1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 74 const SDValue *Parts, unsigned NumParts, 75 EVT PartVT, EVT ValueVT); 76 77 /// getCopyFromParts - Create a value that contains the specified legal parts 78 /// combined into the value they represent. If the parts combine to a type 79 /// larger then ValueVT then AssertOp can be used to specify whether the extra 80 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 81 /// (ISD::AssertSext). 82 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 83 const SDValue *Parts, 84 unsigned NumParts, EVT PartVT, EVT ValueVT, 85 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 86 if (ValueVT.isVector()) 87 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 88 89 assert(NumParts > 0 && "No parts to assemble!"); 90 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 91 SDValue Val = Parts[0]; 92 93 if (NumParts > 1) { 94 // Assemble the value from multiple parts. 95 if (ValueVT.isInteger()) { 96 unsigned PartBits = PartVT.getSizeInBits(); 97 unsigned ValueBits = ValueVT.getSizeInBits(); 98 99 // Assemble the power of 2 part. 100 unsigned RoundParts = NumParts & (NumParts - 1) ? 101 1 << Log2_32(NumParts) : NumParts; 102 unsigned RoundBits = PartBits * RoundParts; 103 EVT RoundVT = RoundBits == ValueBits ? 104 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 105 SDValue Lo, Hi; 106 107 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 108 109 if (RoundParts > 2) { 110 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 111 PartVT, HalfVT); 112 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 113 RoundParts / 2, PartVT, HalfVT); 114 } else { 115 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 116 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 117 } 118 119 if (TLI.isBigEndian()) 120 std::swap(Lo, Hi); 121 122 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 123 124 if (RoundParts < NumParts) { 125 // Assemble the trailing non-power-of-2 part. 126 unsigned OddParts = NumParts - RoundParts; 127 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 128 Hi = getCopyFromParts(DAG, DL, 129 Parts + RoundParts, OddParts, PartVT, OddVT); 130 131 // Combine the round and odd parts. 132 Lo = Val; 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 136 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 137 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 138 DAG.getConstant(Lo.getValueType().getSizeInBits(), 139 TLI.getPointerTy())); 140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 141 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 142 } 143 } else if (PartVT.isFloatingPoint()) { 144 // FP split into multiple FP parts (for ppcf128) 145 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 146 "Unexpected split"); 147 SDValue Lo, Hi; 148 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 149 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 153 } else { 154 // FP split into integer parts (soft fp) 155 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 156 !PartVT.isVector() && "Unexpected split"); 157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 158 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 159 } 160 } 161 162 // There is now one part, held in Val. Correct it to match ValueVT. 163 PartVT = Val.getValueType(); 164 165 if (PartVT == ValueVT) 166 return Val; 167 168 if (PartVT.isInteger() && ValueVT.isInteger()) { 169 if (ValueVT.bitsLT(PartVT)) { 170 // For a truncate, see if we have any information to 171 // indicate whether the truncated bits will always be 172 // zero or sign-extension. 173 if (AssertOp != ISD::DELETED_NODE) 174 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 175 DAG.getValueType(ValueVT)); 176 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 177 } 178 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 179 } 180 181 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 182 // FP_ROUND's are always exact here. 183 if (ValueVT.bitsLT(Val.getValueType())) 184 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 185 DAG.getIntPtrConstant(1)); 186 187 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 188 } 189 190 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 191 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 192 193 llvm_unreachable("Unknown mismatch!"); 194 return SDValue(); 195 } 196 197 /// getCopyFromParts - Create a value that contains the specified legal parts 198 /// combined into the value they represent. If the parts combine to a type 199 /// larger then ValueVT then AssertOp can be used to specify whether the extra 200 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 201 /// (ISD::AssertSext). 202 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 203 const SDValue *Parts, unsigned NumParts, 204 EVT PartVT, EVT ValueVT) { 205 assert(ValueVT.isVector() && "Not a vector value"); 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 // Handle a multi-element vector. 211 if (NumParts > 1) { 212 EVT IntermediateVT, RegisterVT; 213 unsigned NumIntermediates; 214 unsigned NumRegs = 215 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 216 NumIntermediates, RegisterVT); 217 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 218 NumParts = NumRegs; // Silence a compiler warning. 219 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 220 assert(RegisterVT == Parts[0].getValueType() && 221 "Part type doesn't match part!"); 222 223 // Assemble the parts into intermediate operands. 224 SmallVector<SDValue, 8> Ops(NumIntermediates); 225 if (NumIntermediates == NumParts) { 226 // If the register was not expanded, truncate or copy the value, 227 // as appropriate. 228 for (unsigned i = 0; i != NumParts; ++i) 229 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 230 PartVT, IntermediateVT); 231 } else if (NumParts > 0) { 232 // If the intermediate type was expanded, build the intermediate 233 // operands from the parts. 234 assert(NumParts % NumIntermediates == 0 && 235 "Must expand into a divisible number of parts!"); 236 unsigned Factor = NumParts / NumIntermediates; 237 for (unsigned i = 0; i != NumIntermediates; ++i) 238 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 239 PartVT, IntermediateVT); 240 } 241 242 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 243 // intermediate operands. 244 Val = DAG.getNode(IntermediateVT.isVector() ? 245 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 246 ValueVT, &Ops[0], NumIntermediates); 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 PartVT = Val.getValueType(); 251 252 if (PartVT == ValueVT) 253 return Val; 254 255 if (PartVT.isVector()) { 256 // If the element type of the source/dest vectors are the same, but the 257 // parts vector has more elements than the value vector, then we have a 258 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 259 // elements we want. 260 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 261 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 262 "Cannot narrow, it would be a lossy transformation"); 263 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 264 DAG.getIntPtrConstant(0)); 265 } 266 267 // Vector/Vector bitcast. 268 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 269 } 270 271 assert(ValueVT.getVectorElementType() == PartVT && 272 ValueVT.getVectorNumElements() == 1 && 273 "Only trivial scalar-to-vector conversions should get here!"); 274 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 275 } 276 277 278 279 280 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 281 SDValue Val, SDValue *Parts, unsigned NumParts, 282 EVT PartVT); 283 284 /// getCopyToParts - Create a series of nodes that contain the specified value 285 /// split into legal parts. If the parts contain more bits than Val, then, for 286 /// integers, ExtendKind can be used to specify how to generate the extra bits. 287 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 288 SDValue Val, SDValue *Parts, unsigned NumParts, 289 EVT PartVT, 290 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 291 EVT ValueVT = Val.getValueType(); 292 293 // Handle the vector case separately. 294 if (ValueVT.isVector()) 295 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 296 297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 298 unsigned PartBits = PartVT.getSizeInBits(); 299 unsigned OrigNumParts = NumParts; 300 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 301 302 if (NumParts == 0) 303 return; 304 305 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 306 if (PartVT == ValueVT) { 307 assert(NumParts == 1 && "No-op copy with multiple parts!"); 308 Parts[0] = Val; 309 return; 310 } 311 312 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 313 // If the parts cover more bits than the value has, promote the value. 314 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 assert(NumParts == 1 && "Do not know what to promote to!"); 316 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 317 } else { 318 assert(PartVT.isInteger() && ValueVT.isInteger() && 319 "Unknown mismatch!"); 320 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 321 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 322 } 323 } else if (PartBits == ValueVT.getSizeInBits()) { 324 // Different types of the same size. 325 assert(NumParts == 1 && PartVT != ValueVT); 326 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 327 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 328 // If the parts cover less bits than value has, truncate the value. 329 assert(PartVT.isInteger() && ValueVT.isInteger() && 330 "Unknown mismatch!"); 331 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 332 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 // The value may have changed - recompute ValueVT. 336 ValueVT = Val.getValueType(); 337 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 338 "Failed to tile the value with PartVT!"); 339 340 if (NumParts == 1) { 341 assert(PartVT == ValueVT && "Type conversion failed!"); 342 Parts[0] = Val; 343 return; 344 } 345 346 // Expand the value into multiple parts. 347 if (NumParts & (NumParts - 1)) { 348 // The number of parts is not a power of 2. Split off and copy the tail. 349 assert(PartVT.isInteger() && ValueVT.isInteger() && 350 "Do not know what to expand to!"); 351 unsigned RoundParts = 1 << Log2_32(NumParts); 352 unsigned RoundBits = RoundParts * PartBits; 353 unsigned OddParts = NumParts - RoundParts; 354 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 355 DAG.getIntPtrConstant(RoundBits)); 356 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 357 358 if (TLI.isBigEndian()) 359 // The odd parts were reversed by getCopyToParts - unreverse them. 360 std::reverse(Parts + RoundParts, Parts + NumParts); 361 362 NumParts = RoundParts; 363 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 364 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 365 } 366 367 // The number of parts is a power of 2. Repeatedly bisect the value using 368 // EXTRACT_ELEMENT. 369 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 370 EVT::getIntegerVT(*DAG.getContext(), 371 ValueVT.getSizeInBits()), 372 Val); 373 374 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 375 for (unsigned i = 0; i < NumParts; i += StepSize) { 376 unsigned ThisBits = StepSize * PartBits / 2; 377 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 378 SDValue &Part0 = Parts[i]; 379 SDValue &Part1 = Parts[i+StepSize/2]; 380 381 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 382 ThisVT, Part0, DAG.getIntPtrConstant(1)); 383 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 384 ThisVT, Part0, DAG.getIntPtrConstant(0)); 385 386 if (ThisBits == PartBits && ThisVT != PartVT) { 387 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 388 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 389 } 390 } 391 } 392 393 if (TLI.isBigEndian()) 394 std::reverse(Parts, Parts + OrigNumParts); 395 } 396 397 398 /// getCopyToPartsVector - Create a series of nodes that contain the specified 399 /// value split into legal parts. 400 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 401 SDValue Val, SDValue *Parts, unsigned NumParts, 402 EVT PartVT) { 403 EVT ValueVT = Val.getValueType(); 404 assert(ValueVT.isVector() && "Not a vector"); 405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 406 407 if (NumParts == 1) { 408 if (PartVT == ValueVT) { 409 // Nothing to do. 410 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 411 // Bitconvert vector->vector case. 412 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 413 } else if (PartVT.isVector() && 414 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 415 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 416 EVT ElementVT = PartVT.getVectorElementType(); 417 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 418 // undef elements. 419 SmallVector<SDValue, 16> Ops; 420 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 422 ElementVT, Val, DAG.getIntPtrConstant(i))); 423 424 for (unsigned i = ValueVT.getVectorNumElements(), 425 e = PartVT.getVectorNumElements(); i != e; ++i) 426 Ops.push_back(DAG.getUNDEF(ElementVT)); 427 428 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 429 430 // FIXME: Use CONCAT for 2x -> 4x. 431 432 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 433 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 434 } else { 435 // Vector -> scalar conversion. 436 assert(ValueVT.getVectorElementType() == PartVT && 437 ValueVT.getVectorNumElements() == 1 && 438 "Only trivial vector-to-scalar conversions should get here!"); 439 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 440 PartVT, Val, DAG.getIntPtrConstant(0)); 441 } 442 443 Parts[0] = Val; 444 return; 445 } 446 447 // Handle a multi-element vector. 448 EVT IntermediateVT, RegisterVT; 449 unsigned NumIntermediates; 450 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 451 IntermediateVT, NumIntermediates, RegisterVT); 452 unsigned NumElements = ValueVT.getVectorNumElements(); 453 454 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 455 NumParts = NumRegs; // Silence a compiler warning. 456 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 457 458 // Split the vector into intermediate operands. 459 SmallVector<SDValue, 8> Ops(NumIntermediates); 460 for (unsigned i = 0; i != NumIntermediates; ++i) { 461 if (IntermediateVT.isVector()) 462 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 463 IntermediateVT, Val, 464 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 465 else 466 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 467 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 468 } 469 470 // Split the intermediate operands into legal parts. 471 if (NumParts == NumIntermediates) { 472 // If the register was not expanded, promote or copy the value, 473 // as appropriate. 474 for (unsigned i = 0; i != NumParts; ++i) 475 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 476 } else if (NumParts > 0) { 477 // If the intermediate type was expanded, split each the value into 478 // legal parts. 479 assert(NumParts % NumIntermediates == 0 && 480 "Must expand into a divisible number of parts!"); 481 unsigned Factor = NumParts / NumIntermediates; 482 for (unsigned i = 0; i != NumIntermediates; ++i) 483 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 484 } 485 } 486 487 488 489 490 namespace { 491 /// RegsForValue - This struct represents the registers (physical or virtual) 492 /// that a particular set of values is assigned, and the type information 493 /// about the value. The most common situation is to represent one value at a 494 /// time, but struct or array values are handled element-wise as multiple 495 /// values. The splitting of aggregates is performed recursively, so that we 496 /// never have aggregate-typed registers. The values at this point do not 497 /// necessarily have legal types, so each value may require one or more 498 /// registers of some legal type. 499 /// 500 struct RegsForValue { 501 /// ValueVTs - The value types of the values, which may not be legal, and 502 /// may need be promoted or synthesized from one or more registers. 503 /// 504 SmallVector<EVT, 4> ValueVTs; 505 506 /// RegVTs - The value types of the registers. This is the same size as 507 /// ValueVTs and it records, for each value, what the type of the assigned 508 /// register or registers are. (Individual values are never synthesized 509 /// from more than one type of register.) 510 /// 511 /// With virtual registers, the contents of RegVTs is redundant with TLI's 512 /// getRegisterType member function, however when with physical registers 513 /// it is necessary to have a separate record of the types. 514 /// 515 SmallVector<EVT, 4> RegVTs; 516 517 /// Regs - This list holds the registers assigned to the values. 518 /// Each legal or promoted value requires one register, and each 519 /// expanded value requires multiple registers. 520 /// 521 SmallVector<unsigned, 4> Regs; 522 523 RegsForValue() {} 524 525 RegsForValue(const SmallVector<unsigned, 4> ®s, 526 EVT regvt, EVT valuevt) 527 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 528 529 RegsForValue(const SmallVector<unsigned, 4> ®s, 530 const SmallVector<EVT, 4> ®vts, 531 const SmallVector<EVT, 4> &valuevts) 532 : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 533 534 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 535 unsigned Reg, const Type *Ty) { 536 ComputeValueVTs(tli, Ty, ValueVTs); 537 538 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 539 EVT ValueVT = ValueVTs[Value]; 540 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 541 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 542 for (unsigned i = 0; i != NumRegs; ++i) 543 Regs.push_back(Reg + i); 544 RegVTs.push_back(RegisterVT); 545 Reg += NumRegs; 546 } 547 } 548 549 /// areValueTypesLegal - Return true if types of all the values are legal. 550 bool areValueTypesLegal(const TargetLowering &TLI) { 551 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 552 EVT RegisterVT = RegVTs[Value]; 553 if (!TLI.isTypeLegal(RegisterVT)) 554 return false; 555 } 556 return true; 557 } 558 559 /// append - Add the specified values to this one. 560 void append(const RegsForValue &RHS) { 561 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 562 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 563 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 564 } 565 566 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 567 /// this value and returns the result as a ValueVTs value. This uses 568 /// Chain/Flag as the input and updates them for the output Chain/Flag. 569 /// If the Flag pointer is NULL, no flag is used. 570 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 571 DebugLoc dl, 572 SDValue &Chain, SDValue *Flag) const; 573 574 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 575 /// specified value into the registers specified by this object. This uses 576 /// Chain/Flag as the input and updates them for the output Chain/Flag. 577 /// If the Flag pointer is NULL, no flag is used. 578 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 579 SDValue &Chain, SDValue *Flag) const; 580 581 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 582 /// operand list. This adds the code marker, matching input operand index 583 /// (if applicable), and includes the number of values added into it. 584 void AddInlineAsmOperands(unsigned Kind, 585 bool HasMatching, unsigned MatchingIdx, 586 SelectionDAG &DAG, 587 std::vector<SDValue> &Ops) const; 588 }; 589 } 590 591 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 592 /// this value and returns the result as a ValueVT value. This uses 593 /// Chain/Flag as the input and updates them for the output Chain/Flag. 594 /// If the Flag pointer is NULL, no flag is used. 595 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 596 FunctionLoweringInfo &FuncInfo, 597 DebugLoc dl, 598 SDValue &Chain, SDValue *Flag) const { 599 // A Value with type {} or [0 x %t] needs no registers. 600 if (ValueVTs.empty()) 601 return SDValue(); 602 603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 604 605 // Assemble the legal parts into the final values. 606 SmallVector<SDValue, 4> Values(ValueVTs.size()); 607 SmallVector<SDValue, 8> Parts; 608 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 609 // Copy the legal parts from the registers. 610 EVT ValueVT = ValueVTs[Value]; 611 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 612 EVT RegisterVT = RegVTs[Value]; 613 614 Parts.resize(NumRegs); 615 for (unsigned i = 0; i != NumRegs; ++i) { 616 SDValue P; 617 if (Flag == 0) { 618 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 619 } else { 620 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 621 *Flag = P.getValue(2); 622 } 623 624 Chain = P.getValue(1); 625 626 // If the source register was virtual and if we know something about it, 627 // add an assert node. 628 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 629 RegisterVT.isInteger() && !RegisterVT.isVector()) { 630 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 631 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 632 const FunctionLoweringInfo::LiveOutInfo &LOI = 633 FuncInfo.LiveOutRegInfo[SlotNo]; 634 635 unsigned RegSize = RegisterVT.getSizeInBits(); 636 unsigned NumSignBits = LOI.NumSignBits; 637 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 638 639 // FIXME: We capture more information than the dag can represent. For 640 // now, just use the tightest assertzext/assertsext possible. 641 bool isSExt = true; 642 EVT FromVT(MVT::Other); 643 if (NumSignBits == RegSize) 644 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 645 else if (NumZeroBits >= RegSize-1) 646 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 647 else if (NumSignBits > RegSize-8) 648 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 649 else if (NumZeroBits >= RegSize-8) 650 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 651 else if (NumSignBits > RegSize-16) 652 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 653 else if (NumZeroBits >= RegSize-16) 654 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 655 else if (NumSignBits > RegSize-32) 656 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 657 else if (NumZeroBits >= RegSize-32) 658 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 659 660 if (FromVT != MVT::Other) 661 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 662 RegisterVT, P, DAG.getValueType(FromVT)); 663 } 664 } 665 666 Parts[i] = P; 667 } 668 669 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 670 NumRegs, RegisterVT, ValueVT); 671 Part += NumRegs; 672 Parts.clear(); 673 } 674 675 return DAG.getNode(ISD::MERGE_VALUES, dl, 676 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 677 &Values[0], ValueVTs.size()); 678 } 679 680 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 681 /// specified value into the registers specified by this object. This uses 682 /// Chain/Flag as the input and updates them for the output Chain/Flag. 683 /// If the Flag pointer is NULL, no flag is used. 684 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 685 SDValue &Chain, SDValue *Flag) const { 686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 687 688 // Get the list of the values's legal parts. 689 unsigned NumRegs = Regs.size(); 690 SmallVector<SDValue, 8> Parts(NumRegs); 691 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 692 EVT ValueVT = ValueVTs[Value]; 693 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 694 EVT RegisterVT = RegVTs[Value]; 695 696 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 697 &Parts[Part], NumParts, RegisterVT); 698 Part += NumParts; 699 } 700 701 // Copy the parts into the registers. 702 SmallVector<SDValue, 8> Chains(NumRegs); 703 for (unsigned i = 0; i != NumRegs; ++i) { 704 SDValue Part; 705 if (Flag == 0) { 706 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 707 } else { 708 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 709 *Flag = Part.getValue(1); 710 } 711 712 Chains[i] = Part.getValue(0); 713 } 714 715 if (NumRegs == 1 || Flag) 716 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 717 // flagged to it. That is the CopyToReg nodes and the user are considered 718 // a single scheduling unit. If we create a TokenFactor and return it as 719 // chain, then the TokenFactor is both a predecessor (operand) of the 720 // user as well as a successor (the TF operands are flagged to the user). 721 // c1, f1 = CopyToReg 722 // c2, f2 = CopyToReg 723 // c3 = TokenFactor c1, c2 724 // ... 725 // = op c3, ..., f2 726 Chain = Chains[NumRegs-1]; 727 else 728 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 729 } 730 731 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 732 /// operand list. This adds the code marker and includes the number of 733 /// values added into it. 734 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 735 unsigned MatchingIdx, 736 SelectionDAG &DAG, 737 std::vector<SDValue> &Ops) const { 738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 739 740 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 741 if (HasMatching) 742 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 743 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 744 Ops.push_back(Res); 745 746 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 747 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 748 EVT RegisterVT = RegVTs[Value]; 749 for (unsigned i = 0; i != NumRegs; ++i) { 750 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 751 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 752 } 753 } 754 } 755 756 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 757 AA = &aa; 758 GFI = gfi; 759 TD = DAG.getTarget().getTargetData(); 760 } 761 762 /// clear - Clear out the current SelectionDAG and the associated 763 /// state and prepare this SelectionDAGBuilder object to be used 764 /// for a new block. This doesn't clear out information about 765 /// additional blocks that are needed to complete switch lowering 766 /// or PHI node updating; that information is cleared out as it is 767 /// consumed. 768 void SelectionDAGBuilder::clear() { 769 NodeMap.clear(); 770 UnusedArgNodeMap.clear(); 771 PendingLoads.clear(); 772 PendingExports.clear(); 773 DanglingDebugInfoMap.clear(); 774 CurDebugLoc = DebugLoc(); 775 HasTailCall = false; 776 } 777 778 /// getRoot - Return the current virtual root of the Selection DAG, 779 /// flushing any PendingLoad items. This must be done before emitting 780 /// a store or any other node that may need to be ordered after any 781 /// prior load instructions. 782 /// 783 SDValue SelectionDAGBuilder::getRoot() { 784 if (PendingLoads.empty()) 785 return DAG.getRoot(); 786 787 if (PendingLoads.size() == 1) { 788 SDValue Root = PendingLoads[0]; 789 DAG.setRoot(Root); 790 PendingLoads.clear(); 791 return Root; 792 } 793 794 // Otherwise, we have to make a token factor node. 795 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 796 &PendingLoads[0], PendingLoads.size()); 797 PendingLoads.clear(); 798 DAG.setRoot(Root); 799 return Root; 800 } 801 802 /// getControlRoot - Similar to getRoot, but instead of flushing all the 803 /// PendingLoad items, flush all the PendingExports items. It is necessary 804 /// to do this before emitting a terminator instruction. 805 /// 806 SDValue SelectionDAGBuilder::getControlRoot() { 807 SDValue Root = DAG.getRoot(); 808 809 if (PendingExports.empty()) 810 return Root; 811 812 // Turn all of the CopyToReg chains into one factored node. 813 if (Root.getOpcode() != ISD::EntryToken) { 814 unsigned i = 0, e = PendingExports.size(); 815 for (; i != e; ++i) { 816 assert(PendingExports[i].getNode()->getNumOperands() > 1); 817 if (PendingExports[i].getNode()->getOperand(0) == Root) 818 break; // Don't add the root if we already indirectly depend on it. 819 } 820 821 if (i == e) 822 PendingExports.push_back(Root); 823 } 824 825 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 826 &PendingExports[0], 827 PendingExports.size()); 828 PendingExports.clear(); 829 DAG.setRoot(Root); 830 return Root; 831 } 832 833 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 834 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 835 DAG.AssignOrdering(Node, SDNodeOrder); 836 837 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 838 AssignOrderingToNode(Node->getOperand(I).getNode()); 839 } 840 841 void SelectionDAGBuilder::visit(const Instruction &I) { 842 // Set up outgoing PHI node register values before emitting the terminator. 843 if (isa<TerminatorInst>(&I)) 844 HandlePHINodesInSuccessorBlocks(I.getParent()); 845 846 CurDebugLoc = I.getDebugLoc(); 847 848 visit(I.getOpcode(), I); 849 850 if (!isa<TerminatorInst>(&I) && !HasTailCall) 851 CopyToExportRegsIfNeeded(&I); 852 853 CurDebugLoc = DebugLoc(); 854 } 855 856 void SelectionDAGBuilder::visitPHI(const PHINode &) { 857 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 858 } 859 860 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 861 // Note: this doesn't use InstVisitor, because it has to work with 862 // ConstantExpr's in addition to instructions. 863 switch (Opcode) { 864 default: llvm_unreachable("Unknown instruction type encountered!"); 865 // Build the switch statement using the Instruction.def file. 866 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 867 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 868 #include "llvm/Instruction.def" 869 } 870 871 // Assign the ordering to the freshly created DAG nodes. 872 if (NodeMap.count(&I)) { 873 ++SDNodeOrder; 874 AssignOrderingToNode(getValue(&I).getNode()); 875 } 876 } 877 878 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 879 // generate the debug data structures now that we've seen its definition. 880 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 881 SDValue Val) { 882 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 883 if (DDI.getDI()) { 884 const DbgValueInst *DI = DDI.getDI(); 885 DebugLoc dl = DDI.getdl(); 886 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 887 MDNode *Variable = DI->getVariable(); 888 uint64_t Offset = DI->getOffset(); 889 SDDbgValue *SDV; 890 if (Val.getNode()) { 891 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 892 SDV = DAG.getDbgValue(Variable, Val.getNode(), 893 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 894 DAG.AddDbgValue(SDV, Val.getNode(), false); 895 } 896 } else { 897 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 898 Offset, dl, SDNodeOrder); 899 DAG.AddDbgValue(SDV, 0, false); 900 } 901 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 902 } 903 } 904 905 // getValue - Return an SDValue for the given Value. 906 SDValue SelectionDAGBuilder::getValue(const Value *V) { 907 // If we already have an SDValue for this value, use it. It's important 908 // to do this first, so that we don't create a CopyFromReg if we already 909 // have a regular SDValue. 910 SDValue &N = NodeMap[V]; 911 if (N.getNode()) return N; 912 913 // If there's a virtual register allocated and initialized for this 914 // value, use it. 915 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 916 if (It != FuncInfo.ValueMap.end()) { 917 unsigned InReg = It->second; 918 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 919 SDValue Chain = DAG.getEntryNode(); 920 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 921 } 922 923 // Otherwise create a new SDValue and remember it. 924 SDValue Val = getValueImpl(V); 925 NodeMap[V] = Val; 926 resolveDanglingDebugInfo(V, Val); 927 return Val; 928 } 929 930 /// getNonRegisterValue - Return an SDValue for the given Value, but 931 /// don't look in FuncInfo.ValueMap for a virtual register. 932 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 933 // If we already have an SDValue for this value, use it. 934 SDValue &N = NodeMap[V]; 935 if (N.getNode()) return N; 936 937 // Otherwise create a new SDValue and remember it. 938 SDValue Val = getValueImpl(V); 939 NodeMap[V] = Val; 940 resolveDanglingDebugInfo(V, Val); 941 return Val; 942 } 943 944 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 945 /// Create an SDValue for the given value. 946 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 947 if (const Constant *C = dyn_cast<Constant>(V)) { 948 EVT VT = TLI.getValueType(V->getType(), true); 949 950 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 951 return DAG.getConstant(*CI, VT); 952 953 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 954 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 955 956 if (isa<ConstantPointerNull>(C)) 957 return DAG.getConstant(0, TLI.getPointerTy()); 958 959 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 960 return DAG.getConstantFP(*CFP, VT); 961 962 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 963 return DAG.getUNDEF(VT); 964 965 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 966 visit(CE->getOpcode(), *CE); 967 SDValue N1 = NodeMap[V]; 968 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 969 return N1; 970 } 971 972 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 973 SmallVector<SDValue, 4> Constants; 974 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 975 OI != OE; ++OI) { 976 SDNode *Val = getValue(*OI).getNode(); 977 // If the operand is an empty aggregate, there are no values. 978 if (!Val) continue; 979 // Add each leaf value from the operand to the Constants list 980 // to form a flattened list of all the values. 981 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 982 Constants.push_back(SDValue(Val, i)); 983 } 984 985 return DAG.getMergeValues(&Constants[0], Constants.size(), 986 getCurDebugLoc()); 987 } 988 989 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 990 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 991 "Unknown struct or array constant!"); 992 993 SmallVector<EVT, 4> ValueVTs; 994 ComputeValueVTs(TLI, C->getType(), ValueVTs); 995 unsigned NumElts = ValueVTs.size(); 996 if (NumElts == 0) 997 return SDValue(); // empty struct 998 SmallVector<SDValue, 4> Constants(NumElts); 999 for (unsigned i = 0; i != NumElts; ++i) { 1000 EVT EltVT = ValueVTs[i]; 1001 if (isa<UndefValue>(C)) 1002 Constants[i] = DAG.getUNDEF(EltVT); 1003 else if (EltVT.isFloatingPoint()) 1004 Constants[i] = DAG.getConstantFP(0, EltVT); 1005 else 1006 Constants[i] = DAG.getConstant(0, EltVT); 1007 } 1008 1009 return DAG.getMergeValues(&Constants[0], NumElts, 1010 getCurDebugLoc()); 1011 } 1012 1013 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1014 return DAG.getBlockAddress(BA, VT); 1015 1016 const VectorType *VecTy = cast<VectorType>(V->getType()); 1017 unsigned NumElements = VecTy->getNumElements(); 1018 1019 // Now that we know the number and type of the elements, get that number of 1020 // elements into the Ops array based on what kind of constant it is. 1021 SmallVector<SDValue, 16> Ops; 1022 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1023 for (unsigned i = 0; i != NumElements; ++i) 1024 Ops.push_back(getValue(CP->getOperand(i))); 1025 } else { 1026 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1027 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1028 1029 SDValue Op; 1030 if (EltVT.isFloatingPoint()) 1031 Op = DAG.getConstantFP(0, EltVT); 1032 else 1033 Op = DAG.getConstant(0, EltVT); 1034 Ops.assign(NumElements, Op); 1035 } 1036 1037 // Create a BUILD_VECTOR node. 1038 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1039 VT, &Ops[0], Ops.size()); 1040 } 1041 1042 // If this is a static alloca, generate it as the frameindex instead of 1043 // computation. 1044 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1045 DenseMap<const AllocaInst*, int>::iterator SI = 1046 FuncInfo.StaticAllocaMap.find(AI); 1047 if (SI != FuncInfo.StaticAllocaMap.end()) 1048 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1049 } 1050 1051 // If this is an instruction which fast-isel has deferred, select it now. 1052 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1053 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1054 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1055 SDValue Chain = DAG.getEntryNode(); 1056 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1057 } 1058 1059 llvm_unreachable("Can't get register for value!"); 1060 return SDValue(); 1061 } 1062 1063 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1064 SDValue Chain = getControlRoot(); 1065 SmallVector<ISD::OutputArg, 8> Outs; 1066 SmallVector<SDValue, 8> OutVals; 1067 1068 if (!FuncInfo.CanLowerReturn) { 1069 unsigned DemoteReg = FuncInfo.DemoteRegister; 1070 const Function *F = I.getParent()->getParent(); 1071 1072 // Emit a store of the return value through the virtual register. 1073 // Leave Outs empty so that LowerReturn won't try to load return 1074 // registers the usual way. 1075 SmallVector<EVT, 1> PtrValueVTs; 1076 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1077 PtrValueVTs); 1078 1079 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1080 SDValue RetOp = getValue(I.getOperand(0)); 1081 1082 SmallVector<EVT, 4> ValueVTs; 1083 SmallVector<uint64_t, 4> Offsets; 1084 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1085 unsigned NumValues = ValueVTs.size(); 1086 1087 SmallVector<SDValue, 4> Chains(NumValues); 1088 for (unsigned i = 0; i != NumValues; ++i) { 1089 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1090 RetPtr.getValueType(), RetPtr, 1091 DAG.getIntPtrConstant(Offsets[i])); 1092 Chains[i] = 1093 DAG.getStore(Chain, getCurDebugLoc(), 1094 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1095 Add, NULL, Offsets[i], false, false, 0); 1096 } 1097 1098 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1099 MVT::Other, &Chains[0], NumValues); 1100 } else if (I.getNumOperands() != 0) { 1101 SmallVector<EVT, 4> ValueVTs; 1102 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1103 unsigned NumValues = ValueVTs.size(); 1104 if (NumValues) { 1105 SDValue RetOp = getValue(I.getOperand(0)); 1106 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1107 EVT VT = ValueVTs[j]; 1108 1109 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1110 1111 const Function *F = I.getParent()->getParent(); 1112 if (F->paramHasAttr(0, Attribute::SExt)) 1113 ExtendKind = ISD::SIGN_EXTEND; 1114 else if (F->paramHasAttr(0, Attribute::ZExt)) 1115 ExtendKind = ISD::ZERO_EXTEND; 1116 1117 // FIXME: C calling convention requires the return type to be promoted 1118 // to at least 32-bit. But this is not necessary for non-C calling 1119 // conventions. The frontend should mark functions whose return values 1120 // require promoting with signext or zeroext attributes. 1121 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1122 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1123 if (VT.bitsLT(MinVT)) 1124 VT = MinVT; 1125 } 1126 1127 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1128 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1129 SmallVector<SDValue, 4> Parts(NumParts); 1130 getCopyToParts(DAG, getCurDebugLoc(), 1131 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1132 &Parts[0], NumParts, PartVT, ExtendKind); 1133 1134 // 'inreg' on function refers to return value 1135 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1136 if (F->paramHasAttr(0, Attribute::InReg)) 1137 Flags.setInReg(); 1138 1139 // Propagate extension type if any 1140 if (F->paramHasAttr(0, Attribute::SExt)) 1141 Flags.setSExt(); 1142 else if (F->paramHasAttr(0, Attribute::ZExt)) 1143 Flags.setZExt(); 1144 1145 for (unsigned i = 0; i < NumParts; ++i) { 1146 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1147 /*isfixed=*/true)); 1148 OutVals.push_back(Parts[i]); 1149 } 1150 } 1151 } 1152 } 1153 1154 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1155 CallingConv::ID CallConv = 1156 DAG.getMachineFunction().getFunction()->getCallingConv(); 1157 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1158 Outs, OutVals, getCurDebugLoc(), DAG); 1159 1160 // Verify that the target's LowerReturn behaved as expected. 1161 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1162 "LowerReturn didn't return a valid chain!"); 1163 1164 // Update the DAG with the new chain value resulting from return lowering. 1165 DAG.setRoot(Chain); 1166 } 1167 1168 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1169 /// created for it, emit nodes to copy the value into the virtual 1170 /// registers. 1171 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1172 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1173 if (VMI != FuncInfo.ValueMap.end()) { 1174 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1175 CopyValueToVirtualRegister(V, VMI->second); 1176 } 1177 } 1178 1179 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1180 /// the current basic block, add it to ValueMap now so that we'll get a 1181 /// CopyTo/FromReg. 1182 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1183 // No need to export constants. 1184 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1185 1186 // Already exported? 1187 if (FuncInfo.isExportedInst(V)) return; 1188 1189 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1190 CopyValueToVirtualRegister(V, Reg); 1191 } 1192 1193 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1194 const BasicBlock *FromBB) { 1195 // The operands of the setcc have to be in this block. We don't know 1196 // how to export them from some other block. 1197 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1198 // Can export from current BB. 1199 if (VI->getParent() == FromBB) 1200 return true; 1201 1202 // Is already exported, noop. 1203 return FuncInfo.isExportedInst(V); 1204 } 1205 1206 // If this is an argument, we can export it if the BB is the entry block or 1207 // if it is already exported. 1208 if (isa<Argument>(V)) { 1209 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1210 return true; 1211 1212 // Otherwise, can only export this if it is already exported. 1213 return FuncInfo.isExportedInst(V); 1214 } 1215 1216 // Otherwise, constants can always be exported. 1217 return true; 1218 } 1219 1220 static bool InBlock(const Value *V, const BasicBlock *BB) { 1221 if (const Instruction *I = dyn_cast<Instruction>(V)) 1222 return I->getParent() == BB; 1223 return true; 1224 } 1225 1226 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1227 /// This function emits a branch and is used at the leaves of an OR or an 1228 /// AND operator tree. 1229 /// 1230 void 1231 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1232 MachineBasicBlock *TBB, 1233 MachineBasicBlock *FBB, 1234 MachineBasicBlock *CurBB, 1235 MachineBasicBlock *SwitchBB) { 1236 const BasicBlock *BB = CurBB->getBasicBlock(); 1237 1238 // If the leaf of the tree is a comparison, merge the condition into 1239 // the caseblock. 1240 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1241 // The operands of the cmp have to be in this block. We don't know 1242 // how to export them from some other block. If this is the first block 1243 // of the sequence, no exporting is needed. 1244 if (CurBB == SwitchBB || 1245 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1246 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1247 ISD::CondCode Condition; 1248 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1249 Condition = getICmpCondCode(IC->getPredicate()); 1250 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1251 Condition = getFCmpCondCode(FC->getPredicate()); 1252 } else { 1253 Condition = ISD::SETEQ; // silence warning. 1254 llvm_unreachable("Unknown compare instruction"); 1255 } 1256 1257 CaseBlock CB(Condition, BOp->getOperand(0), 1258 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1259 SwitchCases.push_back(CB); 1260 return; 1261 } 1262 } 1263 1264 // Create a CaseBlock record representing this branch. 1265 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1266 NULL, TBB, FBB, CurBB); 1267 SwitchCases.push_back(CB); 1268 } 1269 1270 /// FindMergedConditions - If Cond is an expression like 1271 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1272 MachineBasicBlock *TBB, 1273 MachineBasicBlock *FBB, 1274 MachineBasicBlock *CurBB, 1275 MachineBasicBlock *SwitchBB, 1276 unsigned Opc) { 1277 // If this node is not part of the or/and tree, emit it as a branch. 1278 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1279 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1280 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1281 BOp->getParent() != CurBB->getBasicBlock() || 1282 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1283 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1284 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1285 return; 1286 } 1287 1288 // Create TmpBB after CurBB. 1289 MachineFunction::iterator BBI = CurBB; 1290 MachineFunction &MF = DAG.getMachineFunction(); 1291 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1292 CurBB->getParent()->insert(++BBI, TmpBB); 1293 1294 if (Opc == Instruction::Or) { 1295 // Codegen X | Y as: 1296 // jmp_if_X TBB 1297 // jmp TmpBB 1298 // TmpBB: 1299 // jmp_if_Y TBB 1300 // jmp FBB 1301 // 1302 1303 // Emit the LHS condition. 1304 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1305 1306 // Emit the RHS condition into TmpBB. 1307 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1308 } else { 1309 assert(Opc == Instruction::And && "Unknown merge op!"); 1310 // Codegen X & Y as: 1311 // jmp_if_X TmpBB 1312 // jmp FBB 1313 // TmpBB: 1314 // jmp_if_Y TBB 1315 // jmp FBB 1316 // 1317 // This requires creation of TmpBB after CurBB. 1318 1319 // Emit the LHS condition. 1320 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1321 1322 // Emit the RHS condition into TmpBB. 1323 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1324 } 1325 } 1326 1327 /// If the set of cases should be emitted as a series of branches, return true. 1328 /// If we should emit this as a bunch of and/or'd together conditions, return 1329 /// false. 1330 bool 1331 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1332 if (Cases.size() != 2) return true; 1333 1334 // If this is two comparisons of the same values or'd or and'd together, they 1335 // will get folded into a single comparison, so don't emit two blocks. 1336 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1337 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1338 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1339 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1340 return false; 1341 } 1342 1343 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1344 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1345 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1346 Cases[0].CC == Cases[1].CC && 1347 isa<Constant>(Cases[0].CmpRHS) && 1348 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1349 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1350 return false; 1351 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1352 return false; 1353 } 1354 1355 return true; 1356 } 1357 1358 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1359 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1360 1361 // Update machine-CFG edges. 1362 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1363 1364 // Figure out which block is immediately after the current one. 1365 MachineBasicBlock *NextBlock = 0; 1366 MachineFunction::iterator BBI = BrMBB; 1367 if (++BBI != FuncInfo.MF->end()) 1368 NextBlock = BBI; 1369 1370 if (I.isUnconditional()) { 1371 // Update machine-CFG edges. 1372 BrMBB->addSuccessor(Succ0MBB); 1373 1374 // If this is not a fall-through branch, emit the branch. 1375 if (Succ0MBB != NextBlock) 1376 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1377 MVT::Other, getControlRoot(), 1378 DAG.getBasicBlock(Succ0MBB))); 1379 1380 return; 1381 } 1382 1383 // If this condition is one of the special cases we handle, do special stuff 1384 // now. 1385 const Value *CondVal = I.getCondition(); 1386 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1387 1388 // If this is a series of conditions that are or'd or and'd together, emit 1389 // this as a sequence of branches instead of setcc's with and/or operations. 1390 // For example, instead of something like: 1391 // cmp A, B 1392 // C = seteq 1393 // cmp D, E 1394 // F = setle 1395 // or C, F 1396 // jnz foo 1397 // Emit: 1398 // cmp A, B 1399 // je foo 1400 // cmp D, E 1401 // jle foo 1402 // 1403 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1404 if (BOp->hasOneUse() && 1405 (BOp->getOpcode() == Instruction::And || 1406 BOp->getOpcode() == Instruction::Or)) { 1407 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1408 BOp->getOpcode()); 1409 // If the compares in later blocks need to use values not currently 1410 // exported from this block, export them now. This block should always 1411 // be the first entry. 1412 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1413 1414 // Allow some cases to be rejected. 1415 if (ShouldEmitAsBranches(SwitchCases)) { 1416 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1417 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1418 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1419 } 1420 1421 // Emit the branch for this block. 1422 visitSwitchCase(SwitchCases[0], BrMBB); 1423 SwitchCases.erase(SwitchCases.begin()); 1424 return; 1425 } 1426 1427 // Okay, we decided not to do this, remove any inserted MBB's and clear 1428 // SwitchCases. 1429 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1430 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1431 1432 SwitchCases.clear(); 1433 } 1434 } 1435 1436 // Create a CaseBlock record representing this branch. 1437 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1438 NULL, Succ0MBB, Succ1MBB, BrMBB); 1439 1440 // Use visitSwitchCase to actually insert the fast branch sequence for this 1441 // cond branch. 1442 visitSwitchCase(CB, BrMBB); 1443 } 1444 1445 /// visitSwitchCase - Emits the necessary code to represent a single node in 1446 /// the binary search tree resulting from lowering a switch instruction. 1447 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1448 MachineBasicBlock *SwitchBB) { 1449 SDValue Cond; 1450 SDValue CondLHS = getValue(CB.CmpLHS); 1451 DebugLoc dl = getCurDebugLoc(); 1452 1453 // Build the setcc now. 1454 if (CB.CmpMHS == NULL) { 1455 // Fold "(X == true)" to X and "(X == false)" to !X to 1456 // handle common cases produced by branch lowering. 1457 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1458 CB.CC == ISD::SETEQ) 1459 Cond = CondLHS; 1460 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1461 CB.CC == ISD::SETEQ) { 1462 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1463 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1464 } else 1465 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1466 } else { 1467 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1468 1469 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1470 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1471 1472 SDValue CmpOp = getValue(CB.CmpMHS); 1473 EVT VT = CmpOp.getValueType(); 1474 1475 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1476 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1477 ISD::SETLE); 1478 } else { 1479 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1480 VT, CmpOp, DAG.getConstant(Low, VT)); 1481 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1482 DAG.getConstant(High-Low, VT), ISD::SETULE); 1483 } 1484 } 1485 1486 // Update successor info 1487 SwitchBB->addSuccessor(CB.TrueBB); 1488 SwitchBB->addSuccessor(CB.FalseBB); 1489 1490 // Set NextBlock to be the MBB immediately after the current one, if any. 1491 // This is used to avoid emitting unnecessary branches to the next block. 1492 MachineBasicBlock *NextBlock = 0; 1493 MachineFunction::iterator BBI = SwitchBB; 1494 if (++BBI != FuncInfo.MF->end()) 1495 NextBlock = BBI; 1496 1497 // If the lhs block is the next block, invert the condition so that we can 1498 // fall through to the lhs instead of the rhs block. 1499 if (CB.TrueBB == NextBlock) { 1500 std::swap(CB.TrueBB, CB.FalseBB); 1501 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1502 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1503 } 1504 1505 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1506 MVT::Other, getControlRoot(), Cond, 1507 DAG.getBasicBlock(CB.TrueBB)); 1508 1509 // Insert the false branch. 1510 if (CB.FalseBB != NextBlock) 1511 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1512 DAG.getBasicBlock(CB.FalseBB)); 1513 1514 DAG.setRoot(BrCond); 1515 } 1516 1517 /// visitJumpTable - Emit JumpTable node in the current MBB 1518 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1519 // Emit the code for the jump table 1520 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1521 EVT PTy = TLI.getPointerTy(); 1522 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1523 JT.Reg, PTy); 1524 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1525 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1526 MVT::Other, Index.getValue(1), 1527 Table, Index); 1528 DAG.setRoot(BrJumpTable); 1529 } 1530 1531 /// visitJumpTableHeader - This function emits necessary code to produce index 1532 /// in the JumpTable from switch case. 1533 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1534 JumpTableHeader &JTH, 1535 MachineBasicBlock *SwitchBB) { 1536 // Subtract the lowest switch case value from the value being switched on and 1537 // conditional branch to default mbb if the result is greater than the 1538 // difference between smallest and largest cases. 1539 SDValue SwitchOp = getValue(JTH.SValue); 1540 EVT VT = SwitchOp.getValueType(); 1541 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1542 DAG.getConstant(JTH.First, VT)); 1543 1544 // The SDNode we just created, which holds the value being switched on minus 1545 // the smallest case value, needs to be copied to a virtual register so it 1546 // can be used as an index into the jump table in a subsequent basic block. 1547 // This value may be smaller or larger than the target's pointer type, and 1548 // therefore require extension or truncating. 1549 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1550 1551 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1552 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1553 JumpTableReg, SwitchOp); 1554 JT.Reg = JumpTableReg; 1555 1556 // Emit the range check for the jump table, and branch to the default block 1557 // for the switch statement if the value being switched on exceeds the largest 1558 // case in the switch. 1559 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1560 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1561 DAG.getConstant(JTH.Last-JTH.First,VT), 1562 ISD::SETUGT); 1563 1564 // Set NextBlock to be the MBB immediately after the current one, if any. 1565 // This is used to avoid emitting unnecessary branches to the next block. 1566 MachineBasicBlock *NextBlock = 0; 1567 MachineFunction::iterator BBI = SwitchBB; 1568 1569 if (++BBI != FuncInfo.MF->end()) 1570 NextBlock = BBI; 1571 1572 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1573 MVT::Other, CopyTo, CMP, 1574 DAG.getBasicBlock(JT.Default)); 1575 1576 if (JT.MBB != NextBlock) 1577 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1578 DAG.getBasicBlock(JT.MBB)); 1579 1580 DAG.setRoot(BrCond); 1581 } 1582 1583 /// visitBitTestHeader - This function emits necessary code to produce value 1584 /// suitable for "bit tests" 1585 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1586 MachineBasicBlock *SwitchBB) { 1587 // Subtract the minimum value 1588 SDValue SwitchOp = getValue(B.SValue); 1589 EVT VT = SwitchOp.getValueType(); 1590 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1591 DAG.getConstant(B.First, VT)); 1592 1593 // Check range 1594 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1595 TLI.getSetCCResultType(Sub.getValueType()), 1596 Sub, DAG.getConstant(B.Range, VT), 1597 ISD::SETUGT); 1598 1599 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1600 TLI.getPointerTy()); 1601 1602 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1603 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1604 B.Reg, ShiftOp); 1605 1606 // Set NextBlock to be the MBB immediately after the current one, if any. 1607 // This is used to avoid emitting unnecessary branches to the next block. 1608 MachineBasicBlock *NextBlock = 0; 1609 MachineFunction::iterator BBI = SwitchBB; 1610 if (++BBI != FuncInfo.MF->end()) 1611 NextBlock = BBI; 1612 1613 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1614 1615 SwitchBB->addSuccessor(B.Default); 1616 SwitchBB->addSuccessor(MBB); 1617 1618 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1619 MVT::Other, CopyTo, RangeCmp, 1620 DAG.getBasicBlock(B.Default)); 1621 1622 if (MBB != NextBlock) 1623 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1624 DAG.getBasicBlock(MBB)); 1625 1626 DAG.setRoot(BrRange); 1627 } 1628 1629 /// visitBitTestCase - this function produces one "bit test" 1630 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1631 unsigned Reg, 1632 BitTestCase &B, 1633 MachineBasicBlock *SwitchBB) { 1634 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1635 TLI.getPointerTy()); 1636 SDValue Cmp; 1637 if (CountPopulation_64(B.Mask) == 1) { 1638 // Testing for a single bit; just compare the shift count with what it 1639 // would need to be to shift a 1 bit in that position. 1640 Cmp = DAG.getSetCC(getCurDebugLoc(), 1641 TLI.getSetCCResultType(ShiftOp.getValueType()), 1642 ShiftOp, 1643 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1644 TLI.getPointerTy()), 1645 ISD::SETEQ); 1646 } else { 1647 // Make desired shift 1648 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1649 TLI.getPointerTy(), 1650 DAG.getConstant(1, TLI.getPointerTy()), 1651 ShiftOp); 1652 1653 // Emit bit tests and jumps 1654 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1655 TLI.getPointerTy(), SwitchVal, 1656 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1657 Cmp = DAG.getSetCC(getCurDebugLoc(), 1658 TLI.getSetCCResultType(AndOp.getValueType()), 1659 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1660 ISD::SETNE); 1661 } 1662 1663 SwitchBB->addSuccessor(B.TargetBB); 1664 SwitchBB->addSuccessor(NextMBB); 1665 1666 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1667 MVT::Other, getControlRoot(), 1668 Cmp, DAG.getBasicBlock(B.TargetBB)); 1669 1670 // Set NextBlock to be the MBB immediately after the current one, if any. 1671 // This is used to avoid emitting unnecessary branches to the next block. 1672 MachineBasicBlock *NextBlock = 0; 1673 MachineFunction::iterator BBI = SwitchBB; 1674 if (++BBI != FuncInfo.MF->end()) 1675 NextBlock = BBI; 1676 1677 if (NextMBB != NextBlock) 1678 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1679 DAG.getBasicBlock(NextMBB)); 1680 1681 DAG.setRoot(BrAnd); 1682 } 1683 1684 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1685 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1686 1687 // Retrieve successors. 1688 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1689 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1690 1691 const Value *Callee(I.getCalledValue()); 1692 if (isa<InlineAsm>(Callee)) 1693 visitInlineAsm(&I); 1694 else 1695 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1696 1697 // If the value of the invoke is used outside of its defining block, make it 1698 // available as a virtual register. 1699 CopyToExportRegsIfNeeded(&I); 1700 1701 // Update successor info 1702 InvokeMBB->addSuccessor(Return); 1703 InvokeMBB->addSuccessor(LandingPad); 1704 1705 // Drop into normal successor. 1706 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1707 MVT::Other, getControlRoot(), 1708 DAG.getBasicBlock(Return))); 1709 } 1710 1711 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1712 } 1713 1714 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1715 /// small case ranges). 1716 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1717 CaseRecVector& WorkList, 1718 const Value* SV, 1719 MachineBasicBlock *Default, 1720 MachineBasicBlock *SwitchBB) { 1721 Case& BackCase = *(CR.Range.second-1); 1722 1723 // Size is the number of Cases represented by this range. 1724 size_t Size = CR.Range.second - CR.Range.first; 1725 if (Size > 3) 1726 return false; 1727 1728 // Get the MachineFunction which holds the current MBB. This is used when 1729 // inserting any additional MBBs necessary to represent the switch. 1730 MachineFunction *CurMF = FuncInfo.MF; 1731 1732 // Figure out which block is immediately after the current one. 1733 MachineBasicBlock *NextBlock = 0; 1734 MachineFunction::iterator BBI = CR.CaseBB; 1735 1736 if (++BBI != FuncInfo.MF->end()) 1737 NextBlock = BBI; 1738 1739 // TODO: If any two of the cases has the same destination, and if one value 1740 // is the same as the other, but has one bit unset that the other has set, 1741 // use bit manipulation to do two compares at once. For example: 1742 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1743 1744 // Rearrange the case blocks so that the last one falls through if possible. 1745 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1746 // The last case block won't fall through into 'NextBlock' if we emit the 1747 // branches in this order. See if rearranging a case value would help. 1748 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1749 if (I->BB == NextBlock) { 1750 std::swap(*I, BackCase); 1751 break; 1752 } 1753 } 1754 } 1755 1756 // Create a CaseBlock record representing a conditional branch to 1757 // the Case's target mbb if the value being switched on SV is equal 1758 // to C. 1759 MachineBasicBlock *CurBlock = CR.CaseBB; 1760 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1761 MachineBasicBlock *FallThrough; 1762 if (I != E-1) { 1763 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1764 CurMF->insert(BBI, FallThrough); 1765 1766 // Put SV in a virtual register to make it available from the new blocks. 1767 ExportFromCurrentBlock(SV); 1768 } else { 1769 // If the last case doesn't match, go to the default block. 1770 FallThrough = Default; 1771 } 1772 1773 const Value *RHS, *LHS, *MHS; 1774 ISD::CondCode CC; 1775 if (I->High == I->Low) { 1776 // This is just small small case range :) containing exactly 1 case 1777 CC = ISD::SETEQ; 1778 LHS = SV; RHS = I->High; MHS = NULL; 1779 } else { 1780 CC = ISD::SETLE; 1781 LHS = I->Low; MHS = SV; RHS = I->High; 1782 } 1783 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1784 1785 // If emitting the first comparison, just call visitSwitchCase to emit the 1786 // code into the current block. Otherwise, push the CaseBlock onto the 1787 // vector to be later processed by SDISel, and insert the node's MBB 1788 // before the next MBB. 1789 if (CurBlock == SwitchBB) 1790 visitSwitchCase(CB, SwitchBB); 1791 else 1792 SwitchCases.push_back(CB); 1793 1794 CurBlock = FallThrough; 1795 } 1796 1797 return true; 1798 } 1799 1800 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1801 return !DisableJumpTables && 1802 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1803 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1804 } 1805 1806 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1807 APInt LastExt(Last), FirstExt(First); 1808 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1809 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1810 return (LastExt - FirstExt + 1ULL); 1811 } 1812 1813 /// handleJTSwitchCase - Emit jumptable for current switch case range 1814 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1815 CaseRecVector& WorkList, 1816 const Value* SV, 1817 MachineBasicBlock* Default, 1818 MachineBasicBlock *SwitchBB) { 1819 Case& FrontCase = *CR.Range.first; 1820 Case& BackCase = *(CR.Range.second-1); 1821 1822 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1823 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1824 1825 APInt TSize(First.getBitWidth(), 0); 1826 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1827 I!=E; ++I) 1828 TSize += I->size(); 1829 1830 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1831 return false; 1832 1833 APInt Range = ComputeRange(First, Last); 1834 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1835 if (Density < 0.4) 1836 return false; 1837 1838 DEBUG(dbgs() << "Lowering jump table\n" 1839 << "First entry: " << First << ". Last entry: " << Last << '\n' 1840 << "Range: " << Range 1841 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1842 1843 // Get the MachineFunction which holds the current MBB. This is used when 1844 // inserting any additional MBBs necessary to represent the switch. 1845 MachineFunction *CurMF = FuncInfo.MF; 1846 1847 // Figure out which block is immediately after the current one. 1848 MachineFunction::iterator BBI = CR.CaseBB; 1849 ++BBI; 1850 1851 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1852 1853 // Create a new basic block to hold the code for loading the address 1854 // of the jump table, and jumping to it. Update successor information; 1855 // we will either branch to the default case for the switch, or the jump 1856 // table. 1857 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1858 CurMF->insert(BBI, JumpTableBB); 1859 CR.CaseBB->addSuccessor(Default); 1860 CR.CaseBB->addSuccessor(JumpTableBB); 1861 1862 // Build a vector of destination BBs, corresponding to each target 1863 // of the jump table. If the value of the jump table slot corresponds to 1864 // a case statement, push the case's BB onto the vector, otherwise, push 1865 // the default BB. 1866 std::vector<MachineBasicBlock*> DestBBs; 1867 APInt TEI = First; 1868 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1869 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1870 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1871 1872 if (Low.sle(TEI) && TEI.sle(High)) { 1873 DestBBs.push_back(I->BB); 1874 if (TEI==High) 1875 ++I; 1876 } else { 1877 DestBBs.push_back(Default); 1878 } 1879 } 1880 1881 // Update successor info. Add one edge to each unique successor. 1882 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1883 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1884 E = DestBBs.end(); I != E; ++I) { 1885 if (!SuccsHandled[(*I)->getNumber()]) { 1886 SuccsHandled[(*I)->getNumber()] = true; 1887 JumpTableBB->addSuccessor(*I); 1888 } 1889 } 1890 1891 // Create a jump table index for this jump table. 1892 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1893 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1894 ->createJumpTableIndex(DestBBs); 1895 1896 // Set the jump table information so that we can codegen it as a second 1897 // MachineBasicBlock 1898 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1899 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1900 if (CR.CaseBB == SwitchBB) 1901 visitJumpTableHeader(JT, JTH, SwitchBB); 1902 1903 JTCases.push_back(JumpTableBlock(JTH, JT)); 1904 1905 return true; 1906 } 1907 1908 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1909 /// 2 subtrees. 1910 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1911 CaseRecVector& WorkList, 1912 const Value* SV, 1913 MachineBasicBlock *Default, 1914 MachineBasicBlock *SwitchBB) { 1915 // Get the MachineFunction which holds the current MBB. This is used when 1916 // inserting any additional MBBs necessary to represent the switch. 1917 MachineFunction *CurMF = FuncInfo.MF; 1918 1919 // Figure out which block is immediately after the current one. 1920 MachineFunction::iterator BBI = CR.CaseBB; 1921 ++BBI; 1922 1923 Case& FrontCase = *CR.Range.first; 1924 Case& BackCase = *(CR.Range.second-1); 1925 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1926 1927 // Size is the number of Cases represented by this range. 1928 unsigned Size = CR.Range.second - CR.Range.first; 1929 1930 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1931 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1932 double FMetric = 0; 1933 CaseItr Pivot = CR.Range.first + Size/2; 1934 1935 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1936 // (heuristically) allow us to emit JumpTable's later. 1937 APInt TSize(First.getBitWidth(), 0); 1938 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1939 I!=E; ++I) 1940 TSize += I->size(); 1941 1942 APInt LSize = FrontCase.size(); 1943 APInt RSize = TSize-LSize; 1944 DEBUG(dbgs() << "Selecting best pivot: \n" 1945 << "First: " << First << ", Last: " << Last <<'\n' 1946 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1947 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1948 J!=E; ++I, ++J) { 1949 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1950 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1951 APInt Range = ComputeRange(LEnd, RBegin); 1952 assert((Range - 2ULL).isNonNegative() && 1953 "Invalid case distance"); 1954 double LDensity = (double)LSize.roundToDouble() / 1955 (LEnd - First + 1ULL).roundToDouble(); 1956 double RDensity = (double)RSize.roundToDouble() / 1957 (Last - RBegin + 1ULL).roundToDouble(); 1958 double Metric = Range.logBase2()*(LDensity+RDensity); 1959 // Should always split in some non-trivial place 1960 DEBUG(dbgs() <<"=>Step\n" 1961 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1962 << "LDensity: " << LDensity 1963 << ", RDensity: " << RDensity << '\n' 1964 << "Metric: " << Metric << '\n'); 1965 if (FMetric < Metric) { 1966 Pivot = J; 1967 FMetric = Metric; 1968 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1969 } 1970 1971 LSize += J->size(); 1972 RSize -= J->size(); 1973 } 1974 if (areJTsAllowed(TLI)) { 1975 // If our case is dense we *really* should handle it earlier! 1976 assert((FMetric > 0) && "Should handle dense range earlier!"); 1977 } else { 1978 Pivot = CR.Range.first + Size/2; 1979 } 1980 1981 CaseRange LHSR(CR.Range.first, Pivot); 1982 CaseRange RHSR(Pivot, CR.Range.second); 1983 Constant *C = Pivot->Low; 1984 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1985 1986 // We know that we branch to the LHS if the Value being switched on is 1987 // less than the Pivot value, C. We use this to optimize our binary 1988 // tree a bit, by recognizing that if SV is greater than or equal to the 1989 // LHS's Case Value, and that Case Value is exactly one less than the 1990 // Pivot's Value, then we can branch directly to the LHS's Target, 1991 // rather than creating a leaf node for it. 1992 if ((LHSR.second - LHSR.first) == 1 && 1993 LHSR.first->High == CR.GE && 1994 cast<ConstantInt>(C)->getValue() == 1995 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1996 TrueBB = LHSR.first->BB; 1997 } else { 1998 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1999 CurMF->insert(BBI, TrueBB); 2000 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2001 2002 // Put SV in a virtual register to make it available from the new blocks. 2003 ExportFromCurrentBlock(SV); 2004 } 2005 2006 // Similar to the optimization above, if the Value being switched on is 2007 // known to be less than the Constant CR.LT, and the current Case Value 2008 // is CR.LT - 1, then we can branch directly to the target block for 2009 // the current Case Value, rather than emitting a RHS leaf node for it. 2010 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2011 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2012 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2013 FalseBB = RHSR.first->BB; 2014 } else { 2015 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2016 CurMF->insert(BBI, FalseBB); 2017 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2018 2019 // Put SV in a virtual register to make it available from the new blocks. 2020 ExportFromCurrentBlock(SV); 2021 } 2022 2023 // Create a CaseBlock record representing a conditional branch to 2024 // the LHS node if the value being switched on SV is less than C. 2025 // Otherwise, branch to LHS. 2026 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2027 2028 if (CR.CaseBB == SwitchBB) 2029 visitSwitchCase(CB, SwitchBB); 2030 else 2031 SwitchCases.push_back(CB); 2032 2033 return true; 2034 } 2035 2036 /// handleBitTestsSwitchCase - if current case range has few destination and 2037 /// range span less, than machine word bitwidth, encode case range into series 2038 /// of masks and emit bit tests with these masks. 2039 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2040 CaseRecVector& WorkList, 2041 const Value* SV, 2042 MachineBasicBlock* Default, 2043 MachineBasicBlock *SwitchBB){ 2044 EVT PTy = TLI.getPointerTy(); 2045 unsigned IntPtrBits = PTy.getSizeInBits(); 2046 2047 Case& FrontCase = *CR.Range.first; 2048 Case& BackCase = *(CR.Range.second-1); 2049 2050 // Get the MachineFunction which holds the current MBB. This is used when 2051 // inserting any additional MBBs necessary to represent the switch. 2052 MachineFunction *CurMF = FuncInfo.MF; 2053 2054 // If target does not have legal shift left, do not emit bit tests at all. 2055 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2056 return false; 2057 2058 size_t numCmps = 0; 2059 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2060 I!=E; ++I) { 2061 // Single case counts one, case range - two. 2062 numCmps += (I->Low == I->High ? 1 : 2); 2063 } 2064 2065 // Count unique destinations 2066 SmallSet<MachineBasicBlock*, 4> Dests; 2067 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2068 Dests.insert(I->BB); 2069 if (Dests.size() > 3) 2070 // Don't bother the code below, if there are too much unique destinations 2071 return false; 2072 } 2073 DEBUG(dbgs() << "Total number of unique destinations: " 2074 << Dests.size() << '\n' 2075 << "Total number of comparisons: " << numCmps << '\n'); 2076 2077 // Compute span of values. 2078 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2079 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2080 APInt cmpRange = maxValue - minValue; 2081 2082 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2083 << "Low bound: " << minValue << '\n' 2084 << "High bound: " << maxValue << '\n'); 2085 2086 if (cmpRange.uge(IntPtrBits) || 2087 (!(Dests.size() == 1 && numCmps >= 3) && 2088 !(Dests.size() == 2 && numCmps >= 5) && 2089 !(Dests.size() >= 3 && numCmps >= 6))) 2090 return false; 2091 2092 DEBUG(dbgs() << "Emitting bit tests\n"); 2093 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2094 2095 // Optimize the case where all the case values fit in a 2096 // word without having to subtract minValue. In this case, 2097 // we can optimize away the subtraction. 2098 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2099 cmpRange = maxValue; 2100 } else { 2101 lowBound = minValue; 2102 } 2103 2104 CaseBitsVector CasesBits; 2105 unsigned i, count = 0; 2106 2107 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2108 MachineBasicBlock* Dest = I->BB; 2109 for (i = 0; i < count; ++i) 2110 if (Dest == CasesBits[i].BB) 2111 break; 2112 2113 if (i == count) { 2114 assert((count < 3) && "Too much destinations to test!"); 2115 CasesBits.push_back(CaseBits(0, Dest, 0)); 2116 count++; 2117 } 2118 2119 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2120 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2121 2122 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2123 uint64_t hi = (highValue - lowBound).getZExtValue(); 2124 2125 for (uint64_t j = lo; j <= hi; j++) { 2126 CasesBits[i].Mask |= 1ULL << j; 2127 CasesBits[i].Bits++; 2128 } 2129 2130 } 2131 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2132 2133 BitTestInfo BTC; 2134 2135 // Figure out which block is immediately after the current one. 2136 MachineFunction::iterator BBI = CR.CaseBB; 2137 ++BBI; 2138 2139 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2140 2141 DEBUG(dbgs() << "Cases:\n"); 2142 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2143 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2144 << ", Bits: " << CasesBits[i].Bits 2145 << ", BB: " << CasesBits[i].BB << '\n'); 2146 2147 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2148 CurMF->insert(BBI, CaseBB); 2149 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2150 CaseBB, 2151 CasesBits[i].BB)); 2152 2153 // Put SV in a virtual register to make it available from the new blocks. 2154 ExportFromCurrentBlock(SV); 2155 } 2156 2157 BitTestBlock BTB(lowBound, cmpRange, SV, 2158 -1U, (CR.CaseBB == SwitchBB), 2159 CR.CaseBB, Default, BTC); 2160 2161 if (CR.CaseBB == SwitchBB) 2162 visitBitTestHeader(BTB, SwitchBB); 2163 2164 BitTestCases.push_back(BTB); 2165 2166 return true; 2167 } 2168 2169 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2170 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2171 const SwitchInst& SI) { 2172 size_t numCmps = 0; 2173 2174 // Start with "simple" cases 2175 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2176 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2177 Cases.push_back(Case(SI.getSuccessorValue(i), 2178 SI.getSuccessorValue(i), 2179 SMBB)); 2180 } 2181 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2182 2183 // Merge case into clusters 2184 if (Cases.size() >= 2) 2185 // Must recompute end() each iteration because it may be 2186 // invalidated by erase if we hold on to it 2187 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2188 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2189 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2190 MachineBasicBlock* nextBB = J->BB; 2191 MachineBasicBlock* currentBB = I->BB; 2192 2193 // If the two neighboring cases go to the same destination, merge them 2194 // into a single case. 2195 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2196 I->High = J->High; 2197 J = Cases.erase(J); 2198 } else { 2199 I = J++; 2200 } 2201 } 2202 2203 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2204 if (I->Low != I->High) 2205 // A range counts double, since it requires two compares. 2206 ++numCmps; 2207 } 2208 2209 return numCmps; 2210 } 2211 2212 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2213 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2214 2215 // Figure out which block is immediately after the current one. 2216 MachineBasicBlock *NextBlock = 0; 2217 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2218 2219 // If there is only the default destination, branch to it if it is not the 2220 // next basic block. Otherwise, just fall through. 2221 if (SI.getNumOperands() == 2) { 2222 // Update machine-CFG edges. 2223 2224 // If this is not a fall-through branch, emit the branch. 2225 SwitchMBB->addSuccessor(Default); 2226 if (Default != NextBlock) 2227 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2228 MVT::Other, getControlRoot(), 2229 DAG.getBasicBlock(Default))); 2230 2231 return; 2232 } 2233 2234 // If there are any non-default case statements, create a vector of Cases 2235 // representing each one, and sort the vector so that we can efficiently 2236 // create a binary search tree from them. 2237 CaseVector Cases; 2238 size_t numCmps = Clusterify(Cases, SI); 2239 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2240 << ". Total compares: " << numCmps << '\n'); 2241 numCmps = 0; 2242 2243 // Get the Value to be switched on and default basic blocks, which will be 2244 // inserted into CaseBlock records, representing basic blocks in the binary 2245 // search tree. 2246 const Value *SV = SI.getOperand(0); 2247 2248 // Push the initial CaseRec onto the worklist 2249 CaseRecVector WorkList; 2250 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2251 CaseRange(Cases.begin(),Cases.end()))); 2252 2253 while (!WorkList.empty()) { 2254 // Grab a record representing a case range to process off the worklist 2255 CaseRec CR = WorkList.back(); 2256 WorkList.pop_back(); 2257 2258 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2259 continue; 2260 2261 // If the range has few cases (two or less) emit a series of specific 2262 // tests. 2263 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2264 continue; 2265 2266 // If the switch has more than 5 blocks, and at least 40% dense, and the 2267 // target supports indirect branches, then emit a jump table rather than 2268 // lowering the switch to a binary tree of conditional branches. 2269 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2270 continue; 2271 2272 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2273 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2274 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2275 } 2276 } 2277 2278 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2279 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2280 2281 // Update machine-CFG edges with unique successors. 2282 SmallVector<BasicBlock*, 32> succs; 2283 succs.reserve(I.getNumSuccessors()); 2284 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2285 succs.push_back(I.getSuccessor(i)); 2286 array_pod_sort(succs.begin(), succs.end()); 2287 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2288 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2289 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2290 2291 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2292 MVT::Other, getControlRoot(), 2293 getValue(I.getAddress()))); 2294 } 2295 2296 void SelectionDAGBuilder::visitFSub(const User &I) { 2297 // -0.0 - X --> fneg 2298 const Type *Ty = I.getType(); 2299 if (Ty->isVectorTy()) { 2300 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2301 const VectorType *DestTy = cast<VectorType>(I.getType()); 2302 const Type *ElTy = DestTy->getElementType(); 2303 unsigned VL = DestTy->getNumElements(); 2304 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2305 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2306 if (CV == CNZ) { 2307 SDValue Op2 = getValue(I.getOperand(1)); 2308 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2309 Op2.getValueType(), Op2)); 2310 return; 2311 } 2312 } 2313 } 2314 2315 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2316 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2317 SDValue Op2 = getValue(I.getOperand(1)); 2318 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2319 Op2.getValueType(), Op2)); 2320 return; 2321 } 2322 2323 visitBinary(I, ISD::FSUB); 2324 } 2325 2326 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2327 SDValue Op1 = getValue(I.getOperand(0)); 2328 SDValue Op2 = getValue(I.getOperand(1)); 2329 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2330 Op1.getValueType(), Op1, Op2)); 2331 } 2332 2333 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2334 SDValue Op1 = getValue(I.getOperand(0)); 2335 SDValue Op2 = getValue(I.getOperand(1)); 2336 if (!I.getType()->isVectorTy() && 2337 Op2.getValueType() != TLI.getShiftAmountTy()) { 2338 // If the operand is smaller than the shift count type, promote it. 2339 EVT PTy = TLI.getPointerTy(); 2340 EVT STy = TLI.getShiftAmountTy(); 2341 if (STy.bitsGT(Op2.getValueType())) 2342 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2343 TLI.getShiftAmountTy(), Op2); 2344 // If the operand is larger than the shift count type but the shift 2345 // count type has enough bits to represent any shift value, truncate 2346 // it now. This is a common case and it exposes the truncate to 2347 // optimization early. 2348 else if (STy.getSizeInBits() >= 2349 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2350 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2351 TLI.getShiftAmountTy(), Op2); 2352 // Otherwise we'll need to temporarily settle for some other 2353 // convenient type; type legalization will make adjustments as 2354 // needed. 2355 else if (PTy.bitsLT(Op2.getValueType())) 2356 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2357 TLI.getPointerTy(), Op2); 2358 else if (PTy.bitsGT(Op2.getValueType())) 2359 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2360 TLI.getPointerTy(), Op2); 2361 } 2362 2363 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2364 Op1.getValueType(), Op1, Op2)); 2365 } 2366 2367 void SelectionDAGBuilder::visitICmp(const User &I) { 2368 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2369 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2370 predicate = IC->getPredicate(); 2371 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2372 predicate = ICmpInst::Predicate(IC->getPredicate()); 2373 SDValue Op1 = getValue(I.getOperand(0)); 2374 SDValue Op2 = getValue(I.getOperand(1)); 2375 ISD::CondCode Opcode = getICmpCondCode(predicate); 2376 2377 EVT DestVT = TLI.getValueType(I.getType()); 2378 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2379 } 2380 2381 void SelectionDAGBuilder::visitFCmp(const User &I) { 2382 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2383 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2384 predicate = FC->getPredicate(); 2385 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2386 predicate = FCmpInst::Predicate(FC->getPredicate()); 2387 SDValue Op1 = getValue(I.getOperand(0)); 2388 SDValue Op2 = getValue(I.getOperand(1)); 2389 ISD::CondCode Condition = getFCmpCondCode(predicate); 2390 EVT DestVT = TLI.getValueType(I.getType()); 2391 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2392 } 2393 2394 void SelectionDAGBuilder::visitSelect(const User &I) { 2395 SmallVector<EVT, 4> ValueVTs; 2396 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2397 unsigned NumValues = ValueVTs.size(); 2398 if (NumValues == 0) return; 2399 2400 SmallVector<SDValue, 4> Values(NumValues); 2401 SDValue Cond = getValue(I.getOperand(0)); 2402 SDValue TrueVal = getValue(I.getOperand(1)); 2403 SDValue FalseVal = getValue(I.getOperand(2)); 2404 2405 for (unsigned i = 0; i != NumValues; ++i) 2406 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2407 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2408 Cond, 2409 SDValue(TrueVal.getNode(), 2410 TrueVal.getResNo() + i), 2411 SDValue(FalseVal.getNode(), 2412 FalseVal.getResNo() + i)); 2413 2414 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2415 DAG.getVTList(&ValueVTs[0], NumValues), 2416 &Values[0], NumValues)); 2417 } 2418 2419 void SelectionDAGBuilder::visitTrunc(const User &I) { 2420 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2421 SDValue N = getValue(I.getOperand(0)); 2422 EVT DestVT = TLI.getValueType(I.getType()); 2423 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2424 } 2425 2426 void SelectionDAGBuilder::visitZExt(const User &I) { 2427 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2428 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2429 SDValue N = getValue(I.getOperand(0)); 2430 EVT DestVT = TLI.getValueType(I.getType()); 2431 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2432 } 2433 2434 void SelectionDAGBuilder::visitSExt(const User &I) { 2435 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2436 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2437 SDValue N = getValue(I.getOperand(0)); 2438 EVT DestVT = TLI.getValueType(I.getType()); 2439 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2440 } 2441 2442 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2443 // FPTrunc is never a no-op cast, no need to check 2444 SDValue N = getValue(I.getOperand(0)); 2445 EVT DestVT = TLI.getValueType(I.getType()); 2446 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2447 DestVT, N, DAG.getIntPtrConstant(0))); 2448 } 2449 2450 void SelectionDAGBuilder::visitFPExt(const User &I){ 2451 // FPTrunc is never a no-op cast, no need to check 2452 SDValue N = getValue(I.getOperand(0)); 2453 EVT DestVT = TLI.getValueType(I.getType()); 2454 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2455 } 2456 2457 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2458 // FPToUI is never a no-op cast, no need to check 2459 SDValue N = getValue(I.getOperand(0)); 2460 EVT DestVT = TLI.getValueType(I.getType()); 2461 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2462 } 2463 2464 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2465 // FPToSI is never a no-op cast, no need to check 2466 SDValue N = getValue(I.getOperand(0)); 2467 EVT DestVT = TLI.getValueType(I.getType()); 2468 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2469 } 2470 2471 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2472 // UIToFP is never a no-op cast, no need to check 2473 SDValue N = getValue(I.getOperand(0)); 2474 EVT DestVT = TLI.getValueType(I.getType()); 2475 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2476 } 2477 2478 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2479 // SIToFP is never a no-op cast, no need to check 2480 SDValue N = getValue(I.getOperand(0)); 2481 EVT DestVT = TLI.getValueType(I.getType()); 2482 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2483 } 2484 2485 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2486 // What to do depends on the size of the integer and the size of the pointer. 2487 // We can either truncate, zero extend, or no-op, accordingly. 2488 SDValue N = getValue(I.getOperand(0)); 2489 EVT DestVT = TLI.getValueType(I.getType()); 2490 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2491 } 2492 2493 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2494 // What to do depends on the size of the integer and the size of the pointer. 2495 // We can either truncate, zero extend, or no-op, accordingly. 2496 SDValue N = getValue(I.getOperand(0)); 2497 EVT DestVT = TLI.getValueType(I.getType()); 2498 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2499 } 2500 2501 void SelectionDAGBuilder::visitBitCast(const User &I) { 2502 SDValue N = getValue(I.getOperand(0)); 2503 EVT DestVT = TLI.getValueType(I.getType()); 2504 2505 // BitCast assures us that source and destination are the same size so this is 2506 // either a BIT_CONVERT or a no-op. 2507 if (DestVT != N.getValueType()) 2508 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2509 DestVT, N)); // convert types. 2510 else 2511 setValue(&I, N); // noop cast. 2512 } 2513 2514 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2515 SDValue InVec = getValue(I.getOperand(0)); 2516 SDValue InVal = getValue(I.getOperand(1)); 2517 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2518 TLI.getPointerTy(), 2519 getValue(I.getOperand(2))); 2520 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2521 TLI.getValueType(I.getType()), 2522 InVec, InVal, InIdx)); 2523 } 2524 2525 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2526 SDValue InVec = getValue(I.getOperand(0)); 2527 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2528 TLI.getPointerTy(), 2529 getValue(I.getOperand(1))); 2530 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2531 TLI.getValueType(I.getType()), InVec, InIdx)); 2532 } 2533 2534 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2535 // from SIndx and increasing to the element length (undefs are allowed). 2536 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2537 unsigned MaskNumElts = Mask.size(); 2538 for (unsigned i = 0; i != MaskNumElts; ++i) 2539 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2540 return false; 2541 return true; 2542 } 2543 2544 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2545 SmallVector<int, 8> Mask; 2546 SDValue Src1 = getValue(I.getOperand(0)); 2547 SDValue Src2 = getValue(I.getOperand(1)); 2548 2549 // Convert the ConstantVector mask operand into an array of ints, with -1 2550 // representing undef values. 2551 SmallVector<Constant*, 8> MaskElts; 2552 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2553 unsigned MaskNumElts = MaskElts.size(); 2554 for (unsigned i = 0; i != MaskNumElts; ++i) { 2555 if (isa<UndefValue>(MaskElts[i])) 2556 Mask.push_back(-1); 2557 else 2558 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2559 } 2560 2561 EVT VT = TLI.getValueType(I.getType()); 2562 EVT SrcVT = Src1.getValueType(); 2563 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2564 2565 if (SrcNumElts == MaskNumElts) { 2566 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2567 &Mask[0])); 2568 return; 2569 } 2570 2571 // Normalize the shuffle vector since mask and vector length don't match. 2572 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2573 // Mask is longer than the source vectors and is a multiple of the source 2574 // vectors. We can use concatenate vector to make the mask and vectors 2575 // lengths match. 2576 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2577 // The shuffle is concatenating two vectors together. 2578 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2579 VT, Src1, Src2)); 2580 return; 2581 } 2582 2583 // Pad both vectors with undefs to make them the same length as the mask. 2584 unsigned NumConcat = MaskNumElts / SrcNumElts; 2585 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2586 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2587 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2588 2589 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2590 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2591 MOps1[0] = Src1; 2592 MOps2[0] = Src2; 2593 2594 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2595 getCurDebugLoc(), VT, 2596 &MOps1[0], NumConcat); 2597 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2598 getCurDebugLoc(), VT, 2599 &MOps2[0], NumConcat); 2600 2601 // Readjust mask for new input vector length. 2602 SmallVector<int, 8> MappedOps; 2603 for (unsigned i = 0; i != MaskNumElts; ++i) { 2604 int Idx = Mask[i]; 2605 if (Idx < (int)SrcNumElts) 2606 MappedOps.push_back(Idx); 2607 else 2608 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2609 } 2610 2611 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2612 &MappedOps[0])); 2613 return; 2614 } 2615 2616 if (SrcNumElts > MaskNumElts) { 2617 // Analyze the access pattern of the vector to see if we can extract 2618 // two subvectors and do the shuffle. The analysis is done by calculating 2619 // the range of elements the mask access on both vectors. 2620 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2621 int MaxRange[2] = {-1, -1}; 2622 2623 for (unsigned i = 0; i != MaskNumElts; ++i) { 2624 int Idx = Mask[i]; 2625 int Input = 0; 2626 if (Idx < 0) 2627 continue; 2628 2629 if (Idx >= (int)SrcNumElts) { 2630 Input = 1; 2631 Idx -= SrcNumElts; 2632 } 2633 if (Idx > MaxRange[Input]) 2634 MaxRange[Input] = Idx; 2635 if (Idx < MinRange[Input]) 2636 MinRange[Input] = Idx; 2637 } 2638 2639 // Check if the access is smaller than the vector size and can we find 2640 // a reasonable extract index. 2641 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2642 // Extract. 2643 int StartIdx[2]; // StartIdx to extract from 2644 for (int Input=0; Input < 2; ++Input) { 2645 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2646 RangeUse[Input] = 0; // Unused 2647 StartIdx[Input] = 0; 2648 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2649 // Fits within range but we should see if we can find a good 2650 // start index that is a multiple of the mask length. 2651 if (MaxRange[Input] < (int)MaskNumElts) { 2652 RangeUse[Input] = 1; // Extract from beginning of the vector 2653 StartIdx[Input] = 0; 2654 } else { 2655 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2656 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2657 StartIdx[Input] + MaskNumElts < SrcNumElts) 2658 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2659 } 2660 } 2661 } 2662 2663 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2664 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2665 return; 2666 } 2667 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2668 // Extract appropriate subvector and generate a vector shuffle 2669 for (int Input=0; Input < 2; ++Input) { 2670 SDValue &Src = Input == 0 ? Src1 : Src2; 2671 if (RangeUse[Input] == 0) 2672 Src = DAG.getUNDEF(VT); 2673 else 2674 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2675 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2676 } 2677 2678 // Calculate new mask. 2679 SmallVector<int, 8> MappedOps; 2680 for (unsigned i = 0; i != MaskNumElts; ++i) { 2681 int Idx = Mask[i]; 2682 if (Idx < 0) 2683 MappedOps.push_back(Idx); 2684 else if (Idx < (int)SrcNumElts) 2685 MappedOps.push_back(Idx - StartIdx[0]); 2686 else 2687 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2688 } 2689 2690 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2691 &MappedOps[0])); 2692 return; 2693 } 2694 } 2695 2696 // We can't use either concat vectors or extract subvectors so fall back to 2697 // replacing the shuffle with extract and build vector. 2698 // to insert and build vector. 2699 EVT EltVT = VT.getVectorElementType(); 2700 EVT PtrVT = TLI.getPointerTy(); 2701 SmallVector<SDValue,8> Ops; 2702 for (unsigned i = 0; i != MaskNumElts; ++i) { 2703 if (Mask[i] < 0) { 2704 Ops.push_back(DAG.getUNDEF(EltVT)); 2705 } else { 2706 int Idx = Mask[i]; 2707 SDValue Res; 2708 2709 if (Idx < (int)SrcNumElts) 2710 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2711 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2712 else 2713 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2714 EltVT, Src2, 2715 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2716 2717 Ops.push_back(Res); 2718 } 2719 } 2720 2721 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2722 VT, &Ops[0], Ops.size())); 2723 } 2724 2725 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2726 const Value *Op0 = I.getOperand(0); 2727 const Value *Op1 = I.getOperand(1); 2728 const Type *AggTy = I.getType(); 2729 const Type *ValTy = Op1->getType(); 2730 bool IntoUndef = isa<UndefValue>(Op0); 2731 bool FromUndef = isa<UndefValue>(Op1); 2732 2733 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2734 I.idx_begin(), I.idx_end()); 2735 2736 SmallVector<EVT, 4> AggValueVTs; 2737 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2738 SmallVector<EVT, 4> ValValueVTs; 2739 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2740 2741 unsigned NumAggValues = AggValueVTs.size(); 2742 unsigned NumValValues = ValValueVTs.size(); 2743 SmallVector<SDValue, 4> Values(NumAggValues); 2744 2745 SDValue Agg = getValue(Op0); 2746 SDValue Val = getValue(Op1); 2747 unsigned i = 0; 2748 // Copy the beginning value(s) from the original aggregate. 2749 for (; i != LinearIndex; ++i) 2750 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2751 SDValue(Agg.getNode(), Agg.getResNo() + i); 2752 // Copy values from the inserted value(s). 2753 for (; i != LinearIndex + NumValValues; ++i) 2754 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2755 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2756 // Copy remaining value(s) from the original aggregate. 2757 for (; i != NumAggValues; ++i) 2758 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2759 SDValue(Agg.getNode(), Agg.getResNo() + i); 2760 2761 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2762 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2763 &Values[0], NumAggValues)); 2764 } 2765 2766 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2767 const Value *Op0 = I.getOperand(0); 2768 const Type *AggTy = Op0->getType(); 2769 const Type *ValTy = I.getType(); 2770 bool OutOfUndef = isa<UndefValue>(Op0); 2771 2772 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2773 I.idx_begin(), I.idx_end()); 2774 2775 SmallVector<EVT, 4> ValValueVTs; 2776 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2777 2778 unsigned NumValValues = ValValueVTs.size(); 2779 SmallVector<SDValue, 4> Values(NumValValues); 2780 2781 SDValue Agg = getValue(Op0); 2782 // Copy out the selected value(s). 2783 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2784 Values[i - LinearIndex] = 2785 OutOfUndef ? 2786 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2787 SDValue(Agg.getNode(), Agg.getResNo() + i); 2788 2789 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2790 DAG.getVTList(&ValValueVTs[0], NumValValues), 2791 &Values[0], NumValValues)); 2792 } 2793 2794 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2795 SDValue N = getValue(I.getOperand(0)); 2796 const Type *Ty = I.getOperand(0)->getType(); 2797 2798 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2799 OI != E; ++OI) { 2800 const Value *Idx = *OI; 2801 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2802 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2803 if (Field) { 2804 // N = N + Offset 2805 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2806 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2807 DAG.getIntPtrConstant(Offset)); 2808 } 2809 2810 Ty = StTy->getElementType(Field); 2811 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2812 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2813 2814 // Offset canonically 0 for unions, but type changes 2815 Ty = UnTy->getElementType(Field); 2816 } else { 2817 Ty = cast<SequentialType>(Ty)->getElementType(); 2818 2819 // If this is a constant subscript, handle it quickly. 2820 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2821 if (CI->isZero()) continue; 2822 uint64_t Offs = 2823 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2824 SDValue OffsVal; 2825 EVT PTy = TLI.getPointerTy(); 2826 unsigned PtrBits = PTy.getSizeInBits(); 2827 if (PtrBits < 64) 2828 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2829 TLI.getPointerTy(), 2830 DAG.getConstant(Offs, MVT::i64)); 2831 else 2832 OffsVal = DAG.getIntPtrConstant(Offs); 2833 2834 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2835 OffsVal); 2836 continue; 2837 } 2838 2839 // N = N + Idx * ElementSize; 2840 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2841 TD->getTypeAllocSize(Ty)); 2842 SDValue IdxN = getValue(Idx); 2843 2844 // If the index is smaller or larger than intptr_t, truncate or extend 2845 // it. 2846 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2847 2848 // If this is a multiply by a power of two, turn it into a shl 2849 // immediately. This is a very common case. 2850 if (ElementSize != 1) { 2851 if (ElementSize.isPowerOf2()) { 2852 unsigned Amt = ElementSize.logBase2(); 2853 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2854 N.getValueType(), IdxN, 2855 DAG.getConstant(Amt, TLI.getPointerTy())); 2856 } else { 2857 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2858 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2859 N.getValueType(), IdxN, Scale); 2860 } 2861 } 2862 2863 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2864 N.getValueType(), N, IdxN); 2865 } 2866 } 2867 2868 setValue(&I, N); 2869 } 2870 2871 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2872 // If this is a fixed sized alloca in the entry block of the function, 2873 // allocate it statically on the stack. 2874 if (FuncInfo.StaticAllocaMap.count(&I)) 2875 return; // getValue will auto-populate this. 2876 2877 const Type *Ty = I.getAllocatedType(); 2878 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2879 unsigned Align = 2880 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2881 I.getAlignment()); 2882 2883 SDValue AllocSize = getValue(I.getArraySize()); 2884 2885 EVT IntPtr = TLI.getPointerTy(); 2886 if (AllocSize.getValueType() != IntPtr) 2887 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2888 2889 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2890 AllocSize, 2891 DAG.getConstant(TySize, IntPtr)); 2892 2893 // Handle alignment. If the requested alignment is less than or equal to 2894 // the stack alignment, ignore it. If the size is greater than or equal to 2895 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2896 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2897 if (Align <= StackAlign) 2898 Align = 0; 2899 2900 // Round the size of the allocation up to the stack alignment size 2901 // by add SA-1 to the size. 2902 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2903 AllocSize.getValueType(), AllocSize, 2904 DAG.getIntPtrConstant(StackAlign-1)); 2905 2906 // Mask out the low bits for alignment purposes. 2907 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2908 AllocSize.getValueType(), AllocSize, 2909 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2910 2911 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2912 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2913 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2914 VTs, Ops, 3); 2915 setValue(&I, DSA); 2916 DAG.setRoot(DSA.getValue(1)); 2917 2918 // Inform the Frame Information that we have just allocated a variable-sized 2919 // object. 2920 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2921 } 2922 2923 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2924 const Value *SV = I.getOperand(0); 2925 SDValue Ptr = getValue(SV); 2926 2927 const Type *Ty = I.getType(); 2928 2929 bool isVolatile = I.isVolatile(); 2930 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2931 unsigned Alignment = I.getAlignment(); 2932 2933 SmallVector<EVT, 4> ValueVTs; 2934 SmallVector<uint64_t, 4> Offsets; 2935 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2936 unsigned NumValues = ValueVTs.size(); 2937 if (NumValues == 0) 2938 return; 2939 2940 SDValue Root; 2941 bool ConstantMemory = false; 2942 if (I.isVolatile()) 2943 // Serialize volatile loads with other side effects. 2944 Root = getRoot(); 2945 else if (AA->pointsToConstantMemory(SV)) { 2946 // Do not serialize (non-volatile) loads of constant memory with anything. 2947 Root = DAG.getEntryNode(); 2948 ConstantMemory = true; 2949 } else { 2950 // Do not serialize non-volatile loads against each other. 2951 Root = DAG.getRoot(); 2952 } 2953 2954 SmallVector<SDValue, 4> Values(NumValues); 2955 SmallVector<SDValue, 4> Chains(NumValues); 2956 EVT PtrVT = Ptr.getValueType(); 2957 for (unsigned i = 0; i != NumValues; ++i) { 2958 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2959 PtrVT, Ptr, 2960 DAG.getConstant(Offsets[i], PtrVT)); 2961 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2962 A, SV, Offsets[i], isVolatile, 2963 isNonTemporal, Alignment); 2964 2965 Values[i] = L; 2966 Chains[i] = L.getValue(1); 2967 } 2968 2969 if (!ConstantMemory) { 2970 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2971 MVT::Other, &Chains[0], NumValues); 2972 if (isVolatile) 2973 DAG.setRoot(Chain); 2974 else 2975 PendingLoads.push_back(Chain); 2976 } 2977 2978 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2979 DAG.getVTList(&ValueVTs[0], NumValues), 2980 &Values[0], NumValues)); 2981 } 2982 2983 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2984 const Value *SrcV = I.getOperand(0); 2985 const Value *PtrV = I.getOperand(1); 2986 2987 SmallVector<EVT, 4> ValueVTs; 2988 SmallVector<uint64_t, 4> Offsets; 2989 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2990 unsigned NumValues = ValueVTs.size(); 2991 if (NumValues == 0) 2992 return; 2993 2994 // Get the lowered operands. Note that we do this after 2995 // checking if NumResults is zero, because with zero results 2996 // the operands won't have values in the map. 2997 SDValue Src = getValue(SrcV); 2998 SDValue Ptr = getValue(PtrV); 2999 3000 SDValue Root = getRoot(); 3001 SmallVector<SDValue, 4> Chains(NumValues); 3002 EVT PtrVT = Ptr.getValueType(); 3003 bool isVolatile = I.isVolatile(); 3004 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3005 unsigned Alignment = I.getAlignment(); 3006 3007 for (unsigned i = 0; i != NumValues; ++i) { 3008 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3009 DAG.getConstant(Offsets[i], PtrVT)); 3010 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3011 SDValue(Src.getNode(), Src.getResNo() + i), 3012 Add, PtrV, Offsets[i], isVolatile, 3013 isNonTemporal, Alignment); 3014 } 3015 3016 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3017 MVT::Other, &Chains[0], NumValues)); 3018 } 3019 3020 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3021 /// node. 3022 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3023 unsigned Intrinsic) { 3024 bool HasChain = !I.doesNotAccessMemory(); 3025 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3026 3027 // Build the operand list. 3028 SmallVector<SDValue, 8> Ops; 3029 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3030 if (OnlyLoad) { 3031 // We don't need to serialize loads against other loads. 3032 Ops.push_back(DAG.getRoot()); 3033 } else { 3034 Ops.push_back(getRoot()); 3035 } 3036 } 3037 3038 // Info is set by getTgtMemInstrinsic 3039 TargetLowering::IntrinsicInfo Info; 3040 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3041 3042 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3043 if (!IsTgtIntrinsic) 3044 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3045 3046 // Add all operands of the call to the operand list. 3047 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3048 SDValue Op = getValue(I.getArgOperand(i)); 3049 assert(TLI.isTypeLegal(Op.getValueType()) && 3050 "Intrinsic uses a non-legal type?"); 3051 Ops.push_back(Op); 3052 } 3053 3054 SmallVector<EVT, 4> ValueVTs; 3055 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3056 #ifndef NDEBUG 3057 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3058 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3059 "Intrinsic uses a non-legal type?"); 3060 } 3061 #endif // NDEBUG 3062 3063 if (HasChain) 3064 ValueVTs.push_back(MVT::Other); 3065 3066 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3067 3068 // Create the node. 3069 SDValue Result; 3070 if (IsTgtIntrinsic) { 3071 // This is target intrinsic that touches memory 3072 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3073 VTs, &Ops[0], Ops.size(), 3074 Info.memVT, Info.ptrVal, Info.offset, 3075 Info.align, Info.vol, 3076 Info.readMem, Info.writeMem); 3077 } else if (!HasChain) { 3078 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3079 VTs, &Ops[0], Ops.size()); 3080 } else if (!I.getType()->isVoidTy()) { 3081 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3082 VTs, &Ops[0], Ops.size()); 3083 } else { 3084 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3085 VTs, &Ops[0], Ops.size()); 3086 } 3087 3088 if (HasChain) { 3089 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3090 if (OnlyLoad) 3091 PendingLoads.push_back(Chain); 3092 else 3093 DAG.setRoot(Chain); 3094 } 3095 3096 if (!I.getType()->isVoidTy()) { 3097 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3098 EVT VT = TLI.getValueType(PTy); 3099 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3100 } 3101 3102 setValue(&I, Result); 3103 } 3104 } 3105 3106 /// GetSignificand - Get the significand and build it into a floating-point 3107 /// number with exponent of 1: 3108 /// 3109 /// Op = (Op & 0x007fffff) | 0x3f800000; 3110 /// 3111 /// where Op is the hexidecimal representation of floating point value. 3112 static SDValue 3113 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3114 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3115 DAG.getConstant(0x007fffff, MVT::i32)); 3116 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3117 DAG.getConstant(0x3f800000, MVT::i32)); 3118 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3119 } 3120 3121 /// GetExponent - Get the exponent: 3122 /// 3123 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3124 /// 3125 /// where Op is the hexidecimal representation of floating point value. 3126 static SDValue 3127 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3128 DebugLoc dl) { 3129 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3130 DAG.getConstant(0x7f800000, MVT::i32)); 3131 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3132 DAG.getConstant(23, TLI.getPointerTy())); 3133 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3134 DAG.getConstant(127, MVT::i32)); 3135 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3136 } 3137 3138 /// getF32Constant - Get 32-bit floating point constant. 3139 static SDValue 3140 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3141 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3142 } 3143 3144 /// Inlined utility function to implement binary input atomic intrinsics for 3145 /// visitIntrinsicCall: I is a call instruction 3146 /// Op is the associated NodeType for I 3147 const char * 3148 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3149 ISD::NodeType Op) { 3150 SDValue Root = getRoot(); 3151 SDValue L = 3152 DAG.getAtomic(Op, getCurDebugLoc(), 3153 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3154 Root, 3155 getValue(I.getArgOperand(0)), 3156 getValue(I.getArgOperand(1)), 3157 I.getArgOperand(0)); 3158 setValue(&I, L); 3159 DAG.setRoot(L.getValue(1)); 3160 return 0; 3161 } 3162 3163 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3164 const char * 3165 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3166 SDValue Op1 = getValue(I.getArgOperand(0)); 3167 SDValue Op2 = getValue(I.getArgOperand(1)); 3168 3169 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3170 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3171 return 0; 3172 } 3173 3174 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3175 /// limited-precision mode. 3176 void 3177 SelectionDAGBuilder::visitExp(const CallInst &I) { 3178 SDValue result; 3179 DebugLoc dl = getCurDebugLoc(); 3180 3181 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3182 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3183 SDValue Op = getValue(I.getArgOperand(0)); 3184 3185 // Put the exponent in the right bit position for later addition to the 3186 // final result: 3187 // 3188 // #define LOG2OFe 1.4426950f 3189 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3190 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3191 getF32Constant(DAG, 0x3fb8aa3b)); 3192 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3193 3194 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3195 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3196 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3197 3198 // IntegerPartOfX <<= 23; 3199 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3200 DAG.getConstant(23, TLI.getPointerTy())); 3201 3202 if (LimitFloatPrecision <= 6) { 3203 // For floating-point precision of 6: 3204 // 3205 // TwoToFractionalPartOfX = 3206 // 0.997535578f + 3207 // (0.735607626f + 0.252464424f * x) * x; 3208 // 3209 // error 0.0144103317, which is 6 bits 3210 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3211 getF32Constant(DAG, 0x3e814304)); 3212 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3213 getF32Constant(DAG, 0x3f3c50c8)); 3214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3215 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3216 getF32Constant(DAG, 0x3f7f5e7e)); 3217 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3218 3219 // Add the exponent into the result in integer domain. 3220 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3221 TwoToFracPartOfX, IntegerPartOfX); 3222 3223 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3224 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3225 // For floating-point precision of 12: 3226 // 3227 // TwoToFractionalPartOfX = 3228 // 0.999892986f + 3229 // (0.696457318f + 3230 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3231 // 3232 // 0.000107046256 error, which is 13 to 14 bits 3233 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3234 getF32Constant(DAG, 0x3da235e3)); 3235 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3236 getF32Constant(DAG, 0x3e65b8f3)); 3237 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3238 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3239 getF32Constant(DAG, 0x3f324b07)); 3240 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3241 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3242 getF32Constant(DAG, 0x3f7ff8fd)); 3243 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3244 3245 // Add the exponent into the result in integer domain. 3246 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3247 TwoToFracPartOfX, IntegerPartOfX); 3248 3249 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3250 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3251 // For floating-point precision of 18: 3252 // 3253 // TwoToFractionalPartOfX = 3254 // 0.999999982f + 3255 // (0.693148872f + 3256 // (0.240227044f + 3257 // (0.554906021e-1f + 3258 // (0.961591928e-2f + 3259 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3260 // 3261 // error 2.47208000*10^(-7), which is better than 18 bits 3262 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3263 getF32Constant(DAG, 0x3924b03e)); 3264 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3265 getF32Constant(DAG, 0x3ab24b87)); 3266 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3267 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3268 getF32Constant(DAG, 0x3c1d8c17)); 3269 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3270 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3271 getF32Constant(DAG, 0x3d634a1d)); 3272 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3273 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3274 getF32Constant(DAG, 0x3e75fe14)); 3275 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3276 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3277 getF32Constant(DAG, 0x3f317234)); 3278 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3279 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3280 getF32Constant(DAG, 0x3f800000)); 3281 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3282 MVT::i32, t13); 3283 3284 // Add the exponent into the result in integer domain. 3285 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3286 TwoToFracPartOfX, IntegerPartOfX); 3287 3288 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3289 } 3290 } else { 3291 // No special expansion. 3292 result = DAG.getNode(ISD::FEXP, dl, 3293 getValue(I.getArgOperand(0)).getValueType(), 3294 getValue(I.getArgOperand(0))); 3295 } 3296 3297 setValue(&I, result); 3298 } 3299 3300 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3301 /// limited-precision mode. 3302 void 3303 SelectionDAGBuilder::visitLog(const CallInst &I) { 3304 SDValue result; 3305 DebugLoc dl = getCurDebugLoc(); 3306 3307 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3308 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3309 SDValue Op = getValue(I.getArgOperand(0)); 3310 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3311 3312 // Scale the exponent by log(2) [0.69314718f]. 3313 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3314 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3315 getF32Constant(DAG, 0x3f317218)); 3316 3317 // Get the significand and build it into a floating-point number with 3318 // exponent of 1. 3319 SDValue X = GetSignificand(DAG, Op1, dl); 3320 3321 if (LimitFloatPrecision <= 6) { 3322 // For floating-point precision of 6: 3323 // 3324 // LogofMantissa = 3325 // -1.1609546f + 3326 // (1.4034025f - 0.23903021f * x) * x; 3327 // 3328 // error 0.0034276066, which is better than 8 bits 3329 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3330 getF32Constant(DAG, 0xbe74c456)); 3331 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3332 getF32Constant(DAG, 0x3fb3a2b1)); 3333 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3334 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3335 getF32Constant(DAG, 0x3f949a29)); 3336 3337 result = DAG.getNode(ISD::FADD, dl, 3338 MVT::f32, LogOfExponent, LogOfMantissa); 3339 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3340 // For floating-point precision of 12: 3341 // 3342 // LogOfMantissa = 3343 // -1.7417939f + 3344 // (2.8212026f + 3345 // (-1.4699568f + 3346 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3347 // 3348 // error 0.000061011436, which is 14 bits 3349 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3350 getF32Constant(DAG, 0xbd67b6d6)); 3351 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3352 getF32Constant(DAG, 0x3ee4f4b8)); 3353 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3354 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3355 getF32Constant(DAG, 0x3fbc278b)); 3356 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3357 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3358 getF32Constant(DAG, 0x40348e95)); 3359 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3360 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3361 getF32Constant(DAG, 0x3fdef31a)); 3362 3363 result = DAG.getNode(ISD::FADD, dl, 3364 MVT::f32, LogOfExponent, LogOfMantissa); 3365 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3366 // For floating-point precision of 18: 3367 // 3368 // LogOfMantissa = 3369 // -2.1072184f + 3370 // (4.2372794f + 3371 // (-3.7029485f + 3372 // (2.2781945f + 3373 // (-0.87823314f + 3374 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3375 // 3376 // error 0.0000023660568, which is better than 18 bits 3377 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3378 getF32Constant(DAG, 0xbc91e5ac)); 3379 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3380 getF32Constant(DAG, 0x3e4350aa)); 3381 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3382 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3383 getF32Constant(DAG, 0x3f60d3e3)); 3384 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3385 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3386 getF32Constant(DAG, 0x4011cdf0)); 3387 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3388 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3389 getF32Constant(DAG, 0x406cfd1c)); 3390 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3391 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3392 getF32Constant(DAG, 0x408797cb)); 3393 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3394 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3395 getF32Constant(DAG, 0x4006dcab)); 3396 3397 result = DAG.getNode(ISD::FADD, dl, 3398 MVT::f32, LogOfExponent, LogOfMantissa); 3399 } 3400 } else { 3401 // No special expansion. 3402 result = DAG.getNode(ISD::FLOG, dl, 3403 getValue(I.getArgOperand(0)).getValueType(), 3404 getValue(I.getArgOperand(0))); 3405 } 3406 3407 setValue(&I, result); 3408 } 3409 3410 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3411 /// limited-precision mode. 3412 void 3413 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3414 SDValue result; 3415 DebugLoc dl = getCurDebugLoc(); 3416 3417 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3418 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3419 SDValue Op = getValue(I.getArgOperand(0)); 3420 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3421 3422 // Get the exponent. 3423 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3424 3425 // Get the significand and build it into a floating-point number with 3426 // exponent of 1. 3427 SDValue X = GetSignificand(DAG, Op1, dl); 3428 3429 // Different possible minimax approximations of significand in 3430 // floating-point for various degrees of accuracy over [1,2]. 3431 if (LimitFloatPrecision <= 6) { 3432 // For floating-point precision of 6: 3433 // 3434 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3435 // 3436 // error 0.0049451742, which is more than 7 bits 3437 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3438 getF32Constant(DAG, 0xbeb08fe0)); 3439 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3440 getF32Constant(DAG, 0x40019463)); 3441 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3442 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3443 getF32Constant(DAG, 0x3fd6633d)); 3444 3445 result = DAG.getNode(ISD::FADD, dl, 3446 MVT::f32, LogOfExponent, Log2ofMantissa); 3447 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3448 // For floating-point precision of 12: 3449 // 3450 // Log2ofMantissa = 3451 // -2.51285454f + 3452 // (4.07009056f + 3453 // (-2.12067489f + 3454 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3455 // 3456 // error 0.0000876136000, which is better than 13 bits 3457 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3458 getF32Constant(DAG, 0xbda7262e)); 3459 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3460 getF32Constant(DAG, 0x3f25280b)); 3461 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3462 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3463 getF32Constant(DAG, 0x4007b923)); 3464 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3465 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3466 getF32Constant(DAG, 0x40823e2f)); 3467 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3468 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3469 getF32Constant(DAG, 0x4020d29c)); 3470 3471 result = DAG.getNode(ISD::FADD, dl, 3472 MVT::f32, LogOfExponent, Log2ofMantissa); 3473 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3474 // For floating-point precision of 18: 3475 // 3476 // Log2ofMantissa = 3477 // -3.0400495f + 3478 // (6.1129976f + 3479 // (-5.3420409f + 3480 // (3.2865683f + 3481 // (-1.2669343f + 3482 // (0.27515199f - 3483 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3484 // 3485 // error 0.0000018516, which is better than 18 bits 3486 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3487 getF32Constant(DAG, 0xbcd2769e)); 3488 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3489 getF32Constant(DAG, 0x3e8ce0b9)); 3490 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3491 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3492 getF32Constant(DAG, 0x3fa22ae7)); 3493 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3494 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3495 getF32Constant(DAG, 0x40525723)); 3496 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3497 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3498 getF32Constant(DAG, 0x40aaf200)); 3499 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3500 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3501 getF32Constant(DAG, 0x40c39dad)); 3502 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3503 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3504 getF32Constant(DAG, 0x4042902c)); 3505 3506 result = DAG.getNode(ISD::FADD, dl, 3507 MVT::f32, LogOfExponent, Log2ofMantissa); 3508 } 3509 } else { 3510 // No special expansion. 3511 result = DAG.getNode(ISD::FLOG2, dl, 3512 getValue(I.getArgOperand(0)).getValueType(), 3513 getValue(I.getArgOperand(0))); 3514 } 3515 3516 setValue(&I, result); 3517 } 3518 3519 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3520 /// limited-precision mode. 3521 void 3522 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3523 SDValue result; 3524 DebugLoc dl = getCurDebugLoc(); 3525 3526 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3527 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3528 SDValue Op = getValue(I.getArgOperand(0)); 3529 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3530 3531 // Scale the exponent by log10(2) [0.30102999f]. 3532 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3533 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3534 getF32Constant(DAG, 0x3e9a209a)); 3535 3536 // Get the significand and build it into a floating-point number with 3537 // exponent of 1. 3538 SDValue X = GetSignificand(DAG, Op1, dl); 3539 3540 if (LimitFloatPrecision <= 6) { 3541 // For floating-point precision of 6: 3542 // 3543 // Log10ofMantissa = 3544 // -0.50419619f + 3545 // (0.60948995f - 0.10380950f * x) * x; 3546 // 3547 // error 0.0014886165, which is 6 bits 3548 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3549 getF32Constant(DAG, 0xbdd49a13)); 3550 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3551 getF32Constant(DAG, 0x3f1c0789)); 3552 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3553 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3554 getF32Constant(DAG, 0x3f011300)); 3555 3556 result = DAG.getNode(ISD::FADD, dl, 3557 MVT::f32, LogOfExponent, Log10ofMantissa); 3558 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3559 // For floating-point precision of 12: 3560 // 3561 // Log10ofMantissa = 3562 // -0.64831180f + 3563 // (0.91751397f + 3564 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3565 // 3566 // error 0.00019228036, which is better than 12 bits 3567 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3568 getF32Constant(DAG, 0x3d431f31)); 3569 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3570 getF32Constant(DAG, 0x3ea21fb2)); 3571 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3572 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3573 getF32Constant(DAG, 0x3f6ae232)); 3574 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3575 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3576 getF32Constant(DAG, 0x3f25f7c3)); 3577 3578 result = DAG.getNode(ISD::FADD, dl, 3579 MVT::f32, LogOfExponent, Log10ofMantissa); 3580 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3581 // For floating-point precision of 18: 3582 // 3583 // Log10ofMantissa = 3584 // -0.84299375f + 3585 // (1.5327582f + 3586 // (-1.0688956f + 3587 // (0.49102474f + 3588 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3589 // 3590 // error 0.0000037995730, which is better than 18 bits 3591 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3592 getF32Constant(DAG, 0x3c5d51ce)); 3593 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3594 getF32Constant(DAG, 0x3e00685a)); 3595 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3596 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3597 getF32Constant(DAG, 0x3efb6798)); 3598 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3599 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3600 getF32Constant(DAG, 0x3f88d192)); 3601 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3602 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3603 getF32Constant(DAG, 0x3fc4316c)); 3604 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3605 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3606 getF32Constant(DAG, 0x3f57ce70)); 3607 3608 result = DAG.getNode(ISD::FADD, dl, 3609 MVT::f32, LogOfExponent, Log10ofMantissa); 3610 } 3611 } else { 3612 // No special expansion. 3613 result = DAG.getNode(ISD::FLOG10, dl, 3614 getValue(I.getArgOperand(0)).getValueType(), 3615 getValue(I.getArgOperand(0))); 3616 } 3617 3618 setValue(&I, result); 3619 } 3620 3621 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3622 /// limited-precision mode. 3623 void 3624 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3625 SDValue result; 3626 DebugLoc dl = getCurDebugLoc(); 3627 3628 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3629 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3630 SDValue Op = getValue(I.getArgOperand(0)); 3631 3632 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3633 3634 // FractionalPartOfX = x - (float)IntegerPartOfX; 3635 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3636 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3637 3638 // IntegerPartOfX <<= 23; 3639 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3640 DAG.getConstant(23, TLI.getPointerTy())); 3641 3642 if (LimitFloatPrecision <= 6) { 3643 // For floating-point precision of 6: 3644 // 3645 // TwoToFractionalPartOfX = 3646 // 0.997535578f + 3647 // (0.735607626f + 0.252464424f * x) * x; 3648 // 3649 // error 0.0144103317, which is 6 bits 3650 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3651 getF32Constant(DAG, 0x3e814304)); 3652 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3653 getF32Constant(DAG, 0x3f3c50c8)); 3654 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3655 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3656 getF32Constant(DAG, 0x3f7f5e7e)); 3657 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3658 SDValue TwoToFractionalPartOfX = 3659 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3660 3661 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3662 MVT::f32, TwoToFractionalPartOfX); 3663 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3664 // For floating-point precision of 12: 3665 // 3666 // TwoToFractionalPartOfX = 3667 // 0.999892986f + 3668 // (0.696457318f + 3669 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3670 // 3671 // error 0.000107046256, which is 13 to 14 bits 3672 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3673 getF32Constant(DAG, 0x3da235e3)); 3674 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3675 getF32Constant(DAG, 0x3e65b8f3)); 3676 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3677 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3678 getF32Constant(DAG, 0x3f324b07)); 3679 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3680 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3681 getF32Constant(DAG, 0x3f7ff8fd)); 3682 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3683 SDValue TwoToFractionalPartOfX = 3684 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3685 3686 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3687 MVT::f32, TwoToFractionalPartOfX); 3688 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3689 // For floating-point precision of 18: 3690 // 3691 // TwoToFractionalPartOfX = 3692 // 0.999999982f + 3693 // (0.693148872f + 3694 // (0.240227044f + 3695 // (0.554906021e-1f + 3696 // (0.961591928e-2f + 3697 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3698 // error 2.47208000*10^(-7), which is better than 18 bits 3699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3700 getF32Constant(DAG, 0x3924b03e)); 3701 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3702 getF32Constant(DAG, 0x3ab24b87)); 3703 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3704 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3705 getF32Constant(DAG, 0x3c1d8c17)); 3706 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3707 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3708 getF32Constant(DAG, 0x3d634a1d)); 3709 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3710 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3711 getF32Constant(DAG, 0x3e75fe14)); 3712 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3713 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3714 getF32Constant(DAG, 0x3f317234)); 3715 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3716 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3717 getF32Constant(DAG, 0x3f800000)); 3718 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3719 SDValue TwoToFractionalPartOfX = 3720 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3721 3722 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3723 MVT::f32, TwoToFractionalPartOfX); 3724 } 3725 } else { 3726 // No special expansion. 3727 result = DAG.getNode(ISD::FEXP2, dl, 3728 getValue(I.getArgOperand(0)).getValueType(), 3729 getValue(I.getArgOperand(0))); 3730 } 3731 3732 setValue(&I, result); 3733 } 3734 3735 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3736 /// limited-precision mode with x == 10.0f. 3737 void 3738 SelectionDAGBuilder::visitPow(const CallInst &I) { 3739 SDValue result; 3740 const Value *Val = I.getArgOperand(0); 3741 DebugLoc dl = getCurDebugLoc(); 3742 bool IsExp10 = false; 3743 3744 if (getValue(Val).getValueType() == MVT::f32 && 3745 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3746 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3747 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3748 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3749 APFloat Ten(10.0f); 3750 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3751 } 3752 } 3753 } 3754 3755 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3756 SDValue Op = getValue(I.getArgOperand(1)); 3757 3758 // Put the exponent in the right bit position for later addition to the 3759 // final result: 3760 // 3761 // #define LOG2OF10 3.3219281f 3762 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3763 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3764 getF32Constant(DAG, 0x40549a78)); 3765 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3766 3767 // FractionalPartOfX = x - (float)IntegerPartOfX; 3768 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3769 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3770 3771 // IntegerPartOfX <<= 23; 3772 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3773 DAG.getConstant(23, TLI.getPointerTy())); 3774 3775 if (LimitFloatPrecision <= 6) { 3776 // For floating-point precision of 6: 3777 // 3778 // twoToFractionalPartOfX = 3779 // 0.997535578f + 3780 // (0.735607626f + 0.252464424f * x) * x; 3781 // 3782 // error 0.0144103317, which is 6 bits 3783 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3784 getF32Constant(DAG, 0x3e814304)); 3785 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3786 getF32Constant(DAG, 0x3f3c50c8)); 3787 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3788 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3789 getF32Constant(DAG, 0x3f7f5e7e)); 3790 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3791 SDValue TwoToFractionalPartOfX = 3792 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3793 3794 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3795 MVT::f32, TwoToFractionalPartOfX); 3796 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3797 // For floating-point precision of 12: 3798 // 3799 // TwoToFractionalPartOfX = 3800 // 0.999892986f + 3801 // (0.696457318f + 3802 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3803 // 3804 // error 0.000107046256, which is 13 to 14 bits 3805 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3806 getF32Constant(DAG, 0x3da235e3)); 3807 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3808 getF32Constant(DAG, 0x3e65b8f3)); 3809 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3810 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3811 getF32Constant(DAG, 0x3f324b07)); 3812 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3813 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3814 getF32Constant(DAG, 0x3f7ff8fd)); 3815 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3816 SDValue TwoToFractionalPartOfX = 3817 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3818 3819 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3820 MVT::f32, TwoToFractionalPartOfX); 3821 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3822 // For floating-point precision of 18: 3823 // 3824 // TwoToFractionalPartOfX = 3825 // 0.999999982f + 3826 // (0.693148872f + 3827 // (0.240227044f + 3828 // (0.554906021e-1f + 3829 // (0.961591928e-2f + 3830 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3831 // error 2.47208000*10^(-7), which is better than 18 bits 3832 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3833 getF32Constant(DAG, 0x3924b03e)); 3834 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3835 getF32Constant(DAG, 0x3ab24b87)); 3836 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3837 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3838 getF32Constant(DAG, 0x3c1d8c17)); 3839 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3840 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3841 getF32Constant(DAG, 0x3d634a1d)); 3842 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3843 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3844 getF32Constant(DAG, 0x3e75fe14)); 3845 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3846 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3847 getF32Constant(DAG, 0x3f317234)); 3848 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3849 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3850 getF32Constant(DAG, 0x3f800000)); 3851 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3852 SDValue TwoToFractionalPartOfX = 3853 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3854 3855 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3856 MVT::f32, TwoToFractionalPartOfX); 3857 } 3858 } else { 3859 // No special expansion. 3860 result = DAG.getNode(ISD::FPOW, dl, 3861 getValue(I.getArgOperand(0)).getValueType(), 3862 getValue(I.getArgOperand(0)), 3863 getValue(I.getArgOperand(1))); 3864 } 3865 3866 setValue(&I, result); 3867 } 3868 3869 3870 /// ExpandPowI - Expand a llvm.powi intrinsic. 3871 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3872 SelectionDAG &DAG) { 3873 // If RHS is a constant, we can expand this out to a multiplication tree, 3874 // otherwise we end up lowering to a call to __powidf2 (for example). When 3875 // optimizing for size, we only want to do this if the expansion would produce 3876 // a small number of multiplies, otherwise we do the full expansion. 3877 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3878 // Get the exponent as a positive value. 3879 unsigned Val = RHSC->getSExtValue(); 3880 if ((int)Val < 0) Val = -Val; 3881 3882 // powi(x, 0) -> 1.0 3883 if (Val == 0) 3884 return DAG.getConstantFP(1.0, LHS.getValueType()); 3885 3886 const Function *F = DAG.getMachineFunction().getFunction(); 3887 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3888 // If optimizing for size, don't insert too many multiplies. This 3889 // inserts up to 5 multiplies. 3890 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3891 // We use the simple binary decomposition method to generate the multiply 3892 // sequence. There are more optimal ways to do this (for example, 3893 // powi(x,15) generates one more multiply than it should), but this has 3894 // the benefit of being both really simple and much better than a libcall. 3895 SDValue Res; // Logically starts equal to 1.0 3896 SDValue CurSquare = LHS; 3897 while (Val) { 3898 if (Val & 1) { 3899 if (Res.getNode()) 3900 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3901 else 3902 Res = CurSquare; // 1.0*CurSquare. 3903 } 3904 3905 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3906 CurSquare, CurSquare); 3907 Val >>= 1; 3908 } 3909 3910 // If the original was negative, invert the result, producing 1/(x*x*x). 3911 if (RHSC->getSExtValue() < 0) 3912 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3913 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3914 return Res; 3915 } 3916 } 3917 3918 // Otherwise, expand to a libcall. 3919 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3920 } 3921 3922 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3923 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3924 /// At the end of instruction selection, they will be inserted to the entry BB. 3925 bool 3926 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3927 uint64_t Offset, 3928 const SDValue &N) { 3929 if (!isa<Argument>(V)) 3930 return false; 3931 3932 MachineFunction &MF = DAG.getMachineFunction(); 3933 // Ignore inlined function arguments here. 3934 DIVariable DV(Variable); 3935 if (DV.isInlinedFnArgument(MF.getFunction())) 3936 return false; 3937 3938 MachineBasicBlock *MBB = FuncInfo.MBB; 3939 if (MBB != &MF.front()) 3940 return false; 3941 3942 unsigned Reg = 0; 3943 if (N.getOpcode() == ISD::CopyFromReg) { 3944 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3945 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3946 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3947 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3948 if (PR) 3949 Reg = PR; 3950 } 3951 } 3952 3953 if (!Reg) { 3954 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3955 if (VMI == FuncInfo.ValueMap.end()) 3956 return false; 3957 Reg = VMI->second; 3958 } 3959 3960 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3961 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3962 TII->get(TargetOpcode::DBG_VALUE)) 3963 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3964 FuncInfo.ArgDbgValues.push_back(&*MIB); 3965 return true; 3966 } 3967 3968 // VisualStudio defines setjmp as _setjmp 3969 #if defined(_MSC_VER) && defined(setjmp) 3970 #define setjmp_undefined_for_visual_studio 3971 #undef setjmp 3972 #endif 3973 3974 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3975 /// we want to emit this as a call to a named external function, return the name 3976 /// otherwise lower it and return null. 3977 const char * 3978 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3979 DebugLoc dl = getCurDebugLoc(); 3980 SDValue Res; 3981 3982 switch (Intrinsic) { 3983 default: 3984 // By default, turn this into a target intrinsic node. 3985 visitTargetIntrinsic(I, Intrinsic); 3986 return 0; 3987 case Intrinsic::vastart: visitVAStart(I); return 0; 3988 case Intrinsic::vaend: visitVAEnd(I); return 0; 3989 case Intrinsic::vacopy: visitVACopy(I); return 0; 3990 case Intrinsic::returnaddress: 3991 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3992 getValue(I.getArgOperand(0)))); 3993 return 0; 3994 case Intrinsic::frameaddress: 3995 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3996 getValue(I.getArgOperand(0)))); 3997 return 0; 3998 case Intrinsic::setjmp: 3999 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4000 case Intrinsic::longjmp: 4001 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4002 case Intrinsic::memcpy: { 4003 // Assert for address < 256 since we support only user defined address 4004 // spaces. 4005 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4006 < 256 && 4007 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4008 < 256 && 4009 "Unknown address space"); 4010 SDValue Op1 = getValue(I.getArgOperand(0)); 4011 SDValue Op2 = getValue(I.getArgOperand(1)); 4012 SDValue Op3 = getValue(I.getArgOperand(2)); 4013 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4014 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4015 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4016 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4017 return 0; 4018 } 4019 case Intrinsic::memset: { 4020 // Assert for address < 256 since we support only user defined address 4021 // spaces. 4022 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4023 < 256 && 4024 "Unknown address space"); 4025 SDValue Op1 = getValue(I.getArgOperand(0)); 4026 SDValue Op2 = getValue(I.getArgOperand(1)); 4027 SDValue Op3 = getValue(I.getArgOperand(2)); 4028 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4029 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4030 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4031 I.getArgOperand(0), 0)); 4032 return 0; 4033 } 4034 case Intrinsic::memmove: { 4035 // Assert for address < 256 since we support only user defined address 4036 // spaces. 4037 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4038 < 256 && 4039 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4040 < 256 && 4041 "Unknown address space"); 4042 SDValue Op1 = getValue(I.getArgOperand(0)); 4043 SDValue Op2 = getValue(I.getArgOperand(1)); 4044 SDValue Op3 = getValue(I.getArgOperand(2)); 4045 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4046 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4047 4048 // If the source and destination are known to not be aliases, we can 4049 // lower memmove as memcpy. 4050 uint64_t Size = -1ULL; 4051 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4052 Size = C->getZExtValue(); 4053 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4054 AliasAnalysis::NoAlias) { 4055 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4056 false, I.getArgOperand(0), 0, 4057 I.getArgOperand(1), 0)); 4058 return 0; 4059 } 4060 4061 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4062 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4063 return 0; 4064 } 4065 case Intrinsic::dbg_declare: { 4066 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4067 if (!DIVariable(DI.getVariable()).Verify()) 4068 return 0; 4069 4070 MDNode *Variable = DI.getVariable(); 4071 // Parameters are handled specially. 4072 bool isParameter = 4073 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4074 const Value *Address = DI.getAddress(); 4075 if (!Address) 4076 return 0; 4077 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4078 Address = BCI->getOperand(0); 4079 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4080 4081 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4082 // but do not always have a corresponding SDNode built. The SDNodeOrder 4083 // absolute, but not relative, values are different depending on whether 4084 // debug info exists. 4085 ++SDNodeOrder; 4086 SDValue &N = NodeMap[Address]; 4087 SDDbgValue *SDV; 4088 if (N.getNode()) { 4089 if (isParameter && !AI) { 4090 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4091 if (FINode) 4092 // Byval parameter. We have a frame index at this point. 4093 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4094 0, dl, SDNodeOrder); 4095 else 4096 // Can't do anything with other non-AI cases yet. This might be a 4097 // parameter of a callee function that got inlined, for example. 4098 return 0; 4099 } else if (AI) 4100 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4101 0, dl, SDNodeOrder); 4102 else 4103 // Can't do anything with other non-AI cases yet. 4104 return 0; 4105 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4106 } else { 4107 // This isn't useful, but it shows what we're missing. 4108 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4109 0, dl, SDNodeOrder); 4110 DAG.AddDbgValue(SDV, 0, isParameter); 4111 } 4112 return 0; 4113 } 4114 case Intrinsic::dbg_value: { 4115 const DbgValueInst &DI = cast<DbgValueInst>(I); 4116 if (!DIVariable(DI.getVariable()).Verify()) 4117 return 0; 4118 4119 MDNode *Variable = DI.getVariable(); 4120 uint64_t Offset = DI.getOffset(); 4121 const Value *V = DI.getValue(); 4122 if (!V) 4123 return 0; 4124 4125 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4126 // but do not always have a corresponding SDNode built. The SDNodeOrder 4127 // absolute, but not relative, values are different depending on whether 4128 // debug info exists. 4129 ++SDNodeOrder; 4130 SDDbgValue *SDV; 4131 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4132 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4133 DAG.AddDbgValue(SDV, 0, false); 4134 } else { 4135 bool createUndef = false; 4136 // Do not use getValue() in here; we don't want to generate code at 4137 // this point if it hasn't been done yet. 4138 SDValue N = NodeMap[V]; 4139 if (!N.getNode() && isa<Argument>(V)) 4140 // Check unused arguments map. 4141 N = UnusedArgNodeMap[V]; 4142 if (N.getNode()) { 4143 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4144 SDV = DAG.getDbgValue(Variable, N.getNode(), 4145 N.getResNo(), Offset, dl, SDNodeOrder); 4146 DAG.AddDbgValue(SDV, N.getNode(), false); 4147 } 4148 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4149 // Do not call getValue(V) yet, as we don't want to generate code. 4150 // Remember it for later. 4151 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4152 DanglingDebugInfoMap[V] = DDI; 4153 } else 4154 createUndef = true; 4155 if (createUndef) { 4156 // We may expand this to cover more cases. One case where we have no 4157 // data available is an unreferenced parameter; we need this fallback. 4158 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4159 Offset, dl, SDNodeOrder); 4160 DAG.AddDbgValue(SDV, 0, false); 4161 } 4162 } 4163 4164 // Build a debug info table entry. 4165 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4166 V = BCI->getOperand(0); 4167 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4168 // Don't handle byval struct arguments or VLAs, for example. 4169 if (!AI) 4170 return 0; 4171 DenseMap<const AllocaInst*, int>::iterator SI = 4172 FuncInfo.StaticAllocaMap.find(AI); 4173 if (SI == FuncInfo.StaticAllocaMap.end()) 4174 return 0; // VLAs. 4175 int FI = SI->second; 4176 4177 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4178 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4179 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4180 return 0; 4181 } 4182 case Intrinsic::eh_exception: { 4183 // Insert the EXCEPTIONADDR instruction. 4184 assert(FuncInfo.MBB->isLandingPad() && 4185 "Call to eh.exception not in landing pad!"); 4186 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4187 SDValue Ops[1]; 4188 Ops[0] = DAG.getRoot(); 4189 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4190 setValue(&I, Op); 4191 DAG.setRoot(Op.getValue(1)); 4192 return 0; 4193 } 4194 4195 case Intrinsic::eh_selector: { 4196 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4197 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4198 if (CallMBB->isLandingPad()) 4199 AddCatchInfo(I, &MMI, CallMBB); 4200 else { 4201 #ifndef NDEBUG 4202 FuncInfo.CatchInfoLost.insert(&I); 4203 #endif 4204 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4205 unsigned Reg = TLI.getExceptionSelectorRegister(); 4206 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4207 } 4208 4209 // Insert the EHSELECTION instruction. 4210 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4211 SDValue Ops[2]; 4212 Ops[0] = getValue(I.getArgOperand(0)); 4213 Ops[1] = getRoot(); 4214 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4215 DAG.setRoot(Op.getValue(1)); 4216 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4217 return 0; 4218 } 4219 4220 case Intrinsic::eh_typeid_for: { 4221 // Find the type id for the given typeinfo. 4222 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4223 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4224 Res = DAG.getConstant(TypeID, MVT::i32); 4225 setValue(&I, Res); 4226 return 0; 4227 } 4228 4229 case Intrinsic::eh_return_i32: 4230 case Intrinsic::eh_return_i64: 4231 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4232 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4233 MVT::Other, 4234 getControlRoot(), 4235 getValue(I.getArgOperand(0)), 4236 getValue(I.getArgOperand(1)))); 4237 return 0; 4238 case Intrinsic::eh_unwind_init: 4239 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4240 return 0; 4241 case Intrinsic::eh_dwarf_cfa: { 4242 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4243 TLI.getPointerTy()); 4244 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4245 TLI.getPointerTy(), 4246 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4247 TLI.getPointerTy()), 4248 CfaArg); 4249 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4250 TLI.getPointerTy(), 4251 DAG.getConstant(0, TLI.getPointerTy())); 4252 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4253 FA, Offset)); 4254 return 0; 4255 } 4256 case Intrinsic::eh_sjlj_callsite: { 4257 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4258 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4259 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4260 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4261 4262 MMI.setCurrentCallSite(CI->getZExtValue()); 4263 return 0; 4264 } 4265 case Intrinsic::eh_sjlj_setjmp: { 4266 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4267 getValue(I.getArgOperand(0)))); 4268 return 0; 4269 } 4270 case Intrinsic::eh_sjlj_longjmp: { 4271 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4272 getRoot(), 4273 getValue(I.getArgOperand(0)))); 4274 return 0; 4275 } 4276 4277 case Intrinsic::convertff: 4278 case Intrinsic::convertfsi: 4279 case Intrinsic::convertfui: 4280 case Intrinsic::convertsif: 4281 case Intrinsic::convertuif: 4282 case Intrinsic::convertss: 4283 case Intrinsic::convertsu: 4284 case Intrinsic::convertus: 4285 case Intrinsic::convertuu: { 4286 ISD::CvtCode Code = ISD::CVT_INVALID; 4287 switch (Intrinsic) { 4288 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4289 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4290 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4291 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4292 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4293 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4294 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4295 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4296 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4297 } 4298 EVT DestVT = TLI.getValueType(I.getType()); 4299 const Value *Op1 = I.getArgOperand(0); 4300 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4301 DAG.getValueType(DestVT), 4302 DAG.getValueType(getValue(Op1).getValueType()), 4303 getValue(I.getArgOperand(1)), 4304 getValue(I.getArgOperand(2)), 4305 Code); 4306 setValue(&I, Res); 4307 return 0; 4308 } 4309 case Intrinsic::sqrt: 4310 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4311 getValue(I.getArgOperand(0)).getValueType(), 4312 getValue(I.getArgOperand(0)))); 4313 return 0; 4314 case Intrinsic::powi: 4315 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4316 getValue(I.getArgOperand(1)), DAG)); 4317 return 0; 4318 case Intrinsic::sin: 4319 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4320 getValue(I.getArgOperand(0)).getValueType(), 4321 getValue(I.getArgOperand(0)))); 4322 return 0; 4323 case Intrinsic::cos: 4324 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4325 getValue(I.getArgOperand(0)).getValueType(), 4326 getValue(I.getArgOperand(0)))); 4327 return 0; 4328 case Intrinsic::log: 4329 visitLog(I); 4330 return 0; 4331 case Intrinsic::log2: 4332 visitLog2(I); 4333 return 0; 4334 case Intrinsic::log10: 4335 visitLog10(I); 4336 return 0; 4337 case Intrinsic::exp: 4338 visitExp(I); 4339 return 0; 4340 case Intrinsic::exp2: 4341 visitExp2(I); 4342 return 0; 4343 case Intrinsic::pow: 4344 visitPow(I); 4345 return 0; 4346 case Intrinsic::convert_to_fp16: 4347 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4348 MVT::i16, getValue(I.getArgOperand(0)))); 4349 return 0; 4350 case Intrinsic::convert_from_fp16: 4351 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4352 MVT::f32, getValue(I.getArgOperand(0)))); 4353 return 0; 4354 case Intrinsic::pcmarker: { 4355 SDValue Tmp = getValue(I.getArgOperand(0)); 4356 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4357 return 0; 4358 } 4359 case Intrinsic::readcyclecounter: { 4360 SDValue Op = getRoot(); 4361 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4362 DAG.getVTList(MVT::i64, MVT::Other), 4363 &Op, 1); 4364 setValue(&I, Res); 4365 DAG.setRoot(Res.getValue(1)); 4366 return 0; 4367 } 4368 case Intrinsic::bswap: 4369 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4370 getValue(I.getArgOperand(0)).getValueType(), 4371 getValue(I.getArgOperand(0)))); 4372 return 0; 4373 case Intrinsic::cttz: { 4374 SDValue Arg = getValue(I.getArgOperand(0)); 4375 EVT Ty = Arg.getValueType(); 4376 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4377 return 0; 4378 } 4379 case Intrinsic::ctlz: { 4380 SDValue Arg = getValue(I.getArgOperand(0)); 4381 EVT Ty = Arg.getValueType(); 4382 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4383 return 0; 4384 } 4385 case Intrinsic::ctpop: { 4386 SDValue Arg = getValue(I.getArgOperand(0)); 4387 EVT Ty = Arg.getValueType(); 4388 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4389 return 0; 4390 } 4391 case Intrinsic::stacksave: { 4392 SDValue Op = getRoot(); 4393 Res = DAG.getNode(ISD::STACKSAVE, dl, 4394 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4395 setValue(&I, Res); 4396 DAG.setRoot(Res.getValue(1)); 4397 return 0; 4398 } 4399 case Intrinsic::stackrestore: { 4400 Res = getValue(I.getArgOperand(0)); 4401 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4402 return 0; 4403 } 4404 case Intrinsic::stackprotector: { 4405 // Emit code into the DAG to store the stack guard onto the stack. 4406 MachineFunction &MF = DAG.getMachineFunction(); 4407 MachineFrameInfo *MFI = MF.getFrameInfo(); 4408 EVT PtrTy = TLI.getPointerTy(); 4409 4410 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4411 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4412 4413 int FI = FuncInfo.StaticAllocaMap[Slot]; 4414 MFI->setStackProtectorIndex(FI); 4415 4416 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4417 4418 // Store the stack protector onto the stack. 4419 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4420 PseudoSourceValue::getFixedStack(FI), 4421 0, true, false, 0); 4422 setValue(&I, Res); 4423 DAG.setRoot(Res); 4424 return 0; 4425 } 4426 case Intrinsic::objectsize: { 4427 // If we don't know by now, we're never going to know. 4428 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4429 4430 assert(CI && "Non-constant type in __builtin_object_size?"); 4431 4432 SDValue Arg = getValue(I.getCalledValue()); 4433 EVT Ty = Arg.getValueType(); 4434 4435 if (CI->isZero()) 4436 Res = DAG.getConstant(-1ULL, Ty); 4437 else 4438 Res = DAG.getConstant(0, Ty); 4439 4440 setValue(&I, Res); 4441 return 0; 4442 } 4443 case Intrinsic::var_annotation: 4444 // Discard annotate attributes 4445 return 0; 4446 4447 case Intrinsic::init_trampoline: { 4448 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4449 4450 SDValue Ops[6]; 4451 Ops[0] = getRoot(); 4452 Ops[1] = getValue(I.getArgOperand(0)); 4453 Ops[2] = getValue(I.getArgOperand(1)); 4454 Ops[3] = getValue(I.getArgOperand(2)); 4455 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4456 Ops[5] = DAG.getSrcValue(F); 4457 4458 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4459 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4460 Ops, 6); 4461 4462 setValue(&I, Res); 4463 DAG.setRoot(Res.getValue(1)); 4464 return 0; 4465 } 4466 case Intrinsic::gcroot: 4467 if (GFI) { 4468 const Value *Alloca = I.getArgOperand(0); 4469 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4470 4471 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4472 GFI->addStackRoot(FI->getIndex(), TypeMap); 4473 } 4474 return 0; 4475 case Intrinsic::gcread: 4476 case Intrinsic::gcwrite: 4477 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4478 return 0; 4479 case Intrinsic::flt_rounds: 4480 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4481 return 0; 4482 case Intrinsic::trap: 4483 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4484 return 0; 4485 case Intrinsic::uadd_with_overflow: 4486 return implVisitAluOverflow(I, ISD::UADDO); 4487 case Intrinsic::sadd_with_overflow: 4488 return implVisitAluOverflow(I, ISD::SADDO); 4489 case Intrinsic::usub_with_overflow: 4490 return implVisitAluOverflow(I, ISD::USUBO); 4491 case Intrinsic::ssub_with_overflow: 4492 return implVisitAluOverflow(I, ISD::SSUBO); 4493 case Intrinsic::umul_with_overflow: 4494 return implVisitAluOverflow(I, ISD::UMULO); 4495 case Intrinsic::smul_with_overflow: 4496 return implVisitAluOverflow(I, ISD::SMULO); 4497 4498 case Intrinsic::prefetch: { 4499 SDValue Ops[4]; 4500 Ops[0] = getRoot(); 4501 Ops[1] = getValue(I.getArgOperand(0)); 4502 Ops[2] = getValue(I.getArgOperand(1)); 4503 Ops[3] = getValue(I.getArgOperand(2)); 4504 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4505 return 0; 4506 } 4507 4508 case Intrinsic::memory_barrier: { 4509 SDValue Ops[6]; 4510 Ops[0] = getRoot(); 4511 for (int x = 1; x < 6; ++x) 4512 Ops[x] = getValue(I.getArgOperand(x - 1)); 4513 4514 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4515 return 0; 4516 } 4517 case Intrinsic::atomic_cmp_swap: { 4518 SDValue Root = getRoot(); 4519 SDValue L = 4520 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4521 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4522 Root, 4523 getValue(I.getArgOperand(0)), 4524 getValue(I.getArgOperand(1)), 4525 getValue(I.getArgOperand(2)), 4526 I.getArgOperand(0)); 4527 setValue(&I, L); 4528 DAG.setRoot(L.getValue(1)); 4529 return 0; 4530 } 4531 case Intrinsic::atomic_load_add: 4532 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4533 case Intrinsic::atomic_load_sub: 4534 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4535 case Intrinsic::atomic_load_or: 4536 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4537 case Intrinsic::atomic_load_xor: 4538 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4539 case Intrinsic::atomic_load_and: 4540 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4541 case Intrinsic::atomic_load_nand: 4542 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4543 case Intrinsic::atomic_load_max: 4544 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4545 case Intrinsic::atomic_load_min: 4546 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4547 case Intrinsic::atomic_load_umin: 4548 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4549 case Intrinsic::atomic_load_umax: 4550 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4551 case Intrinsic::atomic_swap: 4552 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4553 4554 case Intrinsic::invariant_start: 4555 case Intrinsic::lifetime_start: 4556 // Discard region information. 4557 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4558 return 0; 4559 case Intrinsic::invariant_end: 4560 case Intrinsic::lifetime_end: 4561 // Discard region information. 4562 return 0; 4563 } 4564 } 4565 4566 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4567 bool isTailCall, 4568 MachineBasicBlock *LandingPad) { 4569 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4570 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4571 const Type *RetTy = FTy->getReturnType(); 4572 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4573 MCSymbol *BeginLabel = 0; 4574 4575 TargetLowering::ArgListTy Args; 4576 TargetLowering::ArgListEntry Entry; 4577 Args.reserve(CS.arg_size()); 4578 4579 // Check whether the function can return without sret-demotion. 4580 SmallVector<ISD::OutputArg, 4> Outs; 4581 SmallVector<uint64_t, 4> Offsets; 4582 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4583 Outs, TLI, &Offsets); 4584 4585 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4586 FTy->isVarArg(), Outs, FTy->getContext()); 4587 4588 SDValue DemoteStackSlot; 4589 4590 if (!CanLowerReturn) { 4591 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4592 FTy->getReturnType()); 4593 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4594 FTy->getReturnType()); 4595 MachineFunction &MF = DAG.getMachineFunction(); 4596 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4597 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4598 4599 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4600 Entry.Node = DemoteStackSlot; 4601 Entry.Ty = StackSlotPtrType; 4602 Entry.isSExt = false; 4603 Entry.isZExt = false; 4604 Entry.isInReg = false; 4605 Entry.isSRet = true; 4606 Entry.isNest = false; 4607 Entry.isByVal = false; 4608 Entry.Alignment = Align; 4609 Args.push_back(Entry); 4610 RetTy = Type::getVoidTy(FTy->getContext()); 4611 } 4612 4613 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4614 i != e; ++i) { 4615 SDValue ArgNode = getValue(*i); 4616 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4617 4618 unsigned attrInd = i - CS.arg_begin() + 1; 4619 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4620 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4621 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4622 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4623 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4624 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4625 Entry.Alignment = CS.getParamAlignment(attrInd); 4626 Args.push_back(Entry); 4627 } 4628 4629 if (LandingPad) { 4630 // Insert a label before the invoke call to mark the try range. This can be 4631 // used to detect deletion of the invoke via the MachineModuleInfo. 4632 BeginLabel = MMI.getContext().CreateTempSymbol(); 4633 4634 // For SjLj, keep track of which landing pads go with which invokes 4635 // so as to maintain the ordering of pads in the LSDA. 4636 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4637 if (CallSiteIndex) { 4638 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4639 // Now that the call site is handled, stop tracking it. 4640 MMI.setCurrentCallSite(0); 4641 } 4642 4643 // Both PendingLoads and PendingExports must be flushed here; 4644 // this call might not return. 4645 (void)getRoot(); 4646 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4647 } 4648 4649 // Check if target-independent constraints permit a tail call here. 4650 // Target-dependent constraints are checked within TLI.LowerCallTo. 4651 if (isTailCall && 4652 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4653 isTailCall = false; 4654 4655 std::pair<SDValue,SDValue> Result = 4656 TLI.LowerCallTo(getRoot(), RetTy, 4657 CS.paramHasAttr(0, Attribute::SExt), 4658 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4659 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4660 CS.getCallingConv(), 4661 isTailCall, 4662 !CS.getInstruction()->use_empty(), 4663 Callee, Args, DAG, getCurDebugLoc()); 4664 assert((isTailCall || Result.second.getNode()) && 4665 "Non-null chain expected with non-tail call!"); 4666 assert((Result.second.getNode() || !Result.first.getNode()) && 4667 "Null value expected with tail call!"); 4668 if (Result.first.getNode()) { 4669 setValue(CS.getInstruction(), Result.first); 4670 } else if (!CanLowerReturn && Result.second.getNode()) { 4671 // The instruction result is the result of loading from the 4672 // hidden sret parameter. 4673 SmallVector<EVT, 1> PVTs; 4674 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4675 4676 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4677 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4678 EVT PtrVT = PVTs[0]; 4679 unsigned NumValues = Outs.size(); 4680 SmallVector<SDValue, 4> Values(NumValues); 4681 SmallVector<SDValue, 4> Chains(NumValues); 4682 4683 for (unsigned i = 0; i < NumValues; ++i) { 4684 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4685 DemoteStackSlot, 4686 DAG.getConstant(Offsets[i], PtrVT)); 4687 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4688 Add, NULL, Offsets[i], false, false, 1); 4689 Values[i] = L; 4690 Chains[i] = L.getValue(1); 4691 } 4692 4693 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4694 MVT::Other, &Chains[0], NumValues); 4695 PendingLoads.push_back(Chain); 4696 4697 // Collect the legal value parts into potentially illegal values 4698 // that correspond to the original function's return values. 4699 SmallVector<EVT, 4> RetTys; 4700 RetTy = FTy->getReturnType(); 4701 ComputeValueVTs(TLI, RetTy, RetTys); 4702 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4703 SmallVector<SDValue, 4> ReturnValues; 4704 unsigned CurReg = 0; 4705 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4706 EVT VT = RetTys[I]; 4707 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4708 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4709 4710 SDValue ReturnValue = 4711 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4712 RegisterVT, VT, AssertOp); 4713 ReturnValues.push_back(ReturnValue); 4714 CurReg += NumRegs; 4715 } 4716 4717 setValue(CS.getInstruction(), 4718 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4719 DAG.getVTList(&RetTys[0], RetTys.size()), 4720 &ReturnValues[0], ReturnValues.size())); 4721 4722 } 4723 4724 // As a special case, a null chain means that a tail call has been emitted and 4725 // the DAG root is already updated. 4726 if (Result.second.getNode()) 4727 DAG.setRoot(Result.second); 4728 else 4729 HasTailCall = true; 4730 4731 if (LandingPad) { 4732 // Insert a label at the end of the invoke call to mark the try range. This 4733 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4734 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4735 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4736 4737 // Inform MachineModuleInfo of range. 4738 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4739 } 4740 } 4741 4742 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4743 /// value is equal or not-equal to zero. 4744 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4745 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4746 UI != E; ++UI) { 4747 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4748 if (IC->isEquality()) 4749 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4750 if (C->isNullValue()) 4751 continue; 4752 // Unknown instruction. 4753 return false; 4754 } 4755 return true; 4756 } 4757 4758 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4759 const Type *LoadTy, 4760 SelectionDAGBuilder &Builder) { 4761 4762 // Check to see if this load can be trivially constant folded, e.g. if the 4763 // input is from a string literal. 4764 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4765 // Cast pointer to the type we really want to load. 4766 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4767 PointerType::getUnqual(LoadTy)); 4768 4769 if (const Constant *LoadCst = 4770 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4771 Builder.TD)) 4772 return Builder.getValue(LoadCst); 4773 } 4774 4775 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4776 // still constant memory, the input chain can be the entry node. 4777 SDValue Root; 4778 bool ConstantMemory = false; 4779 4780 // Do not serialize (non-volatile) loads of constant memory with anything. 4781 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4782 Root = Builder.DAG.getEntryNode(); 4783 ConstantMemory = true; 4784 } else { 4785 // Do not serialize non-volatile loads against each other. 4786 Root = Builder.DAG.getRoot(); 4787 } 4788 4789 SDValue Ptr = Builder.getValue(PtrVal); 4790 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4791 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4792 false /*volatile*/, 4793 false /*nontemporal*/, 1 /* align=1 */); 4794 4795 if (!ConstantMemory) 4796 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4797 return LoadVal; 4798 } 4799 4800 4801 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4802 /// If so, return true and lower it, otherwise return false and it will be 4803 /// lowered like a normal call. 4804 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4805 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4806 if (I.getNumArgOperands() != 3) 4807 return false; 4808 4809 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4810 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4811 !I.getArgOperand(2)->getType()->isIntegerTy() || 4812 !I.getType()->isIntegerTy()) 4813 return false; 4814 4815 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4816 4817 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4818 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4819 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4820 bool ActuallyDoIt = true; 4821 MVT LoadVT; 4822 const Type *LoadTy; 4823 switch (Size->getZExtValue()) { 4824 default: 4825 LoadVT = MVT::Other; 4826 LoadTy = 0; 4827 ActuallyDoIt = false; 4828 break; 4829 case 2: 4830 LoadVT = MVT::i16; 4831 LoadTy = Type::getInt16Ty(Size->getContext()); 4832 break; 4833 case 4: 4834 LoadVT = MVT::i32; 4835 LoadTy = Type::getInt32Ty(Size->getContext()); 4836 break; 4837 case 8: 4838 LoadVT = MVT::i64; 4839 LoadTy = Type::getInt64Ty(Size->getContext()); 4840 break; 4841 /* 4842 case 16: 4843 LoadVT = MVT::v4i32; 4844 LoadTy = Type::getInt32Ty(Size->getContext()); 4845 LoadTy = VectorType::get(LoadTy, 4); 4846 break; 4847 */ 4848 } 4849 4850 // This turns into unaligned loads. We only do this if the target natively 4851 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4852 // we'll only produce a small number of byte loads. 4853 4854 // Require that we can find a legal MVT, and only do this if the target 4855 // supports unaligned loads of that type. Expanding into byte loads would 4856 // bloat the code. 4857 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4858 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4859 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4860 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4861 ActuallyDoIt = false; 4862 } 4863 4864 if (ActuallyDoIt) { 4865 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4866 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4867 4868 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4869 ISD::SETNE); 4870 EVT CallVT = TLI.getValueType(I.getType(), true); 4871 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4872 return true; 4873 } 4874 } 4875 4876 4877 return false; 4878 } 4879 4880 4881 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4882 // Handle inline assembly differently. 4883 if (isa<InlineAsm>(I.getCalledValue())) { 4884 visitInlineAsm(&I); 4885 return; 4886 } 4887 4888 const char *RenameFn = 0; 4889 if (Function *F = I.getCalledFunction()) { 4890 if (F->isDeclaration()) { 4891 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4892 if (unsigned IID = II->getIntrinsicID(F)) { 4893 RenameFn = visitIntrinsicCall(I, IID); 4894 if (!RenameFn) 4895 return; 4896 } 4897 } 4898 if (unsigned IID = F->getIntrinsicID()) { 4899 RenameFn = visitIntrinsicCall(I, IID); 4900 if (!RenameFn) 4901 return; 4902 } 4903 } 4904 4905 // Check for well-known libc/libm calls. If the function is internal, it 4906 // can't be a library call. 4907 if (!F->hasLocalLinkage() && F->hasName()) { 4908 StringRef Name = F->getName(); 4909 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4910 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4911 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4912 I.getType() == I.getArgOperand(0)->getType() && 4913 I.getType() == I.getArgOperand(1)->getType()) { 4914 SDValue LHS = getValue(I.getArgOperand(0)); 4915 SDValue RHS = getValue(I.getArgOperand(1)); 4916 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4917 LHS.getValueType(), LHS, RHS)); 4918 return; 4919 } 4920 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4921 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4922 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4923 I.getType() == I.getArgOperand(0)->getType()) { 4924 SDValue Tmp = getValue(I.getArgOperand(0)); 4925 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4926 Tmp.getValueType(), Tmp)); 4927 return; 4928 } 4929 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4930 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4931 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4932 I.getType() == I.getArgOperand(0)->getType() && 4933 I.onlyReadsMemory()) { 4934 SDValue Tmp = getValue(I.getArgOperand(0)); 4935 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4936 Tmp.getValueType(), Tmp)); 4937 return; 4938 } 4939 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4940 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4941 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4942 I.getType() == I.getArgOperand(0)->getType() && 4943 I.onlyReadsMemory()) { 4944 SDValue Tmp = getValue(I.getArgOperand(0)); 4945 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4946 Tmp.getValueType(), Tmp)); 4947 return; 4948 } 4949 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4950 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4951 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4952 I.getType() == I.getArgOperand(0)->getType() && 4953 I.onlyReadsMemory()) { 4954 SDValue Tmp = getValue(I.getArgOperand(0)); 4955 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4956 Tmp.getValueType(), Tmp)); 4957 return; 4958 } 4959 } else if (Name == "memcmp") { 4960 if (visitMemCmpCall(I)) 4961 return; 4962 } 4963 } 4964 } 4965 4966 SDValue Callee; 4967 if (!RenameFn) 4968 Callee = getValue(I.getCalledValue()); 4969 else 4970 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4971 4972 // Check if we can potentially perform a tail call. More detailed checking is 4973 // be done within LowerCallTo, after more information about the call is known. 4974 LowerCallTo(&I, Callee, I.isTailCall()); 4975 } 4976 4977 namespace llvm { 4978 4979 /// AsmOperandInfo - This contains information for each constraint that we are 4980 /// lowering. 4981 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 4982 public TargetLowering::AsmOperandInfo { 4983 public: 4984 /// CallOperand - If this is the result output operand or a clobber 4985 /// this is null, otherwise it is the incoming operand to the CallInst. 4986 /// This gets modified as the asm is processed. 4987 SDValue CallOperand; 4988 4989 /// AssignedRegs - If this is a register or register class operand, this 4990 /// contains the set of register corresponding to the operand. 4991 RegsForValue AssignedRegs; 4992 4993 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4994 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4995 } 4996 4997 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4998 /// busy in OutputRegs/InputRegs. 4999 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5000 std::set<unsigned> &OutputRegs, 5001 std::set<unsigned> &InputRegs, 5002 const TargetRegisterInfo &TRI) const { 5003 if (isOutReg) { 5004 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5005 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5006 } 5007 if (isInReg) { 5008 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5009 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5010 } 5011 } 5012 5013 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5014 /// corresponds to. If there is no Value* for this operand, it returns 5015 /// MVT::Other. 5016 EVT getCallOperandValEVT(LLVMContext &Context, 5017 const TargetLowering &TLI, 5018 const TargetData *TD) const { 5019 if (CallOperandVal == 0) return MVT::Other; 5020 5021 if (isa<BasicBlock>(CallOperandVal)) 5022 return TLI.getPointerTy(); 5023 5024 const llvm::Type *OpTy = CallOperandVal->getType(); 5025 5026 // If this is an indirect operand, the operand is a pointer to the 5027 // accessed type. 5028 if (isIndirect) { 5029 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5030 if (!PtrTy) 5031 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5032 OpTy = PtrTy->getElementType(); 5033 } 5034 5035 // If OpTy is not a single value, it may be a struct/union that we 5036 // can tile with integers. 5037 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5038 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5039 switch (BitSize) { 5040 default: break; 5041 case 1: 5042 case 8: 5043 case 16: 5044 case 32: 5045 case 64: 5046 case 128: 5047 OpTy = IntegerType::get(Context, BitSize); 5048 break; 5049 } 5050 } 5051 5052 return TLI.getValueType(OpTy, true); 5053 } 5054 5055 private: 5056 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5057 /// specified set. 5058 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5059 const TargetRegisterInfo &TRI) { 5060 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5061 Regs.insert(Reg); 5062 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5063 for (; *Aliases; ++Aliases) 5064 Regs.insert(*Aliases); 5065 } 5066 }; 5067 5068 } // end llvm namespace. 5069 5070 /// isAllocatableRegister - If the specified register is safe to allocate, 5071 /// i.e. it isn't a stack pointer or some other special register, return the 5072 /// register class for the register. Otherwise, return null. 5073 static const TargetRegisterClass * 5074 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5075 const TargetLowering &TLI, 5076 const TargetRegisterInfo *TRI) { 5077 EVT FoundVT = MVT::Other; 5078 const TargetRegisterClass *FoundRC = 0; 5079 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5080 E = TRI->regclass_end(); RCI != E; ++RCI) { 5081 EVT ThisVT = MVT::Other; 5082 5083 const TargetRegisterClass *RC = *RCI; 5084 // If none of the value types for this register class are valid, we 5085 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5086 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5087 I != E; ++I) { 5088 if (TLI.isTypeLegal(*I)) { 5089 // If we have already found this register in a different register class, 5090 // choose the one with the largest VT specified. For example, on 5091 // PowerPC, we favor f64 register classes over f32. 5092 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5093 ThisVT = *I; 5094 break; 5095 } 5096 } 5097 } 5098 5099 if (ThisVT == MVT::Other) continue; 5100 5101 // NOTE: This isn't ideal. In particular, this might allocate the 5102 // frame pointer in functions that need it (due to them not being taken 5103 // out of allocation, because a variable sized allocation hasn't been seen 5104 // yet). This is a slight code pessimization, but should still work. 5105 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5106 E = RC->allocation_order_end(MF); I != E; ++I) 5107 if (*I == Reg) { 5108 // We found a matching register class. Keep looking at others in case 5109 // we find one with larger registers that this physreg is also in. 5110 FoundRC = RC; 5111 FoundVT = ThisVT; 5112 break; 5113 } 5114 } 5115 return FoundRC; 5116 } 5117 5118 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5119 /// specified operand. We prefer to assign virtual registers, to allow the 5120 /// register allocator to handle the assignment process. However, if the asm 5121 /// uses features that we can't model on machineinstrs, we have SDISel do the 5122 /// allocation. This produces generally horrible, but correct, code. 5123 /// 5124 /// OpInfo describes the operand. 5125 /// Input and OutputRegs are the set of already allocated physical registers. 5126 /// 5127 void SelectionDAGBuilder:: 5128 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5129 std::set<unsigned> &OutputRegs, 5130 std::set<unsigned> &InputRegs) { 5131 LLVMContext &Context = FuncInfo.Fn->getContext(); 5132 5133 // Compute whether this value requires an input register, an output register, 5134 // or both. 5135 bool isOutReg = false; 5136 bool isInReg = false; 5137 switch (OpInfo.Type) { 5138 case InlineAsm::isOutput: 5139 isOutReg = true; 5140 5141 // If there is an input constraint that matches this, we need to reserve 5142 // the input register so no other inputs allocate to it. 5143 isInReg = OpInfo.hasMatchingInput(); 5144 break; 5145 case InlineAsm::isInput: 5146 isInReg = true; 5147 isOutReg = false; 5148 break; 5149 case InlineAsm::isClobber: 5150 isOutReg = true; 5151 isInReg = true; 5152 break; 5153 } 5154 5155 5156 MachineFunction &MF = DAG.getMachineFunction(); 5157 SmallVector<unsigned, 4> Regs; 5158 5159 // If this is a constraint for a single physreg, or a constraint for a 5160 // register class, find it. 5161 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5162 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5163 OpInfo.ConstraintVT); 5164 5165 unsigned NumRegs = 1; 5166 if (OpInfo.ConstraintVT != MVT::Other) { 5167 // If this is a FP input in an integer register (or visa versa) insert a bit 5168 // cast of the input value. More generally, handle any case where the input 5169 // value disagrees with the register class we plan to stick this in. 5170 if (OpInfo.Type == InlineAsm::isInput && 5171 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5172 // Try to convert to the first EVT that the reg class contains. If the 5173 // types are identical size, use a bitcast to convert (e.g. two differing 5174 // vector types). 5175 EVT RegVT = *PhysReg.second->vt_begin(); 5176 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5177 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5178 RegVT, OpInfo.CallOperand); 5179 OpInfo.ConstraintVT = RegVT; 5180 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5181 // If the input is a FP value and we want it in FP registers, do a 5182 // bitcast to the corresponding integer type. This turns an f64 value 5183 // into i64, which can be passed with two i32 values on a 32-bit 5184 // machine. 5185 RegVT = EVT::getIntegerVT(Context, 5186 OpInfo.ConstraintVT.getSizeInBits()); 5187 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5188 RegVT, OpInfo.CallOperand); 5189 OpInfo.ConstraintVT = RegVT; 5190 } 5191 } 5192 5193 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5194 } 5195 5196 EVT RegVT; 5197 EVT ValueVT = OpInfo.ConstraintVT; 5198 5199 // If this is a constraint for a specific physical register, like {r17}, 5200 // assign it now. 5201 if (unsigned AssignedReg = PhysReg.first) { 5202 const TargetRegisterClass *RC = PhysReg.second; 5203 if (OpInfo.ConstraintVT == MVT::Other) 5204 ValueVT = *RC->vt_begin(); 5205 5206 // Get the actual register value type. This is important, because the user 5207 // may have asked for (e.g.) the AX register in i32 type. We need to 5208 // remember that AX is actually i16 to get the right extension. 5209 RegVT = *RC->vt_begin(); 5210 5211 // This is a explicit reference to a physical register. 5212 Regs.push_back(AssignedReg); 5213 5214 // If this is an expanded reference, add the rest of the regs to Regs. 5215 if (NumRegs != 1) { 5216 TargetRegisterClass::iterator I = RC->begin(); 5217 for (; *I != AssignedReg; ++I) 5218 assert(I != RC->end() && "Didn't find reg!"); 5219 5220 // Already added the first reg. 5221 --NumRegs; ++I; 5222 for (; NumRegs; --NumRegs, ++I) { 5223 assert(I != RC->end() && "Ran out of registers to allocate!"); 5224 Regs.push_back(*I); 5225 } 5226 } 5227 5228 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5229 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5230 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5231 return; 5232 } 5233 5234 // Otherwise, if this was a reference to an LLVM register class, create vregs 5235 // for this reference. 5236 if (const TargetRegisterClass *RC = PhysReg.second) { 5237 RegVT = *RC->vt_begin(); 5238 if (OpInfo.ConstraintVT == MVT::Other) 5239 ValueVT = RegVT; 5240 5241 // Create the appropriate number of virtual registers. 5242 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5243 for (; NumRegs; --NumRegs) 5244 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5245 5246 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5247 return; 5248 } 5249 5250 // This is a reference to a register class that doesn't directly correspond 5251 // to an LLVM register class. Allocate NumRegs consecutive, available, 5252 // registers from the class. 5253 std::vector<unsigned> RegClassRegs 5254 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5255 OpInfo.ConstraintVT); 5256 5257 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5258 unsigned NumAllocated = 0; 5259 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5260 unsigned Reg = RegClassRegs[i]; 5261 // See if this register is available. 5262 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5263 (isInReg && InputRegs.count(Reg))) { // Already used. 5264 // Make sure we find consecutive registers. 5265 NumAllocated = 0; 5266 continue; 5267 } 5268 5269 // Check to see if this register is allocatable (i.e. don't give out the 5270 // stack pointer). 5271 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5272 if (!RC) { // Couldn't allocate this register. 5273 // Reset NumAllocated to make sure we return consecutive registers. 5274 NumAllocated = 0; 5275 continue; 5276 } 5277 5278 // Okay, this register is good, we can use it. 5279 ++NumAllocated; 5280 5281 // If we allocated enough consecutive registers, succeed. 5282 if (NumAllocated == NumRegs) { 5283 unsigned RegStart = (i-NumAllocated)+1; 5284 unsigned RegEnd = i+1; 5285 // Mark all of the allocated registers used. 5286 for (unsigned i = RegStart; i != RegEnd; ++i) 5287 Regs.push_back(RegClassRegs[i]); 5288 5289 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5290 OpInfo.ConstraintVT); 5291 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5292 return; 5293 } 5294 } 5295 5296 // Otherwise, we couldn't allocate enough registers for this. 5297 } 5298 5299 /// visitInlineAsm - Handle a call to an InlineAsm object. 5300 /// 5301 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5302 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5303 5304 /// ConstraintOperands - Information about all of the constraints. 5305 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5306 5307 std::set<unsigned> OutputRegs, InputRegs; 5308 5309 // Do a prepass over the constraints, canonicalizing them, and building up the 5310 // ConstraintOperands list. 5311 std::vector<InlineAsm::ConstraintInfo> 5312 ConstraintInfos = IA->ParseConstraints(); 5313 5314 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5315 5316 SDValue Chain, Flag; 5317 5318 // We won't need to flush pending loads if this asm doesn't touch 5319 // memory and is nonvolatile. 5320 if (hasMemory || IA->hasSideEffects()) 5321 Chain = getRoot(); 5322 else 5323 Chain = DAG.getRoot(); 5324 5325 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5326 unsigned ResNo = 0; // ResNo - The result number of the next output. 5327 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5328 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5329 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5330 5331 EVT OpVT = MVT::Other; 5332 5333 // Compute the value type for each operand. 5334 switch (OpInfo.Type) { 5335 case InlineAsm::isOutput: 5336 // Indirect outputs just consume an argument. 5337 if (OpInfo.isIndirect) { 5338 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5339 break; 5340 } 5341 5342 // The return value of the call is this value. As such, there is no 5343 // corresponding argument. 5344 assert(!CS.getType()->isVoidTy() && 5345 "Bad inline asm!"); 5346 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5347 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5348 } else { 5349 assert(ResNo == 0 && "Asm only has one result!"); 5350 OpVT = TLI.getValueType(CS.getType()); 5351 } 5352 ++ResNo; 5353 break; 5354 case InlineAsm::isInput: 5355 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5356 break; 5357 case InlineAsm::isClobber: 5358 // Nothing to do. 5359 break; 5360 } 5361 5362 // If this is an input or an indirect output, process the call argument. 5363 // BasicBlocks are labels, currently appearing only in asm's. 5364 if (OpInfo.CallOperandVal) { 5365 // Strip bitcasts, if any. This mostly comes up for functions. 5366 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5367 5368 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5369 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5370 } else { 5371 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5372 } 5373 5374 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5375 } 5376 5377 OpInfo.ConstraintVT = OpVT; 5378 } 5379 5380 // Second pass over the constraints: compute which constraint option to use 5381 // and assign registers to constraints that want a specific physreg. 5382 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5383 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5384 5385 // If this is an output operand with a matching input operand, look up the 5386 // matching input. If their types mismatch, e.g. one is an integer, the 5387 // other is floating point, or their sizes are different, flag it as an 5388 // error. 5389 if (OpInfo.hasMatchingInput()) { 5390 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5391 5392 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5393 if ((OpInfo.ConstraintVT.isInteger() != 5394 Input.ConstraintVT.isInteger()) || 5395 (OpInfo.ConstraintVT.getSizeInBits() != 5396 Input.ConstraintVT.getSizeInBits())) { 5397 report_fatal_error("Unsupported asm: input constraint" 5398 " with a matching output constraint of" 5399 " incompatible type!"); 5400 } 5401 Input.ConstraintVT = OpInfo.ConstraintVT; 5402 } 5403 } 5404 5405 // Compute the constraint code and ConstraintType to use. 5406 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5407 5408 // If this is a memory input, and if the operand is not indirect, do what we 5409 // need to to provide an address for the memory input. 5410 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5411 !OpInfo.isIndirect) { 5412 assert(OpInfo.Type == InlineAsm::isInput && 5413 "Can only indirectify direct input operands!"); 5414 5415 // Memory operands really want the address of the value. If we don't have 5416 // an indirect input, put it in the constpool if we can, otherwise spill 5417 // it to a stack slot. 5418 5419 // If the operand is a float, integer, or vector constant, spill to a 5420 // constant pool entry to get its address. 5421 const Value *OpVal = OpInfo.CallOperandVal; 5422 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5423 isa<ConstantVector>(OpVal)) { 5424 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5425 TLI.getPointerTy()); 5426 } else { 5427 // Otherwise, create a stack slot and emit a store to it before the 5428 // asm. 5429 const Type *Ty = OpVal->getType(); 5430 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5431 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5432 MachineFunction &MF = DAG.getMachineFunction(); 5433 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5434 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5435 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5436 OpInfo.CallOperand, StackSlot, NULL, 0, 5437 false, false, 0); 5438 OpInfo.CallOperand = StackSlot; 5439 } 5440 5441 // There is no longer a Value* corresponding to this operand. 5442 OpInfo.CallOperandVal = 0; 5443 5444 // It is now an indirect operand. 5445 OpInfo.isIndirect = true; 5446 } 5447 5448 // If this constraint is for a specific register, allocate it before 5449 // anything else. 5450 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5451 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5452 } 5453 5454 ConstraintInfos.clear(); 5455 5456 // Second pass - Loop over all of the operands, assigning virtual or physregs 5457 // to register class operands. 5458 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5459 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5460 5461 // C_Register operands have already been allocated, Other/Memory don't need 5462 // to be. 5463 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5464 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5465 } 5466 5467 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5468 std::vector<SDValue> AsmNodeOperands; 5469 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5470 AsmNodeOperands.push_back( 5471 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5472 TLI.getPointerTy())); 5473 5474 // If we have a !srcloc metadata node associated with it, we want to attach 5475 // this to the ultimately generated inline asm machineinstr. To do this, we 5476 // pass in the third operand as this (potentially null) inline asm MDNode. 5477 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5478 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5479 5480 // Remember the AlignStack bit as operand 3. 5481 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5482 MVT::i1)); 5483 5484 // Loop over all of the inputs, copying the operand values into the 5485 // appropriate registers and processing the output regs. 5486 RegsForValue RetValRegs; 5487 5488 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5489 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5490 5491 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5492 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5493 5494 switch (OpInfo.Type) { 5495 case InlineAsm::isOutput: { 5496 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5497 OpInfo.ConstraintType != TargetLowering::C_Register) { 5498 // Memory output, or 'other' output (e.g. 'X' constraint). 5499 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5500 5501 // Add information to the INLINEASM node to know about this output. 5502 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5503 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5504 TLI.getPointerTy())); 5505 AsmNodeOperands.push_back(OpInfo.CallOperand); 5506 break; 5507 } 5508 5509 // Otherwise, this is a register or register class output. 5510 5511 // Copy the output from the appropriate register. Find a register that 5512 // we can use. 5513 if (OpInfo.AssignedRegs.Regs.empty()) 5514 report_fatal_error("Couldn't allocate output reg for constraint '" + 5515 Twine(OpInfo.ConstraintCode) + "'!"); 5516 5517 // If this is an indirect operand, store through the pointer after the 5518 // asm. 5519 if (OpInfo.isIndirect) { 5520 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5521 OpInfo.CallOperandVal)); 5522 } else { 5523 // This is the result value of the call. 5524 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5525 // Concatenate this output onto the outputs list. 5526 RetValRegs.append(OpInfo.AssignedRegs); 5527 } 5528 5529 // Add information to the INLINEASM node to know that this register is 5530 // set. 5531 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5532 InlineAsm::Kind_RegDefEarlyClobber : 5533 InlineAsm::Kind_RegDef, 5534 false, 5535 0, 5536 DAG, 5537 AsmNodeOperands); 5538 break; 5539 } 5540 case InlineAsm::isInput: { 5541 SDValue InOperandVal = OpInfo.CallOperand; 5542 5543 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5544 // If this is required to match an output register we have already set, 5545 // just use its register. 5546 unsigned OperandNo = OpInfo.getMatchedOperand(); 5547 5548 // Scan until we find the definition we already emitted of this operand. 5549 // When we find it, create a RegsForValue operand. 5550 unsigned CurOp = InlineAsm::Op_FirstOperand; 5551 for (; OperandNo; --OperandNo) { 5552 // Advance to the next operand. 5553 unsigned OpFlag = 5554 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5555 assert((InlineAsm::isRegDefKind(OpFlag) || 5556 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5557 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5558 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5559 } 5560 5561 unsigned OpFlag = 5562 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5563 if (InlineAsm::isRegDefKind(OpFlag) || 5564 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5565 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5566 if (OpInfo.isIndirect) { 5567 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5568 LLVMContext &Ctx = *DAG.getContext(); 5569 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5570 " don't know how to handle tied " 5571 "indirect register inputs"); 5572 } 5573 5574 RegsForValue MatchedRegs; 5575 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5576 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5577 MatchedRegs.RegVTs.push_back(RegVT); 5578 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5579 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5580 i != e; ++i) 5581 MatchedRegs.Regs.push_back 5582 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5583 5584 // Use the produced MatchedRegs object to 5585 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5586 Chain, &Flag); 5587 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5588 true, OpInfo.getMatchedOperand(), 5589 DAG, AsmNodeOperands); 5590 break; 5591 } 5592 5593 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5594 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5595 "Unexpected number of operands"); 5596 // Add information to the INLINEASM node to know about this input. 5597 // See InlineAsm.h isUseOperandTiedToDef. 5598 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5599 OpInfo.getMatchedOperand()); 5600 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5601 TLI.getPointerTy())); 5602 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5603 break; 5604 } 5605 5606 // Treat indirect 'X' constraint as memory. 5607 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5608 OpInfo.isIndirect) 5609 OpInfo.ConstraintType = TargetLowering::C_Memory; 5610 5611 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5612 std::vector<SDValue> Ops; 5613 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5614 Ops, DAG); 5615 if (Ops.empty()) 5616 report_fatal_error("Invalid operand for inline asm constraint '" + 5617 Twine(OpInfo.ConstraintCode) + "'!"); 5618 5619 // Add information to the INLINEASM node to know about this input. 5620 unsigned ResOpType = 5621 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5622 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5623 TLI.getPointerTy())); 5624 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5625 break; 5626 } 5627 5628 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5629 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5630 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5631 "Memory operands expect pointer values"); 5632 5633 // Add information to the INLINEASM node to know about this input. 5634 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5635 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5636 TLI.getPointerTy())); 5637 AsmNodeOperands.push_back(InOperandVal); 5638 break; 5639 } 5640 5641 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5642 OpInfo.ConstraintType == TargetLowering::C_Register) && 5643 "Unknown constraint type!"); 5644 assert(!OpInfo.isIndirect && 5645 "Don't know how to handle indirect register inputs yet!"); 5646 5647 // Copy the input into the appropriate registers. 5648 if (OpInfo.AssignedRegs.Regs.empty() || 5649 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5650 report_fatal_error("Couldn't allocate input reg for constraint '" + 5651 Twine(OpInfo.ConstraintCode) + "'!"); 5652 5653 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5654 Chain, &Flag); 5655 5656 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5657 DAG, AsmNodeOperands); 5658 break; 5659 } 5660 case InlineAsm::isClobber: { 5661 // Add the clobbered value to the operand list, so that the register 5662 // allocator is aware that the physreg got clobbered. 5663 if (!OpInfo.AssignedRegs.Regs.empty()) 5664 OpInfo.AssignedRegs.AddInlineAsmOperands( 5665 InlineAsm::Kind_RegDefEarlyClobber, 5666 false, 0, DAG, 5667 AsmNodeOperands); 5668 break; 5669 } 5670 } 5671 } 5672 5673 // Finish up input operands. Set the input chain and add the flag last. 5674 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5675 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5676 5677 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5678 DAG.getVTList(MVT::Other, MVT::Flag), 5679 &AsmNodeOperands[0], AsmNodeOperands.size()); 5680 Flag = Chain.getValue(1); 5681 5682 // If this asm returns a register value, copy the result from that register 5683 // and set it as the value of the call. 5684 if (!RetValRegs.Regs.empty()) { 5685 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5686 Chain, &Flag); 5687 5688 // FIXME: Why don't we do this for inline asms with MRVs? 5689 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5690 EVT ResultType = TLI.getValueType(CS.getType()); 5691 5692 // If any of the results of the inline asm is a vector, it may have the 5693 // wrong width/num elts. This can happen for register classes that can 5694 // contain multiple different value types. The preg or vreg allocated may 5695 // not have the same VT as was expected. Convert it to the right type 5696 // with bit_convert. 5697 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5698 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5699 ResultType, Val); 5700 5701 } else if (ResultType != Val.getValueType() && 5702 ResultType.isInteger() && Val.getValueType().isInteger()) { 5703 // If a result value was tied to an input value, the computed result may 5704 // have a wider width than the expected result. Extract the relevant 5705 // portion. 5706 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5707 } 5708 5709 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5710 } 5711 5712 setValue(CS.getInstruction(), Val); 5713 // Don't need to use this as a chain in this case. 5714 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5715 return; 5716 } 5717 5718 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5719 5720 // Process indirect outputs, first output all of the flagged copies out of 5721 // physregs. 5722 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5723 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5724 const Value *Ptr = IndirectStoresToEmit[i].second; 5725 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5726 Chain, &Flag); 5727 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5728 } 5729 5730 // Emit the non-flagged stores from the physregs. 5731 SmallVector<SDValue, 8> OutChains; 5732 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5733 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5734 StoresToEmit[i].first, 5735 getValue(StoresToEmit[i].second), 5736 StoresToEmit[i].second, 0, 5737 false, false, 0); 5738 OutChains.push_back(Val); 5739 } 5740 5741 if (!OutChains.empty()) 5742 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5743 &OutChains[0], OutChains.size()); 5744 5745 DAG.setRoot(Chain); 5746 } 5747 5748 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5749 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5750 MVT::Other, getRoot(), 5751 getValue(I.getArgOperand(0)), 5752 DAG.getSrcValue(I.getArgOperand(0)))); 5753 } 5754 5755 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5756 const TargetData &TD = *TLI.getTargetData(); 5757 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5758 getRoot(), getValue(I.getOperand(0)), 5759 DAG.getSrcValue(I.getOperand(0)), 5760 TD.getABITypeAlignment(I.getType())); 5761 setValue(&I, V); 5762 DAG.setRoot(V.getValue(1)); 5763 } 5764 5765 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5766 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5767 MVT::Other, getRoot(), 5768 getValue(I.getArgOperand(0)), 5769 DAG.getSrcValue(I.getArgOperand(0)))); 5770 } 5771 5772 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5773 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5774 MVT::Other, getRoot(), 5775 getValue(I.getArgOperand(0)), 5776 getValue(I.getArgOperand(1)), 5777 DAG.getSrcValue(I.getArgOperand(0)), 5778 DAG.getSrcValue(I.getArgOperand(1)))); 5779 } 5780 5781 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5782 /// implementation, which just calls LowerCall. 5783 /// FIXME: When all targets are 5784 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5785 std::pair<SDValue, SDValue> 5786 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5787 bool RetSExt, bool RetZExt, bool isVarArg, 5788 bool isInreg, unsigned NumFixedArgs, 5789 CallingConv::ID CallConv, bool isTailCall, 5790 bool isReturnValueUsed, 5791 SDValue Callee, 5792 ArgListTy &Args, SelectionDAG &DAG, 5793 DebugLoc dl) const { 5794 // Handle all of the outgoing arguments. 5795 SmallVector<ISD::OutputArg, 32> Outs; 5796 SmallVector<SDValue, 32> OutVals; 5797 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5798 SmallVector<EVT, 4> ValueVTs; 5799 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5800 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5801 Value != NumValues; ++Value) { 5802 EVT VT = ValueVTs[Value]; 5803 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5804 SDValue Op = SDValue(Args[i].Node.getNode(), 5805 Args[i].Node.getResNo() + Value); 5806 ISD::ArgFlagsTy Flags; 5807 unsigned OriginalAlignment = 5808 getTargetData()->getABITypeAlignment(ArgTy); 5809 5810 if (Args[i].isZExt) 5811 Flags.setZExt(); 5812 if (Args[i].isSExt) 5813 Flags.setSExt(); 5814 if (Args[i].isInReg) 5815 Flags.setInReg(); 5816 if (Args[i].isSRet) 5817 Flags.setSRet(); 5818 if (Args[i].isByVal) { 5819 Flags.setByVal(); 5820 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5821 const Type *ElementTy = Ty->getElementType(); 5822 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5823 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5824 // For ByVal, alignment should come from FE. BE will guess if this 5825 // info is not there but there are cases it cannot get right. 5826 if (Args[i].Alignment) 5827 FrameAlign = Args[i].Alignment; 5828 Flags.setByValAlign(FrameAlign); 5829 Flags.setByValSize(FrameSize); 5830 } 5831 if (Args[i].isNest) 5832 Flags.setNest(); 5833 Flags.setOrigAlign(OriginalAlignment); 5834 5835 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5836 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5837 SmallVector<SDValue, 4> Parts(NumParts); 5838 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5839 5840 if (Args[i].isSExt) 5841 ExtendKind = ISD::SIGN_EXTEND; 5842 else if (Args[i].isZExt) 5843 ExtendKind = ISD::ZERO_EXTEND; 5844 5845 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5846 PartVT, ExtendKind); 5847 5848 for (unsigned j = 0; j != NumParts; ++j) { 5849 // if it isn't first piece, alignment must be 1 5850 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5851 i < NumFixedArgs); 5852 if (NumParts > 1 && j == 0) 5853 MyFlags.Flags.setSplit(); 5854 else if (j != 0) 5855 MyFlags.Flags.setOrigAlign(1); 5856 5857 Outs.push_back(MyFlags); 5858 OutVals.push_back(Parts[j]); 5859 } 5860 } 5861 } 5862 5863 // Handle the incoming return values from the call. 5864 SmallVector<ISD::InputArg, 32> Ins; 5865 SmallVector<EVT, 4> RetTys; 5866 ComputeValueVTs(*this, RetTy, RetTys); 5867 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5868 EVT VT = RetTys[I]; 5869 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5870 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5871 for (unsigned i = 0; i != NumRegs; ++i) { 5872 ISD::InputArg MyFlags; 5873 MyFlags.VT = RegisterVT; 5874 MyFlags.Used = isReturnValueUsed; 5875 if (RetSExt) 5876 MyFlags.Flags.setSExt(); 5877 if (RetZExt) 5878 MyFlags.Flags.setZExt(); 5879 if (isInreg) 5880 MyFlags.Flags.setInReg(); 5881 Ins.push_back(MyFlags); 5882 } 5883 } 5884 5885 SmallVector<SDValue, 4> InVals; 5886 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5887 Outs, OutVals, Ins, dl, DAG, InVals); 5888 5889 // Verify that the target's LowerCall behaved as expected. 5890 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5891 "LowerCall didn't return a valid chain!"); 5892 assert((!isTailCall || InVals.empty()) && 5893 "LowerCall emitted a return value for a tail call!"); 5894 assert((isTailCall || InVals.size() == Ins.size()) && 5895 "LowerCall didn't emit the correct number of values!"); 5896 5897 // For a tail call, the return value is merely live-out and there aren't 5898 // any nodes in the DAG representing it. Return a special value to 5899 // indicate that a tail call has been emitted and no more Instructions 5900 // should be processed in the current block. 5901 if (isTailCall) { 5902 DAG.setRoot(Chain); 5903 return std::make_pair(SDValue(), SDValue()); 5904 } 5905 5906 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5907 assert(InVals[i].getNode() && 5908 "LowerCall emitted a null value!"); 5909 assert(Ins[i].VT == InVals[i].getValueType() && 5910 "LowerCall emitted a value with the wrong type!"); 5911 }); 5912 5913 // Collect the legal value parts into potentially illegal values 5914 // that correspond to the original function's return values. 5915 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5916 if (RetSExt) 5917 AssertOp = ISD::AssertSext; 5918 else if (RetZExt) 5919 AssertOp = ISD::AssertZext; 5920 SmallVector<SDValue, 4> ReturnValues; 5921 unsigned CurReg = 0; 5922 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5923 EVT VT = RetTys[I]; 5924 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5925 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5926 5927 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5928 NumRegs, RegisterVT, VT, 5929 AssertOp)); 5930 CurReg += NumRegs; 5931 } 5932 5933 // For a function returning void, there is no return value. We can't create 5934 // such a node, so we just return a null return value in that case. In 5935 // that case, nothing will actualy look at the value. 5936 if (ReturnValues.empty()) 5937 return std::make_pair(SDValue(), Chain); 5938 5939 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5940 DAG.getVTList(&RetTys[0], RetTys.size()), 5941 &ReturnValues[0], ReturnValues.size()); 5942 return std::make_pair(Res, Chain); 5943 } 5944 5945 void TargetLowering::LowerOperationWrapper(SDNode *N, 5946 SmallVectorImpl<SDValue> &Results, 5947 SelectionDAG &DAG) const { 5948 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5949 if (Res.getNode()) 5950 Results.push_back(Res); 5951 } 5952 5953 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5954 llvm_unreachable("LowerOperation not implemented for this target!"); 5955 return SDValue(); 5956 } 5957 5958 void 5959 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5960 SDValue Op = getNonRegisterValue(V); 5961 assert((Op.getOpcode() != ISD::CopyFromReg || 5962 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5963 "Copy from a reg to the same reg!"); 5964 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5965 5966 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5967 SDValue Chain = DAG.getEntryNode(); 5968 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5969 PendingExports.push_back(Chain); 5970 } 5971 5972 #include "llvm/CodeGen/SelectionDAGISel.h" 5973 5974 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5975 // If this is the entry block, emit arguments. 5976 const Function &F = *LLVMBB->getParent(); 5977 SelectionDAG &DAG = SDB->DAG; 5978 DebugLoc dl = SDB->getCurDebugLoc(); 5979 const TargetData *TD = TLI.getTargetData(); 5980 SmallVector<ISD::InputArg, 16> Ins; 5981 5982 // Check whether the function can return without sret-demotion. 5983 SmallVector<ISD::OutputArg, 4> Outs; 5984 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5985 Outs, TLI); 5986 5987 if (!FuncInfo->CanLowerReturn) { 5988 // Put in an sret pointer parameter before all the other parameters. 5989 SmallVector<EVT, 1> ValueVTs; 5990 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5991 5992 // NOTE: Assuming that a pointer will never break down to more than one VT 5993 // or one register. 5994 ISD::ArgFlagsTy Flags; 5995 Flags.setSRet(); 5996 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 5997 ISD::InputArg RetArg(Flags, RegisterVT, true); 5998 Ins.push_back(RetArg); 5999 } 6000 6001 // Set up the incoming argument description vector. 6002 unsigned Idx = 1; 6003 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6004 I != E; ++I, ++Idx) { 6005 SmallVector<EVT, 4> ValueVTs; 6006 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6007 bool isArgValueUsed = !I->use_empty(); 6008 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6009 Value != NumValues; ++Value) { 6010 EVT VT = ValueVTs[Value]; 6011 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6012 ISD::ArgFlagsTy Flags; 6013 unsigned OriginalAlignment = 6014 TD->getABITypeAlignment(ArgTy); 6015 6016 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6017 Flags.setZExt(); 6018 if (F.paramHasAttr(Idx, Attribute::SExt)) 6019 Flags.setSExt(); 6020 if (F.paramHasAttr(Idx, Attribute::InReg)) 6021 Flags.setInReg(); 6022 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6023 Flags.setSRet(); 6024 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6025 Flags.setByVal(); 6026 const PointerType *Ty = cast<PointerType>(I->getType()); 6027 const Type *ElementTy = Ty->getElementType(); 6028 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6029 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6030 // For ByVal, alignment should be passed from FE. BE will guess if 6031 // this info is not there but there are cases it cannot get right. 6032 if (F.getParamAlignment(Idx)) 6033 FrameAlign = F.getParamAlignment(Idx); 6034 Flags.setByValAlign(FrameAlign); 6035 Flags.setByValSize(FrameSize); 6036 } 6037 if (F.paramHasAttr(Idx, Attribute::Nest)) 6038 Flags.setNest(); 6039 Flags.setOrigAlign(OriginalAlignment); 6040 6041 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6042 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6043 for (unsigned i = 0; i != NumRegs; ++i) { 6044 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6045 if (NumRegs > 1 && i == 0) 6046 MyFlags.Flags.setSplit(); 6047 // if it isn't first piece, alignment must be 1 6048 else if (i > 0) 6049 MyFlags.Flags.setOrigAlign(1); 6050 Ins.push_back(MyFlags); 6051 } 6052 } 6053 } 6054 6055 // Call the target to set up the argument values. 6056 SmallVector<SDValue, 8> InVals; 6057 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6058 F.isVarArg(), Ins, 6059 dl, DAG, InVals); 6060 6061 // Verify that the target's LowerFormalArguments behaved as expected. 6062 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6063 "LowerFormalArguments didn't return a valid chain!"); 6064 assert(InVals.size() == Ins.size() && 6065 "LowerFormalArguments didn't emit the correct number of values!"); 6066 DEBUG({ 6067 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6068 assert(InVals[i].getNode() && 6069 "LowerFormalArguments emitted a null value!"); 6070 assert(Ins[i].VT == InVals[i].getValueType() && 6071 "LowerFormalArguments emitted a value with the wrong type!"); 6072 } 6073 }); 6074 6075 // Update the DAG with the new chain value resulting from argument lowering. 6076 DAG.setRoot(NewRoot); 6077 6078 // Set up the argument values. 6079 unsigned i = 0; 6080 Idx = 1; 6081 if (!FuncInfo->CanLowerReturn) { 6082 // Create a virtual register for the sret pointer, and put in a copy 6083 // from the sret argument into it. 6084 SmallVector<EVT, 1> ValueVTs; 6085 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6086 EVT VT = ValueVTs[0]; 6087 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6088 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6089 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6090 RegVT, VT, AssertOp); 6091 6092 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6093 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6094 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6095 FuncInfo->DemoteRegister = SRetReg; 6096 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6097 SRetReg, ArgValue); 6098 DAG.setRoot(NewRoot); 6099 6100 // i indexes lowered arguments. Bump it past the hidden sret argument. 6101 // Idx indexes LLVM arguments. Don't touch it. 6102 ++i; 6103 } 6104 6105 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6106 ++I, ++Idx) { 6107 SmallVector<SDValue, 4> ArgValues; 6108 SmallVector<EVT, 4> ValueVTs; 6109 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6110 unsigned NumValues = ValueVTs.size(); 6111 6112 // If this argument is unused then remember its value. It is used to generate 6113 // debugging information. 6114 if (I->use_empty() && NumValues) 6115 SDB->setUnusedArgValue(I, InVals[i]); 6116 6117 for (unsigned Value = 0; Value != NumValues; ++Value) { 6118 EVT VT = ValueVTs[Value]; 6119 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6120 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6121 6122 if (!I->use_empty()) { 6123 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6124 if (F.paramHasAttr(Idx, Attribute::SExt)) 6125 AssertOp = ISD::AssertSext; 6126 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6127 AssertOp = ISD::AssertZext; 6128 6129 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6130 NumParts, PartVT, VT, 6131 AssertOp)); 6132 } 6133 6134 i += NumParts; 6135 } 6136 6137 if (!I->use_empty()) { 6138 SDValue Res; 6139 if (!ArgValues.empty()) 6140 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6141 SDB->getCurDebugLoc()); 6142 SDB->setValue(I, Res); 6143 6144 // If this argument is live outside of the entry block, insert a copy from 6145 // whereever we got it to the vreg that other BB's will reference it as. 6146 SDB->CopyToExportRegsIfNeeded(I); 6147 } 6148 } 6149 6150 assert(i == InVals.size() && "Argument register count mismatch!"); 6151 6152 // Finally, if the target has anything special to do, allow it to do so. 6153 // FIXME: this should insert code into the DAG! 6154 EmitFunctionEntryCode(); 6155 } 6156 6157 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6158 /// ensure constants are generated when needed. Remember the virtual registers 6159 /// that need to be added to the Machine PHI nodes as input. We cannot just 6160 /// directly add them, because expansion might result in multiple MBB's for one 6161 /// BB. As such, the start of the BB might correspond to a different MBB than 6162 /// the end. 6163 /// 6164 void 6165 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6166 const TerminatorInst *TI = LLVMBB->getTerminator(); 6167 6168 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6169 6170 // Check successor nodes' PHI nodes that expect a constant to be available 6171 // from this block. 6172 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6173 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6174 if (!isa<PHINode>(SuccBB->begin())) continue; 6175 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6176 6177 // If this terminator has multiple identical successors (common for 6178 // switches), only handle each succ once. 6179 if (!SuccsHandled.insert(SuccMBB)) continue; 6180 6181 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6182 6183 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6184 // nodes and Machine PHI nodes, but the incoming operands have not been 6185 // emitted yet. 6186 for (BasicBlock::const_iterator I = SuccBB->begin(); 6187 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6188 // Ignore dead phi's. 6189 if (PN->use_empty()) continue; 6190 6191 unsigned Reg; 6192 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6193 6194 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6195 unsigned &RegOut = ConstantsOut[C]; 6196 if (RegOut == 0) { 6197 RegOut = FuncInfo.CreateRegs(C->getType()); 6198 CopyValueToVirtualRegister(C, RegOut); 6199 } 6200 Reg = RegOut; 6201 } else { 6202 DenseMap<const Value *, unsigned>::iterator I = 6203 FuncInfo.ValueMap.find(PHIOp); 6204 if (I != FuncInfo.ValueMap.end()) 6205 Reg = I->second; 6206 else { 6207 assert(isa<AllocaInst>(PHIOp) && 6208 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6209 "Didn't codegen value into a register!??"); 6210 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6211 CopyValueToVirtualRegister(PHIOp, Reg); 6212 } 6213 } 6214 6215 // Remember that this register needs to added to the machine PHI node as 6216 // the input for this MBB. 6217 SmallVector<EVT, 4> ValueVTs; 6218 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6219 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6220 EVT VT = ValueVTs[vti]; 6221 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6222 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6223 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6224 Reg += NumRegisters; 6225 } 6226 } 6227 } 6228 ConstantsOut.clear(); 6229 } 6230