4428   else
4429     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4430 
4431   SDValue Ptr = getValue(PtrOperand);
4432   SDValue Src0 = getValue(Src0Operand);
4433   SDValue Mask = getValue(MaskOperand);
4434   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4435 
4436   EVT VT = Src0.getValueType();
4437   if (!Alignment)
4438     Alignment = DAG.getEVTAlign(VT);
4439 
4440   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4441       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4442       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4443   SDValue StoreNode =
4444       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4445                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4446   DAG.setRoot(StoreNode);
4447   setValue(&I, StoreNode);
4448 }
4449 
4450 // Get a uniform base for the Gather/Scatter intrinsic.
4451 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4452 // We try to represent it as a base pointer + vector of indices.
4453 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4454 // The first operand of the GEP may be a single pointer or a vector of pointers
4455 // Example:
4456 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4457 //  or
4458 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4459 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4460 //
4461 // When the first GEP operand is a single pointer - it is the uniform base we
4462 // are looking for. If first operand of the GEP is a splat vector - we
4463 // extract the splat value and use it as a uniform base.
4464 // In all other cases the function returns 'false'.
4465 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4466                            ISD::MemIndexType &IndexType, SDValue &Scale,
4467                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4468                            uint64_t ElemSize) {
4469   SelectionDAG& DAG = SDB->DAG;
4470   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4471   const DataLayout &DL = DAG.getDataLayout();
4472 
4473   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4474 
4475   // Handle splat constant pointer.
4476   if (auto *C = dyn_cast<Constant>(Ptr)) {
4477     C = C->getSplatValue();
4478     if (!C)
4479       return false;
4480 
4481     Base = SDB->getValue(C);
4482 
4483     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4484     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4485     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4486     IndexType = ISD::SIGNED_SCALED;
4487     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4488     return true;
4489   }
4490 
4491   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4492   if (!GEP || GEP->getParent() != CurBB)
4493     return false;
4494 
4495   if (GEP->getNumOperands() != 2)
4496     return false;
4497 
4498   const Value *BasePtr = GEP->getPointerOperand();
4499   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4500 
4501   // Make sure the base is scalar and the index is a vector.
4502   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4503     return false;
4504 
4505   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4506 
4507   // Target may not support the required addressing mode.
4508   if (ScaleVal != 1 &&
4509       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4510     return false;
4511 
4512   Base = SDB->getValue(BasePtr);
4513   Index = SDB->getValue(IndexVal);
4514   IndexType = ISD::SIGNED_SCALED;
4515 
4516   Scale =
4517       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4518   return true;
4519 }
4520 
4521 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4522   SDLoc sdl = getCurSDLoc();
4523 
4524   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4525   const Value *Ptr = I.getArgOperand(1);
4526   SDValue Src0 = getValue(I.getArgOperand(0));
4527   SDValue Mask = getValue(I.getArgOperand(3));
4528   EVT VT = Src0.getValueType();
4529   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4530                         ->getMaybeAlignValue()
4531                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4533 
4534   SDValue Base;
4535   SDValue Index;
4536   ISD::MemIndexType IndexType;
4537   SDValue Scale;
4538   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4539                                     I.getParent(), VT.getScalarStoreSize());
4540 
4541   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4542   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4543       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4544       // TODO: Make MachineMemOperands aware of scalable
4545       // vectors.
4546       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4547   if (!UniformBase) {
4548     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4549     Index = getValue(Ptr);
4550     IndexType = ISD::SIGNED_SCALED;
4551     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4552   }
4553 
4554   EVT IdxVT = Index.getValueType();
4555   EVT EltTy = IdxVT.getVectorElementType();
4556   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4557     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4558     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4559   }
4560 
4561   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4562   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4563                                          Ops, MMO, IndexType, false);
4564   DAG.setRoot(Scatter);
4565   setValue(&I, Scatter);
4566 }
4567 
4568 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4569   SDLoc sdl = getCurSDLoc();
4570 
4571   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4572                               MaybeAlign &Alignment) {
4573     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4574     Ptr = I.getArgOperand(0);
4575     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4576     Mask = I.getArgOperand(2);
4577     Src0 = I.getArgOperand(3);
4578   };
4579   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4580                                  MaybeAlign &Alignment) {
4581     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4582     Ptr = I.getArgOperand(0);
4583     Alignment = std::nullopt;
4584     Mask = I.getArgOperand(1);
4585     Src0 = I.getArgOperand(2);
4586   };
4587 
4588   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4589   MaybeAlign Alignment;
4590   if (IsExpanding)
4591     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4592   else
4593     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4594 
4595   SDValue Ptr = getValue(PtrOperand);
4596   SDValue Src0 = getValue(Src0Operand);
4597   SDValue Mask = getValue(MaskOperand);
4598   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4599 
4600   EVT VT = Src0.getValueType();
4601   if (!Alignment)
4602     Alignment = DAG.getEVTAlign(VT);
4603 
4604   AAMDNodes AAInfo = I.getAAMetadata();
4605   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4606 
4607   // Do not serialize masked loads of constant memory with anything.
4608   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4609   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4610 
4611   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4612 
4613   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4614       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4615       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4616 
4617   SDValue Load =
4618       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4619                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4620   if (AddToChain)
4621     PendingLoads.push_back(Load.getValue(1));
4622   setValue(&I, Load);
4623 }
4624 
4625 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4626   SDLoc sdl = getCurSDLoc();
4627 
4628   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4629   const Value *Ptr = I.getArgOperand(0);
4630   SDValue Src0 = getValue(I.getArgOperand(3));
4631   SDValue Mask = getValue(I.getArgOperand(2));
4632 
4633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4634   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4635   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4636                         ->getMaybeAlignValue()
4637                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4638 
4639   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4640 
4641   SDValue Root = DAG.getRoot();
4642   SDValue Base;
4643   SDValue Index;
4644   ISD::MemIndexType IndexType;
4645   SDValue Scale;
4646   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4647                                     I.getParent(), VT.getScalarStoreSize());
4648   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4649   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4650       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4651       // TODO: Make MachineMemOperands aware of scalable
4652       // vectors.
4653       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4654 
4655   if (!UniformBase) {
4656     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4657     Index = getValue(Ptr);
4658     IndexType = ISD::SIGNED_SCALED;
4659     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4660   }
4661 
4662   EVT IdxVT = Index.getValueType();
4663   EVT EltTy = IdxVT.getVectorElementType();
4664   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4665     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4666     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4667   }
4668 
4669   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4670   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4671                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4672 
4673   PendingLoads.push_back(Gather.getValue(1));
4674   setValue(&I, Gather);
4675 }
4676 
4677 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4678   SDLoc dl = getCurSDLoc();
4679   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4680   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4681   SyncScope::ID SSID = I.getSyncScopeID();
4682 
4683   SDValue InChain = getRoot();
4684 
4685   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4686   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4687 
4688   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4689   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4690 
4691   MachineFunction &MF = DAG.getMachineFunction();
4692   MachineMemOperand *MMO = MF.getMachineMemOperand(
4693       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4694       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4695       FailureOrdering);
4696 
4697   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4698                                    dl, MemVT, VTs, InChain,
4699                                    getValue(I.getPointerOperand()),
4700                                    getValue(I.getCompareOperand()),
4701                                    getValue(I.getNewValOperand()), MMO);
4702 
4703   SDValue OutChain = L.getValue(2);
4704 
4705   setValue(&I, L);
4706   DAG.setRoot(OutChain);
4707 }
4708 
4709 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4710   SDLoc dl = getCurSDLoc();
4711   ISD::NodeType NT;
4712   switch (I.getOperation()) {
4713   default: llvm_unreachable("Unknown atomicrmw operation");
4714   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4715   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4716   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4717   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4718   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4719   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4720   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4721   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4722   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4723   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4724   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4725   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4726   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4727   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4728   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4729   case AtomicRMWInst::UIncWrap:
4730     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4731     break;
4732   case AtomicRMWInst::UDecWrap:
4733     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4734     break;
4735   }
4736   AtomicOrdering Ordering = I.getOrdering();
4737   SyncScope::ID SSID = I.getSyncScopeID();
4738 
4739   SDValue InChain = getRoot();
4740 
4741   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4742   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4743   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4744 
4745   MachineFunction &MF = DAG.getMachineFunction();
4746   MachineMemOperand *MMO = MF.getMachineMemOperand(
4747       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4748       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4749 
4750   SDValue L =
4751     DAG.getAtomic(NT, dl, MemVT, InChain,
4752                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4753                   MMO);
4754 
4755   SDValue OutChain = L.getValue(1);
4756 
4757   setValue(&I, L);
4758   DAG.setRoot(OutChain);
4759 }
4760 
4761 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4762   SDLoc dl = getCurSDLoc();
4763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4764   SDValue Ops[3];
4765   Ops[0] = getRoot();
4766   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4767                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4768   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4769                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4770   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4771   setValue(&I, N);
4772   DAG.setRoot(N);
4773 }
4774 
4775 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4776   SDLoc dl = getCurSDLoc();
4777   AtomicOrdering Order = I.getOrdering();
4778   SyncScope::ID SSID = I.getSyncScopeID();
4779 
4780   SDValue InChain = getRoot();
4781 
4782   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4783   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4784   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4785 
4786   if (!TLI.supportsUnalignedAtomics() &&
4787       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4788     report_fatal_error("Cannot generate unaligned atomic load");
4789 
4790   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4791 
4792   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4793       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4794       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4795 
4796   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4797 
4798   SDValue Ptr = getValue(I.getPointerOperand());
4799 
4800   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4801     // TODO: Once this is better exercised by tests, it should be merged with
4802     // the normal path for loads to prevent future divergence.
4803     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4804     if (MemVT != VT)
4805       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4806 
4807     setValue(&I, L);
4808     SDValue OutChain = L.getValue(1);
4809     if (!I.isUnordered())
4810       DAG.setRoot(OutChain);
4811     else
4812       PendingLoads.push_back(OutChain);
4813     return;
4814   }
4815 
4816   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4817                             Ptr, MMO);
4818 
4819   SDValue OutChain = L.getValue(1);
4820   if (MemVT != VT)
4821     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4822 
4823   setValue(&I, L);
4824   DAG.setRoot(OutChain);
4825 }
4826 
4827 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4828   SDLoc dl = getCurSDLoc();
4829 
4830   AtomicOrdering Ordering = I.getOrdering();
4831   SyncScope::ID SSID = I.getSyncScopeID();
4832 
4833   SDValue InChain = getRoot();
4834 
4835   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4836   EVT MemVT =
4837       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4838 
4839   if (!TLI.supportsUnalignedAtomics() &&
4840       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4841     report_fatal_error("Cannot generate unaligned atomic store");
4842 
4843   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4844 
4845   MachineFunction &MF = DAG.getMachineFunction();
4846   MachineMemOperand *MMO = MF.getMachineMemOperand(
4847       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4848       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4849 
4850   SDValue Val = getValue(I.getValueOperand());
4851   if (Val.getValueType() != MemVT)
4852     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4853   SDValue Ptr = getValue(I.getPointerOperand());
4854 
4855   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4856     // TODO: Once this is better exercised by tests, it should be merged with
4857     // the normal path for stores to prevent future divergence.
4858     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4859     setValue(&I, S);
4860     DAG.setRoot(S);
4861     return;
4862   }
4863   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4864                                    Ptr, Val, MMO);
4865 
4866   setValue(&I, OutChain);
4867   DAG.setRoot(OutChain);
4868 }
4869 
4870 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4871 /// node.
4872 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4873                                                unsigned Intrinsic) {
4874   // Ignore the callsite's attributes. A specific call site may be marked with
4875   // readnone, but the lowering code will expect the chain based on the
4876   // definition.
4877   const Function *F = I.getCalledFunction();
4878   bool HasChain = !F->doesNotAccessMemory();
4879   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4880 
4881   // Build the operand list.
4882   SmallVector<SDValue, 8> Ops;
4883   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4884     if (OnlyLoad) {
4885       // We don't need to serialize loads against other loads.
4886       Ops.push_back(DAG.getRoot());
4887     } else {
4888       Ops.push_back(getRoot());
4889     }
4890   }
4891 
4892   // Info is set by getTgtMemIntrinsic
4893   TargetLowering::IntrinsicInfo Info;
4894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4895   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4896                                                DAG.getMachineFunction(),
4897                                                Intrinsic);
4898 
4899   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4900   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4901       Info.opc == ISD::INTRINSIC_W_CHAIN)
4902     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4903                                         TLI.getPointerTy(DAG.getDataLayout())));
4904 
4905   // Add all operands of the call to the operand list.
4906   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4907     const Value *Arg = I.getArgOperand(i);
4908     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4909       Ops.push_back(getValue(Arg));
4910       continue;
4911     }
4912 
4913     // Use TargetConstant instead of a regular constant for immarg.
4914     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4915     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4916       assert(CI->getBitWidth() <= 64 &&
4917              "large intrinsic immediates not handled");
4918       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4919     } else {
4920       Ops.push_back(
4921           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4922     }
4923   }
4924 
4925   SmallVector<EVT, 4> ValueVTs;
4926   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4927 
4928   if (HasChain)
4929     ValueVTs.push_back(MVT::Other);
4930 
4931   SDVTList VTs = DAG.getVTList(ValueVTs);
4932 
4933   // Propagate fast-math-flags from IR to node(s).
4934   SDNodeFlags Flags;
4935   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4936     Flags.copyFMF(*FPMO);
4937   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4938 
4939   // Create the node.
4940   SDValue Result;
4941   // In some cases, custom collection of operands from CallInst I may be needed.
4942   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4943   if (IsTgtIntrinsic) {
4944     // This is target intrinsic that touches memory
4945     //
4946     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4947     //       didn't yield anything useful.
4948     MachinePointerInfo MPI;
4949     if (Info.ptrVal)
4950       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4951     else if (Info.fallbackAddressSpace)
4952       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4953     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4954                                      Info.memVT, MPI, Info.align, Info.flags,
4955                                      Info.size, I.getAAMetadata());
4956   } else if (!HasChain) {
4957     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4958   } else if (!I.getType()->isVoidTy()) {
4959     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4960   } else {
4961     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4962   }
4963 
4964   if (HasChain) {
4965     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4966     if (OnlyLoad)
4967       PendingLoads.push_back(Chain);
4968     else
4969       DAG.setRoot(Chain);
4970   }
4971 
4972   if (!I.getType()->isVoidTy()) {
4973     if (!isa<VectorType>(I.getType()))
4974       Result = lowerRangeToAssertZExt(DAG, I, Result);
4975 
4976     MaybeAlign Alignment = I.getRetAlign();
4977 
4978     // Insert `assertalign` node if there's an alignment.
4979     if (InsertAssertAlign && Alignment) {
4980       Result =
4981           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4982     }
4983 
4984     setValue(&I, Result);
4985   }
4986 }
4987 
4988 /// GetSignificand - Get the significand and build it into a floating-point
4989 /// number with exponent of 1:
4990 ///
4991 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4992 ///
4993 /// where Op is the hexadecimal representation of floating point value.
4994 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4995   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4996                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4997   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4998                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4999   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5000 }
5001 
5002 /// GetExponent - Get the exponent:
5003 ///
5004 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5005 ///
5006 /// where Op is the hexadecimal representation of floating point value.
5007 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5008                            const TargetLowering &TLI, const SDLoc &dl) {
5009   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5010                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5011   SDValue t1 = DAG.getNode(
5012       ISD::SRL, dl, MVT::i32, t0,
5013       DAG.getConstant(23, dl,
5014                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5015   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5016                            DAG.getConstant(127, dl, MVT::i32));
5017   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5018 }
5019 
5020 /// getF32Constant - Get 32-bit floating point constant.
5021 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5022                               const SDLoc &dl) {
5023   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5024                            MVT::f32);
5025 }
5026 
5027 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5028                                        SelectionDAG &DAG) {
5029   // TODO: What fast-math-flags should be set on the floating-point nodes?
5030 
5031   //   IntegerPartOfX = ((int32_t)(t0);
5032   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5033 
5034   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5035   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5036   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5037 
5038   //   IntegerPartOfX <<= 23;
5039   IntegerPartOfX =
5040       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5041                   DAG.getConstant(23, dl,
5042                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5043                                       MVT::i32, DAG.getDataLayout())));
5044 
5045   SDValue TwoToFractionalPartOfX;
5046   if (LimitFloatPrecision <= 6) {
5047     // For floating-point precision of 6:
5048     //
5049     //   TwoToFractionalPartOfX =
5050     //     0.997535578f +
5051     //       (0.735607626f + 0.252464424f * x) * x;
5052     //
5053     // error 0.0144103317, which is 6 bits
5054     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5055                              getF32Constant(DAG, 0x3e814304, dl));
5056     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5057                              getF32Constant(DAG, 0x3f3c50c8, dl));
5058     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5059     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5060                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5061   } else if (LimitFloatPrecision <= 12) {
5062     // For floating-point precision of 12:
5063     //
5064     //   TwoToFractionalPartOfX =
5065     //     0.999892986f +
5066     //       (0.696457318f +
5067     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5068     //
5069     // error 0.000107046256, which is 13 to 14 bits
5070     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5071                              getF32Constant(DAG, 0x3da235e3, dl));
5072     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5073                              getF32Constant(DAG, 0x3e65b8f3, dl));
5074     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5075     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5076                              getF32Constant(DAG, 0x3f324b07, dl));
5077     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5078     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5079                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5080   } else { // LimitFloatPrecision <= 18
5081     // For floating-point precision of 18:
5082     //
5083     //   TwoToFractionalPartOfX =
5084     //     0.999999982f +
5085     //       (0.693148872f +
5086     //         (0.240227044f +
5087     //           (0.554906021e-1f +
5088     //             (0.961591928e-2f +
5089     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5090     // error 2.47208000*10^(-7), which is better than 18 bits
5091     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5092                              getF32Constant(DAG, 0x3924b03e, dl));
5093     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5094                              getF32Constant(DAG, 0x3ab24b87, dl));
5095     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5096     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5097                              getF32Constant(DAG, 0x3c1d8c17, dl));
5098     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5099     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5100                              getF32Constant(DAG, 0x3d634a1d, dl));
5101     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5102     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5103                              getF32Constant(DAG, 0x3e75fe14, dl));
5104     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5105     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5106                               getF32Constant(DAG, 0x3f317234, dl));
5107     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5108     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5109                                          getF32Constant(DAG, 0x3f800000, dl));
5110   }
5111 
5112   // Add the exponent into the result in integer domain.
5113   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5114   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5115                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5116 }
5117 
5118 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5119 /// limited-precision mode.
5120 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5121                          const TargetLowering &TLI, SDNodeFlags Flags) {
5122   if (Op.getValueType() == MVT::f32 &&
5123       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5124 
5125     // Put the exponent in the right bit position for later addition to the
5126     // final result:
5127     //
5128     // t0 = Op * log2(e)
5129 
5130     // TODO: What fast-math-flags should be set here?
5131     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5132                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5133     return getLimitedPrecisionExp2(t0, dl, DAG);
5134   }
5135 
5136   // No special expansion.
5137   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5138 }
5139 
5140 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5141 /// limited-precision mode.
5142 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5143                          const TargetLowering &TLI, SDNodeFlags Flags) {
5144   // TODO: What fast-math-flags should be set on the floating-point nodes?
5145 
5146   if (Op.getValueType() == MVT::f32 &&
5147       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5148     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5149 
5150     // Scale the exponent by log(2).
5151     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5152     SDValue LogOfExponent =
5153         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5154                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5155 
5156     // Get the significand and build it into a floating-point number with
5157     // exponent of 1.
5158     SDValue X = GetSignificand(DAG, Op1, dl);
5159 
5160     SDValue LogOfMantissa;
5161     if (LimitFloatPrecision <= 6) {
5162       // For floating-point precision of 6:
5163       //
5164       //   LogofMantissa =
5165       //     -1.1609546f +
5166       //       (1.4034025f - 0.23903021f * x) * x;
5167       //
5168       // error 0.0034276066, which is better than 8 bits
5169       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5170                                getF32Constant(DAG, 0xbe74c456, dl));
5171       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5172                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5173       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5174       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5175                                   getF32Constant(DAG, 0x3f949a29, dl));
5176     } else if (LimitFloatPrecision <= 12) {
5177       // For floating-point precision of 12:
5178       //
5179       //   LogOfMantissa =
5180       //     -1.7417939f +
5181       //       (2.8212026f +
5182       //         (-1.4699568f +
5183       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5184       //
5185       // error 0.000061011436, which is 14 bits
5186       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5187                                getF32Constant(DAG, 0xbd67b6d6, dl));
5188       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5189                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5190       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5191       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5192                                getF32Constant(DAG, 0x3fbc278b, dl));
5193       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5194       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5195                                getF32Constant(DAG, 0x40348e95, dl));
5196       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5197       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5198                                   getF32Constant(DAG, 0x3fdef31a, dl));
5199     } else { // LimitFloatPrecision <= 18
5200       // For floating-point precision of 18:
5201       //
5202       //   LogOfMantissa =
5203       //     -2.1072184f +
5204       //       (4.2372794f +
5205       //         (-3.7029485f +
5206       //           (2.2781945f +
5207       //             (-0.87823314f +
5208       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5209       //
5210       // error 0.0000023660568, which is better than 18 bits
5211       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5212                                getF32Constant(DAG, 0xbc91e5ac, dl));
5213       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5214                                getF32Constant(DAG, 0x3e4350aa, dl));
5215       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5216       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5217                                getF32Constant(DAG, 0x3f60d3e3, dl));
5218       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5219       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5220                                getF32Constant(DAG, 0x4011cdf0, dl));
5221       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5222       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5223                                getF32Constant(DAG, 0x406cfd1c, dl));
5224       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5225       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5226                                getF32Constant(DAG, 0x408797cb, dl));
5227       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5228       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5229                                   getF32Constant(DAG, 0x4006dcab, dl));
5230     }
5231 
5232     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5233   }
5234 
5235   // No special expansion.
5236   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5237 }
5238 
5239 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5240 /// limited-precision mode.
5241 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5242                           const TargetLowering &TLI, SDNodeFlags Flags) {
5243   // TODO: What fast-math-flags should be set on the floating-point nodes?
5244 
5245   if (Op.getValueType() == MVT::f32 &&
5246       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5247     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5248 
5249     // Get the exponent.
5250     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5251 
5252     // Get the significand and build it into a floating-point number with
5253     // exponent of 1.
5254     SDValue X = GetSignificand(DAG, Op1, dl);
5255 
5256     // Different possible minimax approximations of significand in
5257     // floating-point for various degrees of accuracy over [1,2].
5258     SDValue Log2ofMantissa;
5259     if (LimitFloatPrecision <= 6) {
5260       // For floating-point precision of 6:
5261       //
5262       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5263       //
5264       // error 0.0049451742, which is more than 7 bits
5265       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5266                                getF32Constant(DAG, 0xbeb08fe0, dl));
5267       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5268                                getF32Constant(DAG, 0x40019463, dl));
5269       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5270       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5271                                    getF32Constant(DAG, 0x3fd6633d, dl));
5272     } else if (LimitFloatPrecision <= 12) {
5273       // For floating-point precision of 12:
5274       //
5275       //   Log2ofMantissa =
5276       //     -2.51285454f +
5277       //       (4.07009056f +
5278       //         (-2.12067489f +
5279       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5280       //
5281       // error 0.0000876136000, which is better than 13 bits
5282       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5283                                getF32Constant(DAG, 0xbda7262e, dl));
5284       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5285                                getF32Constant(DAG, 0x3f25280b, dl));
5286       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5287       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5288                                getF32Constant(DAG, 0x4007b923, dl));
5289       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5290       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5291                                getF32Constant(DAG, 0x40823e2f, dl));
5292       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5293       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5294                                    getF32Constant(DAG, 0x4020d29c, dl));
5295     } else { // LimitFloatPrecision <= 18
5296       // For floating-point precision of 18:
5297       //
5298       //   Log2ofMantissa =
5299       //     -3.0400495f +
5300       //       (6.1129976f +
5301       //         (-5.3420409f +
5302       //           (3.2865683f +
5303       //             (-1.2669343f +
5304       //               (0.27515199f -
5305       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5306       //
5307       // error 0.0000018516, which is better than 18 bits
5308       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5309                                getF32Constant(DAG, 0xbcd2769e, dl));
5310       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5311                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5312       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5313       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5314                                getF32Constant(DAG, 0x3fa22ae7, dl));
5315       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5316       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5317                                getF32Constant(DAG, 0x40525723, dl));
5318       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5319       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5320                                getF32Constant(DAG, 0x40aaf200, dl));
5321       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5322       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5323                                getF32Constant(DAG, 0x40c39dad, dl));
5324       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5325       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5326                                    getF32Constant(DAG, 0x4042902c, dl));
5327     }
5328 
5329     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5330   }
5331 
5332   // No special expansion.
5333   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5334 }
5335 
5336 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5337 /// limited-precision mode.
5338 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5339                            const TargetLowering &TLI, SDNodeFlags Flags) {
5340   // TODO: What fast-math-flags should be set on the floating-point nodes?
5341 
5342   if (Op.getValueType() == MVT::f32 &&
5343       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5344     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5345 
5346     // Scale the exponent by log10(2) [0.30102999f].
5347     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5348     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5349                                         getF32Constant(DAG, 0x3e9a209a, dl));
5350 
5351     // Get the significand and build it into a floating-point number with
5352     // exponent of 1.
5353     SDValue X = GetSignificand(DAG, Op1, dl);
5354 
5355     SDValue Log10ofMantissa;
5356     if (LimitFloatPrecision <= 6) {
5357       // For floating-point precision of 6:
5358       //
5359       //   Log10ofMantissa =
5360       //     -0.50419619f +
5361       //       (0.60948995f - 0.10380950f * x) * x;
5362       //
5363       // error 0.0014886165, which is 6 bits
5364       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5365                                getF32Constant(DAG, 0xbdd49a13, dl));
5366       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5367                                getF32Constant(DAG, 0x3f1c0789, dl));
5368       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5369       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5370                                     getF32Constant(DAG, 0x3f011300, dl));
5371     } else if (LimitFloatPrecision <= 12) {
5372       // For floating-point precision of 12:
5373       //
5374       //   Log10ofMantissa =
5375       //     -0.64831180f +
5376       //       (0.91751397f +
5377       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5378       //
5379       // error 0.00019228036, which is better than 12 bits
5380       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5381                                getF32Constant(DAG, 0x3d431f31, dl));
5382       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5383                                getF32Constant(DAG, 0x3ea21fb2, dl));
5384       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5385       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5386                                getF32Constant(DAG, 0x3f6ae232, dl));
5387       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5388       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5389                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5390     } else { // LimitFloatPrecision <= 18
5391       // For floating-point precision of 18:
5392       //
5393       //   Log10ofMantissa =
5394       //     -0.84299375f +
5395       //       (1.5327582f +
5396       //         (-1.0688956f +
5397       //           (0.49102474f +
5398       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5399       //
5400       // error 0.0000037995730, which is better than 18 bits
5401       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5402                                getF32Constant(DAG, 0x3c5d51ce, dl));
5403       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5404                                getF32Constant(DAG, 0x3e00685a, dl));
5405       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5406       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5407                                getF32Constant(DAG, 0x3efb6798, dl));
5408       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5409       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5410                                getF32Constant(DAG, 0x3f88d192, dl));
5411       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5412       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5413                                getF32Constant(DAG, 0x3fc4316c, dl));
5414       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5415       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5416                                     getF32Constant(DAG, 0x3f57ce70, dl));
5417     }
5418 
5419     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5420   }
5421 
5422   // No special expansion.
5423   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5424 }
5425 
5426 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5427 /// limited-precision mode.
5428 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5429                           const TargetLowering &TLI, SDNodeFlags Flags) {
5430   if (Op.getValueType() == MVT::f32 &&
5431       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5432     return getLimitedPrecisionExp2(Op, dl, DAG);
5433 
5434   // No special expansion.
5435   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5436 }
5437 
5438 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5439 /// limited-precision mode with x == 10.0f.
5440 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5441                          SelectionDAG &DAG, const TargetLowering &TLI,
5442                          SDNodeFlags Flags) {
5443   bool IsExp10 = false;
5444   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5445       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5446     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5447       APFloat Ten(10.0f);
5448       IsExp10 = LHSC->isExactlyValue(Ten);
5449     }
5450   }
5451 
5452   // TODO: What fast-math-flags should be set on the FMUL node?
5453   if (IsExp10) {
5454     // Put the exponent in the right bit position for later addition to the
5455     // final result:
5456     //
5457     //   #define LOG2OF10 3.3219281f
5458     //   t0 = Op * LOG2OF10;
5459     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5460                              getF32Constant(DAG, 0x40549a78, dl));
5461     return getLimitedPrecisionExp2(t0, dl, DAG);
5462   }
5463 
5464   // No special expansion.
5465   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5466 }
5467 
5468 /// ExpandPowI - Expand a llvm.powi intrinsic.
5469 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5470                           SelectionDAG &DAG) {
5471   // If RHS is a constant, we can expand this out to a multiplication tree if
5472   // it's beneficial on the target, otherwise we end up lowering to a call to
5473   // __powidf2 (for example).
5474   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5475     unsigned Val = RHSC->getSExtValue();
5476 
5477     // powi(x, 0) -> 1.0
5478     if (Val == 0)
5479       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5480 
5481     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5482             Val, DAG.shouldOptForSize())) {
5483       // Get the exponent as a positive value.
5484       if ((int)Val < 0)
5485         Val = -Val;
5486       // We use the simple binary decomposition method to generate the multiply
5487       // sequence.  There are more optimal ways to do this (for example,
5488       // powi(x,15) generates one more multiply than it should), but this has
5489       // the benefit of being both really simple and much better than a libcall.
5490       SDValue Res; // Logically starts equal to 1.0
5491       SDValue CurSquare = LHS;
5492       // TODO: Intrinsics should have fast-math-flags that propagate to these
5493       // nodes.
5494       while (Val) {
5495         if (Val & 1) {
5496           if (Res.getNode())
5497             Res =
5498                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5499           else
5500             Res = CurSquare; // 1.0*CurSquare.
5501         }
5502 
5503         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5504                                 CurSquare, CurSquare);
5505         Val >>= 1;
5506       }
5507 
5508       // If the original was negative, invert the result, producing 1/(x*x*x).
5509       if (RHSC->getSExtValue() < 0)
5510         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5511                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5512       return Res;
5513     }
5514   }
5515 
5516   // Otherwise, expand to a libcall.
5517   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5518 }
5519 
5520 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5521                             SDValue LHS, SDValue RHS, SDValue Scale,
5522                             SelectionDAG &DAG, const TargetLowering &TLI) {
5523   EVT VT = LHS.getValueType();
5524   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5525   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5526   LLVMContext &Ctx = *DAG.getContext();
5527 
5528   // If the type is legal but the operation isn't, this node might survive all
5529   // the way to operation legalization. If we end up there and we do not have
5530   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5531   // node.
5532 
5533   // Coax the legalizer into expanding the node during type legalization instead
5534   // by bumping the size by one bit. This will force it to Promote, enabling the
5535   // early expansion and avoiding the need to expand later.
5536 
5537   // We don't have to do this if Scale is 0; that can always be expanded, unless
5538   // it's a saturating signed operation. Those can experience true integer
5539   // division overflow, a case which we must avoid.
5540 
5541   // FIXME: We wouldn't have to do this (or any of the early
5542   // expansion/promotion) if it was possible to expand a libcall of an
5543   // illegal type during operation legalization. But it's not, so things
5544   // get a bit hacky.
5545   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5546   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5547       (TLI.isTypeLegal(VT) ||
5548        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5549     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5550         Opcode, VT, ScaleInt);
5551     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5552       EVT PromVT;
5553       if (VT.isScalarInteger())
5554         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5555       else if (VT.isVector()) {
5556         PromVT = VT.getVectorElementType();
5557         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5558         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5559       } else
5560         llvm_unreachable("Wrong VT for DIVFIX?");
5561       if (Signed) {
5562         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5563         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5564       } else {
5565         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5566         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5567       }
5568       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5569       // For saturating operations, we need to shift up the LHS to get the
5570       // proper saturation width, and then shift down again afterwards.
5571       if (Saturating)
5572         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5573                           DAG.getConstant(1, DL, ShiftTy));
5574       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5575       if (Saturating)
5576         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5577                           DAG.getConstant(1, DL, ShiftTy));
5578       return DAG.getZExtOrTrunc(Res, DL, VT);
5579     }
5580   }
5581 
5582   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5583 }
5584 
5585 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5586 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5587 static void
5588 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5589                      const SDValue &N) {
5590   switch (N.getOpcode()) {
5591   case ISD::CopyFromReg: {
5592     SDValue Op = N.getOperand(1);
5593     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5594                       Op.getValueType().getSizeInBits());
5595     return;
5596   }
5597   case ISD::BITCAST:
5598   case ISD::AssertZext:
5599   case ISD::AssertSext:
5600   case ISD::TRUNCATE:
5601     getUnderlyingArgRegs(Regs, N.getOperand(0));
5602     return;
5603   case ISD::BUILD_PAIR:
5604   case ISD::BUILD_VECTOR:
5605   case ISD::CONCAT_VECTORS:
5606     for (SDValue Op : N->op_values())
5607       getUnderlyingArgRegs(Regs, Op);
5608     return;
5609   default:
5610     return;
5611   }
5612 }
5613 
5614 /// If the DbgValueInst is a dbg_value of a function argument, create the
5615 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5616 /// instruction selection, they will be inserted to the entry BB.
5617 /// We don't currently support this for variadic dbg_values, as they shouldn't
5618 /// appear for function arguments or in the prologue.
5619 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5620     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5621     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5622   const Argument *Arg = dyn_cast<Argument>(V);
5623   if (!Arg)
5624     return false;
5625 
5626   MachineFunction &MF = DAG.getMachineFunction();
5627   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5628 
5629   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5630   // we've been asked to pursue.
5631   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5632                               bool Indirect) {
5633     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5634       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5635       // pointing at the VReg, which will be patched up later.
5636       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5637       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5638           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5639           /* isKill */ false, /* isDead */ false,
5640           /* isUndef */ false, /* isEarlyClobber */ false,
5641           /* SubReg */ 0, /* isDebug */ true)});
5642 
5643       auto *NewDIExpr = FragExpr;
5644       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5645       // the DIExpression.
5646       if (Indirect)
5647         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5648       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5649       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5650       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5651     } else {
5652       // Create a completely standard DBG_VALUE.
5653       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5654       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5655     }
5656   };
5657 
5658   if (Kind == FuncArgumentDbgValueKind::Value) {
5659     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5660     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5661     // the entry block.
5662     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5663     if (!IsInEntryBlock)
5664       return false;
5665 
5666     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5667     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5668     // variable that also is a param.
5669     //
5670     // Although, if we are at the top of the entry block already, we can still
5671     // emit using ArgDbgValue. This might catch some situations when the
5672     // dbg.value refers to an argument that isn't used in the entry block, so
5673     // any CopyToReg node would be optimized out and the only way to express
5674     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5675     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5676     // we should only emit as ArgDbgValue if the Variable is an argument to the
5677     // current function, and the dbg.value intrinsic is found in the entry
5678     // block.
5679     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5680         !DL->getInlinedAt();
5681     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5682     if (!IsInPrologue && !VariableIsFunctionInputArg)
5683       return false;
5684 
5685     // Here we assume that a function argument on IR level only can be used to
5686     // describe one input parameter on source level. If we for example have
5687     // source code like this
5688     //
5689     //    struct A { long x, y; };
5690     //    void foo(struct A a, long b) {
5691     //      ...
5692     //      b = a.x;
5693     //      ...
5694     //    }
5695     //
5696     // and IR like this
5697     //
5698     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5699     //  entry:
5700     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5701     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5702     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5703     //    ...
5704     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5705     //    ...
5706     //
5707     // then the last dbg.value is describing a parameter "b" using a value that
5708     // is an argument. But since we already has used %a1 to describe a parameter
5709     // we should not handle that last dbg.value here (that would result in an
5710     // incorrect hoisting of the DBG_VALUE to the function entry).
5711     // Notice that we allow one dbg.value per IR level argument, to accommodate
5712     // for the situation with fragments above.
5713     if (VariableIsFunctionInputArg) {
5714       unsigned ArgNo = Arg->getArgNo();
5715       if (ArgNo >= FuncInfo.DescribedArgs.size())
5716         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5717       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5718         return false;
5719       FuncInfo.DescribedArgs.set(ArgNo);
5720     }
5721   }
5722 
5723   bool IsIndirect = false;
5724   std::optional<MachineOperand> Op;
5725   // Some arguments' frame index is recorded during argument lowering.
5726   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5727   if (FI != std::numeric_limits<int>::max())
5728     Op = MachineOperand::CreateFI(FI);
5729 
5730   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5731   if (!Op && N.getNode()) {
5732     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5733     Register Reg;
5734     if (ArgRegsAndSizes.size() == 1)
5735       Reg = ArgRegsAndSizes.front().first;
5736 
5737     if (Reg && Reg.isVirtual()) {
5738       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5739       Register PR = RegInfo.getLiveInPhysReg(Reg);
5740       if (PR)
5741         Reg = PR;
5742     }
5743     if (Reg) {
5744       Op = MachineOperand::CreateReg(Reg, false);
5745       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5746     }
5747   }
5748 
5749   if (!Op && N.getNode()) {
5750     // Check if frame index is available.
5751     SDValue LCandidate = peekThroughBitcasts(N);
5752     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5753       if (FrameIndexSDNode *FINode =
5754           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5755         Op = MachineOperand::CreateFI(FINode->getIndex());
5756   }
5757 
5758   if (!Op) {
5759     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5760     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5761                                          SplitRegs) {
5762       unsigned Offset = 0;
5763       for (const auto &RegAndSize : SplitRegs) {
5764         // If the expression is already a fragment, the current register
5765         // offset+size might extend beyond the fragment. In this case, only
5766         // the register bits that are inside the fragment are relevant.
5767         int RegFragmentSizeInBits = RegAndSize.second;
5768         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5769           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5770           // The register is entirely outside the expression fragment,
5771           // so is irrelevant for debug info.
5772           if (Offset >= ExprFragmentSizeInBits)
5773             break;
5774           // The register is partially outside the expression fragment, only
5775           // the low bits within the fragment are relevant for debug info.
5776           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5777             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5778           }
5779         }
5780 
5781         auto FragmentExpr = DIExpression::createFragmentExpression(
5782             Expr, Offset, RegFragmentSizeInBits);
5783         Offset += RegAndSize.second;
5784         // If a valid fragment expression cannot be created, the variable's
5785         // correct value cannot be determined and so it is set as Undef.
5786         if (!FragmentExpr) {
5787           SDDbgValue *SDV = DAG.getConstantDbgValue(
5788               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5789           DAG.AddDbgValue(SDV, false);
5790           continue;
5791         }
5792         MachineInstr *NewMI =
5793             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5794                              Kind != FuncArgumentDbgValueKind::Value);
5795         FuncInfo.ArgDbgValues.push_back(NewMI);
5796       }
5797     };
5798 
5799     // Check if ValueMap has reg number.
5800     DenseMap<const Value *, Register>::const_iterator
5801       VMI = FuncInfo.ValueMap.find(V);
5802     if (VMI != FuncInfo.ValueMap.end()) {
5803       const auto &TLI = DAG.getTargetLoweringInfo();
5804       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5805                        V->getType(), std::nullopt);
5806       if (RFV.occupiesMultipleRegs()) {
5807         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5808         return true;
5809       }
5810 
5811       Op = MachineOperand::CreateReg(VMI->second, false);
5812       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5813     } else if (ArgRegsAndSizes.size() > 1) {
5814       // This was split due to the calling convention, and no virtual register
5815       // mapping exists for the value.
5816       splitMultiRegDbgValue(ArgRegsAndSizes);
5817       return true;
5818     }
5819   }
5820 
5821   if (!Op)
5822     return false;
5823 
5824   // If the expression refers to the entry value of an Argument, use the
5825   // corresponding livein physical register. As per the Verifier, this is only
5826   // allowed for swiftasync Arguments.
5827   if (Op->isReg() && Expr->isEntryValue()) {
5828     assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
5829     auto OpReg = Op->getReg();
5830     for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
5831       if (OpReg == VirtReg || OpReg == PhysReg) {
5832         SDDbgValue *SDV = DAG.getVRegDbgValue(
5833             Variable, Expr, PhysReg,
5834             Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL,
5835             SDNodeOrder);
5836         DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
5837         return true;
5838       }
5839     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
5840                          "couldn't find a physical register\n");
5841     return true;
5842   }
5843 
5844   assert(Variable->isValidLocationForIntrinsic(DL) &&
5845          "Expected inlined-at fields to agree");
5846   MachineInstr *NewMI = nullptr;
5847 
5848   if (Op->isReg())
5849     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5850   else
5851     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5852                     Variable, Expr);
5853 
5854   // Otherwise, use ArgDbgValues.
5855   FuncInfo.ArgDbgValues.push_back(NewMI);
5856   return true;
5857 }
5858 
5859 /// Return the appropriate SDDbgValue based on N.
5860 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5861                                              DILocalVariable *Variable,
5862                                              DIExpression *Expr,
5863                                              const DebugLoc &dl,
5864                                              unsigned DbgSDNodeOrder) {
5865   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5866     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5867     // stack slot locations.
5868     //
5869     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5870     // debug values here after optimization:
5871     //
5872     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5873     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5874     //
5875     // Both describe the direct values of their associated variables.
5876     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5877                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5878   }
5879   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5880                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5881 }
5882 
5883 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5884   switch (Intrinsic) {
5885   case Intrinsic::smul_fix:
5886     return ISD::SMULFIX;
5887   case Intrinsic::umul_fix:
5888     return ISD::UMULFIX;
5889   case Intrinsic::smul_fix_sat:
5890     return ISD::SMULFIXSAT;
5891   case Intrinsic::umul_fix_sat:
5892     return ISD::UMULFIXSAT;
5893   case Intrinsic::sdiv_fix:
5894     return ISD::SDIVFIX;
5895   case Intrinsic::udiv_fix:
5896     return ISD::UDIVFIX;
5897   case Intrinsic::sdiv_fix_sat:
5898     return ISD::SDIVFIXSAT;
5899   case Intrinsic::udiv_fix_sat:
5900     return ISD::UDIVFIXSAT;
5901   default:
5902     llvm_unreachable("Unhandled fixed point intrinsic");
5903   }
5904 }
5905 
5906 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5907                                            const char *FunctionName) {
5908   assert(FunctionName && "FunctionName must not be nullptr");
5909   SDValue Callee = DAG.getExternalSymbol(
5910       FunctionName,
5911       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5912   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5913 }
5914 
5915 /// Given a @llvm.call.preallocated.setup, return the corresponding
5916 /// preallocated call.
5917 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5918   assert(cast<CallBase>(PreallocatedSetup)
5919                  ->getCalledFunction()
5920                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5921          "expected call_preallocated_setup Value");
5922   for (const auto *U : PreallocatedSetup->users()) {
5923     auto *UseCall = cast<CallBase>(U);
5924     const Function *Fn = UseCall->getCalledFunction();
5925     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5926       return UseCall;
5927     }
5928   }
5929   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5930 }
5931 
5932 /// Lower the call to the specified intrinsic function.
5933 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5934                                              unsigned Intrinsic) {
5935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5936   SDLoc sdl = getCurSDLoc();
5937   DebugLoc dl = getCurDebugLoc();
5938   SDValue Res;
5939 
5940   SDNodeFlags Flags;
5941   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5942     Flags.copyFMF(*FPOp);
5943 
5944   switch (Intrinsic) {
5945   default:
5946     // By default, turn this into a target intrinsic node.
5947     visitTargetIntrinsic(I, Intrinsic);
5948     return;
5949   case Intrinsic::vscale: {
5950     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5951     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5952     return;
5953   }
5954   case Intrinsic::vastart:  visitVAStart(I); return;
5955   case Intrinsic::vaend:    visitVAEnd(I); return;
5956   case Intrinsic::vacopy:   visitVACopy(I); return;
5957   case Intrinsic::returnaddress:
5958     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5959                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5960                              getValue(I.getArgOperand(0))));
5961     return;
5962   case Intrinsic::addressofreturnaddress:
5963     setValue(&I,
5964              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5965                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5966     return;
5967   case Intrinsic::sponentry:
5968     setValue(&I,
5969              DAG.getNode(ISD::SPONENTRY, sdl,
5970                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5971     return;
5972   case Intrinsic::frameaddress:
5973     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5974                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5975                              getValue(I.getArgOperand(0))));
5976     return;
5977   case Intrinsic::read_volatile_register:
5978   case Intrinsic::read_register: {
5979     Value *Reg = I.getArgOperand(0);
5980     SDValue Chain = getRoot();
5981     SDValue RegName =
5982         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5983     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5984     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5985       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5986     setValue(&I, Res);
5987     DAG.setRoot(Res.getValue(1));
5988     return;
5989   }
5990   case Intrinsic::write_register: {
5991     Value *Reg = I.getArgOperand(0);
5992     Value *RegValue = I.getArgOperand(1);
5993     SDValue Chain = getRoot();
5994     SDValue RegName =
5995         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5996     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5997                             RegName, getValue(RegValue)));
5998     return;
5999   }
6000   case Intrinsic::memcpy: {
6001     const auto &MCI = cast<MemCpyInst>(I);
6002     SDValue Op1 = getValue(I.getArgOperand(0));
6003     SDValue Op2 = getValue(I.getArgOperand(1));
6004     SDValue Op3 = getValue(I.getArgOperand(2));
6005     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6006     Align DstAlign = MCI.getDestAlign().valueOrOne();
6007     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6008     Align Alignment = std::min(DstAlign, SrcAlign);
6009     bool isVol = MCI.isVolatile();
6010     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6011     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6012     // node.
6013     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6014     SDValue MC = DAG.getMemcpy(
6015         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6016         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6017         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6018     updateDAGForMaybeTailCall(MC);
6019     return;
6020   }
6021   case Intrinsic::memcpy_inline: {
6022     const auto &MCI = cast<MemCpyInlineInst>(I);
6023     SDValue Dst = getValue(I.getArgOperand(0));
6024     SDValue Src = getValue(I.getArgOperand(1));
6025     SDValue Size = getValue(I.getArgOperand(2));
6026     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6027     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6028     Align DstAlign = MCI.getDestAlign().valueOrOne();
6029     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6030     Align Alignment = std::min(DstAlign, SrcAlign);
6031     bool isVol = MCI.isVolatile();
6032     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6033     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6034     // node.
6035     SDValue MC = DAG.getMemcpy(
6036         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6037         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6038         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6039     updateDAGForMaybeTailCall(MC);
6040     return;
6041   }
6042   case Intrinsic::memset: {
6043     const auto &MSI = cast<MemSetInst>(I);
6044     SDValue Op1 = getValue(I.getArgOperand(0));
6045     SDValue Op2 = getValue(I.getArgOperand(1));
6046     SDValue Op3 = getValue(I.getArgOperand(2));
6047     // @llvm.memset defines 0 and 1 to both mean no alignment.
6048     Align Alignment = MSI.getDestAlign().valueOrOne();
6049     bool isVol = MSI.isVolatile();
6050     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6051     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6052     SDValue MS = DAG.getMemset(
6053         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6054         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6055     updateDAGForMaybeTailCall(MS);
6056     return;
6057   }
6058   case Intrinsic::memset_inline: {
6059     const auto &MSII = cast<MemSetInlineInst>(I);
6060     SDValue Dst = getValue(I.getArgOperand(0));
6061     SDValue Value = getValue(I.getArgOperand(1));
6062     SDValue Size = getValue(I.getArgOperand(2));
6063     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6064     // @llvm.memset defines 0 and 1 to both mean no alignment.
6065     Align DstAlign = MSII.getDestAlign().valueOrOne();
6066     bool isVol = MSII.isVolatile();
6067     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6068     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6069     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6070                                /* AlwaysInline */ true, isTC,
6071                                MachinePointerInfo(I.getArgOperand(0)),
6072                                I.getAAMetadata());
6073     updateDAGForMaybeTailCall(MC);
6074     return;
6075   }
6076   case Intrinsic::memmove: {
6077     const auto &MMI = cast<MemMoveInst>(I);
6078     SDValue Op1 = getValue(I.getArgOperand(0));
6079     SDValue Op2 = getValue(I.getArgOperand(1));
6080     SDValue Op3 = getValue(I.getArgOperand(2));
6081     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6082     Align DstAlign = MMI.getDestAlign().valueOrOne();
6083     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6084     Align Alignment = std::min(DstAlign, SrcAlign);
6085     bool isVol = MMI.isVolatile();
6086     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6087     // FIXME: Support passing different dest/src alignments to the memmove DAG
6088     // node.
6089     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6090     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6091                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6092                                 MachinePointerInfo(I.getArgOperand(1)),
6093                                 I.getAAMetadata(), AA);
6094     updateDAGForMaybeTailCall(MM);
6095     return;
6096   }
6097   case Intrinsic::memcpy_element_unordered_atomic: {
6098     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6099     SDValue Dst = getValue(MI.getRawDest());
6100     SDValue Src = getValue(MI.getRawSource());
6101     SDValue Length = getValue(MI.getLength());
6102 
6103     Type *LengthTy = MI.getLength()->getType();
6104     unsigned ElemSz = MI.getElementSizeInBytes();
6105     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6106     SDValue MC =
6107         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6108                             isTC, MachinePointerInfo(MI.getRawDest()),
6109                             MachinePointerInfo(MI.getRawSource()));
6110     updateDAGForMaybeTailCall(MC);
6111     return;
6112   }
6113   case Intrinsic::memmove_element_unordered_atomic: {
6114     auto &MI = cast<AtomicMemMoveInst>(I);
6115     SDValue Dst = getValue(MI.getRawDest());
6116     SDValue Src = getValue(MI.getRawSource());
6117     SDValue Length = getValue(MI.getLength());
6118 
6119     Type *LengthTy = MI.getLength()->getType();
6120     unsigned ElemSz = MI.getElementSizeInBytes();
6121     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6122     SDValue MC =
6123         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6124                              isTC, MachinePointerInfo(MI.getRawDest()),
6125                              MachinePointerInfo(MI.getRawSource()));
6126     updateDAGForMaybeTailCall(MC);
6127     return;
6128   }
6129   case Intrinsic::memset_element_unordered_atomic: {
6130     auto &MI = cast<AtomicMemSetInst>(I);
6131     SDValue Dst = getValue(MI.getRawDest());
6132     SDValue Val = getValue(MI.getValue());
6133     SDValue Length = getValue(MI.getLength());
6134 
6135     Type *LengthTy = MI.getLength()->getType();
6136     unsigned ElemSz = MI.getElementSizeInBytes();
6137     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6138     SDValue MC =
6139         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6140                             isTC, MachinePointerInfo(MI.getRawDest()));
6141     updateDAGForMaybeTailCall(MC);
6142     return;
6143   }
6144   case Intrinsic::call_preallocated_setup: {
6145     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6146     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6147     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6148                               getRoot(), SrcValue);
6149     setValue(&I, Res);
6150     DAG.setRoot(Res);
6151     return;
6152   }
6153   case Intrinsic::call_preallocated_arg: {
6154     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6155     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6156     SDValue Ops[3];
6157     Ops[0] = getRoot();
6158     Ops[1] = SrcValue;
6159     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6160                                    MVT::i32); // arg index
6161     SDValue Res = DAG.getNode(
6162         ISD::PREALLOCATED_ARG, sdl,
6163         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6164     setValue(&I, Res);
6165     DAG.setRoot(Res.getValue(1));
6166     return;
6167   }
6168   case Intrinsic::dbg_declare: {
6169     const auto &DI = cast<DbgDeclareInst>(I);
6170     // Debug intrinsics are handled separately in assignment tracking mode.
6171     // Some intrinsics are handled right after Argument lowering.
6172     if (AssignmentTrackingEnabled ||
6173         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6174       return;
6175     // Assume dbg.declare can not currently use DIArgList, i.e.
6176     // it is non-variadic.
6177     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6178     DILocalVariable *Variable = DI.getVariable();
6179     DIExpression *Expression = DI.getExpression();
6180     dropDanglingDebugInfo(Variable, Expression);
6181     assert(Variable && "Missing variable");
6182     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6183                       << "\n");
6184     // Check if address has undef value.
6185     const Value *Address = DI.getVariableLocationOp(0);
6186     if (!Address || isa<UndefValue>(Address) ||
6187         (Address->use_empty() && !isa<Argument>(Address))) {
6188       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6189                         << " (bad/undef/unused-arg address)\n");
6190       return;
6191     }
6192 
6193     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6194 
6195     SDValue &N = NodeMap[Address];
6196     if (!N.getNode() && isa<Argument>(Address))
6197       // Check unused arguments map.
6198       N = UnusedArgNodeMap[Address];
6199     SDDbgValue *SDV;
6200     if (N.getNode()) {
6201       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6202         Address = BCI->getOperand(0);
6203       // Parameters are handled specially.
6204       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6205       if (isParameter && FINode) {
6206         // Byval parameter. We have a frame index at this point.
6207         SDV =
6208             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6209                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6210       } else if (isa<Argument>(Address)) {
6211         // Address is an argument, so try to emit its dbg value using
6212         // virtual register info from the FuncInfo.ValueMap.
6213         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6214                                  FuncArgumentDbgValueKind::Declare, N);
6215         return;
6216       } else {
6217         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6218                               true, dl, SDNodeOrder);
6219       }
6220       DAG.AddDbgValue(SDV, isParameter);
6221     } else {
6222       // If Address is an argument then try to emit its dbg value using
6223       // virtual register info from the FuncInfo.ValueMap.
6224       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6225                                     FuncArgumentDbgValueKind::Declare, N)) {
6226         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6227                           << " (could not emit func-arg dbg_value)\n");
6228       }
6229     }
6230     return;
6231   }
6232   case Intrinsic::dbg_label: {
6233     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6234     DILabel *Label = DI.getLabel();
6235     assert(Label && "Missing label");
6236 
6237     SDDbgLabel *SDV;
6238     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6239     DAG.AddDbgLabel(SDV);
6240     return;
6241   }
6242   case Intrinsic::dbg_assign: {
6243     // Debug intrinsics are handled seperately in assignment tracking mode.
6244     if (AssignmentTrackingEnabled)
6245       return;
6246     // If assignment tracking hasn't been enabled then fall through and treat
6247     // the dbg.assign as a dbg.value.
6248     [[fallthrough]];
6249   }
6250   case Intrinsic::dbg_value: {
6251     // Debug intrinsics are handled seperately in assignment tracking mode.
6252     if (AssignmentTrackingEnabled)
6253       return;
6254     const DbgValueInst &DI = cast<DbgValueInst>(I);
6255     assert(DI.getVariable() && "Missing variable");
6256 
6257     DILocalVariable *Variable = DI.getVariable();
6258     DIExpression *Expression = DI.getExpression();
6259     dropDanglingDebugInfo(Variable, Expression);
6260 
6261     if (DI.isKillLocation()) {
6262       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6263       return;
6264     }
6265 
6266     SmallVector<Value *, 4> Values(DI.getValues());
6267     if (Values.empty())
6268       return;
6269 
6270     bool IsVariadic = DI.hasArgList();
6271     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6272                           SDNodeOrder, IsVariadic))
6273       addDanglingDebugInfo(&DI, SDNodeOrder);
6274     return;
6275   }
6276 
6277   case Intrinsic::eh_typeid_for: {
6278     // Find the type id for the given typeinfo.
6279     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6280     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6281     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6282     setValue(&I, Res);
6283     return;
6284   }
6285 
6286   case Intrinsic::eh_return_i32:
6287   case Intrinsic::eh_return_i64:
6288     DAG.getMachineFunction().setCallsEHReturn(true);
6289     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6290                             MVT::Other,
6291                             getControlRoot(),
6292                             getValue(I.getArgOperand(0)),
6293                             getValue(I.getArgOperand(1))));
6294     return;
6295   case Intrinsic::eh_unwind_init:
6296     DAG.getMachineFunction().setCallsUnwindInit(true);
6297     return;
6298   case Intrinsic::eh_dwarf_cfa:
6299     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6300                              TLI.getPointerTy(DAG.getDataLayout()),
6301                              getValue(I.getArgOperand(0))));
6302     return;
6303   case Intrinsic::eh_sjlj_callsite: {
6304     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6305     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6306     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6307 
6308     MMI.setCurrentCallSite(CI->getZExtValue());
6309     return;
6310   }
6311   case Intrinsic::eh_sjlj_functioncontext: {
6312     // Get and store the index of the function context.
6313     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6314     AllocaInst *FnCtx =
6315       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6316     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6317     MFI.setFunctionContextIndex(FI);
6318     return;
6319   }
6320   case Intrinsic::eh_sjlj_setjmp: {
6321     SDValue Ops[2];
6322     Ops[0] = getRoot();
6323     Ops[1] = getValue(I.getArgOperand(0));
6324     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6325                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6326     setValue(&I, Op.getValue(0));
6327     DAG.setRoot(Op.getValue(1));
6328     return;
6329   }
6330   case Intrinsic::eh_sjlj_longjmp:
6331     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6332                             getRoot(), getValue(I.getArgOperand(0))));
6333     return;
6334   case Intrinsic::eh_sjlj_setup_dispatch:
6335     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6336                             getRoot()));
6337     return;
6338   case Intrinsic::masked_gather:
6339     visitMaskedGather(I);
6340     return;
6341   case Intrinsic::masked_load:
6342     visitMaskedLoad(I);
6343     return;
6344   case Intrinsic::masked_scatter:
6345     visitMaskedScatter(I);
6346     return;
6347   case Intrinsic::masked_store:
6348     visitMaskedStore(I);
6349     return;
6350   case Intrinsic::masked_expandload:
6351     visitMaskedLoad(I, true /* IsExpanding */);
6352     return;
6353   case Intrinsic::masked_compressstore:
6354     visitMaskedStore(I, true /* IsCompressing */);
6355     return;
6356   case Intrinsic::powi:
6357     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6358                             getValue(I.getArgOperand(1)), DAG));
6359     return;
6360   case Intrinsic::log:
6361     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6362     return;
6363   case Intrinsic::log2:
6364     setValue(&I,
6365              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6366     return;
6367   case Intrinsic::log10:
6368     setValue(&I,
6369              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6370     return;
6371   case Intrinsic::exp:
6372     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6373     return;
6374   case Intrinsic::exp2:
6375     setValue(&I,
6376              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6377     return;
6378   case Intrinsic::pow:
6379     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6380                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6381     return;
6382   case Intrinsic::sqrt:
6383   case Intrinsic::fabs:
6384   case Intrinsic::sin:
6385   case Intrinsic::cos:
6386   case Intrinsic::floor:
6387   case Intrinsic::ceil:
6388   case Intrinsic::trunc:
6389   case Intrinsic::rint:
6390   case Intrinsic::nearbyint:
6391   case Intrinsic::round:
6392   case Intrinsic::roundeven:
6393   case Intrinsic::canonicalize: {
6394     unsigned Opcode;
6395     switch (Intrinsic) {
6396     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6397     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6398     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6399     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6400     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6401     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6402     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6403     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6404     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6405     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6406     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6407     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6408     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6409     }
6410 
6411     setValue(&I, DAG.getNode(Opcode, sdl,
6412                              getValue(I.getArgOperand(0)).getValueType(),
6413                              getValue(I.getArgOperand(0)), Flags));
6414     return;
6415   }
6416   case Intrinsic::lround:
6417   case Intrinsic::llround:
6418   case Intrinsic::lrint:
6419   case Intrinsic::llrint: {
6420     unsigned Opcode;
6421     switch (Intrinsic) {
6422     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6423     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6424     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6425     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6426     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6427     }
6428 
6429     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6430     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6431                              getValue(I.getArgOperand(0))));
6432     return;
6433   }
6434   case Intrinsic::minnum:
6435     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6436                              getValue(I.getArgOperand(0)).getValueType(),
6437                              getValue(I.getArgOperand(0)),
6438                              getValue(I.getArgOperand(1)), Flags));
6439     return;
6440   case Intrinsic::maxnum:
6441     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6442                              getValue(I.getArgOperand(0)).getValueType(),
6443                              getValue(I.getArgOperand(0)),
6444                              getValue(I.getArgOperand(1)), Flags));
6445     return;
6446   case Intrinsic::minimum:
6447     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6448                              getValue(I.getArgOperand(0)).getValueType(),
6449                              getValue(I.getArgOperand(0)),
6450                              getValue(I.getArgOperand(1)), Flags));
6451     return;
6452   case Intrinsic::maximum:
6453     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6454                              getValue(I.getArgOperand(0)).getValueType(),
6455                              getValue(I.getArgOperand(0)),
6456                              getValue(I.getArgOperand(1)), Flags));
6457     return;
6458   case Intrinsic::copysign:
6459     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6460                              getValue(I.getArgOperand(0)).getValueType(),
6461                              getValue(I.getArgOperand(0)),
6462                              getValue(I.getArgOperand(1)), Flags));
6463     return;
6464   case Intrinsic::ldexp:
6465     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6466                              getValue(I.getArgOperand(0)).getValueType(),
6467                              getValue(I.getArgOperand(0)),
6468                              getValue(I.getArgOperand(1)), Flags));
6469     return;
6470   case Intrinsic::arithmetic_fence: {
6471     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6472                              getValue(I.getArgOperand(0)).getValueType(),
6473                              getValue(I.getArgOperand(0)), Flags));
6474     return;
6475   }
6476   case Intrinsic::fma:
6477     setValue(&I, DAG.getNode(
6478                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6479                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6480                      getValue(I.getArgOperand(2)), Flags));
6481     return;
6482 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6483   case Intrinsic::INTRINSIC:
6484 #include "llvm/IR/ConstrainedOps.def"
6485     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6486     return;
6487 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6488 #include "llvm/IR/VPIntrinsics.def"
6489     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6490     return;
6491   case Intrinsic::fptrunc_round: {
6492     // Get the last argument, the metadata and convert it to an integer in the
6493     // call
6494     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6495     std::optional<RoundingMode> RoundMode =
6496         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6497 
6498     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6499 
6500     // Propagate fast-math-flags from IR to node(s).
6501     SDNodeFlags Flags;
6502     Flags.copyFMF(*cast<FPMathOperator>(&I));
6503     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6504 
6505     SDValue Result;
6506     Result = DAG.getNode(
6507         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6508         DAG.getTargetConstant((int)*RoundMode, sdl,
6509                               TLI.getPointerTy(DAG.getDataLayout())));
6510     setValue(&I, Result);
6511 
6512     return;
6513   }
6514   case Intrinsic::fmuladd: {
6515     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6516     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6517         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6518       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6519                                getValue(I.getArgOperand(0)).getValueType(),
6520                                getValue(I.getArgOperand(0)),
6521                                getValue(I.getArgOperand(1)),
6522                                getValue(I.getArgOperand(2)), Flags));
6523     } else {
6524       // TODO: Intrinsic calls should have fast-math-flags.
6525       SDValue Mul = DAG.getNode(
6526           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6527           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6528       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6529                                 getValue(I.getArgOperand(0)).getValueType(),
6530                                 Mul, getValue(I.getArgOperand(2)), Flags);
6531       setValue(&I, Add);
6532     }
6533     return;
6534   }
6535   case Intrinsic::convert_to_fp16:
6536     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6537                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6538                                          getValue(I.getArgOperand(0)),
6539                                          DAG.getTargetConstant(0, sdl,
6540                                                                MVT::i32))));
6541     return;
6542   case Intrinsic::convert_from_fp16:
6543     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6544                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6545                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6546                                          getValue(I.getArgOperand(0)))));
6547     return;
6548   case Intrinsic::fptosi_sat: {
6549     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6550     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6551                              getValue(I.getArgOperand(0)),
6552                              DAG.getValueType(VT.getScalarType())));
6553     return;
6554   }
6555   case Intrinsic::fptoui_sat: {
6556     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6557     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6558                              getValue(I.getArgOperand(0)),
6559                              DAG.getValueType(VT.getScalarType())));
6560     return;
6561   }
6562   case Intrinsic::set_rounding:
6563     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6564                       {getRoot(), getValue(I.getArgOperand(0))});
6565     setValue(&I, Res);
6566     DAG.setRoot(Res.getValue(0));
6567     return;
6568   case Intrinsic::is_fpclass: {
6569     const DataLayout DLayout = DAG.getDataLayout();
6570     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6571     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6572     FPClassTest Test = static_cast<FPClassTest>(
6573         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6574     MachineFunction &MF = DAG.getMachineFunction();
6575     const Function &F = MF.getFunction();
6576     SDValue Op = getValue(I.getArgOperand(0));
6577     SDNodeFlags Flags;
6578     Flags.setNoFPExcept(
6579         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6580     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6581     // expansion can use illegal types. Making expansion early allows
6582     // legalizing these types prior to selection.
6583     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6584       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6585       setValue(&I, Result);
6586       return;
6587     }
6588 
6589     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6590     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6591     setValue(&I, V);
6592     return;
6593   }
6594   case Intrinsic::get_fpenv: {
6595     const DataLayout DLayout = DAG.getDataLayout();
6596     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6597     Align TempAlign = DAG.getEVTAlign(EnvVT);
6598     SDValue Chain = DAG.getRoot();
6599     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6600     // and temporary storage in stack.
6601     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6602       Res = DAG.getNode(
6603           ISD::GET_FPENV, sdl,
6604           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6605                         MVT::Other),
6606           Chain);
6607     } else {
6608       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6609       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6610       auto MPI =
6611           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6612       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6613           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6614           TempAlign);
6615       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6616       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6617     }
6618     setValue(&I, Res);
6619     DAG.setRoot(Res.getValue(1));
6620     return;
6621   }
6622   case Intrinsic::set_fpenv: {
6623     const DataLayout DLayout = DAG.getDataLayout();
6624     SDValue Env = getValue(I.getArgOperand(0));
6625     EVT EnvVT = Env.getValueType();
6626     Align TempAlign = DAG.getEVTAlign(EnvVT);
6627     SDValue Chain = getRoot();
6628     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6629     // environment from memory.
6630     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6631       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6632     } else {
6633       // Allocate space in stack, copy environment bits into it and use this
6634       // memory in SET_FPENV_MEM.
6635       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6636       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6637       auto MPI =
6638           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6639       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6640                            MachineMemOperand::MOStore);
6641       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6642           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6643           TempAlign);
6644       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6645     }
6646     DAG.setRoot(Chain);
6647     return;
6648   }
6649   case Intrinsic::reset_fpenv:
6650     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6651     return;
6652   case Intrinsic::pcmarker: {
6653     SDValue Tmp = getValue(I.getArgOperand(0));
6654     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6655     return;
6656   }
6657   case Intrinsic::readcyclecounter: {
6658     SDValue Op = getRoot();
6659     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6660                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6661     setValue(&I, Res);
6662     DAG.setRoot(Res.getValue(1));
6663     return;
6664   }
6665   case Intrinsic::bitreverse:
6666     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6667                              getValue(I.getArgOperand(0)).getValueType(),
6668                              getValue(I.getArgOperand(0))));
6669     return;
6670   case Intrinsic::bswap:
6671     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6672                              getValue(I.getArgOperand(0)).getValueType(),
6673                              getValue(I.getArgOperand(0))));
6674     return;
6675   case Intrinsic::cttz: {
6676     SDValue Arg = getValue(I.getArgOperand(0));
6677     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6678     EVT Ty = Arg.getValueType();
6679     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6680                              sdl, Ty, Arg));
6681     return;
6682   }
6683   case Intrinsic::ctlz: {
6684     SDValue Arg = getValue(I.getArgOperand(0));
6685     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6686     EVT Ty = Arg.getValueType();
6687     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6688                              sdl, Ty, Arg));
6689     return;
6690   }
6691   case Intrinsic::ctpop: {
6692     SDValue Arg = getValue(I.getArgOperand(0));
6693     EVT Ty = Arg.getValueType();
6694     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6695     return;
6696   }
6697   case Intrinsic::fshl:
6698   case Intrinsic::fshr: {
6699     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6700     SDValue X = getValue(I.getArgOperand(0));
6701     SDValue Y = getValue(I.getArgOperand(1));
6702     SDValue Z = getValue(I.getArgOperand(2));
6703     EVT VT = X.getValueType();
6704 
6705     if (X == Y) {
6706       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6707       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6708     } else {
6709       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6710       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6711     }
6712     return;
6713   }
6714   case Intrinsic::sadd_sat: {
6715     SDValue Op1 = getValue(I.getArgOperand(0));
6716     SDValue Op2 = getValue(I.getArgOperand(1));
6717     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6718     return;
6719   }
6720   case Intrinsic::uadd_sat: {
6721     SDValue Op1 = getValue(I.getArgOperand(0));
6722     SDValue Op2 = getValue(I.getArgOperand(1));
6723     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6724     return;
6725   }
6726   case Intrinsic::ssub_sat: {
6727     SDValue Op1 = getValue(I.getArgOperand(0));
6728     SDValue Op2 = getValue(I.getArgOperand(1));
6729     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6730     return;
6731   }
6732   case Intrinsic::usub_sat: {
6733     SDValue Op1 = getValue(I.getArgOperand(0));
6734     SDValue Op2 = getValue(I.getArgOperand(1));
6735     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6736     return;
6737   }
6738   case Intrinsic::sshl_sat: {
6739     SDValue Op1 = getValue(I.getArgOperand(0));
6740     SDValue Op2 = getValue(I.getArgOperand(1));
6741     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6742     return;
6743   }
6744   case Intrinsic::ushl_sat: {
6745     SDValue Op1 = getValue(I.getArgOperand(0));
6746     SDValue Op2 = getValue(I.getArgOperand(1));
6747     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6748     return;
6749   }
6750   case Intrinsic::smul_fix:
6751   case Intrinsic::umul_fix:
6752   case Intrinsic::smul_fix_sat:
6753   case Intrinsic::umul_fix_sat: {
6754     SDValue Op1 = getValue(I.getArgOperand(0));
6755     SDValue Op2 = getValue(I.getArgOperand(1));
6756     SDValue Op3 = getValue(I.getArgOperand(2));
6757     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6758                              Op1.getValueType(), Op1, Op2, Op3));
6759     return;
6760   }
6761   case Intrinsic::sdiv_fix:
6762   case Intrinsic::udiv_fix:
6763   case Intrinsic::sdiv_fix_sat:
6764   case Intrinsic::udiv_fix_sat: {
6765     SDValue Op1 = getValue(I.getArgOperand(0));
6766     SDValue Op2 = getValue(I.getArgOperand(1));
6767     SDValue Op3 = getValue(I.getArgOperand(2));
6768     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6769                               Op1, Op2, Op3, DAG, TLI));
6770     return;
6771   }
6772   case Intrinsic::smax: {
6773     SDValue Op1 = getValue(I.getArgOperand(0));
6774     SDValue Op2 = getValue(I.getArgOperand(1));
6775     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6776     return;
6777   }
6778   case Intrinsic::smin: {
6779     SDValue Op1 = getValue(I.getArgOperand(0));
6780     SDValue Op2 = getValue(I.getArgOperand(1));
6781     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6782     return;
6783   }
6784   case Intrinsic::umax: {
6785     SDValue Op1 = getValue(I.getArgOperand(0));
6786     SDValue Op2 = getValue(I.getArgOperand(1));
6787     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6788     return;
6789   }
6790   case Intrinsic::umin: {
6791     SDValue Op1 = getValue(I.getArgOperand(0));
6792     SDValue Op2 = getValue(I.getArgOperand(1));
6793     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6794     return;
6795   }
6796   case Intrinsic::abs: {
6797     // TODO: Preserve "int min is poison" arg in SDAG?
6798     SDValue Op1 = getValue(I.getArgOperand(0));
6799     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6800     return;
6801   }
6802   case Intrinsic::stacksave: {
6803     SDValue Op = getRoot();
6804     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6805     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6806     setValue(&I, Res);
6807     DAG.setRoot(Res.getValue(1));
6808     return;
6809   }
6810   case Intrinsic::stackrestore:
6811     Res = getValue(I.getArgOperand(0));
6812     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6813     return;
6814   case Intrinsic::get_dynamic_area_offset: {
6815     SDValue Op = getRoot();
6816     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6817     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6818     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6819     // target.
6820     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6821       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6822                          " intrinsic!");
6823     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6824                       Op);
6825     DAG.setRoot(Op);
6826     setValue(&I, Res);
6827     return;
6828   }
6829   case Intrinsic::stackguard: {
6830     MachineFunction &MF = DAG.getMachineFunction();
6831     const Module &M = *MF.getFunction().getParent();
6832     SDValue Chain = getRoot();
6833     if (TLI.useLoadStackGuardNode()) {
6834       Res = getLoadStackGuard(DAG, sdl, Chain);
6835     } else {
6836       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6837       const Value *Global = TLI.getSDagStackGuard(M);
6838       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6839       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6840                         MachinePointerInfo(Global, 0), Align,
6841                         MachineMemOperand::MOVolatile);
6842     }
6843     if (TLI.useStackGuardXorFP())
6844       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6845     DAG.setRoot(Chain);
6846     setValue(&I, Res);
6847     return;
6848   }
6849   case Intrinsic::stackprotector: {
6850     // Emit code into the DAG to store the stack guard onto the stack.
6851     MachineFunction &MF = DAG.getMachineFunction();
6852     MachineFrameInfo &MFI = MF.getFrameInfo();
6853     SDValue Src, Chain = getRoot();
6854 
6855     if (TLI.useLoadStackGuardNode())
6856       Src = getLoadStackGuard(DAG, sdl, Chain);
6857     else
6858       Src = getValue(I.getArgOperand(0));   // The guard's value.
6859 
6860     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6861 
6862     int FI = FuncInfo.StaticAllocaMap[Slot];
6863     MFI.setStackProtectorIndex(FI);
6864     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6865 
6866     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6867 
6868     // Store the stack protector onto the stack.
6869     Res = DAG.getStore(
6870         Chain, sdl, Src, FIN,
6871         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6872         MaybeAlign(), MachineMemOperand::MOVolatile);
6873     setValue(&I, Res);
6874     DAG.setRoot(Res);
6875     return;
6876   }
6877   case Intrinsic::objectsize:
6878     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6879 
6880   case Intrinsic::is_constant:
6881     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6882 
6883   case Intrinsic::annotation:
6884   case Intrinsic::ptr_annotation:
6885   case Intrinsic::launder_invariant_group:
6886   case Intrinsic::strip_invariant_group:
6887     // Drop the intrinsic, but forward the value
6888     setValue(&I, getValue(I.getOperand(0)));
6889     return;
6890 
6891   case Intrinsic::assume:
6892   case Intrinsic::experimental_noalias_scope_decl:
6893   case Intrinsic::var_annotation:
6894   case Intrinsic::sideeffect:
6895     // Discard annotate attributes, noalias scope declarations, assumptions, and
6896     // artificial side-effects.
6897     return;
6898 
6899   case Intrinsic::codeview_annotation: {
6900     // Emit a label associated with this metadata.
6901     MachineFunction &MF = DAG.getMachineFunction();
6902     MCSymbol *Label =
6903         MF.getMMI().getContext().createTempSymbol("annotation", true);
6904     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6905     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6906     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6907     DAG.setRoot(Res);
6908     return;
6909   }
6910 
6911   case Intrinsic::init_trampoline: {
6912     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6913 
6914     SDValue Ops[6];
6915     Ops[0] = getRoot();
6916     Ops[1] = getValue(I.getArgOperand(0));
6917     Ops[2] = getValue(I.getArgOperand(1));
6918     Ops[3] = getValue(I.getArgOperand(2));
6919     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6920     Ops[5] = DAG.getSrcValue(F);
6921 
6922     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6923 
6924     DAG.setRoot(Res);
6925     return;
6926   }
6927   case Intrinsic::adjust_trampoline:
6928     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6929                              TLI.getPointerTy(DAG.getDataLayout()),
6930                              getValue(I.getArgOperand(0))));
6931     return;
6932   case Intrinsic::gcroot: {
6933     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6934            "only valid in functions with gc specified, enforced by Verifier");
6935     assert(GFI && "implied by previous");
6936     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6937     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6938 
6939     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6940     GFI->addStackRoot(FI->getIndex(), TypeMap);
6941     return;
6942   }
6943   case Intrinsic::gcread:
6944   case Intrinsic::gcwrite:
6945     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6946   case Intrinsic::get_rounding:
6947     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6948     setValue(&I, Res);
6949     DAG.setRoot(Res.getValue(1));
6950     return;
6951 
6952   case Intrinsic::expect:
6953     // Just replace __builtin_expect(exp, c) with EXP.
6954     setValue(&I, getValue(I.getArgOperand(0)));
6955     return;
6956 
6957   case Intrinsic::ubsantrap:
6958   case Intrinsic::debugtrap:
6959   case Intrinsic::trap: {
6960     StringRef TrapFuncName =
6961         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6962     if (TrapFuncName.empty()) {
6963       switch (Intrinsic) {
6964       case Intrinsic::trap:
6965         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6966         break;
6967       case Intrinsic::debugtrap:
6968         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6969         break;
6970       case Intrinsic::ubsantrap:
6971         DAG.setRoot(DAG.getNode(
6972             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6973             DAG.getTargetConstant(
6974                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6975                 MVT::i32)));
6976         break;
6977       default: llvm_unreachable("unknown trap intrinsic");
6978       }
6979       return;
6980     }
6981     TargetLowering::ArgListTy Args;
6982     if (Intrinsic == Intrinsic::ubsantrap) {
6983       Args.push_back(TargetLoweringBase::ArgListEntry());
6984       Args[0].Val = I.getArgOperand(0);
6985       Args[0].Node = getValue(Args[0].Val);
6986       Args[0].Ty = Args[0].Val->getType();
6987     }
6988 
6989     TargetLowering::CallLoweringInfo CLI(DAG);
6990     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6991         CallingConv::C, I.getType(),
6992         DAG.getExternalSymbol(TrapFuncName.data(),
6993                               TLI.getPointerTy(DAG.getDataLayout())),
6994         std::move(Args));
6995 
6996     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6997     DAG.setRoot(Result.second);
6998     return;
6999   }
7000 
7001   case Intrinsic::uadd_with_overflow:
7002   case Intrinsic::sadd_with_overflow:
7003   case Intrinsic::usub_with_overflow:
7004   case Intrinsic::ssub_with_overflow:
7005   case Intrinsic::umul_with_overflow:
7006   case Intrinsic::smul_with_overflow: {
7007     ISD::NodeType Op;
7008     switch (Intrinsic) {
7009     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7010     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7011     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7012     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7013     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7014     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7015     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7016     }
7017     SDValue Op1 = getValue(I.getArgOperand(0));
7018     SDValue Op2 = getValue(I.getArgOperand(1));
7019 
7020     EVT ResultVT = Op1.getValueType();
7021     EVT OverflowVT = MVT::i1;
7022     if (ResultVT.isVector())
7023       OverflowVT = EVT::getVectorVT(
7024           *Context, OverflowVT, ResultVT.getVectorElementCount());
7025 
7026     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7027     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7028     return;
7029   }
7030   case Intrinsic::prefetch: {
7031     SDValue Ops[5];
7032     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7033     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7034     Ops[0] = DAG.getRoot();
7035     Ops[1] = getValue(I.getArgOperand(0));
7036     Ops[2] = getValue(I.getArgOperand(1));
7037     Ops[3] = getValue(I.getArgOperand(2));
7038     Ops[4] = getValue(I.getArgOperand(3));
7039     SDValue Result = DAG.getMemIntrinsicNode(
7040         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7041         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7042         /* align */ std::nullopt, Flags);
7043 
7044     // Chain the prefetch in parallell with any pending loads, to stay out of
7045     // the way of later optimizations.
7046     PendingLoads.push_back(Result);
7047     Result = getRoot();
7048     DAG.setRoot(Result);
7049     return;
7050   }
7051   case Intrinsic::lifetime_start:
7052   case Intrinsic::lifetime_end: {
7053     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7054     // Stack coloring is not enabled in O0, discard region information.
7055     if (TM.getOptLevel() == CodeGenOpt::None)
7056       return;
7057 
7058     const int64_t ObjectSize =
7059         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7060     Value *const ObjectPtr = I.getArgOperand(1);
7061     SmallVector<const Value *, 4> Allocas;
7062     getUnderlyingObjects(ObjectPtr, Allocas);
7063 
7064     for (const Value *Alloca : Allocas) {
7065       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7066 
7067       // Could not find an Alloca.
7068       if (!LifetimeObject)
7069         continue;
7070 
7071       // First check that the Alloca is static, otherwise it won't have a
7072       // valid frame index.
7073       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7074       if (SI == FuncInfo.StaticAllocaMap.end())
7075         return;
7076 
7077       const int FrameIndex = SI->second;
7078       int64_t Offset;
7079       if (GetPointerBaseWithConstantOffset(
7080               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7081         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7082       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7083                                 Offset);
7084       DAG.setRoot(Res);
7085     }
7086     return;
7087   }
7088   case Intrinsic::pseudoprobe: {
7089     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7090     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7091     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7092     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7093     DAG.setRoot(Res);
7094     return;
7095   }
7096   case Intrinsic::invariant_start:
7097     // Discard region information.
7098     setValue(&I,
7099              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7100     return;
7101   case Intrinsic::invariant_end:
7102     // Discard region information.
7103     return;
7104   case Intrinsic::clear_cache:
7105     /// FunctionName may be null.
7106     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7107       lowerCallToExternalSymbol(I, FunctionName);
7108     return;
7109   case Intrinsic::donothing:
7110   case Intrinsic::seh_try_begin:
7111   case Intrinsic::seh_scope_begin:
7112   case Intrinsic::seh_try_end:
7113   case Intrinsic::seh_scope_end:
7114     // ignore
7115     return;
7116   case Intrinsic::experimental_stackmap:
7117     visitStackmap(I);
7118     return;
7119   case Intrinsic::experimental_patchpoint_void:
7120   case Intrinsic::experimental_patchpoint_i64:
7121     visitPatchpoint(I);
7122     return;
7123   case Intrinsic::experimental_gc_statepoint:
7124     LowerStatepoint(cast<GCStatepointInst>(I));
7125     return;
7126   case Intrinsic::experimental_gc_result:
7127     visitGCResult(cast<GCResultInst>(I));
7128     return;
7129   case Intrinsic::experimental_gc_relocate:
7130     visitGCRelocate(cast<GCRelocateInst>(I));
7131     return;
7132   case Intrinsic::instrprof_cover:
7133     llvm_unreachable("instrprof failed to lower a cover");
7134   case Intrinsic::instrprof_increment:
7135     llvm_unreachable("instrprof failed to lower an increment");
7136   case Intrinsic::instrprof_timestamp:
7137     llvm_unreachable("instrprof failed to lower a timestamp");
7138   case Intrinsic::instrprof_value_profile:
7139     llvm_unreachable("instrprof failed to lower a value profiling call");
7140   case Intrinsic::localescape: {
7141     MachineFunction &MF = DAG.getMachineFunction();
7142     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7143 
7144     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7145     // is the same on all targets.
7146     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7147       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7148       if (isa<ConstantPointerNull>(Arg))
7149         continue; // Skip null pointers. They represent a hole in index space.
7150       AllocaInst *Slot = cast<AllocaInst>(Arg);
7151       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7152              "can only escape static allocas");
7153       int FI = FuncInfo.StaticAllocaMap[Slot];
7154       MCSymbol *FrameAllocSym =
7155           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7156               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7157       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7158               TII->get(TargetOpcode::LOCAL_ESCAPE))
7159           .addSym(FrameAllocSym)
7160           .addFrameIndex(FI);
7161     }
7162 
7163     return;
7164   }
7165 
7166   case Intrinsic::localrecover: {
7167     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7168     MachineFunction &MF = DAG.getMachineFunction();
7169 
7170     // Get the symbol that defines the frame offset.
7171     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7172     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7173     unsigned IdxVal =
7174         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7175     MCSymbol *FrameAllocSym =
7176         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7177             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7178 
7179     Value *FP = I.getArgOperand(1);
7180     SDValue FPVal = getValue(FP);
7181     EVT PtrVT = FPVal.getValueType();
7182 
7183     // Create a MCSymbol for the label to avoid any target lowering
7184     // that would make this PC relative.
7185     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7186     SDValue OffsetVal =
7187         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7188 
7189     // Add the offset to the FP.
7190     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7191     setValue(&I, Add);
7192 
7193     return;
7194   }
7195 
7196   case Intrinsic::eh_exceptionpointer:
7197   case Intrinsic::eh_exceptioncode: {
7198     // Get the exception pointer vreg, copy from it, and resize it to fit.
7199     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7200     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7201     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7202     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7203     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7204     if (Intrinsic == Intrinsic::eh_exceptioncode)
7205       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7206     setValue(&I, N);
7207     return;
7208   }
7209   case Intrinsic::xray_customevent: {
7210     // Here we want to make sure that the intrinsic behaves as if it has a
7211     // specific calling convention, and only for x86_64.
7212     // FIXME: Support other platforms later.
7213     const auto &Triple = DAG.getTarget().getTargetTriple();
7214     if (Triple.getArch() != Triple::x86_64)
7215       return;
7216 
7217     SmallVector<SDValue, 8> Ops;
7218 
7219     // We want to say that we always want the arguments in registers.
7220     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7221     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7222     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7223     SDValue Chain = getRoot();
7224     Ops.push_back(LogEntryVal);
7225     Ops.push_back(StrSizeVal);
7226     Ops.push_back(Chain);
7227 
7228     // We need to enforce the calling convention for the callsite, so that
7229     // argument ordering is enforced correctly, and that register allocation can
7230     // see that some registers may be assumed clobbered and have to preserve
7231     // them across calls to the intrinsic.
7232     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7233                                            sdl, NodeTys, Ops);
7234     SDValue patchableNode = SDValue(MN, 0);
7235     DAG.setRoot(patchableNode);
7236     setValue(&I, patchableNode);
7237     return;
7238   }
7239   case Intrinsic::xray_typedevent: {
7240     // Here we want to make sure that the intrinsic behaves as if it has a
7241     // specific calling convention, and only for x86_64.
7242     // FIXME: Support other platforms later.
7243     const auto &Triple = DAG.getTarget().getTargetTriple();
7244     if (Triple.getArch() != Triple::x86_64)
7245       return;
7246 
7247     SmallVector<SDValue, 8> Ops;
7248 
7249     // We want to say that we always want the arguments in registers.
7250     // It's unclear to me how manipulating the selection DAG here forces callers
7251     // to provide arguments in registers instead of on the stack.
7252     SDValue LogTypeId = getValue(I.getArgOperand(0));
7253     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7254     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7255     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7256     SDValue Chain = getRoot();
7257     Ops.push_back(LogTypeId);
7258     Ops.push_back(LogEntryVal);
7259     Ops.push_back(StrSizeVal);
7260     Ops.push_back(Chain);
7261 
7262     // We need to enforce the calling convention for the callsite, so that
7263     // argument ordering is enforced correctly, and that register allocation can
7264     // see that some registers may be assumed clobbered and have to preserve
7265     // them across calls to the intrinsic.
7266     MachineSDNode *MN = DAG.getMachineNode(
7267         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7268     SDValue patchableNode = SDValue(MN, 0);
7269     DAG.setRoot(patchableNode);
7270     setValue(&I, patchableNode);
7271     return;
7272   }
7273   case Intrinsic::experimental_deoptimize:
7274     LowerDeoptimizeCall(&I);
7275     return;
7276   case Intrinsic::experimental_stepvector:
7277     visitStepVector(I);
7278     return;
7279   case Intrinsic::vector_reduce_fadd:
7280   case Intrinsic::vector_reduce_fmul:
7281   case Intrinsic::vector_reduce_add:
7282   case Intrinsic::vector_reduce_mul:
7283   case Intrinsic::vector_reduce_and:
7284   case Intrinsic::vector_reduce_or:
7285   case Intrinsic::vector_reduce_xor:
7286   case Intrinsic::vector_reduce_smax:
7287   case Intrinsic::vector_reduce_smin:
7288   case Intrinsic::vector_reduce_umax:
7289   case Intrinsic::vector_reduce_umin:
7290   case Intrinsic::vector_reduce_fmax:
7291   case Intrinsic::vector_reduce_fmin:
7292     visitVectorReduce(I, Intrinsic);
7293     return;
7294 
7295   case Intrinsic::icall_branch_funnel: {
7296     SmallVector<SDValue, 16> Ops;
7297     Ops.push_back(getValue(I.getArgOperand(0)));
7298 
7299     int64_t Offset;
7300     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7301         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7302     if (!Base)
7303       report_fatal_error(
7304           "llvm.icall.branch.funnel operand must be a GlobalValue");
7305     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7306 
7307     struct BranchFunnelTarget {
7308       int64_t Offset;
7309       SDValue Target;
7310     };
7311     SmallVector<BranchFunnelTarget, 8> Targets;
7312 
7313     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7314       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7315           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7316       if (ElemBase != Base)
7317         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7318                            "to the same GlobalValue");
7319 
7320       SDValue Val = getValue(I.getArgOperand(Op + 1));
7321       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7322       if (!GA)
7323         report_fatal_error(
7324             "llvm.icall.branch.funnel operand must be a GlobalValue");
7325       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7326                                      GA->getGlobal(), sdl, Val.getValueType(),
7327                                      GA->getOffset())});
7328     }
7329     llvm::sort(Targets,
7330                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7331                  return T1.Offset < T2.Offset;
7332                });
7333 
7334     for (auto &T : Targets) {
7335       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7336       Ops.push_back(T.Target);
7337     }
7338 
7339     Ops.push_back(DAG.getRoot()); // Chain
7340     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7341                                  MVT::Other, Ops),
7342               0);
7343     DAG.setRoot(N);
7344     setValue(&I, N);
7345     HasTailCall = true;
7346     return;
7347   }
7348 
7349   case Intrinsic::wasm_landingpad_index:
7350     // Information this intrinsic contained has been transferred to
7351     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7352     // delete it now.
7353     return;
7354 
7355   case Intrinsic::aarch64_settag:
7356   case Intrinsic::aarch64_settag_zero: {
7357     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7358     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7359     SDValue Val = TSI.EmitTargetCodeForSetTag(
7360         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7361         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7362         ZeroMemory);
7363     DAG.setRoot(Val);
7364     setValue(&I, Val);
7365     return;
7366   }
7367   case Intrinsic::ptrmask: {
7368     SDValue Ptr = getValue(I.getOperand(0));
7369     SDValue Const = getValue(I.getOperand(1));
7370 
7371     EVT PtrVT = Ptr.getValueType();
7372     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7373                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7374     return;
7375   }
7376   case Intrinsic::threadlocal_address: {
7377     setValue(&I, getValue(I.getOperand(0)));
7378     return;
7379   }
7380   case Intrinsic::get_active_lane_mask: {
7381     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7382     SDValue Index = getValue(I.getOperand(0));
7383     EVT ElementVT = Index.getValueType();
7384 
7385     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7386       visitTargetIntrinsic(I, Intrinsic);
7387       return;
7388     }
7389 
7390     SDValue TripCount = getValue(I.getOperand(1));
7391     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7392 
7393     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7394     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7395     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7396     SDValue VectorInduction = DAG.getNode(
7397         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7398     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7399                                  VectorTripCount, ISD::CondCode::SETULT);
7400     setValue(&I, SetCC);
7401     return;
7402   }
7403   case Intrinsic::experimental_get_vector_length: {
7404     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7405            "Expected positive VF");
7406     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7407     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7408 
7409     SDValue Count = getValue(I.getOperand(0));
7410     EVT CountVT = Count.getValueType();
7411 
7412     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7413       visitTargetIntrinsic(I, Intrinsic);
7414       return;
7415     }
7416 
7417     // Expand to a umin between the trip count and the maximum elements the type
7418     // can hold.
7419     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7420 
7421     // Extend the trip count to at least the result VT.
7422     if (CountVT.bitsLT(VT)) {
7423       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7424       CountVT = VT;
7425     }
7426 
7427     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7428                                          ElementCount::get(VF, IsScalable));
7429 
7430     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7431     // Clip to the result type if needed.
7432     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7433 
7434     setValue(&I, Trunc);
7435     return;
7436   }
7437   case Intrinsic::vector_insert: {
7438     SDValue Vec = getValue(I.getOperand(0));
7439     SDValue SubVec = getValue(I.getOperand(1));
7440     SDValue Index = getValue(I.getOperand(2));
7441 
7442     // The intrinsic's index type is i64, but the SDNode requires an index type
7443     // suitable for the target. Convert the index as required.
7444     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7445     if (Index.getValueType() != VectorIdxTy)
7446       Index = DAG.getVectorIdxConstant(
7447           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7448 
7449     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7450     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7451                              Index));
7452     return;
7453   }
7454   case Intrinsic::vector_extract: {
7455     SDValue Vec = getValue(I.getOperand(0));
7456     SDValue Index = getValue(I.getOperand(1));
7457     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7458 
7459     // The intrinsic's index type is i64, but the SDNode requires an index type
7460     // suitable for the target. Convert the index as required.
7461     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7462     if (Index.getValueType() != VectorIdxTy)
7463       Index = DAG.getVectorIdxConstant(
7464           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7465 
7466     setValue(&I,
7467              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7468     return;
7469   }
7470   case Intrinsic::experimental_vector_reverse:
7471     visitVectorReverse(I);
7472     return;
7473   case Intrinsic::experimental_vector_splice:
7474     visitVectorSplice(I);
7475     return;
7476   case Intrinsic::callbr_landingpad:
7477     visitCallBrLandingPad(I);
7478     return;
7479   case Intrinsic::experimental_vector_interleave2:
7480     visitVectorInterleave(I);
7481     return;
7482   case Intrinsic::experimental_vector_deinterleave2:
7483     visitVectorDeinterleave(I);
7484     return;
7485   }
7486 }
7487 
7488 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7489     const ConstrainedFPIntrinsic &FPI) {
7490   SDLoc sdl = getCurSDLoc();
7491 
7492   // We do not need to serialize constrained FP intrinsics against
7493   // each other or against (nonvolatile) loads, so they can be
7494   // chained like loads.
7495   SDValue Chain = DAG.getRoot();
7496   SmallVector<SDValue, 4> Opers;
7497   Opers.push_back(Chain);
7498   if (FPI.isUnaryOp()) {
7499     Opers.push_back(getValue(FPI.getArgOperand(0)));
7500   } else if (FPI.isTernaryOp()) {
7501     Opers.push_back(getValue(FPI.getArgOperand(0)));
7502     Opers.push_back(getValue(FPI.getArgOperand(1)));
7503     Opers.push_back(getValue(FPI.getArgOperand(2)));
7504   } else {
7505     Opers.push_back(getValue(FPI.getArgOperand(0)));
7506     Opers.push_back(getValue(FPI.getArgOperand(1)));
7507   }
7508 
7509   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7510     assert(Result.getNode()->getNumValues() == 2);
7511 
7512     // Push node to the appropriate list so that future instructions can be
7513     // chained up correctly.
7514     SDValue OutChain = Result.getValue(1);
7515     switch (EB) {
7516     case fp::ExceptionBehavior::ebIgnore:
7517       // The only reason why ebIgnore nodes still need to be chained is that
7518       // they might depend on the current rounding mode, and therefore must
7519       // not be moved across instruction that may change that mode.
7520       [[fallthrough]];
7521     case fp::ExceptionBehavior::ebMayTrap:
7522       // These must not be moved across calls or instructions that may change
7523       // floating-point exception masks.
7524       PendingConstrainedFP.push_back(OutChain);
7525       break;
7526     case fp::ExceptionBehavior::ebStrict:
7527       // These must not be moved across calls or instructions that may change
7528       // floating-point exception masks or read floating-point exception flags.
7529       // In addition, they cannot be optimized out even if unused.
7530       PendingConstrainedFPStrict.push_back(OutChain);
7531       break;
7532     }
7533   };
7534 
7535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7536   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7537   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7538   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7539 
7540   SDNodeFlags Flags;
7541   if (EB == fp::ExceptionBehavior::ebIgnore)
7542     Flags.setNoFPExcept(true);
7543 
7544   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7545     Flags.copyFMF(*FPOp);
7546 
7547   unsigned Opcode;
7548   switch (FPI.getIntrinsicID()) {
7549   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7550 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7551   case Intrinsic::INTRINSIC:                                                   \
7552     Opcode = ISD::STRICT_##DAGN;                                               \
7553     break;
7554 #include "llvm/IR/ConstrainedOps.def"
7555   case Intrinsic::experimental_constrained_fmuladd: {
7556     Opcode = ISD::STRICT_FMA;
7557     // Break fmuladd into fmul and fadd.
7558     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7559         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7560       Opers.pop_back();
7561       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7562       pushOutChain(Mul, EB);
7563       Opcode = ISD::STRICT_FADD;
7564       Opers.clear();
7565       Opers.push_back(Mul.getValue(1));
7566       Opers.push_back(Mul.getValue(0));
7567       Opers.push_back(getValue(FPI.getArgOperand(2)));
7568     }
7569     break;
7570   }
7571   }
7572 
7573   // A few strict DAG nodes carry additional operands that are not
7574   // set up by the default code above.
7575   switch (Opcode) {
7576   default: break;
7577   case ISD::STRICT_FP_ROUND:
7578     Opers.push_back(
7579         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7580     break;
7581   case ISD::STRICT_FSETCC:
7582   case ISD::STRICT_FSETCCS: {
7583     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7584     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7585     if (TM.Options.NoNaNsFPMath)
7586       Condition = getFCmpCodeWithoutNaN(Condition);
7587     Opers.push_back(DAG.getCondCode(Condition));
7588     break;
7589   }
7590   }
7591 
7592   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7593   pushOutChain(Result, EB);
7594 
7595   SDValue FPResult = Result.getValue(0);
7596   setValue(&FPI, FPResult);
7597 }
7598 
7599 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7600   std::optional<unsigned> ResOPC;
7601   switch (VPIntrin.getIntrinsicID()) {
7602   case Intrinsic::vp_ctlz: {
7603     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7604     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7605     break;
7606   }
7607   case Intrinsic::vp_cttz: {
7608     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7609     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7610     break;
7611   }
7612 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7613   case Intrinsic::VPID:                                                        \
7614     ResOPC = ISD::VPSD;                                                        \
7615     break;
7616 #include "llvm/IR/VPIntrinsics.def"
7617   }
7618 
7619   if (!ResOPC)
7620     llvm_unreachable(
7621         "Inconsistency: no SDNode available for this VPIntrinsic!");
7622 
7623   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7624       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7625     if (VPIntrin.getFastMathFlags().allowReassoc())
7626       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7627                                                 : ISD::VP_REDUCE_FMUL;
7628   }
7629 
7630   return *ResOPC;
7631 }
7632 
7633 void SelectionDAGBuilder::visitVPLoad(
7634     const VPIntrinsic &VPIntrin, EVT VT,
7635     const SmallVectorImpl<SDValue> &OpValues) {
7636   SDLoc DL = getCurSDLoc();
7637   Value *PtrOperand = VPIntrin.getArgOperand(0);
7638   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7639   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7640   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7641   SDValue LD;
7642   // Do not serialize variable-length loads of constant memory with
7643   // anything.
7644   if (!Alignment)
7645     Alignment = DAG.getEVTAlign(VT);
7646   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7647   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7648   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7649   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7650       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7651       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7652   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7653                      MMO, false /*IsExpanding */);
7654   if (AddToChain)
7655     PendingLoads.push_back(LD.getValue(1));
7656   setValue(&VPIntrin, LD);
7657 }
7658 
7659 void SelectionDAGBuilder::visitVPGather(
7660     const VPIntrinsic &VPIntrin, EVT VT,
7661     const SmallVectorImpl<SDValue> &OpValues) {
7662   SDLoc DL = getCurSDLoc();
7663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7664   Value *PtrOperand = VPIntrin.getArgOperand(0);
7665   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7666   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7667   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7668   SDValue LD;
7669   if (!Alignment)
7670     Alignment = DAG.getEVTAlign(VT.getScalarType());
7671   unsigned AS =
7672     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7673   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7674      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7675      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7676   SDValue Base, Index, Scale;
7677   ISD::MemIndexType IndexType;
7678   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7679                                     this, VPIntrin.getParent(),
7680                                     VT.getScalarStoreSize());
7681   if (!UniformBase) {
7682     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7683     Index = getValue(PtrOperand);
7684     IndexType = ISD::SIGNED_SCALED;
7685     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7686   }
7687   EVT IdxVT = Index.getValueType();
7688   EVT EltTy = IdxVT.getVectorElementType();
7689   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7690     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7691     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7692   }
7693   LD = DAG.getGatherVP(
7694       DAG.getVTList(VT, MVT::Other), VT, DL,
7695       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7696       IndexType);
7697   PendingLoads.push_back(LD.getValue(1));
7698   setValue(&VPIntrin, LD);
7699 }
7700 
7701 void SelectionDAGBuilder::visitVPStore(
7702     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7703   SDLoc DL = getCurSDLoc();
7704   Value *PtrOperand = VPIntrin.getArgOperand(1);
7705   EVT VT = OpValues[0].getValueType();
7706   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7707   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7708   SDValue ST;
7709   if (!Alignment)
7710     Alignment = DAG.getEVTAlign(VT);
7711   SDValue Ptr = OpValues[1];
7712   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7713   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7714       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7715       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7716   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7717                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7718                       /* IsTruncating */ false, /*IsCompressing*/ false);
7719   DAG.setRoot(ST);
7720   setValue(&VPIntrin, ST);
7721 }
7722 
7723 void SelectionDAGBuilder::visitVPScatter(
7724     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7725   SDLoc DL = getCurSDLoc();
7726   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7727   Value *PtrOperand = VPIntrin.getArgOperand(1);
7728   EVT VT = OpValues[0].getValueType();
7729   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7730   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7731   SDValue ST;
7732   if (!Alignment)
7733     Alignment = DAG.getEVTAlign(VT.getScalarType());
7734   unsigned AS =
7735       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7736   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7737       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7738       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7739   SDValue Base, Index, Scale;
7740   ISD::MemIndexType IndexType;
7741   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7742                                     this, VPIntrin.getParent(),
7743                                     VT.getScalarStoreSize());
7744   if (!UniformBase) {
7745     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7746     Index = getValue(PtrOperand);
7747     IndexType = ISD::SIGNED_SCALED;
7748     Scale =
7749       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7750   }
7751   EVT IdxVT = Index.getValueType();
7752   EVT EltTy = IdxVT.getVectorElementType();
7753   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7754     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7755     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7756   }
7757   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7758                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7759                          OpValues[2], OpValues[3]},
7760                         MMO, IndexType);
7761   DAG.setRoot(ST);
7762   setValue(&VPIntrin, ST);
7763 }
7764 
7765 void SelectionDAGBuilder::visitVPStridedLoad(
7766     const VPIntrinsic &VPIntrin, EVT VT,
7767     const SmallVectorImpl<SDValue> &OpValues) {
7768   SDLoc DL = getCurSDLoc();
7769   Value *PtrOperand = VPIntrin.getArgOperand(0);
7770   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7771   if (!Alignment)
7772     Alignment = DAG.getEVTAlign(VT.getScalarType());
7773   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7774   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7775   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7776   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7777   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7778   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7779       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7780       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7781 
7782   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7783                                     OpValues[2], OpValues[3], MMO,
7784                                     false /*IsExpanding*/);
7785 
7786   if (AddToChain)
7787     PendingLoads.push_back(LD.getValue(1));
7788   setValue(&VPIntrin, LD);
7789 }
7790 
7791 void SelectionDAGBuilder::visitVPStridedStore(
7792     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7793   SDLoc DL = getCurSDLoc();
7794   Value *PtrOperand = VPIntrin.getArgOperand(1);
7795   EVT VT = OpValues[0].getValueType();
7796   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7797   if (!Alignment)
7798     Alignment = DAG.getEVTAlign(VT.getScalarType());
7799   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7800   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7801       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7802       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7803 
7804   SDValue ST = DAG.getStridedStoreVP(
7805       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7806       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7807       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7808       /*IsCompressing*/ false);
7809 
7810   DAG.setRoot(ST);
7811   setValue(&VPIntrin, ST);
7812 }
7813 
7814 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7815   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7816   SDLoc DL = getCurSDLoc();
7817 
7818   ISD::CondCode Condition;
7819   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7820   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7821   if (IsFP) {
7822     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7823     // flags, but calls that don't return floating-point types can't be
7824     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7825     Condition = getFCmpCondCode(CondCode);
7826     if (TM.Options.NoNaNsFPMath)
7827       Condition = getFCmpCodeWithoutNaN(Condition);
7828   } else {
7829     Condition = getICmpCondCode(CondCode);
7830   }
7831 
7832   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7833   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7834   // #2 is the condition code
7835   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7836   SDValue EVL = getValue(VPIntrin.getOperand(4));
7837   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7838   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7839          "Unexpected target EVL type");
7840   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7841 
7842   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7843                                                         VPIntrin.getType());
7844   setValue(&VPIntrin,
7845            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7846 }
7847 
7848 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7849     const VPIntrinsic &VPIntrin) {
7850   SDLoc DL = getCurSDLoc();
7851   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7852 
7853   auto IID = VPIntrin.getIntrinsicID();
7854 
7855   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7856     return visitVPCmp(*CmpI);
7857 
7858   SmallVector<EVT, 4> ValueVTs;
7859   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7860   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7861   SDVTList VTs = DAG.getVTList(ValueVTs);
7862 
7863   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7864 
7865   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7866   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7867          "Unexpected target EVL type");
7868 
7869   // Request operands.
7870   SmallVector<SDValue, 7> OpValues;
7871   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7872     auto Op = getValue(VPIntrin.getArgOperand(I));
7873     if (I == EVLParamPos)
7874       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7875     OpValues.push_back(Op);
7876   }
7877 
7878   switch (Opcode) {
7879   default: {
7880     SDNodeFlags SDFlags;
7881     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7882       SDFlags.copyFMF(*FPMO);
7883     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7884     setValue(&VPIntrin, Result);
7885     break;
7886   }
7887   case ISD::VP_LOAD:
7888     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7889     break;
7890   case ISD::VP_GATHER:
7891     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7892     break;
7893   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7894     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7895     break;
7896   case ISD::VP_STORE:
7897     visitVPStore(VPIntrin, OpValues);
7898     break;
7899   case ISD::VP_SCATTER:
7900     visitVPScatter(VPIntrin, OpValues);
7901     break;
7902   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7903     visitVPStridedStore(VPIntrin, OpValues);
7904     break;
7905   case ISD::VP_FMULADD: {
7906     assert(OpValues.size() == 5 && "Unexpected number of operands");
7907     SDNodeFlags SDFlags;
7908     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7909       SDFlags.copyFMF(*FPMO);
7910     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7911         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7912       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7913     } else {
7914       SDValue Mul = DAG.getNode(
7915           ISD::VP_FMUL, DL, VTs,
7916           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7917       SDValue Add =
7918           DAG.getNode(ISD::VP_FADD, DL, VTs,
7919                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7920       setValue(&VPIntrin, Add);
7921     }
7922     break;
7923   }
7924   case ISD::VP_INTTOPTR: {
7925     SDValue N = OpValues[0];
7926     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7927     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7928     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7929                                OpValues[2]);
7930     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7931                              OpValues[2]);
7932     setValue(&VPIntrin, N);
7933     break;
7934   }
7935   case ISD::VP_PTRTOINT: {
7936     SDValue N = OpValues[0];
7937     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7938                                                           VPIntrin.getType());
7939     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7940                                        VPIntrin.getOperand(0)->getType());
7941     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7942                                OpValues[2]);
7943     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7944                              OpValues[2]);
7945     setValue(&VPIntrin, N);
7946     break;
7947   }
7948   case ISD::VP_ABS:
7949   case ISD::VP_CTLZ:
7950   case ISD::VP_CTLZ_ZERO_UNDEF:
7951   case ISD::VP_CTTZ:
7952   case ISD::VP_CTTZ_ZERO_UNDEF: {
7953     SDValue Result =
7954         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7955     setValue(&VPIntrin, Result);
7956     break;
7957   }
7958   }
7959 }
7960 
7961 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7962                                           const BasicBlock *EHPadBB,
7963                                           MCSymbol *&BeginLabel) {
7964   MachineFunction &MF = DAG.getMachineFunction();
7965   MachineModuleInfo &MMI = MF.getMMI();
7966 
7967   // Insert a label before the invoke call to mark the try range.  This can be
7968   // used to detect deletion of the invoke via the MachineModuleInfo.
7969   BeginLabel = MMI.getContext().createTempSymbol();
7970 
7971   // For SjLj, keep track of which landing pads go with which invokes
7972   // so as to maintain the ordering of pads in the LSDA.
7973   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7974   if (CallSiteIndex) {
7975     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7976     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7977 
7978     // Now that the call site is handled, stop tracking it.
7979     MMI.setCurrentCallSite(0);
7980   }
7981 
7982   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7983 }
7984 
7985 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7986                                         const BasicBlock *EHPadBB,
7987                                         MCSymbol *BeginLabel) {
7988   assert(BeginLabel && "BeginLabel should've been set");
7989 
7990   MachineFunction &MF = DAG.getMachineFunction();
7991   MachineModuleInfo &MMI = MF.getMMI();
7992 
7993   // Insert a label at the end of the invoke call to mark the try range.  This
7994   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7995   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7996   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7997 
7998   // Inform MachineModuleInfo of range.
7999   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8000   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8001   // actually use outlined funclets and their LSDA info style.
8002   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8003     assert(II && "II should've been set");
8004     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8005     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8006   } else if (!isScopedEHPersonality(Pers)) {
8007     assert(EHPadBB);
8008     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8009   }
8010 
8011   return Chain;
8012 }
8013 
8014 std::pair<SDValue, SDValue>
8015 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8016                                     const BasicBlock *EHPadBB) {
8017   MCSymbol *BeginLabel = nullptr;
8018 
8019   if (EHPadBB) {
8020     // Both PendingLoads and PendingExports must be flushed here;
8021     // this call might not return.
8022     (void)getRoot();
8023     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8024     CLI.setChain(getRoot());
8025   }
8026 
8027   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8028   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8029 
8030   assert((CLI.IsTailCall || Result.second.getNode()) &&
8031          "Non-null chain expected with non-tail call!");
8032   assert((Result.second.getNode() || !Result.first.getNode()) &&
8033          "Null value expected with tail call!");
8034 
8035   if (!Result.second.getNode()) {
8036     // As a special case, a null chain means that a tail call has been emitted
8037     // and the DAG root is already updated.
8038     HasTailCall = true;
8039 
8040     // Since there's no actual continuation from this block, nothing can be
8041     // relying on us setting vregs for them.
8042     PendingExports.clear();
8043   } else {
8044     DAG.setRoot(Result.second);
8045   }
8046 
8047   if (EHPadBB) {
8048     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8049                            BeginLabel));
8050   }
8051 
8052   return Result;
8053 }
8054 
8055 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8056                                       bool isTailCall,
8057                                       bool isMustTailCall,
8058                                       const BasicBlock *EHPadBB) {
8059   auto &DL = DAG.getDataLayout();
8060   FunctionType *FTy = CB.getFunctionType();
8061   Type *RetTy = CB.getType();
8062 
8063   TargetLowering::ArgListTy Args;
8064   Args.reserve(CB.arg_size());
8065 
8066   const Value *SwiftErrorVal = nullptr;
8067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8068 
8069   if (isTailCall) {
8070     // Avoid emitting tail calls in functions with the disable-tail-calls
8071     // attribute.
8072     auto *Caller = CB.getParent()->getParent();
8073     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8074         "true" && !isMustTailCall)
8075       isTailCall = false;
8076 
8077     // We can't tail call inside a function with a swifterror argument. Lowering
8078     // does not support this yet. It would have to move into the swifterror
8079     // register before the call.
8080     if (TLI.supportSwiftError() &&
8081         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8082       isTailCall = false;
8083   }
8084 
8085   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8086     TargetLowering::ArgListEntry Entry;
8087     const Value *V = *I;
8088 
8089     // Skip empty types
8090     if (V->getType()->isEmptyTy())
8091       continue;
8092 
8093     SDValue ArgNode = getValue(V);
8094     Entry.Node = ArgNode; Entry.Ty = V->getType();
8095 
8096     Entry.setAttributes(&CB, I - CB.arg_begin());
8097 
8098     // Use swifterror virtual register as input to the call.
8099     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8100       SwiftErrorVal = V;
8101       // We find the virtual register for the actual swifterror argument.
8102       // Instead of using the Value, we use the virtual register instead.
8103       Entry.Node =
8104           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8105                           EVT(TLI.getPointerTy(DL)));
8106     }
8107 
8108     Args.push_back(Entry);
8109 
8110     // If we have an explicit sret argument that is an Instruction, (i.e., it
8111     // might point to function-local memory), we can't meaningfully tail-call.
8112     if (Entry.IsSRet && isa<Instruction>(V))
8113       isTailCall = false;
8114   }
8115 
8116   // If call site has a cfguardtarget operand bundle, create and add an
8117   // additional ArgListEntry.
8118   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8119     TargetLowering::ArgListEntry Entry;
8120     Value *V = Bundle->Inputs[0];
8121     SDValue ArgNode = getValue(V);
8122     Entry.Node = ArgNode;
8123     Entry.Ty = V->getType();
8124     Entry.IsCFGuardTarget = true;
8125     Args.push_back(Entry);
8126   }
8127 
8128   // Check if target-independent constraints permit a tail call here.
8129   // Target-dependent constraints are checked within TLI->LowerCallTo.
8130   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8131     isTailCall = false;
8132 
8133   // Disable tail calls if there is an swifterror argument. Targets have not
8134   // been updated to support tail calls.
8135   if (TLI.supportSwiftError() && SwiftErrorVal)
8136     isTailCall = false;
8137 
8138   ConstantInt *CFIType = nullptr;
8139   if (CB.isIndirectCall()) {
8140     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8141       if (!TLI.supportKCFIBundles())
8142         report_fatal_error(
8143             "Target doesn't support calls with kcfi operand bundles.");
8144       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8145       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8146     }
8147   }
8148 
8149   TargetLowering::CallLoweringInfo CLI(DAG);
8150   CLI.setDebugLoc(getCurSDLoc())
8151       .setChain(getRoot())
8152       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8153       .setTailCall(isTailCall)
8154       .setConvergent(CB.isConvergent())
8155       .setIsPreallocated(
8156           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8157       .setCFIType(CFIType);
8158   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8159 
8160   if (Result.first.getNode()) {
8161     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8162     setValue(&CB, Result.first);
8163   }
8164 
8165   // The last element of CLI.InVals has the SDValue for swifterror return.
8166   // Here we copy it to a virtual register and update SwiftErrorMap for
8167   // book-keeping.
8168   if (SwiftErrorVal && TLI.supportSwiftError()) {
8169     // Get the last element of InVals.
8170     SDValue Src = CLI.InVals.back();
8171     Register VReg =
8172         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8173     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8174     DAG.setRoot(CopyNode);
8175   }
8176 }
8177 
8178 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8179                              SelectionDAGBuilder &Builder) {
8180   // Check to see if this load can be trivially constant folded, e.g. if the
8181   // input is from a string literal.
8182   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8183     // Cast pointer to the type we really want to load.
8184     Type *LoadTy =
8185         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8186     if (LoadVT.isVector())
8187       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8188 
8189     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8190                                          PointerType::getUnqual(LoadTy));
8191 
8192     if (const Constant *LoadCst =
8193             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8194                                          LoadTy, Builder.DAG.getDataLayout()))
8195       return Builder.getValue(LoadCst);
8196   }
8197 
8198   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8199   // still constant memory, the input chain can be the entry node.
8200   SDValue Root;
8201   bool ConstantMemory = false;
8202 
8203   // Do not serialize (non-volatile) loads of constant memory with anything.
8204   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8205     Root = Builder.DAG.getEntryNode();
8206     ConstantMemory = true;
8207   } else {
8208     // Do not serialize non-volatile loads against each other.
8209     Root = Builder.DAG.getRoot();
8210   }
8211 
8212   SDValue Ptr = Builder.getValue(PtrVal);
8213   SDValue LoadVal =
8214       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8215                           MachinePointerInfo(PtrVal), Align(1));
8216 
8217   if (!ConstantMemory)
8218     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8219   return LoadVal;
8220 }
8221 
8222 /// Record the value for an instruction that produces an integer result,
8223 /// converting the type where necessary.
8224 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8225                                                   SDValue Value,
8226                                                   bool IsSigned) {
8227   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8228                                                     I.getType(), true);
8229   if (IsSigned)
8230     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8231   else
8232     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8233   setValue(&I, Value);
8234 }
8235 
8236 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8237 /// true and lower it. Otherwise return false, and it will be lowered like a
8238 /// normal call.
8239 /// The caller already checked that \p I calls the appropriate LibFunc with a
8240 /// correct prototype.
8241 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8242   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8243   const Value *Size = I.getArgOperand(2);
8244   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8245   if (CSize && CSize->getZExtValue() == 0) {
8246     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8247                                                           I.getType(), true);
8248     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8249     return true;
8250   }
8251 
8252   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8253   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8254       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8255       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8256   if (Res.first.getNode()) {
8257     processIntegerCallValue(I, Res.first, true);
8258     PendingLoads.push_back(Res.second);
8259     return true;
8260   }
8261 
8262   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8263   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8264   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8265     return false;
8266 
8267   // If the target has a fast compare for the given size, it will return a
8268   // preferred load type for that size. Require that the load VT is legal and
8269   // that the target supports unaligned loads of that type. Otherwise, return
8270   // INVALID.
8271   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8272     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8273     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8274     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8275       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8276       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8277       // TODO: Check alignment of src and dest ptrs.
8278       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8279       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8280       if (!TLI.isTypeLegal(LVT) ||
8281           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8282           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8283         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8284     }
8285 
8286     return LVT;
8287   };
8288 
8289   // This turns into unaligned loads. We only do this if the target natively
8290   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8291   // we'll only produce a small number of byte loads.
8292   MVT LoadVT;
8293   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8294   switch (NumBitsToCompare) {
8295   default:
8296     return false;
8297   case 16:
8298     LoadVT = MVT::i16;
8299     break;
8300   case 32:
8301     LoadVT = MVT::i32;
8302     break;
8303   case 64:
8304   case 128:
8305   case 256:
8306     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8307     break;
8308   }
8309 
8310   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8311     return false;
8312 
8313   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8314   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8315 
8316   // Bitcast to a wide integer type if the loads are vectors.
8317   if (LoadVT.isVector()) {
8318     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8319     LoadL = DAG.getBitcast(CmpVT, LoadL);
8320     LoadR = DAG.getBitcast(CmpVT, LoadR);
8321   }
8322 
8323   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8324   processIntegerCallValue(I, Cmp, false);
8325   return true;
8326 }
8327 
8328 /// See if we can lower a memchr call into an optimized form. If so, return
8329 /// true and lower it. Otherwise return false, and it will be lowered like a
8330 /// normal call.
8331 /// The caller already checked that \p I calls the appropriate LibFunc with a
8332 /// correct prototype.
8333 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8334   const Value *Src = I.getArgOperand(0);
8335   const Value *Char = I.getArgOperand(1);
8336   const Value *Length = I.getArgOperand(2);
8337 
8338   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8339   std::pair<SDValue, SDValue> Res =
8340     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8341                                 getValue(Src), getValue(Char), getValue(Length),
8342                                 MachinePointerInfo(Src));
8343   if (Res.first.getNode()) {
8344     setValue(&I, Res.first);
8345     PendingLoads.push_back(Res.second);
8346     return true;
8347   }
8348 
8349   return false;
8350 }
8351 
8352 /// See if we can lower a mempcpy call into an optimized form. If so, return
8353 /// true and lower it. Otherwise return false, and it will be lowered like a
8354 /// normal call.
8355 /// The caller already checked that \p I calls the appropriate LibFunc with a
8356 /// correct prototype.
8357 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8358   SDValue Dst = getValue(I.getArgOperand(0));
8359   SDValue Src = getValue(I.getArgOperand(1));
8360   SDValue Size = getValue(I.getArgOperand(2));
8361 
8362   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8363   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8364   // DAG::getMemcpy needs Alignment to be defined.
8365   Align Alignment = std::min(DstAlign, SrcAlign);
8366 
8367   SDLoc sdl = getCurSDLoc();
8368 
8369   // In the mempcpy context we need to pass in a false value for isTailCall
8370   // because the return pointer needs to be adjusted by the size of
8371   // the copied memory.
8372   SDValue Root = getMemoryRoot();
8373   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8374                              /*isTailCall=*/false,
8375                              MachinePointerInfo(I.getArgOperand(0)),
8376                              MachinePointerInfo(I.getArgOperand(1)),
8377                              I.getAAMetadata());
8378   assert(MC.getNode() != nullptr &&
8379          "** memcpy should not be lowered as TailCall in mempcpy context **");
8380   DAG.setRoot(MC);
8381 
8382   // Check if Size needs to be truncated or extended.
8383   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8384 
8385   // Adjust return pointer to point just past the last dst byte.
8386   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8387                                     Dst, Size);
8388   setValue(&I, DstPlusSize);
8389   return true;
8390 }
8391 
8392 /// See if we can lower a strcpy call into an optimized form.  If so, return
8393 /// true and lower it, otherwise return false and it will be lowered like a
8394 /// normal call.
8395 /// The caller already checked that \p I calls the appropriate LibFunc with a
8396 /// correct prototype.
8397 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8398   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8399 
8400   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8401   std::pair<SDValue, SDValue> Res =
8402     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8403                                 getValue(Arg0), getValue(Arg1),
8404                                 MachinePointerInfo(Arg0),
8405                                 MachinePointerInfo(Arg1), isStpcpy);
8406   if (Res.first.getNode()) {
8407     setValue(&I, Res.first);
8408     DAG.setRoot(Res.second);
8409     return true;
8410   }
8411 
8412   return false;
8413 }
8414 
8415 /// See if we can lower a strcmp call into an optimized form.  If so, return
8416 /// true and lower it, otherwise return false and it will be lowered like a
8417 /// normal call.
8418 /// The caller already checked that \p I calls the appropriate LibFunc with a
8419 /// correct prototype.
8420 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8421   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8422 
8423   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8424   std::pair<SDValue, SDValue> Res =
8425     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8426                                 getValue(Arg0), getValue(Arg1),
8427                                 MachinePointerInfo(Arg0),
8428                                 MachinePointerInfo(Arg1));
8429   if (Res.first.getNode()) {
8430     processIntegerCallValue(I, Res.first, true);
8431     PendingLoads.push_back(Res.second);
8432     return true;
8433   }
8434 
8435   return false;
8436 }
8437 
8438 /// See if we can lower a strlen call into an optimized form.  If so, return
8439 /// true and lower it, otherwise return false and it will be lowered like a
8440 /// normal call.
8441 /// The caller already checked that \p I calls the appropriate LibFunc with a
8442 /// correct prototype.
8443 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8444   const Value *Arg0 = I.getArgOperand(0);
8445 
8446   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8447   std::pair<SDValue, SDValue> Res =
8448     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8449                                 getValue(Arg0), MachinePointerInfo(Arg0));
8450   if (Res.first.getNode()) {
8451     processIntegerCallValue(I, Res.first, false);
8452     PendingLoads.push_back(Res.second);
8453     return true;
8454   }
8455 
8456   return false;
8457 }
8458 
8459 /// See if we can lower a strnlen call into an optimized form.  If so, return
8460 /// true and lower it, otherwise return false and it will be lowered like a
8461 /// normal call.
8462 /// The caller already checked that \p I calls the appropriate LibFunc with a
8463 /// correct prototype.
8464 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8465   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8466 
8467   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8468   std::pair<SDValue, SDValue> Res =
8469     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8470                                  getValue(Arg0), getValue(Arg1),
8471                                  MachinePointerInfo(Arg0));
8472   if (Res.first.getNode()) {
8473     processIntegerCallValue(I, Res.first, false);
8474     PendingLoads.push_back(Res.second);
8475     return true;
8476   }
8477 
8478   return false;
8479 }
8480 
8481 /// See if we can lower a unary floating-point operation into an SDNode with
8482 /// the specified Opcode.  If so, return true and lower it, otherwise return
8483 /// false and it will be lowered like a normal call.
8484 /// The caller already checked that \p I calls the appropriate LibFunc with a
8485 /// correct prototype.
8486 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8487                                               unsigned Opcode) {
8488   // We already checked this call's prototype; verify it doesn't modify errno.
8489   if (!I.onlyReadsMemory())
8490     return false;
8491 
8492   SDNodeFlags Flags;
8493   Flags.copyFMF(cast<FPMathOperator>(I));
8494 
8495   SDValue Tmp = getValue(I.getArgOperand(0));
8496   setValue(&I,
8497            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8498   return true;
8499 }
8500 
8501 /// See if we can lower a binary floating-point operation into an SDNode with
8502 /// the specified Opcode. If so, return true and lower it. Otherwise return
8503 /// false, and it will be lowered like a normal call.
8504 /// The caller already checked that \p I calls the appropriate LibFunc with a
8505 /// correct prototype.
8506 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8507                                                unsigned Opcode) {
8508   // We already checked this call's prototype; verify it doesn't modify errno.
8509   if (!I.onlyReadsMemory())
8510     return false;
8511 
8512   SDNodeFlags Flags;
8513   Flags.copyFMF(cast<FPMathOperator>(I));
8514 
8515   SDValue Tmp0 = getValue(I.getArgOperand(0));
8516   SDValue Tmp1 = getValue(I.getArgOperand(1));
8517   EVT VT = Tmp0.getValueType();
8518   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8519   return true;
8520 }
8521 
8522 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8523   // Handle inline assembly differently.
8524   if (I.isInlineAsm()) {
8525     visitInlineAsm(I);
8526     return;
8527   }
8528 
8529   diagnoseDontCall(I);
8530 
8531   if (Function *F = I.getCalledFunction()) {
8532     if (F->isDeclaration()) {
8533       // Is this an LLVM intrinsic or a target-specific intrinsic?
8534       unsigned IID = F->getIntrinsicID();
8535       if (!IID)
8536         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8537           IID = II->getIntrinsicID(F);
8538 
8539       if (IID) {
8540         visitIntrinsicCall(I, IID);
8541         return;
8542       }
8543     }
8544 
8545     // Check for well-known libc/libm calls.  If the function is internal, it
8546     // can't be a library call.  Don't do the check if marked as nobuiltin for
8547     // some reason or the call site requires strict floating point semantics.
8548     LibFunc Func;
8549     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8550         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8551         LibInfo->hasOptimizedCodeGen(Func)) {
8552       switch (Func) {
8553       default: break;
8554       case LibFunc_bcmp:
8555         if (visitMemCmpBCmpCall(I))
8556           return;
8557         break;
8558       case LibFunc_copysign:
8559       case LibFunc_copysignf:
8560       case LibFunc_copysignl:
8561         // We already checked this call's prototype; verify it doesn't modify
8562         // errno.
8563         if (I.onlyReadsMemory()) {
8564           SDValue LHS = getValue(I.getArgOperand(0));
8565           SDValue RHS = getValue(I.getArgOperand(1));
8566           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8567                                    LHS.getValueType(), LHS, RHS));
8568           return;
8569         }
8570         break;
8571       case LibFunc_fabs:
8572       case LibFunc_fabsf:
8573       case LibFunc_fabsl:
8574         if (visitUnaryFloatCall(I, ISD::FABS))
8575           return;
8576         break;
8577       case LibFunc_fmin:
8578       case LibFunc_fminf:
8579       case LibFunc_fminl:
8580         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8581           return;
8582         break;
8583       case LibFunc_fmax:
8584       case LibFunc_fmaxf:
8585       case LibFunc_fmaxl:
8586         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8587           return;
8588         break;
8589       case LibFunc_sin:
8590       case LibFunc_sinf:
8591       case LibFunc_sinl:
8592         if (visitUnaryFloatCall(I, ISD::FSIN))
8593           return;
8594         break;
8595       case LibFunc_cos:
8596       case LibFunc_cosf:
8597       case LibFunc_cosl:
8598         if (visitUnaryFloatCall(I, ISD::FCOS))
8599           return;
8600         break;
8601       case LibFunc_sqrt:
8602       case LibFunc_sqrtf:
8603       case LibFunc_sqrtl:
8604       case LibFunc_sqrt_finite:
8605       case LibFunc_sqrtf_finite:
8606       case LibFunc_sqrtl_finite:
8607         if (visitUnaryFloatCall(I, ISD::FSQRT))
8608           return;
8609         break;
8610       case LibFunc_floor:
8611       case LibFunc_floorf:
8612       case LibFunc_floorl:
8613         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8614           return;
8615         break;
8616       case LibFunc_nearbyint:
8617       case LibFunc_nearbyintf:
8618       case LibFunc_nearbyintl:
8619         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8620           return;
8621         break;
8622       case LibFunc_ceil:
8623       case LibFunc_ceilf:
8624       case LibFunc_ceill:
8625         if (visitUnaryFloatCall(I, ISD::FCEIL))
8626           return;
8627         break;
8628       case LibFunc_rint:
8629       case LibFunc_rintf:
8630       case LibFunc_rintl:
8631         if (visitUnaryFloatCall(I, ISD::FRINT))
8632           return;
8633         break;
8634       case LibFunc_round:
8635       case LibFunc_roundf:
8636       case LibFunc_roundl:
8637         if (visitUnaryFloatCall(I, ISD::FROUND))
8638           return;
8639         break;
8640       case LibFunc_trunc:
8641       case LibFunc_truncf:
8642       case LibFunc_truncl:
8643         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8644           return;
8645         break;
8646       case LibFunc_log2:
8647       case LibFunc_log2f:
8648       case LibFunc_log2l:
8649         if (visitUnaryFloatCall(I, ISD::FLOG2))
8650           return;
8651         break;
8652       case LibFunc_exp2:
8653       case LibFunc_exp2f:
8654       case LibFunc_exp2l:
8655         if (visitUnaryFloatCall(I, ISD::FEXP2))
8656           return;
8657         break;
8658       case LibFunc_ldexp:
8659       case LibFunc_ldexpf:
8660       case LibFunc_ldexpl:
8661         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8662           return;
8663         break;
8664       case LibFunc_memcmp:
8665         if (visitMemCmpBCmpCall(I))
8666           return;
8667         break;
8668       case LibFunc_mempcpy:
8669         if (visitMemPCpyCall(I))
8670           return;
8671         break;
8672       case LibFunc_memchr:
8673         if (visitMemChrCall(I))
8674           return;
8675         break;
8676       case LibFunc_strcpy:
8677         if (visitStrCpyCall(I, false))
8678           return;
8679         break;
8680       case LibFunc_stpcpy:
8681         if (visitStrCpyCall(I, true))
8682           return;
8683         break;
8684       case LibFunc_strcmp:
8685         if (visitStrCmpCall(I))
8686           return;
8687         break;
8688       case LibFunc_strlen:
8689         if (visitStrLenCall(I))
8690           return;
8691         break;
8692       case LibFunc_strnlen:
8693         if (visitStrNLenCall(I))
8694           return;
8695         break;
8696       }
8697     }
8698   }
8699 
8700   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8701   // have to do anything here to lower funclet bundles.
8702   // CFGuardTarget bundles are lowered in LowerCallTo.
8703   assert(!I.hasOperandBundlesOtherThan(
8704              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8705               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8706               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8707          "Cannot lower calls with arbitrary operand bundles!");
8708 
8709   SDValue Callee = getValue(I.getCalledOperand());
8710 
8711   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8712     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8713   else
8714     // Check if we can potentially perform a tail call. More detailed checking
8715     // is be done within LowerCallTo, after more information about the call is
8716     // known.
8717     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8718 }
8719 
8720 namespace {
8721 
8722 /// AsmOperandInfo - This contains information for each constraint that we are
8723 /// lowering.
8724 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8725 public:
8726   /// CallOperand - If this is the result output operand or a clobber
8727   /// this is null, otherwise it is the incoming operand to the CallInst.
8728   /// This gets modified as the asm is processed.
8729   SDValue CallOperand;
8730 
8731   /// AssignedRegs - If this is a register or register class operand, this
8732   /// contains the set of register corresponding to the operand.
8733   RegsForValue AssignedRegs;
8734 
8735   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8736     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8737   }
8738 
8739   /// Whether or not this operand accesses memory
8740   bool hasMemory(const TargetLowering &TLI) const {
8741     // Indirect operand accesses access memory.
8742     if (isIndirect)
8743       return true;
8744 
8745     for (const auto &Code : Codes)
8746       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8747         return true;
8748 
8749     return false;
8750   }
8751 };
8752 
8753 
8754 } // end anonymous namespace
8755 
8756 /// Make sure that the output operand \p OpInfo and its corresponding input
8757 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8758 /// out).
8759 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8760                                SDISelAsmOperandInfo &MatchingOpInfo,
8761                                SelectionDAG &DAG) {
8762   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8763     return;
8764 
8765   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8766   const auto &TLI = DAG.getTargetLoweringInfo();
8767 
8768   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8769       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8770                                        OpInfo.ConstraintVT);
8771   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8772       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8773                                        MatchingOpInfo.ConstraintVT);
8774   if ((OpInfo.ConstraintVT.isInteger() !=
8775        MatchingOpInfo.ConstraintVT.isInteger()) ||
8776       (MatchRC.second != InputRC.second)) {
8777     // FIXME: error out in a more elegant fashion
8778     report_fatal_error("Unsupported asm: input constraint"
8779                        " with a matching output constraint of"
8780                        " incompatible type!");
8781   }
8782   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8783 }
8784 
8785 /// Get a direct memory input to behave well as an indirect operand.
8786 /// This may introduce stores, hence the need for a \p Chain.
8787 /// \return The (possibly updated) chain.
8788 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8789                                         SDISelAsmOperandInfo &OpInfo,
8790                                         SelectionDAG &DAG) {
8791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8792 
8793   // If we don't have an indirect input, put it in the constpool if we can,
8794   // otherwise spill it to a stack slot.
8795   // TODO: This isn't quite right. We need to handle these according to
8796   // the addressing mode that the constraint wants. Also, this may take
8797   // an additional register for the computation and we don't want that
8798   // either.
8799 
8800   // If the operand is a float, integer, or vector constant, spill to a
8801   // constant pool entry to get its address.
8802   const Value *OpVal = OpInfo.CallOperandVal;
8803   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8804       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8805     OpInfo.CallOperand = DAG.getConstantPool(
8806         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8807     return Chain;
8808   }
8809 
8810   // Otherwise, create a stack slot and emit a store to it before the asm.
8811   Type *Ty = OpVal->getType();
8812   auto &DL = DAG.getDataLayout();
8813   uint64_t TySize = DL.getTypeAllocSize(Ty);
8814   MachineFunction &MF = DAG.getMachineFunction();
8815   int SSFI = MF.getFrameInfo().CreateStackObject(
8816       TySize, DL.getPrefTypeAlign(Ty), false);
8817   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8818   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8819                             MachinePointerInfo::getFixedStack(MF, SSFI),
8820                             TLI.getMemValueType(DL, Ty));
8821   OpInfo.CallOperand = StackSlot;
8822 
8823   return Chain;
8824 }
8825 
8826 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8827 /// specified operand.  We prefer to assign virtual registers, to allow the
8828 /// register allocator to handle the assignment process.  However, if the asm
8829 /// uses features that we can't model on machineinstrs, we have SDISel do the
8830 /// allocation.  This produces generally horrible, but correct, code.
8831 ///
8832 ///   OpInfo describes the operand
8833 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8834 static std::optional<unsigned>
8835 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8836                      SDISelAsmOperandInfo &OpInfo,
8837                      SDISelAsmOperandInfo &RefOpInfo) {
8838   LLVMContext &Context = *DAG.getContext();
8839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8840 
8841   MachineFunction &MF = DAG.getMachineFunction();
8842   SmallVector<unsigned, 4> Regs;
8843   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8844 
8845   // No work to do for memory/address operands.
8846   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8847       OpInfo.ConstraintType == TargetLowering::C_Address)
8848     return std::nullopt;
8849 
8850   // If this is a constraint for a single physreg, or a constraint for a
8851   // register class, find it.
8852   unsigned AssignedReg;
8853   const TargetRegisterClass *RC;
8854   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8855       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8856   // RC is unset only on failure. Return immediately.
8857   if (!RC)
8858     return std::nullopt;
8859 
8860   // Get the actual register value type.  This is important, because the user
8861   // may have asked for (e.g.) the AX register in i32 type.  We need to
8862   // remember that AX is actually i16 to get the right extension.
8863   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8864 
8865   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8866     // If this is an FP operand in an integer register (or visa versa), or more
8867     // generally if the operand value disagrees with the register class we plan
8868     // to stick it in, fix the operand type.
8869     //
8870     // If this is an input value, the bitcast to the new type is done now.
8871     // Bitcast for output value is done at the end of visitInlineAsm().
8872     if ((OpInfo.Type == InlineAsm::isOutput ||
8873          OpInfo.Type == InlineAsm::isInput) &&
8874         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8875       // Try to convert to the first EVT that the reg class contains.  If the
8876       // types are identical size, use a bitcast to convert (e.g. two differing
8877       // vector types).  Note: output bitcast is done at the end of
8878       // visitInlineAsm().
8879       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8880         // Exclude indirect inputs while they are unsupported because the code
8881         // to perform the load is missing and thus OpInfo.CallOperand still
8882         // refers to the input address rather than the pointed-to value.
8883         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8884           OpInfo.CallOperand =
8885               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8886         OpInfo.ConstraintVT = RegVT;
8887         // If the operand is an FP value and we want it in integer registers,
8888         // use the corresponding integer type. This turns an f64 value into
8889         // i64, which can be passed with two i32 values on a 32-bit machine.
8890       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8891         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8892         if (OpInfo.Type == InlineAsm::isInput)
8893           OpInfo.CallOperand =
8894               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8895         OpInfo.ConstraintVT = VT;
8896       }
8897     }
8898   }
8899 
8900   // No need to allocate a matching input constraint since the constraint it's
8901   // matching to has already been allocated.
8902   if (OpInfo.isMatchingInputConstraint())
8903     return std::nullopt;
8904 
8905   EVT ValueVT = OpInfo.ConstraintVT;
8906   if (OpInfo.ConstraintVT == MVT::Other)
8907     ValueVT = RegVT;
8908 
8909   // Initialize NumRegs.
8910   unsigned NumRegs = 1;
8911   if (OpInfo.ConstraintVT != MVT::Other)
8912     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8913 
8914   // If this is a constraint for a specific physical register, like {r17},
8915   // assign it now.
8916 
8917   // If this associated to a specific register, initialize iterator to correct
8918   // place. If virtual, make sure we have enough registers
8919 
8920   // Initialize iterator if necessary
8921   TargetRegisterClass::iterator I = RC->begin();
8922   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8923 
8924   // Do not check for single registers.
8925   if (AssignedReg) {
8926     I = std::find(I, RC->end(), AssignedReg);
8927     if (I == RC->end()) {
8928       // RC does not contain the selected register, which indicates a
8929       // mismatch between the register and the required type/bitwidth.
8930       return {AssignedReg};
8931     }
8932   }
8933 
8934   for (; NumRegs; --NumRegs, ++I) {
8935     assert(I != RC->end() && "Ran out of registers to allocate!");
8936     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8937     Regs.push_back(R);
8938   }
8939 
8940   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8941   return std::nullopt;
8942 }
8943 
8944 static unsigned
8945 findMatchingInlineAsmOperand(unsigned OperandNo,
8946                              const std::vector<SDValue> &AsmNodeOperands) {
8947   // Scan until we find the definition we already emitted of this operand.
8948   unsigned CurOp = InlineAsm::Op_FirstOperand;
8949   for (; OperandNo; --OperandNo) {
8950     // Advance to the next operand.
8951     unsigned OpFlag =
8952         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8953     assert((InlineAsm::isRegDefKind(OpFlag) ||
8954             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8955             InlineAsm::isMemKind(OpFlag)) &&
8956            "Skipped past definitions?");
8957     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8958   }
8959   return CurOp;
8960 }
8961 
8962 namespace {
8963 
8964 class ExtraFlags {
8965   unsigned Flags = 0;
8966 
8967 public:
8968   explicit ExtraFlags(const CallBase &Call) {
8969     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8970     if (IA->hasSideEffects())
8971       Flags |= InlineAsm::Extra_HasSideEffects;
8972     if (IA->isAlignStack())
8973       Flags |= InlineAsm::Extra_IsAlignStack;
8974     if (Call.isConvergent())
8975       Flags |= InlineAsm::Extra_IsConvergent;
8976     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8977   }
8978 
8979   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8980     // Ideally, we would only check against memory constraints.  However, the
8981     // meaning of an Other constraint can be target-specific and we can't easily
8982     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8983     // for Other constraints as well.
8984     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8985         OpInfo.ConstraintType == TargetLowering::C_Other) {
8986       if (OpInfo.Type == InlineAsm::isInput)
8987         Flags |= InlineAsm::Extra_MayLoad;
8988       else if (OpInfo.Type == InlineAsm::isOutput)
8989         Flags |= InlineAsm::Extra_MayStore;
8990       else if (OpInfo.Type == InlineAsm::isClobber)
8991         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8992     }
8993   }
8994 
8995   unsigned get() const { return Flags; }
8996 };
8997 
8998 } // end anonymous namespace
8999 
9000 static bool isFunction(SDValue Op) {
9001   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9002     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9003       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9004 
9005       // In normal "call dllimport func" instruction (non-inlineasm) it force
9006       // indirect access by specifing call opcode. And usually specially print
9007       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9008       // not do in this way now. (In fact, this is similar with "Data Access"
9009       // action). So here we ignore dllimport function.
9010       if (Fn && !Fn->hasDLLImportStorageClass())
9011         return true;
9012     }
9013   }
9014   return false;
9015 }
9016 
9017 /// visitInlineAsm - Handle a call to an InlineAsm object.
9018 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9019                                          const BasicBlock *EHPadBB) {
9020   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9021 
9022   /// ConstraintOperands - Information about all of the constraints.
9023   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9024 
9025   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9026   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9027       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9028 
9029   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9030   // AsmDialect, MayLoad, MayStore).
9031   bool HasSideEffect = IA->hasSideEffects();
9032   ExtraFlags ExtraInfo(Call);
9033 
9034   for (auto &T : TargetConstraints) {
9035     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9036     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9037 
9038     if (OpInfo.CallOperandVal)
9039       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9040 
9041     if (!HasSideEffect)
9042       HasSideEffect = OpInfo.hasMemory(TLI);
9043 
9044     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9045     // FIXME: Could we compute this on OpInfo rather than T?
9046 
9047     // Compute the constraint code and ConstraintType to use.
9048     TLI.ComputeConstraintToUse(T, SDValue());
9049 
9050     if (T.ConstraintType == TargetLowering::C_Immediate &&
9051         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9052       // We've delayed emitting a diagnostic like the "n" constraint because
9053       // inlining could cause an integer showing up.
9054       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9055                                           "' expects an integer constant "
9056                                           "expression");
9057 
9058     ExtraInfo.update(T);
9059   }
9060 
9061   // We won't need to flush pending loads if this asm doesn't touch
9062   // memory and is nonvolatile.
9063   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9064 
9065   bool EmitEHLabels = isa<InvokeInst>(Call);
9066   if (EmitEHLabels) {
9067     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9068   }
9069   bool IsCallBr = isa<CallBrInst>(Call);
9070 
9071   if (IsCallBr || EmitEHLabels) {
9072     // If this is a callbr or invoke we need to flush pending exports since
9073     // inlineasm_br and invoke are terminators.
9074     // We need to do this before nodes are glued to the inlineasm_br node.
9075     Chain = getControlRoot();
9076   }
9077 
9078   MCSymbol *BeginLabel = nullptr;
9079   if (EmitEHLabels) {
9080     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9081   }
9082 
9083   int OpNo = -1;
9084   SmallVector<StringRef> AsmStrs;
9085   IA->collectAsmStrs(AsmStrs);
9086 
9087   // Second pass over the constraints: compute which constraint option to use.
9088   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9089     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9090       OpNo++;
9091 
9092     // If this is an output operand with a matching input operand, look up the
9093     // matching input. If their types mismatch, e.g. one is an integer, the
9094     // other is floating point, or their sizes are different, flag it as an
9095     // error.
9096     if (OpInfo.hasMatchingInput()) {
9097       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9098       patchMatchingInput(OpInfo, Input, DAG);
9099     }
9100 
9101     // Compute the constraint code and ConstraintType to use.
9102     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9103 
9104     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9105          OpInfo.Type == InlineAsm::isClobber) ||
9106         OpInfo.ConstraintType == TargetLowering::C_Address)
9107       continue;
9108 
9109     // In Linux PIC model, there are 4 cases about value/label addressing:
9110     //
9111     // 1: Function call or Label jmp inside the module.
9112     // 2: Data access (such as global variable, static variable) inside module.
9113     // 3: Function call or Label jmp outside the module.
9114     // 4: Data access (such as global variable) outside the module.
9115     //
9116     // Due to current llvm inline asm architecture designed to not "recognize"
9117     // the asm code, there are quite troubles for us to treat mem addressing
9118     // differently for same value/adress used in different instuctions.
9119     // For example, in pic model, call a func may in plt way or direclty
9120     // pc-related, but lea/mov a function adress may use got.
9121     //
9122     // Here we try to "recognize" function call for the case 1 and case 3 in
9123     // inline asm. And try to adjust the constraint for them.
9124     //
9125     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9126     // label, so here we don't handle jmp function label now, but we need to
9127     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9128     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9129         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9130         TM.getCodeModel() != CodeModel::Large) {
9131       OpInfo.isIndirect = false;
9132       OpInfo.ConstraintType = TargetLowering::C_Address;
9133     }
9134 
9135     // If this is a memory input, and if the operand is not indirect, do what we
9136     // need to provide an address for the memory input.
9137     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9138         !OpInfo.isIndirect) {
9139       assert((OpInfo.isMultipleAlternative ||
9140               (OpInfo.Type == InlineAsm::isInput)) &&
9141              "Can only indirectify direct input operands!");
9142 
9143       // Memory operands really want the address of the value.
9144       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9145 
9146       // There is no longer a Value* corresponding to this operand.
9147       OpInfo.CallOperandVal = nullptr;
9148 
9149       // It is now an indirect operand.
9150       OpInfo.isIndirect = true;
9151     }
9152 
9153   }
9154 
9155   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9156   std::vector<SDValue> AsmNodeOperands;
9157   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9158   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9159       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9160 
9161   // If we have a !srcloc metadata node associated with it, we want to attach
9162   // this to the ultimately generated inline asm machineinstr.  To do this, we
9163   // pass in the third operand as this (potentially null) inline asm MDNode.
9164   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9165   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9166 
9167   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9168   // bits as operand 3.
9169   AsmNodeOperands.push_back(DAG.getTargetConstant(
9170       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9171 
9172   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9173   // this, assign virtual and physical registers for inputs and otput.
9174   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9175     // Assign Registers.
9176     SDISelAsmOperandInfo &RefOpInfo =
9177         OpInfo.isMatchingInputConstraint()
9178             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9179             : OpInfo;
9180     const auto RegError =
9181         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9182     if (RegError) {
9183       const MachineFunction &MF = DAG.getMachineFunction();
9184       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9185       const char *RegName = TRI.getName(*RegError);
9186       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9187                                    "' allocated for constraint '" +
9188                                    Twine(OpInfo.ConstraintCode) +
9189                                    "' does not match required type");
9190       return;
9191     }
9192 
9193     auto DetectWriteToReservedRegister = [&]() {
9194       const MachineFunction &MF = DAG.getMachineFunction();
9195       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9196       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9197         if (Register::isPhysicalRegister(Reg) &&
9198             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9199           const char *RegName = TRI.getName(Reg);
9200           emitInlineAsmError(Call, "write to reserved register '" +
9201                                        Twine(RegName) + "'");
9202           return true;
9203         }
9204       }
9205       return false;
9206     };
9207     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9208             (OpInfo.Type == InlineAsm::isInput &&
9209              !OpInfo.isMatchingInputConstraint())) &&
9210            "Only address as input operand is allowed.");
9211 
9212     switch (OpInfo.Type) {
9213     case InlineAsm::isOutput:
9214       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9215         unsigned ConstraintID =
9216             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9217         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9218                "Failed to convert memory constraint code to constraint id.");
9219 
9220         // Add information to the INLINEASM node to know about this output.
9221         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9222         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9223         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9224                                                         MVT::i32));
9225         AsmNodeOperands.push_back(OpInfo.CallOperand);
9226       } else {
9227         // Otherwise, this outputs to a register (directly for C_Register /
9228         // C_RegisterClass, and a target-defined fashion for
9229         // C_Immediate/C_Other). Find a register that we can use.
9230         if (OpInfo.AssignedRegs.Regs.empty()) {
9231           emitInlineAsmError(
9232               Call, "couldn't allocate output register for constraint '" +
9233                         Twine(OpInfo.ConstraintCode) + "'");
9234           return;
9235         }
9236 
9237         if (DetectWriteToReservedRegister())
9238           return;
9239 
9240         // Add information to the INLINEASM node to know that this register is
9241         // set.
9242         OpInfo.AssignedRegs.AddInlineAsmOperands(
9243             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9244                                   : InlineAsm::Kind_RegDef,
9245             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9246       }
9247       break;
9248 
9249     case InlineAsm::isInput:
9250     case InlineAsm::isLabel: {
9251       SDValue InOperandVal = OpInfo.CallOperand;
9252 
9253       if (OpInfo.isMatchingInputConstraint()) {
9254         // If this is required to match an output register we have already set,
9255         // just use its register.
9256         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9257                                                   AsmNodeOperands);
9258         unsigned OpFlag =
9259           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9260         if (InlineAsm::isRegDefKind(OpFlag) ||
9261             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9262           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9263           if (OpInfo.isIndirect) {
9264             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9265             emitInlineAsmError(Call, "inline asm not supported yet: "
9266                                      "don't know how to handle tied "
9267                                      "indirect register inputs");
9268             return;
9269           }
9270 
9271           SmallVector<unsigned, 4> Regs;
9272           MachineFunction &MF = DAG.getMachineFunction();
9273           MachineRegisterInfo &MRI = MF.getRegInfo();
9274           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9275           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9276           Register TiedReg = R->getReg();
9277           MVT RegVT = R->getSimpleValueType(0);
9278           const TargetRegisterClass *RC =
9279               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9280               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9281                                       : TRI.getMinimalPhysRegClass(TiedReg);
9282           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9283           for (unsigned i = 0; i != NumRegs; ++i)
9284             Regs.push_back(MRI.createVirtualRegister(RC));
9285 
9286           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9287 
9288           SDLoc dl = getCurSDLoc();
9289           // Use the produced MatchedRegs object to
9290           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9291           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9292                                            true, OpInfo.getMatchedOperand(), dl,
9293                                            DAG, AsmNodeOperands);
9294           break;
9295         }
9296 
9297         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9298         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9299                "Unexpected number of operands");
9300         // Add information to the INLINEASM node to know about this input.
9301         // See InlineAsm.h isUseOperandTiedToDef.
9302         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9303         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9304                                                     OpInfo.getMatchedOperand());
9305         AsmNodeOperands.push_back(DAG.getTargetConstant(
9306             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9307         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9308         break;
9309       }
9310 
9311       // Treat indirect 'X' constraint as memory.
9312       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9313           OpInfo.isIndirect)
9314         OpInfo.ConstraintType = TargetLowering::C_Memory;
9315 
9316       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9317           OpInfo.ConstraintType == TargetLowering::C_Other) {
9318         std::vector<SDValue> Ops;
9319         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9320                                           Ops, DAG);
9321         if (Ops.empty()) {
9322           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9323             if (isa<ConstantSDNode>(InOperandVal)) {
9324               emitInlineAsmError(Call, "value out of range for constraint '" +
9325                                            Twine(OpInfo.ConstraintCode) + "'");
9326               return;
9327             }
9328 
9329           emitInlineAsmError(Call,
9330                              "invalid operand for inline asm constraint '" +
9331                                  Twine(OpInfo.ConstraintCode) + "'");
9332           return;
9333         }
9334 
9335         // Add information to the INLINEASM node to know about this input.
9336         unsigned ResOpType =
9337           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9338         AsmNodeOperands.push_back(DAG.getTargetConstant(
9339             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9340         llvm::append_range(AsmNodeOperands, Ops);
9341         break;
9342       }
9343 
9344       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9345         assert((OpInfo.isIndirect ||
9346                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9347                "Operand must be indirect to be a mem!");
9348         assert(InOperandVal.getValueType() ==
9349                    TLI.getPointerTy(DAG.getDataLayout()) &&
9350                "Memory operands expect pointer values");
9351 
9352         unsigned ConstraintID =
9353             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9354         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9355                "Failed to convert memory constraint code to constraint id.");
9356 
9357         // Add information to the INLINEASM node to know about this input.
9358         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9359         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9360         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9361                                                         getCurSDLoc(),
9362                                                         MVT::i32));
9363         AsmNodeOperands.push_back(InOperandVal);
9364         break;
9365       }
9366 
9367       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9368         assert(InOperandVal.getValueType() ==
9369                    TLI.getPointerTy(DAG.getDataLayout()) &&
9370                "Address operands expect pointer values");
9371 
9372         unsigned ConstraintID =
9373             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9374         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9375                "Failed to convert memory constraint code to constraint id.");
9376 
9377         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9378 
9379         SDValue AsmOp = InOperandVal;
9380         if (isFunction(InOperandVal)) {
9381           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9382           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9383           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9384                                              InOperandVal.getValueType(),
9385                                              GA->getOffset());
9386         }
9387 
9388         // Add information to the INLINEASM node to know about this input.
9389         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9390 
9391         AsmNodeOperands.push_back(
9392             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9393 
9394         AsmNodeOperands.push_back(AsmOp);
9395         break;
9396       }
9397 
9398       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9399               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9400              "Unknown constraint type!");
9401 
9402       // TODO: Support this.
9403       if (OpInfo.isIndirect) {
9404         emitInlineAsmError(
9405             Call, "Don't know how to handle indirect register inputs yet "
9406                   "for constraint '" +
9407                       Twine(OpInfo.ConstraintCode) + "'");
9408         return;
9409       }
9410 
9411       // Copy the input into the appropriate registers.
9412       if (OpInfo.AssignedRegs.Regs.empty()) {
9413         emitInlineAsmError(Call,
9414                            "couldn't allocate input reg for constraint '" +
9415                                Twine(OpInfo.ConstraintCode) + "'");
9416         return;
9417       }
9418 
9419       if (DetectWriteToReservedRegister())
9420         return;
9421 
9422       SDLoc dl = getCurSDLoc();
9423 
9424       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9425                                         &Call);
9426 
9427       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9428                                                dl, DAG, AsmNodeOperands);
9429       break;
9430     }
9431     case InlineAsm::isClobber:
9432       // Add the clobbered value to the operand list, so that the register
9433       // allocator is aware that the physreg got clobbered.
9434       if (!OpInfo.AssignedRegs.Regs.empty())
9435         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9436                                                  false, 0, getCurSDLoc(), DAG,
9437                                                  AsmNodeOperands);
9438       break;
9439     }
9440   }
9441 
9442   // Finish up input operands.  Set the input chain and add the flag last.
9443   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9444   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9445 
9446   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9447   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9448                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9449   Glue = Chain.getValue(1);
9450 
9451   // Do additional work to generate outputs.
9452 
9453   SmallVector<EVT, 1> ResultVTs;
9454   SmallVector<SDValue, 1> ResultValues;
9455   SmallVector<SDValue, 8> OutChains;
9456 
9457   llvm::Type *CallResultType = Call.getType();
9458   ArrayRef<Type *> ResultTypes;
9459   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9460     ResultTypes = StructResult->elements();
9461   else if (!CallResultType->isVoidTy())
9462     ResultTypes = ArrayRef(CallResultType);
9463 
9464   auto CurResultType = ResultTypes.begin();
9465   auto handleRegAssign = [&](SDValue V) {
9466     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9467     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9468     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9469     ++CurResultType;
9470     // If the type of the inline asm call site return value is different but has
9471     // same size as the type of the asm output bitcast it.  One example of this
9472     // is for vectors with different width / number of elements.  This can
9473     // happen for register classes that can contain multiple different value
9474     // types.  The preg or vreg allocated may not have the same VT as was
9475     // expected.
9476     //
9477     // This can also happen for a return value that disagrees with the register
9478     // class it is put in, eg. a double in a general-purpose register on a
9479     // 32-bit machine.
9480     if (ResultVT != V.getValueType() &&
9481         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9482       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9483     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9484              V.getValueType().isInteger()) {
9485       // If a result value was tied to an input value, the computed result
9486       // may have a wider width than the expected result.  Extract the
9487       // relevant portion.
9488       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9489     }
9490     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9491     ResultVTs.push_back(ResultVT);
9492     ResultValues.push_back(V);
9493   };
9494 
9495   // Deal with output operands.
9496   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9497     if (OpInfo.Type == InlineAsm::isOutput) {
9498       SDValue Val;
9499       // Skip trivial output operands.
9500       if (OpInfo.AssignedRegs.Regs.empty())
9501         continue;
9502 
9503       switch (OpInfo.ConstraintType) {
9504       case TargetLowering::C_Register:
9505       case TargetLowering::C_RegisterClass:
9506         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9507                                                   Chain, &Glue, &Call);
9508         break;
9509       case TargetLowering::C_Immediate:
9510       case TargetLowering::C_Other:
9511         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9512                                               OpInfo, DAG);
9513         break;
9514       case TargetLowering::C_Memory:
9515         break; // Already handled.
9516       case TargetLowering::C_Address:
9517         break; // Silence warning.
9518       case TargetLowering::C_Unknown:
9519         assert(false && "Unexpected unknown constraint");
9520       }
9521 
9522       // Indirect output manifest as stores. Record output chains.
9523       if (OpInfo.isIndirect) {
9524         const Value *Ptr = OpInfo.CallOperandVal;
9525         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9526         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9527                                      MachinePointerInfo(Ptr));
9528         OutChains.push_back(Store);
9529       } else {
9530         // generate CopyFromRegs to associated registers.
9531         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9532         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9533           for (const SDValue &V : Val->op_values())
9534             handleRegAssign(V);
9535         } else
9536           handleRegAssign(Val);
9537       }
9538     }
9539   }
9540 
9541   // Set results.
9542   if (!ResultValues.empty()) {
9543     assert(CurResultType == ResultTypes.end() &&
9544            "Mismatch in number of ResultTypes");
9545     assert(ResultValues.size() == ResultTypes.size() &&
9546            "Mismatch in number of output operands in asm result");
9547 
9548     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9549                             DAG.getVTList(ResultVTs), ResultValues);
9550     setValue(&Call, V);
9551   }
9552 
9553   // Collect store chains.
9554   if (!OutChains.empty())
9555     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9556 
9557   if (EmitEHLabels) {
9558     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9559   }
9560 
9561   // Only Update Root if inline assembly has a memory effect.
9562   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9563       EmitEHLabels)
9564     DAG.setRoot(Chain);
9565 }
9566 
9567 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9568                                              const Twine &Message) {
9569   LLVMContext &Ctx = *DAG.getContext();
9570   Ctx.emitError(&Call, Message);
9571 
9572   // Make sure we leave the DAG in a valid state
9573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9574   SmallVector<EVT, 1> ValueVTs;
9575   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9576 
9577   if (ValueVTs.empty())
9578     return;
9579 
9580   SmallVector<SDValue, 1> Ops;
9581   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9582     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9583 
9584   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9585 }
9586 
9587 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9588   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9589                           MVT::Other, getRoot(),
9590                           getValue(I.getArgOperand(0)),
9591                           DAG.getSrcValue(I.getArgOperand(0))));
9592 }
9593 
9594 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9595   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9596   const DataLayout &DL = DAG.getDataLayout();
9597   SDValue V = DAG.getVAArg(
9598       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9599       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9600       DL.getABITypeAlign(I.getType()).value());
9601   DAG.setRoot(V.getValue(1));
9602 
9603   if (I.getType()->isPointerTy())
9604     V = DAG.getPtrExtOrTrunc(
9605         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9606   setValue(&I, V);
9607 }
9608 
9609 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9610   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9611                           MVT::Other, getRoot(),
9612                           getValue(I.getArgOperand(0)),
9613                           DAG.getSrcValue(I.getArgOperand(0))));
9614 }
9615 
9616 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9617   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9618                           MVT::Other, getRoot(),
9619                           getValue(I.getArgOperand(0)),
9620                           getValue(I.getArgOperand(1)),
9621                           DAG.getSrcValue(I.getArgOperand(0)),
9622                           DAG.getSrcValue(I.getArgOperand(1))));
9623 }
9624 
9625 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9626                                                     const Instruction &I,
9627                                                     SDValue Op) {
9628   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9629   if (!Range)
9630     return Op;
9631 
9632   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9633   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9634     return Op;
9635 
9636   APInt Lo = CR.getUnsignedMin();
9637   if (!Lo.isMinValue())
9638     return Op;
9639 
9640   APInt Hi = CR.getUnsignedMax();
9641   unsigned Bits = std::max(Hi.getActiveBits(),
9642                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9643 
9644   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9645 
9646   SDLoc SL = getCurSDLoc();
9647 
9648   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9649                              DAG.getValueType(SmallVT));
9650   unsigned NumVals = Op.getNode()->getNumValues();
9651   if (NumVals == 1)
9652     return ZExt;
9653 
9654   SmallVector<SDValue, 4> Ops;
9655 
9656   Ops.push_back(ZExt);
9657   for (unsigned I = 1; I != NumVals; ++I)
9658     Ops.push_back(Op.getValue(I));
9659 
9660   return DAG.getMergeValues(Ops, SL);
9661 }
9662 
9663 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9664 /// the call being lowered.
9665 ///
9666 /// This is a helper for lowering intrinsics that follow a target calling
9667 /// convention or require stack pointer adjustment. Only a subset of the
9668 /// intrinsic's operands need to participate in the calling convention.
9669 void SelectionDAGBuilder::populateCallLoweringInfo(
9670     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9671     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9672     bool IsPatchPoint) {
9673   TargetLowering::ArgListTy Args;
9674   Args.reserve(NumArgs);
9675 
9676   // Populate the argument list.
9677   // Attributes for args start at offset 1, after the return attribute.
9678   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9679        ArgI != ArgE; ++ArgI) {
9680     const Value *V = Call->getOperand(ArgI);
9681 
9682     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9683 
9684     TargetLowering::ArgListEntry Entry;
9685     Entry.Node = getValue(V);
9686     Entry.Ty = V->getType();
9687     Entry.setAttributes(Call, ArgI);
9688     Args.push_back(Entry);
9689   }
9690 
9691   CLI.setDebugLoc(getCurSDLoc())
9692       .setChain(getRoot())
9693       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9694       .setDiscardResult(Call->use_empty())
9695       .setIsPatchPoint(IsPatchPoint)
9696       .setIsPreallocated(
9697           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9698 }
9699 
9700 /// Add a stack map intrinsic call's live variable operands to a stackmap
9701 /// or patchpoint target node's operand list.
9702 ///
9703 /// Constants are converted to TargetConstants purely as an optimization to
9704 /// avoid constant materialization and register allocation.
9705 ///
9706 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9707 /// generate addess computation nodes, and so FinalizeISel can convert the
9708 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9709 /// address materialization and register allocation, but may also be required
9710 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9711 /// alloca in the entry block, then the runtime may assume that the alloca's
9712 /// StackMap location can be read immediately after compilation and that the
9713 /// location is valid at any point during execution (this is similar to the
9714 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9715 /// only available in a register, then the runtime would need to trap when
9716 /// execution reaches the StackMap in order to read the alloca's location.
9717 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9718                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9719                                 SelectionDAGBuilder &Builder) {
9720   SelectionDAG &DAG = Builder.DAG;
9721   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9722     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9723 
9724     // Things on the stack are pointer-typed, meaning that they are already
9725     // legal and can be emitted directly to target nodes.
9726     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9727       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9728     } else {
9729       // Otherwise emit a target independent node to be legalised.
9730       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9731     }
9732   }
9733 }
9734 
9735 /// Lower llvm.experimental.stackmap.
9736 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9737   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9738   //                                  [live variables...])
9739 
9740   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9741 
9742   SDValue Chain, InGlue, Callee;
9743   SmallVector<SDValue, 32> Ops;
9744 
9745   SDLoc DL = getCurSDLoc();
9746   Callee = getValue(CI.getCalledOperand());
9747 
9748   // The stackmap intrinsic only records the live variables (the arguments
9749   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9750   // intrinsic, this won't be lowered to a function call. This means we don't
9751   // have to worry about calling conventions and target specific lowering code.
9752   // Instead we perform the call lowering right here.
9753   //
9754   // chain, flag = CALLSEQ_START(chain, 0, 0)
9755   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9756   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9757   //
9758   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9759   InGlue = Chain.getValue(1);
9760 
9761   // Add the STACKMAP operands, starting with DAG house-keeping.
9762   Ops.push_back(Chain);
9763   Ops.push_back(InGlue);
9764 
9765   // Add the <id>, <numShadowBytes> operands.
9766   //
9767   // These do not require legalisation, and can be emitted directly to target
9768   // constant nodes.
9769   SDValue ID = getValue(CI.getArgOperand(0));
9770   assert(ID.getValueType() == MVT::i64);
9771   SDValue IDConst = DAG.getTargetConstant(
9772       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9773   Ops.push_back(IDConst);
9774 
9775   SDValue Shad = getValue(CI.getArgOperand(1));
9776   assert(Shad.getValueType() == MVT::i32);
9777   SDValue ShadConst = DAG.getTargetConstant(
9778       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9779   Ops.push_back(ShadConst);
9780 
9781   // Add the live variables.
9782   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9783 
9784   // Create the STACKMAP node.
9785   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9786   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9787   InGlue = Chain.getValue(1);
9788 
9789   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9790 
9791   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9792 
9793   // Set the root to the target-lowered call chain.
9794   DAG.setRoot(Chain);
9795 
9796   // Inform the Frame Information that we have a stackmap in this function.
9797   FuncInfo.MF->getFrameInfo().setHasStackMap();
9798 }
9799 
9800 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9801 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9802                                           const BasicBlock *EHPadBB) {
9803   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9804   //                                                 i32 <numBytes>,
9805   //                                                 i8* <target>,
9806   //                                                 i32 <numArgs>,
9807   //                                                 [Args...],
9808   //                                                 [live variables...])
9809 
9810   CallingConv::ID CC = CB.getCallingConv();
9811   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9812   bool HasDef = !CB.getType()->isVoidTy();
9813   SDLoc dl = getCurSDLoc();
9814   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9815 
9816   // Handle immediate and symbolic callees.
9817   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9818     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9819                                    /*isTarget=*/true);
9820   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9821     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9822                                          SDLoc(SymbolicCallee),
9823                                          SymbolicCallee->getValueType(0));
9824 
9825   // Get the real number of arguments participating in the call <numArgs>
9826   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9827   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9828 
9829   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9830   // Intrinsics include all meta-operands up to but not including CC.
9831   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9832   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9833          "Not enough arguments provided to the patchpoint intrinsic");
9834 
9835   // For AnyRegCC the arguments are lowered later on manually.
9836   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9837   Type *ReturnTy =
9838       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9839 
9840   TargetLowering::CallLoweringInfo CLI(DAG);
9841   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9842                            ReturnTy, true);
9843   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9844 
9845   SDNode *CallEnd = Result.second.getNode();
9846   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9847     CallEnd = CallEnd->getOperand(0).getNode();
9848 
9849   /// Get a call instruction from the call sequence chain.
9850   /// Tail calls are not allowed.
9851   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9852          "Expected a callseq node.");
9853   SDNode *Call = CallEnd->getOperand(0).getNode();
9854   bool HasGlue = Call->getGluedNode();
9855 
9856   // Replace the target specific call node with the patchable intrinsic.
9857   SmallVector<SDValue, 8> Ops;
9858 
9859   // Push the chain.
9860   Ops.push_back(*(Call->op_begin()));
9861 
9862   // Optionally, push the glue (if any).
9863   if (HasGlue)
9864     Ops.push_back(*(Call->op_end() - 1));
9865 
9866   // Push the register mask info.
9867   if (HasGlue)
9868     Ops.push_back(*(Call->op_end() - 2));
9869   else
9870     Ops.push_back(*(Call->op_end() - 1));
9871 
9872   // Add the <id> and <numBytes> constants.
9873   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9874   Ops.push_back(DAG.getTargetConstant(
9875                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9876   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9877   Ops.push_back(DAG.getTargetConstant(
9878                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9879                   MVT::i32));
9880 
9881   // Add the callee.
9882   Ops.push_back(Callee);
9883 
9884   // Adjust <numArgs> to account for any arguments that have been passed on the
9885   // stack instead.
9886   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9887   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9888   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9889   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9890 
9891   // Add the calling convention
9892   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9893 
9894   // Add the arguments we omitted previously. The register allocator should
9895   // place these in any free register.
9896   if (IsAnyRegCC)
9897     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9898       Ops.push_back(getValue(CB.getArgOperand(i)));
9899 
9900   // Push the arguments from the call instruction.
9901   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9902   Ops.append(Call->op_begin() + 2, e);
9903 
9904   // Push live variables for the stack map.
9905   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9906 
9907   SDVTList NodeTys;
9908   if (IsAnyRegCC && HasDef) {
9909     // Create the return types based on the intrinsic definition
9910     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9911     SmallVector<EVT, 3> ValueVTs;
9912     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9913     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9914 
9915     // There is always a chain and a glue type at the end
9916     ValueVTs.push_back(MVT::Other);
9917     ValueVTs.push_back(MVT::Glue);
9918     NodeTys = DAG.getVTList(ValueVTs);
9919   } else
9920     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9921 
9922   // Replace the target specific call node with a PATCHPOINT node.
9923   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9924 
9925   // Update the NodeMap.
9926   if (HasDef) {
9927     if (IsAnyRegCC)
9928       setValue(&CB, SDValue(PPV.getNode(), 0));
9929     else
9930       setValue(&CB, Result.first);
9931   }
9932 
9933   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9934   // call sequence. Furthermore the location of the chain and glue can change
9935   // when the AnyReg calling convention is used and the intrinsic returns a
9936   // value.
9937   if (IsAnyRegCC && HasDef) {
9938     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9939     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9940     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9941   } else
9942     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9943   DAG.DeleteNode(Call);
9944 
9945   // Inform the Frame Information that we have a patchpoint in this function.
9946   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9947 }
9948 
9949 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9950                                             unsigned Intrinsic) {
9951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9952   SDValue Op1 = getValue(I.getArgOperand(0));
9953   SDValue Op2;
9954   if (I.arg_size() > 1)
9955     Op2 = getValue(I.getArgOperand(1));
9956   SDLoc dl = getCurSDLoc();
9957   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9958   SDValue Res;
9959   SDNodeFlags SDFlags;
9960   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9961     SDFlags.copyFMF(*FPMO);
9962 
9963   switch (Intrinsic) {
9964   case Intrinsic::vector_reduce_fadd:
9965     if (SDFlags.hasAllowReassociation())
9966       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9967                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9968                         SDFlags);
9969     else
9970       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9971     break;
9972   case Intrinsic::vector_reduce_fmul:
9973     if (SDFlags.hasAllowReassociation())
9974       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9975                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9976                         SDFlags);
9977     else
9978       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9979     break;
9980   case Intrinsic::vector_reduce_add:
9981     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9982     break;
9983   case Intrinsic::vector_reduce_mul:
9984     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9985     break;
9986   case Intrinsic::vector_reduce_and:
9987     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9988     break;
9989   case Intrinsic::vector_reduce_or:
9990     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9991     break;
9992   case Intrinsic::vector_reduce_xor:
9993     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9994     break;
9995   case Intrinsic::vector_reduce_smax:
9996     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9997     break;
9998   case Intrinsic::vector_reduce_smin:
9999     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10000     break;
10001   case Intrinsic::vector_reduce_umax:
10002     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10003     break;
10004   case Intrinsic::vector_reduce_umin:
10005     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10006     break;
10007   case Intrinsic::vector_reduce_fmax:
10008     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10009     break;
10010   case Intrinsic::vector_reduce_fmin:
10011     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10012     break;
10013   default:
10014     llvm_unreachable("Unhandled vector reduce intrinsic");
10015   }
10016   setValue(&I, Res);
10017 }
10018 
10019 /// Returns an AttributeList representing the attributes applied to the return
10020 /// value of the given call.
10021 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10022   SmallVector<Attribute::AttrKind, 2> Attrs;
10023   if (CLI.RetSExt)
10024     Attrs.push_back(Attribute::SExt);
10025   if (CLI.RetZExt)
10026     Attrs.push_back(Attribute::ZExt);
10027   if (CLI.IsInReg)
10028     Attrs.push_back(Attribute::InReg);
10029 
10030   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10031                             Attrs);
10032 }
10033 
10034 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10035 /// implementation, which just calls LowerCall.
10036 /// FIXME: When all targets are
10037 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10038 std::pair<SDValue, SDValue>
10039 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10040   // Handle the incoming return values from the call.
10041   CLI.Ins.clear();
10042   Type *OrigRetTy = CLI.RetTy;
10043   SmallVector<EVT, 4> RetTys;
10044   SmallVector<uint64_t, 4> Offsets;
10045   auto &DL = CLI.DAG.getDataLayout();
10046   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10047 
10048   if (CLI.IsPostTypeLegalization) {
10049     // If we are lowering a libcall after legalization, split the return type.
10050     SmallVector<EVT, 4> OldRetTys;
10051     SmallVector<uint64_t, 4> OldOffsets;
10052     RetTys.swap(OldRetTys);
10053     Offsets.swap(OldOffsets);
10054 
10055     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10056       EVT RetVT = OldRetTys[i];
10057       uint64_t Offset = OldOffsets[i];
10058       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10059       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10060       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10061       RetTys.append(NumRegs, RegisterVT);
10062       for (unsigned j = 0; j != NumRegs; ++j)
10063         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10064     }
10065   }
10066 
10067   SmallVector<ISD::OutputArg, 4> Outs;
10068   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10069 
10070   bool CanLowerReturn =
10071       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10072                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10073 
10074   SDValue DemoteStackSlot;
10075   int DemoteStackIdx = -100;
10076   if (!CanLowerReturn) {
10077     // FIXME: equivalent assert?
10078     // assert(!CS.hasInAllocaArgument() &&
10079     //        "sret demotion is incompatible with inalloca");
10080     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10081     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10082     MachineFunction &MF = CLI.DAG.getMachineFunction();
10083     DemoteStackIdx =
10084         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10085     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10086                                               DL.getAllocaAddrSpace());
10087 
10088     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10089     ArgListEntry Entry;
10090     Entry.Node = DemoteStackSlot;
10091     Entry.Ty = StackSlotPtrType;
10092     Entry.IsSExt = false;
10093     Entry.IsZExt = false;
10094     Entry.IsInReg = false;
10095     Entry.IsSRet = true;
10096     Entry.IsNest = false;
10097     Entry.IsByVal = false;
10098     Entry.IsByRef = false;
10099     Entry.IsReturned = false;
10100     Entry.IsSwiftSelf = false;
10101     Entry.IsSwiftAsync = false;
10102     Entry.IsSwiftError = false;
10103     Entry.IsCFGuardTarget = false;
10104     Entry.Alignment = Alignment;
10105     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10106     CLI.NumFixedArgs += 1;
10107     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10108     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10109 
10110     // sret demotion isn't compatible with tail-calls, since the sret argument
10111     // points into the callers stack frame.
10112     CLI.IsTailCall = false;
10113   } else {
10114     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10115         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10116     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10117       ISD::ArgFlagsTy Flags;
10118       if (NeedsRegBlock) {
10119         Flags.setInConsecutiveRegs();
10120         if (I == RetTys.size() - 1)
10121           Flags.setInConsecutiveRegsLast();
10122       }
10123       EVT VT = RetTys[I];
10124       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10125                                                      CLI.CallConv, VT);
10126       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10127                                                        CLI.CallConv, VT);
10128       for (unsigned i = 0; i != NumRegs; ++i) {
10129         ISD::InputArg MyFlags;
10130         MyFlags.Flags = Flags;
10131         MyFlags.VT = RegisterVT;
10132         MyFlags.ArgVT = VT;
10133         MyFlags.Used = CLI.IsReturnValueUsed;
10134         if (CLI.RetTy->isPointerTy()) {
10135           MyFlags.Flags.setPointer();
10136           MyFlags.Flags.setPointerAddrSpace(
10137               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10138         }
10139         if (CLI.RetSExt)
10140           MyFlags.Flags.setSExt();
10141         if (CLI.RetZExt)
10142           MyFlags.Flags.setZExt();
10143         if (CLI.IsInReg)
10144           MyFlags.Flags.setInReg();
10145         CLI.Ins.push_back(MyFlags);
10146       }
10147     }
10148   }
10149 
10150   // We push in swifterror return as the last element of CLI.Ins.
10151   ArgListTy &Args = CLI.getArgs();
10152   if (supportSwiftError()) {
10153     for (const ArgListEntry &Arg : Args) {
10154       if (Arg.IsSwiftError) {
10155         ISD::InputArg MyFlags;
10156         MyFlags.VT = getPointerTy(DL);
10157         MyFlags.ArgVT = EVT(getPointerTy(DL));
10158         MyFlags.Flags.setSwiftError();
10159         CLI.Ins.push_back(MyFlags);
10160       }
10161     }
10162   }
10163 
10164   // Handle all of the outgoing arguments.
10165   CLI.Outs.clear();
10166   CLI.OutVals.clear();
10167   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10168     SmallVector<EVT, 4> ValueVTs;
10169     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10170     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10171     Type *FinalType = Args[i].Ty;
10172     if (Args[i].IsByVal)
10173       FinalType = Args[i].IndirectType;
10174     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10175         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10176     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10177          ++Value) {
10178       EVT VT = ValueVTs[Value];
10179       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10180       SDValue Op = SDValue(Args[i].Node.getNode(),
10181                            Args[i].Node.getResNo() + Value);
10182       ISD::ArgFlagsTy Flags;
10183 
10184       // Certain targets (such as MIPS), may have a different ABI alignment
10185       // for a type depending on the context. Give the target a chance to
10186       // specify the alignment it wants.
10187       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10188       Flags.setOrigAlign(OriginalAlignment);
10189 
10190       if (Args[i].Ty->isPointerTy()) {
10191         Flags.setPointer();
10192         Flags.setPointerAddrSpace(
10193             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10194       }
10195       if (Args[i].IsZExt)
10196         Flags.setZExt();
10197       if (Args[i].IsSExt)
10198         Flags.setSExt();
10199       if (Args[i].IsInReg) {
10200         // If we are using vectorcall calling convention, a structure that is
10201         // passed InReg - is surely an HVA
10202         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10203             isa<StructType>(FinalType)) {
10204           // The first value of a structure is marked
10205           if (0 == Value)
10206             Flags.setHvaStart();
10207           Flags.setHva();
10208         }
10209         // Set InReg Flag
10210         Flags.setInReg();
10211       }
10212       if (Args[i].IsSRet)
10213         Flags.setSRet();
10214       if (Args[i].IsSwiftSelf)
10215         Flags.setSwiftSelf();
10216       if (Args[i].IsSwiftAsync)
10217         Flags.setSwiftAsync();
10218       if (Args[i].IsSwiftError)
10219         Flags.setSwiftError();
10220       if (Args[i].IsCFGuardTarget)
10221         Flags.setCFGuardTarget();
10222       if (Args[i].IsByVal)
10223         Flags.setByVal();
10224       if (Args[i].IsByRef)
10225         Flags.setByRef();
10226       if (Args[i].IsPreallocated) {
10227         Flags.setPreallocated();
10228         // Set the byval flag for CCAssignFn callbacks that don't know about
10229         // preallocated.  This way we can know how many bytes we should've
10230         // allocated and how many bytes a callee cleanup function will pop.  If
10231         // we port preallocated to more targets, we'll have to add custom
10232         // preallocated handling in the various CC lowering callbacks.
10233         Flags.setByVal();
10234       }
10235       if (Args[i].IsInAlloca) {
10236         Flags.setInAlloca();
10237         // Set the byval flag for CCAssignFn callbacks that don't know about
10238         // inalloca.  This way we can know how many bytes we should've allocated
10239         // and how many bytes a callee cleanup function will pop.  If we port
10240         // inalloca to more targets, we'll have to add custom inalloca handling
10241         // in the various CC lowering callbacks.
10242         Flags.setByVal();
10243       }
10244       Align MemAlign;
10245       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10246         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10247         Flags.setByValSize(FrameSize);
10248 
10249         // info is not there but there are cases it cannot get right.
10250         if (auto MA = Args[i].Alignment)
10251           MemAlign = *MA;
10252         else
10253           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10254       } else if (auto MA = Args[i].Alignment) {
10255         MemAlign = *MA;
10256       } else {
10257         MemAlign = OriginalAlignment;
10258       }
10259       Flags.setMemAlign(MemAlign);
10260       if (Args[i].IsNest)
10261         Flags.setNest();
10262       if (NeedsRegBlock)
10263         Flags.setInConsecutiveRegs();
10264 
10265       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10266                                                  CLI.CallConv, VT);
10267       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10268                                                         CLI.CallConv, VT);
10269       SmallVector<SDValue, 4> Parts(NumParts);
10270       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10271 
10272       if (Args[i].IsSExt)
10273         ExtendKind = ISD::SIGN_EXTEND;
10274       else if (Args[i].IsZExt)
10275         ExtendKind = ISD::ZERO_EXTEND;
10276 
10277       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10278       // for now.
10279       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10280           CanLowerReturn) {
10281         assert((CLI.RetTy == Args[i].Ty ||
10282                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10283                  CLI.RetTy->getPointerAddressSpace() ==
10284                      Args[i].Ty->getPointerAddressSpace())) &&
10285                RetTys.size() == NumValues && "unexpected use of 'returned'");
10286         // Before passing 'returned' to the target lowering code, ensure that
10287         // either the register MVT and the actual EVT are the same size or that
10288         // the return value and argument are extended in the same way; in these
10289         // cases it's safe to pass the argument register value unchanged as the
10290         // return register value (although it's at the target's option whether
10291         // to do so)
10292         // TODO: allow code generation to take advantage of partially preserved
10293         // registers rather than clobbering the entire register when the
10294         // parameter extension method is not compatible with the return
10295         // extension method
10296         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10297             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10298              CLI.RetZExt == Args[i].IsZExt))
10299           Flags.setReturned();
10300       }
10301 
10302       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10303                      CLI.CallConv, ExtendKind);
10304 
10305       for (unsigned j = 0; j != NumParts; ++j) {
10306         // if it isn't first piece, alignment must be 1
10307         // For scalable vectors the scalable part is currently handled
10308         // by individual targets, so we just use the known minimum size here.
10309         ISD::OutputArg MyFlags(
10310             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10311             i < CLI.NumFixedArgs, i,
10312             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10313         if (NumParts > 1 && j == 0)
10314           MyFlags.Flags.setSplit();
10315         else if (j != 0) {
10316           MyFlags.Flags.setOrigAlign(Align(1));
10317           if (j == NumParts - 1)
10318             MyFlags.Flags.setSplitEnd();
10319         }
10320 
10321         CLI.Outs.push_back(MyFlags);
10322         CLI.OutVals.push_back(Parts[j]);
10323       }
10324 
10325       if (NeedsRegBlock && Value == NumValues - 1)
10326         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10327     }
10328   }
10329 
10330   SmallVector<SDValue, 4> InVals;
10331   CLI.Chain = LowerCall(CLI, InVals);
10332 
10333   // Update CLI.InVals to use outside of this function.
10334   CLI.InVals = InVals;
10335 
10336   // Verify that the target's LowerCall behaved as expected.
10337   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10338          "LowerCall didn't return a valid chain!");
10339   assert((!CLI.IsTailCall || InVals.empty()) &&
10340          "LowerCall emitted a return value for a tail call!");
10341   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10342          "LowerCall didn't emit the correct number of values!");
10343 
10344   // For a tail call, the return value is merely live-out and there aren't
10345   // any nodes in the DAG representing it. Return a special value to
10346   // indicate that a tail call has been emitted and no more Instructions
10347   // should be processed in the current block.
10348   if (CLI.IsTailCall) {
10349     CLI.DAG.setRoot(CLI.Chain);
10350     return std::make_pair(SDValue(), SDValue());
10351   }
10352 
10353 #ifndef NDEBUG
10354   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10355     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10356     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10357            "LowerCall emitted a value with the wrong type!");
10358   }
10359 #endif
10360 
10361   SmallVector<SDValue, 4> ReturnValues;
10362   if (!CanLowerReturn) {
10363     // The instruction result is the result of loading from the
10364     // hidden sret parameter.
10365     SmallVector<EVT, 1> PVTs;
10366     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10367 
10368     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10369     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10370     EVT PtrVT = PVTs[0];
10371 
10372     unsigned NumValues = RetTys.size();
10373     ReturnValues.resize(NumValues);
10374     SmallVector<SDValue, 4> Chains(NumValues);
10375 
10376     // An aggregate return value cannot wrap around the address space, so
10377     // offsets to its parts don't wrap either.
10378     SDNodeFlags Flags;
10379     Flags.setNoUnsignedWrap(true);
10380 
10381     MachineFunction &MF = CLI.DAG.getMachineFunction();
10382     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10383     for (unsigned i = 0; i < NumValues; ++i) {
10384       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10385                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10386                                                         PtrVT), Flags);
10387       SDValue L = CLI.DAG.getLoad(
10388           RetTys[i], CLI.DL, CLI.Chain, Add,
10389           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10390                                             DemoteStackIdx, Offsets[i]),
10391           HiddenSRetAlign);
10392       ReturnValues[i] = L;
10393       Chains[i] = L.getValue(1);
10394     }
10395 
10396     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10397   } else {
10398     // Collect the legal value parts into potentially illegal values
10399     // that correspond to the original function's return values.
10400     std::optional<ISD::NodeType> AssertOp;
10401     if (CLI.RetSExt)
10402       AssertOp = ISD::AssertSext;
10403     else if (CLI.RetZExt)
10404       AssertOp = ISD::AssertZext;
10405     unsigned CurReg = 0;
10406     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10407       EVT VT = RetTys[I];
10408       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10409                                                      CLI.CallConv, VT);
10410       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10411                                                        CLI.CallConv, VT);
10412 
10413       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10414                                               NumRegs, RegisterVT, VT, nullptr,
10415                                               CLI.CallConv, AssertOp));
10416       CurReg += NumRegs;
10417     }
10418 
10419     // For a function returning void, there is no return value. We can't create
10420     // such a node, so we just return a null return value in that case. In
10421     // that case, nothing will actually look at the value.
10422     if (ReturnValues.empty())
10423       return std::make_pair(SDValue(), CLI.Chain);
10424   }
10425 
10426   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10427                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10428   return std::make_pair(Res, CLI.Chain);
10429 }
10430 
10431 /// Places new result values for the node in Results (their number
10432 /// and types must exactly match those of the original return values of
10433 /// the node), or leaves Results empty, which indicates that the node is not
10434 /// to be custom lowered after all.
10435 void TargetLowering::LowerOperationWrapper(SDNode *N,
10436                                            SmallVectorImpl<SDValue> &Results,
10437                                            SelectionDAG &DAG) const {
10438   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10439 
10440   if (!Res.getNode())
10441     return;
10442 
10443   // If the original node has one result, take the return value from
10444   // LowerOperation as is. It might not be result number 0.
10445   if (N->getNumValues() == 1) {
10446     Results.push_back(Res);
10447     return;
10448   }
10449 
10450   // If the original node has multiple results, then the return node should
10451   // have the same number of results.
10452   assert((N->getNumValues() == Res->getNumValues()) &&
10453       "Lowering returned the wrong number of results!");
10454 
10455   // Places new result values base on N result number.
10456   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10457     Results.push_back(Res.getValue(I));
10458 }
10459 
10460 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10461   llvm_unreachable("LowerOperation not implemented for this target!");
10462 }
10463 
10464 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10465                                                      unsigned Reg,
10466                                                      ISD::NodeType ExtendType) {
10467   SDValue Op = getNonRegisterValue(V);
10468   assert((Op.getOpcode() != ISD::CopyFromReg ||
10469           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10470          "Copy from a reg to the same reg!");
10471   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10472 
10473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10474   // If this is an InlineAsm we have to match the registers required, not the
10475   // notional registers required by the type.
10476 
10477   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10478                    std::nullopt); // This is not an ABI copy.
10479   SDValue Chain = DAG.getEntryNode();
10480 
10481   if (ExtendType == ISD::ANY_EXTEND) {
10482     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10483     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10484       ExtendType = PreferredExtendIt->second;
10485   }
10486   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10487   PendingExports.push_back(Chain);
10488 }
10489 
10490 #include "llvm/CodeGen/SelectionDAGISel.h"
10491 
10492 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10493 /// entry block, return true.  This includes arguments used by switches, since
10494 /// the switch may expand into multiple basic blocks.
10495 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10496   // With FastISel active, we may be splitting blocks, so force creation
10497   // of virtual registers for all non-dead arguments.
10498   if (FastISel)
10499     return A->use_empty();
10500 
10501   const BasicBlock &Entry = A->getParent()->front();
10502   for (const User *U : A->users())
10503     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10504       return false;  // Use not in entry block.
10505 
10506   return true;
10507 }
10508 
10509 using ArgCopyElisionMapTy =
10510     DenseMap<const Argument *,
10511              std::pair<const AllocaInst *, const StoreInst *>>;
10512 
10513 /// Scan the entry block of the function in FuncInfo for arguments that look
10514 /// like copies into a local alloca. Record any copied arguments in
10515 /// ArgCopyElisionCandidates.
10516 static void
10517 findArgumentCopyElisionCandidates(const DataLayout &DL,
10518                                   FunctionLoweringInfo *FuncInfo,
10519                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10520   // Record the state of every static alloca used in the entry block. Argument
10521   // allocas are all used in the entry block, so we need approximately as many
10522   // entries as we have arguments.
10523   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10524   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10525   unsigned NumArgs = FuncInfo->Fn->arg_size();
10526   StaticAllocas.reserve(NumArgs * 2);
10527 
10528   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10529     if (!V)
10530       return nullptr;
10531     V = V->stripPointerCasts();
10532     const auto *AI = dyn_cast<AllocaInst>(V);
10533     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10534       return nullptr;
10535     auto Iter = StaticAllocas.insert({AI, Unknown});
10536     return &Iter.first->second;
10537   };
10538 
10539   // Look for stores of arguments to static allocas. Look through bitcasts and
10540   // GEPs to handle type coercions, as long as the alloca is fully initialized
10541   // by the store. Any non-store use of an alloca escapes it and any subsequent
10542   // unanalyzed store might write it.
10543   // FIXME: Handle structs initialized with multiple stores.
10544   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10545     // Look for stores, and handle non-store uses conservatively.
10546     const auto *SI = dyn_cast<StoreInst>(&I);
10547     if (!SI) {
10548       // We will look through cast uses, so ignore them completely.
10549       if (I.isCast())
10550         continue;
10551       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10552       // to allocas.
10553       if (I.isDebugOrPseudoInst())
10554         continue;
10555       // This is an unknown instruction. Assume it escapes or writes to all
10556       // static alloca operands.
10557       for (const Use &U : I.operands()) {
10558         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10559           *Info = StaticAllocaInfo::Clobbered;
10560       }
10561       continue;
10562     }
10563 
10564     // If the stored value is a static alloca, mark it as escaped.
10565     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10566       *Info = StaticAllocaInfo::Clobbered;
10567 
10568     // Check if the destination is a static alloca.
10569     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10570     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10571     if (!Info)
10572       continue;
10573     const AllocaInst *AI = cast<AllocaInst>(Dst);
10574 
10575     // Skip allocas that have been initialized or clobbered.
10576     if (*Info != StaticAllocaInfo::Unknown)
10577       continue;
10578 
10579     // Check if the stored value is an argument, and that this store fully
10580     // initializes the alloca.
10581     // If the argument type has padding bits we can't directly forward a pointer
10582     // as the upper bits may contain garbage.
10583     // Don't elide copies from the same argument twice.
10584     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10585     const auto *Arg = dyn_cast<Argument>(Val);
10586     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10587         Arg->getType()->isEmptyTy() ||
10588         DL.getTypeStoreSize(Arg->getType()) !=
10589             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10590         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10591         ArgCopyElisionCandidates.count(Arg)) {
10592       *Info = StaticAllocaInfo::Clobbered;
10593       continue;
10594     }
10595 
10596     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10597                       << '\n');
10598 
10599     // Mark this alloca and store for argument copy elision.
10600     *Info = StaticAllocaInfo::Elidable;
10601     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10602 
10603     // Stop scanning if we've seen all arguments. This will happen early in -O0
10604     // builds, which is useful, because -O0 builds have large entry blocks and
10605     // many allocas.
10606     if (ArgCopyElisionCandidates.size() == NumArgs)
10607       break;
10608   }
10609 }
10610 
10611 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10612 /// ArgVal is a load from a suitable fixed stack object.
10613 static void tryToElideArgumentCopy(
10614     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10615     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10616     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10617     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10618     SDValue ArgVal, bool &ArgHasUses) {
10619   // Check if this is a load from a fixed stack object.
10620   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10621   if (!LNode)
10622     return;
10623   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10624   if (!FINode)
10625     return;
10626 
10627   // Check that the fixed stack object is the right size and alignment.
10628   // Look at the alignment that the user wrote on the alloca instead of looking
10629   // at the stack object.
10630   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10631   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10632   const AllocaInst *AI = ArgCopyIter->second.first;
10633   int FixedIndex = FINode->getIndex();
10634   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10635   int OldIndex = AllocaIndex;
10636   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10637   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10638     LLVM_DEBUG(
10639         dbgs() << "  argument copy elision failed due to bad fixed stack "
10640                   "object size\n");
10641     return;
10642   }
10643   Align RequiredAlignment = AI->getAlign();
10644   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10645     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10646                          "greater than stack argument alignment ("
10647                       << DebugStr(RequiredAlignment) << " vs "
10648                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10649     return;
10650   }
10651 
10652   // Perform the elision. Delete the old stack object and replace its only use
10653   // in the variable info map. Mark the stack object as mutable.
10654   LLVM_DEBUG({
10655     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10656            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10657            << '\n';
10658   });
10659   MFI.RemoveStackObject(OldIndex);
10660   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10661   AllocaIndex = FixedIndex;
10662   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10663   Chains.push_back(ArgVal.getValue(1));
10664 
10665   // Avoid emitting code for the store implementing the copy.
10666   const StoreInst *SI = ArgCopyIter->second.second;
10667   ElidedArgCopyInstrs.insert(SI);
10668 
10669   // Check for uses of the argument again so that we can avoid exporting ArgVal
10670   // if it is't used by anything other than the store.
10671   for (const Value *U : Arg.users()) {
10672     if (U != SI) {
10673       ArgHasUses = true;
10674       break;
10675     }
10676   }
10677 }
10678 
10679 void SelectionDAGISel::LowerArguments(const Function &F) {
10680   SelectionDAG &DAG = SDB->DAG;
10681   SDLoc dl = SDB->getCurSDLoc();
10682   const DataLayout &DL = DAG.getDataLayout();
10683   SmallVector<ISD::InputArg, 16> Ins;
10684 
10685   // In Naked functions we aren't going to save any registers.
10686   if (F.hasFnAttribute(Attribute::Naked))
10687     return;
10688 
10689   if (!FuncInfo->CanLowerReturn) {
10690     // Put in an sret pointer parameter before all the other parameters.
10691     SmallVector<EVT, 1> ValueVTs;
10692     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10693                     F.getReturnType()->getPointerTo(
10694                         DAG.getDataLayout().getAllocaAddrSpace()),
10695                     ValueVTs);
10696 
10697     // NOTE: Assuming that a pointer will never break down to more than one VT
10698     // or one register.
10699     ISD::ArgFlagsTy Flags;
10700     Flags.setSRet();
10701     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10702     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10703                          ISD::InputArg::NoArgIndex, 0);
10704     Ins.push_back(RetArg);
10705   }
10706 
10707   // Look for stores of arguments to static allocas. Mark such arguments with a
10708   // flag to ask the target to give us the memory location of that argument if
10709   // available.
10710   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10711   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10712                                     ArgCopyElisionCandidates);
10713 
10714   // Set up the incoming argument description vector.
10715   for (const Argument &Arg : F.args()) {
10716     unsigned ArgNo = Arg.getArgNo();
10717     SmallVector<EVT, 4> ValueVTs;
10718     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10719     bool isArgValueUsed = !Arg.use_empty();
10720     unsigned PartBase = 0;
10721     Type *FinalType = Arg.getType();
10722     if (Arg.hasAttribute(Attribute::ByVal))
10723       FinalType = Arg.getParamByValType();
10724     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10725         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10726     for (unsigned Value = 0, NumValues = ValueVTs.size();
10727          Value != NumValues; ++Value) {
10728       EVT VT = ValueVTs[Value];
10729       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10730       ISD::ArgFlagsTy Flags;
10731 
10732 
10733       if (Arg.getType()->isPointerTy()) {
10734         Flags.setPointer();
10735         Flags.setPointerAddrSpace(
10736             cast<PointerType>(Arg.getType())->getAddressSpace());
10737       }
10738       if (Arg.hasAttribute(Attribute::ZExt))
10739         Flags.setZExt();
10740       if (Arg.hasAttribute(Attribute::SExt))
10741         Flags.setSExt();
10742       if (Arg.hasAttribute(Attribute::InReg)) {
10743         // If we are using vectorcall calling convention, a structure that is
10744         // passed InReg - is surely an HVA
10745         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10746             isa<StructType>(Arg.getType())) {
10747           // The first value of a structure is marked
10748           if (0 == Value)
10749             Flags.setHvaStart();
10750           Flags.setHva();
10751         }
10752         // Set InReg Flag
10753         Flags.setInReg();
10754       }
10755       if (Arg.hasAttribute(Attribute::StructRet))
10756         Flags.setSRet();
10757       if (Arg.hasAttribute(Attribute::SwiftSelf))
10758         Flags.setSwiftSelf();
10759       if (Arg.hasAttribute(Attribute::SwiftAsync))
10760         Flags.setSwiftAsync();
10761       if (Arg.hasAttribute(Attribute::SwiftError))
10762         Flags.setSwiftError();
10763       if (Arg.hasAttribute(Attribute::ByVal))
10764         Flags.setByVal();
10765       if (Arg.hasAttribute(Attribute::ByRef))
10766         Flags.setByRef();
10767       if (Arg.hasAttribute(Attribute::InAlloca)) {
10768         Flags.setInAlloca();
10769         // Set the byval flag for CCAssignFn callbacks that don't know about
10770         // inalloca.  This way we can know how many bytes we should've allocated
10771         // and how many bytes a callee cleanup function will pop.  If we port
10772         // inalloca to more targets, we'll have to add custom inalloca handling
10773         // in the various CC lowering callbacks.
10774         Flags.setByVal();
10775       }
10776       if (Arg.hasAttribute(Attribute::Preallocated)) {
10777         Flags.setPreallocated();
10778         // Set the byval flag for CCAssignFn callbacks that don't know about
10779         // preallocated.  This way we can know how many bytes we should've
10780         // allocated and how many bytes a callee cleanup function will pop.  If
10781         // we port preallocated to more targets, we'll have to add custom
10782         // preallocated handling in the various CC lowering callbacks.
10783         Flags.setByVal();
10784       }
10785 
10786       // Certain targets (such as MIPS), may have a different ABI alignment
10787       // for a type depending on the context. Give the target a chance to
10788       // specify the alignment it wants.
10789       const Align OriginalAlignment(
10790           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10791       Flags.setOrigAlign(OriginalAlignment);
10792 
10793       Align MemAlign;
10794       Type *ArgMemTy = nullptr;
10795       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10796           Flags.isByRef()) {
10797         if (!ArgMemTy)
10798           ArgMemTy = Arg.getPointeeInMemoryValueType();
10799 
10800         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10801 
10802         // For in-memory arguments, size and alignment should be passed from FE.
10803         // BE will guess if this info is not there but there are cases it cannot
10804         // get right.
10805         if (auto ParamAlign = Arg.getParamStackAlign())
10806           MemAlign = *ParamAlign;
10807         else if ((ParamAlign = Arg.getParamAlign()))
10808           MemAlign = *ParamAlign;
10809         else
10810           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10811         if (Flags.isByRef())
10812           Flags.setByRefSize(MemSize);
10813         else
10814           Flags.setByValSize(MemSize);
10815       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10816         MemAlign = *ParamAlign;
10817       } else {
10818         MemAlign = OriginalAlignment;
10819       }
10820       Flags.setMemAlign(MemAlign);
10821 
10822       if (Arg.hasAttribute(Attribute::Nest))
10823         Flags.setNest();
10824       if (NeedsRegBlock)
10825         Flags.setInConsecutiveRegs();
10826       if (ArgCopyElisionCandidates.count(&Arg))
10827         Flags.setCopyElisionCandidate();
10828       if (Arg.hasAttribute(Attribute::Returned))
10829         Flags.setReturned();
10830 
10831       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10832           *CurDAG->getContext(), F.getCallingConv(), VT);
10833       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10834           *CurDAG->getContext(), F.getCallingConv(), VT);
10835       for (unsigned i = 0; i != NumRegs; ++i) {
10836         // For scalable vectors, use the minimum size; individual targets
10837         // are responsible for handling scalable vector arguments and
10838         // return values.
10839         ISD::InputArg MyFlags(
10840             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10841             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10842         if (NumRegs > 1 && i == 0)
10843           MyFlags.Flags.setSplit();
10844         // if it isn't first piece, alignment must be 1
10845         else if (i > 0) {
10846           MyFlags.Flags.setOrigAlign(Align(1));
10847           if (i == NumRegs - 1)
10848             MyFlags.Flags.setSplitEnd();
10849         }
10850         Ins.push_back(MyFlags);
10851       }
10852       if (NeedsRegBlock && Value == NumValues - 1)
10853         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10854       PartBase += VT.getStoreSize().getKnownMinValue();
10855     }
10856   }
10857 
10858   // Call the target to set up the argument values.
10859   SmallVector<SDValue, 8> InVals;
10860   SDValue NewRoot = TLI->LowerFormalArguments(
10861       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10862 
10863   // Verify that the target's LowerFormalArguments behaved as expected.
10864   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10865          "LowerFormalArguments didn't return a valid chain!");
10866   assert(InVals.size() == Ins.size() &&
10867          "LowerFormalArguments didn't emit the correct number of values!");
10868   LLVM_DEBUG({
10869     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10870       assert(InVals[i].getNode() &&
10871              "LowerFormalArguments emitted a null value!");
10872       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10873              "LowerFormalArguments emitted a value with the wrong type!");
10874     }
10875   });
10876 
10877   // Update the DAG with the new chain value resulting from argument lowering.
10878   DAG.setRoot(NewRoot);
10879 
10880   // Set up the argument values.
10881   unsigned i = 0;
10882   if (!FuncInfo->CanLowerReturn) {
10883     // Create a virtual register for the sret pointer, and put in a copy
10884     // from the sret argument into it.
10885     SmallVector<EVT, 1> ValueVTs;
10886     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10887                     F.getReturnType()->getPointerTo(
10888                         DAG.getDataLayout().getAllocaAddrSpace()),
10889                     ValueVTs);
10890     MVT VT = ValueVTs[0].getSimpleVT();
10891     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10892     std::optional<ISD::NodeType> AssertOp;
10893     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10894                                         nullptr, F.getCallingConv(), AssertOp);
10895 
10896     MachineFunction& MF = SDB->DAG.getMachineFunction();
10897     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10898     Register SRetReg =
10899         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10900     FuncInfo->DemoteRegister = SRetReg;
10901     NewRoot =
10902         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10903     DAG.setRoot(NewRoot);
10904 
10905     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10906     ++i;
10907   }
10908 
10909   SmallVector<SDValue, 4> Chains;
10910   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10911   for (const Argument &Arg : F.args()) {
10912     SmallVector<SDValue, 4> ArgValues;
10913     SmallVector<EVT, 4> ValueVTs;
10914     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10915     unsigned NumValues = ValueVTs.size();
10916     if (NumValues == 0)
10917       continue;
10918 
10919     bool ArgHasUses = !Arg.use_empty();
10920 
10921     // Elide the copying store if the target loaded this argument from a
10922     // suitable fixed stack object.
10923     if (Ins[i].Flags.isCopyElisionCandidate()) {
10924       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10925                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10926                              InVals[i], ArgHasUses);
10927     }
10928 
10929     // If this argument is unused then remember its value. It is used to generate
10930     // debugging information.
10931     bool isSwiftErrorArg =
10932         TLI->supportSwiftError() &&
10933         Arg.hasAttribute(Attribute::SwiftError);
10934     if (!ArgHasUses && !isSwiftErrorArg) {
10935       SDB->setUnusedArgValue(&Arg, InVals[i]);
10936 
10937       // Also remember any frame index for use in FastISel.
10938       if (FrameIndexSDNode *FI =
10939           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10940         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10941     }
10942 
10943     for (unsigned Val = 0; Val != NumValues; ++Val) {
10944       EVT VT = ValueVTs[Val];
10945       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10946                                                       F.getCallingConv(), VT);
10947       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10948           *CurDAG->getContext(), F.getCallingConv(), VT);
10949 
10950       // Even an apparent 'unused' swifterror argument needs to be returned. So
10951       // we do generate a copy for it that can be used on return from the
10952       // function.
10953       if (ArgHasUses || isSwiftErrorArg) {
10954         std::optional<ISD::NodeType> AssertOp;
10955         if (Arg.hasAttribute(Attribute::SExt))
10956           AssertOp = ISD::AssertSext;
10957         else if (Arg.hasAttribute(Attribute::ZExt))
10958           AssertOp = ISD::AssertZext;
10959 
10960         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10961                                              PartVT, VT, nullptr,
10962                                              F.getCallingConv(), AssertOp));
10963       }
10964 
10965       i += NumParts;
10966     }
10967 
10968     // We don't need to do anything else for unused arguments.
10969     if (ArgValues.empty())
10970       continue;
10971 
10972     // Note down frame index.
10973     if (FrameIndexSDNode *FI =
10974         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10975       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10976 
10977     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10978                                      SDB->getCurSDLoc());
10979 
10980     SDB->setValue(&Arg, Res);
10981     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10982       // We want to associate the argument with the frame index, among
10983       // involved operands, that correspond to the lowest address. The
10984       // getCopyFromParts function, called earlier, is swapping the order of
10985       // the operands to BUILD_PAIR depending on endianness. The result of
10986       // that swapping is that the least significant bits of the argument will
10987       // be in the first operand of the BUILD_PAIR node, and the most
10988       // significant bits will be in the second operand.
10989       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10990       if (LoadSDNode *LNode =
10991           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10992         if (FrameIndexSDNode *FI =
10993             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10994           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10995     }
10996 
10997     // Analyses past this point are naive and don't expect an assertion.
10998     if (Res.getOpcode() == ISD::AssertZext)
10999       Res = Res.getOperand(0);
11000 
11001     // Update the SwiftErrorVRegDefMap.
11002     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11003       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11004       if (Register::isVirtualRegister(Reg))
11005         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11006                                    Reg);
11007     }
11008 
11009     // If this argument is live outside of the entry block, insert a copy from
11010     // wherever we got it to the vreg that other BB's will reference it as.
11011     if (Res.getOpcode() == ISD::CopyFromReg) {
11012       // If we can, though, try to skip creating an unnecessary vreg.
11013       // FIXME: This isn't very clean... it would be nice to make this more
11014       // general.
11015       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11016       if (Register::isVirtualRegister(Reg)) {
11017         FuncInfo->ValueMap[&Arg] = Reg;
11018         continue;
11019       }
11020     }
11021     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11022       FuncInfo->InitializeRegForValue(&Arg);
11023       SDB->CopyToExportRegsIfNeeded(&Arg);
11024     }
11025   }
11026 
11027   if (!Chains.empty()) {
11028     Chains.push_back(NewRoot);
11029     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11030   }
11031 
11032   DAG.setRoot(NewRoot);
11033 
11034   assert(i == InVals.size() && "Argument register count mismatch!");
11035 
11036   // If any argument copy elisions occurred and we have debug info, update the
11037   // stale frame indices used in the dbg.declare variable info table.
11038   if (!ArgCopyElisionFrameIndexMap.empty()) {
11039     for (MachineFunction::VariableDbgInfo &VI :
11040          MF->getInStackSlotVariableDbgInfo()) {
11041       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11042       if (I != ArgCopyElisionFrameIndexMap.end())
11043         VI.updateStackSlot(I->second);
11044     }
11045   }
11046 
11047   // Finally, if the target has anything special to do, allow it to do so.
11048   emitFunctionEntryCode();
11049 }
11050 
11051 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11052 /// ensure constants are generated when needed.  Remember the virtual registers
11053 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11054 /// directly add them, because expansion might result in multiple MBB's for one
11055 /// BB.  As such, the start of the BB might correspond to a different MBB than
11056 /// the end.
11057 void
11058 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11059   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11060 
11061   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11062 
11063   // Check PHI nodes in successors that expect a value to be available from this
11064   // block.
11065   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11066     if (!isa<PHINode>(SuccBB->begin())) continue;
11067     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11068 
11069     // If this terminator has multiple identical successors (common for
11070     // switches), only handle each succ once.
11071     if (!SuccsHandled.insert(SuccMBB).second)
11072       continue;
11073 
11074     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11075 
11076     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11077     // nodes and Machine PHI nodes, but the incoming operands have not been
11078     // emitted yet.
11079     for (const PHINode &PN : SuccBB->phis()) {
11080       // Ignore dead phi's.
11081       if (PN.use_empty())
11082         continue;
11083 
11084       // Skip empty types
11085       if (PN.getType()->isEmptyTy())
11086         continue;
11087 
11088       unsigned Reg;
11089       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11090 
11091       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11092         unsigned &RegOut = ConstantsOut[C];
11093         if (RegOut == 0) {
11094           RegOut = FuncInfo.CreateRegs(C);
11095           // We need to zero/sign extend ConstantInt phi operands to match
11096           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11097           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11098           if (auto *CI = dyn_cast<ConstantInt>(C))
11099             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11100                                                     : ISD::ZERO_EXTEND;
11101           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11102         }
11103         Reg = RegOut;
11104       } else {
11105         DenseMap<const Value *, Register>::iterator I =
11106           FuncInfo.ValueMap.find(PHIOp);
11107         if (I != FuncInfo.ValueMap.end())
11108           Reg = I->second;
11109         else {
11110           assert(isa<AllocaInst>(PHIOp) &&
11111                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11112                  "Didn't codegen value into a register!??");
11113           Reg = FuncInfo.CreateRegs(PHIOp);
11114           CopyValueToVirtualRegister(PHIOp, Reg);
11115         }
11116       }
11117 
11118       // Remember that this register needs to added to the machine PHI node as
11119       // the input for this MBB.
11120       SmallVector<EVT, 4> ValueVTs;
11121       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11122       for (EVT VT : ValueVTs) {
11123         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11124         for (unsigned i = 0; i != NumRegisters; ++i)
11125           FuncInfo.PHINodesToUpdate.push_back(
11126               std::make_pair(&*MBBI++, Reg + i));
11127         Reg += NumRegisters;
11128       }
11129     }
11130   }
11131 
11132   ConstantsOut.clear();
11133 }
11134 
11135 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11136   MachineFunction::iterator I(MBB);
11137   if (++I == FuncInfo.MF->end())
11138     return nullptr;
11139   return &*I;
11140 }
11141 
11142 /// During lowering new call nodes can be created (such as memset, etc.).
11143 /// Those will become new roots of the current DAG, but complications arise
11144 /// when they are tail calls. In such cases, the call lowering will update
11145 /// the root, but the builder still needs to know that a tail call has been
11146 /// lowered in order to avoid generating an additional return.
11147 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11148   // If the node is null, we do have a tail call.
11149   if (MaybeTC.getNode() != nullptr)
11150     DAG.setRoot(MaybeTC);
11151   else
11152     HasTailCall = true;
11153 }
11154 
11155 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11156                                         MachineBasicBlock *SwitchMBB,
11157                                         MachineBasicBlock *DefaultMBB) {
11158   MachineFunction *CurMF = FuncInfo.MF;
11159   MachineBasicBlock *NextMBB = nullptr;
11160   MachineFunction::iterator BBI(W.MBB);
11161   if (++BBI != FuncInfo.MF->end())
11162     NextMBB = &*BBI;
11163 
11164   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11165 
11166   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11167 
11168   if (Size == 2 && W.MBB == SwitchMBB) {
11169     // If any two of the cases has the same destination, and if one value
11170     // is the same as the other, but has one bit unset that the other has set,
11171     // use bit manipulation to do two compares at once.  For example:
11172     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11173     // TODO: This could be extended to merge any 2 cases in switches with 3
11174     // cases.
11175     // TODO: Handle cases where W.CaseBB != SwitchBB.
11176     CaseCluster &Small = *W.FirstCluster;
11177     CaseCluster &Big = *W.LastCluster;
11178 
11179     if (Small.Low == Small.High && Big.Low == Big.High &&
11180         Small.MBB == Big.MBB) {
11181       const APInt &SmallValue = Small.Low->getValue();
11182       const APInt &BigValue = Big.Low->getValue();
11183 
11184       // Check that there is only one bit different.
11185       APInt CommonBit = BigValue ^ SmallValue;
11186       if (CommonBit.isPowerOf2()) {
11187         SDValue CondLHS = getValue(Cond);
11188         EVT VT = CondLHS.getValueType();
11189         SDLoc DL = getCurSDLoc();
11190 
11191         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11192                                  DAG.getConstant(CommonBit, DL, VT));
11193         SDValue Cond = DAG.getSetCC(
11194             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11195             ISD::SETEQ);
11196 
11197         // Update successor info.
11198         // Both Small and Big will jump to Small.BB, so we sum up the
11199         // probabilities.
11200         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11201         if (BPI)
11202           addSuccessorWithProb(
11203               SwitchMBB, DefaultMBB,
11204               // The default destination is the first successor in IR.
11205               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11206         else
11207           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11208 
11209         // Insert the true branch.
11210         SDValue BrCond =
11211             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11212                         DAG.getBasicBlock(Small.MBB));
11213         // Insert the false branch.
11214         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11215                              DAG.getBasicBlock(DefaultMBB));
11216 
11217         DAG.setRoot(BrCond);
11218         return;
11219       }
11220     }
11221   }
11222 
11223   if (TM.getOptLevel() != CodeGenOpt::None) {
11224     // Here, we order cases by probability so the most likely case will be
11225     // checked first. However, two clusters can have the same probability in
11226     // which case their relative ordering is non-deterministic. So we use Low
11227     // as a tie-breaker as clusters are guaranteed to never overlap.
11228     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11229                [](const CaseCluster &a, const CaseCluster &b) {
11230       return a.Prob != b.Prob ?
11231              a.Prob > b.Prob :
11232              a.Low->getValue().slt(b.Low->getValue());
11233     });
11234 
11235     // Rearrange the case blocks so that the last one falls through if possible
11236     // without changing the order of probabilities.
11237     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11238       --I;
11239       if (I->Prob > W.LastCluster->Prob)
11240         break;
11241       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11242         std::swap(*I, *W.LastCluster);
11243         break;
11244       }
11245     }
11246   }
11247 
11248   // Compute total probability.
11249   BranchProbability DefaultProb = W.DefaultProb;
11250   BranchProbability UnhandledProbs = DefaultProb;
11251   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11252     UnhandledProbs += I->Prob;
11253 
11254   MachineBasicBlock *CurMBB = W.MBB;
11255   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11256     bool FallthroughUnreachable = false;
11257     MachineBasicBlock *Fallthrough;
11258     if (I == W.LastCluster) {
11259       // For the last cluster, fall through to the default destination.
11260       Fallthrough = DefaultMBB;
11261       FallthroughUnreachable = isa<UnreachableInst>(
11262           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11263     } else {
11264       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11265       CurMF->insert(BBI, Fallthrough);
11266       // Put Cond in a virtual register to make it available from the new blocks.
11267       ExportFromCurrentBlock(Cond);
11268     }
11269     UnhandledProbs -= I->Prob;
11270 
11271     switch (I->Kind) {
11272       case CC_JumpTable: {
11273         // FIXME: Optimize away range check based on pivot comparisons.
11274         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11275         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11276 
11277         // The jump block hasn't been inserted yet; insert it here.
11278         MachineBasicBlock *JumpMBB = JT->MBB;
11279         CurMF->insert(BBI, JumpMBB);
11280 
11281         auto JumpProb = I->Prob;
11282         auto FallthroughProb = UnhandledProbs;
11283 
11284         // If the default statement is a target of the jump table, we evenly
11285         // distribute the default probability to successors of CurMBB. Also
11286         // update the probability on the edge from JumpMBB to Fallthrough.
11287         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11288                                               SE = JumpMBB->succ_end();
11289              SI != SE; ++SI) {
11290           if (*SI == DefaultMBB) {
11291             JumpProb += DefaultProb / 2;
11292             FallthroughProb -= DefaultProb / 2;
11293             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11294             JumpMBB->normalizeSuccProbs();
11295             break;
11296           }
11297         }
11298 
11299         if (FallthroughUnreachable)
11300           JTH->FallthroughUnreachable = true;
11301 
11302         if (!JTH->FallthroughUnreachable)
11303           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11304         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11305         CurMBB->normalizeSuccProbs();
11306 
11307         // The jump table header will be inserted in our current block, do the
11308         // range check, and fall through to our fallthrough block.
11309         JTH->HeaderBB = CurMBB;
11310         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11311 
11312         // If we're in the right place, emit the jump table header right now.
11313         if (CurMBB == SwitchMBB) {
11314           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11315           JTH->Emitted = true;
11316         }
11317         break;
11318       }
11319       case CC_BitTests: {
11320         // FIXME: Optimize away range check based on pivot comparisons.
11321         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11322 
11323         // The bit test blocks haven't been inserted yet; insert them here.
11324         for (BitTestCase &BTC : BTB->Cases)
11325           CurMF->insert(BBI, BTC.ThisBB);
11326 
11327         // Fill in fields of the BitTestBlock.
11328         BTB->Parent = CurMBB;
11329         BTB->Default = Fallthrough;
11330 
11331         BTB->DefaultProb = UnhandledProbs;
11332         // If the cases in bit test don't form a contiguous range, we evenly
11333         // distribute the probability on the edge to Fallthrough to two
11334         // successors of CurMBB.
11335         if (!BTB->ContiguousRange) {
11336           BTB->Prob += DefaultProb / 2;
11337           BTB->DefaultProb -= DefaultProb / 2;
11338         }
11339 
11340         if (FallthroughUnreachable)
11341           BTB->FallthroughUnreachable = true;
11342 
11343         // If we're in the right place, emit the bit test header right now.
11344         if (CurMBB == SwitchMBB) {
11345           visitBitTestHeader(*BTB, SwitchMBB);
11346           BTB->Emitted = true;
11347         }
11348         break;
11349       }
11350       case CC_Range: {
11351         const Value *RHS, *LHS, *MHS;
11352         ISD::CondCode CC;
11353         if (I->Low == I->High) {
11354           // Check Cond == I->Low.
11355           CC = ISD::SETEQ;
11356           LHS = Cond;
11357           RHS=I->Low;
11358           MHS = nullptr;
11359         } else {
11360           // Check I->Low <= Cond <= I->High.
11361           CC = ISD::SETLE;
11362           LHS = I->Low;
11363           MHS = Cond;
11364           RHS = I->High;
11365         }
11366 
11367         // If Fallthrough is unreachable, fold away the comparison.
11368         if (FallthroughUnreachable)
11369           CC = ISD::SETTRUE;
11370 
11371         // The false probability is the sum of all unhandled cases.
11372         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11373                      getCurSDLoc(), I->Prob, UnhandledProbs);
11374 
11375         if (CurMBB == SwitchMBB)
11376           visitSwitchCase(CB, SwitchMBB);
11377         else
11378           SL->SwitchCases.push_back(CB);
11379 
11380         break;
11381       }
11382     }
11383     CurMBB = Fallthrough;
11384   }
11385 }
11386 
11387 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11388                                               CaseClusterIt First,
11389                                               CaseClusterIt Last) {
11390   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11391     if (X.Prob != CC.Prob)
11392       return X.Prob > CC.Prob;
11393 
11394     // Ties are broken by comparing the case value.
11395     return X.Low->getValue().slt(CC.Low->getValue());
11396   });
11397 }
11398 
11399 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11400                                         const SwitchWorkListItem &W,
11401                                         Value *Cond,
11402                                         MachineBasicBlock *SwitchMBB) {
11403   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11404          "Clusters not sorted?");
11405 
11406   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11407 
11408   // Balance the tree based on branch probabilities to create a near-optimal (in
11409   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11410   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11411   CaseClusterIt LastLeft = W.FirstCluster;
11412   CaseClusterIt FirstRight = W.LastCluster;
11413   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11414   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11415 
11416   // Move LastLeft and FirstRight towards each other from opposite directions to
11417   // find a partitioning of the clusters which balances the probability on both
11418   // sides. If LeftProb and RightProb are equal, alternate which side is
11419   // taken to ensure 0-probability nodes are distributed evenly.
11420   unsigned I = 0;
11421   while (LastLeft + 1 < FirstRight) {
11422     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11423       LeftProb += (++LastLeft)->Prob;
11424     else
11425       RightProb += (--FirstRight)->Prob;
11426     I++;
11427   }
11428 
11429   while (true) {
11430     // Our binary search tree differs from a typical BST in that ours can have up
11431     // to three values in each leaf. The pivot selection above doesn't take that
11432     // into account, which means the tree might require more nodes and be less
11433     // efficient. We compensate for this here.
11434 
11435     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11436     unsigned NumRight = W.LastCluster - FirstRight + 1;
11437 
11438     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11439       // If one side has less than 3 clusters, and the other has more than 3,
11440       // consider taking a cluster from the other side.
11441 
11442       if (NumLeft < NumRight) {
11443         // Consider moving the first cluster on the right to the left side.
11444         CaseCluster &CC = *FirstRight;
11445         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11446         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11447         if (LeftSideRank <= RightSideRank) {
11448           // Moving the cluster to the left does not demote it.
11449           ++LastLeft;
11450           ++FirstRight;
11451           continue;
11452         }
11453       } else {
11454         assert(NumRight < NumLeft);
11455         // Consider moving the last element on the left to the right side.
11456         CaseCluster &CC = *LastLeft;
11457         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11458         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11459         if (RightSideRank <= LeftSideRank) {
11460           // Moving the cluster to the right does not demot it.
11461           --LastLeft;
11462           --FirstRight;
11463           continue;
11464         }
11465       }
11466     }
11467     break;
11468   }
11469 
11470   assert(LastLeft + 1 == FirstRight);
11471   assert(LastLeft >= W.FirstCluster);
11472   assert(FirstRight <= W.LastCluster);
11473 
11474   // Use the first element on the right as pivot since we will make less-than
11475   // comparisons against it.
11476   CaseClusterIt PivotCluster = FirstRight;
11477   assert(PivotCluster > W.FirstCluster);
11478   assert(PivotCluster <= W.LastCluster);
11479 
11480   CaseClusterIt FirstLeft = W.FirstCluster;
11481   CaseClusterIt LastRight = W.LastCluster;
11482 
11483   const ConstantInt *Pivot = PivotCluster->Low;
11484 
11485   // New blocks will be inserted immediately after the current one.
11486   MachineFunction::iterator BBI(W.MBB);
11487   ++BBI;
11488 
11489   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11490   // we can branch to its destination directly if it's squeezed exactly in
11491   // between the known lower bound and Pivot - 1.
11492   MachineBasicBlock *LeftMBB;
11493   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11494       FirstLeft->Low == W.GE &&
11495       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11496     LeftMBB = FirstLeft->MBB;
11497   } else {
11498     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11499     FuncInfo.MF->insert(BBI, LeftMBB);
11500     WorkList.push_back(
11501         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11502     // Put Cond in a virtual register to make it available from the new blocks.
11503     ExportFromCurrentBlock(Cond);
11504   }
11505 
11506   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11507   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11508   // directly if RHS.High equals the current upper bound.
11509   MachineBasicBlock *RightMBB;
11510   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11511       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11512     RightMBB = FirstRight->MBB;
11513   } else {
11514     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11515     FuncInfo.MF->insert(BBI, RightMBB);
11516     WorkList.push_back(
11517         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11518     // Put Cond in a virtual register to make it available from the new blocks.
11519     ExportFromCurrentBlock(Cond);
11520   }
11521 
11522   // Create the CaseBlock record that will be used to lower the branch.
11523   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11524                getCurSDLoc(), LeftProb, RightProb);
11525 
11526   if (W.MBB == SwitchMBB)
11527     visitSwitchCase(CB, SwitchMBB);
11528   else
11529     SL->SwitchCases.push_back(CB);
11530 }
11531 
11532 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11533 // from the swith statement.
11534 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11535                                             BranchProbability PeeledCaseProb) {
11536   if (PeeledCaseProb == BranchProbability::getOne())
11537     return BranchProbability::getZero();
11538   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11539 
11540   uint32_t Numerator = CaseProb.getNumerator();
11541   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11542   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11543 }
11544 
11545 // Try to peel the top probability case if it exceeds the threshold.
11546 // Return current MachineBasicBlock for the switch statement if the peeling
11547 // does not occur.
11548 // If the peeling is performed, return the newly created MachineBasicBlock
11549 // for the peeled switch statement. Also update Clusters to remove the peeled
11550 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11551 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11552     const SwitchInst &SI, CaseClusterVector &Clusters,
11553     BranchProbability &PeeledCaseProb) {
11554   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11555   // Don't perform if there is only one cluster or optimizing for size.
11556   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11557       TM.getOptLevel() == CodeGenOpt::None ||
11558       SwitchMBB->getParent()->getFunction().hasMinSize())
11559     return SwitchMBB;
11560 
11561   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11562   unsigned PeeledCaseIndex = 0;
11563   bool SwitchPeeled = false;
11564   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11565     CaseCluster &CC = Clusters[Index];
11566     if (CC.Prob < TopCaseProb)
11567       continue;
11568     TopCaseProb = CC.Prob;
11569     PeeledCaseIndex = Index;
11570     SwitchPeeled = true;
11571   }
11572   if (!SwitchPeeled)
11573     return SwitchMBB;
11574 
11575   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11576                     << TopCaseProb << "\n");
11577 
11578   // Record the MBB for the peeled switch statement.
11579   MachineFunction::iterator BBI(SwitchMBB);
11580   ++BBI;
11581   MachineBasicBlock *PeeledSwitchMBB =
11582       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11583   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11584 
11585   ExportFromCurrentBlock(SI.getCondition());
11586   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11587   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11588                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11589   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11590 
11591   Clusters.erase(PeeledCaseIt);
11592   for (CaseCluster &CC : Clusters) {
11593     LLVM_DEBUG(
11594         dbgs() << "Scale the probablity for one cluster, before scaling: "
11595                << CC.Prob << "\n");
11596     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11597     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11598   }
11599   PeeledCaseProb = TopCaseProb;
11600   return PeeledSwitchMBB;
11601 }
11602 
11603 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11604   // Extract cases from the switch.
11605   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11606   CaseClusterVector Clusters;
11607   Clusters.reserve(SI.getNumCases());
11608   for (auto I : SI.cases()) {
11609     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11610     const ConstantInt *CaseVal = I.getCaseValue();
11611     BranchProbability Prob =
11612         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11613             : BranchProbability(1, SI.getNumCases() + 1);
11614     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11615   }
11616 
11617   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11618 
11619   // Cluster adjacent cases with the same destination. We do this at all
11620   // optimization levels because it's cheap to do and will make codegen faster
11621   // if there are many clusters.
11622   sortAndRangeify(Clusters);
11623 
11624   // The branch probablity of the peeled case.
11625   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11626   MachineBasicBlock *PeeledSwitchMBB =
11627       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11628 
11629   // If there is only the default destination, jump there directly.
11630   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11631   if (Clusters.empty()) {
11632     assert(PeeledSwitchMBB == SwitchMBB);
11633     SwitchMBB->addSuccessor(DefaultMBB);
11634     if (DefaultMBB != NextBlock(SwitchMBB)) {
11635       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11636                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11637     }
11638     return;
11639   }
11640 
11641   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11642   SL->findBitTestClusters(Clusters, &SI);
11643 
11644   LLVM_DEBUG({
11645     dbgs() << "Case clusters: ";
11646     for (const CaseCluster &C : Clusters) {
11647       if (C.Kind == CC_JumpTable)
11648         dbgs() << "JT:";
11649       if (C.Kind == CC_BitTests)
11650         dbgs() << "BT:";
11651 
11652       C.Low->getValue().print(dbgs(), true);
11653       if (C.Low != C.High) {
11654         dbgs() << '-';
11655         C.High->getValue().print(dbgs(), true);
11656       }
11657       dbgs() << ' ';
11658     }
11659     dbgs() << '\n';
11660   });
11661 
11662   assert(!Clusters.empty());
11663   SwitchWorkList WorkList;
11664   CaseClusterIt First = Clusters.begin();
11665   CaseClusterIt Last = Clusters.end() - 1;
11666   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11667   // Scale the branchprobability for DefaultMBB if the peel occurs and
11668   // DefaultMBB is not replaced.
11669   if (PeeledCaseProb != BranchProbability::getZero() &&
11670       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11671     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11672   WorkList.push_back(
11673       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11674 
11675   while (!WorkList.empty()) {
11676     SwitchWorkListItem W = WorkList.pop_back_val();
11677     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11678 
11679     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11680         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11681       // For optimized builds, lower large range as a balanced binary tree.
11682       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11683       continue;
11684     }
11685 
11686     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11687   }
11688 }
11689 
11690 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11691   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11692   auto DL = getCurSDLoc();
11693   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11694   setValue(&I, DAG.getStepVector(DL, ResultVT));
11695 }
11696 
11697 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11699   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11700 
11701   SDLoc DL = getCurSDLoc();
11702   SDValue V = getValue(I.getOperand(0));
11703   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11704 
11705   if (VT.isScalableVector()) {
11706     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11707     return;
11708   }
11709 
11710   // Use VECTOR_SHUFFLE for the fixed-length vector
11711   // to maintain existing behavior.
11712   SmallVector<int, 8> Mask;
11713   unsigned NumElts = VT.getVectorMinNumElements();
11714   for (unsigned i = 0; i != NumElts; ++i)
11715     Mask.push_back(NumElts - 1 - i);
11716 
11717   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11718 }
11719 
11720 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11721   auto DL = getCurSDLoc();
11722   SDValue InVec = getValue(I.getOperand(0));
11723   EVT OutVT =
11724       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11725 
11726   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11727 
11728   // ISD Node needs the input vectors split into two equal parts
11729   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11730                            DAG.getVectorIdxConstant(0, DL));
11731   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11732                            DAG.getVectorIdxConstant(OutNumElts, DL));
11733 
11734   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11735   // legalisation and combines.
11736   if (OutVT.isFixedLengthVector()) {
11737     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11738                                         createStrideMask(0, 2, OutNumElts));
11739     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11740                                        createStrideMask(1, 2, OutNumElts));
11741     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11742     setValue(&I, Res);
11743     return;
11744   }
11745 
11746   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11747                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11748   setValue(&I, Res);
11749 }
11750 
11751 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11752   auto DL = getCurSDLoc();
11753   EVT InVT = getValue(I.getOperand(0)).getValueType();
11754   SDValue InVec0 = getValue(I.getOperand(0));
11755   SDValue InVec1 = getValue(I.getOperand(1));
11756   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11757   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11758 
11759   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11760   // legalisation and combines.
11761   if (OutVT.isFixedLengthVector()) {
11762     unsigned NumElts = InVT.getVectorMinNumElements();
11763     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11764     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11765                                       createInterleaveMask(NumElts, 2)));
11766     return;
11767   }
11768 
11769   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11770                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11771   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11772                     Res.getValue(1));
11773   setValue(&I, Res);
11774 }
11775 
11776 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11777   SmallVector<EVT, 4> ValueVTs;
11778   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11779                   ValueVTs);
11780   unsigned NumValues = ValueVTs.size();
11781   if (NumValues == 0) return;
11782 
11783   SmallVector<SDValue, 4> Values(NumValues);
11784   SDValue Op = getValue(I.getOperand(0));
11785 
11786   for (unsigned i = 0; i != NumValues; ++i)
11787     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11788                             SDValue(Op.getNode(), Op.getResNo() + i));
11789 
11790   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11791                            DAG.getVTList(ValueVTs), Values));
11792 }
11793 
11794 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11796   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11797 
11798   SDLoc DL = getCurSDLoc();
11799   SDValue V1 = getValue(I.getOperand(0));
11800   SDValue V2 = getValue(I.getOperand(1));
11801   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11802 
11803   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11804   if (VT.isScalableVector()) {
11805     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11806     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11807                              DAG.getConstant(Imm, DL, IdxVT)));
11808     return;
11809   }
11810 
11811   unsigned NumElts = VT.getVectorNumElements();
11812 
11813   uint64_t Idx = (NumElts + Imm) % NumElts;
11814 
11815   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11816   SmallVector<int, 8> Mask;
11817   for (unsigned i = 0; i < NumElts; ++i)
11818     Mask.push_back(Idx + i);
11819   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11820 }
11821 
11822 // Consider the following MIR after SelectionDAG, which produces output in
11823 // phyregs in the first case or virtregs in the second case.
11824 //
11825 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11826 // %5:gr32 = COPY $ebx
11827 // %6:gr32 = COPY $edx
11828 // %1:gr32 = COPY %6:gr32
11829 // %0:gr32 = COPY %5:gr32
11830 //
11831 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11832 // %1:gr32 = COPY %6:gr32
11833 // %0:gr32 = COPY %5:gr32
11834 //
11835 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11836 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11837 //
11838 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11839 // to a single virtreg (such as %0). The remaining outputs monotonically
11840 // increase in virtreg number from there. If a callbr has no outputs, then it
11841 // should not have a corresponding callbr landingpad; in fact, the callbr
11842 // landingpad would not even be able to refer to such a callbr.
11843 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11844   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11845   // There is definitely at least one copy.
11846   assert(MI->getOpcode() == TargetOpcode::COPY &&
11847          "start of copy chain MUST be COPY");
11848   Reg = MI->getOperand(1).getReg();
11849   MI = MRI.def_begin(Reg)->getParent();
11850   // There may be an optional second copy.
11851   if (MI->getOpcode() == TargetOpcode::COPY) {
11852     assert(Reg.isVirtual() && "expected COPY of virtual register");
11853     Reg = MI->getOperand(1).getReg();
11854     assert(Reg.isPhysical() && "expected COPY of physical register");
11855     MI = MRI.def_begin(Reg)->getParent();
11856   }
11857   // The start of the chain must be an INLINEASM_BR.
11858   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11859          "end of copy chain MUST be INLINEASM_BR");
11860   return Reg;
11861 }
11862 
11863 // We must do this walk rather than the simpler
11864 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11865 // otherwise we will end up with copies of virtregs only valid along direct
11866 // edges.
11867 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11868   SmallVector<EVT, 8> ResultVTs;
11869   SmallVector<SDValue, 8> ResultValues;
11870   const auto *CBR =
11871       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11872 
11873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11874   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11875   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11876 
11877   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11878   SDValue Chain = DAG.getRoot();
11879 
11880   // Re-parse the asm constraints string.
11881   TargetLowering::AsmOperandInfoVector TargetConstraints =
11882       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11883   for (auto &T : TargetConstraints) {
11884     SDISelAsmOperandInfo OpInfo(T);
11885     if (OpInfo.Type != InlineAsm::isOutput)
11886       continue;
11887 
11888     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11889     // individual constraint.
11890     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11891 
11892     switch (OpInfo.ConstraintType) {
11893     case TargetLowering::C_Register:
11894     case TargetLowering::C_RegisterClass: {
11895       // Fill in OpInfo.AssignedRegs.Regs.
11896       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11897 
11898       // getRegistersForValue may produce 1 to many registers based on whether
11899       // the OpInfo.ConstraintVT is legal on the target or not.
11900       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11901         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11902         if (Register::isPhysicalRegister(OriginalDef))
11903           FuncInfo.MBB->addLiveIn(OriginalDef);
11904         // Update the assigned registers to use the original defs.
11905         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11906       }
11907 
11908       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11909           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11910       ResultValues.push_back(V);
11911       ResultVTs.push_back(OpInfo.ConstraintVT);
11912       break;
11913     }
11914     case TargetLowering::C_Other: {
11915       SDValue Flag;
11916       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11917                                                   OpInfo, DAG);
11918       ++InitialDef;
11919       ResultValues.push_back(V);
11920       ResultVTs.push_back(OpInfo.ConstraintVT);
11921       break;
11922     }
11923     default:
11924       break;
11925     }
11926   }
11927   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11928                           DAG.getVTList(ResultVTs), ResultValues);
11929   setValue(&I, V);
11930 }
11931