1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (TLI.isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 168 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 169 TLI.getPointerTy())); 170 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 171 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 172 } 173 } else if (PartVT.isFloatingPoint()) { 174 // FP split into multiple FP parts (for ppcf128) 175 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 176 "Unexpected split"); 177 SDValue Lo, Hi; 178 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 179 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 180 if (TLI.hasBigEndianPartOrdering(ValueVT)) 181 std::swap(Lo, Hi); 182 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 183 } else { 184 // FP split into integer parts (soft fp) 185 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 186 !PartVT.isVector() && "Unexpected split"); 187 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 188 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 189 } 190 } 191 192 // There is now one part, held in Val. Correct it to match ValueVT. 193 EVT PartEVT = Val.getValueType(); 194 195 if (PartEVT == ValueVT) 196 return Val; 197 198 if (PartEVT.isInteger() && ValueVT.isInteger()) { 199 if (ValueVT.bitsLT(PartEVT)) { 200 // For a truncate, see if we have any information to 201 // indicate whether the truncated bits will always be 202 // zero or sign-extension. 203 if (AssertOp != ISD::DELETED_NODE) 204 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 205 DAG.getValueType(ValueVT)); 206 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 207 } 208 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 212 // FP_ROUND's are always exact here. 213 if (ValueVT.bitsLT(Val.getValueType())) 214 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 215 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 216 217 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 218 } 219 220 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 221 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 222 223 llvm_unreachable("Unknown mismatch!"); 224 } 225 226 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 227 const Twine &ErrMsg) { 228 const Instruction *I = dyn_cast_or_null<Instruction>(V); 229 if (!V) 230 return Ctx.emitError(ErrMsg); 231 232 const char *AsmError = ", possible invalid constraint for vector type"; 233 if (const CallInst *CI = dyn_cast<CallInst>(I)) 234 if (isa<InlineAsm>(CI->getCalledValue())) 235 return Ctx.emitError(I, ErrMsg + AsmError); 236 237 return Ctx.emitError(I, ErrMsg); 238 } 239 240 /// getCopyFromPartsVector - Create a value that contains the specified legal 241 /// parts combined into the value they represent. If the parts combine to a 242 /// type larger then ValueVT then AssertOp can be used to specify whether the 243 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 244 /// ValueVT (ISD::AssertSext). 245 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 246 const SDValue *Parts, unsigned NumParts, 247 MVT PartVT, EVT ValueVT, const Value *V) { 248 assert(ValueVT.isVector() && "Not a vector value"); 249 assert(NumParts > 0 && "No parts to assemble!"); 250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 251 SDValue Val = Parts[0]; 252 253 // Handle a multi-element vector. 254 if (NumParts > 1) { 255 EVT IntermediateVT; 256 MVT RegisterVT; 257 unsigned NumIntermediates; 258 unsigned NumRegs = 259 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 260 NumIntermediates, RegisterVT); 261 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 262 NumParts = NumRegs; // Silence a compiler warning. 263 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 264 assert(RegisterVT.getSizeInBits() == 265 Parts[0].getSimpleValueType().getSizeInBits() && 266 "Part type sizes don't match!"); 267 268 // Assemble the parts into intermediate operands. 269 SmallVector<SDValue, 8> Ops(NumIntermediates); 270 if (NumIntermediates == NumParts) { 271 // If the register was not expanded, truncate or copy the value, 272 // as appropriate. 273 for (unsigned i = 0; i != NumParts; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 275 PartVT, IntermediateVT, V); 276 } else if (NumParts > 0) { 277 // If the intermediate type was expanded, build the intermediate 278 // operands from the parts. 279 assert(NumParts % NumIntermediates == 0 && 280 "Must expand into a divisible number of parts!"); 281 unsigned Factor = NumParts / NumIntermediates; 282 for (unsigned i = 0; i != NumIntermediates; ++i) 283 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 284 PartVT, IntermediateVT, V); 285 } 286 287 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 288 // intermediate operands. 289 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 290 : ISD::BUILD_VECTOR, 291 DL, ValueVT, Ops); 292 } 293 294 // There is now one part, held in Val. Correct it to match ValueVT. 295 EVT PartEVT = Val.getValueType(); 296 297 if (PartEVT == ValueVT) 298 return Val; 299 300 if (PartEVT.isVector()) { 301 // If the element type of the source/dest vectors are the same, but the 302 // parts vector has more elements than the value vector, then we have a 303 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 304 // elements we want. 305 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 306 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 307 "Cannot narrow, it would be a lossy transformation"); 308 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 309 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 310 } 311 312 // Vector/Vector bitcast. 313 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 314 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 315 316 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 317 "Cannot handle this kind of promotion"); 318 // Promoted vector extract 319 bool Smaller = ValueVT.bitsLE(PartEVT); 320 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 321 DL, ValueVT, Val); 322 323 } 324 325 // Trivial bitcast if the types are the same size and the destination 326 // vector type is legal. 327 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 328 TLI.isTypeLegal(ValueVT)) 329 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 330 331 // Handle cases such as i8 -> <1 x i1> 332 if (ValueVT.getVectorNumElements() != 1) { 333 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 334 "non-trivial scalar-to-vector conversion"); 335 return DAG.getUNDEF(ValueVT); 336 } 337 338 if (ValueVT.getVectorNumElements() == 1 && 339 ValueVT.getVectorElementType() != PartEVT) { 340 bool Smaller = ValueVT.bitsLE(PartEVT); 341 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 342 DL, ValueVT.getScalarType(), Val); 343 } 344 345 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 346 } 347 348 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 349 SDValue Val, SDValue *Parts, unsigned NumParts, 350 MVT PartVT, const Value *V); 351 352 /// getCopyToParts - Create a series of nodes that contain the specified value 353 /// split into legal parts. If the parts contain more bits than Val, then, for 354 /// integers, ExtendKind can be used to specify how to generate the extra bits. 355 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 356 SDValue Val, SDValue *Parts, unsigned NumParts, 357 MVT PartVT, const Value *V, 358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 359 EVT ValueVT = Val.getValueType(); 360 361 // Handle the vector case separately. 362 if (ValueVT.isVector()) 363 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 unsigned PartBits = PartVT.getSizeInBits(); 367 unsigned OrigNumParts = NumParts; 368 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 369 370 if (NumParts == 0) 371 return; 372 373 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 374 EVT PartEVT = PartVT; 375 if (PartEVT == ValueVT) { 376 assert(NumParts == 1 && "No-op copy with multiple parts!"); 377 Parts[0] = Val; 378 return; 379 } 380 381 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 382 // If the parts cover more bits than the value has, promote the value. 383 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 384 assert(NumParts == 1 && "Do not know what to promote to!"); 385 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 386 } else { 387 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 388 ValueVT.isInteger() && 389 "Unknown mismatch!"); 390 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 391 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 392 if (PartVT == MVT::x86mmx) 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } 395 } else if (PartBits == ValueVT.getSizeInBits()) { 396 // Different types of the same size. 397 assert(NumParts == 1 && PartEVT != ValueVT); 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 400 // If the parts cover less bits than value has, truncate the value. 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 410 // The value may have changed - recompute ValueVT. 411 ValueVT = Val.getValueType(); 412 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 413 "Failed to tile the value with PartVT!"); 414 415 if (NumParts == 1) { 416 if (PartEVT != ValueVT) 417 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 418 "scalar-to-vector conversion failed"); 419 420 Parts[0] = Val; 421 return; 422 } 423 424 // Expand the value into multiple parts. 425 if (NumParts & (NumParts - 1)) { 426 // The number of parts is not a power of 2. Split off and copy the tail. 427 assert(PartVT.isInteger() && ValueVT.isInteger() && 428 "Do not know what to expand to!"); 429 unsigned RoundParts = 1 << Log2_32(NumParts); 430 unsigned RoundBits = RoundParts * PartBits; 431 unsigned OddParts = NumParts - RoundParts; 432 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 433 DAG.getIntPtrConstant(RoundBits, DL)); 434 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 435 436 if (TLI.isBigEndian()) 437 // The odd parts were reversed by getCopyToParts - unreverse them. 438 std::reverse(Parts + RoundParts, Parts + NumParts); 439 440 NumParts = RoundParts; 441 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 442 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 443 } 444 445 // The number of parts is a power of 2. Repeatedly bisect the value using 446 // EXTRACT_ELEMENT. 447 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 448 EVT::getIntegerVT(*DAG.getContext(), 449 ValueVT.getSizeInBits()), 450 Val); 451 452 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 453 for (unsigned i = 0; i < NumParts; i += StepSize) { 454 unsigned ThisBits = StepSize * PartBits / 2; 455 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 456 SDValue &Part0 = Parts[i]; 457 SDValue &Part1 = Parts[i+StepSize/2]; 458 459 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 461 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 462 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 463 464 if (ThisBits == PartBits && ThisVT != PartVT) { 465 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 466 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 467 } 468 } 469 } 470 471 if (TLI.isBigEndian()) 472 std::reverse(Parts, Parts + OrigNumParts); 473 } 474 475 476 /// getCopyToPartsVector - Create a series of nodes that contain the specified 477 /// value split into legal parts. 478 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V) { 481 EVT ValueVT = Val.getValueType(); 482 assert(ValueVT.isVector() && "Not a vector"); 483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 484 485 if (NumParts == 1) { 486 EVT PartEVT = PartVT; 487 if (PartEVT == ValueVT) { 488 // Nothing to do. 489 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 490 // Bitconvert vector->vector case. 491 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 492 } else if (PartVT.isVector() && 493 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 494 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 495 EVT ElementVT = PartVT.getVectorElementType(); 496 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 497 // undef elements. 498 SmallVector<SDValue, 16> Ops; 499 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 500 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 501 ElementVT, Val, DAG.getConstant(i, DL, 502 TLI.getVectorIdxTy()))); 503 504 for (unsigned i = ValueVT.getVectorNumElements(), 505 e = PartVT.getVectorNumElements(); i != e; ++i) 506 Ops.push_back(DAG.getUNDEF(ElementVT)); 507 508 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 509 510 // FIXME: Use CONCAT for 2x -> 4x. 511 512 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 513 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 514 } else if (PartVT.isVector() && 515 PartEVT.getVectorElementType().bitsGE( 516 ValueVT.getVectorElementType()) && 517 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 518 519 // Promoted vector extract 520 bool Smaller = PartEVT.bitsLE(ValueVT); 521 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 522 DL, PartVT, Val); 523 } else{ 524 // Vector -> scalar conversion. 525 assert(ValueVT.getVectorNumElements() == 1 && 526 "Only trivial vector-to-scalar conversions should get here!"); 527 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 528 PartVT, Val, 529 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 530 531 bool Smaller = ValueVT.bitsLE(PartVT); 532 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 533 DL, PartVT, Val); 534 } 535 536 Parts[0] = Val; 537 return; 538 } 539 540 // Handle a multi-element vector. 541 EVT IntermediateVT; 542 MVT RegisterVT; 543 unsigned NumIntermediates; 544 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 545 IntermediateVT, 546 NumIntermediates, RegisterVT); 547 unsigned NumElements = ValueVT.getVectorNumElements(); 548 549 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 550 NumParts = NumRegs; // Silence a compiler warning. 551 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 552 553 // Split the vector into intermediate operands. 554 SmallVector<SDValue, 8> Ops(NumIntermediates); 555 for (unsigned i = 0; i != NumIntermediates; ++i) { 556 if (IntermediateVT.isVector()) 557 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 560 TLI.getVectorIdxTy())); 561 else 562 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 563 IntermediateVT, Val, 564 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 565 } 566 567 // Split the intermediate operands into legal parts. 568 if (NumParts == NumIntermediates) { 569 // If the register was not expanded, promote or copy the value, 570 // as appropriate. 571 for (unsigned i = 0; i != NumParts; ++i) 572 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 573 } else if (NumParts > 0) { 574 // If the intermediate type was expanded, split each the value into 575 // legal parts. 576 assert(NumIntermediates != 0 && "division by zero"); 577 assert(NumParts % NumIntermediates == 0 && 578 "Must expand into a divisible number of parts!"); 579 unsigned Factor = NumParts / NumIntermediates; 580 for (unsigned i = 0; i != NumIntermediates; ++i) 581 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 582 } 583 } 584 585 RegsForValue::RegsForValue() {} 586 587 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 588 EVT valuevt) 589 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 590 591 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 592 unsigned Reg, Type *Ty) { 593 ComputeValueVTs(tli, Ty, ValueVTs); 594 595 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 596 EVT ValueVT = ValueVTs[Value]; 597 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 598 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 599 for (unsigned i = 0; i != NumRegs; ++i) 600 Regs.push_back(Reg + i); 601 RegVTs.push_back(RegisterVT); 602 Reg += NumRegs; 603 } 604 } 605 606 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 607 /// this value and returns the result as a ValueVT value. This uses 608 /// Chain/Flag as the input and updates them for the output Chain/Flag. 609 /// If the Flag pointer is NULL, no flag is used. 610 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 611 FunctionLoweringInfo &FuncInfo, 612 SDLoc dl, 613 SDValue &Chain, SDValue *Flag, 614 const Value *V) const { 615 // A Value with type {} or [0 x %t] needs no registers. 616 if (ValueVTs.empty()) 617 return SDValue(); 618 619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 620 621 // Assemble the legal parts into the final values. 622 SmallVector<SDValue, 4> Values(ValueVTs.size()); 623 SmallVector<SDValue, 8> Parts; 624 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 625 // Copy the legal parts from the registers. 626 EVT ValueVT = ValueVTs[Value]; 627 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 628 MVT RegisterVT = RegVTs[Value]; 629 630 Parts.resize(NumRegs); 631 for (unsigned i = 0; i != NumRegs; ++i) { 632 SDValue P; 633 if (!Flag) { 634 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 635 } else { 636 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 637 *Flag = P.getValue(2); 638 } 639 640 Chain = P.getValue(1); 641 Parts[i] = P; 642 643 // If the source register was virtual and if we know something about it, 644 // add an assert node. 645 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 646 !RegisterVT.isInteger() || RegisterVT.isVector()) 647 continue; 648 649 const FunctionLoweringInfo::LiveOutInfo *LOI = 650 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 651 if (!LOI) 652 continue; 653 654 unsigned RegSize = RegisterVT.getSizeInBits(); 655 unsigned NumSignBits = LOI->NumSignBits; 656 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 657 658 if (NumZeroBits == RegSize) { 659 // The current value is a zero. 660 // Explicitly express that as it would be easier for 661 // optimizations to kick in. 662 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 663 continue; 664 } 665 666 // FIXME: We capture more information than the dag can represent. For 667 // now, just use the tightest assertzext/assertsext possible. 668 bool isSExt = true; 669 EVT FromVT(MVT::Other); 670 if (NumSignBits == RegSize) 671 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 672 else if (NumZeroBits >= RegSize-1) 673 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 674 else if (NumSignBits > RegSize-8) 675 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 676 else if (NumZeroBits >= RegSize-8) 677 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 678 else if (NumSignBits > RegSize-16) 679 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 680 else if (NumZeroBits >= RegSize-16) 681 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 682 else if (NumSignBits > RegSize-32) 683 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 684 else if (NumZeroBits >= RegSize-32) 685 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 686 else 687 continue; 688 689 // Add an assertion node. 690 assert(FromVT != MVT::Other); 691 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 692 RegisterVT, P, DAG.getValueType(FromVT)); 693 } 694 695 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 696 NumRegs, RegisterVT, ValueVT, V); 697 Part += NumRegs; 698 Parts.clear(); 699 } 700 701 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 702 } 703 704 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 705 /// specified value into the registers specified by this object. This uses 706 /// Chain/Flag as the input and updates them for the output Chain/Flag. 707 /// If the Flag pointer is NULL, no flag is used. 708 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 709 SDValue &Chain, SDValue *Flag, const Value *V, 710 ISD::NodeType PreferredExtendType) const { 711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 712 ISD::NodeType ExtendKind = PreferredExtendType; 713 714 // Get the list of the values's legal parts. 715 unsigned NumRegs = Regs.size(); 716 SmallVector<SDValue, 8> Parts(NumRegs); 717 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 718 EVT ValueVT = ValueVTs[Value]; 719 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 720 MVT RegisterVT = RegVTs[Value]; 721 722 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 723 ExtendKind = ISD::ZERO_EXTEND; 724 725 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 726 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 727 Part += NumParts; 728 } 729 730 // Copy the parts into the registers. 731 SmallVector<SDValue, 8> Chains(NumRegs); 732 for (unsigned i = 0; i != NumRegs; ++i) { 733 SDValue Part; 734 if (!Flag) { 735 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 736 } else { 737 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 738 *Flag = Part.getValue(1); 739 } 740 741 Chains[i] = Part.getValue(0); 742 } 743 744 if (NumRegs == 1 || Flag) 745 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 746 // flagged to it. That is the CopyToReg nodes and the user are considered 747 // a single scheduling unit. If we create a TokenFactor and return it as 748 // chain, then the TokenFactor is both a predecessor (operand) of the 749 // user as well as a successor (the TF operands are flagged to the user). 750 // c1, f1 = CopyToReg 751 // c2, f2 = CopyToReg 752 // c3 = TokenFactor c1, c2 753 // ... 754 // = op c3, ..., f2 755 Chain = Chains[NumRegs-1]; 756 else 757 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 758 } 759 760 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 761 /// operand list. This adds the code marker and includes the number of 762 /// values added into it. 763 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 764 unsigned MatchingIdx, SDLoc dl, 765 SelectionDAG &DAG, 766 std::vector<SDValue> &Ops) const { 767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 768 769 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 770 if (HasMatching) 771 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 772 else if (!Regs.empty() && 773 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 774 // Put the register class of the virtual registers in the flag word. That 775 // way, later passes can recompute register class constraints for inline 776 // assembly as well as normal instructions. 777 // Don't do this for tied operands that can use the regclass information 778 // from the def. 779 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 780 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 781 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 782 } 783 784 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 785 Ops.push_back(Res); 786 787 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 788 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 789 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 790 MVT RegisterVT = RegVTs[Value]; 791 for (unsigned i = 0; i != NumRegs; ++i) { 792 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 793 unsigned TheReg = Regs[Reg++]; 794 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 795 796 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 797 // If we clobbered the stack pointer, MFI should know about it. 798 assert(DAG.getMachineFunction().getFrameInfo()-> 799 hasInlineAsmWithSPAdjust()); 800 } 801 } 802 } 803 } 804 805 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 806 const TargetLibraryInfo *li) { 807 AA = &aa; 808 GFI = gfi; 809 LibInfo = li; 810 DL = DAG.getTarget().getDataLayout(); 811 Context = DAG.getContext(); 812 LPadToCallSiteMap.clear(); 813 } 814 815 /// clear - Clear out the current SelectionDAG and the associated 816 /// state and prepare this SelectionDAGBuilder object to be used 817 /// for a new block. This doesn't clear out information about 818 /// additional blocks that are needed to complete switch lowering 819 /// or PHI node updating; that information is cleared out as it is 820 /// consumed. 821 void SelectionDAGBuilder::clear() { 822 NodeMap.clear(); 823 UnusedArgNodeMap.clear(); 824 PendingLoads.clear(); 825 PendingExports.clear(); 826 CurInst = nullptr; 827 HasTailCall = false; 828 SDNodeOrder = LowestSDNodeOrder; 829 StatepointLowering.clear(); 830 } 831 832 /// clearDanglingDebugInfo - Clear the dangling debug information 833 /// map. This function is separated from the clear so that debug 834 /// information that is dangling in a basic block can be properly 835 /// resolved in a different basic block. This allows the 836 /// SelectionDAG to resolve dangling debug information attached 837 /// to PHI nodes. 838 void SelectionDAGBuilder::clearDanglingDebugInfo() { 839 DanglingDebugInfoMap.clear(); 840 } 841 842 /// getRoot - Return the current virtual root of the Selection DAG, 843 /// flushing any PendingLoad items. This must be done before emitting 844 /// a store or any other node that may need to be ordered after any 845 /// prior load instructions. 846 /// 847 SDValue SelectionDAGBuilder::getRoot() { 848 if (PendingLoads.empty()) 849 return DAG.getRoot(); 850 851 if (PendingLoads.size() == 1) { 852 SDValue Root = PendingLoads[0]; 853 DAG.setRoot(Root); 854 PendingLoads.clear(); 855 return Root; 856 } 857 858 // Otherwise, we have to make a token factor node. 859 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 860 PendingLoads); 861 PendingLoads.clear(); 862 DAG.setRoot(Root); 863 return Root; 864 } 865 866 /// getControlRoot - Similar to getRoot, but instead of flushing all the 867 /// PendingLoad items, flush all the PendingExports items. It is necessary 868 /// to do this before emitting a terminator instruction. 869 /// 870 SDValue SelectionDAGBuilder::getControlRoot() { 871 SDValue Root = DAG.getRoot(); 872 873 if (PendingExports.empty()) 874 return Root; 875 876 // Turn all of the CopyToReg chains into one factored node. 877 if (Root.getOpcode() != ISD::EntryToken) { 878 unsigned i = 0, e = PendingExports.size(); 879 for (; i != e; ++i) { 880 assert(PendingExports[i].getNode()->getNumOperands() > 1); 881 if (PendingExports[i].getNode()->getOperand(0) == Root) 882 break; // Don't add the root if we already indirectly depend on it. 883 } 884 885 if (i == e) 886 PendingExports.push_back(Root); 887 } 888 889 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 890 PendingExports); 891 PendingExports.clear(); 892 DAG.setRoot(Root); 893 return Root; 894 } 895 896 void SelectionDAGBuilder::visit(const Instruction &I) { 897 // Set up outgoing PHI node register values before emitting the terminator. 898 if (isa<TerminatorInst>(&I)) 899 HandlePHINodesInSuccessorBlocks(I.getParent()); 900 901 ++SDNodeOrder; 902 903 CurInst = &I; 904 905 visit(I.getOpcode(), I); 906 907 if (!isa<TerminatorInst>(&I) && !HasTailCall) 908 CopyToExportRegsIfNeeded(&I); 909 910 CurInst = nullptr; 911 } 912 913 void SelectionDAGBuilder::visitPHI(const PHINode &) { 914 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 915 } 916 917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 918 // Note: this doesn't use InstVisitor, because it has to work with 919 // ConstantExpr's in addition to instructions. 920 switch (Opcode) { 921 default: llvm_unreachable("Unknown instruction type encountered!"); 922 // Build the switch statement using the Instruction.def file. 923 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 924 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 925 #include "llvm/IR/Instruction.def" 926 } 927 } 928 929 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 930 // generate the debug data structures now that we've seen its definition. 931 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 932 SDValue Val) { 933 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 934 if (DDI.getDI()) { 935 const DbgValueInst *DI = DDI.getDI(); 936 DebugLoc dl = DDI.getdl(); 937 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 938 DILocalVariable *Variable = DI->getVariable(); 939 DIExpression *Expr = DI->getExpression(); 940 assert(Variable->isValidLocationForIntrinsic(dl) && 941 "Expected inlined-at fields to agree"); 942 uint64_t Offset = DI->getOffset(); 943 // A dbg.value for an alloca is always indirect. 944 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 945 SDDbgValue *SDV; 946 if (Val.getNode()) { 947 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 948 Val)) { 949 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 950 IsIndirect, Offset, dl, DbgSDNodeOrder); 951 DAG.AddDbgValue(SDV, Val.getNode(), false); 952 } 953 } else 954 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 955 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 956 } 957 } 958 959 /// getCopyFromRegs - If there was virtual register allocated for the value V 960 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 961 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 962 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 963 SDValue Result; 964 965 if (It != FuncInfo.ValueMap.end()) { 966 unsigned InReg = It->second; 967 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 968 Ty); 969 SDValue Chain = DAG.getEntryNode(); 970 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 971 resolveDanglingDebugInfo(V, Result); 972 } 973 974 return Result; 975 } 976 977 /// getValue - Return an SDValue for the given Value. 978 SDValue SelectionDAGBuilder::getValue(const Value *V) { 979 // If we already have an SDValue for this value, use it. It's important 980 // to do this first, so that we don't create a CopyFromReg if we already 981 // have a regular SDValue. 982 SDValue &N = NodeMap[V]; 983 if (N.getNode()) return N; 984 985 // If there's a virtual register allocated and initialized for this 986 // value, use it. 987 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 988 if (copyFromReg.getNode()) { 989 return copyFromReg; 990 } 991 992 // Otherwise create a new SDValue and remember it. 993 SDValue Val = getValueImpl(V); 994 NodeMap[V] = Val; 995 resolveDanglingDebugInfo(V, Val); 996 return Val; 997 } 998 999 // Return true if SDValue exists for the given Value 1000 bool SelectionDAGBuilder::findValue(const Value *V) const { 1001 return (NodeMap.find(V) != NodeMap.end()) || 1002 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1003 } 1004 1005 /// getNonRegisterValue - Return an SDValue for the given Value, but 1006 /// don't look in FuncInfo.ValueMap for a virtual register. 1007 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1008 // If we already have an SDValue for this value, use it. 1009 SDValue &N = NodeMap[V]; 1010 if (N.getNode()) { 1011 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1012 // Remove the debug location from the node as the node is about to be used 1013 // in a location which may differ from the original debug location. This 1014 // is relevant to Constant and ConstantFP nodes because they can appear 1015 // as constant expressions inside PHI nodes. 1016 N->setDebugLoc(DebugLoc()); 1017 } 1018 return N; 1019 } 1020 1021 // Otherwise create a new SDValue and remember it. 1022 SDValue Val = getValueImpl(V); 1023 NodeMap[V] = Val; 1024 resolveDanglingDebugInfo(V, Val); 1025 return Val; 1026 } 1027 1028 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1029 /// Create an SDValue for the given value. 1030 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1032 1033 if (const Constant *C = dyn_cast<Constant>(V)) { 1034 EVT VT = TLI.getValueType(V->getType(), true); 1035 1036 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1037 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1038 1039 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1040 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1041 1042 if (isa<ConstantPointerNull>(C)) { 1043 unsigned AS = V->getType()->getPointerAddressSpace(); 1044 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1045 } 1046 1047 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1048 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1049 1050 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1051 return DAG.getUNDEF(VT); 1052 1053 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1054 visit(CE->getOpcode(), *CE); 1055 SDValue N1 = NodeMap[V]; 1056 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1057 return N1; 1058 } 1059 1060 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1061 SmallVector<SDValue, 4> Constants; 1062 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1063 OI != OE; ++OI) { 1064 SDNode *Val = getValue(*OI).getNode(); 1065 // If the operand is an empty aggregate, there are no values. 1066 if (!Val) continue; 1067 // Add each leaf value from the operand to the Constants list 1068 // to form a flattened list of all the values. 1069 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1070 Constants.push_back(SDValue(Val, i)); 1071 } 1072 1073 return DAG.getMergeValues(Constants, getCurSDLoc()); 1074 } 1075 1076 if (const ConstantDataSequential *CDS = 1077 dyn_cast<ConstantDataSequential>(C)) { 1078 SmallVector<SDValue, 4> Ops; 1079 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1080 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1081 // Add each leaf value from the operand to the Constants list 1082 // to form a flattened list of all the values. 1083 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1084 Ops.push_back(SDValue(Val, i)); 1085 } 1086 1087 if (isa<ArrayType>(CDS->getType())) 1088 return DAG.getMergeValues(Ops, getCurSDLoc()); 1089 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1090 VT, Ops); 1091 } 1092 1093 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1094 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1095 "Unknown struct or array constant!"); 1096 1097 SmallVector<EVT, 4> ValueVTs; 1098 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1099 unsigned NumElts = ValueVTs.size(); 1100 if (NumElts == 0) 1101 return SDValue(); // empty struct 1102 SmallVector<SDValue, 4> Constants(NumElts); 1103 for (unsigned i = 0; i != NumElts; ++i) { 1104 EVT EltVT = ValueVTs[i]; 1105 if (isa<UndefValue>(C)) 1106 Constants[i] = DAG.getUNDEF(EltVT); 1107 else if (EltVT.isFloatingPoint()) 1108 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1109 else 1110 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1111 } 1112 1113 return DAG.getMergeValues(Constants, getCurSDLoc()); 1114 } 1115 1116 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1117 return DAG.getBlockAddress(BA, VT); 1118 1119 VectorType *VecTy = cast<VectorType>(V->getType()); 1120 unsigned NumElements = VecTy->getNumElements(); 1121 1122 // Now that we know the number and type of the elements, get that number of 1123 // elements into the Ops array based on what kind of constant it is. 1124 SmallVector<SDValue, 16> Ops; 1125 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1126 for (unsigned i = 0; i != NumElements; ++i) 1127 Ops.push_back(getValue(CV->getOperand(i))); 1128 } else { 1129 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1130 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1131 1132 SDValue Op; 1133 if (EltVT.isFloatingPoint()) 1134 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1135 else 1136 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1137 Ops.assign(NumElements, Op); 1138 } 1139 1140 // Create a BUILD_VECTOR node. 1141 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1142 } 1143 1144 // If this is a static alloca, generate it as the frameindex instead of 1145 // computation. 1146 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1147 DenseMap<const AllocaInst*, int>::iterator SI = 1148 FuncInfo.StaticAllocaMap.find(AI); 1149 if (SI != FuncInfo.StaticAllocaMap.end()) 1150 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1151 } 1152 1153 // If this is an instruction which fast-isel has deferred, select it now. 1154 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1155 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1156 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1157 SDValue Chain = DAG.getEntryNode(); 1158 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1159 } 1160 1161 llvm_unreachable("Can't get register for value!"); 1162 } 1163 1164 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1166 SDValue Chain = getControlRoot(); 1167 SmallVector<ISD::OutputArg, 8> Outs; 1168 SmallVector<SDValue, 8> OutVals; 1169 1170 if (!FuncInfo.CanLowerReturn) { 1171 unsigned DemoteReg = FuncInfo.DemoteRegister; 1172 const Function *F = I.getParent()->getParent(); 1173 1174 // Emit a store of the return value through the virtual register. 1175 // Leave Outs empty so that LowerReturn won't try to load return 1176 // registers the usual way. 1177 SmallVector<EVT, 1> PtrValueVTs; 1178 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1179 PtrValueVTs); 1180 1181 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1182 SDValue RetOp = getValue(I.getOperand(0)); 1183 1184 SmallVector<EVT, 4> ValueVTs; 1185 SmallVector<uint64_t, 4> Offsets; 1186 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1187 unsigned NumValues = ValueVTs.size(); 1188 1189 SmallVector<SDValue, 4> Chains(NumValues); 1190 for (unsigned i = 0; i != NumValues; ++i) { 1191 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1192 RetPtr.getValueType(), RetPtr, 1193 DAG.getIntPtrConstant(Offsets[i], 1194 getCurSDLoc())); 1195 Chains[i] = 1196 DAG.getStore(Chain, getCurSDLoc(), 1197 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1198 // FIXME: better loc info would be nice. 1199 Add, MachinePointerInfo(), false, false, 0); 1200 } 1201 1202 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1203 MVT::Other, Chains); 1204 } else if (I.getNumOperands() != 0) { 1205 SmallVector<EVT, 4> ValueVTs; 1206 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1207 unsigned NumValues = ValueVTs.size(); 1208 if (NumValues) { 1209 SDValue RetOp = getValue(I.getOperand(0)); 1210 1211 const Function *F = I.getParent()->getParent(); 1212 1213 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1214 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1215 Attribute::SExt)) 1216 ExtendKind = ISD::SIGN_EXTEND; 1217 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1218 Attribute::ZExt)) 1219 ExtendKind = ISD::ZERO_EXTEND; 1220 1221 LLVMContext &Context = F->getContext(); 1222 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1223 Attribute::InReg); 1224 1225 for (unsigned j = 0; j != NumValues; ++j) { 1226 EVT VT = ValueVTs[j]; 1227 1228 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1229 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1230 1231 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1232 MVT PartVT = TLI.getRegisterType(Context, VT); 1233 SmallVector<SDValue, 4> Parts(NumParts); 1234 getCopyToParts(DAG, getCurSDLoc(), 1235 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1236 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1237 1238 // 'inreg' on function refers to return value 1239 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1240 if (RetInReg) 1241 Flags.setInReg(); 1242 1243 // Propagate extension type if any 1244 if (ExtendKind == ISD::SIGN_EXTEND) 1245 Flags.setSExt(); 1246 else if (ExtendKind == ISD::ZERO_EXTEND) 1247 Flags.setZExt(); 1248 1249 for (unsigned i = 0; i < NumParts; ++i) { 1250 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1251 VT, /*isfixed=*/true, 0, 0)); 1252 OutVals.push_back(Parts[i]); 1253 } 1254 } 1255 } 1256 } 1257 1258 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1259 CallingConv::ID CallConv = 1260 DAG.getMachineFunction().getFunction()->getCallingConv(); 1261 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1262 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1263 1264 // Verify that the target's LowerReturn behaved as expected. 1265 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1266 "LowerReturn didn't return a valid chain!"); 1267 1268 // Update the DAG with the new chain value resulting from return lowering. 1269 DAG.setRoot(Chain); 1270 } 1271 1272 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1273 /// created for it, emit nodes to copy the value into the virtual 1274 /// registers. 1275 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1276 // Skip empty types 1277 if (V->getType()->isEmptyTy()) 1278 return; 1279 1280 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1281 if (VMI != FuncInfo.ValueMap.end()) { 1282 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1283 CopyValueToVirtualRegister(V, VMI->second); 1284 } 1285 } 1286 1287 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1288 /// the current basic block, add it to ValueMap now so that we'll get a 1289 /// CopyTo/FromReg. 1290 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1291 // No need to export constants. 1292 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1293 1294 // Already exported? 1295 if (FuncInfo.isExportedInst(V)) return; 1296 1297 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1298 CopyValueToVirtualRegister(V, Reg); 1299 } 1300 1301 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1302 const BasicBlock *FromBB) { 1303 // The operands of the setcc have to be in this block. We don't know 1304 // how to export them from some other block. 1305 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1306 // Can export from current BB. 1307 if (VI->getParent() == FromBB) 1308 return true; 1309 1310 // Is already exported, noop. 1311 return FuncInfo.isExportedInst(V); 1312 } 1313 1314 // If this is an argument, we can export it if the BB is the entry block or 1315 // if it is already exported. 1316 if (isa<Argument>(V)) { 1317 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1318 return true; 1319 1320 // Otherwise, can only export this if it is already exported. 1321 return FuncInfo.isExportedInst(V); 1322 } 1323 1324 // Otherwise, constants can always be exported. 1325 return true; 1326 } 1327 1328 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1329 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1330 const MachineBasicBlock *Dst) const { 1331 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1332 if (!BPI) 1333 return 0; 1334 const BasicBlock *SrcBB = Src->getBasicBlock(); 1335 const BasicBlock *DstBB = Dst->getBasicBlock(); 1336 return BPI->getEdgeWeight(SrcBB, DstBB); 1337 } 1338 1339 void SelectionDAGBuilder:: 1340 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1341 uint32_t Weight /* = 0 */) { 1342 if (!Weight) 1343 Weight = getEdgeWeight(Src, Dst); 1344 Src->addSuccessor(Dst, Weight); 1345 } 1346 1347 1348 static bool InBlock(const Value *V, const BasicBlock *BB) { 1349 if (const Instruction *I = dyn_cast<Instruction>(V)) 1350 return I->getParent() == BB; 1351 return true; 1352 } 1353 1354 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1355 /// This function emits a branch and is used at the leaves of an OR or an 1356 /// AND operator tree. 1357 /// 1358 void 1359 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1360 MachineBasicBlock *TBB, 1361 MachineBasicBlock *FBB, 1362 MachineBasicBlock *CurBB, 1363 MachineBasicBlock *SwitchBB, 1364 uint32_t TWeight, 1365 uint32_t FWeight) { 1366 const BasicBlock *BB = CurBB->getBasicBlock(); 1367 1368 // If the leaf of the tree is a comparison, merge the condition into 1369 // the caseblock. 1370 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1371 // The operands of the cmp have to be in this block. We don't know 1372 // how to export them from some other block. If this is the first block 1373 // of the sequence, no exporting is needed. 1374 if (CurBB == SwitchBB || 1375 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1376 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1377 ISD::CondCode Condition; 1378 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1379 Condition = getICmpCondCode(IC->getPredicate()); 1380 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1381 Condition = getFCmpCondCode(FC->getPredicate()); 1382 if (TM.Options.NoNaNsFPMath) 1383 Condition = getFCmpCodeWithoutNaN(Condition); 1384 } else { 1385 (void)Condition; // silence warning. 1386 llvm_unreachable("Unknown compare instruction"); 1387 } 1388 1389 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1390 TBB, FBB, CurBB, TWeight, FWeight); 1391 SwitchCases.push_back(CB); 1392 return; 1393 } 1394 } 1395 1396 // Create a CaseBlock record representing this branch. 1397 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1398 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1399 SwitchCases.push_back(CB); 1400 } 1401 1402 /// Scale down both weights to fit into uint32_t. 1403 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1404 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1405 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1406 NewTrue = NewTrue / Scale; 1407 NewFalse = NewFalse / Scale; 1408 } 1409 1410 /// FindMergedConditions - If Cond is an expression like 1411 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1412 MachineBasicBlock *TBB, 1413 MachineBasicBlock *FBB, 1414 MachineBasicBlock *CurBB, 1415 MachineBasicBlock *SwitchBB, 1416 unsigned Opc, uint32_t TWeight, 1417 uint32_t FWeight) { 1418 // If this node is not part of the or/and tree, emit it as a branch. 1419 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1420 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1421 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1422 BOp->getParent() != CurBB->getBasicBlock() || 1423 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1424 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1425 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1426 TWeight, FWeight); 1427 return; 1428 } 1429 1430 // Create TmpBB after CurBB. 1431 MachineFunction::iterator BBI = CurBB; 1432 MachineFunction &MF = DAG.getMachineFunction(); 1433 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1434 CurBB->getParent()->insert(++BBI, TmpBB); 1435 1436 if (Opc == Instruction::Or) { 1437 // Codegen X | Y as: 1438 // BB1: 1439 // jmp_if_X TBB 1440 // jmp TmpBB 1441 // TmpBB: 1442 // jmp_if_Y TBB 1443 // jmp FBB 1444 // 1445 1446 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1447 // The requirement is that 1448 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1449 // = TrueProb for original BB. 1450 // Assuming the original weights are A and B, one choice is to set BB1's 1451 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1452 // assumes that 1453 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1454 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1455 // TmpBB, but the math is more complicated. 1456 1457 uint64_t NewTrueWeight = TWeight; 1458 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1459 ScaleWeights(NewTrueWeight, NewFalseWeight); 1460 // Emit the LHS condition. 1461 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1462 NewTrueWeight, NewFalseWeight); 1463 1464 NewTrueWeight = TWeight; 1465 NewFalseWeight = 2 * (uint64_t)FWeight; 1466 ScaleWeights(NewTrueWeight, NewFalseWeight); 1467 // Emit the RHS condition into TmpBB. 1468 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1469 NewTrueWeight, NewFalseWeight); 1470 } else { 1471 assert(Opc == Instruction::And && "Unknown merge op!"); 1472 // Codegen X & Y as: 1473 // BB1: 1474 // jmp_if_X TmpBB 1475 // jmp FBB 1476 // TmpBB: 1477 // jmp_if_Y TBB 1478 // jmp FBB 1479 // 1480 // This requires creation of TmpBB after CurBB. 1481 1482 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1483 // The requirement is that 1484 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1485 // = FalseProb for original BB. 1486 // Assuming the original weights are A and B, one choice is to set BB1's 1487 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1488 // assumes that 1489 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1490 1491 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1492 uint64_t NewFalseWeight = FWeight; 1493 ScaleWeights(NewTrueWeight, NewFalseWeight); 1494 // Emit the LHS condition. 1495 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1496 NewTrueWeight, NewFalseWeight); 1497 1498 NewTrueWeight = 2 * (uint64_t)TWeight; 1499 NewFalseWeight = FWeight; 1500 ScaleWeights(NewTrueWeight, NewFalseWeight); 1501 // Emit the RHS condition into TmpBB. 1502 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1503 NewTrueWeight, NewFalseWeight); 1504 } 1505 } 1506 1507 /// If the set of cases should be emitted as a series of branches, return true. 1508 /// If we should emit this as a bunch of and/or'd together conditions, return 1509 /// false. 1510 bool 1511 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1512 if (Cases.size() != 2) return true; 1513 1514 // If this is two comparisons of the same values or'd or and'd together, they 1515 // will get folded into a single comparison, so don't emit two blocks. 1516 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1517 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1518 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1519 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1520 return false; 1521 } 1522 1523 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1524 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1525 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1526 Cases[0].CC == Cases[1].CC && 1527 isa<Constant>(Cases[0].CmpRHS) && 1528 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1529 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1530 return false; 1531 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1532 return false; 1533 } 1534 1535 return true; 1536 } 1537 1538 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1539 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1540 1541 // Update machine-CFG edges. 1542 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1543 1544 if (I.isUnconditional()) { 1545 // Update machine-CFG edges. 1546 BrMBB->addSuccessor(Succ0MBB); 1547 1548 // If this is not a fall-through branch or optimizations are switched off, 1549 // emit the branch. 1550 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1551 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1552 MVT::Other, getControlRoot(), 1553 DAG.getBasicBlock(Succ0MBB))); 1554 1555 return; 1556 } 1557 1558 // If this condition is one of the special cases we handle, do special stuff 1559 // now. 1560 const Value *CondVal = I.getCondition(); 1561 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1562 1563 // If this is a series of conditions that are or'd or and'd together, emit 1564 // this as a sequence of branches instead of setcc's with and/or operations. 1565 // As long as jumps are not expensive, this should improve performance. 1566 // For example, instead of something like: 1567 // cmp A, B 1568 // C = seteq 1569 // cmp D, E 1570 // F = setle 1571 // or C, F 1572 // jnz foo 1573 // Emit: 1574 // cmp A, B 1575 // je foo 1576 // cmp D, E 1577 // jle foo 1578 // 1579 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1580 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1581 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1582 BOp->getOpcode() == Instruction::Or)) { 1583 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1584 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1585 getEdgeWeight(BrMBB, Succ1MBB)); 1586 // If the compares in later blocks need to use values not currently 1587 // exported from this block, export them now. This block should always 1588 // be the first entry. 1589 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1590 1591 // Allow some cases to be rejected. 1592 if (ShouldEmitAsBranches(SwitchCases)) { 1593 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1594 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1595 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1596 } 1597 1598 // Emit the branch for this block. 1599 visitSwitchCase(SwitchCases[0], BrMBB); 1600 SwitchCases.erase(SwitchCases.begin()); 1601 return; 1602 } 1603 1604 // Okay, we decided not to do this, remove any inserted MBB's and clear 1605 // SwitchCases. 1606 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1607 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1608 1609 SwitchCases.clear(); 1610 } 1611 } 1612 1613 // Create a CaseBlock record representing this branch. 1614 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1615 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1616 1617 // Use visitSwitchCase to actually insert the fast branch sequence for this 1618 // cond branch. 1619 visitSwitchCase(CB, BrMBB); 1620 } 1621 1622 /// visitSwitchCase - Emits the necessary code to represent a single node in 1623 /// the binary search tree resulting from lowering a switch instruction. 1624 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1625 MachineBasicBlock *SwitchBB) { 1626 SDValue Cond; 1627 SDValue CondLHS = getValue(CB.CmpLHS); 1628 SDLoc dl = getCurSDLoc(); 1629 1630 // Build the setcc now. 1631 if (!CB.CmpMHS) { 1632 // Fold "(X == true)" to X and "(X == false)" to !X to 1633 // handle common cases produced by branch lowering. 1634 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1635 CB.CC == ISD::SETEQ) 1636 Cond = CondLHS; 1637 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1638 CB.CC == ISD::SETEQ) { 1639 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1640 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1641 } else 1642 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1643 } else { 1644 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1645 1646 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1647 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1648 1649 SDValue CmpOp = getValue(CB.CmpMHS); 1650 EVT VT = CmpOp.getValueType(); 1651 1652 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1653 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1654 ISD::SETLE); 1655 } else { 1656 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1657 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1658 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1659 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1660 } 1661 } 1662 1663 // Update successor info 1664 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1665 // TrueBB and FalseBB are always different unless the incoming IR is 1666 // degenerate. This only happens when running llc on weird IR. 1667 if (CB.TrueBB != CB.FalseBB) 1668 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1669 1670 // If the lhs block is the next block, invert the condition so that we can 1671 // fall through to the lhs instead of the rhs block. 1672 if (CB.TrueBB == NextBlock(SwitchBB)) { 1673 std::swap(CB.TrueBB, CB.FalseBB); 1674 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1675 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1676 } 1677 1678 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1679 MVT::Other, getControlRoot(), Cond, 1680 DAG.getBasicBlock(CB.TrueBB)); 1681 1682 // Insert the false branch. Do this even if it's a fall through branch, 1683 // this makes it easier to do DAG optimizations which require inverting 1684 // the branch condition. 1685 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1686 DAG.getBasicBlock(CB.FalseBB)); 1687 1688 DAG.setRoot(BrCond); 1689 } 1690 1691 /// visitJumpTable - Emit JumpTable node in the current MBB 1692 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1693 // Emit the code for the jump table 1694 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1695 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1696 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1697 JT.Reg, PTy); 1698 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1699 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1700 MVT::Other, Index.getValue(1), 1701 Table, Index); 1702 DAG.setRoot(BrJumpTable); 1703 } 1704 1705 /// visitJumpTableHeader - This function emits necessary code to produce index 1706 /// in the JumpTable from switch case. 1707 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1708 JumpTableHeader &JTH, 1709 MachineBasicBlock *SwitchBB) { 1710 SDLoc dl = getCurSDLoc(); 1711 1712 // Subtract the lowest switch case value from the value being switched on and 1713 // conditional branch to default mbb if the result is greater than the 1714 // difference between smallest and largest cases. 1715 SDValue SwitchOp = getValue(JTH.SValue); 1716 EVT VT = SwitchOp.getValueType(); 1717 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1718 DAG.getConstant(JTH.First, dl, VT)); 1719 1720 // The SDNode we just created, which holds the value being switched on minus 1721 // the smallest case value, needs to be copied to a virtual register so it 1722 // can be used as an index into the jump table in a subsequent basic block. 1723 // This value may be smaller or larger than the target's pointer type, and 1724 // therefore require extension or truncating. 1725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1726 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1727 1728 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1729 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1730 JumpTableReg, SwitchOp); 1731 JT.Reg = JumpTableReg; 1732 1733 // Emit the range check for the jump table, and branch to the default block 1734 // for the switch statement if the value being switched on exceeds the largest 1735 // case in the switch. 1736 SDValue CMP = 1737 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1738 Sub.getValueType()), 1739 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1740 ISD::SETUGT); 1741 1742 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1743 MVT::Other, CopyTo, CMP, 1744 DAG.getBasicBlock(JT.Default)); 1745 1746 // Avoid emitting unnecessary branches to the next block. 1747 if (JT.MBB != NextBlock(SwitchBB)) 1748 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1749 DAG.getBasicBlock(JT.MBB)); 1750 1751 DAG.setRoot(BrCond); 1752 } 1753 1754 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1755 /// tail spliced into a stack protector check success bb. 1756 /// 1757 /// For a high level explanation of how this fits into the stack protector 1758 /// generation see the comment on the declaration of class 1759 /// StackProtectorDescriptor. 1760 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1761 MachineBasicBlock *ParentBB) { 1762 1763 // First create the loads to the guard/stack slot for the comparison. 1764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1765 EVT PtrTy = TLI.getPointerTy(); 1766 1767 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1768 int FI = MFI->getStackProtectorIndex(); 1769 1770 const Value *IRGuard = SPD.getGuard(); 1771 SDValue GuardPtr = getValue(IRGuard); 1772 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1773 1774 unsigned Align = 1775 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1776 1777 SDValue Guard; 1778 SDLoc dl = getCurSDLoc(); 1779 1780 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1781 // guard value from the virtual register holding the value. Otherwise, emit a 1782 // volatile load to retrieve the stack guard value. 1783 unsigned GuardReg = SPD.getGuardReg(); 1784 1785 if (GuardReg && TLI.useLoadStackGuardNode()) 1786 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1787 PtrTy); 1788 else 1789 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1790 GuardPtr, MachinePointerInfo(IRGuard, 0), 1791 true, false, false, Align); 1792 1793 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1794 StackSlotPtr, 1795 MachinePointerInfo::getFixedStack(FI), 1796 true, false, false, Align); 1797 1798 // Perform the comparison via a subtract/getsetcc. 1799 EVT VT = Guard.getValueType(); 1800 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1801 1802 SDValue Cmp = 1803 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1804 Sub.getValueType()), 1805 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1806 1807 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1808 // branch to failure MBB. 1809 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1810 MVT::Other, StackSlot.getOperand(0), 1811 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1812 // Otherwise branch to success MBB. 1813 SDValue Br = DAG.getNode(ISD::BR, dl, 1814 MVT::Other, BrCond, 1815 DAG.getBasicBlock(SPD.getSuccessMBB())); 1816 1817 DAG.setRoot(Br); 1818 } 1819 1820 /// Codegen the failure basic block for a stack protector check. 1821 /// 1822 /// A failure stack protector machine basic block consists simply of a call to 1823 /// __stack_chk_fail(). 1824 /// 1825 /// For a high level explanation of how this fits into the stack protector 1826 /// generation see the comment on the declaration of class 1827 /// StackProtectorDescriptor. 1828 void 1829 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1831 SDValue Chain = 1832 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1833 nullptr, 0, false, getCurSDLoc(), false, false).second; 1834 DAG.setRoot(Chain); 1835 } 1836 1837 /// visitBitTestHeader - This function emits necessary code to produce value 1838 /// suitable for "bit tests" 1839 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1840 MachineBasicBlock *SwitchBB) { 1841 SDLoc dl = getCurSDLoc(); 1842 1843 // Subtract the minimum value 1844 SDValue SwitchOp = getValue(B.SValue); 1845 EVT VT = SwitchOp.getValueType(); 1846 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1847 DAG.getConstant(B.First, dl, VT)); 1848 1849 // Check range 1850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1851 SDValue RangeCmp = 1852 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1853 Sub.getValueType()), 1854 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1855 1856 // Determine the type of the test operands. 1857 bool UsePtrType = false; 1858 if (!TLI.isTypeLegal(VT)) 1859 UsePtrType = true; 1860 else { 1861 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1862 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1863 // Switch table case range are encoded into series of masks. 1864 // Just use pointer type, it's guaranteed to fit. 1865 UsePtrType = true; 1866 break; 1867 } 1868 } 1869 if (UsePtrType) { 1870 VT = TLI.getPointerTy(); 1871 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1872 } 1873 1874 B.RegVT = VT.getSimpleVT(); 1875 B.Reg = FuncInfo.CreateReg(B.RegVT); 1876 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1877 1878 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1879 1880 addSuccessorWithWeight(SwitchBB, B.Default); 1881 addSuccessorWithWeight(SwitchBB, MBB); 1882 1883 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1884 MVT::Other, CopyTo, RangeCmp, 1885 DAG.getBasicBlock(B.Default)); 1886 1887 // Avoid emitting unnecessary branches to the next block. 1888 if (MBB != NextBlock(SwitchBB)) 1889 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1890 DAG.getBasicBlock(MBB)); 1891 1892 DAG.setRoot(BrRange); 1893 } 1894 1895 /// visitBitTestCase - this function produces one "bit test" 1896 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1897 MachineBasicBlock* NextMBB, 1898 uint32_t BranchWeightToNext, 1899 unsigned Reg, 1900 BitTestCase &B, 1901 MachineBasicBlock *SwitchBB) { 1902 SDLoc dl = getCurSDLoc(); 1903 MVT VT = BB.RegVT; 1904 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1905 SDValue Cmp; 1906 unsigned PopCount = countPopulation(B.Mask); 1907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1908 if (PopCount == 1) { 1909 // Testing for a single bit; just compare the shift count with what it 1910 // would need to be to shift a 1 bit in that position. 1911 Cmp = DAG.getSetCC( 1912 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1913 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1914 } else if (PopCount == BB.Range) { 1915 // There is only one zero bit in the range, test for it directly. 1916 Cmp = DAG.getSetCC( 1917 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1918 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1919 } else { 1920 // Make desired shift 1921 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1922 DAG.getConstant(1, dl, VT), ShiftOp); 1923 1924 // Emit bit tests and jumps 1925 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1926 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1927 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1928 DAG.getConstant(0, dl, VT), ISD::SETNE); 1929 } 1930 1931 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1932 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1933 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1934 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1935 1936 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1937 MVT::Other, getControlRoot(), 1938 Cmp, DAG.getBasicBlock(B.TargetBB)); 1939 1940 // Avoid emitting unnecessary branches to the next block. 1941 if (NextMBB != NextBlock(SwitchBB)) 1942 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1943 DAG.getBasicBlock(NextMBB)); 1944 1945 DAG.setRoot(BrAnd); 1946 } 1947 1948 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1949 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1950 1951 // Retrieve successors. 1952 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1953 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1954 1955 const Value *Callee(I.getCalledValue()); 1956 const Function *Fn = dyn_cast<Function>(Callee); 1957 if (isa<InlineAsm>(Callee)) 1958 visitInlineAsm(&I); 1959 else if (Fn && Fn->isIntrinsic()) { 1960 switch (Fn->getIntrinsicID()) { 1961 default: 1962 llvm_unreachable("Cannot invoke this intrinsic"); 1963 case Intrinsic::donothing: 1964 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1965 break; 1966 case Intrinsic::experimental_patchpoint_void: 1967 case Intrinsic::experimental_patchpoint_i64: 1968 visitPatchpoint(&I, LandingPad); 1969 break; 1970 case Intrinsic::experimental_gc_statepoint: 1971 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1972 break; 1973 } 1974 } else 1975 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1976 1977 // If the value of the invoke is used outside of its defining block, make it 1978 // available as a virtual register. 1979 // We already took care of the exported value for the statepoint instruction 1980 // during call to the LowerStatepoint. 1981 if (!isStatepoint(I)) { 1982 CopyToExportRegsIfNeeded(&I); 1983 } 1984 1985 // Update successor info 1986 addSuccessorWithWeight(InvokeMBB, Return); 1987 addSuccessorWithWeight(InvokeMBB, LandingPad); 1988 1989 // Drop into normal successor. 1990 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1991 MVT::Other, getControlRoot(), 1992 DAG.getBasicBlock(Return))); 1993 } 1994 1995 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1996 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1997 } 1998 1999 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2000 assert(FuncInfo.MBB->isLandingPad() && 2001 "Call to landingpad not in landing pad!"); 2002 2003 MachineBasicBlock *MBB = FuncInfo.MBB; 2004 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2005 AddLandingPadInfo(LP, MMI, MBB); 2006 2007 // If there aren't registers to copy the values into (e.g., during SjLj 2008 // exceptions), then don't bother to create these DAG nodes. 2009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2010 if (TLI.getExceptionPointerRegister() == 0 && 2011 TLI.getExceptionSelectorRegister() == 0) 2012 return; 2013 2014 SmallVector<EVT, 2> ValueVTs; 2015 SDLoc dl = getCurSDLoc(); 2016 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2017 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2018 2019 // Get the two live-in registers as SDValues. The physregs have already been 2020 // copied into virtual registers. 2021 SDValue Ops[2]; 2022 if (FuncInfo.ExceptionPointerVirtReg) { 2023 Ops[0] = DAG.getZExtOrTrunc( 2024 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2025 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2026 dl, ValueVTs[0]); 2027 } else { 2028 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2029 } 2030 Ops[1] = DAG.getZExtOrTrunc( 2031 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2032 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2033 dl, ValueVTs[1]); 2034 2035 // Merge into one. 2036 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2037 DAG.getVTList(ValueVTs), Ops); 2038 setValue(&LP, Res); 2039 } 2040 2041 unsigned 2042 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2043 MachineBasicBlock *LPadBB) { 2044 SDValue Chain = getControlRoot(); 2045 SDLoc dl = getCurSDLoc(); 2046 2047 // Get the typeid that we will dispatch on later. 2048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2049 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2050 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2051 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2052 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2053 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2054 2055 // Branch to the main landing pad block. 2056 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2057 ClauseMBB->addSuccessor(LPadBB); 2058 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2059 DAG.getBasicBlock(LPadBB))); 2060 return VReg; 2061 } 2062 2063 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2064 #ifndef NDEBUG 2065 for (const CaseCluster &CC : Clusters) 2066 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2067 #endif 2068 2069 std::sort(Clusters.begin(), Clusters.end(), 2070 [](const CaseCluster &a, const CaseCluster &b) { 2071 return a.Low->getValue().slt(b.Low->getValue()); 2072 }); 2073 2074 // Merge adjacent clusters with the same destination. 2075 const unsigned N = Clusters.size(); 2076 unsigned DstIndex = 0; 2077 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2078 CaseCluster &CC = Clusters[SrcIndex]; 2079 const ConstantInt *CaseVal = CC.Low; 2080 MachineBasicBlock *Succ = CC.MBB; 2081 2082 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2083 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2084 // If this case has the same successor and is a neighbour, merge it into 2085 // the previous cluster. 2086 Clusters[DstIndex - 1].High = CaseVal; 2087 Clusters[DstIndex - 1].Weight += CC.Weight; 2088 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2089 } else { 2090 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2091 sizeof(Clusters[SrcIndex])); 2092 } 2093 } 2094 Clusters.resize(DstIndex); 2095 } 2096 2097 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2098 MachineBasicBlock *Last) { 2099 // Update JTCases. 2100 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2101 if (JTCases[i].first.HeaderBB == First) 2102 JTCases[i].first.HeaderBB = Last; 2103 2104 // Update BitTestCases. 2105 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2106 if (BitTestCases[i].Parent == First) 2107 BitTestCases[i].Parent = Last; 2108 } 2109 2110 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2111 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2112 2113 // Update machine-CFG edges with unique successors. 2114 SmallSet<BasicBlock*, 32> Done; 2115 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2116 BasicBlock *BB = I.getSuccessor(i); 2117 bool Inserted = Done.insert(BB).second; 2118 if (!Inserted) 2119 continue; 2120 2121 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2122 addSuccessorWithWeight(IndirectBrMBB, Succ); 2123 } 2124 2125 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2126 MVT::Other, getControlRoot(), 2127 getValue(I.getAddress()))); 2128 } 2129 2130 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2131 if (DAG.getTarget().Options.TrapUnreachable) 2132 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2133 } 2134 2135 void SelectionDAGBuilder::visitFSub(const User &I) { 2136 // -0.0 - X --> fneg 2137 Type *Ty = I.getType(); 2138 if (isa<Constant>(I.getOperand(0)) && 2139 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2140 SDValue Op2 = getValue(I.getOperand(1)); 2141 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2142 Op2.getValueType(), Op2)); 2143 return; 2144 } 2145 2146 visitBinary(I, ISD::FSUB); 2147 } 2148 2149 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2150 SDValue Op1 = getValue(I.getOperand(0)); 2151 SDValue Op2 = getValue(I.getOperand(1)); 2152 2153 bool nuw = false; 2154 bool nsw = false; 2155 bool exact = false; 2156 FastMathFlags FMF; 2157 2158 if (const OverflowingBinaryOperator *OFBinOp = 2159 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2160 nuw = OFBinOp->hasNoUnsignedWrap(); 2161 nsw = OFBinOp->hasNoSignedWrap(); 2162 } 2163 if (const PossiblyExactOperator *ExactOp = 2164 dyn_cast<const PossiblyExactOperator>(&I)) 2165 exact = ExactOp->isExact(); 2166 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2167 FMF = FPOp->getFastMathFlags(); 2168 2169 SDNodeFlags Flags; 2170 Flags.setExact(exact); 2171 Flags.setNoSignedWrap(nsw); 2172 Flags.setNoUnsignedWrap(nuw); 2173 if (EnableFMFInDAG) { 2174 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2175 Flags.setNoInfs(FMF.noInfs()); 2176 Flags.setNoNaNs(FMF.noNaNs()); 2177 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2178 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2179 } 2180 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2181 Op1, Op2, &Flags); 2182 setValue(&I, BinNodeValue); 2183 } 2184 2185 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2186 SDValue Op1 = getValue(I.getOperand(0)); 2187 SDValue Op2 = getValue(I.getOperand(1)); 2188 2189 EVT ShiftTy = 2190 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2191 2192 // Coerce the shift amount to the right type if we can. 2193 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2194 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2195 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2196 SDLoc DL = getCurSDLoc(); 2197 2198 // If the operand is smaller than the shift count type, promote it. 2199 if (ShiftSize > Op2Size) 2200 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2201 2202 // If the operand is larger than the shift count type but the shift 2203 // count type has enough bits to represent any shift value, truncate 2204 // it now. This is a common case and it exposes the truncate to 2205 // optimization early. 2206 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2207 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2208 // Otherwise we'll need to temporarily settle for some other convenient 2209 // type. Type legalization will make adjustments once the shiftee is split. 2210 else 2211 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2212 } 2213 2214 bool nuw = false; 2215 bool nsw = false; 2216 bool exact = false; 2217 2218 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2219 2220 if (const OverflowingBinaryOperator *OFBinOp = 2221 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2222 nuw = OFBinOp->hasNoUnsignedWrap(); 2223 nsw = OFBinOp->hasNoSignedWrap(); 2224 } 2225 if (const PossiblyExactOperator *ExactOp = 2226 dyn_cast<const PossiblyExactOperator>(&I)) 2227 exact = ExactOp->isExact(); 2228 } 2229 SDNodeFlags Flags; 2230 Flags.setExact(exact); 2231 Flags.setNoSignedWrap(nsw); 2232 Flags.setNoUnsignedWrap(nuw); 2233 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2234 &Flags); 2235 setValue(&I, Res); 2236 } 2237 2238 void SelectionDAGBuilder::visitSDiv(const User &I) { 2239 SDValue Op1 = getValue(I.getOperand(0)); 2240 SDValue Op2 = getValue(I.getOperand(1)); 2241 2242 SDNodeFlags Flags; 2243 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2244 cast<PossiblyExactOperator>(&I)->isExact()); 2245 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2246 Op2, &Flags)); 2247 } 2248 2249 void SelectionDAGBuilder::visitICmp(const User &I) { 2250 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2251 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2252 predicate = IC->getPredicate(); 2253 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2254 predicate = ICmpInst::Predicate(IC->getPredicate()); 2255 SDValue Op1 = getValue(I.getOperand(0)); 2256 SDValue Op2 = getValue(I.getOperand(1)); 2257 ISD::CondCode Opcode = getICmpCondCode(predicate); 2258 2259 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2260 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2261 } 2262 2263 void SelectionDAGBuilder::visitFCmp(const User &I) { 2264 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2265 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2266 predicate = FC->getPredicate(); 2267 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2268 predicate = FCmpInst::Predicate(FC->getPredicate()); 2269 SDValue Op1 = getValue(I.getOperand(0)); 2270 SDValue Op2 = getValue(I.getOperand(1)); 2271 ISD::CondCode Condition = getFCmpCondCode(predicate); 2272 if (TM.Options.NoNaNsFPMath) 2273 Condition = getFCmpCodeWithoutNaN(Condition); 2274 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2275 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2276 } 2277 2278 void SelectionDAGBuilder::visitSelect(const User &I) { 2279 SmallVector<EVT, 4> ValueVTs; 2280 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2281 unsigned NumValues = ValueVTs.size(); 2282 if (NumValues == 0) return; 2283 2284 SmallVector<SDValue, 4> Values(NumValues); 2285 SDValue Cond = getValue(I.getOperand(0)); 2286 SDValue LHSVal = getValue(I.getOperand(1)); 2287 SDValue RHSVal = getValue(I.getOperand(2)); 2288 auto BaseOps = {Cond}; 2289 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2290 ISD::VSELECT : ISD::SELECT; 2291 2292 // Min/max matching is only viable if all output VTs are the same. 2293 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2294 Value *LHS, *RHS; 2295 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2296 ISD::NodeType Opc = ISD::DELETED_NODE; 2297 switch (SPF) { 2298 case SPF_UMAX: Opc = ISD::UMAX; break; 2299 case SPF_UMIN: Opc = ISD::UMIN; break; 2300 case SPF_SMAX: Opc = ISD::SMAX; break; 2301 case SPF_SMIN: Opc = ISD::SMIN; break; 2302 default: break; 2303 } 2304 2305 EVT VT = ValueVTs[0]; 2306 LLVMContext &Ctx = *DAG.getContext(); 2307 auto &TLI = DAG.getTargetLoweringInfo(); 2308 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2309 VT = TLI.getTypeToTransformTo(Ctx, VT); 2310 2311 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2312 // If the underlying comparison instruction is used by any other instruction, 2313 // the consumed instructions won't be destroyed, so it is not profitable 2314 // to convert to a min/max. 2315 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2316 OpCode = Opc; 2317 LHSVal = getValue(LHS); 2318 RHSVal = getValue(RHS); 2319 BaseOps = {}; 2320 } 2321 } 2322 2323 for (unsigned i = 0; i != NumValues; ++i) { 2324 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2325 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2326 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2327 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2328 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2329 Ops); 2330 } 2331 2332 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2333 DAG.getVTList(ValueVTs), Values)); 2334 } 2335 2336 void SelectionDAGBuilder::visitTrunc(const User &I) { 2337 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2338 SDValue N = getValue(I.getOperand(0)); 2339 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2340 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2341 } 2342 2343 void SelectionDAGBuilder::visitZExt(const User &I) { 2344 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2345 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2346 SDValue N = getValue(I.getOperand(0)); 2347 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2348 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2349 } 2350 2351 void SelectionDAGBuilder::visitSExt(const User &I) { 2352 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2353 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2354 SDValue N = getValue(I.getOperand(0)); 2355 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2356 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2357 } 2358 2359 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2360 // FPTrunc is never a no-op cast, no need to check 2361 SDValue N = getValue(I.getOperand(0)); 2362 SDLoc dl = getCurSDLoc(); 2363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2364 EVT DestVT = TLI.getValueType(I.getType()); 2365 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2366 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2367 } 2368 2369 void SelectionDAGBuilder::visitFPExt(const User &I) { 2370 // FPExt is never a no-op cast, no need to check 2371 SDValue N = getValue(I.getOperand(0)); 2372 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2373 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2374 } 2375 2376 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2377 // FPToUI is never a no-op cast, no need to check 2378 SDValue N = getValue(I.getOperand(0)); 2379 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2380 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2381 } 2382 2383 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2384 // FPToSI is never a no-op cast, no need to check 2385 SDValue N = getValue(I.getOperand(0)); 2386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2387 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2388 } 2389 2390 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2391 // UIToFP is never a no-op cast, no need to check 2392 SDValue N = getValue(I.getOperand(0)); 2393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2394 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2395 } 2396 2397 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2398 // SIToFP is never a no-op cast, no need to check 2399 SDValue N = getValue(I.getOperand(0)); 2400 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2401 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2402 } 2403 2404 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2405 // What to do depends on the size of the integer and the size of the pointer. 2406 // We can either truncate, zero extend, or no-op, accordingly. 2407 SDValue N = getValue(I.getOperand(0)); 2408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2409 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2410 } 2411 2412 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2413 // What to do depends on the size of the integer and the size of the pointer. 2414 // We can either truncate, zero extend, or no-op, accordingly. 2415 SDValue N = getValue(I.getOperand(0)); 2416 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2417 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2418 } 2419 2420 void SelectionDAGBuilder::visitBitCast(const User &I) { 2421 SDValue N = getValue(I.getOperand(0)); 2422 SDLoc dl = getCurSDLoc(); 2423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2424 2425 // BitCast assures us that source and destination are the same size so this is 2426 // either a BITCAST or a no-op. 2427 if (DestVT != N.getValueType()) 2428 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2429 DestVT, N)); // convert types. 2430 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2431 // might fold any kind of constant expression to an integer constant and that 2432 // is not what we are looking for. Only regcognize a bitcast of a genuine 2433 // constant integer as an opaque constant. 2434 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2435 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2436 /*isOpaque*/true)); 2437 else 2438 setValue(&I, N); // noop cast. 2439 } 2440 2441 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2443 const Value *SV = I.getOperand(0); 2444 SDValue N = getValue(SV); 2445 EVT DestVT = TLI.getValueType(I.getType()); 2446 2447 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2448 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2449 2450 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2451 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2452 2453 setValue(&I, N); 2454 } 2455 2456 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2458 SDValue InVec = getValue(I.getOperand(0)); 2459 SDValue InVal = getValue(I.getOperand(1)); 2460 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2461 getCurSDLoc(), TLI.getVectorIdxTy()); 2462 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2463 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2464 } 2465 2466 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2467 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2468 SDValue InVec = getValue(I.getOperand(0)); 2469 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2470 getCurSDLoc(), TLI.getVectorIdxTy()); 2471 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2472 TLI.getValueType(I.getType()), InVec, InIdx)); 2473 } 2474 2475 // Utility for visitShuffleVector - Return true if every element in Mask, 2476 // beginning from position Pos and ending in Pos+Size, falls within the 2477 // specified sequential range [L, L+Pos). or is undef. 2478 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2479 unsigned Pos, unsigned Size, int Low) { 2480 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2481 if (Mask[i] >= 0 && Mask[i] != Low) 2482 return false; 2483 return true; 2484 } 2485 2486 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2487 SDValue Src1 = getValue(I.getOperand(0)); 2488 SDValue Src2 = getValue(I.getOperand(1)); 2489 2490 SmallVector<int, 8> Mask; 2491 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2492 unsigned MaskNumElts = Mask.size(); 2493 2494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2495 EVT VT = TLI.getValueType(I.getType()); 2496 EVT SrcVT = Src1.getValueType(); 2497 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2498 2499 if (SrcNumElts == MaskNumElts) { 2500 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2501 &Mask[0])); 2502 return; 2503 } 2504 2505 // Normalize the shuffle vector since mask and vector length don't match. 2506 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2507 // Mask is longer than the source vectors and is a multiple of the source 2508 // vectors. We can use concatenate vector to make the mask and vectors 2509 // lengths match. 2510 if (SrcNumElts*2 == MaskNumElts) { 2511 // First check for Src1 in low and Src2 in high 2512 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2513 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2514 // The shuffle is concatenating two vectors together. 2515 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2516 VT, Src1, Src2)); 2517 return; 2518 } 2519 // Then check for Src2 in low and Src1 in high 2520 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2521 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2522 // The shuffle is concatenating two vectors together. 2523 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2524 VT, Src2, Src1)); 2525 return; 2526 } 2527 } 2528 2529 // Pad both vectors with undefs to make them the same length as the mask. 2530 unsigned NumConcat = MaskNumElts / SrcNumElts; 2531 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2532 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2533 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2534 2535 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2536 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2537 MOps1[0] = Src1; 2538 MOps2[0] = Src2; 2539 2540 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2541 getCurSDLoc(), VT, MOps1); 2542 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2543 getCurSDLoc(), VT, MOps2); 2544 2545 // Readjust mask for new input vector length. 2546 SmallVector<int, 8> MappedOps; 2547 for (unsigned i = 0; i != MaskNumElts; ++i) { 2548 int Idx = Mask[i]; 2549 if (Idx >= (int)SrcNumElts) 2550 Idx -= SrcNumElts - MaskNumElts; 2551 MappedOps.push_back(Idx); 2552 } 2553 2554 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2555 &MappedOps[0])); 2556 return; 2557 } 2558 2559 if (SrcNumElts > MaskNumElts) { 2560 // Analyze the access pattern of the vector to see if we can extract 2561 // two subvectors and do the shuffle. The analysis is done by calculating 2562 // the range of elements the mask access on both vectors. 2563 int MinRange[2] = { static_cast<int>(SrcNumElts), 2564 static_cast<int>(SrcNumElts)}; 2565 int MaxRange[2] = {-1, -1}; 2566 2567 for (unsigned i = 0; i != MaskNumElts; ++i) { 2568 int Idx = Mask[i]; 2569 unsigned Input = 0; 2570 if (Idx < 0) 2571 continue; 2572 2573 if (Idx >= (int)SrcNumElts) { 2574 Input = 1; 2575 Idx -= SrcNumElts; 2576 } 2577 if (Idx > MaxRange[Input]) 2578 MaxRange[Input] = Idx; 2579 if (Idx < MinRange[Input]) 2580 MinRange[Input] = Idx; 2581 } 2582 2583 // Check if the access is smaller than the vector size and can we find 2584 // a reasonable extract index. 2585 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2586 // Extract. 2587 int StartIdx[2]; // StartIdx to extract from 2588 for (unsigned Input = 0; Input < 2; ++Input) { 2589 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2590 RangeUse[Input] = 0; // Unused 2591 StartIdx[Input] = 0; 2592 continue; 2593 } 2594 2595 // Find a good start index that is a multiple of the mask length. Then 2596 // see if the rest of the elements are in range. 2597 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2598 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2599 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2600 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2601 } 2602 2603 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2604 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2605 return; 2606 } 2607 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2608 // Extract appropriate subvector and generate a vector shuffle 2609 for (unsigned Input = 0; Input < 2; ++Input) { 2610 SDValue &Src = Input == 0 ? Src1 : Src2; 2611 if (RangeUse[Input] == 0) 2612 Src = DAG.getUNDEF(VT); 2613 else { 2614 SDLoc dl = getCurSDLoc(); 2615 Src = DAG.getNode( 2616 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2617 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2618 } 2619 } 2620 2621 // Calculate new mask. 2622 SmallVector<int, 8> MappedOps; 2623 for (unsigned i = 0; i != MaskNumElts; ++i) { 2624 int Idx = Mask[i]; 2625 if (Idx >= 0) { 2626 if (Idx < (int)SrcNumElts) 2627 Idx -= StartIdx[0]; 2628 else 2629 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2630 } 2631 MappedOps.push_back(Idx); 2632 } 2633 2634 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2635 &MappedOps[0])); 2636 return; 2637 } 2638 } 2639 2640 // We can't use either concat vectors or extract subvectors so fall back to 2641 // replacing the shuffle with extract and build vector. 2642 // to insert and build vector. 2643 EVT EltVT = VT.getVectorElementType(); 2644 EVT IdxVT = TLI.getVectorIdxTy(); 2645 SDLoc dl = getCurSDLoc(); 2646 SmallVector<SDValue,8> Ops; 2647 for (unsigned i = 0; i != MaskNumElts; ++i) { 2648 int Idx = Mask[i]; 2649 SDValue Res; 2650 2651 if (Idx < 0) { 2652 Res = DAG.getUNDEF(EltVT); 2653 } else { 2654 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2655 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2656 2657 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2658 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2659 } 2660 2661 Ops.push_back(Res); 2662 } 2663 2664 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2665 } 2666 2667 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2668 const Value *Op0 = I.getOperand(0); 2669 const Value *Op1 = I.getOperand(1); 2670 Type *AggTy = I.getType(); 2671 Type *ValTy = Op1->getType(); 2672 bool IntoUndef = isa<UndefValue>(Op0); 2673 bool FromUndef = isa<UndefValue>(Op1); 2674 2675 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2676 2677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2678 SmallVector<EVT, 4> AggValueVTs; 2679 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2680 SmallVector<EVT, 4> ValValueVTs; 2681 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2682 2683 unsigned NumAggValues = AggValueVTs.size(); 2684 unsigned NumValValues = ValValueVTs.size(); 2685 SmallVector<SDValue, 4> Values(NumAggValues); 2686 2687 // Ignore an insertvalue that produces an empty object 2688 if (!NumAggValues) { 2689 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2690 return; 2691 } 2692 2693 SDValue Agg = getValue(Op0); 2694 unsigned i = 0; 2695 // Copy the beginning value(s) from the original aggregate. 2696 for (; i != LinearIndex; ++i) 2697 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2698 SDValue(Agg.getNode(), Agg.getResNo() + i); 2699 // Copy values from the inserted value(s). 2700 if (NumValValues) { 2701 SDValue Val = getValue(Op1); 2702 for (; i != LinearIndex + NumValValues; ++i) 2703 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2704 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2705 } 2706 // Copy remaining value(s) from the original aggregate. 2707 for (; i != NumAggValues; ++i) 2708 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2709 SDValue(Agg.getNode(), Agg.getResNo() + i); 2710 2711 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2712 DAG.getVTList(AggValueVTs), Values)); 2713 } 2714 2715 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2716 const Value *Op0 = I.getOperand(0); 2717 Type *AggTy = Op0->getType(); 2718 Type *ValTy = I.getType(); 2719 bool OutOfUndef = isa<UndefValue>(Op0); 2720 2721 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2722 2723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2724 SmallVector<EVT, 4> ValValueVTs; 2725 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2726 2727 unsigned NumValValues = ValValueVTs.size(); 2728 2729 // Ignore a extractvalue that produces an empty object 2730 if (!NumValValues) { 2731 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2732 return; 2733 } 2734 2735 SmallVector<SDValue, 4> Values(NumValValues); 2736 2737 SDValue Agg = getValue(Op0); 2738 // Copy out the selected value(s). 2739 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2740 Values[i - LinearIndex] = 2741 OutOfUndef ? 2742 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2743 SDValue(Agg.getNode(), Agg.getResNo() + i); 2744 2745 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2746 DAG.getVTList(ValValueVTs), Values)); 2747 } 2748 2749 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2750 Value *Op0 = I.getOperand(0); 2751 // Note that the pointer operand may be a vector of pointers. Take the scalar 2752 // element which holds a pointer. 2753 Type *Ty = Op0->getType()->getScalarType(); 2754 unsigned AS = Ty->getPointerAddressSpace(); 2755 SDValue N = getValue(Op0); 2756 SDLoc dl = getCurSDLoc(); 2757 2758 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2759 OI != E; ++OI) { 2760 const Value *Idx = *OI; 2761 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2762 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2763 if (Field) { 2764 // N = N + Offset 2765 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2766 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2767 DAG.getConstant(Offset, dl, N.getValueType())); 2768 } 2769 2770 Ty = StTy->getElementType(Field); 2771 } else { 2772 Ty = cast<SequentialType>(Ty)->getElementType(); 2773 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2774 unsigned PtrSize = PtrTy.getSizeInBits(); 2775 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2776 2777 // If this is a constant subscript, handle it quickly. 2778 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2779 if (CI->isZero()) 2780 continue; 2781 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2782 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2783 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2784 continue; 2785 } 2786 2787 // N = N + Idx * ElementSize; 2788 SDValue IdxN = getValue(Idx); 2789 2790 // If the index is smaller or larger than intptr_t, truncate or extend 2791 // it. 2792 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2793 2794 // If this is a multiply by a power of two, turn it into a shl 2795 // immediately. This is a very common case. 2796 if (ElementSize != 1) { 2797 if (ElementSize.isPowerOf2()) { 2798 unsigned Amt = ElementSize.logBase2(); 2799 IdxN = DAG.getNode(ISD::SHL, dl, 2800 N.getValueType(), IdxN, 2801 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2802 } else { 2803 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2804 IdxN = DAG.getNode(ISD::MUL, dl, 2805 N.getValueType(), IdxN, Scale); 2806 } 2807 } 2808 2809 N = DAG.getNode(ISD::ADD, dl, 2810 N.getValueType(), N, IdxN); 2811 } 2812 } 2813 2814 setValue(&I, N); 2815 } 2816 2817 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2818 // If this is a fixed sized alloca in the entry block of the function, 2819 // allocate it statically on the stack. 2820 if (FuncInfo.StaticAllocaMap.count(&I)) 2821 return; // getValue will auto-populate this. 2822 2823 SDLoc dl = getCurSDLoc(); 2824 Type *Ty = I.getAllocatedType(); 2825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2826 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2827 unsigned Align = 2828 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2829 I.getAlignment()); 2830 2831 SDValue AllocSize = getValue(I.getArraySize()); 2832 2833 EVT IntPtr = TLI.getPointerTy(); 2834 if (AllocSize.getValueType() != IntPtr) 2835 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2836 2837 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2838 AllocSize, 2839 DAG.getConstant(TySize, dl, IntPtr)); 2840 2841 // Handle alignment. If the requested alignment is less than or equal to 2842 // the stack alignment, ignore it. If the size is greater than or equal to 2843 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2844 unsigned StackAlign = 2845 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2846 if (Align <= StackAlign) 2847 Align = 0; 2848 2849 // Round the size of the allocation up to the stack alignment size 2850 // by add SA-1 to the size. 2851 AllocSize = DAG.getNode(ISD::ADD, dl, 2852 AllocSize.getValueType(), AllocSize, 2853 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2854 2855 // Mask out the low bits for alignment purposes. 2856 AllocSize = DAG.getNode(ISD::AND, dl, 2857 AllocSize.getValueType(), AllocSize, 2858 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2859 dl)); 2860 2861 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2862 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2863 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2864 setValue(&I, DSA); 2865 DAG.setRoot(DSA.getValue(1)); 2866 2867 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2868 } 2869 2870 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2871 if (I.isAtomic()) 2872 return visitAtomicLoad(I); 2873 2874 const Value *SV = I.getOperand(0); 2875 SDValue Ptr = getValue(SV); 2876 2877 Type *Ty = I.getType(); 2878 2879 bool isVolatile = I.isVolatile(); 2880 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2881 2882 // The IR notion of invariant_load only guarantees that all *non-faulting* 2883 // invariant loads result in the same value. The MI notion of invariant load 2884 // guarantees that the load can be legally moved to any location within its 2885 // containing function. The MI notion of invariant_load is stronger than the 2886 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2887 // with a guarantee that the location being loaded from is dereferenceable 2888 // throughout the function's lifetime. 2889 2890 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2891 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2892 unsigned Alignment = I.getAlignment(); 2893 2894 AAMDNodes AAInfo; 2895 I.getAAMetadata(AAInfo); 2896 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2897 2898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2899 SmallVector<EVT, 4> ValueVTs; 2900 SmallVector<uint64_t, 4> Offsets; 2901 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2902 unsigned NumValues = ValueVTs.size(); 2903 if (NumValues == 0) 2904 return; 2905 2906 SDValue Root; 2907 bool ConstantMemory = false; 2908 if (isVolatile || NumValues > MaxParallelChains) 2909 // Serialize volatile loads with other side effects. 2910 Root = getRoot(); 2911 else if (AA->pointsToConstantMemory( 2912 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2913 // Do not serialize (non-volatile) loads of constant memory with anything. 2914 Root = DAG.getEntryNode(); 2915 ConstantMemory = true; 2916 } else { 2917 // Do not serialize non-volatile loads against each other. 2918 Root = DAG.getRoot(); 2919 } 2920 2921 SDLoc dl = getCurSDLoc(); 2922 2923 if (isVolatile) 2924 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2925 2926 SmallVector<SDValue, 4> Values(NumValues); 2927 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2928 EVT PtrVT = Ptr.getValueType(); 2929 unsigned ChainI = 0; 2930 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2931 // Serializing loads here may result in excessive register pressure, and 2932 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2933 // could recover a bit by hoisting nodes upward in the chain by recognizing 2934 // they are side-effect free or do not alias. The optimizer should really 2935 // avoid this case by converting large object/array copies to llvm.memcpy 2936 // (MaxParallelChains should always remain as failsafe). 2937 if (ChainI == MaxParallelChains) { 2938 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2939 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2940 makeArrayRef(Chains.data(), ChainI)); 2941 Root = Chain; 2942 ChainI = 0; 2943 } 2944 SDValue A = DAG.getNode(ISD::ADD, dl, 2945 PtrVT, Ptr, 2946 DAG.getConstant(Offsets[i], dl, PtrVT)); 2947 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2948 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2949 isNonTemporal, isInvariant, Alignment, AAInfo, 2950 Ranges); 2951 2952 Values[i] = L; 2953 Chains[ChainI] = L.getValue(1); 2954 } 2955 2956 if (!ConstantMemory) { 2957 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2958 makeArrayRef(Chains.data(), ChainI)); 2959 if (isVolatile) 2960 DAG.setRoot(Chain); 2961 else 2962 PendingLoads.push_back(Chain); 2963 } 2964 2965 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2966 DAG.getVTList(ValueVTs), Values)); 2967 } 2968 2969 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2970 if (I.isAtomic()) 2971 return visitAtomicStore(I); 2972 2973 const Value *SrcV = I.getOperand(0); 2974 const Value *PtrV = I.getOperand(1); 2975 2976 SmallVector<EVT, 4> ValueVTs; 2977 SmallVector<uint64_t, 4> Offsets; 2978 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2979 ValueVTs, &Offsets); 2980 unsigned NumValues = ValueVTs.size(); 2981 if (NumValues == 0) 2982 return; 2983 2984 // Get the lowered operands. Note that we do this after 2985 // checking if NumResults is zero, because with zero results 2986 // the operands won't have values in the map. 2987 SDValue Src = getValue(SrcV); 2988 SDValue Ptr = getValue(PtrV); 2989 2990 SDValue Root = getRoot(); 2991 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2992 EVT PtrVT = Ptr.getValueType(); 2993 bool isVolatile = I.isVolatile(); 2994 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2995 unsigned Alignment = I.getAlignment(); 2996 SDLoc dl = getCurSDLoc(); 2997 2998 AAMDNodes AAInfo; 2999 I.getAAMetadata(AAInfo); 3000 3001 unsigned ChainI = 0; 3002 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3003 // See visitLoad comments. 3004 if (ChainI == MaxParallelChains) { 3005 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3006 makeArrayRef(Chains.data(), ChainI)); 3007 Root = Chain; 3008 ChainI = 0; 3009 } 3010 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3011 DAG.getConstant(Offsets[i], dl, PtrVT)); 3012 SDValue St = DAG.getStore(Root, dl, 3013 SDValue(Src.getNode(), Src.getResNo() + i), 3014 Add, MachinePointerInfo(PtrV, Offsets[i]), 3015 isVolatile, isNonTemporal, Alignment, AAInfo); 3016 Chains[ChainI] = St; 3017 } 3018 3019 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3020 makeArrayRef(Chains.data(), ChainI)); 3021 DAG.setRoot(StoreNode); 3022 } 3023 3024 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3025 SDLoc sdl = getCurSDLoc(); 3026 3027 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3028 Value *PtrOperand = I.getArgOperand(1); 3029 SDValue Ptr = getValue(PtrOperand); 3030 SDValue Src0 = getValue(I.getArgOperand(0)); 3031 SDValue Mask = getValue(I.getArgOperand(3)); 3032 EVT VT = Src0.getValueType(); 3033 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3034 if (!Alignment) 3035 Alignment = DAG.getEVTAlignment(VT); 3036 3037 AAMDNodes AAInfo; 3038 I.getAAMetadata(AAInfo); 3039 3040 MachineMemOperand *MMO = 3041 DAG.getMachineFunction(). 3042 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3043 MachineMemOperand::MOStore, VT.getStoreSize(), 3044 Alignment, AAInfo); 3045 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3046 MMO, false); 3047 DAG.setRoot(StoreNode); 3048 setValue(&I, StoreNode); 3049 } 3050 3051 // Gather/scatter receive a vector of pointers. 3052 // This vector of pointers may be represented as a base pointer + vector of 3053 // indices, it depends on GEP and instruction preceeding GEP 3054 // that calculates indices 3055 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3056 SelectionDAGBuilder* SDB) { 3057 3058 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3059 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3060 if (!Gep || Gep->getNumOperands() > 2) 3061 return false; 3062 ShuffleVectorInst *ShuffleInst = 3063 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3064 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3065 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3066 Instruction::InsertElement) 3067 return false; 3068 3069 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3070 3071 SelectionDAG& DAG = SDB->DAG; 3072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3073 // Check is the Ptr is inside current basic block 3074 // If not, look for the shuffle instruction 3075 if (SDB->findValue(Ptr)) 3076 Base = SDB->getValue(Ptr); 3077 else if (SDB->findValue(ShuffleInst)) { 3078 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3079 SDLoc sdl = ShuffleNode; 3080 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3081 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3082 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3083 SDB->setValue(Ptr, Base); 3084 } 3085 else 3086 return false; 3087 3088 Value *IndexVal = Gep->getOperand(1); 3089 if (SDB->findValue(IndexVal)) { 3090 Index = SDB->getValue(IndexVal); 3091 3092 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3093 IndexVal = Sext->getOperand(0); 3094 if (SDB->findValue(IndexVal)) 3095 Index = SDB->getValue(IndexVal); 3096 } 3097 return true; 3098 } 3099 return false; 3100 } 3101 3102 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3103 SDLoc sdl = getCurSDLoc(); 3104 3105 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3106 Value *Ptr = I.getArgOperand(1); 3107 SDValue Src0 = getValue(I.getArgOperand(0)); 3108 SDValue Mask = getValue(I.getArgOperand(3)); 3109 EVT VT = Src0.getValueType(); 3110 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3111 if (!Alignment) 3112 Alignment = DAG.getEVTAlignment(VT); 3113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3114 3115 AAMDNodes AAInfo; 3116 I.getAAMetadata(AAInfo); 3117 3118 SDValue Base; 3119 SDValue Index; 3120 Value *BasePtr = Ptr; 3121 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3122 3123 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3124 MachineMemOperand *MMO = DAG.getMachineFunction(). 3125 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3126 MachineMemOperand::MOStore, VT.getStoreSize(), 3127 Alignment, AAInfo); 3128 if (!UniformBase) { 3129 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3130 Index = getValue(Ptr); 3131 } 3132 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3133 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3134 Ops, MMO); 3135 DAG.setRoot(Scatter); 3136 setValue(&I, Scatter); 3137 } 3138 3139 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3140 SDLoc sdl = getCurSDLoc(); 3141 3142 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3143 Value *PtrOperand = I.getArgOperand(0); 3144 SDValue Ptr = getValue(PtrOperand); 3145 SDValue Src0 = getValue(I.getArgOperand(3)); 3146 SDValue Mask = getValue(I.getArgOperand(2)); 3147 3148 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3149 EVT VT = TLI.getValueType(I.getType()); 3150 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3151 if (!Alignment) 3152 Alignment = DAG.getEVTAlignment(VT); 3153 3154 AAMDNodes AAInfo; 3155 I.getAAMetadata(AAInfo); 3156 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3157 3158 SDValue InChain = DAG.getRoot(); 3159 if (AA->pointsToConstantMemory(MemoryLocation( 3160 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3161 // Do not serialize (non-volatile) loads of constant memory with anything. 3162 InChain = DAG.getEntryNode(); 3163 } 3164 3165 MachineMemOperand *MMO = 3166 DAG.getMachineFunction(). 3167 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3168 MachineMemOperand::MOLoad, VT.getStoreSize(), 3169 Alignment, AAInfo, Ranges); 3170 3171 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3172 ISD::NON_EXTLOAD); 3173 SDValue OutChain = Load.getValue(1); 3174 DAG.setRoot(OutChain); 3175 setValue(&I, Load); 3176 } 3177 3178 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3179 SDLoc sdl = getCurSDLoc(); 3180 3181 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3182 Value *Ptr = I.getArgOperand(0); 3183 SDValue Src0 = getValue(I.getArgOperand(3)); 3184 SDValue Mask = getValue(I.getArgOperand(2)); 3185 3186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3187 EVT VT = TLI.getValueType(I.getType()); 3188 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3189 if (!Alignment) 3190 Alignment = DAG.getEVTAlignment(VT); 3191 3192 AAMDNodes AAInfo; 3193 I.getAAMetadata(AAInfo); 3194 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3195 3196 SDValue Root = DAG.getRoot(); 3197 SDValue Base; 3198 SDValue Index; 3199 Value *BasePtr = Ptr; 3200 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3201 bool ConstantMemory = false; 3202 if (UniformBase && 3203 AA->pointsToConstantMemory( 3204 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3205 // Do not serialize (non-volatile) loads of constant memory with anything. 3206 Root = DAG.getEntryNode(); 3207 ConstantMemory = true; 3208 } 3209 3210 MachineMemOperand *MMO = 3211 DAG.getMachineFunction(). 3212 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3213 MachineMemOperand::MOLoad, VT.getStoreSize(), 3214 Alignment, AAInfo, Ranges); 3215 3216 if (!UniformBase) { 3217 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3218 Index = getValue(Ptr); 3219 } 3220 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3221 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3222 Ops, MMO); 3223 3224 SDValue OutChain = Gather.getValue(1); 3225 if (!ConstantMemory) 3226 PendingLoads.push_back(OutChain); 3227 setValue(&I, Gather); 3228 } 3229 3230 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3231 SDLoc dl = getCurSDLoc(); 3232 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3233 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3234 SynchronizationScope Scope = I.getSynchScope(); 3235 3236 SDValue InChain = getRoot(); 3237 3238 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3239 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3240 SDValue L = DAG.getAtomicCmpSwap( 3241 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3242 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3243 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3244 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3245 3246 SDValue OutChain = L.getValue(2); 3247 3248 setValue(&I, L); 3249 DAG.setRoot(OutChain); 3250 } 3251 3252 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3253 SDLoc dl = getCurSDLoc(); 3254 ISD::NodeType NT; 3255 switch (I.getOperation()) { 3256 default: llvm_unreachable("Unknown atomicrmw operation"); 3257 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3258 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3259 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3260 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3261 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3262 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3263 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3264 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3265 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3266 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3267 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3268 } 3269 AtomicOrdering Order = I.getOrdering(); 3270 SynchronizationScope Scope = I.getSynchScope(); 3271 3272 SDValue InChain = getRoot(); 3273 3274 SDValue L = 3275 DAG.getAtomic(NT, dl, 3276 getValue(I.getValOperand()).getSimpleValueType(), 3277 InChain, 3278 getValue(I.getPointerOperand()), 3279 getValue(I.getValOperand()), 3280 I.getPointerOperand(), 3281 /* Alignment=*/ 0, Order, Scope); 3282 3283 SDValue OutChain = L.getValue(1); 3284 3285 setValue(&I, L); 3286 DAG.setRoot(OutChain); 3287 } 3288 3289 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3290 SDLoc dl = getCurSDLoc(); 3291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3292 SDValue Ops[3]; 3293 Ops[0] = getRoot(); 3294 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3295 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3296 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3297 } 3298 3299 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3300 SDLoc dl = getCurSDLoc(); 3301 AtomicOrdering Order = I.getOrdering(); 3302 SynchronizationScope Scope = I.getSynchScope(); 3303 3304 SDValue InChain = getRoot(); 3305 3306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3307 EVT VT = TLI.getValueType(I.getType()); 3308 3309 if (I.getAlignment() < VT.getSizeInBits() / 8) 3310 report_fatal_error("Cannot generate unaligned atomic load"); 3311 3312 MachineMemOperand *MMO = 3313 DAG.getMachineFunction(). 3314 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3315 MachineMemOperand::MOVolatile | 3316 MachineMemOperand::MOLoad, 3317 VT.getStoreSize(), 3318 I.getAlignment() ? I.getAlignment() : 3319 DAG.getEVTAlignment(VT)); 3320 3321 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3322 SDValue L = 3323 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3324 getValue(I.getPointerOperand()), MMO, 3325 Order, Scope); 3326 3327 SDValue OutChain = L.getValue(1); 3328 3329 setValue(&I, L); 3330 DAG.setRoot(OutChain); 3331 } 3332 3333 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3334 SDLoc dl = getCurSDLoc(); 3335 3336 AtomicOrdering Order = I.getOrdering(); 3337 SynchronizationScope Scope = I.getSynchScope(); 3338 3339 SDValue InChain = getRoot(); 3340 3341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3342 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3343 3344 if (I.getAlignment() < VT.getSizeInBits() / 8) 3345 report_fatal_error("Cannot generate unaligned atomic store"); 3346 3347 SDValue OutChain = 3348 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3349 InChain, 3350 getValue(I.getPointerOperand()), 3351 getValue(I.getValueOperand()), 3352 I.getPointerOperand(), I.getAlignment(), 3353 Order, Scope); 3354 3355 DAG.setRoot(OutChain); 3356 } 3357 3358 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3359 /// node. 3360 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3361 unsigned Intrinsic) { 3362 bool HasChain = !I.doesNotAccessMemory(); 3363 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3364 3365 // Build the operand list. 3366 SmallVector<SDValue, 8> Ops; 3367 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3368 if (OnlyLoad) { 3369 // We don't need to serialize loads against other loads. 3370 Ops.push_back(DAG.getRoot()); 3371 } else { 3372 Ops.push_back(getRoot()); 3373 } 3374 } 3375 3376 // Info is set by getTgtMemInstrinsic 3377 TargetLowering::IntrinsicInfo Info; 3378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3379 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3380 3381 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3382 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3383 Info.opc == ISD::INTRINSIC_W_CHAIN) 3384 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3385 TLI.getPointerTy())); 3386 3387 // Add all operands of the call to the operand list. 3388 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3389 SDValue Op = getValue(I.getArgOperand(i)); 3390 Ops.push_back(Op); 3391 } 3392 3393 SmallVector<EVT, 4> ValueVTs; 3394 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3395 3396 if (HasChain) 3397 ValueVTs.push_back(MVT::Other); 3398 3399 SDVTList VTs = DAG.getVTList(ValueVTs); 3400 3401 // Create the node. 3402 SDValue Result; 3403 if (IsTgtIntrinsic) { 3404 // This is target intrinsic that touches memory 3405 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3406 VTs, Ops, Info.memVT, 3407 MachinePointerInfo(Info.ptrVal, Info.offset), 3408 Info.align, Info.vol, 3409 Info.readMem, Info.writeMem, Info.size); 3410 } else if (!HasChain) { 3411 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3412 } else if (!I.getType()->isVoidTy()) { 3413 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3414 } else { 3415 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3416 } 3417 3418 if (HasChain) { 3419 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3420 if (OnlyLoad) 3421 PendingLoads.push_back(Chain); 3422 else 3423 DAG.setRoot(Chain); 3424 } 3425 3426 if (!I.getType()->isVoidTy()) { 3427 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3428 EVT VT = TLI.getValueType(PTy); 3429 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3430 } 3431 3432 setValue(&I, Result); 3433 } 3434 } 3435 3436 /// GetSignificand - Get the significand and build it into a floating-point 3437 /// number with exponent of 1: 3438 /// 3439 /// Op = (Op & 0x007fffff) | 0x3f800000; 3440 /// 3441 /// where Op is the hexadecimal representation of floating point value. 3442 static SDValue 3443 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3444 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3445 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3446 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3447 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3448 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3449 } 3450 3451 /// GetExponent - Get the exponent: 3452 /// 3453 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3454 /// 3455 /// where Op is the hexadecimal representation of floating point value. 3456 static SDValue 3457 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3458 SDLoc dl) { 3459 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3460 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3461 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3462 DAG.getConstant(23, dl, TLI.getPointerTy())); 3463 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3464 DAG.getConstant(127, dl, MVT::i32)); 3465 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3466 } 3467 3468 /// getF32Constant - Get 32-bit floating point constant. 3469 static SDValue 3470 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3471 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3472 MVT::f32); 3473 } 3474 3475 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3476 SelectionDAG &DAG) { 3477 // IntegerPartOfX = ((int32_t)(t0); 3478 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3479 3480 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3481 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3482 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3483 3484 // IntegerPartOfX <<= 23; 3485 IntegerPartOfX = DAG.getNode( 3486 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3487 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3488 3489 SDValue TwoToFractionalPartOfX; 3490 if (LimitFloatPrecision <= 6) { 3491 // For floating-point precision of 6: 3492 // 3493 // TwoToFractionalPartOfX = 3494 // 0.997535578f + 3495 // (0.735607626f + 0.252464424f * x) * x; 3496 // 3497 // error 0.0144103317, which is 6 bits 3498 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3499 getF32Constant(DAG, 0x3e814304, dl)); 3500 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3501 getF32Constant(DAG, 0x3f3c50c8, dl)); 3502 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3503 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3504 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3505 } else if (LimitFloatPrecision <= 12) { 3506 // For floating-point precision of 12: 3507 // 3508 // TwoToFractionalPartOfX = 3509 // 0.999892986f + 3510 // (0.696457318f + 3511 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3512 // 3513 // error 0.000107046256, which is 13 to 14 bits 3514 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3515 getF32Constant(DAG, 0x3da235e3, dl)); 3516 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3517 getF32Constant(DAG, 0x3e65b8f3, dl)); 3518 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3519 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3520 getF32Constant(DAG, 0x3f324b07, dl)); 3521 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3522 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3523 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3524 } else { // LimitFloatPrecision <= 18 3525 // For floating-point precision of 18: 3526 // 3527 // TwoToFractionalPartOfX = 3528 // 0.999999982f + 3529 // (0.693148872f + 3530 // (0.240227044f + 3531 // (0.554906021e-1f + 3532 // (0.961591928e-2f + 3533 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3534 // error 2.47208000*10^(-7), which is better than 18 bits 3535 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3536 getF32Constant(DAG, 0x3924b03e, dl)); 3537 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3538 getF32Constant(DAG, 0x3ab24b87, dl)); 3539 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3540 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3541 getF32Constant(DAG, 0x3c1d8c17, dl)); 3542 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3543 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3544 getF32Constant(DAG, 0x3d634a1d, dl)); 3545 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3546 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3547 getF32Constant(DAG, 0x3e75fe14, dl)); 3548 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3549 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3550 getF32Constant(DAG, 0x3f317234, dl)); 3551 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3552 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3553 getF32Constant(DAG, 0x3f800000, dl)); 3554 } 3555 3556 // Add the exponent into the result in integer domain. 3557 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3558 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3559 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3560 } 3561 3562 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3563 /// limited-precision mode. 3564 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3565 const TargetLowering &TLI) { 3566 if (Op.getValueType() == MVT::f32 && 3567 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3568 3569 // Put the exponent in the right bit position for later addition to the 3570 // final result: 3571 // 3572 // #define LOG2OFe 1.4426950f 3573 // t0 = Op * LOG2OFe 3574 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3575 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3576 return getLimitedPrecisionExp2(t0, dl, DAG); 3577 } 3578 3579 // No special expansion. 3580 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3581 } 3582 3583 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3584 /// limited-precision mode. 3585 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3586 const TargetLowering &TLI) { 3587 if (Op.getValueType() == MVT::f32 && 3588 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3589 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3590 3591 // Scale the exponent by log(2) [0.69314718f]. 3592 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3593 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3594 getF32Constant(DAG, 0x3f317218, dl)); 3595 3596 // Get the significand and build it into a floating-point number with 3597 // exponent of 1. 3598 SDValue X = GetSignificand(DAG, Op1, dl); 3599 3600 SDValue LogOfMantissa; 3601 if (LimitFloatPrecision <= 6) { 3602 // For floating-point precision of 6: 3603 // 3604 // LogofMantissa = 3605 // -1.1609546f + 3606 // (1.4034025f - 0.23903021f * x) * x; 3607 // 3608 // error 0.0034276066, which is better than 8 bits 3609 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3610 getF32Constant(DAG, 0xbe74c456, dl)); 3611 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3612 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3613 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3614 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3615 getF32Constant(DAG, 0x3f949a29, dl)); 3616 } else if (LimitFloatPrecision <= 12) { 3617 // For floating-point precision of 12: 3618 // 3619 // LogOfMantissa = 3620 // -1.7417939f + 3621 // (2.8212026f + 3622 // (-1.4699568f + 3623 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3624 // 3625 // error 0.000061011436, which is 14 bits 3626 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3627 getF32Constant(DAG, 0xbd67b6d6, dl)); 3628 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3629 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3630 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3631 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3632 getF32Constant(DAG, 0x3fbc278b, dl)); 3633 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3634 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3635 getF32Constant(DAG, 0x40348e95, dl)); 3636 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3637 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3638 getF32Constant(DAG, 0x3fdef31a, dl)); 3639 } else { // LimitFloatPrecision <= 18 3640 // For floating-point precision of 18: 3641 // 3642 // LogOfMantissa = 3643 // -2.1072184f + 3644 // (4.2372794f + 3645 // (-3.7029485f + 3646 // (2.2781945f + 3647 // (-0.87823314f + 3648 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3649 // 3650 // error 0.0000023660568, which is better than 18 bits 3651 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3652 getF32Constant(DAG, 0xbc91e5ac, dl)); 3653 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3654 getF32Constant(DAG, 0x3e4350aa, dl)); 3655 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3656 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3657 getF32Constant(DAG, 0x3f60d3e3, dl)); 3658 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3659 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3660 getF32Constant(DAG, 0x4011cdf0, dl)); 3661 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3662 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3663 getF32Constant(DAG, 0x406cfd1c, dl)); 3664 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3665 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3666 getF32Constant(DAG, 0x408797cb, dl)); 3667 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3668 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3669 getF32Constant(DAG, 0x4006dcab, dl)); 3670 } 3671 3672 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3673 } 3674 3675 // No special expansion. 3676 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3677 } 3678 3679 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3680 /// limited-precision mode. 3681 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3682 const TargetLowering &TLI) { 3683 if (Op.getValueType() == MVT::f32 && 3684 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3685 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3686 3687 // Get the exponent. 3688 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3689 3690 // Get the significand and build it into a floating-point number with 3691 // exponent of 1. 3692 SDValue X = GetSignificand(DAG, Op1, dl); 3693 3694 // Different possible minimax approximations of significand in 3695 // floating-point for various degrees of accuracy over [1,2]. 3696 SDValue Log2ofMantissa; 3697 if (LimitFloatPrecision <= 6) { 3698 // For floating-point precision of 6: 3699 // 3700 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3701 // 3702 // error 0.0049451742, which is more than 7 bits 3703 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3704 getF32Constant(DAG, 0xbeb08fe0, dl)); 3705 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3706 getF32Constant(DAG, 0x40019463, dl)); 3707 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3708 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3709 getF32Constant(DAG, 0x3fd6633d, dl)); 3710 } else if (LimitFloatPrecision <= 12) { 3711 // For floating-point precision of 12: 3712 // 3713 // Log2ofMantissa = 3714 // -2.51285454f + 3715 // (4.07009056f + 3716 // (-2.12067489f + 3717 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3718 // 3719 // error 0.0000876136000, which is better than 13 bits 3720 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3721 getF32Constant(DAG, 0xbda7262e, dl)); 3722 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3723 getF32Constant(DAG, 0x3f25280b, dl)); 3724 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3725 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3726 getF32Constant(DAG, 0x4007b923, dl)); 3727 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3728 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3729 getF32Constant(DAG, 0x40823e2f, dl)); 3730 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3731 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3732 getF32Constant(DAG, 0x4020d29c, dl)); 3733 } else { // LimitFloatPrecision <= 18 3734 // For floating-point precision of 18: 3735 // 3736 // Log2ofMantissa = 3737 // -3.0400495f + 3738 // (6.1129976f + 3739 // (-5.3420409f + 3740 // (3.2865683f + 3741 // (-1.2669343f + 3742 // (0.27515199f - 3743 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3744 // 3745 // error 0.0000018516, which is better than 18 bits 3746 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3747 getF32Constant(DAG, 0xbcd2769e, dl)); 3748 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3749 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3750 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3751 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3752 getF32Constant(DAG, 0x3fa22ae7, dl)); 3753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3754 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3755 getF32Constant(DAG, 0x40525723, dl)); 3756 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3757 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3758 getF32Constant(DAG, 0x40aaf200, dl)); 3759 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3760 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3761 getF32Constant(DAG, 0x40c39dad, dl)); 3762 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3763 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3764 getF32Constant(DAG, 0x4042902c, dl)); 3765 } 3766 3767 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3768 } 3769 3770 // No special expansion. 3771 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3772 } 3773 3774 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3775 /// limited-precision mode. 3776 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3777 const TargetLowering &TLI) { 3778 if (Op.getValueType() == MVT::f32 && 3779 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3780 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3781 3782 // Scale the exponent by log10(2) [0.30102999f]. 3783 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3784 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3785 getF32Constant(DAG, 0x3e9a209a, dl)); 3786 3787 // Get the significand and build it into a floating-point number with 3788 // exponent of 1. 3789 SDValue X = GetSignificand(DAG, Op1, dl); 3790 3791 SDValue Log10ofMantissa; 3792 if (LimitFloatPrecision <= 6) { 3793 // For floating-point precision of 6: 3794 // 3795 // Log10ofMantissa = 3796 // -0.50419619f + 3797 // (0.60948995f - 0.10380950f * x) * x; 3798 // 3799 // error 0.0014886165, which is 6 bits 3800 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3801 getF32Constant(DAG, 0xbdd49a13, dl)); 3802 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3803 getF32Constant(DAG, 0x3f1c0789, dl)); 3804 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3805 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3806 getF32Constant(DAG, 0x3f011300, dl)); 3807 } else if (LimitFloatPrecision <= 12) { 3808 // For floating-point precision of 12: 3809 // 3810 // Log10ofMantissa = 3811 // -0.64831180f + 3812 // (0.91751397f + 3813 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3814 // 3815 // error 0.00019228036, which is better than 12 bits 3816 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3817 getF32Constant(DAG, 0x3d431f31, dl)); 3818 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3819 getF32Constant(DAG, 0x3ea21fb2, dl)); 3820 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3821 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3822 getF32Constant(DAG, 0x3f6ae232, dl)); 3823 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3824 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3825 getF32Constant(DAG, 0x3f25f7c3, dl)); 3826 } else { // LimitFloatPrecision <= 18 3827 // For floating-point precision of 18: 3828 // 3829 // Log10ofMantissa = 3830 // -0.84299375f + 3831 // (1.5327582f + 3832 // (-1.0688956f + 3833 // (0.49102474f + 3834 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3835 // 3836 // error 0.0000037995730, which is better than 18 bits 3837 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3838 getF32Constant(DAG, 0x3c5d51ce, dl)); 3839 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3840 getF32Constant(DAG, 0x3e00685a, dl)); 3841 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3842 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3843 getF32Constant(DAG, 0x3efb6798, dl)); 3844 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3845 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3846 getF32Constant(DAG, 0x3f88d192, dl)); 3847 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3848 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3849 getF32Constant(DAG, 0x3fc4316c, dl)); 3850 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3851 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3852 getF32Constant(DAG, 0x3f57ce70, dl)); 3853 } 3854 3855 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3856 } 3857 3858 // No special expansion. 3859 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3860 } 3861 3862 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3863 /// limited-precision mode. 3864 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3865 const TargetLowering &TLI) { 3866 if (Op.getValueType() == MVT::f32 && 3867 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3868 return getLimitedPrecisionExp2(Op, dl, DAG); 3869 3870 // No special expansion. 3871 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3872 } 3873 3874 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3875 /// limited-precision mode with x == 10.0f. 3876 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3877 SelectionDAG &DAG, const TargetLowering &TLI) { 3878 bool IsExp10 = false; 3879 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3880 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3881 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3882 APFloat Ten(10.0f); 3883 IsExp10 = LHSC->isExactlyValue(Ten); 3884 } 3885 } 3886 3887 if (IsExp10) { 3888 // Put the exponent in the right bit position for later addition to the 3889 // final result: 3890 // 3891 // #define LOG2OF10 3.3219281f 3892 // t0 = Op * LOG2OF10; 3893 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3894 getF32Constant(DAG, 0x40549a78, dl)); 3895 return getLimitedPrecisionExp2(t0, dl, DAG); 3896 } 3897 3898 // No special expansion. 3899 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3900 } 3901 3902 3903 /// ExpandPowI - Expand a llvm.powi intrinsic. 3904 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3905 SelectionDAG &DAG) { 3906 // If RHS is a constant, we can expand this out to a multiplication tree, 3907 // otherwise we end up lowering to a call to __powidf2 (for example). When 3908 // optimizing for size, we only want to do this if the expansion would produce 3909 // a small number of multiplies, otherwise we do the full expansion. 3910 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3911 // Get the exponent as a positive value. 3912 unsigned Val = RHSC->getSExtValue(); 3913 if ((int)Val < 0) Val = -Val; 3914 3915 // powi(x, 0) -> 1.0 3916 if (Val == 0) 3917 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3918 3919 const Function *F = DAG.getMachineFunction().getFunction(); 3920 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3921 // If optimizing for size, don't insert too many multiplies. This 3922 // inserts up to 5 multiplies. 3923 countPopulation(Val) + Log2_32(Val) < 7) { 3924 // We use the simple binary decomposition method to generate the multiply 3925 // sequence. There are more optimal ways to do this (for example, 3926 // powi(x,15) generates one more multiply than it should), but this has 3927 // the benefit of being both really simple and much better than a libcall. 3928 SDValue Res; // Logically starts equal to 1.0 3929 SDValue CurSquare = LHS; 3930 while (Val) { 3931 if (Val & 1) { 3932 if (Res.getNode()) 3933 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3934 else 3935 Res = CurSquare; // 1.0*CurSquare. 3936 } 3937 3938 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3939 CurSquare, CurSquare); 3940 Val >>= 1; 3941 } 3942 3943 // If the original was negative, invert the result, producing 1/(x*x*x). 3944 if (RHSC->getSExtValue() < 0) 3945 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3946 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3947 return Res; 3948 } 3949 } 3950 3951 // Otherwise, expand to a libcall. 3952 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3953 } 3954 3955 // getTruncatedArgReg - Find underlying register used for an truncated 3956 // argument. 3957 static unsigned getTruncatedArgReg(const SDValue &N) { 3958 if (N.getOpcode() != ISD::TRUNCATE) 3959 return 0; 3960 3961 const SDValue &Ext = N.getOperand(0); 3962 if (Ext.getOpcode() == ISD::AssertZext || 3963 Ext.getOpcode() == ISD::AssertSext) { 3964 const SDValue &CFR = Ext.getOperand(0); 3965 if (CFR.getOpcode() == ISD::CopyFromReg) 3966 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3967 if (CFR.getOpcode() == ISD::TRUNCATE) 3968 return getTruncatedArgReg(CFR); 3969 } 3970 return 0; 3971 } 3972 3973 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3974 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3975 /// At the end of instruction selection, they will be inserted to the entry BB. 3976 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3977 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3978 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3979 const Argument *Arg = dyn_cast<Argument>(V); 3980 if (!Arg) 3981 return false; 3982 3983 MachineFunction &MF = DAG.getMachineFunction(); 3984 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3985 3986 // Ignore inlined function arguments here. 3987 // 3988 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3989 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3990 return false; 3991 3992 Optional<MachineOperand> Op; 3993 // Some arguments' frame index is recorded during argument lowering. 3994 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3995 Op = MachineOperand::CreateFI(FI); 3996 3997 if (!Op && N.getNode()) { 3998 unsigned Reg; 3999 if (N.getOpcode() == ISD::CopyFromReg) 4000 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4001 else 4002 Reg = getTruncatedArgReg(N); 4003 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4004 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4005 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4006 if (PR) 4007 Reg = PR; 4008 } 4009 if (Reg) 4010 Op = MachineOperand::CreateReg(Reg, false); 4011 } 4012 4013 if (!Op) { 4014 // Check if ValueMap has reg number. 4015 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4016 if (VMI != FuncInfo.ValueMap.end()) 4017 Op = MachineOperand::CreateReg(VMI->second, false); 4018 } 4019 4020 if (!Op && N.getNode()) 4021 // Check if frame index is available. 4022 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4023 if (FrameIndexSDNode *FINode = 4024 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4025 Op = MachineOperand::CreateFI(FINode->getIndex()); 4026 4027 if (!Op) 4028 return false; 4029 4030 assert(Variable->isValidLocationForIntrinsic(DL) && 4031 "Expected inlined-at fields to agree"); 4032 if (Op->isReg()) 4033 FuncInfo.ArgDbgValues.push_back( 4034 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4035 Op->getReg(), Offset, Variable, Expr)); 4036 else 4037 FuncInfo.ArgDbgValues.push_back( 4038 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4039 .addOperand(*Op) 4040 .addImm(Offset) 4041 .addMetadata(Variable) 4042 .addMetadata(Expr)); 4043 4044 return true; 4045 } 4046 4047 // VisualStudio defines setjmp as _setjmp 4048 #if defined(_MSC_VER) && defined(setjmp) && \ 4049 !defined(setjmp_undefined_for_msvc) 4050 # pragma push_macro("setjmp") 4051 # undef setjmp 4052 # define setjmp_undefined_for_msvc 4053 #endif 4054 4055 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4056 /// we want to emit this as a call to a named external function, return the name 4057 /// otherwise lower it and return null. 4058 const char * 4059 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4061 SDLoc sdl = getCurSDLoc(); 4062 DebugLoc dl = getCurDebugLoc(); 4063 SDValue Res; 4064 4065 switch (Intrinsic) { 4066 default: 4067 // By default, turn this into a target intrinsic node. 4068 visitTargetIntrinsic(I, Intrinsic); 4069 return nullptr; 4070 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4071 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4072 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4073 case Intrinsic::returnaddress: 4074 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4075 getValue(I.getArgOperand(0)))); 4076 return nullptr; 4077 case Intrinsic::frameaddress: 4078 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4079 getValue(I.getArgOperand(0)))); 4080 return nullptr; 4081 case Intrinsic::read_register: { 4082 Value *Reg = I.getArgOperand(0); 4083 SDValue Chain = getRoot(); 4084 SDValue RegName = 4085 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4086 EVT VT = TLI.getValueType(I.getType()); 4087 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4088 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4089 setValue(&I, Res); 4090 DAG.setRoot(Res.getValue(1)); 4091 return nullptr; 4092 } 4093 case Intrinsic::write_register: { 4094 Value *Reg = I.getArgOperand(0); 4095 Value *RegValue = I.getArgOperand(1); 4096 SDValue Chain = getRoot(); 4097 SDValue RegName = 4098 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4099 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4100 RegName, getValue(RegValue))); 4101 return nullptr; 4102 } 4103 case Intrinsic::setjmp: 4104 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4105 case Intrinsic::longjmp: 4106 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4107 case Intrinsic::memcpy: { 4108 // FIXME: this definition of "user defined address space" is x86-specific 4109 // Assert for address < 256 since we support only user defined address 4110 // spaces. 4111 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4112 < 256 && 4113 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4114 < 256 && 4115 "Unknown address space"); 4116 SDValue Op1 = getValue(I.getArgOperand(0)); 4117 SDValue Op2 = getValue(I.getArgOperand(1)); 4118 SDValue Op3 = getValue(I.getArgOperand(2)); 4119 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4120 if (!Align) 4121 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4122 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4123 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4124 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4125 false, isTC, 4126 MachinePointerInfo(I.getArgOperand(0)), 4127 MachinePointerInfo(I.getArgOperand(1))); 4128 updateDAGForMaybeTailCall(MC); 4129 return nullptr; 4130 } 4131 case Intrinsic::memset: { 4132 // FIXME: this definition of "user defined address space" is x86-specific 4133 // Assert for address < 256 since we support only user defined address 4134 // spaces. 4135 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4136 < 256 && 4137 "Unknown address space"); 4138 SDValue Op1 = getValue(I.getArgOperand(0)); 4139 SDValue Op2 = getValue(I.getArgOperand(1)); 4140 SDValue Op3 = getValue(I.getArgOperand(2)); 4141 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4142 if (!Align) 4143 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4144 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4145 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4146 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4147 isTC, MachinePointerInfo(I.getArgOperand(0))); 4148 updateDAGForMaybeTailCall(MS); 4149 return nullptr; 4150 } 4151 case Intrinsic::memmove: { 4152 // FIXME: this definition of "user defined address space" is x86-specific 4153 // Assert for address < 256 since we support only user defined address 4154 // spaces. 4155 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4156 < 256 && 4157 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4158 < 256 && 4159 "Unknown address space"); 4160 SDValue Op1 = getValue(I.getArgOperand(0)); 4161 SDValue Op2 = getValue(I.getArgOperand(1)); 4162 SDValue Op3 = getValue(I.getArgOperand(2)); 4163 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4164 if (!Align) 4165 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4166 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4167 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4168 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4169 isTC, MachinePointerInfo(I.getArgOperand(0)), 4170 MachinePointerInfo(I.getArgOperand(1))); 4171 updateDAGForMaybeTailCall(MM); 4172 return nullptr; 4173 } 4174 case Intrinsic::dbg_declare: { 4175 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4176 DILocalVariable *Variable = DI.getVariable(); 4177 DIExpression *Expression = DI.getExpression(); 4178 const Value *Address = DI.getAddress(); 4179 assert(Variable && "Missing variable"); 4180 if (!Address) { 4181 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4182 return nullptr; 4183 } 4184 4185 // Check if address has undef value. 4186 if (isa<UndefValue>(Address) || 4187 (Address->use_empty() && !isa<Argument>(Address))) { 4188 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4189 return nullptr; 4190 } 4191 4192 SDValue &N = NodeMap[Address]; 4193 if (!N.getNode() && isa<Argument>(Address)) 4194 // Check unused arguments map. 4195 N = UnusedArgNodeMap[Address]; 4196 SDDbgValue *SDV; 4197 if (N.getNode()) { 4198 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4199 Address = BCI->getOperand(0); 4200 // Parameters are handled specially. 4201 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4202 isa<Argument>(Address); 4203 4204 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4205 4206 if (isParameter && !AI) { 4207 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4208 if (FINode) 4209 // Byval parameter. We have a frame index at this point. 4210 SDV = DAG.getFrameIndexDbgValue( 4211 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4212 else { 4213 // Address is an argument, so try to emit its dbg value using 4214 // virtual register info from the FuncInfo.ValueMap. 4215 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4216 N); 4217 return nullptr; 4218 } 4219 } else if (AI) 4220 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4221 true, 0, dl, SDNodeOrder); 4222 else { 4223 // Can't do anything with other non-AI cases yet. 4224 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4225 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4226 DEBUG(Address->dump()); 4227 return nullptr; 4228 } 4229 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4230 } else { 4231 // If Address is an argument then try to emit its dbg value using 4232 // virtual register info from the FuncInfo.ValueMap. 4233 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4234 N)) { 4235 // If variable is pinned by a alloca in dominating bb then 4236 // use StaticAllocaMap. 4237 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4238 if (AI->getParent() != DI.getParent()) { 4239 DenseMap<const AllocaInst*, int>::iterator SI = 4240 FuncInfo.StaticAllocaMap.find(AI); 4241 if (SI != FuncInfo.StaticAllocaMap.end()) { 4242 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4243 0, dl, SDNodeOrder); 4244 DAG.AddDbgValue(SDV, nullptr, false); 4245 return nullptr; 4246 } 4247 } 4248 } 4249 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4250 } 4251 } 4252 return nullptr; 4253 } 4254 case Intrinsic::dbg_value: { 4255 const DbgValueInst &DI = cast<DbgValueInst>(I); 4256 assert(DI.getVariable() && "Missing variable"); 4257 4258 DILocalVariable *Variable = DI.getVariable(); 4259 DIExpression *Expression = DI.getExpression(); 4260 uint64_t Offset = DI.getOffset(); 4261 const Value *V = DI.getValue(); 4262 if (!V) 4263 return nullptr; 4264 4265 SDDbgValue *SDV; 4266 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4267 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4268 SDNodeOrder); 4269 DAG.AddDbgValue(SDV, nullptr, false); 4270 } else { 4271 // Do not use getValue() in here; we don't want to generate code at 4272 // this point if it hasn't been done yet. 4273 SDValue N = NodeMap[V]; 4274 if (!N.getNode() && isa<Argument>(V)) 4275 // Check unused arguments map. 4276 N = UnusedArgNodeMap[V]; 4277 if (N.getNode()) { 4278 // A dbg.value for an alloca is always indirect. 4279 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4280 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4281 IsIndirect, N)) { 4282 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4283 IsIndirect, Offset, dl, SDNodeOrder); 4284 DAG.AddDbgValue(SDV, N.getNode(), false); 4285 } 4286 } else if (!V->use_empty() ) { 4287 // Do not call getValue(V) yet, as we don't want to generate code. 4288 // Remember it for later. 4289 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4290 DanglingDebugInfoMap[V] = DDI; 4291 } else { 4292 // We may expand this to cover more cases. One case where we have no 4293 // data available is an unreferenced parameter. 4294 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4295 } 4296 } 4297 4298 // Build a debug info table entry. 4299 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4300 V = BCI->getOperand(0); 4301 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4302 // Don't handle byval struct arguments or VLAs, for example. 4303 if (!AI) { 4304 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4305 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4306 return nullptr; 4307 } 4308 DenseMap<const AllocaInst*, int>::iterator SI = 4309 FuncInfo.StaticAllocaMap.find(AI); 4310 if (SI == FuncInfo.StaticAllocaMap.end()) 4311 return nullptr; // VLAs. 4312 return nullptr; 4313 } 4314 4315 case Intrinsic::eh_typeid_for: { 4316 // Find the type id for the given typeinfo. 4317 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4318 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4319 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4320 setValue(&I, Res); 4321 return nullptr; 4322 } 4323 4324 case Intrinsic::eh_return_i32: 4325 case Intrinsic::eh_return_i64: 4326 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4327 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4328 MVT::Other, 4329 getControlRoot(), 4330 getValue(I.getArgOperand(0)), 4331 getValue(I.getArgOperand(1)))); 4332 return nullptr; 4333 case Intrinsic::eh_unwind_init: 4334 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4335 return nullptr; 4336 case Intrinsic::eh_dwarf_cfa: { 4337 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4338 TLI.getPointerTy()); 4339 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4340 CfaArg.getValueType(), 4341 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4342 CfaArg.getValueType()), 4343 CfaArg); 4344 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4345 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4346 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4347 FA, Offset)); 4348 return nullptr; 4349 } 4350 case Intrinsic::eh_sjlj_callsite: { 4351 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4352 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4353 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4354 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4355 4356 MMI.setCurrentCallSite(CI->getZExtValue()); 4357 return nullptr; 4358 } 4359 case Intrinsic::eh_sjlj_functioncontext: { 4360 // Get and store the index of the function context. 4361 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4362 AllocaInst *FnCtx = 4363 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4364 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4365 MFI->setFunctionContextIndex(FI); 4366 return nullptr; 4367 } 4368 case Intrinsic::eh_sjlj_setjmp: { 4369 SDValue Ops[2]; 4370 Ops[0] = getRoot(); 4371 Ops[1] = getValue(I.getArgOperand(0)); 4372 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4373 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4374 setValue(&I, Op.getValue(0)); 4375 DAG.setRoot(Op.getValue(1)); 4376 return nullptr; 4377 } 4378 case Intrinsic::eh_sjlj_longjmp: { 4379 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4380 getRoot(), getValue(I.getArgOperand(0)))); 4381 return nullptr; 4382 } 4383 4384 case Intrinsic::masked_gather: 4385 visitMaskedGather(I); 4386 return nullptr; 4387 case Intrinsic::masked_load: 4388 visitMaskedLoad(I); 4389 return nullptr; 4390 case Intrinsic::masked_scatter: 4391 visitMaskedScatter(I); 4392 return nullptr; 4393 case Intrinsic::masked_store: 4394 visitMaskedStore(I); 4395 return nullptr; 4396 case Intrinsic::x86_mmx_pslli_w: 4397 case Intrinsic::x86_mmx_pslli_d: 4398 case Intrinsic::x86_mmx_pslli_q: 4399 case Intrinsic::x86_mmx_psrli_w: 4400 case Intrinsic::x86_mmx_psrli_d: 4401 case Intrinsic::x86_mmx_psrli_q: 4402 case Intrinsic::x86_mmx_psrai_w: 4403 case Intrinsic::x86_mmx_psrai_d: { 4404 SDValue ShAmt = getValue(I.getArgOperand(1)); 4405 if (isa<ConstantSDNode>(ShAmt)) { 4406 visitTargetIntrinsic(I, Intrinsic); 4407 return nullptr; 4408 } 4409 unsigned NewIntrinsic = 0; 4410 EVT ShAmtVT = MVT::v2i32; 4411 switch (Intrinsic) { 4412 case Intrinsic::x86_mmx_pslli_w: 4413 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4414 break; 4415 case Intrinsic::x86_mmx_pslli_d: 4416 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4417 break; 4418 case Intrinsic::x86_mmx_pslli_q: 4419 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4420 break; 4421 case Intrinsic::x86_mmx_psrli_w: 4422 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4423 break; 4424 case Intrinsic::x86_mmx_psrli_d: 4425 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4426 break; 4427 case Intrinsic::x86_mmx_psrli_q: 4428 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4429 break; 4430 case Intrinsic::x86_mmx_psrai_w: 4431 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4432 break; 4433 case Intrinsic::x86_mmx_psrai_d: 4434 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4435 break; 4436 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4437 } 4438 4439 // The vector shift intrinsics with scalars uses 32b shift amounts but 4440 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4441 // to be zero. 4442 // We must do this early because v2i32 is not a legal type. 4443 SDValue ShOps[2]; 4444 ShOps[0] = ShAmt; 4445 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4446 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4447 EVT DestVT = TLI.getValueType(I.getType()); 4448 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4449 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4450 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4451 getValue(I.getArgOperand(0)), ShAmt); 4452 setValue(&I, Res); 4453 return nullptr; 4454 } 4455 case Intrinsic::convertff: 4456 case Intrinsic::convertfsi: 4457 case Intrinsic::convertfui: 4458 case Intrinsic::convertsif: 4459 case Intrinsic::convertuif: 4460 case Intrinsic::convertss: 4461 case Intrinsic::convertsu: 4462 case Intrinsic::convertus: 4463 case Intrinsic::convertuu: { 4464 ISD::CvtCode Code = ISD::CVT_INVALID; 4465 switch (Intrinsic) { 4466 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4467 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4468 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4469 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4470 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4471 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4472 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4473 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4474 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4475 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4476 } 4477 EVT DestVT = TLI.getValueType(I.getType()); 4478 const Value *Op1 = I.getArgOperand(0); 4479 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4480 DAG.getValueType(DestVT), 4481 DAG.getValueType(getValue(Op1).getValueType()), 4482 getValue(I.getArgOperand(1)), 4483 getValue(I.getArgOperand(2)), 4484 Code); 4485 setValue(&I, Res); 4486 return nullptr; 4487 } 4488 case Intrinsic::powi: 4489 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4490 getValue(I.getArgOperand(1)), DAG)); 4491 return nullptr; 4492 case Intrinsic::log: 4493 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4494 return nullptr; 4495 case Intrinsic::log2: 4496 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4497 return nullptr; 4498 case Intrinsic::log10: 4499 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4500 return nullptr; 4501 case Intrinsic::exp: 4502 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4503 return nullptr; 4504 case Intrinsic::exp2: 4505 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4506 return nullptr; 4507 case Intrinsic::pow: 4508 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4509 getValue(I.getArgOperand(1)), DAG, TLI)); 4510 return nullptr; 4511 case Intrinsic::sqrt: 4512 case Intrinsic::fabs: 4513 case Intrinsic::sin: 4514 case Intrinsic::cos: 4515 case Intrinsic::floor: 4516 case Intrinsic::ceil: 4517 case Intrinsic::trunc: 4518 case Intrinsic::rint: 4519 case Intrinsic::nearbyint: 4520 case Intrinsic::round: { 4521 unsigned Opcode; 4522 switch (Intrinsic) { 4523 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4524 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4525 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4526 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4527 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4528 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4529 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4530 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4531 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4532 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4533 case Intrinsic::round: Opcode = ISD::FROUND; break; 4534 } 4535 4536 setValue(&I, DAG.getNode(Opcode, sdl, 4537 getValue(I.getArgOperand(0)).getValueType(), 4538 getValue(I.getArgOperand(0)))); 4539 return nullptr; 4540 } 4541 case Intrinsic::minnum: 4542 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4543 getValue(I.getArgOperand(0)).getValueType(), 4544 getValue(I.getArgOperand(0)), 4545 getValue(I.getArgOperand(1)))); 4546 return nullptr; 4547 case Intrinsic::maxnum: 4548 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4549 getValue(I.getArgOperand(0)).getValueType(), 4550 getValue(I.getArgOperand(0)), 4551 getValue(I.getArgOperand(1)))); 4552 return nullptr; 4553 case Intrinsic::copysign: 4554 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4555 getValue(I.getArgOperand(0)).getValueType(), 4556 getValue(I.getArgOperand(0)), 4557 getValue(I.getArgOperand(1)))); 4558 return nullptr; 4559 case Intrinsic::fma: 4560 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4561 getValue(I.getArgOperand(0)).getValueType(), 4562 getValue(I.getArgOperand(0)), 4563 getValue(I.getArgOperand(1)), 4564 getValue(I.getArgOperand(2)))); 4565 return nullptr; 4566 case Intrinsic::fmuladd: { 4567 EVT VT = TLI.getValueType(I.getType()); 4568 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4569 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4570 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4571 getValue(I.getArgOperand(0)).getValueType(), 4572 getValue(I.getArgOperand(0)), 4573 getValue(I.getArgOperand(1)), 4574 getValue(I.getArgOperand(2)))); 4575 } else { 4576 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4577 getValue(I.getArgOperand(0)).getValueType(), 4578 getValue(I.getArgOperand(0)), 4579 getValue(I.getArgOperand(1))); 4580 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4581 getValue(I.getArgOperand(0)).getValueType(), 4582 Mul, 4583 getValue(I.getArgOperand(2))); 4584 setValue(&I, Add); 4585 } 4586 return nullptr; 4587 } 4588 case Intrinsic::convert_to_fp16: 4589 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4590 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4591 getValue(I.getArgOperand(0)), 4592 DAG.getTargetConstant(0, sdl, 4593 MVT::i32)))); 4594 return nullptr; 4595 case Intrinsic::convert_from_fp16: 4596 setValue(&I, 4597 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4598 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4599 getValue(I.getArgOperand(0))))); 4600 return nullptr; 4601 case Intrinsic::pcmarker: { 4602 SDValue Tmp = getValue(I.getArgOperand(0)); 4603 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4604 return nullptr; 4605 } 4606 case Intrinsic::readcyclecounter: { 4607 SDValue Op = getRoot(); 4608 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4609 DAG.getVTList(MVT::i64, MVT::Other), Op); 4610 setValue(&I, Res); 4611 DAG.setRoot(Res.getValue(1)); 4612 return nullptr; 4613 } 4614 case Intrinsic::bswap: 4615 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4616 getValue(I.getArgOperand(0)).getValueType(), 4617 getValue(I.getArgOperand(0)))); 4618 return nullptr; 4619 case Intrinsic::cttz: { 4620 SDValue Arg = getValue(I.getArgOperand(0)); 4621 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4622 EVT Ty = Arg.getValueType(); 4623 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4624 sdl, Ty, Arg)); 4625 return nullptr; 4626 } 4627 case Intrinsic::ctlz: { 4628 SDValue Arg = getValue(I.getArgOperand(0)); 4629 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4630 EVT Ty = Arg.getValueType(); 4631 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4632 sdl, Ty, Arg)); 4633 return nullptr; 4634 } 4635 case Intrinsic::ctpop: { 4636 SDValue Arg = getValue(I.getArgOperand(0)); 4637 EVT Ty = Arg.getValueType(); 4638 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4639 return nullptr; 4640 } 4641 case Intrinsic::stacksave: { 4642 SDValue Op = getRoot(); 4643 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4644 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4645 setValue(&I, Res); 4646 DAG.setRoot(Res.getValue(1)); 4647 return nullptr; 4648 } 4649 case Intrinsic::stackrestore: { 4650 Res = getValue(I.getArgOperand(0)); 4651 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4652 return nullptr; 4653 } 4654 case Intrinsic::stackprotector: { 4655 // Emit code into the DAG to store the stack guard onto the stack. 4656 MachineFunction &MF = DAG.getMachineFunction(); 4657 MachineFrameInfo *MFI = MF.getFrameInfo(); 4658 EVT PtrTy = TLI.getPointerTy(); 4659 SDValue Src, Chain = getRoot(); 4660 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4661 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4662 4663 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4664 // global variable __stack_chk_guard. 4665 if (!GV) 4666 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4667 if (BC->getOpcode() == Instruction::BitCast) 4668 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4669 4670 if (GV && TLI.useLoadStackGuardNode()) { 4671 // Emit a LOAD_STACK_GUARD node. 4672 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4673 sdl, PtrTy, Chain); 4674 MachinePointerInfo MPInfo(GV); 4675 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4676 unsigned Flags = MachineMemOperand::MOLoad | 4677 MachineMemOperand::MOInvariant; 4678 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4679 PtrTy.getSizeInBits() / 8, 4680 DAG.getEVTAlignment(PtrTy)); 4681 Node->setMemRefs(MemRefs, MemRefs + 1); 4682 4683 // Copy the guard value to a virtual register so that it can be 4684 // retrieved in the epilogue. 4685 Src = SDValue(Node, 0); 4686 const TargetRegisterClass *RC = 4687 TLI.getRegClassFor(Src.getSimpleValueType()); 4688 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4689 4690 SPDescriptor.setGuardReg(Reg); 4691 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4692 } else { 4693 Src = getValue(I.getArgOperand(0)); // The guard's value. 4694 } 4695 4696 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4697 4698 int FI = FuncInfo.StaticAllocaMap[Slot]; 4699 MFI->setStackProtectorIndex(FI); 4700 4701 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4702 4703 // Store the stack protector onto the stack. 4704 Res = DAG.getStore(Chain, sdl, Src, FIN, 4705 MachinePointerInfo::getFixedStack(FI), 4706 true, false, 0); 4707 setValue(&I, Res); 4708 DAG.setRoot(Res); 4709 return nullptr; 4710 } 4711 case Intrinsic::objectsize: { 4712 // If we don't know by now, we're never going to know. 4713 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4714 4715 assert(CI && "Non-constant type in __builtin_object_size?"); 4716 4717 SDValue Arg = getValue(I.getCalledValue()); 4718 EVT Ty = Arg.getValueType(); 4719 4720 if (CI->isZero()) 4721 Res = DAG.getConstant(-1ULL, sdl, Ty); 4722 else 4723 Res = DAG.getConstant(0, sdl, Ty); 4724 4725 setValue(&I, Res); 4726 return nullptr; 4727 } 4728 case Intrinsic::annotation: 4729 case Intrinsic::ptr_annotation: 4730 // Drop the intrinsic, but forward the value 4731 setValue(&I, getValue(I.getOperand(0))); 4732 return nullptr; 4733 case Intrinsic::assume: 4734 case Intrinsic::var_annotation: 4735 // Discard annotate attributes and assumptions 4736 return nullptr; 4737 4738 case Intrinsic::init_trampoline: { 4739 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4740 4741 SDValue Ops[6]; 4742 Ops[0] = getRoot(); 4743 Ops[1] = getValue(I.getArgOperand(0)); 4744 Ops[2] = getValue(I.getArgOperand(1)); 4745 Ops[3] = getValue(I.getArgOperand(2)); 4746 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4747 Ops[5] = DAG.getSrcValue(F); 4748 4749 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4750 4751 DAG.setRoot(Res); 4752 return nullptr; 4753 } 4754 case Intrinsic::adjust_trampoline: { 4755 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4756 TLI.getPointerTy(), 4757 getValue(I.getArgOperand(0)))); 4758 return nullptr; 4759 } 4760 case Intrinsic::gcroot: 4761 if (GFI) { 4762 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4763 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4764 4765 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4766 GFI->addStackRoot(FI->getIndex(), TypeMap); 4767 } 4768 return nullptr; 4769 case Intrinsic::gcread: 4770 case Intrinsic::gcwrite: 4771 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4772 case Intrinsic::flt_rounds: 4773 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4774 return nullptr; 4775 4776 case Intrinsic::expect: { 4777 // Just replace __builtin_expect(exp, c) with EXP. 4778 setValue(&I, getValue(I.getArgOperand(0))); 4779 return nullptr; 4780 } 4781 4782 case Intrinsic::debugtrap: 4783 case Intrinsic::trap: { 4784 StringRef TrapFuncName = 4785 I.getAttributes() 4786 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4787 .getValueAsString(); 4788 if (TrapFuncName.empty()) { 4789 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4790 ISD::TRAP : ISD::DEBUGTRAP; 4791 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4792 return nullptr; 4793 } 4794 TargetLowering::ArgListTy Args; 4795 4796 TargetLowering::CallLoweringInfo CLI(DAG); 4797 CLI.setDebugLoc(sdl).setChain(getRoot()) 4798 .setCallee(CallingConv::C, I.getType(), 4799 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4800 std::move(Args), 0); 4801 4802 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4803 DAG.setRoot(Result.second); 4804 return nullptr; 4805 } 4806 4807 case Intrinsic::uadd_with_overflow: 4808 case Intrinsic::sadd_with_overflow: 4809 case Intrinsic::usub_with_overflow: 4810 case Intrinsic::ssub_with_overflow: 4811 case Intrinsic::umul_with_overflow: 4812 case Intrinsic::smul_with_overflow: { 4813 ISD::NodeType Op; 4814 switch (Intrinsic) { 4815 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4816 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4817 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4818 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4819 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4820 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4821 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4822 } 4823 SDValue Op1 = getValue(I.getArgOperand(0)); 4824 SDValue Op2 = getValue(I.getArgOperand(1)); 4825 4826 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4827 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4828 return nullptr; 4829 } 4830 case Intrinsic::prefetch: { 4831 SDValue Ops[5]; 4832 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4833 Ops[0] = getRoot(); 4834 Ops[1] = getValue(I.getArgOperand(0)); 4835 Ops[2] = getValue(I.getArgOperand(1)); 4836 Ops[3] = getValue(I.getArgOperand(2)); 4837 Ops[4] = getValue(I.getArgOperand(3)); 4838 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4839 DAG.getVTList(MVT::Other), Ops, 4840 EVT::getIntegerVT(*Context, 8), 4841 MachinePointerInfo(I.getArgOperand(0)), 4842 0, /* align */ 4843 false, /* volatile */ 4844 rw==0, /* read */ 4845 rw==1)); /* write */ 4846 return nullptr; 4847 } 4848 case Intrinsic::lifetime_start: 4849 case Intrinsic::lifetime_end: { 4850 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4851 // Stack coloring is not enabled in O0, discard region information. 4852 if (TM.getOptLevel() == CodeGenOpt::None) 4853 return nullptr; 4854 4855 SmallVector<Value *, 4> Allocas; 4856 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4857 4858 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4859 E = Allocas.end(); Object != E; ++Object) { 4860 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4861 4862 // Could not find an Alloca. 4863 if (!LifetimeObject) 4864 continue; 4865 4866 // First check that the Alloca is static, otherwise it won't have a 4867 // valid frame index. 4868 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4869 if (SI == FuncInfo.StaticAllocaMap.end()) 4870 return nullptr; 4871 4872 int FI = SI->second; 4873 4874 SDValue Ops[2]; 4875 Ops[0] = getRoot(); 4876 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4877 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4878 4879 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4880 DAG.setRoot(Res); 4881 } 4882 return nullptr; 4883 } 4884 case Intrinsic::invariant_start: 4885 // Discard region information. 4886 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4887 return nullptr; 4888 case Intrinsic::invariant_end: 4889 // Discard region information. 4890 return nullptr; 4891 case Intrinsic::stackprotectorcheck: { 4892 // Do not actually emit anything for this basic block. Instead we initialize 4893 // the stack protector descriptor and export the guard variable so we can 4894 // access it in FinishBasicBlock. 4895 const BasicBlock *BB = I.getParent(); 4896 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4897 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4898 4899 // Flush our exports since we are going to process a terminator. 4900 (void)getControlRoot(); 4901 return nullptr; 4902 } 4903 case Intrinsic::clear_cache: 4904 return TLI.getClearCacheBuiltinName(); 4905 case Intrinsic::eh_actions: 4906 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4907 return nullptr; 4908 case Intrinsic::donothing: 4909 // ignore 4910 return nullptr; 4911 case Intrinsic::experimental_stackmap: { 4912 visitStackmap(I); 4913 return nullptr; 4914 } 4915 case Intrinsic::experimental_patchpoint_void: 4916 case Intrinsic::experimental_patchpoint_i64: { 4917 visitPatchpoint(&I); 4918 return nullptr; 4919 } 4920 case Intrinsic::experimental_gc_statepoint: { 4921 visitStatepoint(I); 4922 return nullptr; 4923 } 4924 case Intrinsic::experimental_gc_result_int: 4925 case Intrinsic::experimental_gc_result_float: 4926 case Intrinsic::experimental_gc_result_ptr: 4927 case Intrinsic::experimental_gc_result: { 4928 visitGCResult(I); 4929 return nullptr; 4930 } 4931 case Intrinsic::experimental_gc_relocate: { 4932 visitGCRelocate(I); 4933 return nullptr; 4934 } 4935 case Intrinsic::instrprof_increment: 4936 llvm_unreachable("instrprof failed to lower an increment"); 4937 4938 case Intrinsic::frameescape: { 4939 MachineFunction &MF = DAG.getMachineFunction(); 4940 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4941 4942 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4943 // is the same on all targets. 4944 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4945 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4946 if (isa<ConstantPointerNull>(Arg)) 4947 continue; // Skip null pointers. They represent a hole in index space. 4948 AllocaInst *Slot = cast<AllocaInst>(Arg); 4949 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4950 "can only escape static allocas"); 4951 int FI = FuncInfo.StaticAllocaMap[Slot]; 4952 MCSymbol *FrameAllocSym = 4953 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4954 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4956 TII->get(TargetOpcode::FRAME_ALLOC)) 4957 .addSym(FrameAllocSym) 4958 .addFrameIndex(FI); 4959 } 4960 4961 return nullptr; 4962 } 4963 4964 case Intrinsic::framerecover: { 4965 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4966 MachineFunction &MF = DAG.getMachineFunction(); 4967 MVT PtrVT = TLI.getPointerTy(0); 4968 4969 // Get the symbol that defines the frame offset. 4970 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4971 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4972 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4973 MCSymbol *FrameAllocSym = 4974 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4975 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4976 4977 // Create a MCSymbol for the label to avoid any target lowering 4978 // that would make this PC relative. 4979 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 4980 SDValue OffsetVal = 4981 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4982 4983 // Add the offset to the FP. 4984 Value *FP = I.getArgOperand(1); 4985 SDValue FPVal = getValue(FP); 4986 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4987 setValue(&I, Add); 4988 4989 return nullptr; 4990 } 4991 case Intrinsic::eh_begincatch: 4992 case Intrinsic::eh_endcatch: 4993 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4994 case Intrinsic::eh_exceptioncode: { 4995 unsigned Reg = TLI.getExceptionPointerRegister(); 4996 assert(Reg && "cannot get exception code on this platform"); 4997 MVT PtrVT = TLI.getPointerTy(); 4998 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4999 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5000 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5001 SDValue N = 5002 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5003 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5004 setValue(&I, N); 5005 return nullptr; 5006 } 5007 } 5008 } 5009 5010 std::pair<SDValue, SDValue> 5011 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5012 MachineBasicBlock *LandingPad) { 5013 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5014 MCSymbol *BeginLabel = nullptr; 5015 5016 if (LandingPad) { 5017 // Insert a label before the invoke call to mark the try range. This can be 5018 // used to detect deletion of the invoke via the MachineModuleInfo. 5019 BeginLabel = MMI.getContext().createTempSymbol(); 5020 5021 // For SjLj, keep track of which landing pads go with which invokes 5022 // so as to maintain the ordering of pads in the LSDA. 5023 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5024 if (CallSiteIndex) { 5025 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5026 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5027 5028 // Now that the call site is handled, stop tracking it. 5029 MMI.setCurrentCallSite(0); 5030 } 5031 5032 // Both PendingLoads and PendingExports must be flushed here; 5033 // this call might not return. 5034 (void)getRoot(); 5035 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5036 5037 CLI.setChain(getRoot()); 5038 } 5039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5040 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5041 5042 assert((CLI.IsTailCall || Result.second.getNode()) && 5043 "Non-null chain expected with non-tail call!"); 5044 assert((Result.second.getNode() || !Result.first.getNode()) && 5045 "Null value expected with tail call!"); 5046 5047 if (!Result.second.getNode()) { 5048 // As a special case, a null chain means that a tail call has been emitted 5049 // and the DAG root is already updated. 5050 HasTailCall = true; 5051 5052 // Since there's no actual continuation from this block, nothing can be 5053 // relying on us setting vregs for them. 5054 PendingExports.clear(); 5055 } else { 5056 DAG.setRoot(Result.second); 5057 } 5058 5059 if (LandingPad) { 5060 // Insert a label at the end of the invoke call to mark the try range. This 5061 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5062 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5063 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5064 5065 // Inform MachineModuleInfo of range. 5066 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5067 } 5068 5069 return Result; 5070 } 5071 5072 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5073 bool isTailCall, 5074 MachineBasicBlock *LandingPad) { 5075 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5076 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5077 Type *RetTy = FTy->getReturnType(); 5078 5079 TargetLowering::ArgListTy Args; 5080 TargetLowering::ArgListEntry Entry; 5081 Args.reserve(CS.arg_size()); 5082 5083 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5084 i != e; ++i) { 5085 const Value *V = *i; 5086 5087 // Skip empty types 5088 if (V->getType()->isEmptyTy()) 5089 continue; 5090 5091 SDValue ArgNode = getValue(V); 5092 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5093 5094 // Skip the first return-type Attribute to get to params. 5095 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5096 Args.push_back(Entry); 5097 5098 // If we have an explicit sret argument that is an Instruction, (i.e., it 5099 // might point to function-local memory), we can't meaningfully tail-call. 5100 if (Entry.isSRet && isa<Instruction>(V)) 5101 isTailCall = false; 5102 } 5103 5104 // Check if target-independent constraints permit a tail call here. 5105 // Target-dependent constraints are checked within TLI->LowerCallTo. 5106 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5107 isTailCall = false; 5108 5109 TargetLowering::CallLoweringInfo CLI(DAG); 5110 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5111 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5112 .setTailCall(isTailCall); 5113 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5114 5115 if (Result.first.getNode()) 5116 setValue(CS.getInstruction(), Result.first); 5117 } 5118 5119 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5120 /// value is equal or not-equal to zero. 5121 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5122 for (const User *U : V->users()) { 5123 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5124 if (IC->isEquality()) 5125 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5126 if (C->isNullValue()) 5127 continue; 5128 // Unknown instruction. 5129 return false; 5130 } 5131 return true; 5132 } 5133 5134 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5135 Type *LoadTy, 5136 SelectionDAGBuilder &Builder) { 5137 5138 // Check to see if this load can be trivially constant folded, e.g. if the 5139 // input is from a string literal. 5140 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5141 // Cast pointer to the type we really want to load. 5142 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5143 PointerType::getUnqual(LoadTy)); 5144 5145 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5146 const_cast<Constant *>(LoadInput), *Builder.DL)) 5147 return Builder.getValue(LoadCst); 5148 } 5149 5150 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5151 // still constant memory, the input chain can be the entry node. 5152 SDValue Root; 5153 bool ConstantMemory = false; 5154 5155 // Do not serialize (non-volatile) loads of constant memory with anything. 5156 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5157 Root = Builder.DAG.getEntryNode(); 5158 ConstantMemory = true; 5159 } else { 5160 // Do not serialize non-volatile loads against each other. 5161 Root = Builder.DAG.getRoot(); 5162 } 5163 5164 SDValue Ptr = Builder.getValue(PtrVal); 5165 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5166 Ptr, MachinePointerInfo(PtrVal), 5167 false /*volatile*/, 5168 false /*nontemporal*/, 5169 false /*isinvariant*/, 1 /* align=1 */); 5170 5171 if (!ConstantMemory) 5172 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5173 return LoadVal; 5174 } 5175 5176 /// processIntegerCallValue - Record the value for an instruction that 5177 /// produces an integer result, converting the type where necessary. 5178 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5179 SDValue Value, 5180 bool IsSigned) { 5181 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5182 if (IsSigned) 5183 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5184 else 5185 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5186 setValue(&I, Value); 5187 } 5188 5189 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5190 /// If so, return true and lower it, otherwise return false and it will be 5191 /// lowered like a normal call. 5192 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5193 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5194 if (I.getNumArgOperands() != 3) 5195 return false; 5196 5197 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5198 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5199 !I.getArgOperand(2)->getType()->isIntegerTy() || 5200 !I.getType()->isIntegerTy()) 5201 return false; 5202 5203 const Value *Size = I.getArgOperand(2); 5204 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5205 if (CSize && CSize->getZExtValue() == 0) { 5206 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5207 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5208 return true; 5209 } 5210 5211 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5212 std::pair<SDValue, SDValue> Res = 5213 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5214 getValue(LHS), getValue(RHS), getValue(Size), 5215 MachinePointerInfo(LHS), 5216 MachinePointerInfo(RHS)); 5217 if (Res.first.getNode()) { 5218 processIntegerCallValue(I, Res.first, true); 5219 PendingLoads.push_back(Res.second); 5220 return true; 5221 } 5222 5223 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5224 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5225 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5226 bool ActuallyDoIt = true; 5227 MVT LoadVT; 5228 Type *LoadTy; 5229 switch (CSize->getZExtValue()) { 5230 default: 5231 LoadVT = MVT::Other; 5232 LoadTy = nullptr; 5233 ActuallyDoIt = false; 5234 break; 5235 case 2: 5236 LoadVT = MVT::i16; 5237 LoadTy = Type::getInt16Ty(CSize->getContext()); 5238 break; 5239 case 4: 5240 LoadVT = MVT::i32; 5241 LoadTy = Type::getInt32Ty(CSize->getContext()); 5242 break; 5243 case 8: 5244 LoadVT = MVT::i64; 5245 LoadTy = Type::getInt64Ty(CSize->getContext()); 5246 break; 5247 /* 5248 case 16: 5249 LoadVT = MVT::v4i32; 5250 LoadTy = Type::getInt32Ty(CSize->getContext()); 5251 LoadTy = VectorType::get(LoadTy, 4); 5252 break; 5253 */ 5254 } 5255 5256 // This turns into unaligned loads. We only do this if the target natively 5257 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5258 // we'll only produce a small number of byte loads. 5259 5260 // Require that we can find a legal MVT, and only do this if the target 5261 // supports unaligned loads of that type. Expanding into byte loads would 5262 // bloat the code. 5263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5264 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5265 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5266 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5267 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5268 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5269 // TODO: Check alignment of src and dest ptrs. 5270 if (!TLI.isTypeLegal(LoadVT) || 5271 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5272 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5273 ActuallyDoIt = false; 5274 } 5275 5276 if (ActuallyDoIt) { 5277 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5278 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5279 5280 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5281 ISD::SETNE); 5282 processIntegerCallValue(I, Res, false); 5283 return true; 5284 } 5285 } 5286 5287 5288 return false; 5289 } 5290 5291 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5292 /// form. If so, return true and lower it, otherwise return false and it 5293 /// will be lowered like a normal call. 5294 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5295 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5296 if (I.getNumArgOperands() != 3) 5297 return false; 5298 5299 const Value *Src = I.getArgOperand(0); 5300 const Value *Char = I.getArgOperand(1); 5301 const Value *Length = I.getArgOperand(2); 5302 if (!Src->getType()->isPointerTy() || 5303 !Char->getType()->isIntegerTy() || 5304 !Length->getType()->isIntegerTy() || 5305 !I.getType()->isPointerTy()) 5306 return false; 5307 5308 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5309 std::pair<SDValue, SDValue> Res = 5310 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5311 getValue(Src), getValue(Char), getValue(Length), 5312 MachinePointerInfo(Src)); 5313 if (Res.first.getNode()) { 5314 setValue(&I, Res.first); 5315 PendingLoads.push_back(Res.second); 5316 return true; 5317 } 5318 5319 return false; 5320 } 5321 5322 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5323 /// optimized form. If so, return true and lower it, otherwise return false 5324 /// and it will be lowered like a normal call. 5325 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5326 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5327 if (I.getNumArgOperands() != 2) 5328 return false; 5329 5330 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5331 if (!Arg0->getType()->isPointerTy() || 5332 !Arg1->getType()->isPointerTy() || 5333 !I.getType()->isPointerTy()) 5334 return false; 5335 5336 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5337 std::pair<SDValue, SDValue> Res = 5338 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5339 getValue(Arg0), getValue(Arg1), 5340 MachinePointerInfo(Arg0), 5341 MachinePointerInfo(Arg1), isStpcpy); 5342 if (Res.first.getNode()) { 5343 setValue(&I, Res.first); 5344 DAG.setRoot(Res.second); 5345 return true; 5346 } 5347 5348 return false; 5349 } 5350 5351 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5352 /// If so, return true and lower it, otherwise return false and it will be 5353 /// lowered like a normal call. 5354 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5355 // Verify that the prototype makes sense. int strcmp(void*,void*) 5356 if (I.getNumArgOperands() != 2) 5357 return false; 5358 5359 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5360 if (!Arg0->getType()->isPointerTy() || 5361 !Arg1->getType()->isPointerTy() || 5362 !I.getType()->isIntegerTy()) 5363 return false; 5364 5365 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5366 std::pair<SDValue, SDValue> Res = 5367 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5368 getValue(Arg0), getValue(Arg1), 5369 MachinePointerInfo(Arg0), 5370 MachinePointerInfo(Arg1)); 5371 if (Res.first.getNode()) { 5372 processIntegerCallValue(I, Res.first, true); 5373 PendingLoads.push_back(Res.second); 5374 return true; 5375 } 5376 5377 return false; 5378 } 5379 5380 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5381 /// form. If so, return true and lower it, otherwise return false and it 5382 /// will be lowered like a normal call. 5383 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5384 // Verify that the prototype makes sense. size_t strlen(char *) 5385 if (I.getNumArgOperands() != 1) 5386 return false; 5387 5388 const Value *Arg0 = I.getArgOperand(0); 5389 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5390 return false; 5391 5392 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5393 std::pair<SDValue, SDValue> Res = 5394 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5395 getValue(Arg0), MachinePointerInfo(Arg0)); 5396 if (Res.first.getNode()) { 5397 processIntegerCallValue(I, Res.first, false); 5398 PendingLoads.push_back(Res.second); 5399 return true; 5400 } 5401 5402 return false; 5403 } 5404 5405 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5406 /// form. If so, return true and lower it, otherwise return false and it 5407 /// will be lowered like a normal call. 5408 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5409 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5410 if (I.getNumArgOperands() != 2) 5411 return false; 5412 5413 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5414 if (!Arg0->getType()->isPointerTy() || 5415 !Arg1->getType()->isIntegerTy() || 5416 !I.getType()->isIntegerTy()) 5417 return false; 5418 5419 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5420 std::pair<SDValue, SDValue> Res = 5421 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5422 getValue(Arg0), getValue(Arg1), 5423 MachinePointerInfo(Arg0)); 5424 if (Res.first.getNode()) { 5425 processIntegerCallValue(I, Res.first, false); 5426 PendingLoads.push_back(Res.second); 5427 return true; 5428 } 5429 5430 return false; 5431 } 5432 5433 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5434 /// operation (as expected), translate it to an SDNode with the specified opcode 5435 /// and return true. 5436 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5437 unsigned Opcode) { 5438 // Sanity check that it really is a unary floating-point call. 5439 if (I.getNumArgOperands() != 1 || 5440 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5441 I.getType() != I.getArgOperand(0)->getType() || 5442 !I.onlyReadsMemory()) 5443 return false; 5444 5445 SDValue Tmp = getValue(I.getArgOperand(0)); 5446 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5447 return true; 5448 } 5449 5450 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5451 /// operation (as expected), translate it to an SDNode with the specified opcode 5452 /// and return true. 5453 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5454 unsigned Opcode) { 5455 // Sanity check that it really is a binary floating-point call. 5456 if (I.getNumArgOperands() != 2 || 5457 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5458 I.getType() != I.getArgOperand(0)->getType() || 5459 I.getType() != I.getArgOperand(1)->getType() || 5460 !I.onlyReadsMemory()) 5461 return false; 5462 5463 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5464 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5465 EVT VT = Tmp0.getValueType(); 5466 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5467 return true; 5468 } 5469 5470 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5471 // Handle inline assembly differently. 5472 if (isa<InlineAsm>(I.getCalledValue())) { 5473 visitInlineAsm(&I); 5474 return; 5475 } 5476 5477 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5478 ComputeUsesVAFloatArgument(I, &MMI); 5479 5480 const char *RenameFn = nullptr; 5481 if (Function *F = I.getCalledFunction()) { 5482 if (F->isDeclaration()) { 5483 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5484 if (unsigned IID = II->getIntrinsicID(F)) { 5485 RenameFn = visitIntrinsicCall(I, IID); 5486 if (!RenameFn) 5487 return; 5488 } 5489 } 5490 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5491 RenameFn = visitIntrinsicCall(I, IID); 5492 if (!RenameFn) 5493 return; 5494 } 5495 } 5496 5497 // Check for well-known libc/libm calls. If the function is internal, it 5498 // can't be a library call. 5499 LibFunc::Func Func; 5500 if (!F->hasLocalLinkage() && F->hasName() && 5501 LibInfo->getLibFunc(F->getName(), Func) && 5502 LibInfo->hasOptimizedCodeGen(Func)) { 5503 switch (Func) { 5504 default: break; 5505 case LibFunc::copysign: 5506 case LibFunc::copysignf: 5507 case LibFunc::copysignl: 5508 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5509 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5510 I.getType() == I.getArgOperand(0)->getType() && 5511 I.getType() == I.getArgOperand(1)->getType() && 5512 I.onlyReadsMemory()) { 5513 SDValue LHS = getValue(I.getArgOperand(0)); 5514 SDValue RHS = getValue(I.getArgOperand(1)); 5515 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5516 LHS.getValueType(), LHS, RHS)); 5517 return; 5518 } 5519 break; 5520 case LibFunc::fabs: 5521 case LibFunc::fabsf: 5522 case LibFunc::fabsl: 5523 if (visitUnaryFloatCall(I, ISD::FABS)) 5524 return; 5525 break; 5526 case LibFunc::fmin: 5527 case LibFunc::fminf: 5528 case LibFunc::fminl: 5529 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5530 return; 5531 break; 5532 case LibFunc::fmax: 5533 case LibFunc::fmaxf: 5534 case LibFunc::fmaxl: 5535 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5536 return; 5537 break; 5538 case LibFunc::sin: 5539 case LibFunc::sinf: 5540 case LibFunc::sinl: 5541 if (visitUnaryFloatCall(I, ISD::FSIN)) 5542 return; 5543 break; 5544 case LibFunc::cos: 5545 case LibFunc::cosf: 5546 case LibFunc::cosl: 5547 if (visitUnaryFloatCall(I, ISD::FCOS)) 5548 return; 5549 break; 5550 case LibFunc::sqrt: 5551 case LibFunc::sqrtf: 5552 case LibFunc::sqrtl: 5553 case LibFunc::sqrt_finite: 5554 case LibFunc::sqrtf_finite: 5555 case LibFunc::sqrtl_finite: 5556 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5557 return; 5558 break; 5559 case LibFunc::floor: 5560 case LibFunc::floorf: 5561 case LibFunc::floorl: 5562 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5563 return; 5564 break; 5565 case LibFunc::nearbyint: 5566 case LibFunc::nearbyintf: 5567 case LibFunc::nearbyintl: 5568 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5569 return; 5570 break; 5571 case LibFunc::ceil: 5572 case LibFunc::ceilf: 5573 case LibFunc::ceill: 5574 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5575 return; 5576 break; 5577 case LibFunc::rint: 5578 case LibFunc::rintf: 5579 case LibFunc::rintl: 5580 if (visitUnaryFloatCall(I, ISD::FRINT)) 5581 return; 5582 break; 5583 case LibFunc::round: 5584 case LibFunc::roundf: 5585 case LibFunc::roundl: 5586 if (visitUnaryFloatCall(I, ISD::FROUND)) 5587 return; 5588 break; 5589 case LibFunc::trunc: 5590 case LibFunc::truncf: 5591 case LibFunc::truncl: 5592 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5593 return; 5594 break; 5595 case LibFunc::log2: 5596 case LibFunc::log2f: 5597 case LibFunc::log2l: 5598 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5599 return; 5600 break; 5601 case LibFunc::exp2: 5602 case LibFunc::exp2f: 5603 case LibFunc::exp2l: 5604 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5605 return; 5606 break; 5607 case LibFunc::memcmp: 5608 if (visitMemCmpCall(I)) 5609 return; 5610 break; 5611 case LibFunc::memchr: 5612 if (visitMemChrCall(I)) 5613 return; 5614 break; 5615 case LibFunc::strcpy: 5616 if (visitStrCpyCall(I, false)) 5617 return; 5618 break; 5619 case LibFunc::stpcpy: 5620 if (visitStrCpyCall(I, true)) 5621 return; 5622 break; 5623 case LibFunc::strcmp: 5624 if (visitStrCmpCall(I)) 5625 return; 5626 break; 5627 case LibFunc::strlen: 5628 if (visitStrLenCall(I)) 5629 return; 5630 break; 5631 case LibFunc::strnlen: 5632 if (visitStrNLenCall(I)) 5633 return; 5634 break; 5635 } 5636 } 5637 } 5638 5639 SDValue Callee; 5640 if (!RenameFn) 5641 Callee = getValue(I.getCalledValue()); 5642 else 5643 Callee = DAG.getExternalSymbol(RenameFn, 5644 DAG.getTargetLoweringInfo().getPointerTy()); 5645 5646 // Check if we can potentially perform a tail call. More detailed checking is 5647 // be done within LowerCallTo, after more information about the call is known. 5648 LowerCallTo(&I, Callee, I.isTailCall()); 5649 } 5650 5651 namespace { 5652 5653 /// AsmOperandInfo - This contains information for each constraint that we are 5654 /// lowering. 5655 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5656 public: 5657 /// CallOperand - If this is the result output operand or a clobber 5658 /// this is null, otherwise it is the incoming operand to the CallInst. 5659 /// This gets modified as the asm is processed. 5660 SDValue CallOperand; 5661 5662 /// AssignedRegs - If this is a register or register class operand, this 5663 /// contains the set of register corresponding to the operand. 5664 RegsForValue AssignedRegs; 5665 5666 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5667 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5668 } 5669 5670 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5671 /// corresponds to. If there is no Value* for this operand, it returns 5672 /// MVT::Other. 5673 EVT getCallOperandValEVT(LLVMContext &Context, 5674 const TargetLowering &TLI, 5675 const DataLayout *DL) const { 5676 if (!CallOperandVal) return MVT::Other; 5677 5678 if (isa<BasicBlock>(CallOperandVal)) 5679 return TLI.getPointerTy(); 5680 5681 llvm::Type *OpTy = CallOperandVal->getType(); 5682 5683 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5684 // If this is an indirect operand, the operand is a pointer to the 5685 // accessed type. 5686 if (isIndirect) { 5687 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5688 if (!PtrTy) 5689 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5690 OpTy = PtrTy->getElementType(); 5691 } 5692 5693 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5694 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5695 if (STy->getNumElements() == 1) 5696 OpTy = STy->getElementType(0); 5697 5698 // If OpTy is not a single value, it may be a struct/union that we 5699 // can tile with integers. 5700 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5701 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5702 switch (BitSize) { 5703 default: break; 5704 case 1: 5705 case 8: 5706 case 16: 5707 case 32: 5708 case 64: 5709 case 128: 5710 OpTy = IntegerType::get(Context, BitSize); 5711 break; 5712 } 5713 } 5714 5715 return TLI.getValueType(OpTy, true); 5716 } 5717 }; 5718 5719 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5720 5721 } // end anonymous namespace 5722 5723 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5724 /// specified operand. We prefer to assign virtual registers, to allow the 5725 /// register allocator to handle the assignment process. However, if the asm 5726 /// uses features that we can't model on machineinstrs, we have SDISel do the 5727 /// allocation. This produces generally horrible, but correct, code. 5728 /// 5729 /// OpInfo describes the operand. 5730 /// 5731 static void GetRegistersForValue(SelectionDAG &DAG, 5732 const TargetLowering &TLI, 5733 SDLoc DL, 5734 SDISelAsmOperandInfo &OpInfo) { 5735 LLVMContext &Context = *DAG.getContext(); 5736 5737 MachineFunction &MF = DAG.getMachineFunction(); 5738 SmallVector<unsigned, 4> Regs; 5739 5740 // If this is a constraint for a single physreg, or a constraint for a 5741 // register class, find it. 5742 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5743 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5744 OpInfo.ConstraintCode, 5745 OpInfo.ConstraintVT); 5746 5747 unsigned NumRegs = 1; 5748 if (OpInfo.ConstraintVT != MVT::Other) { 5749 // If this is a FP input in an integer register (or visa versa) insert a bit 5750 // cast of the input value. More generally, handle any case where the input 5751 // value disagrees with the register class we plan to stick this in. 5752 if (OpInfo.Type == InlineAsm::isInput && 5753 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5754 // Try to convert to the first EVT that the reg class contains. If the 5755 // types are identical size, use a bitcast to convert (e.g. two differing 5756 // vector types). 5757 MVT RegVT = *PhysReg.second->vt_begin(); 5758 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5759 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5760 RegVT, OpInfo.CallOperand); 5761 OpInfo.ConstraintVT = RegVT; 5762 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5763 // If the input is a FP value and we want it in FP registers, do a 5764 // bitcast to the corresponding integer type. This turns an f64 value 5765 // into i64, which can be passed with two i32 values on a 32-bit 5766 // machine. 5767 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5768 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5769 RegVT, OpInfo.CallOperand); 5770 OpInfo.ConstraintVT = RegVT; 5771 } 5772 } 5773 5774 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5775 } 5776 5777 MVT RegVT; 5778 EVT ValueVT = OpInfo.ConstraintVT; 5779 5780 // If this is a constraint for a specific physical register, like {r17}, 5781 // assign it now. 5782 if (unsigned AssignedReg = PhysReg.first) { 5783 const TargetRegisterClass *RC = PhysReg.second; 5784 if (OpInfo.ConstraintVT == MVT::Other) 5785 ValueVT = *RC->vt_begin(); 5786 5787 // Get the actual register value type. This is important, because the user 5788 // may have asked for (e.g.) the AX register in i32 type. We need to 5789 // remember that AX is actually i16 to get the right extension. 5790 RegVT = *RC->vt_begin(); 5791 5792 // This is a explicit reference to a physical register. 5793 Regs.push_back(AssignedReg); 5794 5795 // If this is an expanded reference, add the rest of the regs to Regs. 5796 if (NumRegs != 1) { 5797 TargetRegisterClass::iterator I = RC->begin(); 5798 for (; *I != AssignedReg; ++I) 5799 assert(I != RC->end() && "Didn't find reg!"); 5800 5801 // Already added the first reg. 5802 --NumRegs; ++I; 5803 for (; NumRegs; --NumRegs, ++I) { 5804 assert(I != RC->end() && "Ran out of registers to allocate!"); 5805 Regs.push_back(*I); 5806 } 5807 } 5808 5809 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5810 return; 5811 } 5812 5813 // Otherwise, if this was a reference to an LLVM register class, create vregs 5814 // for this reference. 5815 if (const TargetRegisterClass *RC = PhysReg.second) { 5816 RegVT = *RC->vt_begin(); 5817 if (OpInfo.ConstraintVT == MVT::Other) 5818 ValueVT = RegVT; 5819 5820 // Create the appropriate number of virtual registers. 5821 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5822 for (; NumRegs; --NumRegs) 5823 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5824 5825 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5826 return; 5827 } 5828 5829 // Otherwise, we couldn't allocate enough registers for this. 5830 } 5831 5832 /// visitInlineAsm - Handle a call to an InlineAsm object. 5833 /// 5834 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5835 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5836 5837 /// ConstraintOperands - Information about all of the constraints. 5838 SDISelAsmOperandInfoVector ConstraintOperands; 5839 5840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5841 TargetLowering::AsmOperandInfoVector TargetConstraints = 5842 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5843 5844 bool hasMemory = false; 5845 5846 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5847 unsigned ResNo = 0; // ResNo - The result number of the next output. 5848 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5849 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5850 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5851 5852 MVT OpVT = MVT::Other; 5853 5854 // Compute the value type for each operand. 5855 switch (OpInfo.Type) { 5856 case InlineAsm::isOutput: 5857 // Indirect outputs just consume an argument. 5858 if (OpInfo.isIndirect) { 5859 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5860 break; 5861 } 5862 5863 // The return value of the call is this value. As such, there is no 5864 // corresponding argument. 5865 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5866 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5867 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5868 } else { 5869 assert(ResNo == 0 && "Asm only has one result!"); 5870 OpVT = TLI.getSimpleValueType(CS.getType()); 5871 } 5872 ++ResNo; 5873 break; 5874 case InlineAsm::isInput: 5875 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5876 break; 5877 case InlineAsm::isClobber: 5878 // Nothing to do. 5879 break; 5880 } 5881 5882 // If this is an input or an indirect output, process the call argument. 5883 // BasicBlocks are labels, currently appearing only in asm's. 5884 if (OpInfo.CallOperandVal) { 5885 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5886 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5887 } else { 5888 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5889 } 5890 5891 OpVT = 5892 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5893 } 5894 5895 OpInfo.ConstraintVT = OpVT; 5896 5897 // Indirect operand accesses access memory. 5898 if (OpInfo.isIndirect) 5899 hasMemory = true; 5900 else { 5901 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5902 TargetLowering::ConstraintType 5903 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5904 if (CType == TargetLowering::C_Memory) { 5905 hasMemory = true; 5906 break; 5907 } 5908 } 5909 } 5910 } 5911 5912 SDValue Chain, Flag; 5913 5914 // We won't need to flush pending loads if this asm doesn't touch 5915 // memory and is nonvolatile. 5916 if (hasMemory || IA->hasSideEffects()) 5917 Chain = getRoot(); 5918 else 5919 Chain = DAG.getRoot(); 5920 5921 // Second pass over the constraints: compute which constraint option to use 5922 // and assign registers to constraints that want a specific physreg. 5923 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5924 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5925 5926 // If this is an output operand with a matching input operand, look up the 5927 // matching input. If their types mismatch, e.g. one is an integer, the 5928 // other is floating point, or their sizes are different, flag it as an 5929 // error. 5930 if (OpInfo.hasMatchingInput()) { 5931 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5932 5933 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5934 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5935 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5936 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5937 OpInfo.ConstraintVT); 5938 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5939 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5940 Input.ConstraintVT); 5941 if ((OpInfo.ConstraintVT.isInteger() != 5942 Input.ConstraintVT.isInteger()) || 5943 (MatchRC.second != InputRC.second)) { 5944 report_fatal_error("Unsupported asm: input constraint" 5945 " with a matching output constraint of" 5946 " incompatible type!"); 5947 } 5948 Input.ConstraintVT = OpInfo.ConstraintVT; 5949 } 5950 } 5951 5952 // Compute the constraint code and ConstraintType to use. 5953 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5954 5955 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5956 OpInfo.Type == InlineAsm::isClobber) 5957 continue; 5958 5959 // If this is a memory input, and if the operand is not indirect, do what we 5960 // need to to provide an address for the memory input. 5961 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5962 !OpInfo.isIndirect) { 5963 assert((OpInfo.isMultipleAlternative || 5964 (OpInfo.Type == InlineAsm::isInput)) && 5965 "Can only indirectify direct input operands!"); 5966 5967 // Memory operands really want the address of the value. If we don't have 5968 // an indirect input, put it in the constpool if we can, otherwise spill 5969 // it to a stack slot. 5970 // TODO: This isn't quite right. We need to handle these according to 5971 // the addressing mode that the constraint wants. Also, this may take 5972 // an additional register for the computation and we don't want that 5973 // either. 5974 5975 // If the operand is a float, integer, or vector constant, spill to a 5976 // constant pool entry to get its address. 5977 const Value *OpVal = OpInfo.CallOperandVal; 5978 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5979 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5980 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5981 TLI.getPointerTy()); 5982 } else { 5983 // Otherwise, create a stack slot and emit a store to it before the 5984 // asm. 5985 Type *Ty = OpVal->getType(); 5986 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5987 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5988 MachineFunction &MF = DAG.getMachineFunction(); 5989 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5990 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5991 Chain = DAG.getStore(Chain, getCurSDLoc(), 5992 OpInfo.CallOperand, StackSlot, 5993 MachinePointerInfo::getFixedStack(SSFI), 5994 false, false, 0); 5995 OpInfo.CallOperand = StackSlot; 5996 } 5997 5998 // There is no longer a Value* corresponding to this operand. 5999 OpInfo.CallOperandVal = nullptr; 6000 6001 // It is now an indirect operand. 6002 OpInfo.isIndirect = true; 6003 } 6004 6005 // If this constraint is for a specific register, allocate it before 6006 // anything else. 6007 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6008 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6009 } 6010 6011 // Second pass - Loop over all of the operands, assigning virtual or physregs 6012 // to register class operands. 6013 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6014 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6015 6016 // C_Register operands have already been allocated, Other/Memory don't need 6017 // to be. 6018 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6019 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6020 } 6021 6022 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6023 std::vector<SDValue> AsmNodeOperands; 6024 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6025 AsmNodeOperands.push_back( 6026 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6027 TLI.getPointerTy())); 6028 6029 // If we have a !srcloc metadata node associated with it, we want to attach 6030 // this to the ultimately generated inline asm machineinstr. To do this, we 6031 // pass in the third operand as this (potentially null) inline asm MDNode. 6032 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6033 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6034 6035 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6036 // bits as operand 3. 6037 unsigned ExtraInfo = 0; 6038 if (IA->hasSideEffects()) 6039 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6040 if (IA->isAlignStack()) 6041 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6042 // Set the asm dialect. 6043 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6044 6045 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6046 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6047 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6048 6049 // Compute the constraint code and ConstraintType to use. 6050 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6051 6052 // Ideally, we would only check against memory constraints. However, the 6053 // meaning of an other constraint can be target-specific and we can't easily 6054 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6055 // for other constriants as well. 6056 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6057 OpInfo.ConstraintType == TargetLowering::C_Other) { 6058 if (OpInfo.Type == InlineAsm::isInput) 6059 ExtraInfo |= InlineAsm::Extra_MayLoad; 6060 else if (OpInfo.Type == InlineAsm::isOutput) 6061 ExtraInfo |= InlineAsm::Extra_MayStore; 6062 else if (OpInfo.Type == InlineAsm::isClobber) 6063 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6064 } 6065 } 6066 6067 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6068 TLI.getPointerTy())); 6069 6070 // Loop over all of the inputs, copying the operand values into the 6071 // appropriate registers and processing the output regs. 6072 RegsForValue RetValRegs; 6073 6074 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6075 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6076 6077 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6078 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6079 6080 switch (OpInfo.Type) { 6081 case InlineAsm::isOutput: { 6082 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6083 OpInfo.ConstraintType != TargetLowering::C_Register) { 6084 // Memory output, or 'other' output (e.g. 'X' constraint). 6085 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6086 6087 unsigned ConstraintID = 6088 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6089 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6090 "Failed to convert memory constraint code to constraint id."); 6091 6092 // Add information to the INLINEASM node to know about this output. 6093 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6094 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6095 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6096 MVT::i32)); 6097 AsmNodeOperands.push_back(OpInfo.CallOperand); 6098 break; 6099 } 6100 6101 // Otherwise, this is a register or register class output. 6102 6103 // Copy the output from the appropriate register. Find a register that 6104 // we can use. 6105 if (OpInfo.AssignedRegs.Regs.empty()) { 6106 LLVMContext &Ctx = *DAG.getContext(); 6107 Ctx.emitError(CS.getInstruction(), 6108 "couldn't allocate output register for constraint '" + 6109 Twine(OpInfo.ConstraintCode) + "'"); 6110 return; 6111 } 6112 6113 // If this is an indirect operand, store through the pointer after the 6114 // asm. 6115 if (OpInfo.isIndirect) { 6116 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6117 OpInfo.CallOperandVal)); 6118 } else { 6119 // This is the result value of the call. 6120 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6121 // Concatenate this output onto the outputs list. 6122 RetValRegs.append(OpInfo.AssignedRegs); 6123 } 6124 6125 // Add information to the INLINEASM node to know that this register is 6126 // set. 6127 OpInfo.AssignedRegs 6128 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6129 ? InlineAsm::Kind_RegDefEarlyClobber 6130 : InlineAsm::Kind_RegDef, 6131 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6132 break; 6133 } 6134 case InlineAsm::isInput: { 6135 SDValue InOperandVal = OpInfo.CallOperand; 6136 6137 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6138 // If this is required to match an output register we have already set, 6139 // just use its register. 6140 unsigned OperandNo = OpInfo.getMatchedOperand(); 6141 6142 // Scan until we find the definition we already emitted of this operand. 6143 // When we find it, create a RegsForValue operand. 6144 unsigned CurOp = InlineAsm::Op_FirstOperand; 6145 for (; OperandNo; --OperandNo) { 6146 // Advance to the next operand. 6147 unsigned OpFlag = 6148 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6149 assert((InlineAsm::isRegDefKind(OpFlag) || 6150 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6151 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6152 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6153 } 6154 6155 unsigned OpFlag = 6156 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6157 if (InlineAsm::isRegDefKind(OpFlag) || 6158 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6159 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6160 if (OpInfo.isIndirect) { 6161 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6162 LLVMContext &Ctx = *DAG.getContext(); 6163 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6164 " don't know how to handle tied " 6165 "indirect register inputs"); 6166 return; 6167 } 6168 6169 RegsForValue MatchedRegs; 6170 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6171 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6172 MatchedRegs.RegVTs.push_back(RegVT); 6173 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6174 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6175 i != e; ++i) { 6176 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6177 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6178 else { 6179 LLVMContext &Ctx = *DAG.getContext(); 6180 Ctx.emitError(CS.getInstruction(), 6181 "inline asm error: This value" 6182 " type register class is not natively supported!"); 6183 return; 6184 } 6185 } 6186 SDLoc dl = getCurSDLoc(); 6187 // Use the produced MatchedRegs object to 6188 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6189 Chain, &Flag, CS.getInstruction()); 6190 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6191 true, OpInfo.getMatchedOperand(), dl, 6192 DAG, AsmNodeOperands); 6193 break; 6194 } 6195 6196 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6197 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6198 "Unexpected number of operands"); 6199 // Add information to the INLINEASM node to know about this input. 6200 // See InlineAsm.h isUseOperandTiedToDef. 6201 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6202 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6203 OpInfo.getMatchedOperand()); 6204 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6205 TLI.getPointerTy())); 6206 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6207 break; 6208 } 6209 6210 // Treat indirect 'X' constraint as memory. 6211 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6212 OpInfo.isIndirect) 6213 OpInfo.ConstraintType = TargetLowering::C_Memory; 6214 6215 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6216 std::vector<SDValue> Ops; 6217 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6218 Ops, DAG); 6219 if (Ops.empty()) { 6220 LLVMContext &Ctx = *DAG.getContext(); 6221 Ctx.emitError(CS.getInstruction(), 6222 "invalid operand for inline asm constraint '" + 6223 Twine(OpInfo.ConstraintCode) + "'"); 6224 return; 6225 } 6226 6227 // Add information to the INLINEASM node to know about this input. 6228 unsigned ResOpType = 6229 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6230 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6231 getCurSDLoc(), 6232 TLI.getPointerTy())); 6233 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6234 break; 6235 } 6236 6237 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6238 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6239 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6240 "Memory operands expect pointer values"); 6241 6242 unsigned ConstraintID = 6243 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6244 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6245 "Failed to convert memory constraint code to constraint id."); 6246 6247 // Add information to the INLINEASM node to know about this input. 6248 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6249 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6250 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6251 getCurSDLoc(), 6252 MVT::i32)); 6253 AsmNodeOperands.push_back(InOperandVal); 6254 break; 6255 } 6256 6257 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6258 OpInfo.ConstraintType == TargetLowering::C_Register) && 6259 "Unknown constraint type!"); 6260 6261 // TODO: Support this. 6262 if (OpInfo.isIndirect) { 6263 LLVMContext &Ctx = *DAG.getContext(); 6264 Ctx.emitError(CS.getInstruction(), 6265 "Don't know how to handle indirect register inputs yet " 6266 "for constraint '" + 6267 Twine(OpInfo.ConstraintCode) + "'"); 6268 return; 6269 } 6270 6271 // Copy the input into the appropriate registers. 6272 if (OpInfo.AssignedRegs.Regs.empty()) { 6273 LLVMContext &Ctx = *DAG.getContext(); 6274 Ctx.emitError(CS.getInstruction(), 6275 "couldn't allocate input reg for constraint '" + 6276 Twine(OpInfo.ConstraintCode) + "'"); 6277 return; 6278 } 6279 6280 SDLoc dl = getCurSDLoc(); 6281 6282 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6283 Chain, &Flag, CS.getInstruction()); 6284 6285 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6286 dl, DAG, AsmNodeOperands); 6287 break; 6288 } 6289 case InlineAsm::isClobber: { 6290 // Add the clobbered value to the operand list, so that the register 6291 // allocator is aware that the physreg got clobbered. 6292 if (!OpInfo.AssignedRegs.Regs.empty()) 6293 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6294 false, 0, getCurSDLoc(), DAG, 6295 AsmNodeOperands); 6296 break; 6297 } 6298 } 6299 } 6300 6301 // Finish up input operands. Set the input chain and add the flag last. 6302 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6303 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6304 6305 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6306 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6307 Flag = Chain.getValue(1); 6308 6309 // If this asm returns a register value, copy the result from that register 6310 // and set it as the value of the call. 6311 if (!RetValRegs.Regs.empty()) { 6312 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6313 Chain, &Flag, CS.getInstruction()); 6314 6315 // FIXME: Why don't we do this for inline asms with MRVs? 6316 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6317 EVT ResultType = TLI.getValueType(CS.getType()); 6318 6319 // If any of the results of the inline asm is a vector, it may have the 6320 // wrong width/num elts. This can happen for register classes that can 6321 // contain multiple different value types. The preg or vreg allocated may 6322 // not have the same VT as was expected. Convert it to the right type 6323 // with bit_convert. 6324 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6325 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6326 ResultType, Val); 6327 6328 } else if (ResultType != Val.getValueType() && 6329 ResultType.isInteger() && Val.getValueType().isInteger()) { 6330 // If a result value was tied to an input value, the computed result may 6331 // have a wider width than the expected result. Extract the relevant 6332 // portion. 6333 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6334 } 6335 6336 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6337 } 6338 6339 setValue(CS.getInstruction(), Val); 6340 // Don't need to use this as a chain in this case. 6341 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6342 return; 6343 } 6344 6345 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6346 6347 // Process indirect outputs, first output all of the flagged copies out of 6348 // physregs. 6349 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6350 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6351 const Value *Ptr = IndirectStoresToEmit[i].second; 6352 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6353 Chain, &Flag, IA); 6354 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6355 } 6356 6357 // Emit the non-flagged stores from the physregs. 6358 SmallVector<SDValue, 8> OutChains; 6359 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6360 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6361 StoresToEmit[i].first, 6362 getValue(StoresToEmit[i].second), 6363 MachinePointerInfo(StoresToEmit[i].second), 6364 false, false, 0); 6365 OutChains.push_back(Val); 6366 } 6367 6368 if (!OutChains.empty()) 6369 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6370 6371 DAG.setRoot(Chain); 6372 } 6373 6374 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6375 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6376 MVT::Other, getRoot(), 6377 getValue(I.getArgOperand(0)), 6378 DAG.getSrcValue(I.getArgOperand(0)))); 6379 } 6380 6381 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6383 const DataLayout &DL = *TLI.getDataLayout(); 6384 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6385 getRoot(), getValue(I.getOperand(0)), 6386 DAG.getSrcValue(I.getOperand(0)), 6387 DL.getABITypeAlignment(I.getType())); 6388 setValue(&I, V); 6389 DAG.setRoot(V.getValue(1)); 6390 } 6391 6392 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6393 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6394 MVT::Other, getRoot(), 6395 getValue(I.getArgOperand(0)), 6396 DAG.getSrcValue(I.getArgOperand(0)))); 6397 } 6398 6399 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6400 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6401 MVT::Other, getRoot(), 6402 getValue(I.getArgOperand(0)), 6403 getValue(I.getArgOperand(1)), 6404 DAG.getSrcValue(I.getArgOperand(0)), 6405 DAG.getSrcValue(I.getArgOperand(1)))); 6406 } 6407 6408 /// \brief Lower an argument list according to the target calling convention. 6409 /// 6410 /// \return A tuple of <return-value, token-chain> 6411 /// 6412 /// This is a helper for lowering intrinsics that follow a target calling 6413 /// convention or require stack pointer adjustment. Only a subset of the 6414 /// intrinsic's operands need to participate in the calling convention. 6415 std::pair<SDValue, SDValue> 6416 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6417 unsigned NumArgs, SDValue Callee, 6418 Type *ReturnTy, 6419 MachineBasicBlock *LandingPad, 6420 bool IsPatchPoint) { 6421 TargetLowering::ArgListTy Args; 6422 Args.reserve(NumArgs); 6423 6424 // Populate the argument list. 6425 // Attributes for args start at offset 1, after the return attribute. 6426 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6427 ArgI != ArgE; ++ArgI) { 6428 const Value *V = CS->getOperand(ArgI); 6429 6430 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6431 6432 TargetLowering::ArgListEntry Entry; 6433 Entry.Node = getValue(V); 6434 Entry.Ty = V->getType(); 6435 Entry.setAttributes(&CS, AttrI); 6436 Args.push_back(Entry); 6437 } 6438 6439 TargetLowering::CallLoweringInfo CLI(DAG); 6440 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6441 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6442 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6443 6444 return lowerInvokable(CLI, LandingPad); 6445 } 6446 6447 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6448 /// or patchpoint target node's operand list. 6449 /// 6450 /// Constants are converted to TargetConstants purely as an optimization to 6451 /// avoid constant materialization and register allocation. 6452 /// 6453 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6454 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6455 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6456 /// address materialization and register allocation, but may also be required 6457 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6458 /// alloca in the entry block, then the runtime may assume that the alloca's 6459 /// StackMap location can be read immediately after compilation and that the 6460 /// location is valid at any point during execution (this is similar to the 6461 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6462 /// only available in a register, then the runtime would need to trap when 6463 /// execution reaches the StackMap in order to read the alloca's location. 6464 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6465 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6466 SelectionDAGBuilder &Builder) { 6467 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6468 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6469 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6470 Ops.push_back( 6471 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6472 Ops.push_back( 6473 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6474 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6475 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6476 Ops.push_back( 6477 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6478 } else 6479 Ops.push_back(OpVal); 6480 } 6481 } 6482 6483 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6484 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6485 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6486 // [live variables...]) 6487 6488 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6489 6490 SDValue Chain, InFlag, Callee, NullPtr; 6491 SmallVector<SDValue, 32> Ops; 6492 6493 SDLoc DL = getCurSDLoc(); 6494 Callee = getValue(CI.getCalledValue()); 6495 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6496 6497 // The stackmap intrinsic only records the live variables (the arguemnts 6498 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6499 // intrinsic, this won't be lowered to a function call. This means we don't 6500 // have to worry about calling conventions and target specific lowering code. 6501 // Instead we perform the call lowering right here. 6502 // 6503 // chain, flag = CALLSEQ_START(chain, 0) 6504 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6505 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6506 // 6507 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6508 InFlag = Chain.getValue(1); 6509 6510 // Add the <id> and <numBytes> constants. 6511 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6512 Ops.push_back(DAG.getTargetConstant( 6513 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6514 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6515 Ops.push_back(DAG.getTargetConstant( 6516 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6517 MVT::i32)); 6518 6519 // Push live variables for the stack map. 6520 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6521 6522 // We are not pushing any register mask info here on the operands list, 6523 // because the stackmap doesn't clobber anything. 6524 6525 // Push the chain and the glue flag. 6526 Ops.push_back(Chain); 6527 Ops.push_back(InFlag); 6528 6529 // Create the STACKMAP node. 6530 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6531 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6532 Chain = SDValue(SM, 0); 6533 InFlag = Chain.getValue(1); 6534 6535 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6536 6537 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6538 6539 // Set the root to the target-lowered call chain. 6540 DAG.setRoot(Chain); 6541 6542 // Inform the Frame Information that we have a stackmap in this function. 6543 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6544 } 6545 6546 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6547 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6548 MachineBasicBlock *LandingPad) { 6549 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6550 // i32 <numBytes>, 6551 // i8* <target>, 6552 // i32 <numArgs>, 6553 // [Args...], 6554 // [live variables...]) 6555 6556 CallingConv::ID CC = CS.getCallingConv(); 6557 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6558 bool HasDef = !CS->getType()->isVoidTy(); 6559 SDLoc dl = getCurSDLoc(); 6560 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6561 6562 // Handle immediate and symbolic callees. 6563 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6564 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6565 /*isTarget=*/true); 6566 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6567 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6568 SDLoc(SymbolicCallee), 6569 SymbolicCallee->getValueType(0)); 6570 6571 // Get the real number of arguments participating in the call <numArgs> 6572 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6573 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6574 6575 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6576 // Intrinsics include all meta-operands up to but not including CC. 6577 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6578 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6579 "Not enough arguments provided to the patchpoint intrinsic"); 6580 6581 // For AnyRegCC the arguments are lowered later on manually. 6582 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6583 Type *ReturnTy = 6584 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6585 std::pair<SDValue, SDValue> Result = 6586 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6587 LandingPad, true); 6588 6589 SDNode *CallEnd = Result.second.getNode(); 6590 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6591 CallEnd = CallEnd->getOperand(0).getNode(); 6592 6593 /// Get a call instruction from the call sequence chain. 6594 /// Tail calls are not allowed. 6595 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6596 "Expected a callseq node."); 6597 SDNode *Call = CallEnd->getOperand(0).getNode(); 6598 bool HasGlue = Call->getGluedNode(); 6599 6600 // Replace the target specific call node with the patchable intrinsic. 6601 SmallVector<SDValue, 8> Ops; 6602 6603 // Add the <id> and <numBytes> constants. 6604 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6605 Ops.push_back(DAG.getTargetConstant( 6606 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6607 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6608 Ops.push_back(DAG.getTargetConstant( 6609 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6610 MVT::i32)); 6611 6612 // Add the callee. 6613 Ops.push_back(Callee); 6614 6615 // Adjust <numArgs> to account for any arguments that have been passed on the 6616 // stack instead. 6617 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6618 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6619 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6620 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6621 6622 // Add the calling convention 6623 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6624 6625 // Add the arguments we omitted previously. The register allocator should 6626 // place these in any free register. 6627 if (IsAnyRegCC) 6628 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6629 Ops.push_back(getValue(CS.getArgument(i))); 6630 6631 // Push the arguments from the call instruction up to the register mask. 6632 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6633 Ops.append(Call->op_begin() + 2, e); 6634 6635 // Push live variables for the stack map. 6636 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6637 6638 // Push the register mask info. 6639 if (HasGlue) 6640 Ops.push_back(*(Call->op_end()-2)); 6641 else 6642 Ops.push_back(*(Call->op_end()-1)); 6643 6644 // Push the chain (this is originally the first operand of the call, but 6645 // becomes now the last or second to last operand). 6646 Ops.push_back(*(Call->op_begin())); 6647 6648 // Push the glue flag (last operand). 6649 if (HasGlue) 6650 Ops.push_back(*(Call->op_end()-1)); 6651 6652 SDVTList NodeTys; 6653 if (IsAnyRegCC && HasDef) { 6654 // Create the return types based on the intrinsic definition 6655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6656 SmallVector<EVT, 3> ValueVTs; 6657 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6658 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6659 6660 // There is always a chain and a glue type at the end 6661 ValueVTs.push_back(MVT::Other); 6662 ValueVTs.push_back(MVT::Glue); 6663 NodeTys = DAG.getVTList(ValueVTs); 6664 } else 6665 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6666 6667 // Replace the target specific call node with a PATCHPOINT node. 6668 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6669 dl, NodeTys, Ops); 6670 6671 // Update the NodeMap. 6672 if (HasDef) { 6673 if (IsAnyRegCC) 6674 setValue(CS.getInstruction(), SDValue(MN, 0)); 6675 else 6676 setValue(CS.getInstruction(), Result.first); 6677 } 6678 6679 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6680 // call sequence. Furthermore the location of the chain and glue can change 6681 // when the AnyReg calling convention is used and the intrinsic returns a 6682 // value. 6683 if (IsAnyRegCC && HasDef) { 6684 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6685 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6686 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6687 } else 6688 DAG.ReplaceAllUsesWith(Call, MN); 6689 DAG.DeleteNode(Call); 6690 6691 // Inform the Frame Information that we have a patchpoint in this function. 6692 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6693 } 6694 6695 /// Returns an AttributeSet representing the attributes applied to the return 6696 /// value of the given call. 6697 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6698 SmallVector<Attribute::AttrKind, 2> Attrs; 6699 if (CLI.RetSExt) 6700 Attrs.push_back(Attribute::SExt); 6701 if (CLI.RetZExt) 6702 Attrs.push_back(Attribute::ZExt); 6703 if (CLI.IsInReg) 6704 Attrs.push_back(Attribute::InReg); 6705 6706 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6707 Attrs); 6708 } 6709 6710 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6711 /// implementation, which just calls LowerCall. 6712 /// FIXME: When all targets are 6713 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6714 std::pair<SDValue, SDValue> 6715 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6716 // Handle the incoming return values from the call. 6717 CLI.Ins.clear(); 6718 Type *OrigRetTy = CLI.RetTy; 6719 SmallVector<EVT, 4> RetTys; 6720 SmallVector<uint64_t, 4> Offsets; 6721 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6722 6723 SmallVector<ISD::OutputArg, 4> Outs; 6724 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6725 6726 bool CanLowerReturn = 6727 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6728 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6729 6730 SDValue DemoteStackSlot; 6731 int DemoteStackIdx = -100; 6732 if (!CanLowerReturn) { 6733 // FIXME: equivalent assert? 6734 // assert(!CS.hasInAllocaArgument() && 6735 // "sret demotion is incompatible with inalloca"); 6736 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6737 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6738 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6739 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6740 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6741 6742 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6743 ArgListEntry Entry; 6744 Entry.Node = DemoteStackSlot; 6745 Entry.Ty = StackSlotPtrType; 6746 Entry.isSExt = false; 6747 Entry.isZExt = false; 6748 Entry.isInReg = false; 6749 Entry.isSRet = true; 6750 Entry.isNest = false; 6751 Entry.isByVal = false; 6752 Entry.isReturned = false; 6753 Entry.Alignment = Align; 6754 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6755 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6756 6757 // sret demotion isn't compatible with tail-calls, since the sret argument 6758 // points into the callers stack frame. 6759 CLI.IsTailCall = false; 6760 } else { 6761 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6762 EVT VT = RetTys[I]; 6763 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6764 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6765 for (unsigned i = 0; i != NumRegs; ++i) { 6766 ISD::InputArg MyFlags; 6767 MyFlags.VT = RegisterVT; 6768 MyFlags.ArgVT = VT; 6769 MyFlags.Used = CLI.IsReturnValueUsed; 6770 if (CLI.RetSExt) 6771 MyFlags.Flags.setSExt(); 6772 if (CLI.RetZExt) 6773 MyFlags.Flags.setZExt(); 6774 if (CLI.IsInReg) 6775 MyFlags.Flags.setInReg(); 6776 CLI.Ins.push_back(MyFlags); 6777 } 6778 } 6779 } 6780 6781 // Handle all of the outgoing arguments. 6782 CLI.Outs.clear(); 6783 CLI.OutVals.clear(); 6784 ArgListTy &Args = CLI.getArgs(); 6785 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6786 SmallVector<EVT, 4> ValueVTs; 6787 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6788 Type *FinalType = Args[i].Ty; 6789 if (Args[i].isByVal) 6790 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6791 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6792 FinalType, CLI.CallConv, CLI.IsVarArg); 6793 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6794 ++Value) { 6795 EVT VT = ValueVTs[Value]; 6796 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6797 SDValue Op = SDValue(Args[i].Node.getNode(), 6798 Args[i].Node.getResNo() + Value); 6799 ISD::ArgFlagsTy Flags; 6800 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6801 6802 if (Args[i].isZExt) 6803 Flags.setZExt(); 6804 if (Args[i].isSExt) 6805 Flags.setSExt(); 6806 if (Args[i].isInReg) 6807 Flags.setInReg(); 6808 if (Args[i].isSRet) 6809 Flags.setSRet(); 6810 if (Args[i].isByVal) 6811 Flags.setByVal(); 6812 if (Args[i].isInAlloca) { 6813 Flags.setInAlloca(); 6814 // Set the byval flag for CCAssignFn callbacks that don't know about 6815 // inalloca. This way we can know how many bytes we should've allocated 6816 // and how many bytes a callee cleanup function will pop. If we port 6817 // inalloca to more targets, we'll have to add custom inalloca handling 6818 // in the various CC lowering callbacks. 6819 Flags.setByVal(); 6820 } 6821 if (Args[i].isByVal || Args[i].isInAlloca) { 6822 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6823 Type *ElementTy = Ty->getElementType(); 6824 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6825 // For ByVal, alignment should come from FE. BE will guess if this 6826 // info is not there but there are cases it cannot get right. 6827 unsigned FrameAlign; 6828 if (Args[i].Alignment) 6829 FrameAlign = Args[i].Alignment; 6830 else 6831 FrameAlign = getByValTypeAlignment(ElementTy); 6832 Flags.setByValAlign(FrameAlign); 6833 } 6834 if (Args[i].isNest) 6835 Flags.setNest(); 6836 if (NeedsRegBlock) 6837 Flags.setInConsecutiveRegs(); 6838 Flags.setOrigAlign(OriginalAlignment); 6839 6840 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6841 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6842 SmallVector<SDValue, 4> Parts(NumParts); 6843 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6844 6845 if (Args[i].isSExt) 6846 ExtendKind = ISD::SIGN_EXTEND; 6847 else if (Args[i].isZExt) 6848 ExtendKind = ISD::ZERO_EXTEND; 6849 6850 // Conservatively only handle 'returned' on non-vectors for now 6851 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6852 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6853 "unexpected use of 'returned'"); 6854 // Before passing 'returned' to the target lowering code, ensure that 6855 // either the register MVT and the actual EVT are the same size or that 6856 // the return value and argument are extended in the same way; in these 6857 // cases it's safe to pass the argument register value unchanged as the 6858 // return register value (although it's at the target's option whether 6859 // to do so) 6860 // TODO: allow code generation to take advantage of partially preserved 6861 // registers rather than clobbering the entire register when the 6862 // parameter extension method is not compatible with the return 6863 // extension method 6864 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6865 (ExtendKind != ISD::ANY_EXTEND && 6866 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6867 Flags.setReturned(); 6868 } 6869 6870 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6871 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6872 6873 for (unsigned j = 0; j != NumParts; ++j) { 6874 // if it isn't first piece, alignment must be 1 6875 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6876 i < CLI.NumFixedArgs, 6877 i, j*Parts[j].getValueType().getStoreSize()); 6878 if (NumParts > 1 && j == 0) 6879 MyFlags.Flags.setSplit(); 6880 else if (j != 0) 6881 MyFlags.Flags.setOrigAlign(1); 6882 6883 CLI.Outs.push_back(MyFlags); 6884 CLI.OutVals.push_back(Parts[j]); 6885 } 6886 6887 if (NeedsRegBlock && Value == NumValues - 1) 6888 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6889 } 6890 } 6891 6892 SmallVector<SDValue, 4> InVals; 6893 CLI.Chain = LowerCall(CLI, InVals); 6894 6895 // Verify that the target's LowerCall behaved as expected. 6896 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6897 "LowerCall didn't return a valid chain!"); 6898 assert((!CLI.IsTailCall || InVals.empty()) && 6899 "LowerCall emitted a return value for a tail call!"); 6900 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6901 "LowerCall didn't emit the correct number of values!"); 6902 6903 // For a tail call, the return value is merely live-out and there aren't 6904 // any nodes in the DAG representing it. Return a special value to 6905 // indicate that a tail call has been emitted and no more Instructions 6906 // should be processed in the current block. 6907 if (CLI.IsTailCall) { 6908 CLI.DAG.setRoot(CLI.Chain); 6909 return std::make_pair(SDValue(), SDValue()); 6910 } 6911 6912 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6913 assert(InVals[i].getNode() && 6914 "LowerCall emitted a null value!"); 6915 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6916 "LowerCall emitted a value with the wrong type!"); 6917 }); 6918 6919 SmallVector<SDValue, 4> ReturnValues; 6920 if (!CanLowerReturn) { 6921 // The instruction result is the result of loading from the 6922 // hidden sret parameter. 6923 SmallVector<EVT, 1> PVTs; 6924 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6925 6926 ComputeValueVTs(*this, PtrRetTy, PVTs); 6927 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6928 EVT PtrVT = PVTs[0]; 6929 6930 unsigned NumValues = RetTys.size(); 6931 ReturnValues.resize(NumValues); 6932 SmallVector<SDValue, 4> Chains(NumValues); 6933 6934 for (unsigned i = 0; i < NumValues; ++i) { 6935 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6936 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6937 PtrVT)); 6938 SDValue L = CLI.DAG.getLoad( 6939 RetTys[i], CLI.DL, CLI.Chain, Add, 6940 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6941 false, false, 1); 6942 ReturnValues[i] = L; 6943 Chains[i] = L.getValue(1); 6944 } 6945 6946 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6947 } else { 6948 // Collect the legal value parts into potentially illegal values 6949 // that correspond to the original function's return values. 6950 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6951 if (CLI.RetSExt) 6952 AssertOp = ISD::AssertSext; 6953 else if (CLI.RetZExt) 6954 AssertOp = ISD::AssertZext; 6955 unsigned CurReg = 0; 6956 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6957 EVT VT = RetTys[I]; 6958 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6959 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6960 6961 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6962 NumRegs, RegisterVT, VT, nullptr, 6963 AssertOp)); 6964 CurReg += NumRegs; 6965 } 6966 6967 // For a function returning void, there is no return value. We can't create 6968 // such a node, so we just return a null return value in that case. In 6969 // that case, nothing will actually look at the value. 6970 if (ReturnValues.empty()) 6971 return std::make_pair(SDValue(), CLI.Chain); 6972 } 6973 6974 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6975 CLI.DAG.getVTList(RetTys), ReturnValues); 6976 return std::make_pair(Res, CLI.Chain); 6977 } 6978 6979 void TargetLowering::LowerOperationWrapper(SDNode *N, 6980 SmallVectorImpl<SDValue> &Results, 6981 SelectionDAG &DAG) const { 6982 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6983 if (Res.getNode()) 6984 Results.push_back(Res); 6985 } 6986 6987 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6988 llvm_unreachable("LowerOperation not implemented for this target!"); 6989 } 6990 6991 void 6992 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6993 SDValue Op = getNonRegisterValue(V); 6994 assert((Op.getOpcode() != ISD::CopyFromReg || 6995 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6996 "Copy from a reg to the same reg!"); 6997 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6998 6999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7000 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7001 SDValue Chain = DAG.getEntryNode(); 7002 7003 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7004 FuncInfo.PreferredExtendType.end()) 7005 ? ISD::ANY_EXTEND 7006 : FuncInfo.PreferredExtendType[V]; 7007 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7008 PendingExports.push_back(Chain); 7009 } 7010 7011 #include "llvm/CodeGen/SelectionDAGISel.h" 7012 7013 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7014 /// entry block, return true. This includes arguments used by switches, since 7015 /// the switch may expand into multiple basic blocks. 7016 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7017 // With FastISel active, we may be splitting blocks, so force creation 7018 // of virtual registers for all non-dead arguments. 7019 if (FastISel) 7020 return A->use_empty(); 7021 7022 const BasicBlock *Entry = A->getParent()->begin(); 7023 for (const User *U : A->users()) 7024 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7025 return false; // Use not in entry block. 7026 7027 return true; 7028 } 7029 7030 void SelectionDAGISel::LowerArguments(const Function &F) { 7031 SelectionDAG &DAG = SDB->DAG; 7032 SDLoc dl = SDB->getCurSDLoc(); 7033 const DataLayout *DL = TLI->getDataLayout(); 7034 SmallVector<ISD::InputArg, 16> Ins; 7035 7036 if (!FuncInfo->CanLowerReturn) { 7037 // Put in an sret pointer parameter before all the other parameters. 7038 SmallVector<EVT, 1> ValueVTs; 7039 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7040 7041 // NOTE: Assuming that a pointer will never break down to more than one VT 7042 // or one register. 7043 ISD::ArgFlagsTy Flags; 7044 Flags.setSRet(); 7045 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7046 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7047 ISD::InputArg::NoArgIndex, 0); 7048 Ins.push_back(RetArg); 7049 } 7050 7051 // Set up the incoming argument description vector. 7052 unsigned Idx = 1; 7053 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7054 I != E; ++I, ++Idx) { 7055 SmallVector<EVT, 4> ValueVTs; 7056 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7057 bool isArgValueUsed = !I->use_empty(); 7058 unsigned PartBase = 0; 7059 Type *FinalType = I->getType(); 7060 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7061 FinalType = cast<PointerType>(FinalType)->getElementType(); 7062 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7063 FinalType, F.getCallingConv(), F.isVarArg()); 7064 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7065 Value != NumValues; ++Value) { 7066 EVT VT = ValueVTs[Value]; 7067 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7068 ISD::ArgFlagsTy Flags; 7069 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7070 7071 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7072 Flags.setZExt(); 7073 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7074 Flags.setSExt(); 7075 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7076 Flags.setInReg(); 7077 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7078 Flags.setSRet(); 7079 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7080 Flags.setByVal(); 7081 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7082 Flags.setInAlloca(); 7083 // Set the byval flag for CCAssignFn callbacks that don't know about 7084 // inalloca. This way we can know how many bytes we should've allocated 7085 // and how many bytes a callee cleanup function will pop. If we port 7086 // inalloca to more targets, we'll have to add custom inalloca handling 7087 // in the various CC lowering callbacks. 7088 Flags.setByVal(); 7089 } 7090 if (Flags.isByVal() || Flags.isInAlloca()) { 7091 PointerType *Ty = cast<PointerType>(I->getType()); 7092 Type *ElementTy = Ty->getElementType(); 7093 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7094 // For ByVal, alignment should be passed from FE. BE will guess if 7095 // this info is not there but there are cases it cannot get right. 7096 unsigned FrameAlign; 7097 if (F.getParamAlignment(Idx)) 7098 FrameAlign = F.getParamAlignment(Idx); 7099 else 7100 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7101 Flags.setByValAlign(FrameAlign); 7102 } 7103 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7104 Flags.setNest(); 7105 if (NeedsRegBlock) 7106 Flags.setInConsecutiveRegs(); 7107 Flags.setOrigAlign(OriginalAlignment); 7108 7109 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7110 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7111 for (unsigned i = 0; i != NumRegs; ++i) { 7112 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7113 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7114 if (NumRegs > 1 && i == 0) 7115 MyFlags.Flags.setSplit(); 7116 // if it isn't first piece, alignment must be 1 7117 else if (i > 0) 7118 MyFlags.Flags.setOrigAlign(1); 7119 Ins.push_back(MyFlags); 7120 } 7121 if (NeedsRegBlock && Value == NumValues - 1) 7122 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7123 PartBase += VT.getStoreSize(); 7124 } 7125 } 7126 7127 // Call the target to set up the argument values. 7128 SmallVector<SDValue, 8> InVals; 7129 SDValue NewRoot = TLI->LowerFormalArguments( 7130 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7131 7132 // Verify that the target's LowerFormalArguments behaved as expected. 7133 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7134 "LowerFormalArguments didn't return a valid chain!"); 7135 assert(InVals.size() == Ins.size() && 7136 "LowerFormalArguments didn't emit the correct number of values!"); 7137 DEBUG({ 7138 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7139 assert(InVals[i].getNode() && 7140 "LowerFormalArguments emitted a null value!"); 7141 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7142 "LowerFormalArguments emitted a value with the wrong type!"); 7143 } 7144 }); 7145 7146 // Update the DAG with the new chain value resulting from argument lowering. 7147 DAG.setRoot(NewRoot); 7148 7149 // Set up the argument values. 7150 unsigned i = 0; 7151 Idx = 1; 7152 if (!FuncInfo->CanLowerReturn) { 7153 // Create a virtual register for the sret pointer, and put in a copy 7154 // from the sret argument into it. 7155 SmallVector<EVT, 1> ValueVTs; 7156 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7157 MVT VT = ValueVTs[0].getSimpleVT(); 7158 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7159 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7160 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7161 RegVT, VT, nullptr, AssertOp); 7162 7163 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7164 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7165 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7166 FuncInfo->DemoteRegister = SRetReg; 7167 NewRoot = 7168 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7169 DAG.setRoot(NewRoot); 7170 7171 // i indexes lowered arguments. Bump it past the hidden sret argument. 7172 // Idx indexes LLVM arguments. Don't touch it. 7173 ++i; 7174 } 7175 7176 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7177 ++I, ++Idx) { 7178 SmallVector<SDValue, 4> ArgValues; 7179 SmallVector<EVT, 4> ValueVTs; 7180 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7181 unsigned NumValues = ValueVTs.size(); 7182 7183 // If this argument is unused then remember its value. It is used to generate 7184 // debugging information. 7185 if (I->use_empty() && NumValues) { 7186 SDB->setUnusedArgValue(I, InVals[i]); 7187 7188 // Also remember any frame index for use in FastISel. 7189 if (FrameIndexSDNode *FI = 7190 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7191 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7192 } 7193 7194 for (unsigned Val = 0; Val != NumValues; ++Val) { 7195 EVT VT = ValueVTs[Val]; 7196 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7197 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7198 7199 if (!I->use_empty()) { 7200 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7201 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7202 AssertOp = ISD::AssertSext; 7203 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7204 AssertOp = ISD::AssertZext; 7205 7206 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7207 NumParts, PartVT, VT, 7208 nullptr, AssertOp)); 7209 } 7210 7211 i += NumParts; 7212 } 7213 7214 // We don't need to do anything else for unused arguments. 7215 if (ArgValues.empty()) 7216 continue; 7217 7218 // Note down frame index. 7219 if (FrameIndexSDNode *FI = 7220 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7221 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7222 7223 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7224 SDB->getCurSDLoc()); 7225 7226 SDB->setValue(I, Res); 7227 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7228 if (LoadSDNode *LNode = 7229 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7230 if (FrameIndexSDNode *FI = 7231 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7232 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7233 } 7234 7235 // If this argument is live outside of the entry block, insert a copy from 7236 // wherever we got it to the vreg that other BB's will reference it as. 7237 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7238 // If we can, though, try to skip creating an unnecessary vreg. 7239 // FIXME: This isn't very clean... it would be nice to make this more 7240 // general. It's also subtly incompatible with the hacks FastISel 7241 // uses with vregs. 7242 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7243 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7244 FuncInfo->ValueMap[I] = Reg; 7245 continue; 7246 } 7247 } 7248 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7249 FuncInfo->InitializeRegForValue(I); 7250 SDB->CopyToExportRegsIfNeeded(I); 7251 } 7252 } 7253 7254 assert(i == InVals.size() && "Argument register count mismatch!"); 7255 7256 // Finally, if the target has anything special to do, allow it to do so. 7257 EmitFunctionEntryCode(); 7258 } 7259 7260 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7261 /// ensure constants are generated when needed. Remember the virtual registers 7262 /// that need to be added to the Machine PHI nodes as input. We cannot just 7263 /// directly add them, because expansion might result in multiple MBB's for one 7264 /// BB. As such, the start of the BB might correspond to a different MBB than 7265 /// the end. 7266 /// 7267 void 7268 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7269 const TerminatorInst *TI = LLVMBB->getTerminator(); 7270 7271 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7272 7273 // Check PHI nodes in successors that expect a value to be available from this 7274 // block. 7275 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7276 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7277 if (!isa<PHINode>(SuccBB->begin())) continue; 7278 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7279 7280 // If this terminator has multiple identical successors (common for 7281 // switches), only handle each succ once. 7282 if (!SuccsHandled.insert(SuccMBB).second) 7283 continue; 7284 7285 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7286 7287 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7288 // nodes and Machine PHI nodes, but the incoming operands have not been 7289 // emitted yet. 7290 for (BasicBlock::const_iterator I = SuccBB->begin(); 7291 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7292 // Ignore dead phi's. 7293 if (PN->use_empty()) continue; 7294 7295 // Skip empty types 7296 if (PN->getType()->isEmptyTy()) 7297 continue; 7298 7299 unsigned Reg; 7300 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7301 7302 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7303 unsigned &RegOut = ConstantsOut[C]; 7304 if (RegOut == 0) { 7305 RegOut = FuncInfo.CreateRegs(C->getType()); 7306 CopyValueToVirtualRegister(C, RegOut); 7307 } 7308 Reg = RegOut; 7309 } else { 7310 DenseMap<const Value *, unsigned>::iterator I = 7311 FuncInfo.ValueMap.find(PHIOp); 7312 if (I != FuncInfo.ValueMap.end()) 7313 Reg = I->second; 7314 else { 7315 assert(isa<AllocaInst>(PHIOp) && 7316 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7317 "Didn't codegen value into a register!??"); 7318 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7319 CopyValueToVirtualRegister(PHIOp, Reg); 7320 } 7321 } 7322 7323 // Remember that this register needs to added to the machine PHI node as 7324 // the input for this MBB. 7325 SmallVector<EVT, 4> ValueVTs; 7326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7327 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7328 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7329 EVT VT = ValueVTs[vti]; 7330 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7331 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7332 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7333 Reg += NumRegisters; 7334 } 7335 } 7336 } 7337 7338 ConstantsOut.clear(); 7339 } 7340 7341 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7342 /// is 0. 7343 MachineBasicBlock * 7344 SelectionDAGBuilder::StackProtectorDescriptor:: 7345 AddSuccessorMBB(const BasicBlock *BB, 7346 MachineBasicBlock *ParentMBB, 7347 bool IsLikely, 7348 MachineBasicBlock *SuccMBB) { 7349 // If SuccBB has not been created yet, create it. 7350 if (!SuccMBB) { 7351 MachineFunction *MF = ParentMBB->getParent(); 7352 MachineFunction::iterator BBI = ParentMBB; 7353 SuccMBB = MF->CreateMachineBasicBlock(BB); 7354 MF->insert(++BBI, SuccMBB); 7355 } 7356 // Add it as a successor of ParentMBB. 7357 ParentMBB->addSuccessor( 7358 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7359 return SuccMBB; 7360 } 7361 7362 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7363 MachineFunction::iterator I = MBB; 7364 if (++I == FuncInfo.MF->end()) 7365 return nullptr; 7366 return I; 7367 } 7368 7369 /// During lowering new call nodes can be created (such as memset, etc.). 7370 /// Those will become new roots of the current DAG, but complications arise 7371 /// when they are tail calls. In such cases, the call lowering will update 7372 /// the root, but the builder still needs to know that a tail call has been 7373 /// lowered in order to avoid generating an additional return. 7374 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7375 // If the node is null, we do have a tail call. 7376 if (MaybeTC.getNode() != nullptr) 7377 DAG.setRoot(MaybeTC); 7378 else 7379 HasTailCall = true; 7380 } 7381 7382 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7383 unsigned *TotalCases, unsigned First, 7384 unsigned Last) { 7385 assert(Last >= First); 7386 assert(TotalCases[Last] >= TotalCases[First]); 7387 7388 APInt LowCase = Clusters[First].Low->getValue(); 7389 APInt HighCase = Clusters[Last].High->getValue(); 7390 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7391 7392 // FIXME: A range of consecutive cases has 100% density, but only requires one 7393 // comparison to lower. We should discriminate against such consecutive ranges 7394 // in jump tables. 7395 7396 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7397 uint64_t Range = Diff + 1; 7398 7399 uint64_t NumCases = 7400 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7401 7402 assert(NumCases < UINT64_MAX / 100); 7403 assert(Range >= NumCases); 7404 7405 return NumCases * 100 >= Range * MinJumpTableDensity; 7406 } 7407 7408 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7409 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7410 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7411 } 7412 7413 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7414 unsigned First, unsigned Last, 7415 const SwitchInst *SI, 7416 MachineBasicBlock *DefaultMBB, 7417 CaseCluster &JTCluster) { 7418 assert(First <= Last); 7419 7420 uint32_t Weight = 0; 7421 unsigned NumCmps = 0; 7422 std::vector<MachineBasicBlock*> Table; 7423 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7424 for (unsigned I = First; I <= Last; ++I) { 7425 assert(Clusters[I].Kind == CC_Range); 7426 Weight += Clusters[I].Weight; 7427 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7428 APInt Low = Clusters[I].Low->getValue(); 7429 APInt High = Clusters[I].High->getValue(); 7430 NumCmps += (Low == High) ? 1 : 2; 7431 if (I != First) { 7432 // Fill the gap between this and the previous cluster. 7433 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7434 assert(PreviousHigh.slt(Low)); 7435 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7436 for (uint64_t J = 0; J < Gap; J++) 7437 Table.push_back(DefaultMBB); 7438 } 7439 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7440 for (uint64_t J = 0; J < ClusterSize; ++J) 7441 Table.push_back(Clusters[I].MBB); 7442 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7443 } 7444 7445 unsigned NumDests = JTWeights.size(); 7446 if (isSuitableForBitTests(NumDests, NumCmps, 7447 Clusters[First].Low->getValue(), 7448 Clusters[Last].High->getValue())) { 7449 // Clusters[First..Last] should be lowered as bit tests instead. 7450 return false; 7451 } 7452 7453 // Create the MBB that will load from and jump through the table. 7454 // Note: We create it here, but it's not inserted into the function yet. 7455 MachineFunction *CurMF = FuncInfo.MF; 7456 MachineBasicBlock *JumpTableMBB = 7457 CurMF->CreateMachineBasicBlock(SI->getParent()); 7458 7459 // Add successors. Note: use table order for determinism. 7460 SmallPtrSet<MachineBasicBlock *, 8> Done; 7461 for (MachineBasicBlock *Succ : Table) { 7462 if (Done.count(Succ)) 7463 continue; 7464 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7465 Done.insert(Succ); 7466 } 7467 7468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7469 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7470 ->createJumpTableIndex(Table); 7471 7472 // Set up the jump table info. 7473 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7474 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7475 Clusters[Last].High->getValue(), SI->getCondition(), 7476 nullptr, false); 7477 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7478 7479 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7480 JTCases.size() - 1, Weight); 7481 return true; 7482 } 7483 7484 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7485 const SwitchInst *SI, 7486 MachineBasicBlock *DefaultMBB) { 7487 #ifndef NDEBUG 7488 // Clusters must be non-empty, sorted, and only contain Range clusters. 7489 assert(!Clusters.empty()); 7490 for (CaseCluster &C : Clusters) 7491 assert(C.Kind == CC_Range); 7492 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7493 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7494 #endif 7495 7496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7497 if (!areJTsAllowed(TLI)) 7498 return; 7499 7500 const int64_t N = Clusters.size(); 7501 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7502 7503 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7504 SmallVector<unsigned, 8> TotalCases(N); 7505 7506 for (unsigned i = 0; i < N; ++i) { 7507 APInt Hi = Clusters[i].High->getValue(); 7508 APInt Lo = Clusters[i].Low->getValue(); 7509 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7510 if (i != 0) 7511 TotalCases[i] += TotalCases[i - 1]; 7512 } 7513 7514 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7515 // Cheap case: the whole range might be suitable for jump table. 7516 CaseCluster JTCluster; 7517 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7518 Clusters[0] = JTCluster; 7519 Clusters.resize(1); 7520 return; 7521 } 7522 } 7523 7524 // The algorithm below is not suitable for -O0. 7525 if (TM.getOptLevel() == CodeGenOpt::None) 7526 return; 7527 7528 // Split Clusters into minimum number of dense partitions. The algorithm uses 7529 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7530 // for the Case Statement'" (1994), but builds the MinPartitions array in 7531 // reverse order to make it easier to reconstruct the partitions in ascending 7532 // order. In the choice between two optimal partitionings, it picks the one 7533 // which yields more jump tables. 7534 7535 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7536 SmallVector<unsigned, 8> MinPartitions(N); 7537 // LastElement[i] is the last element of the partition starting at i. 7538 SmallVector<unsigned, 8> LastElement(N); 7539 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7540 SmallVector<unsigned, 8> NumTables(N); 7541 7542 // Base case: There is only one way to partition Clusters[N-1]. 7543 MinPartitions[N - 1] = 1; 7544 LastElement[N - 1] = N - 1; 7545 assert(MinJumpTableSize > 1); 7546 NumTables[N - 1] = 0; 7547 7548 // Note: loop indexes are signed to avoid underflow. 7549 for (int64_t i = N - 2; i >= 0; i--) { 7550 // Find optimal partitioning of Clusters[i..N-1]. 7551 // Baseline: Put Clusters[i] into a partition on its own. 7552 MinPartitions[i] = MinPartitions[i + 1] + 1; 7553 LastElement[i] = i; 7554 NumTables[i] = NumTables[i + 1]; 7555 7556 // Search for a solution that results in fewer partitions. 7557 for (int64_t j = N - 1; j > i; j--) { 7558 // Try building a partition from Clusters[i..j]. 7559 if (isDense(Clusters, &TotalCases[0], i, j)) { 7560 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7561 bool IsTable = j - i + 1 >= MinJumpTableSize; 7562 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7563 7564 // If this j leads to fewer partitions, or same number of partitions 7565 // with more lookup tables, it is a better partitioning. 7566 if (NumPartitions < MinPartitions[i] || 7567 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7568 MinPartitions[i] = NumPartitions; 7569 LastElement[i] = j; 7570 NumTables[i] = Tables; 7571 } 7572 } 7573 } 7574 } 7575 7576 // Iterate over the partitions, replacing some with jump tables in-place. 7577 unsigned DstIndex = 0; 7578 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7579 Last = LastElement[First]; 7580 assert(Last >= First); 7581 assert(DstIndex <= First); 7582 unsigned NumClusters = Last - First + 1; 7583 7584 CaseCluster JTCluster; 7585 if (NumClusters >= MinJumpTableSize && 7586 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7587 Clusters[DstIndex++] = JTCluster; 7588 } else { 7589 for (unsigned I = First; I <= Last; ++I) 7590 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7591 } 7592 } 7593 Clusters.resize(DstIndex); 7594 } 7595 7596 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7597 // FIXME: Using the pointer type doesn't seem ideal. 7598 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7599 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7600 return Range <= BW; 7601 } 7602 7603 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7604 unsigned NumCmps, 7605 const APInt &Low, 7606 const APInt &High) { 7607 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7608 // range of cases both require only one branch to lower. Just looking at the 7609 // number of clusters and destinations should be enough to decide whether to 7610 // build bit tests. 7611 7612 // To lower a range with bit tests, the range must fit the bitwidth of a 7613 // machine word. 7614 if (!rangeFitsInWord(Low, High)) 7615 return false; 7616 7617 // Decide whether it's profitable to lower this range with bit tests. Each 7618 // destination requires a bit test and branch, and there is an overall range 7619 // check branch. For a small number of clusters, separate comparisons might be 7620 // cheaper, and for many destinations, splitting the range might be better. 7621 return (NumDests == 1 && NumCmps >= 3) || 7622 (NumDests == 2 && NumCmps >= 5) || 7623 (NumDests == 3 && NumCmps >= 6); 7624 } 7625 7626 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7627 unsigned First, unsigned Last, 7628 const SwitchInst *SI, 7629 CaseCluster &BTCluster) { 7630 assert(First <= Last); 7631 if (First == Last) 7632 return false; 7633 7634 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7635 unsigned NumCmps = 0; 7636 for (int64_t I = First; I <= Last; ++I) { 7637 assert(Clusters[I].Kind == CC_Range); 7638 Dests.set(Clusters[I].MBB->getNumber()); 7639 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7640 } 7641 unsigned NumDests = Dests.count(); 7642 7643 APInt Low = Clusters[First].Low->getValue(); 7644 APInt High = Clusters[Last].High->getValue(); 7645 assert(Low.slt(High)); 7646 7647 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7648 return false; 7649 7650 APInt LowBound; 7651 APInt CmpRange; 7652 7653 const int BitWidth = 7654 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7655 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7656 7657 if (Low.isNonNegative() && High.slt(BitWidth)) { 7658 // Optimize the case where all the case values fit in a 7659 // word without having to subtract minValue. In this case, 7660 // we can optimize away the subtraction. 7661 LowBound = APInt::getNullValue(Low.getBitWidth()); 7662 CmpRange = High; 7663 } else { 7664 LowBound = Low; 7665 CmpRange = High - Low; 7666 } 7667 7668 CaseBitsVector CBV; 7669 uint32_t TotalWeight = 0; 7670 for (unsigned i = First; i <= Last; ++i) { 7671 // Find the CaseBits for this destination. 7672 unsigned j; 7673 for (j = 0; j < CBV.size(); ++j) 7674 if (CBV[j].BB == Clusters[i].MBB) 7675 break; 7676 if (j == CBV.size()) 7677 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7678 CaseBits *CB = &CBV[j]; 7679 7680 // Update Mask, Bits and ExtraWeight. 7681 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7682 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7683 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7684 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7685 CB->Bits += Hi - Lo + 1; 7686 CB->ExtraWeight += Clusters[i].Weight; 7687 TotalWeight += Clusters[i].Weight; 7688 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7689 } 7690 7691 BitTestInfo BTI; 7692 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7693 // Sort by weight first, number of bits second. 7694 if (a.ExtraWeight != b.ExtraWeight) 7695 return a.ExtraWeight > b.ExtraWeight; 7696 return a.Bits > b.Bits; 7697 }); 7698 7699 for (auto &CB : CBV) { 7700 MachineBasicBlock *BitTestBB = 7701 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7702 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7703 } 7704 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7705 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7706 nullptr, std::move(BTI)); 7707 7708 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7709 BitTestCases.size() - 1, TotalWeight); 7710 return true; 7711 } 7712 7713 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7714 const SwitchInst *SI) { 7715 // Partition Clusters into as few subsets as possible, where each subset has a 7716 // range that fits in a machine word and has <= 3 unique destinations. 7717 7718 #ifndef NDEBUG 7719 // Clusters must be sorted and contain Range or JumpTable clusters. 7720 assert(!Clusters.empty()); 7721 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7722 for (const CaseCluster &C : Clusters) 7723 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7724 for (unsigned i = 1; i < Clusters.size(); ++i) 7725 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7726 #endif 7727 7728 // The algorithm below is not suitable for -O0. 7729 if (TM.getOptLevel() == CodeGenOpt::None) 7730 return; 7731 7732 // If target does not have legal shift left, do not emit bit tests at all. 7733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7734 EVT PTy = TLI.getPointerTy(); 7735 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7736 return; 7737 7738 int BitWidth = PTy.getSizeInBits(); 7739 const int64_t N = Clusters.size(); 7740 7741 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7742 SmallVector<unsigned, 8> MinPartitions(N); 7743 // LastElement[i] is the last element of the partition starting at i. 7744 SmallVector<unsigned, 8> LastElement(N); 7745 7746 // FIXME: This might not be the best algorithm for finding bit test clusters. 7747 7748 // Base case: There is only one way to partition Clusters[N-1]. 7749 MinPartitions[N - 1] = 1; 7750 LastElement[N - 1] = N - 1; 7751 7752 // Note: loop indexes are signed to avoid underflow. 7753 for (int64_t i = N - 2; i >= 0; --i) { 7754 // Find optimal partitioning of Clusters[i..N-1]. 7755 // Baseline: Put Clusters[i] into a partition on its own. 7756 MinPartitions[i] = MinPartitions[i + 1] + 1; 7757 LastElement[i] = i; 7758 7759 // Search for a solution that results in fewer partitions. 7760 // Note: the search is limited by BitWidth, reducing time complexity. 7761 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7762 // Try building a partition from Clusters[i..j]. 7763 7764 // Check the range. 7765 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7766 Clusters[j].High->getValue())) 7767 continue; 7768 7769 // Check nbr of destinations and cluster types. 7770 // FIXME: This works, but doesn't seem very efficient. 7771 bool RangesOnly = true; 7772 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7773 for (int64_t k = i; k <= j; k++) { 7774 if (Clusters[k].Kind != CC_Range) { 7775 RangesOnly = false; 7776 break; 7777 } 7778 Dests.set(Clusters[k].MBB->getNumber()); 7779 } 7780 if (!RangesOnly || Dests.count() > 3) 7781 break; 7782 7783 // Check if it's a better partition. 7784 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7785 if (NumPartitions < MinPartitions[i]) { 7786 // Found a better partition. 7787 MinPartitions[i] = NumPartitions; 7788 LastElement[i] = j; 7789 } 7790 } 7791 } 7792 7793 // Iterate over the partitions, replacing with bit-test clusters in-place. 7794 unsigned DstIndex = 0; 7795 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7796 Last = LastElement[First]; 7797 assert(First <= Last); 7798 assert(DstIndex <= First); 7799 7800 CaseCluster BitTestCluster; 7801 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7802 Clusters[DstIndex++] = BitTestCluster; 7803 } else { 7804 size_t NumClusters = Last - First + 1; 7805 std::memmove(&Clusters[DstIndex], &Clusters[First], 7806 sizeof(Clusters[0]) * NumClusters); 7807 DstIndex += NumClusters; 7808 } 7809 } 7810 Clusters.resize(DstIndex); 7811 } 7812 7813 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7814 MachineBasicBlock *SwitchMBB, 7815 MachineBasicBlock *DefaultMBB) { 7816 MachineFunction *CurMF = FuncInfo.MF; 7817 MachineBasicBlock *NextMBB = nullptr; 7818 MachineFunction::iterator BBI = W.MBB; 7819 if (++BBI != FuncInfo.MF->end()) 7820 NextMBB = BBI; 7821 7822 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7823 7824 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7825 7826 if (Size == 2 && W.MBB == SwitchMBB) { 7827 // If any two of the cases has the same destination, and if one value 7828 // is the same as the other, but has one bit unset that the other has set, 7829 // use bit manipulation to do two compares at once. For example: 7830 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7831 // TODO: This could be extended to merge any 2 cases in switches with 3 7832 // cases. 7833 // TODO: Handle cases where W.CaseBB != SwitchBB. 7834 CaseCluster &Small = *W.FirstCluster; 7835 CaseCluster &Big = *W.LastCluster; 7836 7837 if (Small.Low == Small.High && Big.Low == Big.High && 7838 Small.MBB == Big.MBB) { 7839 const APInt &SmallValue = Small.Low->getValue(); 7840 const APInt &BigValue = Big.Low->getValue(); 7841 7842 // Check that there is only one bit different. 7843 APInt CommonBit = BigValue ^ SmallValue; 7844 if (CommonBit.isPowerOf2()) { 7845 SDValue CondLHS = getValue(Cond); 7846 EVT VT = CondLHS.getValueType(); 7847 SDLoc DL = getCurSDLoc(); 7848 7849 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7850 DAG.getConstant(CommonBit, DL, VT)); 7851 SDValue Cond = DAG.getSetCC( 7852 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7853 ISD::SETEQ); 7854 7855 // Update successor info. 7856 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7857 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7858 addSuccessorWithWeight( 7859 SwitchMBB, DefaultMBB, 7860 // The default destination is the first successor in IR. 7861 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7862 : 0); 7863 7864 // Insert the true branch. 7865 SDValue BrCond = 7866 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7867 DAG.getBasicBlock(Small.MBB)); 7868 // Insert the false branch. 7869 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7870 DAG.getBasicBlock(DefaultMBB)); 7871 7872 DAG.setRoot(BrCond); 7873 return; 7874 } 7875 } 7876 } 7877 7878 if (TM.getOptLevel() != CodeGenOpt::None) { 7879 // Order cases by weight so the most likely case will be checked first. 7880 std::sort(W.FirstCluster, W.LastCluster + 1, 7881 [](const CaseCluster &a, const CaseCluster &b) { 7882 return a.Weight > b.Weight; 7883 }); 7884 7885 // Rearrange the case blocks so that the last one falls through if possible 7886 // without without changing the order of weights. 7887 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7888 --I; 7889 if (I->Weight > W.LastCluster->Weight) 7890 break; 7891 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7892 std::swap(*I, *W.LastCluster); 7893 break; 7894 } 7895 } 7896 } 7897 7898 // Compute total weight. 7899 uint32_t UnhandledWeights = 0; 7900 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7901 UnhandledWeights += I->Weight; 7902 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7903 } 7904 7905 MachineBasicBlock *CurMBB = W.MBB; 7906 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7907 MachineBasicBlock *Fallthrough; 7908 if (I == W.LastCluster) { 7909 // For the last cluster, fall through to the default destination. 7910 Fallthrough = DefaultMBB; 7911 } else { 7912 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7913 CurMF->insert(BBI, Fallthrough); 7914 // Put Cond in a virtual register to make it available from the new blocks. 7915 ExportFromCurrentBlock(Cond); 7916 } 7917 7918 switch (I->Kind) { 7919 case CC_JumpTable: { 7920 // FIXME: Optimize away range check based on pivot comparisons. 7921 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7922 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7923 7924 // The jump block hasn't been inserted yet; insert it here. 7925 MachineBasicBlock *JumpMBB = JT->MBB; 7926 CurMF->insert(BBI, JumpMBB); 7927 addSuccessorWithWeight(CurMBB, Fallthrough); 7928 addSuccessorWithWeight(CurMBB, JumpMBB); 7929 7930 // The jump table header will be inserted in our current block, do the 7931 // range check, and fall through to our fallthrough block. 7932 JTH->HeaderBB = CurMBB; 7933 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7934 7935 // If we're in the right place, emit the jump table header right now. 7936 if (CurMBB == SwitchMBB) { 7937 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7938 JTH->Emitted = true; 7939 } 7940 break; 7941 } 7942 case CC_BitTests: { 7943 // FIXME: Optimize away range check based on pivot comparisons. 7944 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7945 7946 // The bit test blocks haven't been inserted yet; insert them here. 7947 for (BitTestCase &BTC : BTB->Cases) 7948 CurMF->insert(BBI, BTC.ThisBB); 7949 7950 // Fill in fields of the BitTestBlock. 7951 BTB->Parent = CurMBB; 7952 BTB->Default = Fallthrough; 7953 7954 // If we're in the right place, emit the bit test header header right now. 7955 if (CurMBB ==SwitchMBB) { 7956 visitBitTestHeader(*BTB, SwitchMBB); 7957 BTB->Emitted = true; 7958 } 7959 break; 7960 } 7961 case CC_Range: { 7962 const Value *RHS, *LHS, *MHS; 7963 ISD::CondCode CC; 7964 if (I->Low == I->High) { 7965 // Check Cond == I->Low. 7966 CC = ISD::SETEQ; 7967 LHS = Cond; 7968 RHS=I->Low; 7969 MHS = nullptr; 7970 } else { 7971 // Check I->Low <= Cond <= I->High. 7972 CC = ISD::SETLE; 7973 LHS = I->Low; 7974 MHS = Cond; 7975 RHS = I->High; 7976 } 7977 7978 // The false weight is the sum of all unhandled cases. 7979 UnhandledWeights -= I->Weight; 7980 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7981 UnhandledWeights); 7982 7983 if (CurMBB == SwitchMBB) 7984 visitSwitchCase(CB, SwitchMBB); 7985 else 7986 SwitchCases.push_back(CB); 7987 7988 break; 7989 } 7990 } 7991 CurMBB = Fallthrough; 7992 } 7993 } 7994 7995 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 7996 CaseClusterIt First, 7997 CaseClusterIt Last) { 7998 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 7999 if (X.Weight != CC.Weight) 8000 return X.Weight > CC.Weight; 8001 8002 // Ties are broken by comparing the case value. 8003 return X.Low->getValue().slt(CC.Low->getValue()); 8004 }); 8005 } 8006 8007 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8008 const SwitchWorkListItem &W, 8009 Value *Cond, 8010 MachineBasicBlock *SwitchMBB) { 8011 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8012 "Clusters not sorted?"); 8013 8014 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8015 8016 // Balance the tree based on branch weights to create a near-optimal (in terms 8017 // of search time given key frequency) binary search tree. See e.g. Kurt 8018 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8019 CaseClusterIt LastLeft = W.FirstCluster; 8020 CaseClusterIt FirstRight = W.LastCluster; 8021 uint32_t LeftWeight = LastLeft->Weight; 8022 uint32_t RightWeight = FirstRight->Weight; 8023 8024 // Move LastLeft and FirstRight towards each other from opposite directions to 8025 // find a partitioning of the clusters which balances the weight on both 8026 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8027 // taken to ensure 0-weight nodes are distributed evenly. 8028 unsigned I = 0; 8029 while (LastLeft + 1 < FirstRight) { 8030 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8031 LeftWeight += (++LastLeft)->Weight; 8032 else 8033 RightWeight += (--FirstRight)->Weight; 8034 I++; 8035 } 8036 8037 for (;;) { 8038 // Our binary search tree differs from a typical BST in that ours can have up 8039 // to three values in each leaf. The pivot selection above doesn't take that 8040 // into account, which means the tree might require more nodes and be less 8041 // efficient. We compensate for this here. 8042 8043 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8044 unsigned NumRight = W.LastCluster - FirstRight + 1; 8045 8046 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8047 // If one side has less than 3 clusters, and the other has more than 3, 8048 // consider taking a cluster from the other side. 8049 8050 if (NumLeft < NumRight) { 8051 // Consider moving the first cluster on the right to the left side. 8052 CaseCluster &CC = *FirstRight; 8053 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8054 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8055 if (LeftSideRank <= RightSideRank) { 8056 // Moving the cluster to the left does not demote it. 8057 ++LastLeft; 8058 ++FirstRight; 8059 continue; 8060 } 8061 } else { 8062 assert(NumRight < NumLeft); 8063 // Consider moving the last element on the left to the right side. 8064 CaseCluster &CC = *LastLeft; 8065 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8066 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8067 if (RightSideRank <= LeftSideRank) { 8068 // Moving the cluster to the right does not demot it. 8069 --LastLeft; 8070 --FirstRight; 8071 continue; 8072 } 8073 } 8074 } 8075 break; 8076 } 8077 8078 assert(LastLeft + 1 == FirstRight); 8079 assert(LastLeft >= W.FirstCluster); 8080 assert(FirstRight <= W.LastCluster); 8081 8082 // Use the first element on the right as pivot since we will make less-than 8083 // comparisons against it. 8084 CaseClusterIt PivotCluster = FirstRight; 8085 assert(PivotCluster > W.FirstCluster); 8086 assert(PivotCluster <= W.LastCluster); 8087 8088 CaseClusterIt FirstLeft = W.FirstCluster; 8089 CaseClusterIt LastRight = W.LastCluster; 8090 8091 const ConstantInt *Pivot = PivotCluster->Low; 8092 8093 // New blocks will be inserted immediately after the current one. 8094 MachineFunction::iterator BBI = W.MBB; 8095 ++BBI; 8096 8097 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8098 // we can branch to its destination directly if it's squeezed exactly in 8099 // between the known lower bound and Pivot - 1. 8100 MachineBasicBlock *LeftMBB; 8101 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8102 FirstLeft->Low == W.GE && 8103 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8104 LeftMBB = FirstLeft->MBB; 8105 } else { 8106 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8107 FuncInfo.MF->insert(BBI, LeftMBB); 8108 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8109 // Put Cond in a virtual register to make it available from the new blocks. 8110 ExportFromCurrentBlock(Cond); 8111 } 8112 8113 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8114 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8115 // directly if RHS.High equals the current upper bound. 8116 MachineBasicBlock *RightMBB; 8117 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8118 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8119 RightMBB = FirstRight->MBB; 8120 } else { 8121 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8122 FuncInfo.MF->insert(BBI, RightMBB); 8123 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8124 // Put Cond in a virtual register to make it available from the new blocks. 8125 ExportFromCurrentBlock(Cond); 8126 } 8127 8128 // Create the CaseBlock record that will be used to lower the branch. 8129 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8130 LeftWeight, RightWeight); 8131 8132 if (W.MBB == SwitchMBB) 8133 visitSwitchCase(CB, SwitchMBB); 8134 else 8135 SwitchCases.push_back(CB); 8136 } 8137 8138 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8139 // Extract cases from the switch. 8140 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8141 CaseClusterVector Clusters; 8142 Clusters.reserve(SI.getNumCases()); 8143 for (auto I : SI.cases()) { 8144 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8145 const ConstantInt *CaseVal = I.getCaseValue(); 8146 uint32_t Weight = 8147 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8148 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8149 } 8150 8151 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8152 8153 // Cluster adjacent cases with the same destination. We do this at all 8154 // optimization levels because it's cheap to do and will make codegen faster 8155 // if there are many clusters. 8156 sortAndRangeify(Clusters); 8157 8158 if (TM.getOptLevel() != CodeGenOpt::None) { 8159 // Replace an unreachable default with the most popular destination. 8160 // FIXME: Exploit unreachable default more aggressively. 8161 bool UnreachableDefault = 8162 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8163 if (UnreachableDefault && !Clusters.empty()) { 8164 DenseMap<const BasicBlock *, unsigned> Popularity; 8165 unsigned MaxPop = 0; 8166 const BasicBlock *MaxBB = nullptr; 8167 for (auto I : SI.cases()) { 8168 const BasicBlock *BB = I.getCaseSuccessor(); 8169 if (++Popularity[BB] > MaxPop) { 8170 MaxPop = Popularity[BB]; 8171 MaxBB = BB; 8172 } 8173 } 8174 // Set new default. 8175 assert(MaxPop > 0 && MaxBB); 8176 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8177 8178 // Remove cases that were pointing to the destination that is now the 8179 // default. 8180 CaseClusterVector New; 8181 New.reserve(Clusters.size()); 8182 for (CaseCluster &CC : Clusters) { 8183 if (CC.MBB != DefaultMBB) 8184 New.push_back(CC); 8185 } 8186 Clusters = std::move(New); 8187 } 8188 } 8189 8190 // If there is only the default destination, jump there directly. 8191 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8192 if (Clusters.empty()) { 8193 SwitchMBB->addSuccessor(DefaultMBB); 8194 if (DefaultMBB != NextBlock(SwitchMBB)) { 8195 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8196 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8197 } 8198 return; 8199 } 8200 8201 findJumpTables(Clusters, &SI, DefaultMBB); 8202 findBitTestClusters(Clusters, &SI); 8203 8204 DEBUG({ 8205 dbgs() << "Case clusters: "; 8206 for (const CaseCluster &C : Clusters) { 8207 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8208 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8209 8210 C.Low->getValue().print(dbgs(), true); 8211 if (C.Low != C.High) { 8212 dbgs() << '-'; 8213 C.High->getValue().print(dbgs(), true); 8214 } 8215 dbgs() << ' '; 8216 } 8217 dbgs() << '\n'; 8218 }); 8219 8220 assert(!Clusters.empty()); 8221 SwitchWorkList WorkList; 8222 CaseClusterIt First = Clusters.begin(); 8223 CaseClusterIt Last = Clusters.end() - 1; 8224 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8225 8226 while (!WorkList.empty()) { 8227 SwitchWorkListItem W = WorkList.back(); 8228 WorkList.pop_back(); 8229 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8230 8231 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8232 // For optimized builds, lower large range as a balanced binary tree. 8233 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8234 continue; 8235 } 8236 8237 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8238 } 8239 } 8240