xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 7283f48a05de46fe8721ee6c29b1b6427e7d1a33)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GetElementPtrTypeIterator.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsAArch64.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Statepoint.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/Support/AtomicOrdering.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/MathExtras.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Target/TargetIntrinsicInfo.h"
96 #include "llvm/Target/TargetMachine.h"
97 #include "llvm/Target/TargetOptions.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <cstddef>
100 #include <iterator>
101 #include <limits>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace PatternMatch;
106 using namespace SwitchCG;
107 
108 #define DEBUG_TYPE "isel"
109 
110 /// LimitFloatPrecision - Generate low-precision inline sequences for
111 /// some float libcalls (6, 8 or 12 bits).
112 static unsigned LimitFloatPrecision;
113 
114 static cl::opt<bool>
115     InsertAssertAlign("insert-assert-align", cl::init(true),
116                       cl::desc("Insert the experimental `assertalign` node."),
117                       cl::ReallyHidden);
118 
119 static cl::opt<unsigned, true>
120     LimitFPPrecision("limit-float-precision",
121                      cl::desc("Generate low-precision inline sequences "
122                               "for some float libcalls"),
123                      cl::location(LimitFloatPrecision), cl::Hidden,
124                      cl::init(0));
125 
126 static cl::opt<unsigned> SwitchPeelThreshold(
127     "switch-peel-threshold", cl::Hidden, cl::init(66),
128     cl::desc("Set the case probability threshold for peeling the case from a "
129              "switch statement. A value greater than 100 will void this "
130              "optimization"));
131 
132 // Limit the width of DAG chains. This is important in general to prevent
133 // DAG-based analysis from blowing up. For example, alias analysis and
134 // load clustering may not complete in reasonable time. It is difficult to
135 // recognize and avoid this situation within each individual analysis, and
136 // future analyses are likely to have the same behavior. Limiting DAG width is
137 // the safe approach and will be especially important with global DAGs.
138 //
139 // MaxParallelChains default is arbitrarily high to avoid affecting
140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
141 // sequence over this should have been converted to llvm.memcpy by the
142 // frontend. It is easy to induce this behavior with .ll code such as:
143 // %buffer = alloca [4096 x i8]
144 // %data = load [4096 x i8]* %argPtr
145 // store [4096 x i8] %data, [4096 x i8]* %buffer
146 static const unsigned MaxParallelChains = 64;
147 
148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
149                                       const SDValue *Parts, unsigned NumParts,
150                                       MVT PartVT, EVT ValueVT, const Value *V,
151                                       Optional<CallingConv::ID> CC);
152 
153 /// getCopyFromParts - Create a value that contains the specified legal parts
154 /// combined into the value they represent.  If the parts combine to a type
155 /// larger than ValueVT then AssertOp can be used to specify whether the extra
156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
157 /// (ISD::AssertSext).
158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
159                                 const SDValue *Parts, unsigned NumParts,
160                                 MVT PartVT, EVT ValueVT, const Value *V,
161                                 Optional<CallingConv::ID> CC = None,
162                                 Optional<ISD::NodeType> AssertOp = None) {
163   // Let the target assemble the parts if it wants to
164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
165   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
166                                                    PartVT, ValueVT, CC))
167     return Val;
168 
169   if (ValueVT.isVector())
170     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
171                                   CC);
172 
173   assert(NumParts > 0 && "No parts to assemble!");
174   SDValue Val = Parts[0];
175 
176   if (NumParts > 1) {
177     // Assemble the value from multiple parts.
178     if (ValueVT.isInteger()) {
179       unsigned PartBits = PartVT.getSizeInBits();
180       unsigned ValueBits = ValueVT.getSizeInBits();
181 
182       // Assemble the power of 2 part.
183       unsigned RoundParts =
184           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
185       unsigned RoundBits = PartBits * RoundParts;
186       EVT RoundVT = RoundBits == ValueBits ?
187         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
188       SDValue Lo, Hi;
189 
190       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
191 
192       if (RoundParts > 2) {
193         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
194                               PartVT, HalfVT, V);
195         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
196                               RoundParts / 2, PartVT, HalfVT, V);
197       } else {
198         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
199         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
200       }
201 
202       if (DAG.getDataLayout().isBigEndian())
203         std::swap(Lo, Hi);
204 
205       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
206 
207       if (RoundParts < NumParts) {
208         // Assemble the trailing non-power-of-2 part.
209         unsigned OddParts = NumParts - RoundParts;
210         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
212                               OddVT, V, CC);
213 
214         // Combine the round and odd parts.
215         Lo = Val;
216         if (DAG.getDataLayout().isBigEndian())
217           std::swap(Lo, Hi);
218         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
220         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
221                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
222                                          TLI.getShiftAmountTy(
223                                              TotalVT, DAG.getDataLayout())));
224         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
225         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
226       }
227     } else if (PartVT.isFloatingPoint()) {
228       // FP split into multiple FP parts (for ppcf128)
229       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
230              "Unexpected split");
231       SDValue Lo, Hi;
232       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
233       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
234       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
235         std::swap(Lo, Hi);
236       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
237     } else {
238       // FP split into integer parts (soft fp)
239       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
240              !PartVT.isVector() && "Unexpected split");
241       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
242       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
243     }
244   }
245 
246   // There is now one part, held in Val.  Correct it to match ValueVT.
247   // PartEVT is the type of the register class that holds the value.
248   // ValueVT is the type of the inline asm operation.
249   EVT PartEVT = Val.getValueType();
250 
251   if (PartEVT == ValueVT)
252     return Val;
253 
254   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
255       ValueVT.bitsLT(PartEVT)) {
256     // For an FP value in an integer part, we need to truncate to the right
257     // width first.
258     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
259     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
260   }
261 
262   // Handle types that have the same size.
263   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
264     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
265 
266   // Handle types with different sizes.
267   if (PartEVT.isInteger() && ValueVT.isInteger()) {
268     if (ValueVT.bitsLT(PartEVT)) {
269       // For a truncate, see if we have any information to
270       // indicate whether the truncated bits will always be
271       // zero or sign-extension.
272       if (AssertOp)
273         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
274                           DAG.getValueType(ValueVT));
275       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
276     }
277     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
278   }
279 
280   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
281     // FP_ROUND's are always exact here.
282     if (ValueVT.bitsLT(Val.getValueType()))
283       return DAG.getNode(
284           ISD::FP_ROUND, DL, ValueVT, Val,
285           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
286 
287     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
288   }
289 
290   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
291   // then truncating.
292   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
293       ValueVT.bitsLT(PartEVT)) {
294     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
295     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
296   }
297 
298   report_fatal_error("Unknown mismatch in getCopyFromParts!");
299 }
300 
301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
302                                               const Twine &ErrMsg) {
303   const Instruction *I = dyn_cast_or_null<Instruction>(V);
304   if (!V)
305     return Ctx.emitError(ErrMsg);
306 
307   const char *AsmError = ", possible invalid constraint for vector type";
308   if (const CallInst *CI = dyn_cast<CallInst>(I))
309     if (CI->isInlineAsm())
310       return Ctx.emitError(I, ErrMsg + AsmError);
311 
312   return Ctx.emitError(I, ErrMsg);
313 }
314 
315 /// getCopyFromPartsVector - Create a value that contains the specified legal
316 /// parts combined into the value they represent.  If the parts combine to a
317 /// type larger than ValueVT then AssertOp can be used to specify whether the
318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
319 /// ValueVT (ISD::AssertSext).
320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
321                                       const SDValue *Parts, unsigned NumParts,
322                                       MVT PartVT, EVT ValueVT, const Value *V,
323                                       Optional<CallingConv::ID> CallConv) {
324   assert(ValueVT.isVector() && "Not a vector value");
325   assert(NumParts > 0 && "No parts to assemble!");
326   const bool IsABIRegCopy = CallConv.has_value();
327 
328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
329   SDValue Val = Parts[0];
330 
331   // Handle a multi-element vector.
332   if (NumParts > 1) {
333     EVT IntermediateVT;
334     MVT RegisterVT;
335     unsigned NumIntermediates;
336     unsigned NumRegs;
337 
338     if (IsABIRegCopy) {
339       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
340           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
341           NumIntermediates, RegisterVT);
342     } else {
343       NumRegs =
344           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
345                                      NumIntermediates, RegisterVT);
346     }
347 
348     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
349     NumParts = NumRegs; // Silence a compiler warning.
350     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
351     assert(RegisterVT.getSizeInBits() ==
352            Parts[0].getSimpleValueType().getSizeInBits() &&
353            "Part type sizes don't match!");
354 
355     // Assemble the parts into intermediate operands.
356     SmallVector<SDValue, 8> Ops(NumIntermediates);
357     if (NumIntermediates == NumParts) {
358       // If the register was not expanded, truncate or copy the value,
359       // as appropriate.
360       for (unsigned i = 0; i != NumParts; ++i)
361         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
362                                   PartVT, IntermediateVT, V, CallConv);
363     } else if (NumParts > 0) {
364       // If the intermediate type was expanded, build the intermediate
365       // operands from the parts.
366       assert(NumParts % NumIntermediates == 0 &&
367              "Must expand into a divisible number of parts!");
368       unsigned Factor = NumParts / NumIntermediates;
369       for (unsigned i = 0; i != NumIntermediates; ++i)
370         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
371                                   PartVT, IntermediateVT, V, CallConv);
372     }
373 
374     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
375     // intermediate operands.
376     EVT BuiltVectorTy =
377         IntermediateVT.isVector()
378             ? EVT::getVectorVT(
379                   *DAG.getContext(), IntermediateVT.getScalarType(),
380                   IntermediateVT.getVectorElementCount() * NumParts)
381             : EVT::getVectorVT(*DAG.getContext(),
382                                IntermediateVT.getScalarType(),
383                                NumIntermediates);
384     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
385                                                 : ISD::BUILD_VECTOR,
386                       DL, BuiltVectorTy, Ops);
387   }
388 
389   // There is now one part, held in Val.  Correct it to match ValueVT.
390   EVT PartEVT = Val.getValueType();
391 
392   if (PartEVT == ValueVT)
393     return Val;
394 
395   if (PartEVT.isVector()) {
396     // Vector/Vector bitcast.
397     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
398       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
399 
400     // If the element type of the source/dest vectors are the same, but the
401     // parts vector has more elements than the value vector, then we have a
402     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
403     // elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417     }
418 
419     // Promoted vector extract
420     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
421   }
422 
423   // Trivial bitcast if the types are the same size and the destination
424   // vector type is legal.
425   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
426       TLI.isTypeLegal(ValueVT))
427     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
428 
429   if (ValueVT.getVectorNumElements() != 1) {
430      // Certain ABIs require that vectors are passed as integers. For vectors
431      // are the same size, this is an obvious bitcast.
432      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
433        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434      } else if (ValueVT.bitsLT(PartEVT)) {
435        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
436        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
437        // Drop the extra bits.
438        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
439        return DAG.getBitcast(ValueVT, Val);
440      }
441 
442      diagnosePossiblyInvalidConstraint(
443          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
444      return DAG.getUNDEF(ValueVT);
445   }
446 
447   // Handle cases such as i8 -> <1 x i1>
448   EVT ValueSVT = ValueVT.getVectorElementType();
449   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
450     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
451       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
452     else
453       Val = ValueVT.isFloatingPoint()
454                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
455                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
456   }
457 
458   return DAG.getBuildVector(ValueVT, DL, Val);
459 }
460 
461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
462                                  SDValue Val, SDValue *Parts, unsigned NumParts,
463                                  MVT PartVT, const Value *V,
464                                  Optional<CallingConv::ID> CallConv);
465 
466 /// getCopyToParts - Create a series of nodes that contain the specified value
467 /// split into legal parts.  If the parts contain more bits than Val, then, for
468 /// integers, ExtendKind can be used to specify how to generate the extra bits.
469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
470                            SDValue *Parts, unsigned NumParts, MVT PartVT,
471                            const Value *V,
472                            Optional<CallingConv::ID> CallConv = None,
473                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
474   // Let the target split the parts if it wants to
475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
477                                       CallConv))
478     return;
479   EVT ValueVT = Val.getValueType();
480 
481   // Handle the vector case separately.
482   if (ValueVT.isVector())
483     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
484                                 CallConv);
485 
486   unsigned PartBits = PartVT.getSizeInBits();
487   unsigned OrigNumParts = NumParts;
488   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
489          "Copying to an illegal type!");
490 
491   if (NumParts == 0)
492     return;
493 
494   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
495   EVT PartEVT = PartVT;
496   if (PartEVT == ValueVT) {
497     assert(NumParts == 1 && "No-op copy with multiple parts!");
498     Parts[0] = Val;
499     return;
500   }
501 
502   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
503     // If the parts cover more bits than the value has, promote the value.
504     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
505       assert(NumParts == 1 && "Do not know what to promote to!");
506       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
507     } else {
508       if (ValueVT.isFloatingPoint()) {
509         // FP values need to be bitcast, then extended if they are being put
510         // into a larger container.
511         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
512         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
513       }
514       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
515              ValueVT.isInteger() &&
516              "Unknown mismatch!");
517       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
518       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
519       if (PartVT == MVT::x86mmx)
520         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
521     }
522   } else if (PartBits == ValueVT.getSizeInBits()) {
523     // Different types of the same size.
524     assert(NumParts == 1 && PartEVT != ValueVT);
525     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
526   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
527     // If the parts cover less bits than value has, truncate the value.
528     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529            ValueVT.isInteger() &&
530            "Unknown mismatch!");
531     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
533     if (PartVT == MVT::x86mmx)
534       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535   }
536 
537   // The value may have changed - recompute ValueVT.
538   ValueVT = Val.getValueType();
539   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
540          "Failed to tile the value with PartVT!");
541 
542   if (NumParts == 1) {
543     if (PartEVT != ValueVT) {
544       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
545                                         "scalar-to-vector conversion failed");
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547     }
548 
549     Parts[0] = Val;
550     return;
551   }
552 
553   // Expand the value into multiple parts.
554   if (NumParts & (NumParts - 1)) {
555     // The number of parts is not a power of 2.  Split off and copy the tail.
556     assert(PartVT.isInteger() && ValueVT.isInteger() &&
557            "Do not know what to expand to!");
558     unsigned RoundParts = 1 << Log2_32(NumParts);
559     unsigned RoundBits = RoundParts * PartBits;
560     unsigned OddParts = NumParts - RoundParts;
561     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
562       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
563 
564     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
565                    CallConv);
566 
567     if (DAG.getDataLayout().isBigEndian())
568       // The odd parts were reversed by getCopyToParts - unreverse them.
569       std::reverse(Parts + RoundParts, Parts + NumParts);
570 
571     NumParts = RoundParts;
572     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
573     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
574   }
575 
576   // The number of parts is a power of 2.  Repeatedly bisect the value using
577   // EXTRACT_ELEMENT.
578   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
579                          EVT::getIntegerVT(*DAG.getContext(),
580                                            ValueVT.getSizeInBits()),
581                          Val);
582 
583   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
584     for (unsigned i = 0; i < NumParts; i += StepSize) {
585       unsigned ThisBits = StepSize * PartBits / 2;
586       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
587       SDValue &Part0 = Parts[i];
588       SDValue &Part1 = Parts[i+StepSize/2];
589 
590       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
591                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
592       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
594 
595       if (ThisBits == PartBits && ThisVT != PartVT) {
596         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
597         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
598       }
599     }
600   }
601 
602   if (DAG.getDataLayout().isBigEndian())
603     std::reverse(Parts, Parts + OrigNumParts);
604 }
605 
606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
607                                      const SDLoc &DL, EVT PartVT) {
608   if (!PartVT.isVector())
609     return SDValue();
610 
611   EVT ValueVT = Val.getValueType();
612   ElementCount PartNumElts = PartVT.getVectorElementCount();
613   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
614 
615   // We only support widening vectors with equivalent element types and
616   // fixed/scalable properties. If a target needs to widen a fixed-length type
617   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
618   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
619       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
620       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
621     return SDValue();
622 
623   // Widening a scalable vector to another scalable vector is done by inserting
624   // the vector into a larger undef one.
625   if (PartNumElts.isScalable())
626     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
627                        Val, DAG.getVectorIdxConstant(0, DL));
628 
629   EVT ElementVT = PartVT.getVectorElementType();
630   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631   // undef elements.
632   SmallVector<SDValue, 16> Ops;
633   DAG.ExtractVectorElements(Val, Ops);
634   SDValue EltUndef = DAG.getUNDEF(ElementVT);
635   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
636 
637   // FIXME: Use CONCAT for 2x -> 4x.
638   return DAG.getBuildVector(PartVT, DL, Ops);
639 }
640 
641 /// getCopyToPartsVector - Create a series of nodes that contain the specified
642 /// value split into legal parts.
643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
644                                  SDValue Val, SDValue *Parts, unsigned NumParts,
645                                  MVT PartVT, const Value *V,
646                                  Optional<CallingConv::ID> CallConv) {
647   EVT ValueVT = Val.getValueType();
648   assert(ValueVT.isVector() && "Not a vector");
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650   const bool IsABIRegCopy = CallConv.has_value();
651 
652   if (NumParts == 1) {
653     EVT PartEVT = PartVT;
654     if (PartEVT == ValueVT) {
655       // Nothing to do.
656     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
657       // Bitconvert vector->vector case.
658       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
659     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
660       Val = Widened;
661     } else if (PartVT.isVector() &&
662                PartEVT.getVectorElementType().bitsGE(
663                    ValueVT.getVectorElementType()) &&
664                PartEVT.getVectorElementCount() ==
665                    ValueVT.getVectorElementCount()) {
666 
667       // Promoted vector extract
668       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
669     } else if (PartEVT.isVector() &&
670                PartEVT.getVectorElementType() !=
671                    ValueVT.getVectorElementType() &&
672                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
673                    TargetLowering::TypeWidenVector) {
674       // Combination of widening and promotion.
675       EVT WidenVT =
676           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
677                            PartVT.getVectorElementCount());
678       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
679       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
680     } else {
681       if (ValueVT.getVectorElementCount().isScalar()) {
682         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
683                           DAG.getVectorIdxConstant(0, DL));
684       } else {
685         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
686         assert(PartVT.getFixedSizeInBits() > ValueSize &&
687                "lossy conversion of vector to scalar type");
688         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
689         Val = DAG.getBitcast(IntermediateType, Val);
690         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691       }
692     }
693 
694     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
695     Parts[0] = Val;
696     return;
697   }
698 
699   // Handle a multi-element vector.
700   EVT IntermediateVT;
701   MVT RegisterVT;
702   unsigned NumIntermediates;
703   unsigned NumRegs;
704   if (IsABIRegCopy) {
705     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
706         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
707         NumIntermediates, RegisterVT);
708   } else {
709     NumRegs =
710         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
711                                    NumIntermediates, RegisterVT);
712   }
713 
714   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
715   NumParts = NumRegs; // Silence a compiler warning.
716   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
717 
718   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
719          "Mixing scalable and fixed vectors when copying in parts");
720 
721   Optional<ElementCount> DestEltCnt;
722 
723   if (IntermediateVT.isVector())
724     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
725   else
726     DestEltCnt = ElementCount::getFixed(NumIntermediates);
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
730 
731   if (ValueVT == BuiltVectorTy) {
732     // Nothing to do.
733   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
734     // Bitconvert vector->vector case.
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   } else {
737     if (BuiltVectorTy.getVectorElementType().bitsGT(
738             ValueVT.getVectorElementType())) {
739       // Integer promotion.
740       ValueVT = EVT::getVectorVT(*DAG.getContext(),
741                                  BuiltVectorTy.getVectorElementType(),
742                                  ValueVT.getVectorElementCount());
743       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
744     }
745 
746     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
747       Val = Widened;
748     }
749   }
750 
751   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
752 
753   // Split the vector into intermediate operands.
754   SmallVector<SDValue, 8> Ops(NumIntermediates);
755   for (unsigned i = 0; i != NumIntermediates; ++i) {
756     if (IntermediateVT.isVector()) {
757       // This does something sensible for scalable vectors - see the
758       // definition of EXTRACT_SUBVECTOR for further details.
759       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
760       Ops[i] =
761           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
762                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
763     } else {
764       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
765                            DAG.getVectorIdxConstant(i, DL));
766     }
767   }
768 
769   // Split the intermediate operands into legal parts.
770   if (NumParts == NumIntermediates) {
771     // If the register was not expanded, promote or copy the value,
772     // as appropriate.
773     for (unsigned i = 0; i != NumParts; ++i)
774       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
775   } else if (NumParts > 0) {
776     // If the intermediate type was expanded, split each the value into
777     // legal parts.
778     assert(NumIntermediates != 0 && "division by zero");
779     assert(NumParts % NumIntermediates == 0 &&
780            "Must expand into a divisible number of parts!");
781     unsigned Factor = NumParts / NumIntermediates;
782     for (unsigned i = 0; i != NumIntermediates; ++i)
783       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
784                      CallConv);
785   }
786 }
787 
788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
789                            EVT valuevt, Optional<CallingConv::ID> CC)
790     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
791       RegCount(1, regs.size()), CallConv(CC) {}
792 
793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
794                            const DataLayout &DL, unsigned Reg, Type *Ty,
795                            Optional<CallingConv::ID> CC) {
796   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
797 
798   CallConv = CC;
799 
800   for (EVT ValueVT : ValueVTs) {
801     unsigned NumRegs =
802         isABIMangled()
803             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
804             : TLI.getNumRegisters(Context, ValueVT);
805     MVT RegisterVT =
806         isABIMangled()
807             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
808             : TLI.getRegisterType(Context, ValueVT);
809     for (unsigned i = 0; i != NumRegs; ++i)
810       Regs.push_back(Reg + i);
811     RegVTs.push_back(RegisterVT);
812     RegCount.push_back(NumRegs);
813     Reg += NumRegs;
814   }
815 }
816 
817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
818                                       FunctionLoweringInfo &FuncInfo,
819                                       const SDLoc &dl, SDValue &Chain,
820                                       SDValue *Flag, const Value *V) const {
821   // A Value with type {} or [0 x %t] needs no registers.
822   if (ValueVTs.empty())
823     return SDValue();
824 
825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
826 
827   // Assemble the legal parts into the final values.
828   SmallVector<SDValue, 4> Values(ValueVTs.size());
829   SmallVector<SDValue, 8> Parts;
830   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
831     // Copy the legal parts from the registers.
832     EVT ValueVT = ValueVTs[Value];
833     unsigned NumRegs = RegCount[Value];
834     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
835                                           *DAG.getContext(),
836                                           CallConv.getValue(), RegVTs[Value])
837                                     : RegVTs[Value];
838 
839     Parts.resize(NumRegs);
840     for (unsigned i = 0; i != NumRegs; ++i) {
841       SDValue P;
842       if (!Flag) {
843         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
844       } else {
845         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
846         *Flag = P.getValue(2);
847       }
848 
849       Chain = P.getValue(1);
850       Parts[i] = P;
851 
852       // If the source register was virtual and if we know something about it,
853       // add an assert node.
854       if (!Register::isVirtualRegister(Regs[Part + i]) ||
855           !RegisterVT.isInteger())
856         continue;
857 
858       const FunctionLoweringInfo::LiveOutInfo *LOI =
859         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
860       if (!LOI)
861         continue;
862 
863       unsigned RegSize = RegisterVT.getScalarSizeInBits();
864       unsigned NumSignBits = LOI->NumSignBits;
865       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
866 
867       if (NumZeroBits == RegSize) {
868         // The current value is a zero.
869         // Explicitly express that as it would be easier for
870         // optimizations to kick in.
871         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
872         continue;
873       }
874 
875       // FIXME: We capture more information than the dag can represent.  For
876       // now, just use the tightest assertzext/assertsext possible.
877       bool isSExt;
878       EVT FromVT(MVT::Other);
879       if (NumZeroBits) {
880         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
881         isSExt = false;
882       } else if (NumSignBits > 1) {
883         FromVT =
884             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
885         isSExt = true;
886       } else {
887         continue;
888       }
889       // Add an assertion node.
890       assert(FromVT != MVT::Other);
891       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
892                              RegisterVT, P, DAG.getValueType(FromVT));
893     }
894 
895     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
896                                      RegisterVT, ValueVT, V, CallConv);
897     Part += NumRegs;
898     Parts.clear();
899   }
900 
901   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
902 }
903 
904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
905                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
906                                  const Value *V,
907                                  ISD::NodeType PreferredExtendType) const {
908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
909   ISD::NodeType ExtendKind = PreferredExtendType;
910 
911   // Get the list of the values's legal parts.
912   unsigned NumRegs = Regs.size();
913   SmallVector<SDValue, 8> Parts(NumRegs);
914   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
915     unsigned NumParts = RegCount[Value];
916 
917     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
918                                           *DAG.getContext(),
919                                           CallConv.getValue(), RegVTs[Value])
920                                     : RegVTs[Value];
921 
922     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
923       ExtendKind = ISD::ZERO_EXTEND;
924 
925     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
926                    NumParts, RegisterVT, V, CallConv, ExtendKind);
927     Part += NumParts;
928   }
929 
930   // Copy the parts into the registers.
931   SmallVector<SDValue, 8> Chains(NumRegs);
932   for (unsigned i = 0; i != NumRegs; ++i) {
933     SDValue Part;
934     if (!Flag) {
935       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
936     } else {
937       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
938       *Flag = Part.getValue(1);
939     }
940 
941     Chains[i] = Part.getValue(0);
942   }
943 
944   if (NumRegs == 1 || Flag)
945     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
946     // flagged to it. That is the CopyToReg nodes and the user are considered
947     // a single scheduling unit. If we create a TokenFactor and return it as
948     // chain, then the TokenFactor is both a predecessor (operand) of the
949     // user as well as a successor (the TF operands are flagged to the user).
950     // c1, f1 = CopyToReg
951     // c2, f2 = CopyToReg
952     // c3     = TokenFactor c1, c2
953     // ...
954     //        = op c3, ..., f2
955     Chain = Chains[NumRegs-1];
956   else
957     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
958 }
959 
960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
961                                         unsigned MatchingIdx, const SDLoc &dl,
962                                         SelectionDAG &DAG,
963                                         std::vector<SDValue> &Ops) const {
964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
965 
966   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
967   if (HasMatching)
968     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
969   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
970     // Put the register class of the virtual registers in the flag word.  That
971     // way, later passes can recompute register class constraints for inline
972     // assembly as well as normal instructions.
973     // Don't do this for tied operands that can use the regclass information
974     // from the def.
975     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
976     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
977     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
978   }
979 
980   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
981   Ops.push_back(Res);
982 
983   if (Code == InlineAsm::Kind_Clobber) {
984     // Clobbers should always have a 1:1 mapping with registers, and may
985     // reference registers that have illegal (e.g. vector) types. Hence, we
986     // shouldn't try to apply any sort of splitting logic to them.
987     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
988            "No 1:1 mapping from clobbers to regs?");
989     Register SP = TLI.getStackPointerRegisterToSaveRestore();
990     (void)SP;
991     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
992       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
993       assert(
994           (Regs[I] != SP ||
995            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
996           "If we clobbered the stack pointer, MFI should know about it.");
997     }
998     return;
999   }
1000 
1001   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1002     MVT RegisterVT = RegVTs[Value];
1003     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1004                                            RegisterVT);
1005     for (unsigned i = 0; i != NumRegs; ++i) {
1006       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1007       unsigned TheReg = Regs[Reg++];
1008       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1009     }
1010   }
1011 }
1012 
1013 SmallVector<std::pair<unsigned, TypeSize>, 4>
1014 RegsForValue::getRegsAndSizes() const {
1015   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1016   unsigned I = 0;
1017   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1018     unsigned RegCount = std::get<0>(CountAndVT);
1019     MVT RegisterVT = std::get<1>(CountAndVT);
1020     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1021     for (unsigned E = I + RegCount; I != E; ++I)
1022       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1023   }
1024   return OutVec;
1025 }
1026 
1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1028                                const TargetLibraryInfo *li) {
1029   AA = aa;
1030   GFI = gfi;
1031   LibInfo = li;
1032   Context = DAG.getContext();
1033   LPadToCallSiteMap.clear();
1034   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1035 }
1036 
1037 void SelectionDAGBuilder::clear() {
1038   NodeMap.clear();
1039   UnusedArgNodeMap.clear();
1040   PendingLoads.clear();
1041   PendingExports.clear();
1042   PendingConstrainedFP.clear();
1043   PendingConstrainedFPStrict.clear();
1044   CurInst = nullptr;
1045   HasTailCall = false;
1046   SDNodeOrder = LowestSDNodeOrder;
1047   StatepointLowering.clear();
1048 }
1049 
1050 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1051   DanglingDebugInfoMap.clear();
1052 }
1053 
1054 // Update DAG root to include dependencies on Pending chains.
1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1056   SDValue Root = DAG.getRoot();
1057 
1058   if (Pending.empty())
1059     return Root;
1060 
1061   // Add current root to PendingChains, unless we already indirectly
1062   // depend on it.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = Pending.size();
1065     for (; i != e; ++i) {
1066       assert(Pending[i].getNode()->getNumOperands() > 1);
1067       if (Pending[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       Pending.push_back(Root);
1073   }
1074 
1075   if (Pending.size() == 1)
1076     Root = Pending[0];
1077   else
1078     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1079 
1080   DAG.setRoot(Root);
1081   Pending.clear();
1082   return Root;
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getMemoryRoot() {
1086   return updateRoot(PendingLoads);
1087 }
1088 
1089 SDValue SelectionDAGBuilder::getRoot() {
1090   // Chain up all pending constrained intrinsics together with all
1091   // pending loads, by simply appending them to PendingLoads and
1092   // then calling getMemoryRoot().
1093   PendingLoads.reserve(PendingLoads.size() +
1094                        PendingConstrainedFP.size() +
1095                        PendingConstrainedFPStrict.size());
1096   PendingLoads.append(PendingConstrainedFP.begin(),
1097                       PendingConstrainedFP.end());
1098   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1099                       PendingConstrainedFPStrict.end());
1100   PendingConstrainedFP.clear();
1101   PendingConstrainedFPStrict.clear();
1102   return getMemoryRoot();
1103 }
1104 
1105 SDValue SelectionDAGBuilder::getControlRoot() {
1106   // We need to emit pending fpexcept.strict constrained intrinsics,
1107   // so append them to the PendingExports list.
1108   PendingExports.append(PendingConstrainedFPStrict.begin(),
1109                         PendingConstrainedFPStrict.end());
1110   PendingConstrainedFPStrict.clear();
1111   return updateRoot(PendingExports);
1112 }
1113 
1114 void SelectionDAGBuilder::visit(const Instruction &I) {
1115   // Set up outgoing PHI node register values before emitting the terminator.
1116   if (I.isTerminator()) {
1117     HandlePHINodesInSuccessorBlocks(I.getParent());
1118   }
1119 
1120   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1121   if (!isa<DbgInfoIntrinsic>(I))
1122     ++SDNodeOrder;
1123 
1124   CurInst = &I;
1125 
1126   visit(I.getOpcode(), I);
1127 
1128   if (!I.isTerminator() && !HasTailCall &&
1129       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1130     CopyToExportRegsIfNeeded(&I);
1131 
1132   CurInst = nullptr;
1133 }
1134 
1135 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1136   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1137 }
1138 
1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1140   // Note: this doesn't use InstVisitor, because it has to work with
1141   // ConstantExpr's in addition to instructions.
1142   switch (Opcode) {
1143   default: llvm_unreachable("Unknown instruction type encountered!");
1144     // Build the switch statement using the Instruction.def file.
1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1146     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1147 #include "llvm/IR/Instruction.def"
1148   }
1149 }
1150 
1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1152                                                DebugLoc DL, unsigned Order) {
1153   // We treat variadic dbg_values differently at this stage.
1154   if (DI->hasArgList()) {
1155     // For variadic dbg_values we will now insert an undef.
1156     // FIXME: We can potentially recover these!
1157     SmallVector<SDDbgOperand, 2> Locs;
1158     for (const Value *V : DI->getValues()) {
1159       auto Undef = UndefValue::get(V->getType());
1160       Locs.push_back(SDDbgOperand::fromConst(Undef));
1161     }
1162     SDDbgValue *SDV = DAG.getDbgValueList(
1163         DI->getVariable(), DI->getExpression(), Locs, {},
1164         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1165     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1166   } else {
1167     // TODO: Dangling debug info will eventually either be resolved or produce
1168     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1169     // between the original dbg.value location and its resolved DBG_VALUE,
1170     // which we should ideally fill with an extra Undef DBG_VALUE.
1171     assert(DI->getNumVariableLocationOps() == 1 &&
1172            "DbgValueInst without an ArgList should have a single location "
1173            "operand.");
1174     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1179                                                 const DIExpression *Expr) {
1180   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1181     const DbgValueInst *DI = DDI.getDI();
1182     DIVariable *DanglingVariable = DI->getVariable();
1183     DIExpression *DanglingExpr = DI->getExpression();
1184     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1185       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1186       return true;
1187     }
1188     return false;
1189   };
1190 
1191   for (auto &DDIMI : DanglingDebugInfoMap) {
1192     DanglingDebugInfoVector &DDIV = DDIMI.second;
1193 
1194     // If debug info is to be dropped, run it through final checks to see
1195     // whether it can be salvaged.
1196     for (auto &DDI : DDIV)
1197       if (isMatchingDbgValue(DDI))
1198         salvageUnresolvedDbgValue(DDI);
1199 
1200     erase_if(DDIV, isMatchingDbgValue);
1201   }
1202 }
1203 
1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1205 // generate the debug data structures now that we've seen its definition.
1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1207                                                    SDValue Val) {
1208   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1209   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1210     return;
1211 
1212   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1213   for (auto &DDI : DDIV) {
1214     const DbgValueInst *DI = DDI.getDI();
1215     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1216     assert(DI && "Ill-formed DanglingDebugInfo");
1217     DebugLoc dl = DDI.getdl();
1218     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1219     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1220     DILocalVariable *Variable = DI->getVariable();
1221     DIExpression *Expr = DI->getExpression();
1222     assert(Variable->isValidLocationForIntrinsic(dl) &&
1223            "Expected inlined-at fields to agree");
1224     SDDbgValue *SDV;
1225     if (Val.getNode()) {
1226       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1227       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1228       // we couldn't resolve it directly when examining the DbgValue intrinsic
1229       // in the first place we should not be more successful here). Unless we
1230       // have some test case that prove this to be correct we should avoid
1231       // calling EmitFuncArgumentDbgValue here.
1232       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1233                                     FuncArgumentDbgValueKind::Value, Val)) {
1234         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1235                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1236         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1237         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1238         // inserted after the definition of Val when emitting the instructions
1239         // after ISel. An alternative could be to teach
1240         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1241         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1242                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1243                    << ValSDNodeOrder << "\n");
1244         SDV = getDbgValue(Val, Variable, Expr, dl,
1245                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1246         DAG.AddDbgValue(SDV, false);
1247       } else
1248         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1249                           << "in EmitFuncArgumentDbgValue\n");
1250     } else {
1251       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1252       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1253       auto SDV =
1254           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1255       DAG.AddDbgValue(SDV, false);
1256     }
1257   }
1258   DDIV.clear();
1259 }
1260 
1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1262   // TODO: For the variadic implementation, instead of only checking the fail
1263   // state of `handleDebugValue`, we need know specifically which values were
1264   // invalid, so that we attempt to salvage only those values when processing
1265   // a DIArgList.
1266   assert(!DDI.getDI()->hasArgList() &&
1267          "Not implemented for variadic dbg_values");
1268   Value *V = DDI.getDI()->getValue(0);
1269   DILocalVariable *Var = DDI.getDI()->getVariable();
1270   DIExpression *Expr = DDI.getDI()->getExpression();
1271   DebugLoc DL = DDI.getdl();
1272   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1273   unsigned SDOrder = DDI.getSDNodeOrder();
1274   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1275   // that DW_OP_stack_value is desired.
1276   assert(isa<DbgValueInst>(DDI.getDI()));
1277   bool StackValue = true;
1278 
1279   // Can this Value can be encoded without any further work?
1280   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1281     return;
1282 
1283   // Attempt to salvage back through as many instructions as possible. Bail if
1284   // a non-instruction is seen, such as a constant expression or global
1285   // variable. FIXME: Further work could recover those too.
1286   while (isa<Instruction>(V)) {
1287     Instruction &VAsInst = *cast<Instruction>(V);
1288     // Temporary "0", awaiting real implementation.
1289     SmallVector<uint64_t, 16> Ops;
1290     SmallVector<Value *, 4> AdditionalValues;
1291     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1292                              AdditionalValues);
1293     // If we cannot salvage any further, and haven't yet found a suitable debug
1294     // expression, bail out.
1295     if (!V)
1296       break;
1297 
1298     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1299     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1300     // here for variadic dbg_values, remove that condition.
1301     if (!AdditionalValues.empty())
1302       break;
1303 
1304     // New value and expr now represent this debuginfo.
1305     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1306 
1307     // Some kind of simplification occurred: check whether the operand of the
1308     // salvaged debug expression can be encoded in this DAG.
1309     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1310                          /*IsVariadic=*/false)) {
1311       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1312                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1313       return;
1314     }
1315   }
1316 
1317   // This was the final opportunity to salvage this debug information, and it
1318   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1319   // any earlier variable location.
1320   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1321   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1322   DAG.AddDbgValue(SDV, false);
1323 
1324   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1325                     << "\n");
1326   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1327                     << "\n");
1328 }
1329 
1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1331                                            DILocalVariable *Var,
1332                                            DIExpression *Expr, DebugLoc dl,
1333                                            DebugLoc InstDL, unsigned Order,
1334                                            bool IsVariadic) {
1335   if (Values.empty())
1336     return true;
1337   SmallVector<SDDbgOperand> LocationOps;
1338   SmallVector<SDNode *> Dependencies;
1339   for (const Value *V : Values) {
1340     // Constant value.
1341     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1342         isa<ConstantPointerNull>(V)) {
1343       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1344       continue;
1345     }
1346 
1347     // If the Value is a frame index, we can create a FrameIndex debug value
1348     // without relying on the DAG at all.
1349     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1350       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1351       if (SI != FuncInfo.StaticAllocaMap.end()) {
1352         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1353         continue;
1354       }
1355     }
1356 
1357     // Do not use getValue() in here; we don't want to generate code at
1358     // this point if it hasn't been done yet.
1359     SDValue N = NodeMap[V];
1360     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1361       N = UnusedArgNodeMap[V];
1362     if (N.getNode()) {
1363       // Only emit func arg dbg value for non-variadic dbg.values for now.
1364       if (!IsVariadic &&
1365           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1366                                    FuncArgumentDbgValueKind::Value, N))
1367         return true;
1368       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1369         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1370         // describe stack slot locations.
1371         //
1372         // Consider "int x = 0; int *px = &x;". There are two kinds of
1373         // interesting debug values here after optimization:
1374         //
1375         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1376         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1377         //
1378         // Both describe the direct values of their associated variables.
1379         Dependencies.push_back(N.getNode());
1380         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1381         continue;
1382       }
1383       LocationOps.emplace_back(
1384           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1385       continue;
1386     }
1387 
1388     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1389     // Special rules apply for the first dbg.values of parameter variables in a
1390     // function. Identify them by the fact they reference Argument Values, that
1391     // they're parameters, and they are parameters of the current function. We
1392     // need to let them dangle until they get an SDNode.
1393     bool IsParamOfFunc =
1394         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1395     if (IsParamOfFunc)
1396       return false;
1397 
1398     // The value is not used in this block yet (or it would have an SDNode).
1399     // We still want the value to appear for the user if possible -- if it has
1400     // an associated VReg, we can refer to that instead.
1401     auto VMI = FuncInfo.ValueMap.find(V);
1402     if (VMI != FuncInfo.ValueMap.end()) {
1403       unsigned Reg = VMI->second;
1404       // If this is a PHI node, it may be split up into several MI PHI nodes
1405       // (in FunctionLoweringInfo::set).
1406       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1407                        V->getType(), None);
1408       if (RFV.occupiesMultipleRegs()) {
1409         // FIXME: We could potentially support variadic dbg_values here.
1410         if (IsVariadic)
1411           return false;
1412         unsigned Offset = 0;
1413         unsigned BitsToDescribe = 0;
1414         if (auto VarSize = Var->getSizeInBits())
1415           BitsToDescribe = *VarSize;
1416         if (auto Fragment = Expr->getFragmentInfo())
1417           BitsToDescribe = Fragment->SizeInBits;
1418         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1419           // Bail out if all bits are described already.
1420           if (Offset >= BitsToDescribe)
1421             break;
1422           // TODO: handle scalable vectors.
1423           unsigned RegisterSize = RegAndSize.second;
1424           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1425                                       ? BitsToDescribe - Offset
1426                                       : RegisterSize;
1427           auto FragmentExpr = DIExpression::createFragmentExpression(
1428               Expr, Offset, FragmentSize);
1429           if (!FragmentExpr)
1430             continue;
1431           SDDbgValue *SDV = DAG.getVRegDbgValue(
1432               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1433           DAG.AddDbgValue(SDV, false);
1434           Offset += RegisterSize;
1435         }
1436         return true;
1437       }
1438       // We can use simple vreg locations for variadic dbg_values as well.
1439       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1440       continue;
1441     }
1442     // We failed to create a SDDbgOperand for V.
1443     return false;
1444   }
1445 
1446   // We have created a SDDbgOperand for each Value in Values.
1447   // Should use Order instead of SDNodeOrder?
1448   assert(!LocationOps.empty());
1449   SDDbgValue *SDV =
1450       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1451                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1452   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1453   return true;
1454 }
1455 
1456 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1457   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1458   for (auto &Pair : DanglingDebugInfoMap)
1459     for (auto &DDI : Pair.second)
1460       salvageUnresolvedDbgValue(DDI);
1461   clearDanglingDebugInfo();
1462 }
1463 
1464 /// getCopyFromRegs - If there was virtual register allocated for the value V
1465 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1466 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1467   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1468   SDValue Result;
1469 
1470   if (It != FuncInfo.ValueMap.end()) {
1471     Register InReg = It->second;
1472 
1473     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1474                      DAG.getDataLayout(), InReg, Ty,
1475                      None); // This is not an ABI copy.
1476     SDValue Chain = DAG.getEntryNode();
1477     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1478                                  V);
1479     resolveDanglingDebugInfo(V, Result);
1480   }
1481 
1482   return Result;
1483 }
1484 
1485 /// getValue - Return an SDValue for the given Value.
1486 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1487   // If we already have an SDValue for this value, use it. It's important
1488   // to do this first, so that we don't create a CopyFromReg if we already
1489   // have a regular SDValue.
1490   SDValue &N = NodeMap[V];
1491   if (N.getNode()) return N;
1492 
1493   // If there's a virtual register allocated and initialized for this
1494   // value, use it.
1495   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1496     return copyFromReg;
1497 
1498   // Otherwise create a new SDValue and remember it.
1499   SDValue Val = getValueImpl(V);
1500   NodeMap[V] = Val;
1501   resolveDanglingDebugInfo(V, Val);
1502   return Val;
1503 }
1504 
1505 /// getNonRegisterValue - Return an SDValue for the given Value, but
1506 /// don't look in FuncInfo.ValueMap for a virtual register.
1507 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1508   // If we already have an SDValue for this value, use it.
1509   SDValue &N = NodeMap[V];
1510   if (N.getNode()) {
1511     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1512       // Remove the debug location from the node as the node is about to be used
1513       // in a location which may differ from the original debug location.  This
1514       // is relevant to Constant and ConstantFP nodes because they can appear
1515       // as constant expressions inside PHI nodes.
1516       N->setDebugLoc(DebugLoc());
1517     }
1518     return N;
1519   }
1520 
1521   // Otherwise create a new SDValue and remember it.
1522   SDValue Val = getValueImpl(V);
1523   NodeMap[V] = Val;
1524   resolveDanglingDebugInfo(V, Val);
1525   return Val;
1526 }
1527 
1528 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1529 /// Create an SDValue for the given value.
1530 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1532 
1533   if (const Constant *C = dyn_cast<Constant>(V)) {
1534     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1535 
1536     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1537       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1538 
1539     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1540       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1541 
1542     if (isa<ConstantPointerNull>(C)) {
1543       unsigned AS = V->getType()->getPointerAddressSpace();
1544       return DAG.getConstant(0, getCurSDLoc(),
1545                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1546     }
1547 
1548     if (match(C, m_VScale(DAG.getDataLayout())))
1549       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1550 
1551     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1552       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1553 
1554     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1555       return DAG.getUNDEF(VT);
1556 
1557     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1558       visit(CE->getOpcode(), *CE);
1559       SDValue N1 = NodeMap[V];
1560       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1561       return N1;
1562     }
1563 
1564     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1565       SmallVector<SDValue, 4> Constants;
1566       for (const Use &U : C->operands()) {
1567         SDNode *Val = getValue(U).getNode();
1568         // If the operand is an empty aggregate, there are no values.
1569         if (!Val) continue;
1570         // Add each leaf value from the operand to the Constants list
1571         // to form a flattened list of all the values.
1572         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1573           Constants.push_back(SDValue(Val, i));
1574       }
1575 
1576       return DAG.getMergeValues(Constants, getCurSDLoc());
1577     }
1578 
1579     if (const ConstantDataSequential *CDS =
1580           dyn_cast<ConstantDataSequential>(C)) {
1581       SmallVector<SDValue, 4> Ops;
1582       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1583         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1584         // Add each leaf value from the operand to the Constants list
1585         // to form a flattened list of all the values.
1586         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1587           Ops.push_back(SDValue(Val, i));
1588       }
1589 
1590       if (isa<ArrayType>(CDS->getType()))
1591         return DAG.getMergeValues(Ops, getCurSDLoc());
1592       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1593     }
1594 
1595     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1596       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1597              "Unknown struct or array constant!");
1598 
1599       SmallVector<EVT, 4> ValueVTs;
1600       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1601       unsigned NumElts = ValueVTs.size();
1602       if (NumElts == 0)
1603         return SDValue(); // empty struct
1604       SmallVector<SDValue, 4> Constants(NumElts);
1605       for (unsigned i = 0; i != NumElts; ++i) {
1606         EVT EltVT = ValueVTs[i];
1607         if (isa<UndefValue>(C))
1608           Constants[i] = DAG.getUNDEF(EltVT);
1609         else if (EltVT.isFloatingPoint())
1610           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1611         else
1612           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1613       }
1614 
1615       return DAG.getMergeValues(Constants, getCurSDLoc());
1616     }
1617 
1618     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1619       return DAG.getBlockAddress(BA, VT);
1620 
1621     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1622       return getValue(Equiv->getGlobalValue());
1623 
1624     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1625       return getValue(NC->getGlobalValue());
1626 
1627     VectorType *VecTy = cast<VectorType>(V->getType());
1628 
1629     // Now that we know the number and type of the elements, get that number of
1630     // elements into the Ops array based on what kind of constant it is.
1631     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1632       SmallVector<SDValue, 16> Ops;
1633       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1634       for (unsigned i = 0; i != NumElements; ++i)
1635         Ops.push_back(getValue(CV->getOperand(i)));
1636 
1637       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1638     }
1639 
1640     if (isa<ConstantAggregateZero>(C)) {
1641       EVT EltVT =
1642           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1643 
1644       SDValue Op;
1645       if (EltVT.isFloatingPoint())
1646         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1647       else
1648         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1649 
1650       if (isa<ScalableVectorType>(VecTy))
1651         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1652 
1653       SmallVector<SDValue, 16> Ops;
1654       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1655       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1656     }
1657 
1658     llvm_unreachable("Unknown vector constant");
1659   }
1660 
1661   // If this is a static alloca, generate it as the frameindex instead of
1662   // computation.
1663   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1664     DenseMap<const AllocaInst*, int>::iterator SI =
1665       FuncInfo.StaticAllocaMap.find(AI);
1666     if (SI != FuncInfo.StaticAllocaMap.end())
1667       return DAG.getFrameIndex(SI->second,
1668                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1669   }
1670 
1671   // If this is an instruction which fast-isel has deferred, select it now.
1672   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1673     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1674 
1675     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1676                      Inst->getType(), None);
1677     SDValue Chain = DAG.getEntryNode();
1678     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1679   }
1680 
1681   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1682     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1683 
1684   if (const auto *BB = dyn_cast<BasicBlock>(V))
1685     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1686 
1687   llvm_unreachable("Can't get register for value!");
1688 }
1689 
1690 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1691   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1692   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1693   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1694   bool IsSEH = isAsynchronousEHPersonality(Pers);
1695   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1696   if (!IsSEH)
1697     CatchPadMBB->setIsEHScopeEntry();
1698   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1699   if (IsMSVCCXX || IsCoreCLR)
1700     CatchPadMBB->setIsEHFuncletEntry();
1701 }
1702 
1703 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1704   // Update machine-CFG edge.
1705   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1706   FuncInfo.MBB->addSuccessor(TargetMBB);
1707   TargetMBB->setIsEHCatchretTarget(true);
1708   DAG.getMachineFunction().setHasEHCatchret(true);
1709 
1710   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1711   bool IsSEH = isAsynchronousEHPersonality(Pers);
1712   if (IsSEH) {
1713     // If this is not a fall-through branch or optimizations are switched off,
1714     // emit the branch.
1715     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1716         TM.getOptLevel() == CodeGenOpt::None)
1717       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1718                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1719     return;
1720   }
1721 
1722   // Figure out the funclet membership for the catchret's successor.
1723   // This will be used by the FuncletLayout pass to determine how to order the
1724   // BB's.
1725   // A 'catchret' returns to the outer scope's color.
1726   Value *ParentPad = I.getCatchSwitchParentPad();
1727   const BasicBlock *SuccessorColor;
1728   if (isa<ConstantTokenNone>(ParentPad))
1729     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1730   else
1731     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1732   assert(SuccessorColor && "No parent funclet for catchret!");
1733   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1734   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1735 
1736   // Create the terminator node.
1737   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1738                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1739                             DAG.getBasicBlock(SuccessorColorMBB));
1740   DAG.setRoot(Ret);
1741 }
1742 
1743 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1744   // Don't emit any special code for the cleanuppad instruction. It just marks
1745   // the start of an EH scope/funclet.
1746   FuncInfo.MBB->setIsEHScopeEntry();
1747   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1748   if (Pers != EHPersonality::Wasm_CXX) {
1749     FuncInfo.MBB->setIsEHFuncletEntry();
1750     FuncInfo.MBB->setIsCleanupFuncletEntry();
1751   }
1752 }
1753 
1754 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1755 // not match, it is OK to add only the first unwind destination catchpad to the
1756 // successors, because there will be at least one invoke instruction within the
1757 // catch scope that points to the next unwind destination, if one exists, so
1758 // CFGSort cannot mess up with BB sorting order.
1759 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1760 // call within them, and catchpads only consisting of 'catch (...)' have a
1761 // '__cxa_end_catch' call within them, both of which generate invokes in case
1762 // the next unwind destination exists, i.e., the next unwind destination is not
1763 // the caller.)
1764 //
1765 // Having at most one EH pad successor is also simpler and helps later
1766 // transformations.
1767 //
1768 // For example,
1769 // current:
1770 //   invoke void @foo to ... unwind label %catch.dispatch
1771 // catch.dispatch:
1772 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1773 // catch.start:
1774 //   ...
1775 //   ... in this BB or some other child BB dominated by this BB there will be an
1776 //   invoke that points to 'next' BB as an unwind destination
1777 //
1778 // next: ; We don't need to add this to 'current' BB's successor
1779 //   ...
1780 static void findWasmUnwindDestinations(
1781     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1782     BranchProbability Prob,
1783     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1784         &UnwindDests) {
1785   while (EHPadBB) {
1786     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1787     if (isa<CleanupPadInst>(Pad)) {
1788       // Stop on cleanup pads.
1789       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1790       UnwindDests.back().first->setIsEHScopeEntry();
1791       break;
1792     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1793       // Add the catchpad handlers to the possible destinations. We don't
1794       // continue to the unwind destination of the catchswitch for wasm.
1795       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1796         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1797         UnwindDests.back().first->setIsEHScopeEntry();
1798       }
1799       break;
1800     } else {
1801       continue;
1802     }
1803   }
1804 }
1805 
1806 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1807 /// many places it could ultimately go. In the IR, we have a single unwind
1808 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1809 /// This function skips over imaginary basic blocks that hold catchswitch
1810 /// instructions, and finds all the "real" machine
1811 /// basic block destinations. As those destinations may not be successors of
1812 /// EHPadBB, here we also calculate the edge probability to those destinations.
1813 /// The passed-in Prob is the edge probability to EHPadBB.
1814 static void findUnwindDestinations(
1815     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1816     BranchProbability Prob,
1817     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1818         &UnwindDests) {
1819   EHPersonality Personality =
1820     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1821   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1822   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1823   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1824   bool IsSEH = isAsynchronousEHPersonality(Personality);
1825 
1826   if (IsWasmCXX) {
1827     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1828     assert(UnwindDests.size() <= 1 &&
1829            "There should be at most one unwind destination for wasm");
1830     return;
1831   }
1832 
1833   while (EHPadBB) {
1834     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1835     BasicBlock *NewEHPadBB = nullptr;
1836     if (isa<LandingPadInst>(Pad)) {
1837       // Stop on landingpads. They are not funclets.
1838       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1839       break;
1840     } else if (isa<CleanupPadInst>(Pad)) {
1841       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1842       // personalities.
1843       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1844       UnwindDests.back().first->setIsEHScopeEntry();
1845       UnwindDests.back().first->setIsEHFuncletEntry();
1846       break;
1847     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1848       // Add the catchpad handlers to the possible destinations.
1849       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1850         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1851         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1852         if (IsMSVCCXX || IsCoreCLR)
1853           UnwindDests.back().first->setIsEHFuncletEntry();
1854         if (!IsSEH)
1855           UnwindDests.back().first->setIsEHScopeEntry();
1856       }
1857       NewEHPadBB = CatchSwitch->getUnwindDest();
1858     } else {
1859       continue;
1860     }
1861 
1862     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1863     if (BPI && NewEHPadBB)
1864       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1865     EHPadBB = NewEHPadBB;
1866   }
1867 }
1868 
1869 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1870   // Update successor info.
1871   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1872   auto UnwindDest = I.getUnwindDest();
1873   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1874   BranchProbability UnwindDestProb =
1875       (BPI && UnwindDest)
1876           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1877           : BranchProbability::getZero();
1878   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1879   for (auto &UnwindDest : UnwindDests) {
1880     UnwindDest.first->setIsEHPad();
1881     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1882   }
1883   FuncInfo.MBB->normalizeSuccProbs();
1884 
1885   // Create the terminator node.
1886   SDValue Ret =
1887       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1888   DAG.setRoot(Ret);
1889 }
1890 
1891 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1892   report_fatal_error("visitCatchSwitch not yet implemented!");
1893 }
1894 
1895 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1897   auto &DL = DAG.getDataLayout();
1898   SDValue Chain = getControlRoot();
1899   SmallVector<ISD::OutputArg, 8> Outs;
1900   SmallVector<SDValue, 8> OutVals;
1901 
1902   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1903   // lower
1904   //
1905   //   %val = call <ty> @llvm.experimental.deoptimize()
1906   //   ret <ty> %val
1907   //
1908   // differently.
1909   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1910     LowerDeoptimizingReturn();
1911     return;
1912   }
1913 
1914   if (!FuncInfo.CanLowerReturn) {
1915     unsigned DemoteReg = FuncInfo.DemoteRegister;
1916     const Function *F = I.getParent()->getParent();
1917 
1918     // Emit a store of the return value through the virtual register.
1919     // Leave Outs empty so that LowerReturn won't try to load return
1920     // registers the usual way.
1921     SmallVector<EVT, 1> PtrValueVTs;
1922     ComputeValueVTs(TLI, DL,
1923                     F->getReturnType()->getPointerTo(
1924                         DAG.getDataLayout().getAllocaAddrSpace()),
1925                     PtrValueVTs);
1926 
1927     SDValue RetPtr =
1928         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1929     SDValue RetOp = getValue(I.getOperand(0));
1930 
1931     SmallVector<EVT, 4> ValueVTs, MemVTs;
1932     SmallVector<uint64_t, 4> Offsets;
1933     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1934                     &Offsets);
1935     unsigned NumValues = ValueVTs.size();
1936 
1937     SmallVector<SDValue, 4> Chains(NumValues);
1938     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1939     for (unsigned i = 0; i != NumValues; ++i) {
1940       // An aggregate return value cannot wrap around the address space, so
1941       // offsets to its parts don't wrap either.
1942       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1943                                            TypeSize::Fixed(Offsets[i]));
1944 
1945       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1946       if (MemVTs[i] != ValueVTs[i])
1947         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1948       Chains[i] = DAG.getStore(
1949           Chain, getCurSDLoc(), Val,
1950           // FIXME: better loc info would be nice.
1951           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1952           commonAlignment(BaseAlign, Offsets[i]));
1953     }
1954 
1955     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1956                         MVT::Other, Chains);
1957   } else if (I.getNumOperands() != 0) {
1958     SmallVector<EVT, 4> ValueVTs;
1959     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1960     unsigned NumValues = ValueVTs.size();
1961     if (NumValues) {
1962       SDValue RetOp = getValue(I.getOperand(0));
1963 
1964       const Function *F = I.getParent()->getParent();
1965 
1966       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1967           I.getOperand(0)->getType(), F->getCallingConv(),
1968           /*IsVarArg*/ false, DL);
1969 
1970       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1971       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1972         ExtendKind = ISD::SIGN_EXTEND;
1973       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1974         ExtendKind = ISD::ZERO_EXTEND;
1975 
1976       LLVMContext &Context = F->getContext();
1977       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1978 
1979       for (unsigned j = 0; j != NumValues; ++j) {
1980         EVT VT = ValueVTs[j];
1981 
1982         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1983           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1984 
1985         CallingConv::ID CC = F->getCallingConv();
1986 
1987         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1988         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1989         SmallVector<SDValue, 4> Parts(NumParts);
1990         getCopyToParts(DAG, getCurSDLoc(),
1991                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1992                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1993 
1994         // 'inreg' on function refers to return value
1995         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1996         if (RetInReg)
1997           Flags.setInReg();
1998 
1999         if (I.getOperand(0)->getType()->isPointerTy()) {
2000           Flags.setPointer();
2001           Flags.setPointerAddrSpace(
2002               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2003         }
2004 
2005         if (NeedsRegBlock) {
2006           Flags.setInConsecutiveRegs();
2007           if (j == NumValues - 1)
2008             Flags.setInConsecutiveRegsLast();
2009         }
2010 
2011         // Propagate extension type if any
2012         if (ExtendKind == ISD::SIGN_EXTEND)
2013           Flags.setSExt();
2014         else if (ExtendKind == ISD::ZERO_EXTEND)
2015           Flags.setZExt();
2016 
2017         for (unsigned i = 0; i < NumParts; ++i) {
2018           Outs.push_back(ISD::OutputArg(Flags,
2019                                         Parts[i].getValueType().getSimpleVT(),
2020                                         VT, /*isfixed=*/true, 0, 0));
2021           OutVals.push_back(Parts[i]);
2022         }
2023       }
2024     }
2025   }
2026 
2027   // Push in swifterror virtual register as the last element of Outs. This makes
2028   // sure swifterror virtual register will be returned in the swifterror
2029   // physical register.
2030   const Function *F = I.getParent()->getParent();
2031   if (TLI.supportSwiftError() &&
2032       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2033     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2034     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2035     Flags.setSwiftError();
2036     Outs.push_back(ISD::OutputArg(
2037         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2038         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2039     // Create SDNode for the swifterror virtual register.
2040     OutVals.push_back(
2041         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2042                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2043                         EVT(TLI.getPointerTy(DL))));
2044   }
2045 
2046   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2047   CallingConv::ID CallConv =
2048     DAG.getMachineFunction().getFunction().getCallingConv();
2049   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2050       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2051 
2052   // Verify that the target's LowerReturn behaved as expected.
2053   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2054          "LowerReturn didn't return a valid chain!");
2055 
2056   // Update the DAG with the new chain value resulting from return lowering.
2057   DAG.setRoot(Chain);
2058 }
2059 
2060 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2061 /// created for it, emit nodes to copy the value into the virtual
2062 /// registers.
2063 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2064   // Skip empty types
2065   if (V->getType()->isEmptyTy())
2066     return;
2067 
2068   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2069   if (VMI != FuncInfo.ValueMap.end()) {
2070     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2071     CopyValueToVirtualRegister(V, VMI->second);
2072   }
2073 }
2074 
2075 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2076 /// the current basic block, add it to ValueMap now so that we'll get a
2077 /// CopyTo/FromReg.
2078 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2079   // No need to export constants.
2080   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2081 
2082   // Already exported?
2083   if (FuncInfo.isExportedInst(V)) return;
2084 
2085   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2086   CopyValueToVirtualRegister(V, Reg);
2087 }
2088 
2089 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2090                                                      const BasicBlock *FromBB) {
2091   // The operands of the setcc have to be in this block.  We don't know
2092   // how to export them from some other block.
2093   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2094     // Can export from current BB.
2095     if (VI->getParent() == FromBB)
2096       return true;
2097 
2098     // Is already exported, noop.
2099     return FuncInfo.isExportedInst(V);
2100   }
2101 
2102   // If this is an argument, we can export it if the BB is the entry block or
2103   // if it is already exported.
2104   if (isa<Argument>(V)) {
2105     if (FromBB->isEntryBlock())
2106       return true;
2107 
2108     // Otherwise, can only export this if it is already exported.
2109     return FuncInfo.isExportedInst(V);
2110   }
2111 
2112   // Otherwise, constants can always be exported.
2113   return true;
2114 }
2115 
2116 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2117 BranchProbability
2118 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2119                                         const MachineBasicBlock *Dst) const {
2120   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2121   const BasicBlock *SrcBB = Src->getBasicBlock();
2122   const BasicBlock *DstBB = Dst->getBasicBlock();
2123   if (!BPI) {
2124     // If BPI is not available, set the default probability as 1 / N, where N is
2125     // the number of successors.
2126     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2127     return BranchProbability(1, SuccSize);
2128   }
2129   return BPI->getEdgeProbability(SrcBB, DstBB);
2130 }
2131 
2132 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2133                                                MachineBasicBlock *Dst,
2134                                                BranchProbability Prob) {
2135   if (!FuncInfo.BPI)
2136     Src->addSuccessorWithoutProb(Dst);
2137   else {
2138     if (Prob.isUnknown())
2139       Prob = getEdgeProbability(Src, Dst);
2140     Src->addSuccessor(Dst, Prob);
2141   }
2142 }
2143 
2144 static bool InBlock(const Value *V, const BasicBlock *BB) {
2145   if (const Instruction *I = dyn_cast<Instruction>(V))
2146     return I->getParent() == BB;
2147   return true;
2148 }
2149 
2150 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2151 /// This function emits a branch and is used at the leaves of an OR or an
2152 /// AND operator tree.
2153 void
2154 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2155                                                   MachineBasicBlock *TBB,
2156                                                   MachineBasicBlock *FBB,
2157                                                   MachineBasicBlock *CurBB,
2158                                                   MachineBasicBlock *SwitchBB,
2159                                                   BranchProbability TProb,
2160                                                   BranchProbability FProb,
2161                                                   bool InvertCond) {
2162   const BasicBlock *BB = CurBB->getBasicBlock();
2163 
2164   // If the leaf of the tree is a comparison, merge the condition into
2165   // the caseblock.
2166   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2167     // The operands of the cmp have to be in this block.  We don't know
2168     // how to export them from some other block.  If this is the first block
2169     // of the sequence, no exporting is needed.
2170     if (CurBB == SwitchBB ||
2171         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2172          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2173       ISD::CondCode Condition;
2174       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2175         ICmpInst::Predicate Pred =
2176             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2177         Condition = getICmpCondCode(Pred);
2178       } else {
2179         const FCmpInst *FC = cast<FCmpInst>(Cond);
2180         FCmpInst::Predicate Pred =
2181             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2182         Condition = getFCmpCondCode(Pred);
2183         if (TM.Options.NoNaNsFPMath)
2184           Condition = getFCmpCodeWithoutNaN(Condition);
2185       }
2186 
2187       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2188                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2189       SL->SwitchCases.push_back(CB);
2190       return;
2191     }
2192   }
2193 
2194   // Create a CaseBlock record representing this branch.
2195   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2196   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2197                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2198   SL->SwitchCases.push_back(CB);
2199 }
2200 
2201 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2202                                                MachineBasicBlock *TBB,
2203                                                MachineBasicBlock *FBB,
2204                                                MachineBasicBlock *CurBB,
2205                                                MachineBasicBlock *SwitchBB,
2206                                                Instruction::BinaryOps Opc,
2207                                                BranchProbability TProb,
2208                                                BranchProbability FProb,
2209                                                bool InvertCond) {
2210   // Skip over not part of the tree and remember to invert op and operands at
2211   // next level.
2212   Value *NotCond;
2213   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2214       InBlock(NotCond, CurBB->getBasicBlock())) {
2215     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2216                          !InvertCond);
2217     return;
2218   }
2219 
2220   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2221   const Value *BOpOp0, *BOpOp1;
2222   // Compute the effective opcode for Cond, taking into account whether it needs
2223   // to be inverted, e.g.
2224   //   and (not (or A, B)), C
2225   // gets lowered as
2226   //   and (and (not A, not B), C)
2227   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2228   if (BOp) {
2229     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2230                ? Instruction::And
2231                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2232                       ? Instruction::Or
2233                       : (Instruction::BinaryOps)0);
2234     if (InvertCond) {
2235       if (BOpc == Instruction::And)
2236         BOpc = Instruction::Or;
2237       else if (BOpc == Instruction::Or)
2238         BOpc = Instruction::And;
2239     }
2240   }
2241 
2242   // If this node is not part of the or/and tree, emit it as a branch.
2243   // Note that all nodes in the tree should have same opcode.
2244   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2245   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2246       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2247       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2248     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2249                                  TProb, FProb, InvertCond);
2250     return;
2251   }
2252 
2253   //  Create TmpBB after CurBB.
2254   MachineFunction::iterator BBI(CurBB);
2255   MachineFunction &MF = DAG.getMachineFunction();
2256   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2257   CurBB->getParent()->insert(++BBI, TmpBB);
2258 
2259   if (Opc == Instruction::Or) {
2260     // Codegen X | Y as:
2261     // BB1:
2262     //   jmp_if_X TBB
2263     //   jmp TmpBB
2264     // TmpBB:
2265     //   jmp_if_Y TBB
2266     //   jmp FBB
2267     //
2268 
2269     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2270     // The requirement is that
2271     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2272     //     = TrueProb for original BB.
2273     // Assuming the original probabilities are A and B, one choice is to set
2274     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2275     // A/(1+B) and 2B/(1+B). This choice assumes that
2276     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2277     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2278     // TmpBB, but the math is more complicated.
2279 
2280     auto NewTrueProb = TProb / 2;
2281     auto NewFalseProb = TProb / 2 + FProb;
2282     // Emit the LHS condition.
2283     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2284                          NewFalseProb, InvertCond);
2285 
2286     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2287     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2288     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2289     // Emit the RHS condition into TmpBB.
2290     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2291                          Probs[1], InvertCond);
2292   } else {
2293     assert(Opc == Instruction::And && "Unknown merge op!");
2294     // Codegen X & Y as:
2295     // BB1:
2296     //   jmp_if_X TmpBB
2297     //   jmp FBB
2298     // TmpBB:
2299     //   jmp_if_Y TBB
2300     //   jmp FBB
2301     //
2302     //  This requires creation of TmpBB after CurBB.
2303 
2304     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2305     // The requirement is that
2306     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2307     //     = FalseProb for original BB.
2308     // Assuming the original probabilities are A and B, one choice is to set
2309     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2310     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2311     // TrueProb for BB1 * FalseProb for TmpBB.
2312 
2313     auto NewTrueProb = TProb + FProb / 2;
2314     auto NewFalseProb = FProb / 2;
2315     // Emit the LHS condition.
2316     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2317                          NewFalseProb, InvertCond);
2318 
2319     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2320     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2321     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2322     // Emit the RHS condition into TmpBB.
2323     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2324                          Probs[1], InvertCond);
2325   }
2326 }
2327 
2328 /// If the set of cases should be emitted as a series of branches, return true.
2329 /// If we should emit this as a bunch of and/or'd together conditions, return
2330 /// false.
2331 bool
2332 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2333   if (Cases.size() != 2) return true;
2334 
2335   // If this is two comparisons of the same values or'd or and'd together, they
2336   // will get folded into a single comparison, so don't emit two blocks.
2337   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2338        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2339       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2340        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2341     return false;
2342   }
2343 
2344   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2345   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2346   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2347       Cases[0].CC == Cases[1].CC &&
2348       isa<Constant>(Cases[0].CmpRHS) &&
2349       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2350     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2351       return false;
2352     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2353       return false;
2354   }
2355 
2356   return true;
2357 }
2358 
2359 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2360   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2361 
2362   // Update machine-CFG edges.
2363   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2364 
2365   if (I.isUnconditional()) {
2366     // Update machine-CFG edges.
2367     BrMBB->addSuccessor(Succ0MBB);
2368 
2369     // If this is not a fall-through branch or optimizations are switched off,
2370     // emit the branch.
2371     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2372       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2373                               MVT::Other, getControlRoot(),
2374                               DAG.getBasicBlock(Succ0MBB)));
2375 
2376     return;
2377   }
2378 
2379   // If this condition is one of the special cases we handle, do special stuff
2380   // now.
2381   const Value *CondVal = I.getCondition();
2382   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2383 
2384   // If this is a series of conditions that are or'd or and'd together, emit
2385   // this as a sequence of branches instead of setcc's with and/or operations.
2386   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2387   // unpredictable branches, and vector extracts because those jumps are likely
2388   // expensive for any target), this should improve performance.
2389   // For example, instead of something like:
2390   //     cmp A, B
2391   //     C = seteq
2392   //     cmp D, E
2393   //     F = setle
2394   //     or C, F
2395   //     jnz foo
2396   // Emit:
2397   //     cmp A, B
2398   //     je foo
2399   //     cmp D, E
2400   //     jle foo
2401   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2402   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2403       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2404     Value *Vec;
2405     const Value *BOp0, *BOp1;
2406     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2407     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2408       Opcode = Instruction::And;
2409     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2410       Opcode = Instruction::Or;
2411 
2412     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2413                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2414       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2415                            getEdgeProbability(BrMBB, Succ0MBB),
2416                            getEdgeProbability(BrMBB, Succ1MBB),
2417                            /*InvertCond=*/false);
2418       // If the compares in later blocks need to use values not currently
2419       // exported from this block, export them now.  This block should always
2420       // be the first entry.
2421       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2422 
2423       // Allow some cases to be rejected.
2424       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2425         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2426           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2427           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2428         }
2429 
2430         // Emit the branch for this block.
2431         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2432         SL->SwitchCases.erase(SL->SwitchCases.begin());
2433         return;
2434       }
2435 
2436       // Okay, we decided not to do this, remove any inserted MBB's and clear
2437       // SwitchCases.
2438       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2439         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2440 
2441       SL->SwitchCases.clear();
2442     }
2443   }
2444 
2445   // Create a CaseBlock record representing this branch.
2446   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2447                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2448 
2449   // Use visitSwitchCase to actually insert the fast branch sequence for this
2450   // cond branch.
2451   visitSwitchCase(CB, BrMBB);
2452 }
2453 
2454 /// visitSwitchCase - Emits the necessary code to represent a single node in
2455 /// the binary search tree resulting from lowering a switch instruction.
2456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2457                                           MachineBasicBlock *SwitchBB) {
2458   SDValue Cond;
2459   SDValue CondLHS = getValue(CB.CmpLHS);
2460   SDLoc dl = CB.DL;
2461 
2462   if (CB.CC == ISD::SETTRUE) {
2463     // Branch or fall through to TrueBB.
2464     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2465     SwitchBB->normalizeSuccProbs();
2466     if (CB.TrueBB != NextBlock(SwitchBB)) {
2467       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2468                               DAG.getBasicBlock(CB.TrueBB)));
2469     }
2470     return;
2471   }
2472 
2473   auto &TLI = DAG.getTargetLoweringInfo();
2474   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2475 
2476   // Build the setcc now.
2477   if (!CB.CmpMHS) {
2478     // Fold "(X == true)" to X and "(X == false)" to !X to
2479     // handle common cases produced by branch lowering.
2480     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2481         CB.CC == ISD::SETEQ)
2482       Cond = CondLHS;
2483     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2484              CB.CC == ISD::SETEQ) {
2485       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2486       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2487     } else {
2488       SDValue CondRHS = getValue(CB.CmpRHS);
2489 
2490       // If a pointer's DAG type is larger than its memory type then the DAG
2491       // values are zero-extended. This breaks signed comparisons so truncate
2492       // back to the underlying type before doing the compare.
2493       if (CondLHS.getValueType() != MemVT) {
2494         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2495         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2496       }
2497       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2498     }
2499   } else {
2500     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2501 
2502     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2503     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2504 
2505     SDValue CmpOp = getValue(CB.CmpMHS);
2506     EVT VT = CmpOp.getValueType();
2507 
2508     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2509       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2510                           ISD::SETLE);
2511     } else {
2512       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2513                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2514       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2515                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2516     }
2517   }
2518 
2519   // Update successor info
2520   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2521   // TrueBB and FalseBB are always different unless the incoming IR is
2522   // degenerate. This only happens when running llc on weird IR.
2523   if (CB.TrueBB != CB.FalseBB)
2524     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2525   SwitchBB->normalizeSuccProbs();
2526 
2527   // If the lhs block is the next block, invert the condition so that we can
2528   // fall through to the lhs instead of the rhs block.
2529   if (CB.TrueBB == NextBlock(SwitchBB)) {
2530     std::swap(CB.TrueBB, CB.FalseBB);
2531     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2532     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2533   }
2534 
2535   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2536                                MVT::Other, getControlRoot(), Cond,
2537                                DAG.getBasicBlock(CB.TrueBB));
2538 
2539   // Insert the false branch. Do this even if it's a fall through branch,
2540   // this makes it easier to do DAG optimizations which require inverting
2541   // the branch condition.
2542   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2543                        DAG.getBasicBlock(CB.FalseBB));
2544 
2545   DAG.setRoot(BrCond);
2546 }
2547 
2548 /// visitJumpTable - Emit JumpTable node in the current MBB
2549 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2550   // Emit the code for the jump table
2551   assert(JT.Reg != -1U && "Should lower JT Header first!");
2552   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2553   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2554                                      JT.Reg, PTy);
2555   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2556   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2557                                     MVT::Other, Index.getValue(1),
2558                                     Table, Index);
2559   DAG.setRoot(BrJumpTable);
2560 }
2561 
2562 /// visitJumpTableHeader - This function emits necessary code to produce index
2563 /// in the JumpTable from switch case.
2564 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2565                                                JumpTableHeader &JTH,
2566                                                MachineBasicBlock *SwitchBB) {
2567   SDLoc dl = getCurSDLoc();
2568 
2569   // Subtract the lowest switch case value from the value being switched on.
2570   SDValue SwitchOp = getValue(JTH.SValue);
2571   EVT VT = SwitchOp.getValueType();
2572   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2573                             DAG.getConstant(JTH.First, dl, VT));
2574 
2575   // The SDNode we just created, which holds the value being switched on minus
2576   // the smallest case value, needs to be copied to a virtual register so it
2577   // can be used as an index into the jump table in a subsequent basic block.
2578   // This value may be smaller or larger than the target's pointer type, and
2579   // therefore require extension or truncating.
2580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2581   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2582 
2583   unsigned JumpTableReg =
2584       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2585   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2586                                     JumpTableReg, SwitchOp);
2587   JT.Reg = JumpTableReg;
2588 
2589   if (!JTH.FallthroughUnreachable) {
2590     // Emit the range check for the jump table, and branch to the default block
2591     // for the switch statement if the value being switched on exceeds the
2592     // largest case in the switch.
2593     SDValue CMP = DAG.getSetCC(
2594         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2595                                    Sub.getValueType()),
2596         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2597 
2598     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2599                                  MVT::Other, CopyTo, CMP,
2600                                  DAG.getBasicBlock(JT.Default));
2601 
2602     // Avoid emitting unnecessary branches to the next block.
2603     if (JT.MBB != NextBlock(SwitchBB))
2604       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2605                            DAG.getBasicBlock(JT.MBB));
2606 
2607     DAG.setRoot(BrCond);
2608   } else {
2609     // Avoid emitting unnecessary branches to the next block.
2610     if (JT.MBB != NextBlock(SwitchBB))
2611       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2612                               DAG.getBasicBlock(JT.MBB)));
2613     else
2614       DAG.setRoot(CopyTo);
2615   }
2616 }
2617 
2618 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2619 /// variable if there exists one.
2620 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2621                                  SDValue &Chain) {
2622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2623   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2624   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2625   MachineFunction &MF = DAG.getMachineFunction();
2626   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2627   MachineSDNode *Node =
2628       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2629   if (Global) {
2630     MachinePointerInfo MPInfo(Global);
2631     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2632                  MachineMemOperand::MODereferenceable;
2633     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2634         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2635     DAG.setNodeMemRefs(Node, {MemRef});
2636   }
2637   if (PtrTy != PtrMemTy)
2638     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2639   return SDValue(Node, 0);
2640 }
2641 
2642 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2643 /// tail spliced into a stack protector check success bb.
2644 ///
2645 /// For a high level explanation of how this fits into the stack protector
2646 /// generation see the comment on the declaration of class
2647 /// StackProtectorDescriptor.
2648 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2649                                                   MachineBasicBlock *ParentBB) {
2650 
2651   // First create the loads to the guard/stack slot for the comparison.
2652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2653   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2654   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2655 
2656   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2657   int FI = MFI.getStackProtectorIndex();
2658 
2659   SDValue Guard;
2660   SDLoc dl = getCurSDLoc();
2661   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2662   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2663   Align Align =
2664       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2665 
2666   // Generate code to load the content of the guard slot.
2667   SDValue GuardVal = DAG.getLoad(
2668       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2669       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2670       MachineMemOperand::MOVolatile);
2671 
2672   if (TLI.useStackGuardXorFP())
2673     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2674 
2675   // Retrieve guard check function, nullptr if instrumentation is inlined.
2676   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2677     // The target provides a guard check function to validate the guard value.
2678     // Generate a call to that function with the content of the guard slot as
2679     // argument.
2680     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2681     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2682 
2683     TargetLowering::ArgListTy Args;
2684     TargetLowering::ArgListEntry Entry;
2685     Entry.Node = GuardVal;
2686     Entry.Ty = FnTy->getParamType(0);
2687     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2688       Entry.IsInReg = true;
2689     Args.push_back(Entry);
2690 
2691     TargetLowering::CallLoweringInfo CLI(DAG);
2692     CLI.setDebugLoc(getCurSDLoc())
2693         .setChain(DAG.getEntryNode())
2694         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2695                    getValue(GuardCheckFn), std::move(Args));
2696 
2697     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2698     DAG.setRoot(Result.second);
2699     return;
2700   }
2701 
2702   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2703   // Otherwise, emit a volatile load to retrieve the stack guard value.
2704   SDValue Chain = DAG.getEntryNode();
2705   if (TLI.useLoadStackGuardNode()) {
2706     Guard = getLoadStackGuard(DAG, dl, Chain);
2707   } else {
2708     const Value *IRGuard = TLI.getSDagStackGuard(M);
2709     SDValue GuardPtr = getValue(IRGuard);
2710 
2711     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2712                         MachinePointerInfo(IRGuard, 0), Align,
2713                         MachineMemOperand::MOVolatile);
2714   }
2715 
2716   // Perform the comparison via a getsetcc.
2717   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2718                                                         *DAG.getContext(),
2719                                                         Guard.getValueType()),
2720                              Guard, GuardVal, ISD::SETNE);
2721 
2722   // If the guard/stackslot do not equal, branch to failure MBB.
2723   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2724                                MVT::Other, GuardVal.getOperand(0),
2725                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2726   // Otherwise branch to success MBB.
2727   SDValue Br = DAG.getNode(ISD::BR, dl,
2728                            MVT::Other, BrCond,
2729                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2730 
2731   DAG.setRoot(Br);
2732 }
2733 
2734 /// Codegen the failure basic block for a stack protector check.
2735 ///
2736 /// A failure stack protector machine basic block consists simply of a call to
2737 /// __stack_chk_fail().
2738 ///
2739 /// For a high level explanation of how this fits into the stack protector
2740 /// generation see the comment on the declaration of class
2741 /// StackProtectorDescriptor.
2742 void
2743 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2744   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2745   TargetLowering::MakeLibCallOptions CallOptions;
2746   CallOptions.setDiscardResult(true);
2747   SDValue Chain =
2748       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2749                       None, CallOptions, getCurSDLoc()).second;
2750   // On PS4/PS5, the "return address" must still be within the calling
2751   // function, even if it's at the very end, so emit an explicit TRAP here.
2752   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2753   if (TM.getTargetTriple().isPS())
2754     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2755   // WebAssembly needs an unreachable instruction after a non-returning call,
2756   // because the function return type can be different from __stack_chk_fail's
2757   // return type (void).
2758   if (TM.getTargetTriple().isWasm())
2759     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2760 
2761   DAG.setRoot(Chain);
2762 }
2763 
2764 /// visitBitTestHeader - This function emits necessary code to produce value
2765 /// suitable for "bit tests"
2766 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2767                                              MachineBasicBlock *SwitchBB) {
2768   SDLoc dl = getCurSDLoc();
2769 
2770   // Subtract the minimum value.
2771   SDValue SwitchOp = getValue(B.SValue);
2772   EVT VT = SwitchOp.getValueType();
2773   SDValue RangeSub =
2774       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2775 
2776   // Determine the type of the test operands.
2777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2778   bool UsePtrType = false;
2779   if (!TLI.isTypeLegal(VT)) {
2780     UsePtrType = true;
2781   } else {
2782     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2783       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2784         // Switch table case range are encoded into series of masks.
2785         // Just use pointer type, it's guaranteed to fit.
2786         UsePtrType = true;
2787         break;
2788       }
2789   }
2790   SDValue Sub = RangeSub;
2791   if (UsePtrType) {
2792     VT = TLI.getPointerTy(DAG.getDataLayout());
2793     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2794   }
2795 
2796   B.RegVT = VT.getSimpleVT();
2797   B.Reg = FuncInfo.CreateReg(B.RegVT);
2798   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2799 
2800   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2801 
2802   if (!B.FallthroughUnreachable)
2803     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2804   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2805   SwitchBB->normalizeSuccProbs();
2806 
2807   SDValue Root = CopyTo;
2808   if (!B.FallthroughUnreachable) {
2809     // Conditional branch to the default block.
2810     SDValue RangeCmp = DAG.getSetCC(dl,
2811         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2812                                RangeSub.getValueType()),
2813         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2814         ISD::SETUGT);
2815 
2816     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2817                        DAG.getBasicBlock(B.Default));
2818   }
2819 
2820   // Avoid emitting unnecessary branches to the next block.
2821   if (MBB != NextBlock(SwitchBB))
2822     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2823 
2824   DAG.setRoot(Root);
2825 }
2826 
2827 /// visitBitTestCase - this function produces one "bit test"
2828 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2829                                            MachineBasicBlock* NextMBB,
2830                                            BranchProbability BranchProbToNext,
2831                                            unsigned Reg,
2832                                            BitTestCase &B,
2833                                            MachineBasicBlock *SwitchBB) {
2834   SDLoc dl = getCurSDLoc();
2835   MVT VT = BB.RegVT;
2836   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2837   SDValue Cmp;
2838   unsigned PopCount = countPopulation(B.Mask);
2839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2840   if (PopCount == 1) {
2841     // Testing for a single bit; just compare the shift count with what it
2842     // would need to be to shift a 1 bit in that position.
2843     Cmp = DAG.getSetCC(
2844         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2845         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2846         ISD::SETEQ);
2847   } else if (PopCount == BB.Range) {
2848     // There is only one zero bit in the range, test for it directly.
2849     Cmp = DAG.getSetCC(
2850         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2851         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2852         ISD::SETNE);
2853   } else {
2854     // Make desired shift
2855     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2856                                     DAG.getConstant(1, dl, VT), ShiftOp);
2857 
2858     // Emit bit tests and jumps
2859     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2860                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2861     Cmp = DAG.getSetCC(
2862         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2863         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2864   }
2865 
2866   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2867   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2868   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2869   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2870   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2871   // one as they are relative probabilities (and thus work more like weights),
2872   // and hence we need to normalize them to let the sum of them become one.
2873   SwitchBB->normalizeSuccProbs();
2874 
2875   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2876                               MVT::Other, getControlRoot(),
2877                               Cmp, DAG.getBasicBlock(B.TargetBB));
2878 
2879   // Avoid emitting unnecessary branches to the next block.
2880   if (NextMBB != NextBlock(SwitchBB))
2881     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2882                         DAG.getBasicBlock(NextMBB));
2883 
2884   DAG.setRoot(BrAnd);
2885 }
2886 
2887 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2888   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2889 
2890   // Retrieve successors. Look through artificial IR level blocks like
2891   // catchswitch for successors.
2892   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2893   const BasicBlock *EHPadBB = I.getSuccessor(1);
2894 
2895   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2896   // have to do anything here to lower funclet bundles.
2897   assert(!I.hasOperandBundlesOtherThan(
2898              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2899               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2900               LLVMContext::OB_cfguardtarget,
2901               LLVMContext::OB_clang_arc_attachedcall}) &&
2902          "Cannot lower invokes with arbitrary operand bundles yet!");
2903 
2904   const Value *Callee(I.getCalledOperand());
2905   const Function *Fn = dyn_cast<Function>(Callee);
2906   if (isa<InlineAsm>(Callee))
2907     visitInlineAsm(I, EHPadBB);
2908   else if (Fn && Fn->isIntrinsic()) {
2909     switch (Fn->getIntrinsicID()) {
2910     default:
2911       llvm_unreachable("Cannot invoke this intrinsic");
2912     case Intrinsic::donothing:
2913       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2914     case Intrinsic::seh_try_begin:
2915     case Intrinsic::seh_scope_begin:
2916     case Intrinsic::seh_try_end:
2917     case Intrinsic::seh_scope_end:
2918       break;
2919     case Intrinsic::experimental_patchpoint_void:
2920     case Intrinsic::experimental_patchpoint_i64:
2921       visitPatchpoint(I, EHPadBB);
2922       break;
2923     case Intrinsic::experimental_gc_statepoint:
2924       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2925       break;
2926     case Intrinsic::wasm_rethrow: {
2927       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2928       // special because it can be invoked, so we manually lower it to a DAG
2929       // node here.
2930       SmallVector<SDValue, 8> Ops;
2931       Ops.push_back(getRoot()); // inchain
2932       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2933       Ops.push_back(
2934           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2935                                 TLI.getPointerTy(DAG.getDataLayout())));
2936       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2937       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2938       break;
2939     }
2940     }
2941   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2942     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2943     // Eventually we will support lowering the @llvm.experimental.deoptimize
2944     // intrinsic, and right now there are no plans to support other intrinsics
2945     // with deopt state.
2946     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2947   } else {
2948     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2949   }
2950 
2951   // If the value of the invoke is used outside of its defining block, make it
2952   // available as a virtual register.
2953   // We already took care of the exported value for the statepoint instruction
2954   // during call to the LowerStatepoint.
2955   if (!isa<GCStatepointInst>(I)) {
2956     CopyToExportRegsIfNeeded(&I);
2957   }
2958 
2959   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2960   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2961   BranchProbability EHPadBBProb =
2962       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2963           : BranchProbability::getZero();
2964   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2965 
2966   // Update successor info.
2967   addSuccessorWithProb(InvokeMBB, Return);
2968   for (auto &UnwindDest : UnwindDests) {
2969     UnwindDest.first->setIsEHPad();
2970     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2971   }
2972   InvokeMBB->normalizeSuccProbs();
2973 
2974   // Drop into normal successor.
2975   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2976                           DAG.getBasicBlock(Return)));
2977 }
2978 
2979 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2980   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2981 
2982   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2983   // have to do anything here to lower funclet bundles.
2984   assert(!I.hasOperandBundlesOtherThan(
2985              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2986          "Cannot lower callbrs with arbitrary operand bundles yet!");
2987 
2988   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2989   visitInlineAsm(I);
2990   CopyToExportRegsIfNeeded(&I);
2991 
2992   // Retrieve successors.
2993   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2994 
2995   // Update successor info.
2996   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2997   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2998     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2999     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3000     Target->setIsInlineAsmBrIndirectTarget();
3001   }
3002   CallBrMBB->normalizeSuccProbs();
3003 
3004   // Drop into default successor.
3005   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3006                           MVT::Other, getControlRoot(),
3007                           DAG.getBasicBlock(Return)));
3008 }
3009 
3010 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3011   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3012 }
3013 
3014 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3015   assert(FuncInfo.MBB->isEHPad() &&
3016          "Call to landingpad not in landing pad!");
3017 
3018   // If there aren't registers to copy the values into (e.g., during SjLj
3019   // exceptions), then don't bother to create these DAG nodes.
3020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3021   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3022   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3023       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3024     return;
3025 
3026   // If landingpad's return type is token type, we don't create DAG nodes
3027   // for its exception pointer and selector value. The extraction of exception
3028   // pointer or selector value from token type landingpads is not currently
3029   // supported.
3030   if (LP.getType()->isTokenTy())
3031     return;
3032 
3033   SmallVector<EVT, 2> ValueVTs;
3034   SDLoc dl = getCurSDLoc();
3035   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3036   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3037 
3038   // Get the two live-in registers as SDValues. The physregs have already been
3039   // copied into virtual registers.
3040   SDValue Ops[2];
3041   if (FuncInfo.ExceptionPointerVirtReg) {
3042     Ops[0] = DAG.getZExtOrTrunc(
3043         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3044                            FuncInfo.ExceptionPointerVirtReg,
3045                            TLI.getPointerTy(DAG.getDataLayout())),
3046         dl, ValueVTs[0]);
3047   } else {
3048     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3049   }
3050   Ops[1] = DAG.getZExtOrTrunc(
3051       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3052                          FuncInfo.ExceptionSelectorVirtReg,
3053                          TLI.getPointerTy(DAG.getDataLayout())),
3054       dl, ValueVTs[1]);
3055 
3056   // Merge into one.
3057   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3058                             DAG.getVTList(ValueVTs), Ops);
3059   setValue(&LP, Res);
3060 }
3061 
3062 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3063                                            MachineBasicBlock *Last) {
3064   // Update JTCases.
3065   for (JumpTableBlock &JTB : SL->JTCases)
3066     if (JTB.first.HeaderBB == First)
3067       JTB.first.HeaderBB = Last;
3068 
3069   // Update BitTestCases.
3070   for (BitTestBlock &BTB : SL->BitTestCases)
3071     if (BTB.Parent == First)
3072       BTB.Parent = Last;
3073 }
3074 
3075 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3076   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3077 
3078   // Update machine-CFG edges with unique successors.
3079   SmallSet<BasicBlock*, 32> Done;
3080   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3081     BasicBlock *BB = I.getSuccessor(i);
3082     bool Inserted = Done.insert(BB).second;
3083     if (!Inserted)
3084         continue;
3085 
3086     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3087     addSuccessorWithProb(IndirectBrMBB, Succ);
3088   }
3089   IndirectBrMBB->normalizeSuccProbs();
3090 
3091   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3092                           MVT::Other, getControlRoot(),
3093                           getValue(I.getAddress())));
3094 }
3095 
3096 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3097   if (!DAG.getTarget().Options.TrapUnreachable)
3098     return;
3099 
3100   // We may be able to ignore unreachable behind a noreturn call.
3101   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3102     const BasicBlock &BB = *I.getParent();
3103     if (&I != &BB.front()) {
3104       BasicBlock::const_iterator PredI =
3105         std::prev(BasicBlock::const_iterator(&I));
3106       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3107         if (Call->doesNotReturn())
3108           return;
3109       }
3110     }
3111   }
3112 
3113   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3114 }
3115 
3116 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3117   SDNodeFlags Flags;
3118   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3119     Flags.copyFMF(*FPOp);
3120 
3121   SDValue Op = getValue(I.getOperand(0));
3122   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3123                                     Op, Flags);
3124   setValue(&I, UnNodeValue);
3125 }
3126 
3127 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3128   SDNodeFlags Flags;
3129   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3130     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3131     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3132   }
3133   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3134     Flags.setExact(ExactOp->isExact());
3135   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3136     Flags.copyFMF(*FPOp);
3137 
3138   SDValue Op1 = getValue(I.getOperand(0));
3139   SDValue Op2 = getValue(I.getOperand(1));
3140   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3141                                      Op1, Op2, Flags);
3142   setValue(&I, BinNodeValue);
3143 }
3144 
3145 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3146   SDValue Op1 = getValue(I.getOperand(0));
3147   SDValue Op2 = getValue(I.getOperand(1));
3148 
3149   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3150       Op1.getValueType(), DAG.getDataLayout());
3151 
3152   // Coerce the shift amount to the right type if we can. This exposes the
3153   // truncate or zext to optimization early.
3154   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3155     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3156            "Unexpected shift type");
3157     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3158   }
3159 
3160   bool nuw = false;
3161   bool nsw = false;
3162   bool exact = false;
3163 
3164   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3165 
3166     if (const OverflowingBinaryOperator *OFBinOp =
3167             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3168       nuw = OFBinOp->hasNoUnsignedWrap();
3169       nsw = OFBinOp->hasNoSignedWrap();
3170     }
3171     if (const PossiblyExactOperator *ExactOp =
3172             dyn_cast<const PossiblyExactOperator>(&I))
3173       exact = ExactOp->isExact();
3174   }
3175   SDNodeFlags Flags;
3176   Flags.setExact(exact);
3177   Flags.setNoSignedWrap(nsw);
3178   Flags.setNoUnsignedWrap(nuw);
3179   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3180                             Flags);
3181   setValue(&I, Res);
3182 }
3183 
3184 void SelectionDAGBuilder::visitSDiv(const User &I) {
3185   SDValue Op1 = getValue(I.getOperand(0));
3186   SDValue Op2 = getValue(I.getOperand(1));
3187 
3188   SDNodeFlags Flags;
3189   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3190                  cast<PossiblyExactOperator>(&I)->isExact());
3191   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3192                            Op2, Flags));
3193 }
3194 
3195 void SelectionDAGBuilder::visitICmp(const User &I) {
3196   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3197   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3198     predicate = IC->getPredicate();
3199   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3200     predicate = ICmpInst::Predicate(IC->getPredicate());
3201   SDValue Op1 = getValue(I.getOperand(0));
3202   SDValue Op2 = getValue(I.getOperand(1));
3203   ISD::CondCode Opcode = getICmpCondCode(predicate);
3204 
3205   auto &TLI = DAG.getTargetLoweringInfo();
3206   EVT MemVT =
3207       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3208 
3209   // If a pointer's DAG type is larger than its memory type then the DAG values
3210   // are zero-extended. This breaks signed comparisons so truncate back to the
3211   // underlying type before doing the compare.
3212   if (Op1.getValueType() != MemVT) {
3213     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3214     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3215   }
3216 
3217   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3218                                                         I.getType());
3219   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3220 }
3221 
3222 void SelectionDAGBuilder::visitFCmp(const User &I) {
3223   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3224   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3225     predicate = FC->getPredicate();
3226   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3227     predicate = FCmpInst::Predicate(FC->getPredicate());
3228   SDValue Op1 = getValue(I.getOperand(0));
3229   SDValue Op2 = getValue(I.getOperand(1));
3230 
3231   ISD::CondCode Condition = getFCmpCondCode(predicate);
3232   auto *FPMO = cast<FPMathOperator>(&I);
3233   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3234     Condition = getFCmpCodeWithoutNaN(Condition);
3235 
3236   SDNodeFlags Flags;
3237   Flags.copyFMF(*FPMO);
3238   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3239 
3240   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3241                                                         I.getType());
3242   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3243 }
3244 
3245 // Check if the condition of the select has one use or two users that are both
3246 // selects with the same condition.
3247 static bool hasOnlySelectUsers(const Value *Cond) {
3248   return llvm::all_of(Cond->users(), [](const Value *V) {
3249     return isa<SelectInst>(V);
3250   });
3251 }
3252 
3253 void SelectionDAGBuilder::visitSelect(const User &I) {
3254   SmallVector<EVT, 4> ValueVTs;
3255   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3256                   ValueVTs);
3257   unsigned NumValues = ValueVTs.size();
3258   if (NumValues == 0) return;
3259 
3260   SmallVector<SDValue, 4> Values(NumValues);
3261   SDValue Cond     = getValue(I.getOperand(0));
3262   SDValue LHSVal   = getValue(I.getOperand(1));
3263   SDValue RHSVal   = getValue(I.getOperand(2));
3264   SmallVector<SDValue, 1> BaseOps(1, Cond);
3265   ISD::NodeType OpCode =
3266       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3267 
3268   bool IsUnaryAbs = false;
3269   bool Negate = false;
3270 
3271   SDNodeFlags Flags;
3272   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3273     Flags.copyFMF(*FPOp);
3274 
3275   // Min/max matching is only viable if all output VTs are the same.
3276   if (is_splat(ValueVTs)) {
3277     EVT VT = ValueVTs[0];
3278     LLVMContext &Ctx = *DAG.getContext();
3279     auto &TLI = DAG.getTargetLoweringInfo();
3280 
3281     // We care about the legality of the operation after it has been type
3282     // legalized.
3283     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3284       VT = TLI.getTypeToTransformTo(Ctx, VT);
3285 
3286     // If the vselect is legal, assume we want to leave this as a vector setcc +
3287     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3288     // min/max is legal on the scalar type.
3289     bool UseScalarMinMax = VT.isVector() &&
3290       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3291 
3292     Value *LHS, *RHS;
3293     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3294     ISD::NodeType Opc = ISD::DELETED_NODE;
3295     switch (SPR.Flavor) {
3296     case SPF_UMAX:    Opc = ISD::UMAX; break;
3297     case SPF_UMIN:    Opc = ISD::UMIN; break;
3298     case SPF_SMAX:    Opc = ISD::SMAX; break;
3299     case SPF_SMIN:    Opc = ISD::SMIN; break;
3300     case SPF_FMINNUM:
3301       switch (SPR.NaNBehavior) {
3302       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3303       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3304       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3305       case SPNB_RETURNS_ANY: {
3306         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3307           Opc = ISD::FMINNUM;
3308         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3309           Opc = ISD::FMINIMUM;
3310         else if (UseScalarMinMax)
3311           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3312             ISD::FMINNUM : ISD::FMINIMUM;
3313         break;
3314       }
3315       }
3316       break;
3317     case SPF_FMAXNUM:
3318       switch (SPR.NaNBehavior) {
3319       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3320       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3321       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3322       case SPNB_RETURNS_ANY:
3323 
3324         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3325           Opc = ISD::FMAXNUM;
3326         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3327           Opc = ISD::FMAXIMUM;
3328         else if (UseScalarMinMax)
3329           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3330             ISD::FMAXNUM : ISD::FMAXIMUM;
3331         break;
3332       }
3333       break;
3334     case SPF_NABS:
3335       Negate = true;
3336       LLVM_FALLTHROUGH;
3337     case SPF_ABS:
3338       IsUnaryAbs = true;
3339       Opc = ISD::ABS;
3340       break;
3341     default: break;
3342     }
3343 
3344     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3345         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3346          (UseScalarMinMax &&
3347           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3348         // If the underlying comparison instruction is used by any other
3349         // instruction, the consumed instructions won't be destroyed, so it is
3350         // not profitable to convert to a min/max.
3351         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3352       OpCode = Opc;
3353       LHSVal = getValue(LHS);
3354       RHSVal = getValue(RHS);
3355       BaseOps.clear();
3356     }
3357 
3358     if (IsUnaryAbs) {
3359       OpCode = Opc;
3360       LHSVal = getValue(LHS);
3361       BaseOps.clear();
3362     }
3363   }
3364 
3365   if (IsUnaryAbs) {
3366     for (unsigned i = 0; i != NumValues; ++i) {
3367       SDLoc dl = getCurSDLoc();
3368       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3369       Values[i] =
3370           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3371       if (Negate)
3372         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3373                                 Values[i]);
3374     }
3375   } else {
3376     for (unsigned i = 0; i != NumValues; ++i) {
3377       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3378       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3379       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3380       Values[i] = DAG.getNode(
3381           OpCode, getCurSDLoc(),
3382           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3383     }
3384   }
3385 
3386   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3387                            DAG.getVTList(ValueVTs), Values));
3388 }
3389 
3390 void SelectionDAGBuilder::visitTrunc(const User &I) {
3391   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3392   SDValue N = getValue(I.getOperand(0));
3393   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3394                                                         I.getType());
3395   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3396 }
3397 
3398 void SelectionDAGBuilder::visitZExt(const User &I) {
3399   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3400   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3401   SDValue N = getValue(I.getOperand(0));
3402   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3403                                                         I.getType());
3404   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3405 }
3406 
3407 void SelectionDAGBuilder::visitSExt(const User &I) {
3408   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3409   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3410   SDValue N = getValue(I.getOperand(0));
3411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3412                                                         I.getType());
3413   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3414 }
3415 
3416 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3417   // FPTrunc is never a no-op cast, no need to check
3418   SDValue N = getValue(I.getOperand(0));
3419   SDLoc dl = getCurSDLoc();
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3422   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3423                            DAG.getTargetConstant(
3424                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3425 }
3426 
3427 void SelectionDAGBuilder::visitFPExt(const User &I) {
3428   // FPExt is never a no-op cast, no need to check
3429   SDValue N = getValue(I.getOperand(0));
3430   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3431                                                         I.getType());
3432   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3433 }
3434 
3435 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3436   // FPToUI is never a no-op cast, no need to check
3437   SDValue N = getValue(I.getOperand(0));
3438   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3439                                                         I.getType());
3440   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3441 }
3442 
3443 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3444   // FPToSI is never a no-op cast, no need to check
3445   SDValue N = getValue(I.getOperand(0));
3446   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3447                                                         I.getType());
3448   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3449 }
3450 
3451 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3452   // UIToFP is never a no-op cast, no need to check
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3460   // SIToFP is never a no-op cast, no need to check
3461   SDValue N = getValue(I.getOperand(0));
3462   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3463                                                         I.getType());
3464   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3465 }
3466 
3467 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3468   // What to do depends on the size of the integer and the size of the pointer.
3469   // We can either truncate, zero extend, or no-op, accordingly.
3470   SDValue N = getValue(I.getOperand(0));
3471   auto &TLI = DAG.getTargetLoweringInfo();
3472   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3473                                                         I.getType());
3474   EVT PtrMemVT =
3475       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3476   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3477   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3478   setValue(&I, N);
3479 }
3480 
3481 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3482   // What to do depends on the size of the integer and the size of the pointer.
3483   // We can either truncate, zero extend, or no-op, accordingly.
3484   SDValue N = getValue(I.getOperand(0));
3485   auto &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3487   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3488   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3490   setValue(&I, N);
3491 }
3492 
3493 void SelectionDAGBuilder::visitBitCast(const User &I) {
3494   SDValue N = getValue(I.getOperand(0));
3495   SDLoc dl = getCurSDLoc();
3496   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3497                                                         I.getType());
3498 
3499   // BitCast assures us that source and destination are the same size so this is
3500   // either a BITCAST or a no-op.
3501   if (DestVT != N.getValueType())
3502     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3503                              DestVT, N)); // convert types.
3504   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3505   // might fold any kind of constant expression to an integer constant and that
3506   // is not what we are looking for. Only recognize a bitcast of a genuine
3507   // constant integer as an opaque constant.
3508   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3509     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3510                                  /*isOpaque*/true));
3511   else
3512     setValue(&I, N);            // noop cast.
3513 }
3514 
3515 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3517   const Value *SV = I.getOperand(0);
3518   SDValue N = getValue(SV);
3519   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3520 
3521   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3522   unsigned DestAS = I.getType()->getPointerAddressSpace();
3523 
3524   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3525     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3526 
3527   setValue(&I, N);
3528 }
3529 
3530 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3532   SDValue InVec = getValue(I.getOperand(0));
3533   SDValue InVal = getValue(I.getOperand(1));
3534   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3535                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3536   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3537                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3538                            InVec, InVal, InIdx));
3539 }
3540 
3541 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543   SDValue InVec = getValue(I.getOperand(0));
3544   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3545                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3546   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3547                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3548                            InVec, InIdx));
3549 }
3550 
3551 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3552   SDValue Src1 = getValue(I.getOperand(0));
3553   SDValue Src2 = getValue(I.getOperand(1));
3554   ArrayRef<int> Mask;
3555   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3556     Mask = SVI->getShuffleMask();
3557   else
3558     Mask = cast<ConstantExpr>(I).getShuffleMask();
3559   SDLoc DL = getCurSDLoc();
3560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3562   EVT SrcVT = Src1.getValueType();
3563 
3564   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3565       VT.isScalableVector()) {
3566     // Canonical splat form of first element of first input vector.
3567     SDValue FirstElt =
3568         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3569                     DAG.getVectorIdxConstant(0, DL));
3570     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3571     return;
3572   }
3573 
3574   // For now, we only handle splats for scalable vectors.
3575   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3576   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3577   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3578 
3579   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3580   unsigned MaskNumElts = Mask.size();
3581 
3582   if (SrcNumElts == MaskNumElts) {
3583     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3584     return;
3585   }
3586 
3587   // Normalize the shuffle vector since mask and vector length don't match.
3588   if (SrcNumElts < MaskNumElts) {
3589     // Mask is longer than the source vectors. We can use concatenate vector to
3590     // make the mask and vectors lengths match.
3591 
3592     if (MaskNumElts % SrcNumElts == 0) {
3593       // Mask length is a multiple of the source vector length.
3594       // Check if the shuffle is some kind of concatenation of the input
3595       // vectors.
3596       unsigned NumConcat = MaskNumElts / SrcNumElts;
3597       bool IsConcat = true;
3598       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3599       for (unsigned i = 0; i != MaskNumElts; ++i) {
3600         int Idx = Mask[i];
3601         if (Idx < 0)
3602           continue;
3603         // Ensure the indices in each SrcVT sized piece are sequential and that
3604         // the same source is used for the whole piece.
3605         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3606             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3607              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3608           IsConcat = false;
3609           break;
3610         }
3611         // Remember which source this index came from.
3612         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3613       }
3614 
3615       // The shuffle is concatenating multiple vectors together. Just emit
3616       // a CONCAT_VECTORS operation.
3617       if (IsConcat) {
3618         SmallVector<SDValue, 8> ConcatOps;
3619         for (auto Src : ConcatSrcs) {
3620           if (Src < 0)
3621             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3622           else if (Src == 0)
3623             ConcatOps.push_back(Src1);
3624           else
3625             ConcatOps.push_back(Src2);
3626         }
3627         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3628         return;
3629       }
3630     }
3631 
3632     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3633     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3634     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3635                                     PaddedMaskNumElts);
3636 
3637     // Pad both vectors with undefs to make them the same length as the mask.
3638     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3639 
3640     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3641     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3642     MOps1[0] = Src1;
3643     MOps2[0] = Src2;
3644 
3645     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3646     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3647 
3648     // Readjust mask for new input vector length.
3649     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3650     for (unsigned i = 0; i != MaskNumElts; ++i) {
3651       int Idx = Mask[i];
3652       if (Idx >= (int)SrcNumElts)
3653         Idx -= SrcNumElts - PaddedMaskNumElts;
3654       MappedOps[i] = Idx;
3655     }
3656 
3657     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3658 
3659     // If the concatenated vector was padded, extract a subvector with the
3660     // correct number of elements.
3661     if (MaskNumElts != PaddedMaskNumElts)
3662       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3663                            DAG.getVectorIdxConstant(0, DL));
3664 
3665     setValue(&I, Result);
3666     return;
3667   }
3668 
3669   if (SrcNumElts > MaskNumElts) {
3670     // Analyze the access pattern of the vector to see if we can extract
3671     // two subvectors and do the shuffle.
3672     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3673     bool CanExtract = true;
3674     for (int Idx : Mask) {
3675       unsigned Input = 0;
3676       if (Idx < 0)
3677         continue;
3678 
3679       if (Idx >= (int)SrcNumElts) {
3680         Input = 1;
3681         Idx -= SrcNumElts;
3682       }
3683 
3684       // If all the indices come from the same MaskNumElts sized portion of
3685       // the sources we can use extract. Also make sure the extract wouldn't
3686       // extract past the end of the source.
3687       int NewStartIdx = alignDown(Idx, MaskNumElts);
3688       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3689           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3690         CanExtract = false;
3691       // Make sure we always update StartIdx as we use it to track if all
3692       // elements are undef.
3693       StartIdx[Input] = NewStartIdx;
3694     }
3695 
3696     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3697       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3698       return;
3699     }
3700     if (CanExtract) {
3701       // Extract appropriate subvector and generate a vector shuffle
3702       for (unsigned Input = 0; Input < 2; ++Input) {
3703         SDValue &Src = Input == 0 ? Src1 : Src2;
3704         if (StartIdx[Input] < 0)
3705           Src = DAG.getUNDEF(VT);
3706         else {
3707           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3708                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3709         }
3710       }
3711 
3712       // Calculate new mask.
3713       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3714       for (int &Idx : MappedOps) {
3715         if (Idx >= (int)SrcNumElts)
3716           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3717         else if (Idx >= 0)
3718           Idx -= StartIdx[0];
3719       }
3720 
3721       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3722       return;
3723     }
3724   }
3725 
3726   // We can't use either concat vectors or extract subvectors so fall back to
3727   // replacing the shuffle with extract and build vector.
3728   // to insert and build vector.
3729   EVT EltVT = VT.getVectorElementType();
3730   SmallVector<SDValue,8> Ops;
3731   for (int Idx : Mask) {
3732     SDValue Res;
3733 
3734     if (Idx < 0) {
3735       Res = DAG.getUNDEF(EltVT);
3736     } else {
3737       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3738       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3739 
3740       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3741                         DAG.getVectorIdxConstant(Idx, DL));
3742     }
3743 
3744     Ops.push_back(Res);
3745   }
3746 
3747   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3748 }
3749 
3750 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3751   ArrayRef<unsigned> Indices = I.getIndices();
3752   const Value *Op0 = I.getOperand(0);
3753   const Value *Op1 = I.getOperand(1);
3754   Type *AggTy = I.getType();
3755   Type *ValTy = Op1->getType();
3756   bool IntoUndef = isa<UndefValue>(Op0);
3757   bool FromUndef = isa<UndefValue>(Op1);
3758 
3759   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3760 
3761   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3762   SmallVector<EVT, 4> AggValueVTs;
3763   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3764   SmallVector<EVT, 4> ValValueVTs;
3765   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3766 
3767   unsigned NumAggValues = AggValueVTs.size();
3768   unsigned NumValValues = ValValueVTs.size();
3769   SmallVector<SDValue, 4> Values(NumAggValues);
3770 
3771   // Ignore an insertvalue that produces an empty object
3772   if (!NumAggValues) {
3773     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3774     return;
3775   }
3776 
3777   SDValue Agg = getValue(Op0);
3778   unsigned i = 0;
3779   // Copy the beginning value(s) from the original aggregate.
3780   for (; i != LinearIndex; ++i)
3781     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3782                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3783   // Copy values from the inserted value(s).
3784   if (NumValValues) {
3785     SDValue Val = getValue(Op1);
3786     for (; i != LinearIndex + NumValValues; ++i)
3787       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3788                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3789   }
3790   // Copy remaining value(s) from the original aggregate.
3791   for (; i != NumAggValues; ++i)
3792     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3793                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3794 
3795   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3796                            DAG.getVTList(AggValueVTs), Values));
3797 }
3798 
3799 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3800   ArrayRef<unsigned> Indices = I.getIndices();
3801   const Value *Op0 = I.getOperand(0);
3802   Type *AggTy = Op0->getType();
3803   Type *ValTy = I.getType();
3804   bool OutOfUndef = isa<UndefValue>(Op0);
3805 
3806   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3807 
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809   SmallVector<EVT, 4> ValValueVTs;
3810   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3811 
3812   unsigned NumValValues = ValValueVTs.size();
3813 
3814   // Ignore a extractvalue that produces an empty object
3815   if (!NumValValues) {
3816     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3817     return;
3818   }
3819 
3820   SmallVector<SDValue, 4> Values(NumValValues);
3821 
3822   SDValue Agg = getValue(Op0);
3823   // Copy out the selected value(s).
3824   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3825     Values[i - LinearIndex] =
3826       OutOfUndef ?
3827         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3828         SDValue(Agg.getNode(), Agg.getResNo() + i);
3829 
3830   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3831                            DAG.getVTList(ValValueVTs), Values));
3832 }
3833 
3834 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3835   Value *Op0 = I.getOperand(0);
3836   // Note that the pointer operand may be a vector of pointers. Take the scalar
3837   // element which holds a pointer.
3838   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3839   SDValue N = getValue(Op0);
3840   SDLoc dl = getCurSDLoc();
3841   auto &TLI = DAG.getTargetLoweringInfo();
3842 
3843   // Normalize Vector GEP - all scalar operands should be converted to the
3844   // splat vector.
3845   bool IsVectorGEP = I.getType()->isVectorTy();
3846   ElementCount VectorElementCount =
3847       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3848                   : ElementCount::getFixed(0);
3849 
3850   if (IsVectorGEP && !N.getValueType().isVector()) {
3851     LLVMContext &Context = *DAG.getContext();
3852     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3853     if (VectorElementCount.isScalable())
3854       N = DAG.getSplatVector(VT, dl, N);
3855     else
3856       N = DAG.getSplatBuildVector(VT, dl, N);
3857   }
3858 
3859   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3860        GTI != E; ++GTI) {
3861     const Value *Idx = GTI.getOperand();
3862     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3863       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3864       if (Field) {
3865         // N = N + Offset
3866         uint64_t Offset =
3867             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3868 
3869         // In an inbounds GEP with an offset that is nonnegative even when
3870         // interpreted as signed, assume there is no unsigned overflow.
3871         SDNodeFlags Flags;
3872         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3873           Flags.setNoUnsignedWrap(true);
3874 
3875         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3876                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3877       }
3878     } else {
3879       // IdxSize is the width of the arithmetic according to IR semantics.
3880       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3881       // (and fix up the result later).
3882       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3883       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3884       TypeSize ElementSize =
3885           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3886       // We intentionally mask away the high bits here; ElementSize may not
3887       // fit in IdxTy.
3888       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3889       bool ElementScalable = ElementSize.isScalable();
3890 
3891       // If this is a scalar constant or a splat vector of constants,
3892       // handle it quickly.
3893       const auto *C = dyn_cast<Constant>(Idx);
3894       if (C && isa<VectorType>(C->getType()))
3895         C = C->getSplatValue();
3896 
3897       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3898       if (CI && CI->isZero())
3899         continue;
3900       if (CI && !ElementScalable) {
3901         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3902         LLVMContext &Context = *DAG.getContext();
3903         SDValue OffsVal;
3904         if (IsVectorGEP)
3905           OffsVal = DAG.getConstant(
3906               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3907         else
3908           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3909 
3910         // In an inbounds GEP with an offset that is nonnegative even when
3911         // interpreted as signed, assume there is no unsigned overflow.
3912         SDNodeFlags Flags;
3913         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3914           Flags.setNoUnsignedWrap(true);
3915 
3916         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3917 
3918         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3919         continue;
3920       }
3921 
3922       // N = N + Idx * ElementMul;
3923       SDValue IdxN = getValue(Idx);
3924 
3925       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3926         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3927                                   VectorElementCount);
3928         if (VectorElementCount.isScalable())
3929           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3930         else
3931           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3932       }
3933 
3934       // If the index is smaller or larger than intptr_t, truncate or extend
3935       // it.
3936       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3937 
3938       if (ElementScalable) {
3939         EVT VScaleTy = N.getValueType().getScalarType();
3940         SDValue VScale = DAG.getNode(
3941             ISD::VSCALE, dl, VScaleTy,
3942             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3943         if (IsVectorGEP)
3944           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3945         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3946       } else {
3947         // If this is a multiply by a power of two, turn it into a shl
3948         // immediately.  This is a very common case.
3949         if (ElementMul != 1) {
3950           if (ElementMul.isPowerOf2()) {
3951             unsigned Amt = ElementMul.logBase2();
3952             IdxN = DAG.getNode(ISD::SHL, dl,
3953                                N.getValueType(), IdxN,
3954                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3955           } else {
3956             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3957                                             IdxN.getValueType());
3958             IdxN = DAG.getNode(ISD::MUL, dl,
3959                                N.getValueType(), IdxN, Scale);
3960           }
3961         }
3962       }
3963 
3964       N = DAG.getNode(ISD::ADD, dl,
3965                       N.getValueType(), N, IdxN);
3966     }
3967   }
3968 
3969   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3970   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3971   if (IsVectorGEP) {
3972     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3973     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3974   }
3975 
3976   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3977     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3978 
3979   setValue(&I, N);
3980 }
3981 
3982 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3983   // If this is a fixed sized alloca in the entry block of the function,
3984   // allocate it statically on the stack.
3985   if (FuncInfo.StaticAllocaMap.count(&I))
3986     return;   // getValue will auto-populate this.
3987 
3988   SDLoc dl = getCurSDLoc();
3989   Type *Ty = I.getAllocatedType();
3990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3991   auto &DL = DAG.getDataLayout();
3992   TypeSize TySize = DL.getTypeAllocSize(Ty);
3993   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3994 
3995   SDValue AllocSize = getValue(I.getArraySize());
3996 
3997   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3998   if (AllocSize.getValueType() != IntPtr)
3999     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4000 
4001   if (TySize.isScalable())
4002     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4003                             DAG.getVScale(dl, IntPtr,
4004                                           APInt(IntPtr.getScalarSizeInBits(),
4005                                                 TySize.getKnownMinValue())));
4006   else
4007     AllocSize =
4008         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4009                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4010 
4011   // Handle alignment.  If the requested alignment is less than or equal to
4012   // the stack alignment, ignore it.  If the size is greater than or equal to
4013   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4014   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4015   if (*Alignment <= StackAlign)
4016     Alignment = None;
4017 
4018   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4019   // Round the size of the allocation up to the stack alignment size
4020   // by add SA-1 to the size. This doesn't overflow because we're computing
4021   // an address inside an alloca.
4022   SDNodeFlags Flags;
4023   Flags.setNoUnsignedWrap(true);
4024   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4025                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4026 
4027   // Mask out the low bits for alignment purposes.
4028   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4029                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4030 
4031   SDValue Ops[] = {
4032       getRoot(), AllocSize,
4033       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4034   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4035   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4036   setValue(&I, DSA);
4037   DAG.setRoot(DSA.getValue(1));
4038 
4039   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4040 }
4041 
4042 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4043   if (I.isAtomic())
4044     return visitAtomicLoad(I);
4045 
4046   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4047   const Value *SV = I.getOperand(0);
4048   if (TLI.supportSwiftError()) {
4049     // Swifterror values can come from either a function parameter with
4050     // swifterror attribute or an alloca with swifterror attribute.
4051     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4052       if (Arg->hasSwiftErrorAttr())
4053         return visitLoadFromSwiftError(I);
4054     }
4055 
4056     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4057       if (Alloca->isSwiftError())
4058         return visitLoadFromSwiftError(I);
4059     }
4060   }
4061 
4062   SDValue Ptr = getValue(SV);
4063 
4064   Type *Ty = I.getType();
4065   Align Alignment = I.getAlign();
4066 
4067   AAMDNodes AAInfo = I.getAAMetadata();
4068   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4069 
4070   SmallVector<EVT, 4> ValueVTs, MemVTs;
4071   SmallVector<uint64_t, 4> Offsets;
4072   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4073   unsigned NumValues = ValueVTs.size();
4074   if (NumValues == 0)
4075     return;
4076 
4077   bool isVolatile = I.isVolatile();
4078 
4079   SDValue Root;
4080   bool ConstantMemory = false;
4081   if (isVolatile)
4082     // Serialize volatile loads with other side effects.
4083     Root = getRoot();
4084   else if (NumValues > MaxParallelChains)
4085     Root = getMemoryRoot();
4086   else if (AA &&
4087            AA->pointsToConstantMemory(MemoryLocation(
4088                SV,
4089                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4090                AAInfo))) {
4091     // Do not serialize (non-volatile) loads of constant memory with anything.
4092     Root = DAG.getEntryNode();
4093     ConstantMemory = true;
4094   } else {
4095     // Do not serialize non-volatile loads against each other.
4096     Root = DAG.getRoot();
4097   }
4098 
4099   SDLoc dl = getCurSDLoc();
4100 
4101   if (isVolatile)
4102     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4103 
4104   // An aggregate load cannot wrap around the address space, so offsets to its
4105   // parts don't wrap either.
4106   SDNodeFlags Flags;
4107   Flags.setNoUnsignedWrap(true);
4108 
4109   SmallVector<SDValue, 4> Values(NumValues);
4110   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4111   EVT PtrVT = Ptr.getValueType();
4112 
4113   MachineMemOperand::Flags MMOFlags
4114     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4115 
4116   unsigned ChainI = 0;
4117   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4118     // Serializing loads here may result in excessive register pressure, and
4119     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4120     // could recover a bit by hoisting nodes upward in the chain by recognizing
4121     // they are side-effect free or do not alias. The optimizer should really
4122     // avoid this case by converting large object/array copies to llvm.memcpy
4123     // (MaxParallelChains should always remain as failsafe).
4124     if (ChainI == MaxParallelChains) {
4125       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4126       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4127                                   makeArrayRef(Chains.data(), ChainI));
4128       Root = Chain;
4129       ChainI = 0;
4130     }
4131     SDValue A = DAG.getNode(ISD::ADD, dl,
4132                             PtrVT, Ptr,
4133                             DAG.getConstant(Offsets[i], dl, PtrVT),
4134                             Flags);
4135 
4136     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4137                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4138                             MMOFlags, AAInfo, Ranges);
4139     Chains[ChainI] = L.getValue(1);
4140 
4141     if (MemVTs[i] != ValueVTs[i])
4142       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4143 
4144     Values[i] = L;
4145   }
4146 
4147   if (!ConstantMemory) {
4148     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4149                                 makeArrayRef(Chains.data(), ChainI));
4150     if (isVolatile)
4151       DAG.setRoot(Chain);
4152     else
4153       PendingLoads.push_back(Chain);
4154   }
4155 
4156   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4157                            DAG.getVTList(ValueVTs), Values));
4158 }
4159 
4160 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4161   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4162          "call visitStoreToSwiftError when backend supports swifterror");
4163 
4164   SmallVector<EVT, 4> ValueVTs;
4165   SmallVector<uint64_t, 4> Offsets;
4166   const Value *SrcV = I.getOperand(0);
4167   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4168                   SrcV->getType(), ValueVTs, &Offsets);
4169   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4170          "expect a single EVT for swifterror");
4171 
4172   SDValue Src = getValue(SrcV);
4173   // Create a virtual register, then update the virtual register.
4174   Register VReg =
4175       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4176   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4177   // Chain can be getRoot or getControlRoot.
4178   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4179                                       SDValue(Src.getNode(), Src.getResNo()));
4180   DAG.setRoot(CopyNode);
4181 }
4182 
4183 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4184   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4185          "call visitLoadFromSwiftError when backend supports swifterror");
4186 
4187   assert(!I.isVolatile() &&
4188          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4189          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4190          "Support volatile, non temporal, invariant for load_from_swift_error");
4191 
4192   const Value *SV = I.getOperand(0);
4193   Type *Ty = I.getType();
4194   assert(
4195       (!AA ||
4196        !AA->pointsToConstantMemory(MemoryLocation(
4197            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4198            I.getAAMetadata()))) &&
4199       "load_from_swift_error should not be constant memory");
4200 
4201   SmallVector<EVT, 4> ValueVTs;
4202   SmallVector<uint64_t, 4> Offsets;
4203   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4204                   ValueVTs, &Offsets);
4205   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4206          "expect a single EVT for swifterror");
4207 
4208   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4209   SDValue L = DAG.getCopyFromReg(
4210       getRoot(), getCurSDLoc(),
4211       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4212 
4213   setValue(&I, L);
4214 }
4215 
4216 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4217   if (I.isAtomic())
4218     return visitAtomicStore(I);
4219 
4220   const Value *SrcV = I.getOperand(0);
4221   const Value *PtrV = I.getOperand(1);
4222 
4223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4224   if (TLI.supportSwiftError()) {
4225     // Swifterror values can come from either a function parameter with
4226     // swifterror attribute or an alloca with swifterror attribute.
4227     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4228       if (Arg->hasSwiftErrorAttr())
4229         return visitStoreToSwiftError(I);
4230     }
4231 
4232     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4233       if (Alloca->isSwiftError())
4234         return visitStoreToSwiftError(I);
4235     }
4236   }
4237 
4238   SmallVector<EVT, 4> ValueVTs, MemVTs;
4239   SmallVector<uint64_t, 4> Offsets;
4240   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4241                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4242   unsigned NumValues = ValueVTs.size();
4243   if (NumValues == 0)
4244     return;
4245 
4246   // Get the lowered operands. Note that we do this after
4247   // checking if NumResults is zero, because with zero results
4248   // the operands won't have values in the map.
4249   SDValue Src = getValue(SrcV);
4250   SDValue Ptr = getValue(PtrV);
4251 
4252   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4253   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4254   SDLoc dl = getCurSDLoc();
4255   Align Alignment = I.getAlign();
4256   AAMDNodes AAInfo = I.getAAMetadata();
4257 
4258   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4259 
4260   // An aggregate load cannot wrap around the address space, so offsets to its
4261   // parts don't wrap either.
4262   SDNodeFlags Flags;
4263   Flags.setNoUnsignedWrap(true);
4264 
4265   unsigned ChainI = 0;
4266   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4267     // See visitLoad comments.
4268     if (ChainI == MaxParallelChains) {
4269       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4270                                   makeArrayRef(Chains.data(), ChainI));
4271       Root = Chain;
4272       ChainI = 0;
4273     }
4274     SDValue Add =
4275         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4276     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4277     if (MemVTs[i] != ValueVTs[i])
4278       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4279     SDValue St =
4280         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4281                      Alignment, MMOFlags, AAInfo);
4282     Chains[ChainI] = St;
4283   }
4284 
4285   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4286                                   makeArrayRef(Chains.data(), ChainI));
4287   DAG.setRoot(StoreNode);
4288 }
4289 
4290 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4291                                            bool IsCompressing) {
4292   SDLoc sdl = getCurSDLoc();
4293 
4294   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4295                                MaybeAlign &Alignment) {
4296     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4297     Src0 = I.getArgOperand(0);
4298     Ptr = I.getArgOperand(1);
4299     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4300     Mask = I.getArgOperand(3);
4301   };
4302   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4303                                     MaybeAlign &Alignment) {
4304     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4305     Src0 = I.getArgOperand(0);
4306     Ptr = I.getArgOperand(1);
4307     Mask = I.getArgOperand(2);
4308     Alignment = None;
4309   };
4310 
4311   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4312   MaybeAlign Alignment;
4313   if (IsCompressing)
4314     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4315   else
4316     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4317 
4318   SDValue Ptr = getValue(PtrOperand);
4319   SDValue Src0 = getValue(Src0Operand);
4320   SDValue Mask = getValue(MaskOperand);
4321   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4322 
4323   EVT VT = Src0.getValueType();
4324   if (!Alignment)
4325     Alignment = DAG.getEVTAlign(VT);
4326 
4327   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4328       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4329       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4330   SDValue StoreNode =
4331       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4332                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4333   DAG.setRoot(StoreNode);
4334   setValue(&I, StoreNode);
4335 }
4336 
4337 // Get a uniform base for the Gather/Scatter intrinsic.
4338 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4339 // We try to represent it as a base pointer + vector of indices.
4340 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4341 // The first operand of the GEP may be a single pointer or a vector of pointers
4342 // Example:
4343 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4344 //  or
4345 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4346 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4347 //
4348 // When the first GEP operand is a single pointer - it is the uniform base we
4349 // are looking for. If first operand of the GEP is a splat vector - we
4350 // extract the splat value and use it as a uniform base.
4351 // In all other cases the function returns 'false'.
4352 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4353                            ISD::MemIndexType &IndexType, SDValue &Scale,
4354                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4355                            uint64_t ElemSize) {
4356   SelectionDAG& DAG = SDB->DAG;
4357   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4358   const DataLayout &DL = DAG.getDataLayout();
4359 
4360   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4361 
4362   // Handle splat constant pointer.
4363   if (auto *C = dyn_cast<Constant>(Ptr)) {
4364     C = C->getSplatValue();
4365     if (!C)
4366       return false;
4367 
4368     Base = SDB->getValue(C);
4369 
4370     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4371     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4372     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4373     IndexType = ISD::SIGNED_SCALED;
4374     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4375     return true;
4376   }
4377 
4378   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4379   if (!GEP || GEP->getParent() != CurBB)
4380     return false;
4381 
4382   if (GEP->getNumOperands() != 2)
4383     return false;
4384 
4385   const Value *BasePtr = GEP->getPointerOperand();
4386   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4387 
4388   // Make sure the base is scalar and the index is a vector.
4389   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4390     return false;
4391 
4392   Base = SDB->getValue(BasePtr);
4393   Index = SDB->getValue(IndexVal);
4394   IndexType = ISD::SIGNED_SCALED;
4395 
4396   // MGATHER/MSCATTER are only required to support scaling by one or by the
4397   // element size. Other scales may be produced using target-specific DAG
4398   // combines.
4399   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4400   if (ScaleVal != ElemSize && ScaleVal != 1)
4401     return false;
4402 
4403   Scale =
4404       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4405   return true;
4406 }
4407 
4408 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4409   SDLoc sdl = getCurSDLoc();
4410 
4411   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4412   const Value *Ptr = I.getArgOperand(1);
4413   SDValue Src0 = getValue(I.getArgOperand(0));
4414   SDValue Mask = getValue(I.getArgOperand(3));
4415   EVT VT = Src0.getValueType();
4416   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4417                         ->getMaybeAlignValue()
4418                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4420 
4421   SDValue Base;
4422   SDValue Index;
4423   ISD::MemIndexType IndexType;
4424   SDValue Scale;
4425   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4426                                     I.getParent(), VT.getScalarStoreSize());
4427 
4428   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4429   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4430       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4431       // TODO: Make MachineMemOperands aware of scalable
4432       // vectors.
4433       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4434   if (!UniformBase) {
4435     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4436     Index = getValue(Ptr);
4437     IndexType = ISD::SIGNED_SCALED;
4438     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4439   }
4440 
4441   EVT IdxVT = Index.getValueType();
4442   EVT EltTy = IdxVT.getVectorElementType();
4443   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4444     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4445     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4446   }
4447 
4448   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4449   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4450                                          Ops, MMO, IndexType, false);
4451   DAG.setRoot(Scatter);
4452   setValue(&I, Scatter);
4453 }
4454 
4455 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4456   SDLoc sdl = getCurSDLoc();
4457 
4458   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4459                               MaybeAlign &Alignment) {
4460     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4461     Ptr = I.getArgOperand(0);
4462     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4463     Mask = I.getArgOperand(2);
4464     Src0 = I.getArgOperand(3);
4465   };
4466   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4467                                  MaybeAlign &Alignment) {
4468     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4469     Ptr = I.getArgOperand(0);
4470     Alignment = None;
4471     Mask = I.getArgOperand(1);
4472     Src0 = I.getArgOperand(2);
4473   };
4474 
4475   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4476   MaybeAlign Alignment;
4477   if (IsExpanding)
4478     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4479   else
4480     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4481 
4482   SDValue Ptr = getValue(PtrOperand);
4483   SDValue Src0 = getValue(Src0Operand);
4484   SDValue Mask = getValue(MaskOperand);
4485   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4486 
4487   EVT VT = Src0.getValueType();
4488   if (!Alignment)
4489     Alignment = DAG.getEVTAlign(VT);
4490 
4491   AAMDNodes AAInfo = I.getAAMetadata();
4492   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4493 
4494   // Do not serialize masked loads of constant memory with anything.
4495   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4496   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4497 
4498   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4499 
4500   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4501       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4502       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4503 
4504   SDValue Load =
4505       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4506                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4507   if (AddToChain)
4508     PendingLoads.push_back(Load.getValue(1));
4509   setValue(&I, Load);
4510 }
4511 
4512 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4513   SDLoc sdl = getCurSDLoc();
4514 
4515   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4516   const Value *Ptr = I.getArgOperand(0);
4517   SDValue Src0 = getValue(I.getArgOperand(3));
4518   SDValue Mask = getValue(I.getArgOperand(2));
4519 
4520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4521   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4522   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4523                         ->getMaybeAlignValue()
4524                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4525 
4526   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4527 
4528   SDValue Root = DAG.getRoot();
4529   SDValue Base;
4530   SDValue Index;
4531   ISD::MemIndexType IndexType;
4532   SDValue Scale;
4533   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4534                                     I.getParent(), VT.getScalarStoreSize());
4535   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4536   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4537       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4538       // TODO: Make MachineMemOperands aware of scalable
4539       // vectors.
4540       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4541 
4542   if (!UniformBase) {
4543     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4544     Index = getValue(Ptr);
4545     IndexType = ISD::SIGNED_SCALED;
4546     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4547   }
4548 
4549   EVT IdxVT = Index.getValueType();
4550   EVT EltTy = IdxVT.getVectorElementType();
4551   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4552     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4553     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4554   }
4555 
4556   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4557   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4558                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4559 
4560   PendingLoads.push_back(Gather.getValue(1));
4561   setValue(&I, Gather);
4562 }
4563 
4564 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4565   SDLoc dl = getCurSDLoc();
4566   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4567   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4568   SyncScope::ID SSID = I.getSyncScopeID();
4569 
4570   SDValue InChain = getRoot();
4571 
4572   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4573   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4574 
4575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4576   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4577 
4578   MachineFunction &MF = DAG.getMachineFunction();
4579   MachineMemOperand *MMO = MF.getMachineMemOperand(
4580       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4581       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4582       FailureOrdering);
4583 
4584   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4585                                    dl, MemVT, VTs, InChain,
4586                                    getValue(I.getPointerOperand()),
4587                                    getValue(I.getCompareOperand()),
4588                                    getValue(I.getNewValOperand()), MMO);
4589 
4590   SDValue OutChain = L.getValue(2);
4591 
4592   setValue(&I, L);
4593   DAG.setRoot(OutChain);
4594 }
4595 
4596 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4597   SDLoc dl = getCurSDLoc();
4598   ISD::NodeType NT;
4599   switch (I.getOperation()) {
4600   default: llvm_unreachable("Unknown atomicrmw operation");
4601   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4602   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4603   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4604   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4605   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4606   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4607   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4608   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4609   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4610   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4611   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4612   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4613   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4614   }
4615   AtomicOrdering Ordering = I.getOrdering();
4616   SyncScope::ID SSID = I.getSyncScopeID();
4617 
4618   SDValue InChain = getRoot();
4619 
4620   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4622   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4623 
4624   MachineFunction &MF = DAG.getMachineFunction();
4625   MachineMemOperand *MMO = MF.getMachineMemOperand(
4626       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4627       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4628 
4629   SDValue L =
4630     DAG.getAtomic(NT, dl, MemVT, InChain,
4631                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4632                   MMO);
4633 
4634   SDValue OutChain = L.getValue(1);
4635 
4636   setValue(&I, L);
4637   DAG.setRoot(OutChain);
4638 }
4639 
4640 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4641   SDLoc dl = getCurSDLoc();
4642   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4643   SDValue Ops[3];
4644   Ops[0] = getRoot();
4645   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4646                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4647   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4648                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4649   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4650 }
4651 
4652 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4653   SDLoc dl = getCurSDLoc();
4654   AtomicOrdering Order = I.getOrdering();
4655   SyncScope::ID SSID = I.getSyncScopeID();
4656 
4657   SDValue InChain = getRoot();
4658 
4659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4660   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4661   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4662 
4663   if (!TLI.supportsUnalignedAtomics() &&
4664       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4665     report_fatal_error("Cannot generate unaligned atomic load");
4666 
4667   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4668 
4669   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4670       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4671       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4672 
4673   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4674 
4675   SDValue Ptr = getValue(I.getPointerOperand());
4676 
4677   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4678     // TODO: Once this is better exercised by tests, it should be merged with
4679     // the normal path for loads to prevent future divergence.
4680     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4681     if (MemVT != VT)
4682       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4683 
4684     setValue(&I, L);
4685     SDValue OutChain = L.getValue(1);
4686     if (!I.isUnordered())
4687       DAG.setRoot(OutChain);
4688     else
4689       PendingLoads.push_back(OutChain);
4690     return;
4691   }
4692 
4693   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4694                             Ptr, MMO);
4695 
4696   SDValue OutChain = L.getValue(1);
4697   if (MemVT != VT)
4698     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4699 
4700   setValue(&I, L);
4701   DAG.setRoot(OutChain);
4702 }
4703 
4704 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4705   SDLoc dl = getCurSDLoc();
4706 
4707   AtomicOrdering Ordering = I.getOrdering();
4708   SyncScope::ID SSID = I.getSyncScopeID();
4709 
4710   SDValue InChain = getRoot();
4711 
4712   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4713   EVT MemVT =
4714       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4715 
4716   if (I.getAlign().value() < MemVT.getSizeInBits() / 8)
4717     report_fatal_error("Cannot generate unaligned atomic store");
4718 
4719   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4720 
4721   MachineFunction &MF = DAG.getMachineFunction();
4722   MachineMemOperand *MMO = MF.getMachineMemOperand(
4723       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4724       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4725 
4726   SDValue Val = getValue(I.getValueOperand());
4727   if (Val.getValueType() != MemVT)
4728     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4729   SDValue Ptr = getValue(I.getPointerOperand());
4730 
4731   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4732     // TODO: Once this is better exercised by tests, it should be merged with
4733     // the normal path for stores to prevent future divergence.
4734     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4735     DAG.setRoot(S);
4736     return;
4737   }
4738   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4739                                    Ptr, Val, MMO);
4740 
4741 
4742   DAG.setRoot(OutChain);
4743 }
4744 
4745 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4746 /// node.
4747 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4748                                                unsigned Intrinsic) {
4749   // Ignore the callsite's attributes. A specific call site may be marked with
4750   // readnone, but the lowering code will expect the chain based on the
4751   // definition.
4752   const Function *F = I.getCalledFunction();
4753   bool HasChain = !F->doesNotAccessMemory();
4754   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4755 
4756   // Build the operand list.
4757   SmallVector<SDValue, 8> Ops;
4758   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4759     if (OnlyLoad) {
4760       // We don't need to serialize loads against other loads.
4761       Ops.push_back(DAG.getRoot());
4762     } else {
4763       Ops.push_back(getRoot());
4764     }
4765   }
4766 
4767   // Info is set by getTgtMemIntrinsic
4768   TargetLowering::IntrinsicInfo Info;
4769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4770   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4771                                                DAG.getMachineFunction(),
4772                                                Intrinsic);
4773 
4774   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4775   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4776       Info.opc == ISD::INTRINSIC_W_CHAIN)
4777     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4778                                         TLI.getPointerTy(DAG.getDataLayout())));
4779 
4780   // Add all operands of the call to the operand list.
4781   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4782     const Value *Arg = I.getArgOperand(i);
4783     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4784       Ops.push_back(getValue(Arg));
4785       continue;
4786     }
4787 
4788     // Use TargetConstant instead of a regular constant for immarg.
4789     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4790     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4791       assert(CI->getBitWidth() <= 64 &&
4792              "large intrinsic immediates not handled");
4793       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4794     } else {
4795       Ops.push_back(
4796           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4797     }
4798   }
4799 
4800   SmallVector<EVT, 4> ValueVTs;
4801   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4802 
4803   if (HasChain)
4804     ValueVTs.push_back(MVT::Other);
4805 
4806   SDVTList VTs = DAG.getVTList(ValueVTs);
4807 
4808   // Propagate fast-math-flags from IR to node(s).
4809   SDNodeFlags Flags;
4810   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4811     Flags.copyFMF(*FPMO);
4812   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4813 
4814   // Create the node.
4815   SDValue Result;
4816   if (IsTgtIntrinsic) {
4817     // This is target intrinsic that touches memory
4818     Result =
4819         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4820                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4821                                 Info.align, Info.flags, Info.size,
4822                                 I.getAAMetadata());
4823   } else if (!HasChain) {
4824     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4825   } else if (!I.getType()->isVoidTy()) {
4826     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4827   } else {
4828     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4829   }
4830 
4831   if (HasChain) {
4832     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4833     if (OnlyLoad)
4834       PendingLoads.push_back(Chain);
4835     else
4836       DAG.setRoot(Chain);
4837   }
4838 
4839   if (!I.getType()->isVoidTy()) {
4840     if (!isa<VectorType>(I.getType()))
4841       Result = lowerRangeToAssertZExt(DAG, I, Result);
4842 
4843     MaybeAlign Alignment = I.getRetAlign();
4844     if (!Alignment)
4845       Alignment = F->getAttributes().getRetAlignment();
4846     // Insert `assertalign` node if there's an alignment.
4847     if (InsertAssertAlign && Alignment) {
4848       Result =
4849           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4850     }
4851 
4852     setValue(&I, Result);
4853   }
4854 }
4855 
4856 /// GetSignificand - Get the significand and build it into a floating-point
4857 /// number with exponent of 1:
4858 ///
4859 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4860 ///
4861 /// where Op is the hexadecimal representation of floating point value.
4862 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4863   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4864                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4865   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4866                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4867   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4868 }
4869 
4870 /// GetExponent - Get the exponent:
4871 ///
4872 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4873 ///
4874 /// where Op is the hexadecimal representation of floating point value.
4875 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4876                            const TargetLowering &TLI, const SDLoc &dl) {
4877   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4878                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4879   SDValue t1 = DAG.getNode(
4880       ISD::SRL, dl, MVT::i32, t0,
4881       DAG.getConstant(23, dl,
4882                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4883   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4884                            DAG.getConstant(127, dl, MVT::i32));
4885   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4886 }
4887 
4888 /// getF32Constant - Get 32-bit floating point constant.
4889 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4890                               const SDLoc &dl) {
4891   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4892                            MVT::f32);
4893 }
4894 
4895 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4896                                        SelectionDAG &DAG) {
4897   // TODO: What fast-math-flags should be set on the floating-point nodes?
4898 
4899   //   IntegerPartOfX = ((int32_t)(t0);
4900   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4901 
4902   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4903   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4904   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4905 
4906   //   IntegerPartOfX <<= 23;
4907   IntegerPartOfX =
4908       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4909                   DAG.getConstant(23, dl,
4910                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4911                                       MVT::i32, DAG.getDataLayout())));
4912 
4913   SDValue TwoToFractionalPartOfX;
4914   if (LimitFloatPrecision <= 6) {
4915     // For floating-point precision of 6:
4916     //
4917     //   TwoToFractionalPartOfX =
4918     //     0.997535578f +
4919     //       (0.735607626f + 0.252464424f * x) * x;
4920     //
4921     // error 0.0144103317, which is 6 bits
4922     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4923                              getF32Constant(DAG, 0x3e814304, dl));
4924     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4925                              getF32Constant(DAG, 0x3f3c50c8, dl));
4926     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4927     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4928                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4929   } else if (LimitFloatPrecision <= 12) {
4930     // For floating-point precision of 12:
4931     //
4932     //   TwoToFractionalPartOfX =
4933     //     0.999892986f +
4934     //       (0.696457318f +
4935     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4936     //
4937     // error 0.000107046256, which is 13 to 14 bits
4938     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4939                              getF32Constant(DAG, 0x3da235e3, dl));
4940     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4941                              getF32Constant(DAG, 0x3e65b8f3, dl));
4942     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4943     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4944                              getF32Constant(DAG, 0x3f324b07, dl));
4945     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4946     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4947                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4948   } else { // LimitFloatPrecision <= 18
4949     // For floating-point precision of 18:
4950     //
4951     //   TwoToFractionalPartOfX =
4952     //     0.999999982f +
4953     //       (0.693148872f +
4954     //         (0.240227044f +
4955     //           (0.554906021e-1f +
4956     //             (0.961591928e-2f +
4957     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4958     // error 2.47208000*10^(-7), which is better than 18 bits
4959     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4960                              getF32Constant(DAG, 0x3924b03e, dl));
4961     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4962                              getF32Constant(DAG, 0x3ab24b87, dl));
4963     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4964     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4965                              getF32Constant(DAG, 0x3c1d8c17, dl));
4966     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4967     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4968                              getF32Constant(DAG, 0x3d634a1d, dl));
4969     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4970     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4971                              getF32Constant(DAG, 0x3e75fe14, dl));
4972     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4973     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4974                               getF32Constant(DAG, 0x3f317234, dl));
4975     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4976     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4977                                          getF32Constant(DAG, 0x3f800000, dl));
4978   }
4979 
4980   // Add the exponent into the result in integer domain.
4981   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4982   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4983                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4984 }
4985 
4986 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4987 /// limited-precision mode.
4988 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4989                          const TargetLowering &TLI, SDNodeFlags Flags) {
4990   if (Op.getValueType() == MVT::f32 &&
4991       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4992 
4993     // Put the exponent in the right bit position for later addition to the
4994     // final result:
4995     //
4996     // t0 = Op * log2(e)
4997 
4998     // TODO: What fast-math-flags should be set here?
4999     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5000                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5001     return getLimitedPrecisionExp2(t0, dl, DAG);
5002   }
5003 
5004   // No special expansion.
5005   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5006 }
5007 
5008 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5009 /// limited-precision mode.
5010 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5011                          const TargetLowering &TLI, SDNodeFlags Flags) {
5012   // TODO: What fast-math-flags should be set on the floating-point nodes?
5013 
5014   if (Op.getValueType() == MVT::f32 &&
5015       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5016     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5017 
5018     // Scale the exponent by log(2).
5019     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5020     SDValue LogOfExponent =
5021         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5022                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5023 
5024     // Get the significand and build it into a floating-point number with
5025     // exponent of 1.
5026     SDValue X = GetSignificand(DAG, Op1, dl);
5027 
5028     SDValue LogOfMantissa;
5029     if (LimitFloatPrecision <= 6) {
5030       // For floating-point precision of 6:
5031       //
5032       //   LogofMantissa =
5033       //     -1.1609546f +
5034       //       (1.4034025f - 0.23903021f * x) * x;
5035       //
5036       // error 0.0034276066, which is better than 8 bits
5037       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5038                                getF32Constant(DAG, 0xbe74c456, dl));
5039       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5040                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5041       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5042       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5043                                   getF32Constant(DAG, 0x3f949a29, dl));
5044     } else if (LimitFloatPrecision <= 12) {
5045       // For floating-point precision of 12:
5046       //
5047       //   LogOfMantissa =
5048       //     -1.7417939f +
5049       //       (2.8212026f +
5050       //         (-1.4699568f +
5051       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5052       //
5053       // error 0.000061011436, which is 14 bits
5054       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5055                                getF32Constant(DAG, 0xbd67b6d6, dl));
5056       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5057                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5058       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5059       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5060                                getF32Constant(DAG, 0x3fbc278b, dl));
5061       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5062       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5063                                getF32Constant(DAG, 0x40348e95, dl));
5064       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5065       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5066                                   getF32Constant(DAG, 0x3fdef31a, dl));
5067     } else { // LimitFloatPrecision <= 18
5068       // For floating-point precision of 18:
5069       //
5070       //   LogOfMantissa =
5071       //     -2.1072184f +
5072       //       (4.2372794f +
5073       //         (-3.7029485f +
5074       //           (2.2781945f +
5075       //             (-0.87823314f +
5076       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5077       //
5078       // error 0.0000023660568, which is better than 18 bits
5079       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5080                                getF32Constant(DAG, 0xbc91e5ac, dl));
5081       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5082                                getF32Constant(DAG, 0x3e4350aa, dl));
5083       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5084       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5085                                getF32Constant(DAG, 0x3f60d3e3, dl));
5086       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5087       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5088                                getF32Constant(DAG, 0x4011cdf0, dl));
5089       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5090       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5091                                getF32Constant(DAG, 0x406cfd1c, dl));
5092       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5093       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5094                                getF32Constant(DAG, 0x408797cb, dl));
5095       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5096       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5097                                   getF32Constant(DAG, 0x4006dcab, dl));
5098     }
5099 
5100     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5101   }
5102 
5103   // No special expansion.
5104   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5105 }
5106 
5107 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5108 /// limited-precision mode.
5109 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5110                           const TargetLowering &TLI, SDNodeFlags Flags) {
5111   // TODO: What fast-math-flags should be set on the floating-point nodes?
5112 
5113   if (Op.getValueType() == MVT::f32 &&
5114       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5115     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5116 
5117     // Get the exponent.
5118     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5119 
5120     // Get the significand and build it into a floating-point number with
5121     // exponent of 1.
5122     SDValue X = GetSignificand(DAG, Op1, dl);
5123 
5124     // Different possible minimax approximations of significand in
5125     // floating-point for various degrees of accuracy over [1,2].
5126     SDValue Log2ofMantissa;
5127     if (LimitFloatPrecision <= 6) {
5128       // For floating-point precision of 6:
5129       //
5130       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5131       //
5132       // error 0.0049451742, which is more than 7 bits
5133       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5134                                getF32Constant(DAG, 0xbeb08fe0, dl));
5135       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5136                                getF32Constant(DAG, 0x40019463, dl));
5137       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5138       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5139                                    getF32Constant(DAG, 0x3fd6633d, dl));
5140     } else if (LimitFloatPrecision <= 12) {
5141       // For floating-point precision of 12:
5142       //
5143       //   Log2ofMantissa =
5144       //     -2.51285454f +
5145       //       (4.07009056f +
5146       //         (-2.12067489f +
5147       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5148       //
5149       // error 0.0000876136000, which is better than 13 bits
5150       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5151                                getF32Constant(DAG, 0xbda7262e, dl));
5152       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5153                                getF32Constant(DAG, 0x3f25280b, dl));
5154       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5155       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5156                                getF32Constant(DAG, 0x4007b923, dl));
5157       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5158       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5159                                getF32Constant(DAG, 0x40823e2f, dl));
5160       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5161       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5162                                    getF32Constant(DAG, 0x4020d29c, dl));
5163     } else { // LimitFloatPrecision <= 18
5164       // For floating-point precision of 18:
5165       //
5166       //   Log2ofMantissa =
5167       //     -3.0400495f +
5168       //       (6.1129976f +
5169       //         (-5.3420409f +
5170       //           (3.2865683f +
5171       //             (-1.2669343f +
5172       //               (0.27515199f -
5173       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5174       //
5175       // error 0.0000018516, which is better than 18 bits
5176       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5177                                getF32Constant(DAG, 0xbcd2769e, dl));
5178       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5179                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5180       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5181       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5182                                getF32Constant(DAG, 0x3fa22ae7, dl));
5183       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5184       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5185                                getF32Constant(DAG, 0x40525723, dl));
5186       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5187       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5188                                getF32Constant(DAG, 0x40aaf200, dl));
5189       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5190       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5191                                getF32Constant(DAG, 0x40c39dad, dl));
5192       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5193       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5194                                    getF32Constant(DAG, 0x4042902c, dl));
5195     }
5196 
5197     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5198   }
5199 
5200   // No special expansion.
5201   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5202 }
5203 
5204 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5205 /// limited-precision mode.
5206 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5207                            const TargetLowering &TLI, SDNodeFlags Flags) {
5208   // TODO: What fast-math-flags should be set on the floating-point nodes?
5209 
5210   if (Op.getValueType() == MVT::f32 &&
5211       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5212     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5213 
5214     // Scale the exponent by log10(2) [0.30102999f].
5215     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5216     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5217                                         getF32Constant(DAG, 0x3e9a209a, dl));
5218 
5219     // Get the significand and build it into a floating-point number with
5220     // exponent of 1.
5221     SDValue X = GetSignificand(DAG, Op1, dl);
5222 
5223     SDValue Log10ofMantissa;
5224     if (LimitFloatPrecision <= 6) {
5225       // For floating-point precision of 6:
5226       //
5227       //   Log10ofMantissa =
5228       //     -0.50419619f +
5229       //       (0.60948995f - 0.10380950f * x) * x;
5230       //
5231       // error 0.0014886165, which is 6 bits
5232       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5233                                getF32Constant(DAG, 0xbdd49a13, dl));
5234       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5235                                getF32Constant(DAG, 0x3f1c0789, dl));
5236       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5237       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5238                                     getF32Constant(DAG, 0x3f011300, dl));
5239     } else if (LimitFloatPrecision <= 12) {
5240       // For floating-point precision of 12:
5241       //
5242       //   Log10ofMantissa =
5243       //     -0.64831180f +
5244       //       (0.91751397f +
5245       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5246       //
5247       // error 0.00019228036, which is better than 12 bits
5248       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5249                                getF32Constant(DAG, 0x3d431f31, dl));
5250       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5251                                getF32Constant(DAG, 0x3ea21fb2, dl));
5252       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5253       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5254                                getF32Constant(DAG, 0x3f6ae232, dl));
5255       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5256       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5257                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5258     } else { // LimitFloatPrecision <= 18
5259       // For floating-point precision of 18:
5260       //
5261       //   Log10ofMantissa =
5262       //     -0.84299375f +
5263       //       (1.5327582f +
5264       //         (-1.0688956f +
5265       //           (0.49102474f +
5266       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5267       //
5268       // error 0.0000037995730, which is better than 18 bits
5269       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5270                                getF32Constant(DAG, 0x3c5d51ce, dl));
5271       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5272                                getF32Constant(DAG, 0x3e00685a, dl));
5273       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5274       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5275                                getF32Constant(DAG, 0x3efb6798, dl));
5276       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5277       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5278                                getF32Constant(DAG, 0x3f88d192, dl));
5279       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5280       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5281                                getF32Constant(DAG, 0x3fc4316c, dl));
5282       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5283       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5284                                     getF32Constant(DAG, 0x3f57ce70, dl));
5285     }
5286 
5287     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5288   }
5289 
5290   // No special expansion.
5291   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5292 }
5293 
5294 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5295 /// limited-precision mode.
5296 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5297                           const TargetLowering &TLI, SDNodeFlags Flags) {
5298   if (Op.getValueType() == MVT::f32 &&
5299       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5300     return getLimitedPrecisionExp2(Op, dl, DAG);
5301 
5302   // No special expansion.
5303   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5304 }
5305 
5306 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5307 /// limited-precision mode with x == 10.0f.
5308 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5309                          SelectionDAG &DAG, const TargetLowering &TLI,
5310                          SDNodeFlags Flags) {
5311   bool IsExp10 = false;
5312   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5313       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5314     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5315       APFloat Ten(10.0f);
5316       IsExp10 = LHSC->isExactlyValue(Ten);
5317     }
5318   }
5319 
5320   // TODO: What fast-math-flags should be set on the FMUL node?
5321   if (IsExp10) {
5322     // Put the exponent in the right bit position for later addition to the
5323     // final result:
5324     //
5325     //   #define LOG2OF10 3.3219281f
5326     //   t0 = Op * LOG2OF10;
5327     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5328                              getF32Constant(DAG, 0x40549a78, dl));
5329     return getLimitedPrecisionExp2(t0, dl, DAG);
5330   }
5331 
5332   // No special expansion.
5333   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5334 }
5335 
5336 /// ExpandPowI - Expand a llvm.powi intrinsic.
5337 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5338                           SelectionDAG &DAG) {
5339   // If RHS is a constant, we can expand this out to a multiplication tree if
5340   // it's beneficial on the target, otherwise we end up lowering to a call to
5341   // __powidf2 (for example).
5342   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5343     unsigned Val = RHSC->getSExtValue();
5344 
5345     // powi(x, 0) -> 1.0
5346     if (Val == 0)
5347       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5348 
5349     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5350             Val, DAG.shouldOptForSize())) {
5351       // Get the exponent as a positive value.
5352       if ((int)Val < 0)
5353         Val = -Val;
5354       // We use the simple binary decomposition method to generate the multiply
5355       // sequence.  There are more optimal ways to do this (for example,
5356       // powi(x,15) generates one more multiply than it should), but this has
5357       // the benefit of being both really simple and much better than a libcall.
5358       SDValue Res; // Logically starts equal to 1.0
5359       SDValue CurSquare = LHS;
5360       // TODO: Intrinsics should have fast-math-flags that propagate to these
5361       // nodes.
5362       while (Val) {
5363         if (Val & 1) {
5364           if (Res.getNode())
5365             Res =
5366                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5367           else
5368             Res = CurSquare; // 1.0*CurSquare.
5369         }
5370 
5371         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5372                                 CurSquare, CurSquare);
5373         Val >>= 1;
5374       }
5375 
5376       // If the original was negative, invert the result, producing 1/(x*x*x).
5377       if (RHSC->getSExtValue() < 0)
5378         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5379                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5380       return Res;
5381     }
5382   }
5383 
5384   // Otherwise, expand to a libcall.
5385   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5386 }
5387 
5388 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5389                             SDValue LHS, SDValue RHS, SDValue Scale,
5390                             SelectionDAG &DAG, const TargetLowering &TLI) {
5391   EVT VT = LHS.getValueType();
5392   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5393   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5394   LLVMContext &Ctx = *DAG.getContext();
5395 
5396   // If the type is legal but the operation isn't, this node might survive all
5397   // the way to operation legalization. If we end up there and we do not have
5398   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5399   // node.
5400 
5401   // Coax the legalizer into expanding the node during type legalization instead
5402   // by bumping the size by one bit. This will force it to Promote, enabling the
5403   // early expansion and avoiding the need to expand later.
5404 
5405   // We don't have to do this if Scale is 0; that can always be expanded, unless
5406   // it's a saturating signed operation. Those can experience true integer
5407   // division overflow, a case which we must avoid.
5408 
5409   // FIXME: We wouldn't have to do this (or any of the early
5410   // expansion/promotion) if it was possible to expand a libcall of an
5411   // illegal type during operation legalization. But it's not, so things
5412   // get a bit hacky.
5413   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5414   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5415       (TLI.isTypeLegal(VT) ||
5416        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5417     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5418         Opcode, VT, ScaleInt);
5419     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5420       EVT PromVT;
5421       if (VT.isScalarInteger())
5422         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5423       else if (VT.isVector()) {
5424         PromVT = VT.getVectorElementType();
5425         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5426         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5427       } else
5428         llvm_unreachable("Wrong VT for DIVFIX?");
5429       if (Signed) {
5430         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5431         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5432       } else {
5433         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5434         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5435       }
5436       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5437       // For saturating operations, we need to shift up the LHS to get the
5438       // proper saturation width, and then shift down again afterwards.
5439       if (Saturating)
5440         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5441                           DAG.getConstant(1, DL, ShiftTy));
5442       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5443       if (Saturating)
5444         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5445                           DAG.getConstant(1, DL, ShiftTy));
5446       return DAG.getZExtOrTrunc(Res, DL, VT);
5447     }
5448   }
5449 
5450   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5451 }
5452 
5453 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5454 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5455 static void
5456 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5457                      const SDValue &N) {
5458   switch (N.getOpcode()) {
5459   case ISD::CopyFromReg: {
5460     SDValue Op = N.getOperand(1);
5461     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5462                       Op.getValueType().getSizeInBits());
5463     return;
5464   }
5465   case ISD::BITCAST:
5466   case ISD::AssertZext:
5467   case ISD::AssertSext:
5468   case ISD::TRUNCATE:
5469     getUnderlyingArgRegs(Regs, N.getOperand(0));
5470     return;
5471   case ISD::BUILD_PAIR:
5472   case ISD::BUILD_VECTOR:
5473   case ISD::CONCAT_VECTORS:
5474     for (SDValue Op : N->op_values())
5475       getUnderlyingArgRegs(Regs, Op);
5476     return;
5477   default:
5478     return;
5479   }
5480 }
5481 
5482 /// If the DbgValueInst is a dbg_value of a function argument, create the
5483 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5484 /// instruction selection, they will be inserted to the entry BB.
5485 /// We don't currently support this for variadic dbg_values, as they shouldn't
5486 /// appear for function arguments or in the prologue.
5487 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5488     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5489     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5490   const Argument *Arg = dyn_cast<Argument>(V);
5491   if (!Arg)
5492     return false;
5493 
5494   MachineFunction &MF = DAG.getMachineFunction();
5495   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5496 
5497   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5498   // we've been asked to pursue.
5499   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5500                               bool Indirect) {
5501     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5502       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5503       // pointing at the VReg, which will be patched up later.
5504       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5505       auto MIB = BuildMI(MF, DL, Inst);
5506       MIB.addReg(Reg);
5507       MIB.addImm(0);
5508       MIB.addMetadata(Variable);
5509       auto *NewDIExpr = FragExpr;
5510       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5511       // the DIExpression.
5512       if (Indirect)
5513         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5514       MIB.addMetadata(NewDIExpr);
5515       return MIB;
5516     } else {
5517       // Create a completely standard DBG_VALUE.
5518       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5519       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5520     }
5521   };
5522 
5523   if (Kind == FuncArgumentDbgValueKind::Value) {
5524     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5525     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5526     // the entry block.
5527     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5528     if (!IsInEntryBlock)
5529       return false;
5530 
5531     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5532     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5533     // variable that also is a param.
5534     //
5535     // Although, if we are at the top of the entry block already, we can still
5536     // emit using ArgDbgValue. This might catch some situations when the
5537     // dbg.value refers to an argument that isn't used in the entry block, so
5538     // any CopyToReg node would be optimized out and the only way to express
5539     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5540     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5541     // we should only emit as ArgDbgValue if the Variable is an argument to the
5542     // current function, and the dbg.value intrinsic is found in the entry
5543     // block.
5544     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5545         !DL->getInlinedAt();
5546     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5547     if (!IsInPrologue && !VariableIsFunctionInputArg)
5548       return false;
5549 
5550     // Here we assume that a function argument on IR level only can be used to
5551     // describe one input parameter on source level. If we for example have
5552     // source code like this
5553     //
5554     //    struct A { long x, y; };
5555     //    void foo(struct A a, long b) {
5556     //      ...
5557     //      b = a.x;
5558     //      ...
5559     //    }
5560     //
5561     // and IR like this
5562     //
5563     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5564     //  entry:
5565     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5566     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5567     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5568     //    ...
5569     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5570     //    ...
5571     //
5572     // then the last dbg.value is describing a parameter "b" using a value that
5573     // is an argument. But since we already has used %a1 to describe a parameter
5574     // we should not handle that last dbg.value here (that would result in an
5575     // incorrect hoisting of the DBG_VALUE to the function entry).
5576     // Notice that we allow one dbg.value per IR level argument, to accommodate
5577     // for the situation with fragments above.
5578     if (VariableIsFunctionInputArg) {
5579       unsigned ArgNo = Arg->getArgNo();
5580       if (ArgNo >= FuncInfo.DescribedArgs.size())
5581         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5582       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5583         return false;
5584       FuncInfo.DescribedArgs.set(ArgNo);
5585     }
5586   }
5587 
5588   bool IsIndirect = false;
5589   Optional<MachineOperand> Op;
5590   // Some arguments' frame index is recorded during argument lowering.
5591   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5592   if (FI != std::numeric_limits<int>::max())
5593     Op = MachineOperand::CreateFI(FI);
5594 
5595   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5596   if (!Op && N.getNode()) {
5597     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5598     Register Reg;
5599     if (ArgRegsAndSizes.size() == 1)
5600       Reg = ArgRegsAndSizes.front().first;
5601 
5602     if (Reg && Reg.isVirtual()) {
5603       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5604       Register PR = RegInfo.getLiveInPhysReg(Reg);
5605       if (PR)
5606         Reg = PR;
5607     }
5608     if (Reg) {
5609       Op = MachineOperand::CreateReg(Reg, false);
5610       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5611     }
5612   }
5613 
5614   if (!Op && N.getNode()) {
5615     // Check if frame index is available.
5616     SDValue LCandidate = peekThroughBitcasts(N);
5617     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5618       if (FrameIndexSDNode *FINode =
5619           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5620         Op = MachineOperand::CreateFI(FINode->getIndex());
5621   }
5622 
5623   if (!Op) {
5624     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5625     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5626                                          SplitRegs) {
5627       unsigned Offset = 0;
5628       for (const auto &RegAndSize : SplitRegs) {
5629         // If the expression is already a fragment, the current register
5630         // offset+size might extend beyond the fragment. In this case, only
5631         // the register bits that are inside the fragment are relevant.
5632         int RegFragmentSizeInBits = RegAndSize.second;
5633         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5634           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5635           // The register is entirely outside the expression fragment,
5636           // so is irrelevant for debug info.
5637           if (Offset >= ExprFragmentSizeInBits)
5638             break;
5639           // The register is partially outside the expression fragment, only
5640           // the low bits within the fragment are relevant for debug info.
5641           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5642             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5643           }
5644         }
5645 
5646         auto FragmentExpr = DIExpression::createFragmentExpression(
5647             Expr, Offset, RegFragmentSizeInBits);
5648         Offset += RegAndSize.second;
5649         // If a valid fragment expression cannot be created, the variable's
5650         // correct value cannot be determined and so it is set as Undef.
5651         if (!FragmentExpr) {
5652           SDDbgValue *SDV = DAG.getConstantDbgValue(
5653               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5654           DAG.AddDbgValue(SDV, false);
5655           continue;
5656         }
5657         MachineInstr *NewMI =
5658             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5659                              Kind != FuncArgumentDbgValueKind::Value);
5660         FuncInfo.ArgDbgValues.push_back(NewMI);
5661       }
5662     };
5663 
5664     // Check if ValueMap has reg number.
5665     DenseMap<const Value *, Register>::const_iterator
5666       VMI = FuncInfo.ValueMap.find(V);
5667     if (VMI != FuncInfo.ValueMap.end()) {
5668       const auto &TLI = DAG.getTargetLoweringInfo();
5669       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5670                        V->getType(), None);
5671       if (RFV.occupiesMultipleRegs()) {
5672         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5673         return true;
5674       }
5675 
5676       Op = MachineOperand::CreateReg(VMI->second, false);
5677       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5678     } else if (ArgRegsAndSizes.size() > 1) {
5679       // This was split due to the calling convention, and no virtual register
5680       // mapping exists for the value.
5681       splitMultiRegDbgValue(ArgRegsAndSizes);
5682       return true;
5683     }
5684   }
5685 
5686   if (!Op)
5687     return false;
5688 
5689   assert(Variable->isValidLocationForIntrinsic(DL) &&
5690          "Expected inlined-at fields to agree");
5691   MachineInstr *NewMI = nullptr;
5692 
5693   if (Op->isReg())
5694     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5695   else
5696     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5697                     Variable, Expr);
5698 
5699   // Otherwise, use ArgDbgValues.
5700   FuncInfo.ArgDbgValues.push_back(NewMI);
5701   return true;
5702 }
5703 
5704 /// Return the appropriate SDDbgValue based on N.
5705 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5706                                              DILocalVariable *Variable,
5707                                              DIExpression *Expr,
5708                                              const DebugLoc &dl,
5709                                              unsigned DbgSDNodeOrder) {
5710   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5711     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5712     // stack slot locations.
5713     //
5714     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5715     // debug values here after optimization:
5716     //
5717     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5718     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5719     //
5720     // Both describe the direct values of their associated variables.
5721     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5722                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5723   }
5724   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5725                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5726 }
5727 
5728 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5729   switch (Intrinsic) {
5730   case Intrinsic::smul_fix:
5731     return ISD::SMULFIX;
5732   case Intrinsic::umul_fix:
5733     return ISD::UMULFIX;
5734   case Intrinsic::smul_fix_sat:
5735     return ISD::SMULFIXSAT;
5736   case Intrinsic::umul_fix_sat:
5737     return ISD::UMULFIXSAT;
5738   case Intrinsic::sdiv_fix:
5739     return ISD::SDIVFIX;
5740   case Intrinsic::udiv_fix:
5741     return ISD::UDIVFIX;
5742   case Intrinsic::sdiv_fix_sat:
5743     return ISD::SDIVFIXSAT;
5744   case Intrinsic::udiv_fix_sat:
5745     return ISD::UDIVFIXSAT;
5746   default:
5747     llvm_unreachable("Unhandled fixed point intrinsic");
5748   }
5749 }
5750 
5751 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5752                                            const char *FunctionName) {
5753   assert(FunctionName && "FunctionName must not be nullptr");
5754   SDValue Callee = DAG.getExternalSymbol(
5755       FunctionName,
5756       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5757   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5758 }
5759 
5760 /// Given a @llvm.call.preallocated.setup, return the corresponding
5761 /// preallocated call.
5762 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5763   assert(cast<CallBase>(PreallocatedSetup)
5764                  ->getCalledFunction()
5765                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5766          "expected call_preallocated_setup Value");
5767   for (auto *U : PreallocatedSetup->users()) {
5768     auto *UseCall = cast<CallBase>(U);
5769     const Function *Fn = UseCall->getCalledFunction();
5770     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5771       return UseCall;
5772     }
5773   }
5774   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5775 }
5776 
5777 /// Lower the call to the specified intrinsic function.
5778 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5779                                              unsigned Intrinsic) {
5780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5781   SDLoc sdl = getCurSDLoc();
5782   DebugLoc dl = getCurDebugLoc();
5783   SDValue Res;
5784 
5785   SDNodeFlags Flags;
5786   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5787     Flags.copyFMF(*FPOp);
5788 
5789   switch (Intrinsic) {
5790   default:
5791     // By default, turn this into a target intrinsic node.
5792     visitTargetIntrinsic(I, Intrinsic);
5793     return;
5794   case Intrinsic::vscale: {
5795     match(&I, m_VScale(DAG.getDataLayout()));
5796     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5797     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5798     return;
5799   }
5800   case Intrinsic::vastart:  visitVAStart(I); return;
5801   case Intrinsic::vaend:    visitVAEnd(I); return;
5802   case Intrinsic::vacopy:   visitVACopy(I); return;
5803   case Intrinsic::returnaddress:
5804     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5805                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5806                              getValue(I.getArgOperand(0))));
5807     return;
5808   case Intrinsic::addressofreturnaddress:
5809     setValue(&I,
5810              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5811                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5812     return;
5813   case Intrinsic::sponentry:
5814     setValue(&I,
5815              DAG.getNode(ISD::SPONENTRY, sdl,
5816                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5817     return;
5818   case Intrinsic::frameaddress:
5819     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5820                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5821                              getValue(I.getArgOperand(0))));
5822     return;
5823   case Intrinsic::read_volatile_register:
5824   case Intrinsic::read_register: {
5825     Value *Reg = I.getArgOperand(0);
5826     SDValue Chain = getRoot();
5827     SDValue RegName =
5828         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5829     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5830     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5831       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5832     setValue(&I, Res);
5833     DAG.setRoot(Res.getValue(1));
5834     return;
5835   }
5836   case Intrinsic::write_register: {
5837     Value *Reg = I.getArgOperand(0);
5838     Value *RegValue = I.getArgOperand(1);
5839     SDValue Chain = getRoot();
5840     SDValue RegName =
5841         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5842     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5843                             RegName, getValue(RegValue)));
5844     return;
5845   }
5846   case Intrinsic::memcpy: {
5847     const auto &MCI = cast<MemCpyInst>(I);
5848     SDValue Op1 = getValue(I.getArgOperand(0));
5849     SDValue Op2 = getValue(I.getArgOperand(1));
5850     SDValue Op3 = getValue(I.getArgOperand(2));
5851     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5852     Align DstAlign = MCI.getDestAlign().valueOrOne();
5853     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5854     Align Alignment = std::min(DstAlign, SrcAlign);
5855     bool isVol = MCI.isVolatile();
5856     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5857     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5858     // node.
5859     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5860     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5861                                /* AlwaysInline */ false, isTC,
5862                                MachinePointerInfo(I.getArgOperand(0)),
5863                                MachinePointerInfo(I.getArgOperand(1)),
5864                                I.getAAMetadata());
5865     updateDAGForMaybeTailCall(MC);
5866     return;
5867   }
5868   case Intrinsic::memcpy_inline: {
5869     const auto &MCI = cast<MemCpyInlineInst>(I);
5870     SDValue Dst = getValue(I.getArgOperand(0));
5871     SDValue Src = getValue(I.getArgOperand(1));
5872     SDValue Size = getValue(I.getArgOperand(2));
5873     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5874     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5875     Align DstAlign = MCI.getDestAlign().valueOrOne();
5876     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5877     Align Alignment = std::min(DstAlign, SrcAlign);
5878     bool isVol = MCI.isVolatile();
5879     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5880     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5881     // node.
5882     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5883                                /* AlwaysInline */ true, isTC,
5884                                MachinePointerInfo(I.getArgOperand(0)),
5885                                MachinePointerInfo(I.getArgOperand(1)),
5886                                I.getAAMetadata());
5887     updateDAGForMaybeTailCall(MC);
5888     return;
5889   }
5890   case Intrinsic::memset: {
5891     const auto &MSI = cast<MemSetInst>(I);
5892     SDValue Op1 = getValue(I.getArgOperand(0));
5893     SDValue Op2 = getValue(I.getArgOperand(1));
5894     SDValue Op3 = getValue(I.getArgOperand(2));
5895     // @llvm.memset defines 0 and 1 to both mean no alignment.
5896     Align Alignment = MSI.getDestAlign().valueOrOne();
5897     bool isVol = MSI.isVolatile();
5898     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5899     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5900     SDValue MS = DAG.getMemset(
5901         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5902         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5903     updateDAGForMaybeTailCall(MS);
5904     return;
5905   }
5906   case Intrinsic::memset_inline: {
5907     const auto &MSII = cast<MemSetInlineInst>(I);
5908     SDValue Dst = getValue(I.getArgOperand(0));
5909     SDValue Value = getValue(I.getArgOperand(1));
5910     SDValue Size = getValue(I.getArgOperand(2));
5911     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5912     // @llvm.memset defines 0 and 1 to both mean no alignment.
5913     Align DstAlign = MSII.getDestAlign().valueOrOne();
5914     bool isVol = MSII.isVolatile();
5915     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5916     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5917     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5918                                /* AlwaysInline */ true, isTC,
5919                                MachinePointerInfo(I.getArgOperand(0)),
5920                                I.getAAMetadata());
5921     updateDAGForMaybeTailCall(MC);
5922     return;
5923   }
5924   case Intrinsic::memmove: {
5925     const auto &MMI = cast<MemMoveInst>(I);
5926     SDValue Op1 = getValue(I.getArgOperand(0));
5927     SDValue Op2 = getValue(I.getArgOperand(1));
5928     SDValue Op3 = getValue(I.getArgOperand(2));
5929     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5930     Align DstAlign = MMI.getDestAlign().valueOrOne();
5931     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5932     Align Alignment = std::min(DstAlign, SrcAlign);
5933     bool isVol = MMI.isVolatile();
5934     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5935     // FIXME: Support passing different dest/src alignments to the memmove DAG
5936     // node.
5937     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5938     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5939                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5940                                 MachinePointerInfo(I.getArgOperand(1)),
5941                                 I.getAAMetadata());
5942     updateDAGForMaybeTailCall(MM);
5943     return;
5944   }
5945   case Intrinsic::memcpy_element_unordered_atomic: {
5946     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5947     SDValue Dst = getValue(MI.getRawDest());
5948     SDValue Src = getValue(MI.getRawSource());
5949     SDValue Length = getValue(MI.getLength());
5950 
5951     Type *LengthTy = MI.getLength()->getType();
5952     unsigned ElemSz = MI.getElementSizeInBytes();
5953     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5954     SDValue MC =
5955         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5956                             isTC, MachinePointerInfo(MI.getRawDest()),
5957                             MachinePointerInfo(MI.getRawSource()));
5958     updateDAGForMaybeTailCall(MC);
5959     return;
5960   }
5961   case Intrinsic::memmove_element_unordered_atomic: {
5962     auto &MI = cast<AtomicMemMoveInst>(I);
5963     SDValue Dst = getValue(MI.getRawDest());
5964     SDValue Src = getValue(MI.getRawSource());
5965     SDValue Length = getValue(MI.getLength());
5966 
5967     Type *LengthTy = MI.getLength()->getType();
5968     unsigned ElemSz = MI.getElementSizeInBytes();
5969     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5970     SDValue MC =
5971         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5972                              isTC, MachinePointerInfo(MI.getRawDest()),
5973                              MachinePointerInfo(MI.getRawSource()));
5974     updateDAGForMaybeTailCall(MC);
5975     return;
5976   }
5977   case Intrinsic::memset_element_unordered_atomic: {
5978     auto &MI = cast<AtomicMemSetInst>(I);
5979     SDValue Dst = getValue(MI.getRawDest());
5980     SDValue Val = getValue(MI.getValue());
5981     SDValue Length = getValue(MI.getLength());
5982 
5983     Type *LengthTy = MI.getLength()->getType();
5984     unsigned ElemSz = MI.getElementSizeInBytes();
5985     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5986     SDValue MC =
5987         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
5988                             isTC, MachinePointerInfo(MI.getRawDest()));
5989     updateDAGForMaybeTailCall(MC);
5990     return;
5991   }
5992   case Intrinsic::call_preallocated_setup: {
5993     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5994     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5995     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5996                               getRoot(), SrcValue);
5997     setValue(&I, Res);
5998     DAG.setRoot(Res);
5999     return;
6000   }
6001   case Intrinsic::call_preallocated_arg: {
6002     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6003     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6004     SDValue Ops[3];
6005     Ops[0] = getRoot();
6006     Ops[1] = SrcValue;
6007     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6008                                    MVT::i32); // arg index
6009     SDValue Res = DAG.getNode(
6010         ISD::PREALLOCATED_ARG, sdl,
6011         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6012     setValue(&I, Res);
6013     DAG.setRoot(Res.getValue(1));
6014     return;
6015   }
6016   case Intrinsic::dbg_addr:
6017   case Intrinsic::dbg_declare: {
6018     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6019     // they are non-variadic.
6020     const auto &DI = cast<DbgVariableIntrinsic>(I);
6021     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6022     DILocalVariable *Variable = DI.getVariable();
6023     DIExpression *Expression = DI.getExpression();
6024     dropDanglingDebugInfo(Variable, Expression);
6025     assert(Variable && "Missing variable");
6026     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6027                       << "\n");
6028     // Check if address has undef value.
6029     const Value *Address = DI.getVariableLocationOp(0);
6030     if (!Address || isa<UndefValue>(Address) ||
6031         (Address->use_empty() && !isa<Argument>(Address))) {
6032       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6033                         << " (bad/undef/unused-arg address)\n");
6034       return;
6035     }
6036 
6037     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6038 
6039     // Check if this variable can be described by a frame index, typically
6040     // either as a static alloca or a byval parameter.
6041     int FI = std::numeric_limits<int>::max();
6042     if (const auto *AI =
6043             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6044       if (AI->isStaticAlloca()) {
6045         auto I = FuncInfo.StaticAllocaMap.find(AI);
6046         if (I != FuncInfo.StaticAllocaMap.end())
6047           FI = I->second;
6048       }
6049     } else if (const auto *Arg = dyn_cast<Argument>(
6050                    Address->stripInBoundsConstantOffsets())) {
6051       FI = FuncInfo.getArgumentFrameIndex(Arg);
6052     }
6053 
6054     // llvm.dbg.addr is control dependent and always generates indirect
6055     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6056     // the MachineFunction variable table.
6057     if (FI != std::numeric_limits<int>::max()) {
6058       if (Intrinsic == Intrinsic::dbg_addr) {
6059         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6060             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6061             dl, SDNodeOrder);
6062         DAG.AddDbgValue(SDV, isParameter);
6063       } else {
6064         LLVM_DEBUG(dbgs() << "Skipping " << DI
6065                           << " (variable info stashed in MF side table)\n");
6066       }
6067       return;
6068     }
6069 
6070     SDValue &N = NodeMap[Address];
6071     if (!N.getNode() && isa<Argument>(Address))
6072       // Check unused arguments map.
6073       N = UnusedArgNodeMap[Address];
6074     SDDbgValue *SDV;
6075     if (N.getNode()) {
6076       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6077         Address = BCI->getOperand(0);
6078       // Parameters are handled specially.
6079       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6080       if (isParameter && FINode) {
6081         // Byval parameter. We have a frame index at this point.
6082         SDV =
6083             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6084                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6085       } else if (isa<Argument>(Address)) {
6086         // Address is an argument, so try to emit its dbg value using
6087         // virtual register info from the FuncInfo.ValueMap.
6088         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6089                                  FuncArgumentDbgValueKind::Declare, N);
6090         return;
6091       } else {
6092         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6093                               true, dl, SDNodeOrder);
6094       }
6095       DAG.AddDbgValue(SDV, isParameter);
6096     } else {
6097       // If Address is an argument then try to emit its dbg value using
6098       // virtual register info from the FuncInfo.ValueMap.
6099       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6100                                     FuncArgumentDbgValueKind::Declare, N)) {
6101         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6102                           << " (could not emit func-arg dbg_value)\n");
6103       }
6104     }
6105     return;
6106   }
6107   case Intrinsic::dbg_label: {
6108     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6109     DILabel *Label = DI.getLabel();
6110     assert(Label && "Missing label");
6111 
6112     SDDbgLabel *SDV;
6113     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6114     DAG.AddDbgLabel(SDV);
6115     return;
6116   }
6117   case Intrinsic::dbg_value: {
6118     const DbgValueInst &DI = cast<DbgValueInst>(I);
6119     assert(DI.getVariable() && "Missing variable");
6120 
6121     DILocalVariable *Variable = DI.getVariable();
6122     DIExpression *Expression = DI.getExpression();
6123     dropDanglingDebugInfo(Variable, Expression);
6124     SmallVector<Value *, 4> Values(DI.getValues());
6125     if (Values.empty())
6126       return;
6127 
6128     if (llvm::is_contained(Values, nullptr))
6129       return;
6130 
6131     bool IsVariadic = DI.hasArgList();
6132     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6133                           SDNodeOrder, IsVariadic))
6134       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6135     return;
6136   }
6137 
6138   case Intrinsic::eh_typeid_for: {
6139     // Find the type id for the given typeinfo.
6140     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6141     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6142     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6143     setValue(&I, Res);
6144     return;
6145   }
6146 
6147   case Intrinsic::eh_return_i32:
6148   case Intrinsic::eh_return_i64:
6149     DAG.getMachineFunction().setCallsEHReturn(true);
6150     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6151                             MVT::Other,
6152                             getControlRoot(),
6153                             getValue(I.getArgOperand(0)),
6154                             getValue(I.getArgOperand(1))));
6155     return;
6156   case Intrinsic::eh_unwind_init:
6157     DAG.getMachineFunction().setCallsUnwindInit(true);
6158     return;
6159   case Intrinsic::eh_dwarf_cfa:
6160     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6161                              TLI.getPointerTy(DAG.getDataLayout()),
6162                              getValue(I.getArgOperand(0))));
6163     return;
6164   case Intrinsic::eh_sjlj_callsite: {
6165     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6166     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6167     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6168 
6169     MMI.setCurrentCallSite(CI->getZExtValue());
6170     return;
6171   }
6172   case Intrinsic::eh_sjlj_functioncontext: {
6173     // Get and store the index of the function context.
6174     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6175     AllocaInst *FnCtx =
6176       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6177     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6178     MFI.setFunctionContextIndex(FI);
6179     return;
6180   }
6181   case Intrinsic::eh_sjlj_setjmp: {
6182     SDValue Ops[2];
6183     Ops[0] = getRoot();
6184     Ops[1] = getValue(I.getArgOperand(0));
6185     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6186                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6187     setValue(&I, Op.getValue(0));
6188     DAG.setRoot(Op.getValue(1));
6189     return;
6190   }
6191   case Intrinsic::eh_sjlj_longjmp:
6192     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6193                             getRoot(), getValue(I.getArgOperand(0))));
6194     return;
6195   case Intrinsic::eh_sjlj_setup_dispatch:
6196     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6197                             getRoot()));
6198     return;
6199   case Intrinsic::masked_gather:
6200     visitMaskedGather(I);
6201     return;
6202   case Intrinsic::masked_load:
6203     visitMaskedLoad(I);
6204     return;
6205   case Intrinsic::masked_scatter:
6206     visitMaskedScatter(I);
6207     return;
6208   case Intrinsic::masked_store:
6209     visitMaskedStore(I);
6210     return;
6211   case Intrinsic::masked_expandload:
6212     visitMaskedLoad(I, true /* IsExpanding */);
6213     return;
6214   case Intrinsic::masked_compressstore:
6215     visitMaskedStore(I, true /* IsCompressing */);
6216     return;
6217   case Intrinsic::powi:
6218     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6219                             getValue(I.getArgOperand(1)), DAG));
6220     return;
6221   case Intrinsic::log:
6222     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6223     return;
6224   case Intrinsic::log2:
6225     setValue(&I,
6226              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6227     return;
6228   case Intrinsic::log10:
6229     setValue(&I,
6230              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6231     return;
6232   case Intrinsic::exp:
6233     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6234     return;
6235   case Intrinsic::exp2:
6236     setValue(&I,
6237              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6238     return;
6239   case Intrinsic::pow:
6240     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6241                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6242     return;
6243   case Intrinsic::sqrt:
6244   case Intrinsic::fabs:
6245   case Intrinsic::sin:
6246   case Intrinsic::cos:
6247   case Intrinsic::floor:
6248   case Intrinsic::ceil:
6249   case Intrinsic::trunc:
6250   case Intrinsic::rint:
6251   case Intrinsic::nearbyint:
6252   case Intrinsic::round:
6253   case Intrinsic::roundeven:
6254   case Intrinsic::canonicalize: {
6255     unsigned Opcode;
6256     switch (Intrinsic) {
6257     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6258     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6259     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6260     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6261     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6262     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6263     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6264     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6265     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6266     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6267     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6268     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6269     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6270     }
6271 
6272     setValue(&I, DAG.getNode(Opcode, sdl,
6273                              getValue(I.getArgOperand(0)).getValueType(),
6274                              getValue(I.getArgOperand(0)), Flags));
6275     return;
6276   }
6277   case Intrinsic::lround:
6278   case Intrinsic::llround:
6279   case Intrinsic::lrint:
6280   case Intrinsic::llrint: {
6281     unsigned Opcode;
6282     switch (Intrinsic) {
6283     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6284     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6285     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6286     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6287     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6288     }
6289 
6290     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6291     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6292                              getValue(I.getArgOperand(0))));
6293     return;
6294   }
6295   case Intrinsic::minnum:
6296     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6297                              getValue(I.getArgOperand(0)).getValueType(),
6298                              getValue(I.getArgOperand(0)),
6299                              getValue(I.getArgOperand(1)), Flags));
6300     return;
6301   case Intrinsic::maxnum:
6302     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6303                              getValue(I.getArgOperand(0)).getValueType(),
6304                              getValue(I.getArgOperand(0)),
6305                              getValue(I.getArgOperand(1)), Flags));
6306     return;
6307   case Intrinsic::minimum:
6308     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6309                              getValue(I.getArgOperand(0)).getValueType(),
6310                              getValue(I.getArgOperand(0)),
6311                              getValue(I.getArgOperand(1)), Flags));
6312     return;
6313   case Intrinsic::maximum:
6314     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6315                              getValue(I.getArgOperand(0)).getValueType(),
6316                              getValue(I.getArgOperand(0)),
6317                              getValue(I.getArgOperand(1)), Flags));
6318     return;
6319   case Intrinsic::copysign:
6320     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6321                              getValue(I.getArgOperand(0)).getValueType(),
6322                              getValue(I.getArgOperand(0)),
6323                              getValue(I.getArgOperand(1)), Flags));
6324     return;
6325   case Intrinsic::arithmetic_fence: {
6326     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6327                              getValue(I.getArgOperand(0)).getValueType(),
6328                              getValue(I.getArgOperand(0)), Flags));
6329     return;
6330   }
6331   case Intrinsic::fma:
6332     setValue(&I, DAG.getNode(
6333                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6334                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6335                      getValue(I.getArgOperand(2)), Flags));
6336     return;
6337 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6338   case Intrinsic::INTRINSIC:
6339 #include "llvm/IR/ConstrainedOps.def"
6340     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6341     return;
6342 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6343 #include "llvm/IR/VPIntrinsics.def"
6344     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6345     return;
6346   case Intrinsic::fptrunc_round: {
6347     // Get the last argument, the metadata and convert it to an integer in the
6348     // call
6349     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6350     Optional<RoundingMode> RoundMode =
6351         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6352 
6353     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6354 
6355     // Propagate fast-math-flags from IR to node(s).
6356     SDNodeFlags Flags;
6357     Flags.copyFMF(*cast<FPMathOperator>(&I));
6358     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6359 
6360     SDValue Result;
6361     Result = DAG.getNode(
6362         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6363         DAG.getTargetConstant((int)*RoundMode, sdl,
6364                               TLI.getPointerTy(DAG.getDataLayout())));
6365     setValue(&I, Result);
6366 
6367     return;
6368   }
6369   case Intrinsic::fmuladd: {
6370     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6371     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6372         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6373       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6374                                getValue(I.getArgOperand(0)).getValueType(),
6375                                getValue(I.getArgOperand(0)),
6376                                getValue(I.getArgOperand(1)),
6377                                getValue(I.getArgOperand(2)), Flags));
6378     } else {
6379       // TODO: Intrinsic calls should have fast-math-flags.
6380       SDValue Mul = DAG.getNode(
6381           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6382           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6383       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6384                                 getValue(I.getArgOperand(0)).getValueType(),
6385                                 Mul, getValue(I.getArgOperand(2)), Flags);
6386       setValue(&I, Add);
6387     }
6388     return;
6389   }
6390   case Intrinsic::convert_to_fp16:
6391     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6392                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6393                                          getValue(I.getArgOperand(0)),
6394                                          DAG.getTargetConstant(0, sdl,
6395                                                                MVT::i32))));
6396     return;
6397   case Intrinsic::convert_from_fp16:
6398     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6399                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6400                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6401                                          getValue(I.getArgOperand(0)))));
6402     return;
6403   case Intrinsic::fptosi_sat: {
6404     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6405     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6406                              getValue(I.getArgOperand(0)),
6407                              DAG.getValueType(VT.getScalarType())));
6408     return;
6409   }
6410   case Intrinsic::fptoui_sat: {
6411     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6412     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6413                              getValue(I.getArgOperand(0)),
6414                              DAG.getValueType(VT.getScalarType())));
6415     return;
6416   }
6417   case Intrinsic::set_rounding:
6418     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6419                       {getRoot(), getValue(I.getArgOperand(0))});
6420     setValue(&I, Res);
6421     DAG.setRoot(Res.getValue(0));
6422     return;
6423   case Intrinsic::is_fpclass: {
6424     const DataLayout DLayout = DAG.getDataLayout();
6425     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6426     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6427     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6428     MachineFunction &MF = DAG.getMachineFunction();
6429     const Function &F = MF.getFunction();
6430     SDValue Op = getValue(I.getArgOperand(0));
6431     SDNodeFlags Flags;
6432     Flags.setNoFPExcept(
6433         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6434     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6435     // expansion can use illegal types. Making expansion early allows
6436     // legalizing these types prior to selection.
6437     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6438       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6439       setValue(&I, Result);
6440       return;
6441     }
6442 
6443     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6444     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6445     setValue(&I, V);
6446     return;
6447   }
6448   case Intrinsic::pcmarker: {
6449     SDValue Tmp = getValue(I.getArgOperand(0));
6450     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6451     return;
6452   }
6453   case Intrinsic::readcyclecounter: {
6454     SDValue Op = getRoot();
6455     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6456                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6457     setValue(&I, Res);
6458     DAG.setRoot(Res.getValue(1));
6459     return;
6460   }
6461   case Intrinsic::bitreverse:
6462     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6463                              getValue(I.getArgOperand(0)).getValueType(),
6464                              getValue(I.getArgOperand(0))));
6465     return;
6466   case Intrinsic::bswap:
6467     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6468                              getValue(I.getArgOperand(0)).getValueType(),
6469                              getValue(I.getArgOperand(0))));
6470     return;
6471   case Intrinsic::cttz: {
6472     SDValue Arg = getValue(I.getArgOperand(0));
6473     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6474     EVT Ty = Arg.getValueType();
6475     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6476                              sdl, Ty, Arg));
6477     return;
6478   }
6479   case Intrinsic::ctlz: {
6480     SDValue Arg = getValue(I.getArgOperand(0));
6481     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6482     EVT Ty = Arg.getValueType();
6483     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6484                              sdl, Ty, Arg));
6485     return;
6486   }
6487   case Intrinsic::ctpop: {
6488     SDValue Arg = getValue(I.getArgOperand(0));
6489     EVT Ty = Arg.getValueType();
6490     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6491     return;
6492   }
6493   case Intrinsic::fshl:
6494   case Intrinsic::fshr: {
6495     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6496     SDValue X = getValue(I.getArgOperand(0));
6497     SDValue Y = getValue(I.getArgOperand(1));
6498     SDValue Z = getValue(I.getArgOperand(2));
6499     EVT VT = X.getValueType();
6500 
6501     if (X == Y) {
6502       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6503       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6504     } else {
6505       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6506       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6507     }
6508     return;
6509   }
6510   case Intrinsic::sadd_sat: {
6511     SDValue Op1 = getValue(I.getArgOperand(0));
6512     SDValue Op2 = getValue(I.getArgOperand(1));
6513     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6514     return;
6515   }
6516   case Intrinsic::uadd_sat: {
6517     SDValue Op1 = getValue(I.getArgOperand(0));
6518     SDValue Op2 = getValue(I.getArgOperand(1));
6519     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6520     return;
6521   }
6522   case Intrinsic::ssub_sat: {
6523     SDValue Op1 = getValue(I.getArgOperand(0));
6524     SDValue Op2 = getValue(I.getArgOperand(1));
6525     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6526     return;
6527   }
6528   case Intrinsic::usub_sat: {
6529     SDValue Op1 = getValue(I.getArgOperand(0));
6530     SDValue Op2 = getValue(I.getArgOperand(1));
6531     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6532     return;
6533   }
6534   case Intrinsic::sshl_sat: {
6535     SDValue Op1 = getValue(I.getArgOperand(0));
6536     SDValue Op2 = getValue(I.getArgOperand(1));
6537     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6538     return;
6539   }
6540   case Intrinsic::ushl_sat: {
6541     SDValue Op1 = getValue(I.getArgOperand(0));
6542     SDValue Op2 = getValue(I.getArgOperand(1));
6543     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6544     return;
6545   }
6546   case Intrinsic::smul_fix:
6547   case Intrinsic::umul_fix:
6548   case Intrinsic::smul_fix_sat:
6549   case Intrinsic::umul_fix_sat: {
6550     SDValue Op1 = getValue(I.getArgOperand(0));
6551     SDValue Op2 = getValue(I.getArgOperand(1));
6552     SDValue Op3 = getValue(I.getArgOperand(2));
6553     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6554                              Op1.getValueType(), Op1, Op2, Op3));
6555     return;
6556   }
6557   case Intrinsic::sdiv_fix:
6558   case Intrinsic::udiv_fix:
6559   case Intrinsic::sdiv_fix_sat:
6560   case Intrinsic::udiv_fix_sat: {
6561     SDValue Op1 = getValue(I.getArgOperand(0));
6562     SDValue Op2 = getValue(I.getArgOperand(1));
6563     SDValue Op3 = getValue(I.getArgOperand(2));
6564     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6565                               Op1, Op2, Op3, DAG, TLI));
6566     return;
6567   }
6568   case Intrinsic::smax: {
6569     SDValue Op1 = getValue(I.getArgOperand(0));
6570     SDValue Op2 = getValue(I.getArgOperand(1));
6571     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6572     return;
6573   }
6574   case Intrinsic::smin: {
6575     SDValue Op1 = getValue(I.getArgOperand(0));
6576     SDValue Op2 = getValue(I.getArgOperand(1));
6577     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6578     return;
6579   }
6580   case Intrinsic::umax: {
6581     SDValue Op1 = getValue(I.getArgOperand(0));
6582     SDValue Op2 = getValue(I.getArgOperand(1));
6583     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6584     return;
6585   }
6586   case Intrinsic::umin: {
6587     SDValue Op1 = getValue(I.getArgOperand(0));
6588     SDValue Op2 = getValue(I.getArgOperand(1));
6589     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6590     return;
6591   }
6592   case Intrinsic::abs: {
6593     // TODO: Preserve "int min is poison" arg in SDAG?
6594     SDValue Op1 = getValue(I.getArgOperand(0));
6595     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6596     return;
6597   }
6598   case Intrinsic::stacksave: {
6599     SDValue Op = getRoot();
6600     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6601     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6602     setValue(&I, Res);
6603     DAG.setRoot(Res.getValue(1));
6604     return;
6605   }
6606   case Intrinsic::stackrestore:
6607     Res = getValue(I.getArgOperand(0));
6608     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6609     return;
6610   case Intrinsic::get_dynamic_area_offset: {
6611     SDValue Op = getRoot();
6612     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6613     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6614     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6615     // target.
6616     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6617       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6618                          " intrinsic!");
6619     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6620                       Op);
6621     DAG.setRoot(Op);
6622     setValue(&I, Res);
6623     return;
6624   }
6625   case Intrinsic::stackguard: {
6626     MachineFunction &MF = DAG.getMachineFunction();
6627     const Module &M = *MF.getFunction().getParent();
6628     SDValue Chain = getRoot();
6629     if (TLI.useLoadStackGuardNode()) {
6630       Res = getLoadStackGuard(DAG, sdl, Chain);
6631     } else {
6632       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6633       const Value *Global = TLI.getSDagStackGuard(M);
6634       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6635       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6636                         MachinePointerInfo(Global, 0), Align,
6637                         MachineMemOperand::MOVolatile);
6638     }
6639     if (TLI.useStackGuardXorFP())
6640       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6641     DAG.setRoot(Chain);
6642     setValue(&I, Res);
6643     return;
6644   }
6645   case Intrinsic::stackprotector: {
6646     // Emit code into the DAG to store the stack guard onto the stack.
6647     MachineFunction &MF = DAG.getMachineFunction();
6648     MachineFrameInfo &MFI = MF.getFrameInfo();
6649     SDValue Src, Chain = getRoot();
6650 
6651     if (TLI.useLoadStackGuardNode())
6652       Src = getLoadStackGuard(DAG, sdl, Chain);
6653     else
6654       Src = getValue(I.getArgOperand(0));   // The guard's value.
6655 
6656     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6657 
6658     int FI = FuncInfo.StaticAllocaMap[Slot];
6659     MFI.setStackProtectorIndex(FI);
6660     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6661 
6662     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6663 
6664     // Store the stack protector onto the stack.
6665     Res = DAG.getStore(
6666         Chain, sdl, Src, FIN,
6667         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6668         MaybeAlign(), MachineMemOperand::MOVolatile);
6669     setValue(&I, Res);
6670     DAG.setRoot(Res);
6671     return;
6672   }
6673   case Intrinsic::objectsize:
6674     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6675 
6676   case Intrinsic::is_constant:
6677     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6678 
6679   case Intrinsic::annotation:
6680   case Intrinsic::ptr_annotation:
6681   case Intrinsic::launder_invariant_group:
6682   case Intrinsic::strip_invariant_group:
6683     // Drop the intrinsic, but forward the value
6684     setValue(&I, getValue(I.getOperand(0)));
6685     return;
6686 
6687   case Intrinsic::assume:
6688   case Intrinsic::experimental_noalias_scope_decl:
6689   case Intrinsic::var_annotation:
6690   case Intrinsic::sideeffect:
6691     // Discard annotate attributes, noalias scope declarations, assumptions, and
6692     // artificial side-effects.
6693     return;
6694 
6695   case Intrinsic::codeview_annotation: {
6696     // Emit a label associated with this metadata.
6697     MachineFunction &MF = DAG.getMachineFunction();
6698     MCSymbol *Label =
6699         MF.getMMI().getContext().createTempSymbol("annotation", true);
6700     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6701     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6702     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6703     DAG.setRoot(Res);
6704     return;
6705   }
6706 
6707   case Intrinsic::init_trampoline: {
6708     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6709 
6710     SDValue Ops[6];
6711     Ops[0] = getRoot();
6712     Ops[1] = getValue(I.getArgOperand(0));
6713     Ops[2] = getValue(I.getArgOperand(1));
6714     Ops[3] = getValue(I.getArgOperand(2));
6715     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6716     Ops[5] = DAG.getSrcValue(F);
6717 
6718     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6719 
6720     DAG.setRoot(Res);
6721     return;
6722   }
6723   case Intrinsic::adjust_trampoline:
6724     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6725                              TLI.getPointerTy(DAG.getDataLayout()),
6726                              getValue(I.getArgOperand(0))));
6727     return;
6728   case Intrinsic::gcroot: {
6729     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6730            "only valid in functions with gc specified, enforced by Verifier");
6731     assert(GFI && "implied by previous");
6732     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6733     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6734 
6735     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6736     GFI->addStackRoot(FI->getIndex(), TypeMap);
6737     return;
6738   }
6739   case Intrinsic::gcread:
6740   case Intrinsic::gcwrite:
6741     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6742   case Intrinsic::flt_rounds:
6743     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6744     setValue(&I, Res);
6745     DAG.setRoot(Res.getValue(1));
6746     return;
6747 
6748   case Intrinsic::expect:
6749     // Just replace __builtin_expect(exp, c) with EXP.
6750     setValue(&I, getValue(I.getArgOperand(0)));
6751     return;
6752 
6753   case Intrinsic::ubsantrap:
6754   case Intrinsic::debugtrap:
6755   case Intrinsic::trap: {
6756     StringRef TrapFuncName =
6757         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6758     if (TrapFuncName.empty()) {
6759       switch (Intrinsic) {
6760       case Intrinsic::trap:
6761         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6762         break;
6763       case Intrinsic::debugtrap:
6764         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6765         break;
6766       case Intrinsic::ubsantrap:
6767         DAG.setRoot(DAG.getNode(
6768             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6769             DAG.getTargetConstant(
6770                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6771                 MVT::i32)));
6772         break;
6773       default: llvm_unreachable("unknown trap intrinsic");
6774       }
6775       return;
6776     }
6777     TargetLowering::ArgListTy Args;
6778     if (Intrinsic == Intrinsic::ubsantrap) {
6779       Args.push_back(TargetLoweringBase::ArgListEntry());
6780       Args[0].Val = I.getArgOperand(0);
6781       Args[0].Node = getValue(Args[0].Val);
6782       Args[0].Ty = Args[0].Val->getType();
6783     }
6784 
6785     TargetLowering::CallLoweringInfo CLI(DAG);
6786     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6787         CallingConv::C, I.getType(),
6788         DAG.getExternalSymbol(TrapFuncName.data(),
6789                               TLI.getPointerTy(DAG.getDataLayout())),
6790         std::move(Args));
6791 
6792     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6793     DAG.setRoot(Result.second);
6794     return;
6795   }
6796 
6797   case Intrinsic::uadd_with_overflow:
6798   case Intrinsic::sadd_with_overflow:
6799   case Intrinsic::usub_with_overflow:
6800   case Intrinsic::ssub_with_overflow:
6801   case Intrinsic::umul_with_overflow:
6802   case Intrinsic::smul_with_overflow: {
6803     ISD::NodeType Op;
6804     switch (Intrinsic) {
6805     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6806     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6807     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6808     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6809     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6810     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6811     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6812     }
6813     SDValue Op1 = getValue(I.getArgOperand(0));
6814     SDValue Op2 = getValue(I.getArgOperand(1));
6815 
6816     EVT ResultVT = Op1.getValueType();
6817     EVT OverflowVT = MVT::i1;
6818     if (ResultVT.isVector())
6819       OverflowVT = EVT::getVectorVT(
6820           *Context, OverflowVT, ResultVT.getVectorElementCount());
6821 
6822     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6823     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6824     return;
6825   }
6826   case Intrinsic::prefetch: {
6827     SDValue Ops[5];
6828     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6829     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6830     Ops[0] = DAG.getRoot();
6831     Ops[1] = getValue(I.getArgOperand(0));
6832     Ops[2] = getValue(I.getArgOperand(1));
6833     Ops[3] = getValue(I.getArgOperand(2));
6834     Ops[4] = getValue(I.getArgOperand(3));
6835     SDValue Result = DAG.getMemIntrinsicNode(
6836         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6837         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6838         /* align */ None, Flags);
6839 
6840     // Chain the prefetch in parallell with any pending loads, to stay out of
6841     // the way of later optimizations.
6842     PendingLoads.push_back(Result);
6843     Result = getRoot();
6844     DAG.setRoot(Result);
6845     return;
6846   }
6847   case Intrinsic::lifetime_start:
6848   case Intrinsic::lifetime_end: {
6849     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6850     // Stack coloring is not enabled in O0, discard region information.
6851     if (TM.getOptLevel() == CodeGenOpt::None)
6852       return;
6853 
6854     const int64_t ObjectSize =
6855         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6856     Value *const ObjectPtr = I.getArgOperand(1);
6857     SmallVector<const Value *, 4> Allocas;
6858     getUnderlyingObjects(ObjectPtr, Allocas);
6859 
6860     for (const Value *Alloca : Allocas) {
6861       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6862 
6863       // Could not find an Alloca.
6864       if (!LifetimeObject)
6865         continue;
6866 
6867       // First check that the Alloca is static, otherwise it won't have a
6868       // valid frame index.
6869       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6870       if (SI == FuncInfo.StaticAllocaMap.end())
6871         return;
6872 
6873       const int FrameIndex = SI->second;
6874       int64_t Offset;
6875       if (GetPointerBaseWithConstantOffset(
6876               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6877         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6878       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6879                                 Offset);
6880       DAG.setRoot(Res);
6881     }
6882     return;
6883   }
6884   case Intrinsic::pseudoprobe: {
6885     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6886     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6887     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6888     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6889     DAG.setRoot(Res);
6890     return;
6891   }
6892   case Intrinsic::invariant_start:
6893     // Discard region information.
6894     setValue(&I,
6895              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6896     return;
6897   case Intrinsic::invariant_end:
6898     // Discard region information.
6899     return;
6900   case Intrinsic::clear_cache:
6901     /// FunctionName may be null.
6902     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6903       lowerCallToExternalSymbol(I, FunctionName);
6904     return;
6905   case Intrinsic::donothing:
6906   case Intrinsic::seh_try_begin:
6907   case Intrinsic::seh_scope_begin:
6908   case Intrinsic::seh_try_end:
6909   case Intrinsic::seh_scope_end:
6910     // ignore
6911     return;
6912   case Intrinsic::experimental_stackmap:
6913     visitStackmap(I);
6914     return;
6915   case Intrinsic::experimental_patchpoint_void:
6916   case Intrinsic::experimental_patchpoint_i64:
6917     visitPatchpoint(I);
6918     return;
6919   case Intrinsic::experimental_gc_statepoint:
6920     LowerStatepoint(cast<GCStatepointInst>(I));
6921     return;
6922   case Intrinsic::experimental_gc_result:
6923     visitGCResult(cast<GCResultInst>(I));
6924     return;
6925   case Intrinsic::experimental_gc_relocate:
6926     visitGCRelocate(cast<GCRelocateInst>(I));
6927     return;
6928   case Intrinsic::instrprof_cover:
6929     llvm_unreachable("instrprof failed to lower a cover");
6930   case Intrinsic::instrprof_increment:
6931     llvm_unreachable("instrprof failed to lower an increment");
6932   case Intrinsic::instrprof_value_profile:
6933     llvm_unreachable("instrprof failed to lower a value profiling call");
6934   case Intrinsic::localescape: {
6935     MachineFunction &MF = DAG.getMachineFunction();
6936     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6937 
6938     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6939     // is the same on all targets.
6940     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6941       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6942       if (isa<ConstantPointerNull>(Arg))
6943         continue; // Skip null pointers. They represent a hole in index space.
6944       AllocaInst *Slot = cast<AllocaInst>(Arg);
6945       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6946              "can only escape static allocas");
6947       int FI = FuncInfo.StaticAllocaMap[Slot];
6948       MCSymbol *FrameAllocSym =
6949           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6950               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6951       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6952               TII->get(TargetOpcode::LOCAL_ESCAPE))
6953           .addSym(FrameAllocSym)
6954           .addFrameIndex(FI);
6955     }
6956 
6957     return;
6958   }
6959 
6960   case Intrinsic::localrecover: {
6961     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6962     MachineFunction &MF = DAG.getMachineFunction();
6963 
6964     // Get the symbol that defines the frame offset.
6965     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6966     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6967     unsigned IdxVal =
6968         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6969     MCSymbol *FrameAllocSym =
6970         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6971             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6972 
6973     Value *FP = I.getArgOperand(1);
6974     SDValue FPVal = getValue(FP);
6975     EVT PtrVT = FPVal.getValueType();
6976 
6977     // Create a MCSymbol for the label to avoid any target lowering
6978     // that would make this PC relative.
6979     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6980     SDValue OffsetVal =
6981         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6982 
6983     // Add the offset to the FP.
6984     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6985     setValue(&I, Add);
6986 
6987     return;
6988   }
6989 
6990   case Intrinsic::eh_exceptionpointer:
6991   case Intrinsic::eh_exceptioncode: {
6992     // Get the exception pointer vreg, copy from it, and resize it to fit.
6993     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6994     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6995     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6996     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6997     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
6998     if (Intrinsic == Intrinsic::eh_exceptioncode)
6999       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7000     setValue(&I, N);
7001     return;
7002   }
7003   case Intrinsic::xray_customevent: {
7004     // Here we want to make sure that the intrinsic behaves as if it has a
7005     // specific calling convention, and only for x86_64.
7006     // FIXME: Support other platforms later.
7007     const auto &Triple = DAG.getTarget().getTargetTriple();
7008     if (Triple.getArch() != Triple::x86_64)
7009       return;
7010 
7011     SmallVector<SDValue, 8> Ops;
7012 
7013     // We want to say that we always want the arguments in registers.
7014     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7015     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7016     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7017     SDValue Chain = getRoot();
7018     Ops.push_back(LogEntryVal);
7019     Ops.push_back(StrSizeVal);
7020     Ops.push_back(Chain);
7021 
7022     // We need to enforce the calling convention for the callsite, so that
7023     // argument ordering is enforced correctly, and that register allocation can
7024     // see that some registers may be assumed clobbered and have to preserve
7025     // them across calls to the intrinsic.
7026     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7027                                            sdl, NodeTys, Ops);
7028     SDValue patchableNode = SDValue(MN, 0);
7029     DAG.setRoot(patchableNode);
7030     setValue(&I, patchableNode);
7031     return;
7032   }
7033   case Intrinsic::xray_typedevent: {
7034     // Here we want to make sure that the intrinsic behaves as if it has a
7035     // specific calling convention, and only for x86_64.
7036     // FIXME: Support other platforms later.
7037     const auto &Triple = DAG.getTarget().getTargetTriple();
7038     if (Triple.getArch() != Triple::x86_64)
7039       return;
7040 
7041     SmallVector<SDValue, 8> Ops;
7042 
7043     // We want to say that we always want the arguments in registers.
7044     // It's unclear to me how manipulating the selection DAG here forces callers
7045     // to provide arguments in registers instead of on the stack.
7046     SDValue LogTypeId = getValue(I.getArgOperand(0));
7047     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7048     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7049     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7050     SDValue Chain = getRoot();
7051     Ops.push_back(LogTypeId);
7052     Ops.push_back(LogEntryVal);
7053     Ops.push_back(StrSizeVal);
7054     Ops.push_back(Chain);
7055 
7056     // We need to enforce the calling convention for the callsite, so that
7057     // argument ordering is enforced correctly, and that register allocation can
7058     // see that some registers may be assumed clobbered and have to preserve
7059     // them across calls to the intrinsic.
7060     MachineSDNode *MN = DAG.getMachineNode(
7061         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7062     SDValue patchableNode = SDValue(MN, 0);
7063     DAG.setRoot(patchableNode);
7064     setValue(&I, patchableNode);
7065     return;
7066   }
7067   case Intrinsic::experimental_deoptimize:
7068     LowerDeoptimizeCall(&I);
7069     return;
7070   case Intrinsic::experimental_stepvector:
7071     visitStepVector(I);
7072     return;
7073   case Intrinsic::vector_reduce_fadd:
7074   case Intrinsic::vector_reduce_fmul:
7075   case Intrinsic::vector_reduce_add:
7076   case Intrinsic::vector_reduce_mul:
7077   case Intrinsic::vector_reduce_and:
7078   case Intrinsic::vector_reduce_or:
7079   case Intrinsic::vector_reduce_xor:
7080   case Intrinsic::vector_reduce_smax:
7081   case Intrinsic::vector_reduce_smin:
7082   case Intrinsic::vector_reduce_umax:
7083   case Intrinsic::vector_reduce_umin:
7084   case Intrinsic::vector_reduce_fmax:
7085   case Intrinsic::vector_reduce_fmin:
7086     visitVectorReduce(I, Intrinsic);
7087     return;
7088 
7089   case Intrinsic::icall_branch_funnel: {
7090     SmallVector<SDValue, 16> Ops;
7091     Ops.push_back(getValue(I.getArgOperand(0)));
7092 
7093     int64_t Offset;
7094     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7095         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7096     if (!Base)
7097       report_fatal_error(
7098           "llvm.icall.branch.funnel operand must be a GlobalValue");
7099     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7100 
7101     struct BranchFunnelTarget {
7102       int64_t Offset;
7103       SDValue Target;
7104     };
7105     SmallVector<BranchFunnelTarget, 8> Targets;
7106 
7107     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7108       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7109           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7110       if (ElemBase != Base)
7111         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7112                            "to the same GlobalValue");
7113 
7114       SDValue Val = getValue(I.getArgOperand(Op + 1));
7115       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7116       if (!GA)
7117         report_fatal_error(
7118             "llvm.icall.branch.funnel operand must be a GlobalValue");
7119       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7120                                      GA->getGlobal(), sdl, Val.getValueType(),
7121                                      GA->getOffset())});
7122     }
7123     llvm::sort(Targets,
7124                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7125                  return T1.Offset < T2.Offset;
7126                });
7127 
7128     for (auto &T : Targets) {
7129       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7130       Ops.push_back(T.Target);
7131     }
7132 
7133     Ops.push_back(DAG.getRoot()); // Chain
7134     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7135                                  MVT::Other, Ops),
7136               0);
7137     DAG.setRoot(N);
7138     setValue(&I, N);
7139     HasTailCall = true;
7140     return;
7141   }
7142 
7143   case Intrinsic::wasm_landingpad_index:
7144     // Information this intrinsic contained has been transferred to
7145     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7146     // delete it now.
7147     return;
7148 
7149   case Intrinsic::aarch64_settag:
7150   case Intrinsic::aarch64_settag_zero: {
7151     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7152     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7153     SDValue Val = TSI.EmitTargetCodeForSetTag(
7154         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7155         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7156         ZeroMemory);
7157     DAG.setRoot(Val);
7158     setValue(&I, Val);
7159     return;
7160   }
7161   case Intrinsic::ptrmask: {
7162     SDValue Ptr = getValue(I.getOperand(0));
7163     SDValue Const = getValue(I.getOperand(1));
7164 
7165     EVT PtrVT = Ptr.getValueType();
7166     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7167                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7168     return;
7169   }
7170   case Intrinsic::get_active_lane_mask: {
7171     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7172     SDValue Index = getValue(I.getOperand(0));
7173     EVT ElementVT = Index.getValueType();
7174 
7175     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7176       visitTargetIntrinsic(I, Intrinsic);
7177       return;
7178     }
7179 
7180     SDValue TripCount = getValue(I.getOperand(1));
7181     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7182 
7183     SDValue VectorIndex, VectorTripCount;
7184     if (VecTy.isScalableVector()) {
7185       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7186       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7187     } else {
7188       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7189       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7190     }
7191     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7192     SDValue VectorInduction = DAG.getNode(
7193         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7194     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7195                                  VectorTripCount, ISD::CondCode::SETULT);
7196     setValue(&I, SetCC);
7197     return;
7198   }
7199   case Intrinsic::vector_insert: {
7200     SDValue Vec = getValue(I.getOperand(0));
7201     SDValue SubVec = getValue(I.getOperand(1));
7202     SDValue Index = getValue(I.getOperand(2));
7203 
7204     // The intrinsic's index type is i64, but the SDNode requires an index type
7205     // suitable for the target. Convert the index as required.
7206     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7207     if (Index.getValueType() != VectorIdxTy)
7208       Index = DAG.getVectorIdxConstant(
7209           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7210 
7211     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7212     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7213                              Index));
7214     return;
7215   }
7216   case Intrinsic::vector_extract: {
7217     SDValue Vec = getValue(I.getOperand(0));
7218     SDValue Index = getValue(I.getOperand(1));
7219     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7220 
7221     // The intrinsic's index type is i64, but the SDNode requires an index type
7222     // suitable for the target. Convert the index as required.
7223     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7224     if (Index.getValueType() != VectorIdxTy)
7225       Index = DAG.getVectorIdxConstant(
7226           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7227 
7228     setValue(&I,
7229              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7230     return;
7231   }
7232   case Intrinsic::experimental_vector_reverse:
7233     visitVectorReverse(I);
7234     return;
7235   case Intrinsic::experimental_vector_splice:
7236     visitVectorSplice(I);
7237     return;
7238   }
7239 }
7240 
7241 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7242     const ConstrainedFPIntrinsic &FPI) {
7243   SDLoc sdl = getCurSDLoc();
7244 
7245   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7246   SmallVector<EVT, 4> ValueVTs;
7247   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7248   ValueVTs.push_back(MVT::Other); // Out chain
7249 
7250   // We do not need to serialize constrained FP intrinsics against
7251   // each other or against (nonvolatile) loads, so they can be
7252   // chained like loads.
7253   SDValue Chain = DAG.getRoot();
7254   SmallVector<SDValue, 4> Opers;
7255   Opers.push_back(Chain);
7256   if (FPI.isUnaryOp()) {
7257     Opers.push_back(getValue(FPI.getArgOperand(0)));
7258   } else if (FPI.isTernaryOp()) {
7259     Opers.push_back(getValue(FPI.getArgOperand(0)));
7260     Opers.push_back(getValue(FPI.getArgOperand(1)));
7261     Opers.push_back(getValue(FPI.getArgOperand(2)));
7262   } else {
7263     Opers.push_back(getValue(FPI.getArgOperand(0)));
7264     Opers.push_back(getValue(FPI.getArgOperand(1)));
7265   }
7266 
7267   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7268     assert(Result.getNode()->getNumValues() == 2);
7269 
7270     // Push node to the appropriate list so that future instructions can be
7271     // chained up correctly.
7272     SDValue OutChain = Result.getValue(1);
7273     switch (EB) {
7274     case fp::ExceptionBehavior::ebIgnore:
7275       // The only reason why ebIgnore nodes still need to be chained is that
7276       // they might depend on the current rounding mode, and therefore must
7277       // not be moved across instruction that may change that mode.
7278       LLVM_FALLTHROUGH;
7279     case fp::ExceptionBehavior::ebMayTrap:
7280       // These must not be moved across calls or instructions that may change
7281       // floating-point exception masks.
7282       PendingConstrainedFP.push_back(OutChain);
7283       break;
7284     case fp::ExceptionBehavior::ebStrict:
7285       // These must not be moved across calls or instructions that may change
7286       // floating-point exception masks or read floating-point exception flags.
7287       // In addition, they cannot be optimized out even if unused.
7288       PendingConstrainedFPStrict.push_back(OutChain);
7289       break;
7290     }
7291   };
7292 
7293   SDVTList VTs = DAG.getVTList(ValueVTs);
7294   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7295 
7296   SDNodeFlags Flags;
7297   if (EB == fp::ExceptionBehavior::ebIgnore)
7298     Flags.setNoFPExcept(true);
7299 
7300   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7301     Flags.copyFMF(*FPOp);
7302 
7303   unsigned Opcode;
7304   switch (FPI.getIntrinsicID()) {
7305   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7306 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7307   case Intrinsic::INTRINSIC:                                                   \
7308     Opcode = ISD::STRICT_##DAGN;                                               \
7309     break;
7310 #include "llvm/IR/ConstrainedOps.def"
7311   case Intrinsic::experimental_constrained_fmuladd: {
7312     Opcode = ISD::STRICT_FMA;
7313     // Break fmuladd into fmul and fadd.
7314     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7315         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7316                                         ValueVTs[0])) {
7317       Opers.pop_back();
7318       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7319       pushOutChain(Mul, EB);
7320       Opcode = ISD::STRICT_FADD;
7321       Opers.clear();
7322       Opers.push_back(Mul.getValue(1));
7323       Opers.push_back(Mul.getValue(0));
7324       Opers.push_back(getValue(FPI.getArgOperand(2)));
7325     }
7326     break;
7327   }
7328   }
7329 
7330   // A few strict DAG nodes carry additional operands that are not
7331   // set up by the default code above.
7332   switch (Opcode) {
7333   default: break;
7334   case ISD::STRICT_FP_ROUND:
7335     Opers.push_back(
7336         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7337     break;
7338   case ISD::STRICT_FSETCC:
7339   case ISD::STRICT_FSETCCS: {
7340     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7341     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7342     if (TM.Options.NoNaNsFPMath)
7343       Condition = getFCmpCodeWithoutNaN(Condition);
7344     Opers.push_back(DAG.getCondCode(Condition));
7345     break;
7346   }
7347   }
7348 
7349   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7350   pushOutChain(Result, EB);
7351 
7352   SDValue FPResult = Result.getValue(0);
7353   setValue(&FPI, FPResult);
7354 }
7355 
7356 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7357   Optional<unsigned> ResOPC;
7358   switch (VPIntrin.getIntrinsicID()) {
7359 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7360   case Intrinsic::VPID:                                                        \
7361     ResOPC = ISD::VPSD;                                                        \
7362     break;
7363 #include "llvm/IR/VPIntrinsics.def"
7364   }
7365 
7366   if (!ResOPC)
7367     llvm_unreachable(
7368         "Inconsistency: no SDNode available for this VPIntrinsic!");
7369 
7370   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7371       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7372     if (VPIntrin.getFastMathFlags().allowReassoc())
7373       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7374                                                 : ISD::VP_REDUCE_FMUL;
7375   }
7376 
7377   return *ResOPC;
7378 }
7379 
7380 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7381                                             SmallVector<SDValue, 7> &OpValues,
7382                                             bool IsGather) {
7383   SDLoc DL = getCurSDLoc();
7384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7385   Value *PtrOperand = VPIntrin.getArgOperand(0);
7386   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7387   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7388   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7389   SDValue LD;
7390   bool AddToChain = true;
7391   if (!IsGather) {
7392     // Do not serialize variable-length loads of constant memory with
7393     // anything.
7394     if (!Alignment)
7395       Alignment = DAG.getEVTAlign(VT);
7396     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7397     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7398     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7399     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7400         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7401         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7402     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7403                        MMO, false /*IsExpanding */);
7404   } else {
7405     if (!Alignment)
7406       Alignment = DAG.getEVTAlign(VT.getScalarType());
7407     unsigned AS =
7408         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7409     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7410         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7411         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7412     SDValue Base, Index, Scale;
7413     ISD::MemIndexType IndexType;
7414     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7415                                       this, VPIntrin.getParent(),
7416                                       VT.getScalarStoreSize());
7417     if (!UniformBase) {
7418       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7419       Index = getValue(PtrOperand);
7420       IndexType = ISD::SIGNED_SCALED;
7421       Scale =
7422           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7423     }
7424     EVT IdxVT = Index.getValueType();
7425     EVT EltTy = IdxVT.getVectorElementType();
7426     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7427       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7428       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7429     }
7430     LD = DAG.getGatherVP(
7431         DAG.getVTList(VT, MVT::Other), VT, DL,
7432         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7433         IndexType);
7434   }
7435   if (AddToChain)
7436     PendingLoads.push_back(LD.getValue(1));
7437   setValue(&VPIntrin, LD);
7438 }
7439 
7440 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7441                                               SmallVector<SDValue, 7> &OpValues,
7442                                               bool IsScatter) {
7443   SDLoc DL = getCurSDLoc();
7444   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7445   Value *PtrOperand = VPIntrin.getArgOperand(1);
7446   EVT VT = OpValues[0].getValueType();
7447   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7448   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7449   SDValue ST;
7450   if (!IsScatter) {
7451     if (!Alignment)
7452       Alignment = DAG.getEVTAlign(VT);
7453     SDValue Ptr = OpValues[1];
7454     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7455     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7456         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7457         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7458     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7459                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7460                         /* IsTruncating */ false, /*IsCompressing*/ false);
7461   } else {
7462     if (!Alignment)
7463       Alignment = DAG.getEVTAlign(VT.getScalarType());
7464     unsigned AS =
7465         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7466     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7467         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7468         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7469     SDValue Base, Index, Scale;
7470     ISD::MemIndexType IndexType;
7471     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7472                                       this, VPIntrin.getParent(),
7473                                       VT.getScalarStoreSize());
7474     if (!UniformBase) {
7475       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7476       Index = getValue(PtrOperand);
7477       IndexType = ISD::SIGNED_SCALED;
7478       Scale =
7479           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7480     }
7481     EVT IdxVT = Index.getValueType();
7482     EVT EltTy = IdxVT.getVectorElementType();
7483     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7484       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7485       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7486     }
7487     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7488                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7489                            OpValues[2], OpValues[3]},
7490                           MMO, IndexType);
7491   }
7492   DAG.setRoot(ST);
7493   setValue(&VPIntrin, ST);
7494 }
7495 
7496 void SelectionDAGBuilder::visitVPStridedLoad(
7497     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7498   SDLoc DL = getCurSDLoc();
7499   Value *PtrOperand = VPIntrin.getArgOperand(0);
7500   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7501   if (!Alignment)
7502     Alignment = DAG.getEVTAlign(VT.getScalarType());
7503   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7504   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7505   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7506   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7507   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7508   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7509       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7510       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7511 
7512   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7513                                     OpValues[2], OpValues[3], MMO,
7514                                     false /*IsExpanding*/);
7515 
7516   if (AddToChain)
7517     PendingLoads.push_back(LD.getValue(1));
7518   setValue(&VPIntrin, LD);
7519 }
7520 
7521 void SelectionDAGBuilder::visitVPStridedStore(
7522     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7523   SDLoc DL = getCurSDLoc();
7524   Value *PtrOperand = VPIntrin.getArgOperand(1);
7525   EVT VT = OpValues[0].getValueType();
7526   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7527   if (!Alignment)
7528     Alignment = DAG.getEVTAlign(VT.getScalarType());
7529   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7530   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7531       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7532       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7533 
7534   SDValue ST = DAG.getStridedStoreVP(
7535       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7536       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7537       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7538       /*IsCompressing*/ false);
7539 
7540   DAG.setRoot(ST);
7541   setValue(&VPIntrin, ST);
7542 }
7543 
7544 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7546   SDLoc DL = getCurSDLoc();
7547 
7548   ISD::CondCode Condition;
7549   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7550   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7551   if (IsFP) {
7552     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7553     // flags, but calls that don't return floating-point types can't be
7554     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7555     Condition = getFCmpCondCode(CondCode);
7556     if (TM.Options.NoNaNsFPMath)
7557       Condition = getFCmpCodeWithoutNaN(Condition);
7558   } else {
7559     Condition = getICmpCondCode(CondCode);
7560   }
7561 
7562   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7563   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7564   // #2 is the condition code
7565   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7566   SDValue EVL = getValue(VPIntrin.getOperand(4));
7567   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7568   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7569          "Unexpected target EVL type");
7570   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7571 
7572   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7573                                                         VPIntrin.getType());
7574   setValue(&VPIntrin,
7575            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7576 }
7577 
7578 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7579     const VPIntrinsic &VPIntrin) {
7580   SDLoc DL = getCurSDLoc();
7581   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7582 
7583   auto IID = VPIntrin.getIntrinsicID();
7584 
7585   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7586     return visitVPCmp(*CmpI);
7587 
7588   SmallVector<EVT, 4> ValueVTs;
7589   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7590   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7591   SDVTList VTs = DAG.getVTList(ValueVTs);
7592 
7593   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7594 
7595   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7596   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7597          "Unexpected target EVL type");
7598 
7599   // Request operands.
7600   SmallVector<SDValue, 7> OpValues;
7601   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7602     auto Op = getValue(VPIntrin.getArgOperand(I));
7603     if (I == EVLParamPos)
7604       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7605     OpValues.push_back(Op);
7606   }
7607 
7608   switch (Opcode) {
7609   default: {
7610     SDNodeFlags SDFlags;
7611     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7612       SDFlags.copyFMF(*FPMO);
7613     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7614     setValue(&VPIntrin, Result);
7615     break;
7616   }
7617   case ISD::VP_LOAD:
7618   case ISD::VP_GATHER:
7619     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7620                       Opcode == ISD::VP_GATHER);
7621     break;
7622   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7623     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7624     break;
7625   case ISD::VP_STORE:
7626   case ISD::VP_SCATTER:
7627     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7628     break;
7629   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7630     visitVPStridedStore(VPIntrin, OpValues);
7631     break;
7632   }
7633 }
7634 
7635 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7636                                           const BasicBlock *EHPadBB,
7637                                           MCSymbol *&BeginLabel) {
7638   MachineFunction &MF = DAG.getMachineFunction();
7639   MachineModuleInfo &MMI = MF.getMMI();
7640 
7641   // Insert a label before the invoke call to mark the try range.  This can be
7642   // used to detect deletion of the invoke via the MachineModuleInfo.
7643   BeginLabel = MMI.getContext().createTempSymbol();
7644 
7645   // For SjLj, keep track of which landing pads go with which invokes
7646   // so as to maintain the ordering of pads in the LSDA.
7647   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7648   if (CallSiteIndex) {
7649     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7650     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7651 
7652     // Now that the call site is handled, stop tracking it.
7653     MMI.setCurrentCallSite(0);
7654   }
7655 
7656   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7657 }
7658 
7659 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7660                                         const BasicBlock *EHPadBB,
7661                                         MCSymbol *BeginLabel) {
7662   assert(BeginLabel && "BeginLabel should've been set");
7663 
7664   MachineFunction &MF = DAG.getMachineFunction();
7665   MachineModuleInfo &MMI = MF.getMMI();
7666 
7667   // Insert a label at the end of the invoke call to mark the try range.  This
7668   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7669   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7670   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7671 
7672   // Inform MachineModuleInfo of range.
7673   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7674   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7675   // actually use outlined funclets and their LSDA info style.
7676   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7677     assert(II && "II should've been set");
7678     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7679     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7680   } else if (!isScopedEHPersonality(Pers)) {
7681     assert(EHPadBB);
7682     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7683   }
7684 
7685   return Chain;
7686 }
7687 
7688 std::pair<SDValue, SDValue>
7689 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7690                                     const BasicBlock *EHPadBB) {
7691   MCSymbol *BeginLabel = nullptr;
7692 
7693   if (EHPadBB) {
7694     // Both PendingLoads and PendingExports must be flushed here;
7695     // this call might not return.
7696     (void)getRoot();
7697     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7698     CLI.setChain(getRoot());
7699   }
7700 
7701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7702   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7703 
7704   assert((CLI.IsTailCall || Result.second.getNode()) &&
7705          "Non-null chain expected with non-tail call!");
7706   assert((Result.second.getNode() || !Result.first.getNode()) &&
7707          "Null value expected with tail call!");
7708 
7709   if (!Result.second.getNode()) {
7710     // As a special case, a null chain means that a tail call has been emitted
7711     // and the DAG root is already updated.
7712     HasTailCall = true;
7713 
7714     // Since there's no actual continuation from this block, nothing can be
7715     // relying on us setting vregs for them.
7716     PendingExports.clear();
7717   } else {
7718     DAG.setRoot(Result.second);
7719   }
7720 
7721   if (EHPadBB) {
7722     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7723                            BeginLabel));
7724   }
7725 
7726   return Result;
7727 }
7728 
7729 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7730                                       bool isTailCall,
7731                                       bool isMustTailCall,
7732                                       const BasicBlock *EHPadBB) {
7733   auto &DL = DAG.getDataLayout();
7734   FunctionType *FTy = CB.getFunctionType();
7735   Type *RetTy = CB.getType();
7736 
7737   TargetLowering::ArgListTy Args;
7738   Args.reserve(CB.arg_size());
7739 
7740   const Value *SwiftErrorVal = nullptr;
7741   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7742 
7743   if (isTailCall) {
7744     // Avoid emitting tail calls in functions with the disable-tail-calls
7745     // attribute.
7746     auto *Caller = CB.getParent()->getParent();
7747     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7748         "true" && !isMustTailCall)
7749       isTailCall = false;
7750 
7751     // We can't tail call inside a function with a swifterror argument. Lowering
7752     // does not support this yet. It would have to move into the swifterror
7753     // register before the call.
7754     if (TLI.supportSwiftError() &&
7755         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7756       isTailCall = false;
7757   }
7758 
7759   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7760     TargetLowering::ArgListEntry Entry;
7761     const Value *V = *I;
7762 
7763     // Skip empty types
7764     if (V->getType()->isEmptyTy())
7765       continue;
7766 
7767     SDValue ArgNode = getValue(V);
7768     Entry.Node = ArgNode; Entry.Ty = V->getType();
7769 
7770     Entry.setAttributes(&CB, I - CB.arg_begin());
7771 
7772     // Use swifterror virtual register as input to the call.
7773     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7774       SwiftErrorVal = V;
7775       // We find the virtual register for the actual swifterror argument.
7776       // Instead of using the Value, we use the virtual register instead.
7777       Entry.Node =
7778           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7779                           EVT(TLI.getPointerTy(DL)));
7780     }
7781 
7782     Args.push_back(Entry);
7783 
7784     // If we have an explicit sret argument that is an Instruction, (i.e., it
7785     // might point to function-local memory), we can't meaningfully tail-call.
7786     if (Entry.IsSRet && isa<Instruction>(V))
7787       isTailCall = false;
7788   }
7789 
7790   // If call site has a cfguardtarget operand bundle, create and add an
7791   // additional ArgListEntry.
7792   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7793     TargetLowering::ArgListEntry Entry;
7794     Value *V = Bundle->Inputs[0];
7795     SDValue ArgNode = getValue(V);
7796     Entry.Node = ArgNode;
7797     Entry.Ty = V->getType();
7798     Entry.IsCFGuardTarget = true;
7799     Args.push_back(Entry);
7800   }
7801 
7802   // Check if target-independent constraints permit a tail call here.
7803   // Target-dependent constraints are checked within TLI->LowerCallTo.
7804   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7805     isTailCall = false;
7806 
7807   // Disable tail calls if there is an swifterror argument. Targets have not
7808   // been updated to support tail calls.
7809   if (TLI.supportSwiftError() && SwiftErrorVal)
7810     isTailCall = false;
7811 
7812   TargetLowering::CallLoweringInfo CLI(DAG);
7813   CLI.setDebugLoc(getCurSDLoc())
7814       .setChain(getRoot())
7815       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7816       .setTailCall(isTailCall)
7817       .setConvergent(CB.isConvergent())
7818       .setIsPreallocated(
7819           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7820   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7821 
7822   if (Result.first.getNode()) {
7823     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7824     setValue(&CB, Result.first);
7825   }
7826 
7827   // The last element of CLI.InVals has the SDValue for swifterror return.
7828   // Here we copy it to a virtual register and update SwiftErrorMap for
7829   // book-keeping.
7830   if (SwiftErrorVal && TLI.supportSwiftError()) {
7831     // Get the last element of InVals.
7832     SDValue Src = CLI.InVals.back();
7833     Register VReg =
7834         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7835     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7836     DAG.setRoot(CopyNode);
7837   }
7838 }
7839 
7840 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7841                              SelectionDAGBuilder &Builder) {
7842   // Check to see if this load can be trivially constant folded, e.g. if the
7843   // input is from a string literal.
7844   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7845     // Cast pointer to the type we really want to load.
7846     Type *LoadTy =
7847         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7848     if (LoadVT.isVector())
7849       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7850 
7851     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7852                                          PointerType::getUnqual(LoadTy));
7853 
7854     if (const Constant *LoadCst =
7855             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7856                                          LoadTy, Builder.DAG.getDataLayout()))
7857       return Builder.getValue(LoadCst);
7858   }
7859 
7860   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7861   // still constant memory, the input chain can be the entry node.
7862   SDValue Root;
7863   bool ConstantMemory = false;
7864 
7865   // Do not serialize (non-volatile) loads of constant memory with anything.
7866   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7867     Root = Builder.DAG.getEntryNode();
7868     ConstantMemory = true;
7869   } else {
7870     // Do not serialize non-volatile loads against each other.
7871     Root = Builder.DAG.getRoot();
7872   }
7873 
7874   SDValue Ptr = Builder.getValue(PtrVal);
7875   SDValue LoadVal =
7876       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7877                           MachinePointerInfo(PtrVal), Align(1));
7878 
7879   if (!ConstantMemory)
7880     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7881   return LoadVal;
7882 }
7883 
7884 /// Record the value for an instruction that produces an integer result,
7885 /// converting the type where necessary.
7886 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7887                                                   SDValue Value,
7888                                                   bool IsSigned) {
7889   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7890                                                     I.getType(), true);
7891   if (IsSigned)
7892     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7893   else
7894     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7895   setValue(&I, Value);
7896 }
7897 
7898 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7899 /// true and lower it. Otherwise return false, and it will be lowered like a
7900 /// normal call.
7901 /// The caller already checked that \p I calls the appropriate LibFunc with a
7902 /// correct prototype.
7903 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7904   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7905   const Value *Size = I.getArgOperand(2);
7906   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7907   if (CSize && CSize->getZExtValue() == 0) {
7908     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7909                                                           I.getType(), true);
7910     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7911     return true;
7912   }
7913 
7914   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7915   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7916       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7917       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7918   if (Res.first.getNode()) {
7919     processIntegerCallValue(I, Res.first, true);
7920     PendingLoads.push_back(Res.second);
7921     return true;
7922   }
7923 
7924   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7925   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7926   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7927     return false;
7928 
7929   // If the target has a fast compare for the given size, it will return a
7930   // preferred load type for that size. Require that the load VT is legal and
7931   // that the target supports unaligned loads of that type. Otherwise, return
7932   // INVALID.
7933   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7934     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7935     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7936     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7937       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7938       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7939       // TODO: Check alignment of src and dest ptrs.
7940       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7941       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7942       if (!TLI.isTypeLegal(LVT) ||
7943           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7944           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7945         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7946     }
7947 
7948     return LVT;
7949   };
7950 
7951   // This turns into unaligned loads. We only do this if the target natively
7952   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7953   // we'll only produce a small number of byte loads.
7954   MVT LoadVT;
7955   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7956   switch (NumBitsToCompare) {
7957   default:
7958     return false;
7959   case 16:
7960     LoadVT = MVT::i16;
7961     break;
7962   case 32:
7963     LoadVT = MVT::i32;
7964     break;
7965   case 64:
7966   case 128:
7967   case 256:
7968     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7969     break;
7970   }
7971 
7972   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7973     return false;
7974 
7975   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7976   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7977 
7978   // Bitcast to a wide integer type if the loads are vectors.
7979   if (LoadVT.isVector()) {
7980     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7981     LoadL = DAG.getBitcast(CmpVT, LoadL);
7982     LoadR = DAG.getBitcast(CmpVT, LoadR);
7983   }
7984 
7985   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7986   processIntegerCallValue(I, Cmp, false);
7987   return true;
7988 }
7989 
7990 /// See if we can lower a memchr call into an optimized form. If so, return
7991 /// true and lower it. Otherwise return false, and it will be lowered like a
7992 /// normal call.
7993 /// The caller already checked that \p I calls the appropriate LibFunc with a
7994 /// correct prototype.
7995 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7996   const Value *Src = I.getArgOperand(0);
7997   const Value *Char = I.getArgOperand(1);
7998   const Value *Length = I.getArgOperand(2);
7999 
8000   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8001   std::pair<SDValue, SDValue> Res =
8002     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8003                                 getValue(Src), getValue(Char), getValue(Length),
8004                                 MachinePointerInfo(Src));
8005   if (Res.first.getNode()) {
8006     setValue(&I, Res.first);
8007     PendingLoads.push_back(Res.second);
8008     return true;
8009   }
8010 
8011   return false;
8012 }
8013 
8014 /// See if we can lower a mempcpy call into an optimized form. If so, return
8015 /// true and lower it. Otherwise return false, and it will be lowered like a
8016 /// normal call.
8017 /// The caller already checked that \p I calls the appropriate LibFunc with a
8018 /// correct prototype.
8019 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8020   SDValue Dst = getValue(I.getArgOperand(0));
8021   SDValue Src = getValue(I.getArgOperand(1));
8022   SDValue Size = getValue(I.getArgOperand(2));
8023 
8024   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8025   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8026   // DAG::getMemcpy needs Alignment to be defined.
8027   Align Alignment = std::min(DstAlign, SrcAlign);
8028 
8029   bool isVol = false;
8030   SDLoc sdl = getCurSDLoc();
8031 
8032   // In the mempcpy context we need to pass in a false value for isTailCall
8033   // because the return pointer needs to be adjusted by the size of
8034   // the copied memory.
8035   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8036   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8037                              /*isTailCall=*/false,
8038                              MachinePointerInfo(I.getArgOperand(0)),
8039                              MachinePointerInfo(I.getArgOperand(1)),
8040                              I.getAAMetadata());
8041   assert(MC.getNode() != nullptr &&
8042          "** memcpy should not be lowered as TailCall in mempcpy context **");
8043   DAG.setRoot(MC);
8044 
8045   // Check if Size needs to be truncated or extended.
8046   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8047 
8048   // Adjust return pointer to point just past the last dst byte.
8049   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8050                                     Dst, Size);
8051   setValue(&I, DstPlusSize);
8052   return true;
8053 }
8054 
8055 /// See if we can lower a strcpy call into an optimized form.  If so, return
8056 /// true and lower it, otherwise return false and it will be lowered like a
8057 /// normal call.
8058 /// The caller already checked that \p I calls the appropriate LibFunc with a
8059 /// correct prototype.
8060 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8061   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8062 
8063   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8064   std::pair<SDValue, SDValue> Res =
8065     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8066                                 getValue(Arg0), getValue(Arg1),
8067                                 MachinePointerInfo(Arg0),
8068                                 MachinePointerInfo(Arg1), isStpcpy);
8069   if (Res.first.getNode()) {
8070     setValue(&I, Res.first);
8071     DAG.setRoot(Res.second);
8072     return true;
8073   }
8074 
8075   return false;
8076 }
8077 
8078 /// See if we can lower a strcmp call into an optimized form.  If so, return
8079 /// true and lower it, otherwise return false and it will be lowered like a
8080 /// normal call.
8081 /// The caller already checked that \p I calls the appropriate LibFunc with a
8082 /// correct prototype.
8083 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8084   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8085 
8086   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8087   std::pair<SDValue, SDValue> Res =
8088     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8089                                 getValue(Arg0), getValue(Arg1),
8090                                 MachinePointerInfo(Arg0),
8091                                 MachinePointerInfo(Arg1));
8092   if (Res.first.getNode()) {
8093     processIntegerCallValue(I, Res.first, true);
8094     PendingLoads.push_back(Res.second);
8095     return true;
8096   }
8097 
8098   return false;
8099 }
8100 
8101 /// See if we can lower a strlen call into an optimized form.  If so, return
8102 /// true and lower it, otherwise return false and it will be lowered like a
8103 /// normal call.
8104 /// The caller already checked that \p I calls the appropriate LibFunc with a
8105 /// correct prototype.
8106 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8107   const Value *Arg0 = I.getArgOperand(0);
8108 
8109   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8110   std::pair<SDValue, SDValue> Res =
8111     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8112                                 getValue(Arg0), MachinePointerInfo(Arg0));
8113   if (Res.first.getNode()) {
8114     processIntegerCallValue(I, Res.first, false);
8115     PendingLoads.push_back(Res.second);
8116     return true;
8117   }
8118 
8119   return false;
8120 }
8121 
8122 /// See if we can lower a strnlen call into an optimized form.  If so, return
8123 /// true and lower it, otherwise return false and it will be lowered like a
8124 /// normal call.
8125 /// The caller already checked that \p I calls the appropriate LibFunc with a
8126 /// correct prototype.
8127 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8128   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8129 
8130   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8131   std::pair<SDValue, SDValue> Res =
8132     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8133                                  getValue(Arg0), getValue(Arg1),
8134                                  MachinePointerInfo(Arg0));
8135   if (Res.first.getNode()) {
8136     processIntegerCallValue(I, Res.first, false);
8137     PendingLoads.push_back(Res.second);
8138     return true;
8139   }
8140 
8141   return false;
8142 }
8143 
8144 /// See if we can lower a unary floating-point operation into an SDNode with
8145 /// the specified Opcode.  If so, return true and lower it, otherwise return
8146 /// false and it will be lowered like a normal call.
8147 /// The caller already checked that \p I calls the appropriate LibFunc with a
8148 /// correct prototype.
8149 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8150                                               unsigned Opcode) {
8151   // We already checked this call's prototype; verify it doesn't modify errno.
8152   if (!I.onlyReadsMemory())
8153     return false;
8154 
8155   SDNodeFlags Flags;
8156   Flags.copyFMF(cast<FPMathOperator>(I));
8157 
8158   SDValue Tmp = getValue(I.getArgOperand(0));
8159   setValue(&I,
8160            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8161   return true;
8162 }
8163 
8164 /// See if we can lower a binary floating-point operation into an SDNode with
8165 /// the specified Opcode. If so, return true and lower it. Otherwise return
8166 /// false, and it will be lowered like a normal call.
8167 /// The caller already checked that \p I calls the appropriate LibFunc with a
8168 /// correct prototype.
8169 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8170                                                unsigned Opcode) {
8171   // We already checked this call's prototype; verify it doesn't modify errno.
8172   if (!I.onlyReadsMemory())
8173     return false;
8174 
8175   SDNodeFlags Flags;
8176   Flags.copyFMF(cast<FPMathOperator>(I));
8177 
8178   SDValue Tmp0 = getValue(I.getArgOperand(0));
8179   SDValue Tmp1 = getValue(I.getArgOperand(1));
8180   EVT VT = Tmp0.getValueType();
8181   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8182   return true;
8183 }
8184 
8185 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8186   // Handle inline assembly differently.
8187   if (I.isInlineAsm()) {
8188     visitInlineAsm(I);
8189     return;
8190   }
8191 
8192   if (Function *F = I.getCalledFunction()) {
8193     diagnoseDontCall(I);
8194 
8195     if (F->isDeclaration()) {
8196       // Is this an LLVM intrinsic or a target-specific intrinsic?
8197       unsigned IID = F->getIntrinsicID();
8198       if (!IID)
8199         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8200           IID = II->getIntrinsicID(F);
8201 
8202       if (IID) {
8203         visitIntrinsicCall(I, IID);
8204         return;
8205       }
8206     }
8207 
8208     // Check for well-known libc/libm calls.  If the function is internal, it
8209     // can't be a library call.  Don't do the check if marked as nobuiltin for
8210     // some reason or the call site requires strict floating point semantics.
8211     LibFunc Func;
8212     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8213         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8214         LibInfo->hasOptimizedCodeGen(Func)) {
8215       switch (Func) {
8216       default: break;
8217       case LibFunc_bcmp:
8218         if (visitMemCmpBCmpCall(I))
8219           return;
8220         break;
8221       case LibFunc_copysign:
8222       case LibFunc_copysignf:
8223       case LibFunc_copysignl:
8224         // We already checked this call's prototype; verify it doesn't modify
8225         // errno.
8226         if (I.onlyReadsMemory()) {
8227           SDValue LHS = getValue(I.getArgOperand(0));
8228           SDValue RHS = getValue(I.getArgOperand(1));
8229           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8230                                    LHS.getValueType(), LHS, RHS));
8231           return;
8232         }
8233         break;
8234       case LibFunc_fabs:
8235       case LibFunc_fabsf:
8236       case LibFunc_fabsl:
8237         if (visitUnaryFloatCall(I, ISD::FABS))
8238           return;
8239         break;
8240       case LibFunc_fmin:
8241       case LibFunc_fminf:
8242       case LibFunc_fminl:
8243         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8244           return;
8245         break;
8246       case LibFunc_fmax:
8247       case LibFunc_fmaxf:
8248       case LibFunc_fmaxl:
8249         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8250           return;
8251         break;
8252       case LibFunc_sin:
8253       case LibFunc_sinf:
8254       case LibFunc_sinl:
8255         if (visitUnaryFloatCall(I, ISD::FSIN))
8256           return;
8257         break;
8258       case LibFunc_cos:
8259       case LibFunc_cosf:
8260       case LibFunc_cosl:
8261         if (visitUnaryFloatCall(I, ISD::FCOS))
8262           return;
8263         break;
8264       case LibFunc_sqrt:
8265       case LibFunc_sqrtf:
8266       case LibFunc_sqrtl:
8267       case LibFunc_sqrt_finite:
8268       case LibFunc_sqrtf_finite:
8269       case LibFunc_sqrtl_finite:
8270         if (visitUnaryFloatCall(I, ISD::FSQRT))
8271           return;
8272         break;
8273       case LibFunc_floor:
8274       case LibFunc_floorf:
8275       case LibFunc_floorl:
8276         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8277           return;
8278         break;
8279       case LibFunc_nearbyint:
8280       case LibFunc_nearbyintf:
8281       case LibFunc_nearbyintl:
8282         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8283           return;
8284         break;
8285       case LibFunc_ceil:
8286       case LibFunc_ceilf:
8287       case LibFunc_ceill:
8288         if (visitUnaryFloatCall(I, ISD::FCEIL))
8289           return;
8290         break;
8291       case LibFunc_rint:
8292       case LibFunc_rintf:
8293       case LibFunc_rintl:
8294         if (visitUnaryFloatCall(I, ISD::FRINT))
8295           return;
8296         break;
8297       case LibFunc_round:
8298       case LibFunc_roundf:
8299       case LibFunc_roundl:
8300         if (visitUnaryFloatCall(I, ISD::FROUND))
8301           return;
8302         break;
8303       case LibFunc_trunc:
8304       case LibFunc_truncf:
8305       case LibFunc_truncl:
8306         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8307           return;
8308         break;
8309       case LibFunc_log2:
8310       case LibFunc_log2f:
8311       case LibFunc_log2l:
8312         if (visitUnaryFloatCall(I, ISD::FLOG2))
8313           return;
8314         break;
8315       case LibFunc_exp2:
8316       case LibFunc_exp2f:
8317       case LibFunc_exp2l:
8318         if (visitUnaryFloatCall(I, ISD::FEXP2))
8319           return;
8320         break;
8321       case LibFunc_memcmp:
8322         if (visitMemCmpBCmpCall(I))
8323           return;
8324         break;
8325       case LibFunc_mempcpy:
8326         if (visitMemPCpyCall(I))
8327           return;
8328         break;
8329       case LibFunc_memchr:
8330         if (visitMemChrCall(I))
8331           return;
8332         break;
8333       case LibFunc_strcpy:
8334         if (visitStrCpyCall(I, false))
8335           return;
8336         break;
8337       case LibFunc_stpcpy:
8338         if (visitStrCpyCall(I, true))
8339           return;
8340         break;
8341       case LibFunc_strcmp:
8342         if (visitStrCmpCall(I))
8343           return;
8344         break;
8345       case LibFunc_strlen:
8346         if (visitStrLenCall(I))
8347           return;
8348         break;
8349       case LibFunc_strnlen:
8350         if (visitStrNLenCall(I))
8351           return;
8352         break;
8353       }
8354     }
8355   }
8356 
8357   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8358   // have to do anything here to lower funclet bundles.
8359   // CFGuardTarget bundles are lowered in LowerCallTo.
8360   assert(!I.hasOperandBundlesOtherThan(
8361              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8362               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8363               LLVMContext::OB_clang_arc_attachedcall}) &&
8364          "Cannot lower calls with arbitrary operand bundles!");
8365 
8366   SDValue Callee = getValue(I.getCalledOperand());
8367 
8368   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8369     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8370   else
8371     // Check if we can potentially perform a tail call. More detailed checking
8372     // is be done within LowerCallTo, after more information about the call is
8373     // known.
8374     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8375 }
8376 
8377 namespace {
8378 
8379 /// AsmOperandInfo - This contains information for each constraint that we are
8380 /// lowering.
8381 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8382 public:
8383   /// CallOperand - If this is the result output operand or a clobber
8384   /// this is null, otherwise it is the incoming operand to the CallInst.
8385   /// This gets modified as the asm is processed.
8386   SDValue CallOperand;
8387 
8388   /// AssignedRegs - If this is a register or register class operand, this
8389   /// contains the set of register corresponding to the operand.
8390   RegsForValue AssignedRegs;
8391 
8392   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8393     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8394   }
8395 
8396   /// Whether or not this operand accesses memory
8397   bool hasMemory(const TargetLowering &TLI) const {
8398     // Indirect operand accesses access memory.
8399     if (isIndirect)
8400       return true;
8401 
8402     for (const auto &Code : Codes)
8403       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8404         return true;
8405 
8406     return false;
8407   }
8408 
8409   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8410   /// corresponds to.  If there is no Value* for this operand, it returns
8411   /// MVT::Other.
8412   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8413                            const DataLayout &DL,
8414                            llvm::Type *ParamElemType) const {
8415     if (!CallOperandVal) return MVT::Other;
8416 
8417     if (isa<BasicBlock>(CallOperandVal))
8418       return TLI.getProgramPointerTy(DL);
8419 
8420     llvm::Type *OpTy = CallOperandVal->getType();
8421 
8422     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8423     // If this is an indirect operand, the operand is a pointer to the
8424     // accessed type.
8425     if (isIndirect) {
8426       OpTy = ParamElemType;
8427       assert(OpTy && "Indirect operand must have elementtype attribute");
8428     }
8429 
8430     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8431     if (StructType *STy = dyn_cast<StructType>(OpTy))
8432       if (STy->getNumElements() == 1)
8433         OpTy = STy->getElementType(0);
8434 
8435     // If OpTy is not a single value, it may be a struct/union that we
8436     // can tile with integers.
8437     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8438       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8439       switch (BitSize) {
8440       default: break;
8441       case 1:
8442       case 8:
8443       case 16:
8444       case 32:
8445       case 64:
8446       case 128:
8447         OpTy = IntegerType::get(Context, BitSize);
8448         break;
8449       }
8450     }
8451 
8452     return TLI.getAsmOperandValueType(DL, OpTy, true);
8453   }
8454 };
8455 
8456 
8457 } // end anonymous namespace
8458 
8459 /// Make sure that the output operand \p OpInfo and its corresponding input
8460 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8461 /// out).
8462 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8463                                SDISelAsmOperandInfo &MatchingOpInfo,
8464                                SelectionDAG &DAG) {
8465   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8466     return;
8467 
8468   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8469   const auto &TLI = DAG.getTargetLoweringInfo();
8470 
8471   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8472       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8473                                        OpInfo.ConstraintVT);
8474   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8475       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8476                                        MatchingOpInfo.ConstraintVT);
8477   if ((OpInfo.ConstraintVT.isInteger() !=
8478        MatchingOpInfo.ConstraintVT.isInteger()) ||
8479       (MatchRC.second != InputRC.second)) {
8480     // FIXME: error out in a more elegant fashion
8481     report_fatal_error("Unsupported asm: input constraint"
8482                        " with a matching output constraint of"
8483                        " incompatible type!");
8484   }
8485   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8486 }
8487 
8488 /// Get a direct memory input to behave well as an indirect operand.
8489 /// This may introduce stores, hence the need for a \p Chain.
8490 /// \return The (possibly updated) chain.
8491 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8492                                         SDISelAsmOperandInfo &OpInfo,
8493                                         SelectionDAG &DAG) {
8494   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8495 
8496   // If we don't have an indirect input, put it in the constpool if we can,
8497   // otherwise spill it to a stack slot.
8498   // TODO: This isn't quite right. We need to handle these according to
8499   // the addressing mode that the constraint wants. Also, this may take
8500   // an additional register for the computation and we don't want that
8501   // either.
8502 
8503   // If the operand is a float, integer, or vector constant, spill to a
8504   // constant pool entry to get its address.
8505   const Value *OpVal = OpInfo.CallOperandVal;
8506   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8507       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8508     OpInfo.CallOperand = DAG.getConstantPool(
8509         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8510     return Chain;
8511   }
8512 
8513   // Otherwise, create a stack slot and emit a store to it before the asm.
8514   Type *Ty = OpVal->getType();
8515   auto &DL = DAG.getDataLayout();
8516   uint64_t TySize = DL.getTypeAllocSize(Ty);
8517   MachineFunction &MF = DAG.getMachineFunction();
8518   int SSFI = MF.getFrameInfo().CreateStackObject(
8519       TySize, DL.getPrefTypeAlign(Ty), false);
8520   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8521   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8522                             MachinePointerInfo::getFixedStack(MF, SSFI),
8523                             TLI.getMemValueType(DL, Ty));
8524   OpInfo.CallOperand = StackSlot;
8525 
8526   return Chain;
8527 }
8528 
8529 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8530 /// specified operand.  We prefer to assign virtual registers, to allow the
8531 /// register allocator to handle the assignment process.  However, if the asm
8532 /// uses features that we can't model on machineinstrs, we have SDISel do the
8533 /// allocation.  This produces generally horrible, but correct, code.
8534 ///
8535 ///   OpInfo describes the operand
8536 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8537 static llvm::Optional<unsigned>
8538 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8539                      SDISelAsmOperandInfo &OpInfo,
8540                      SDISelAsmOperandInfo &RefOpInfo) {
8541   LLVMContext &Context = *DAG.getContext();
8542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8543 
8544   MachineFunction &MF = DAG.getMachineFunction();
8545   SmallVector<unsigned, 4> Regs;
8546   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8547 
8548   // No work to do for memory/address operands.
8549   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8550       OpInfo.ConstraintType == TargetLowering::C_Address)
8551     return None;
8552 
8553   // If this is a constraint for a single physreg, or a constraint for a
8554   // register class, find it.
8555   unsigned AssignedReg;
8556   const TargetRegisterClass *RC;
8557   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8558       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8559   // RC is unset only on failure. Return immediately.
8560   if (!RC)
8561     return None;
8562 
8563   // Get the actual register value type.  This is important, because the user
8564   // may have asked for (e.g.) the AX register in i32 type.  We need to
8565   // remember that AX is actually i16 to get the right extension.
8566   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8567 
8568   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8569     // If this is an FP operand in an integer register (or visa versa), or more
8570     // generally if the operand value disagrees with the register class we plan
8571     // to stick it in, fix the operand type.
8572     //
8573     // If this is an input value, the bitcast to the new type is done now.
8574     // Bitcast for output value is done at the end of visitInlineAsm().
8575     if ((OpInfo.Type == InlineAsm::isOutput ||
8576          OpInfo.Type == InlineAsm::isInput) &&
8577         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8578       // Try to convert to the first EVT that the reg class contains.  If the
8579       // types are identical size, use a bitcast to convert (e.g. two differing
8580       // vector types).  Note: output bitcast is done at the end of
8581       // visitInlineAsm().
8582       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8583         // Exclude indirect inputs while they are unsupported because the code
8584         // to perform the load is missing and thus OpInfo.CallOperand still
8585         // refers to the input address rather than the pointed-to value.
8586         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8587           OpInfo.CallOperand =
8588               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8589         OpInfo.ConstraintVT = RegVT;
8590         // If the operand is an FP value and we want it in integer registers,
8591         // use the corresponding integer type. This turns an f64 value into
8592         // i64, which can be passed with two i32 values on a 32-bit machine.
8593       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8594         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8595         if (OpInfo.Type == InlineAsm::isInput)
8596           OpInfo.CallOperand =
8597               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8598         OpInfo.ConstraintVT = VT;
8599       }
8600     }
8601   }
8602 
8603   // No need to allocate a matching input constraint since the constraint it's
8604   // matching to has already been allocated.
8605   if (OpInfo.isMatchingInputConstraint())
8606     return None;
8607 
8608   EVT ValueVT = OpInfo.ConstraintVT;
8609   if (OpInfo.ConstraintVT == MVT::Other)
8610     ValueVT = RegVT;
8611 
8612   // Initialize NumRegs.
8613   unsigned NumRegs = 1;
8614   if (OpInfo.ConstraintVT != MVT::Other)
8615     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8616 
8617   // If this is a constraint for a specific physical register, like {r17},
8618   // assign it now.
8619 
8620   // If this associated to a specific register, initialize iterator to correct
8621   // place. If virtual, make sure we have enough registers
8622 
8623   // Initialize iterator if necessary
8624   TargetRegisterClass::iterator I = RC->begin();
8625   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8626 
8627   // Do not check for single registers.
8628   if (AssignedReg) {
8629     I = std::find(I, RC->end(), AssignedReg);
8630     if (I == RC->end()) {
8631       // RC does not contain the selected register, which indicates a
8632       // mismatch between the register and the required type/bitwidth.
8633       return {AssignedReg};
8634     }
8635   }
8636 
8637   for (; NumRegs; --NumRegs, ++I) {
8638     assert(I != RC->end() && "Ran out of registers to allocate!");
8639     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8640     Regs.push_back(R);
8641   }
8642 
8643   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8644   return None;
8645 }
8646 
8647 static unsigned
8648 findMatchingInlineAsmOperand(unsigned OperandNo,
8649                              const std::vector<SDValue> &AsmNodeOperands) {
8650   // Scan until we find the definition we already emitted of this operand.
8651   unsigned CurOp = InlineAsm::Op_FirstOperand;
8652   for (; OperandNo; --OperandNo) {
8653     // Advance to the next operand.
8654     unsigned OpFlag =
8655         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8656     assert((InlineAsm::isRegDefKind(OpFlag) ||
8657             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8658             InlineAsm::isMemKind(OpFlag)) &&
8659            "Skipped past definitions?");
8660     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8661   }
8662   return CurOp;
8663 }
8664 
8665 namespace {
8666 
8667 class ExtraFlags {
8668   unsigned Flags = 0;
8669 
8670 public:
8671   explicit ExtraFlags(const CallBase &Call) {
8672     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8673     if (IA->hasSideEffects())
8674       Flags |= InlineAsm::Extra_HasSideEffects;
8675     if (IA->isAlignStack())
8676       Flags |= InlineAsm::Extra_IsAlignStack;
8677     if (Call.isConvergent())
8678       Flags |= InlineAsm::Extra_IsConvergent;
8679     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8680   }
8681 
8682   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8683     // Ideally, we would only check against memory constraints.  However, the
8684     // meaning of an Other constraint can be target-specific and we can't easily
8685     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8686     // for Other constraints as well.
8687     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8688         OpInfo.ConstraintType == TargetLowering::C_Other) {
8689       if (OpInfo.Type == InlineAsm::isInput)
8690         Flags |= InlineAsm::Extra_MayLoad;
8691       else if (OpInfo.Type == InlineAsm::isOutput)
8692         Flags |= InlineAsm::Extra_MayStore;
8693       else if (OpInfo.Type == InlineAsm::isClobber)
8694         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8695     }
8696   }
8697 
8698   unsigned get() const { return Flags; }
8699 };
8700 
8701 } // end anonymous namespace
8702 
8703 /// visitInlineAsm - Handle a call to an InlineAsm object.
8704 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8705                                          const BasicBlock *EHPadBB) {
8706   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8707 
8708   /// ConstraintOperands - Information about all of the constraints.
8709   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8710 
8711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8712   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8713       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8714 
8715   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8716   // AsmDialect, MayLoad, MayStore).
8717   bool HasSideEffect = IA->hasSideEffects();
8718   ExtraFlags ExtraInfo(Call);
8719 
8720   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8721   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8722   for (auto &T : TargetConstraints) {
8723     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8724     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8725 
8726     // Compute the value type for each operand.
8727     if (OpInfo.hasArg()) {
8728       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8729       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8730       Type *ParamElemTy = Call.getParamElementType(ArgNo);
8731       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8732                                            DAG.getDataLayout(), ParamElemTy);
8733       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8734       ArgNo++;
8735     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8736       // The return value of the call is this value.  As such, there is no
8737       // corresponding argument.
8738       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8739       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8740         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8741             DAG.getDataLayout(), STy->getElementType(ResNo));
8742       } else {
8743         assert(ResNo == 0 && "Asm only has one result!");
8744         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8745             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8746       }
8747       ++ResNo;
8748     } else {
8749       OpInfo.ConstraintVT = MVT::Other;
8750     }
8751 
8752     if (!HasSideEffect)
8753       HasSideEffect = OpInfo.hasMemory(TLI);
8754 
8755     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8756     // FIXME: Could we compute this on OpInfo rather than T?
8757 
8758     // Compute the constraint code and ConstraintType to use.
8759     TLI.ComputeConstraintToUse(T, SDValue());
8760 
8761     if (T.ConstraintType == TargetLowering::C_Immediate &&
8762         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8763       // We've delayed emitting a diagnostic like the "n" constraint because
8764       // inlining could cause an integer showing up.
8765       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8766                                           "' expects an integer constant "
8767                                           "expression");
8768 
8769     ExtraInfo.update(T);
8770   }
8771 
8772   // We won't need to flush pending loads if this asm doesn't touch
8773   // memory and is nonvolatile.
8774   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8775 
8776   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8777   if (EmitEHLabels) {
8778     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8779   }
8780   bool IsCallBr = isa<CallBrInst>(Call);
8781 
8782   if (IsCallBr || EmitEHLabels) {
8783     // If this is a callbr or invoke we need to flush pending exports since
8784     // inlineasm_br and invoke are terminators.
8785     // We need to do this before nodes are glued to the inlineasm_br node.
8786     Chain = getControlRoot();
8787   }
8788 
8789   MCSymbol *BeginLabel = nullptr;
8790   if (EmitEHLabels) {
8791     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8792   }
8793 
8794   // Second pass over the constraints: compute which constraint option to use.
8795   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8796     // If this is an output operand with a matching input operand, look up the
8797     // matching input. If their types mismatch, e.g. one is an integer, the
8798     // other is floating point, or their sizes are different, flag it as an
8799     // error.
8800     if (OpInfo.hasMatchingInput()) {
8801       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8802       patchMatchingInput(OpInfo, Input, DAG);
8803     }
8804 
8805     // Compute the constraint code and ConstraintType to use.
8806     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8807 
8808     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8809          OpInfo.Type == InlineAsm::isClobber) ||
8810         OpInfo.ConstraintType == TargetLowering::C_Address)
8811       continue;
8812 
8813     // If this is a memory input, and if the operand is not indirect, do what we
8814     // need to provide an address for the memory input.
8815     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8816         !OpInfo.isIndirect) {
8817       assert((OpInfo.isMultipleAlternative ||
8818               (OpInfo.Type == InlineAsm::isInput)) &&
8819              "Can only indirectify direct input operands!");
8820 
8821       // Memory operands really want the address of the value.
8822       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8823 
8824       // There is no longer a Value* corresponding to this operand.
8825       OpInfo.CallOperandVal = nullptr;
8826 
8827       // It is now an indirect operand.
8828       OpInfo.isIndirect = true;
8829     }
8830 
8831   }
8832 
8833   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8834   std::vector<SDValue> AsmNodeOperands;
8835   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8836   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8837       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8838 
8839   // If we have a !srcloc metadata node associated with it, we want to attach
8840   // this to the ultimately generated inline asm machineinstr.  To do this, we
8841   // pass in the third operand as this (potentially null) inline asm MDNode.
8842   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8843   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8844 
8845   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8846   // bits as operand 3.
8847   AsmNodeOperands.push_back(DAG.getTargetConstant(
8848       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8849 
8850   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8851   // this, assign virtual and physical registers for inputs and otput.
8852   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8853     // Assign Registers.
8854     SDISelAsmOperandInfo &RefOpInfo =
8855         OpInfo.isMatchingInputConstraint()
8856             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8857             : OpInfo;
8858     const auto RegError =
8859         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8860     if (RegError) {
8861       const MachineFunction &MF = DAG.getMachineFunction();
8862       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8863       const char *RegName = TRI.getName(RegError.getValue());
8864       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8865                                    "' allocated for constraint '" +
8866                                    Twine(OpInfo.ConstraintCode) +
8867                                    "' does not match required type");
8868       return;
8869     }
8870 
8871     auto DetectWriteToReservedRegister = [&]() {
8872       const MachineFunction &MF = DAG.getMachineFunction();
8873       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8874       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8875         if (Register::isPhysicalRegister(Reg) &&
8876             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8877           const char *RegName = TRI.getName(Reg);
8878           emitInlineAsmError(Call, "write to reserved register '" +
8879                                        Twine(RegName) + "'");
8880           return true;
8881         }
8882       }
8883       return false;
8884     };
8885     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8886             (OpInfo.Type == InlineAsm::isInput &&
8887              !OpInfo.isMatchingInputConstraint())) &&
8888            "Only address as input operand is allowed.");
8889 
8890     switch (OpInfo.Type) {
8891     case InlineAsm::isOutput:
8892       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8893         unsigned ConstraintID =
8894             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8895         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8896                "Failed to convert memory constraint code to constraint id.");
8897 
8898         // Add information to the INLINEASM node to know about this output.
8899         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8900         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8901         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8902                                                         MVT::i32));
8903         AsmNodeOperands.push_back(OpInfo.CallOperand);
8904       } else {
8905         // Otherwise, this outputs to a register (directly for C_Register /
8906         // C_RegisterClass, and a target-defined fashion for
8907         // C_Immediate/C_Other). Find a register that we can use.
8908         if (OpInfo.AssignedRegs.Regs.empty()) {
8909           emitInlineAsmError(
8910               Call, "couldn't allocate output register for constraint '" +
8911                         Twine(OpInfo.ConstraintCode) + "'");
8912           return;
8913         }
8914 
8915         if (DetectWriteToReservedRegister())
8916           return;
8917 
8918         // Add information to the INLINEASM node to know that this register is
8919         // set.
8920         OpInfo.AssignedRegs.AddInlineAsmOperands(
8921             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8922                                   : InlineAsm::Kind_RegDef,
8923             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8924       }
8925       break;
8926 
8927     case InlineAsm::isInput: {
8928       SDValue InOperandVal = OpInfo.CallOperand;
8929 
8930       if (OpInfo.isMatchingInputConstraint()) {
8931         // If this is required to match an output register we have already set,
8932         // just use its register.
8933         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8934                                                   AsmNodeOperands);
8935         unsigned OpFlag =
8936           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8937         if (InlineAsm::isRegDefKind(OpFlag) ||
8938             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8939           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8940           if (OpInfo.isIndirect) {
8941             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8942             emitInlineAsmError(Call, "inline asm not supported yet: "
8943                                      "don't know how to handle tied "
8944                                      "indirect register inputs");
8945             return;
8946           }
8947 
8948           SmallVector<unsigned, 4> Regs;
8949           MachineFunction &MF = DAG.getMachineFunction();
8950           MachineRegisterInfo &MRI = MF.getRegInfo();
8951           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8952           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8953           Register TiedReg = R->getReg();
8954           MVT RegVT = R->getSimpleValueType(0);
8955           const TargetRegisterClass *RC =
8956               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8957               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8958                                       : TRI.getMinimalPhysRegClass(TiedReg);
8959           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8960           for (unsigned i = 0; i != NumRegs; ++i)
8961             Regs.push_back(MRI.createVirtualRegister(RC));
8962 
8963           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8964 
8965           SDLoc dl = getCurSDLoc();
8966           // Use the produced MatchedRegs object to
8967           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8968           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8969                                            true, OpInfo.getMatchedOperand(), dl,
8970                                            DAG, AsmNodeOperands);
8971           break;
8972         }
8973 
8974         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8975         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8976                "Unexpected number of operands");
8977         // Add information to the INLINEASM node to know about this input.
8978         // See InlineAsm.h isUseOperandTiedToDef.
8979         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8980         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8981                                                     OpInfo.getMatchedOperand());
8982         AsmNodeOperands.push_back(DAG.getTargetConstant(
8983             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8984         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8985         break;
8986       }
8987 
8988       // Treat indirect 'X' constraint as memory.
8989       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8990           OpInfo.isIndirect)
8991         OpInfo.ConstraintType = TargetLowering::C_Memory;
8992 
8993       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8994           OpInfo.ConstraintType == TargetLowering::C_Other) {
8995         std::vector<SDValue> Ops;
8996         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8997                                           Ops, DAG);
8998         if (Ops.empty()) {
8999           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9000             if (isa<ConstantSDNode>(InOperandVal)) {
9001               emitInlineAsmError(Call, "value out of range for constraint '" +
9002                                            Twine(OpInfo.ConstraintCode) + "'");
9003               return;
9004             }
9005 
9006           emitInlineAsmError(Call,
9007                              "invalid operand for inline asm constraint '" +
9008                                  Twine(OpInfo.ConstraintCode) + "'");
9009           return;
9010         }
9011 
9012         // Add information to the INLINEASM node to know about this input.
9013         unsigned ResOpType =
9014           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9015         AsmNodeOperands.push_back(DAG.getTargetConstant(
9016             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9017         llvm::append_range(AsmNodeOperands, Ops);
9018         break;
9019       }
9020 
9021       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9022           OpInfo.ConstraintType == TargetLowering::C_Address) {
9023         assert((OpInfo.isIndirect ||
9024                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9025                "Operand must be indirect to be a mem!");
9026         assert(InOperandVal.getValueType() ==
9027                    TLI.getPointerTy(DAG.getDataLayout()) &&
9028                "Memory operands expect pointer values");
9029 
9030         unsigned ConstraintID =
9031             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9032         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9033                "Failed to convert memory constraint code to constraint id.");
9034 
9035         // Add information to the INLINEASM node to know about this input.
9036         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9037         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9038         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9039                                                         getCurSDLoc(),
9040                                                         MVT::i32));
9041         AsmNodeOperands.push_back(InOperandVal);
9042         break;
9043       }
9044 
9045       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9046               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9047              "Unknown constraint type!");
9048 
9049       // TODO: Support this.
9050       if (OpInfo.isIndirect) {
9051         emitInlineAsmError(
9052             Call, "Don't know how to handle indirect register inputs yet "
9053                   "for constraint '" +
9054                       Twine(OpInfo.ConstraintCode) + "'");
9055         return;
9056       }
9057 
9058       // Copy the input into the appropriate registers.
9059       if (OpInfo.AssignedRegs.Regs.empty()) {
9060         emitInlineAsmError(Call,
9061                            "couldn't allocate input reg for constraint '" +
9062                                Twine(OpInfo.ConstraintCode) + "'");
9063         return;
9064       }
9065 
9066       if (DetectWriteToReservedRegister())
9067         return;
9068 
9069       SDLoc dl = getCurSDLoc();
9070 
9071       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9072                                         &Call);
9073 
9074       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9075                                                dl, DAG, AsmNodeOperands);
9076       break;
9077     }
9078     case InlineAsm::isClobber:
9079       // Add the clobbered value to the operand list, so that the register
9080       // allocator is aware that the physreg got clobbered.
9081       if (!OpInfo.AssignedRegs.Regs.empty())
9082         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9083                                                  false, 0, getCurSDLoc(), DAG,
9084                                                  AsmNodeOperands);
9085       break;
9086     }
9087   }
9088 
9089   // Finish up input operands.  Set the input chain and add the flag last.
9090   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9091   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9092 
9093   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9094   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9095                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9096   Flag = Chain.getValue(1);
9097 
9098   // Do additional work to generate outputs.
9099 
9100   SmallVector<EVT, 1> ResultVTs;
9101   SmallVector<SDValue, 1> ResultValues;
9102   SmallVector<SDValue, 8> OutChains;
9103 
9104   llvm::Type *CallResultType = Call.getType();
9105   ArrayRef<Type *> ResultTypes;
9106   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9107     ResultTypes = StructResult->elements();
9108   else if (!CallResultType->isVoidTy())
9109     ResultTypes = makeArrayRef(CallResultType);
9110 
9111   auto CurResultType = ResultTypes.begin();
9112   auto handleRegAssign = [&](SDValue V) {
9113     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9114     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9115     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9116     ++CurResultType;
9117     // If the type of the inline asm call site return value is different but has
9118     // same size as the type of the asm output bitcast it.  One example of this
9119     // is for vectors with different width / number of elements.  This can
9120     // happen for register classes that can contain multiple different value
9121     // types.  The preg or vreg allocated may not have the same VT as was
9122     // expected.
9123     //
9124     // This can also happen for a return value that disagrees with the register
9125     // class it is put in, eg. a double in a general-purpose register on a
9126     // 32-bit machine.
9127     if (ResultVT != V.getValueType() &&
9128         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9129       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9130     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9131              V.getValueType().isInteger()) {
9132       // If a result value was tied to an input value, the computed result
9133       // may have a wider width than the expected result.  Extract the
9134       // relevant portion.
9135       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9136     }
9137     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9138     ResultVTs.push_back(ResultVT);
9139     ResultValues.push_back(V);
9140   };
9141 
9142   // Deal with output operands.
9143   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9144     if (OpInfo.Type == InlineAsm::isOutput) {
9145       SDValue Val;
9146       // Skip trivial output operands.
9147       if (OpInfo.AssignedRegs.Regs.empty())
9148         continue;
9149 
9150       switch (OpInfo.ConstraintType) {
9151       case TargetLowering::C_Register:
9152       case TargetLowering::C_RegisterClass:
9153         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9154                                                   Chain, &Flag, &Call);
9155         break;
9156       case TargetLowering::C_Immediate:
9157       case TargetLowering::C_Other:
9158         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9159                                               OpInfo, DAG);
9160         break;
9161       case TargetLowering::C_Memory:
9162         break; // Already handled.
9163       case TargetLowering::C_Address:
9164         break; // Silence warning.
9165       case TargetLowering::C_Unknown:
9166         assert(false && "Unexpected unknown constraint");
9167       }
9168 
9169       // Indirect output manifest as stores. Record output chains.
9170       if (OpInfo.isIndirect) {
9171         const Value *Ptr = OpInfo.CallOperandVal;
9172         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9173         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9174                                      MachinePointerInfo(Ptr));
9175         OutChains.push_back(Store);
9176       } else {
9177         // generate CopyFromRegs to associated registers.
9178         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9179         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9180           for (const SDValue &V : Val->op_values())
9181             handleRegAssign(V);
9182         } else
9183           handleRegAssign(Val);
9184       }
9185     }
9186   }
9187 
9188   // Set results.
9189   if (!ResultValues.empty()) {
9190     assert(CurResultType == ResultTypes.end() &&
9191            "Mismatch in number of ResultTypes");
9192     assert(ResultValues.size() == ResultTypes.size() &&
9193            "Mismatch in number of output operands in asm result");
9194 
9195     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9196                             DAG.getVTList(ResultVTs), ResultValues);
9197     setValue(&Call, V);
9198   }
9199 
9200   // Collect store chains.
9201   if (!OutChains.empty())
9202     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9203 
9204   if (EmitEHLabels) {
9205     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9206   }
9207 
9208   // Only Update Root if inline assembly has a memory effect.
9209   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9210       EmitEHLabels)
9211     DAG.setRoot(Chain);
9212 }
9213 
9214 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9215                                              const Twine &Message) {
9216   LLVMContext &Ctx = *DAG.getContext();
9217   Ctx.emitError(&Call, Message);
9218 
9219   // Make sure we leave the DAG in a valid state
9220   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9221   SmallVector<EVT, 1> ValueVTs;
9222   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9223 
9224   if (ValueVTs.empty())
9225     return;
9226 
9227   SmallVector<SDValue, 1> Ops;
9228   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9229     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9230 
9231   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9232 }
9233 
9234 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9235   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9236                           MVT::Other, getRoot(),
9237                           getValue(I.getArgOperand(0)),
9238                           DAG.getSrcValue(I.getArgOperand(0))));
9239 }
9240 
9241 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9243   const DataLayout &DL = DAG.getDataLayout();
9244   SDValue V = DAG.getVAArg(
9245       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9246       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9247       DL.getABITypeAlign(I.getType()).value());
9248   DAG.setRoot(V.getValue(1));
9249 
9250   if (I.getType()->isPointerTy())
9251     V = DAG.getPtrExtOrTrunc(
9252         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9253   setValue(&I, V);
9254 }
9255 
9256 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9257   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9258                           MVT::Other, getRoot(),
9259                           getValue(I.getArgOperand(0)),
9260                           DAG.getSrcValue(I.getArgOperand(0))));
9261 }
9262 
9263 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9264   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9265                           MVT::Other, getRoot(),
9266                           getValue(I.getArgOperand(0)),
9267                           getValue(I.getArgOperand(1)),
9268                           DAG.getSrcValue(I.getArgOperand(0)),
9269                           DAG.getSrcValue(I.getArgOperand(1))));
9270 }
9271 
9272 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9273                                                     const Instruction &I,
9274                                                     SDValue Op) {
9275   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9276   if (!Range)
9277     return Op;
9278 
9279   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9280   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9281     return Op;
9282 
9283   APInt Lo = CR.getUnsignedMin();
9284   if (!Lo.isMinValue())
9285     return Op;
9286 
9287   APInt Hi = CR.getUnsignedMax();
9288   unsigned Bits = std::max(Hi.getActiveBits(),
9289                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9290 
9291   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9292 
9293   SDLoc SL = getCurSDLoc();
9294 
9295   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9296                              DAG.getValueType(SmallVT));
9297   unsigned NumVals = Op.getNode()->getNumValues();
9298   if (NumVals == 1)
9299     return ZExt;
9300 
9301   SmallVector<SDValue, 4> Ops;
9302 
9303   Ops.push_back(ZExt);
9304   for (unsigned I = 1; I != NumVals; ++I)
9305     Ops.push_back(Op.getValue(I));
9306 
9307   return DAG.getMergeValues(Ops, SL);
9308 }
9309 
9310 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9311 /// the call being lowered.
9312 ///
9313 /// This is a helper for lowering intrinsics that follow a target calling
9314 /// convention or require stack pointer adjustment. Only a subset of the
9315 /// intrinsic's operands need to participate in the calling convention.
9316 void SelectionDAGBuilder::populateCallLoweringInfo(
9317     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9318     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9319     bool IsPatchPoint) {
9320   TargetLowering::ArgListTy Args;
9321   Args.reserve(NumArgs);
9322 
9323   // Populate the argument list.
9324   // Attributes for args start at offset 1, after the return attribute.
9325   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9326        ArgI != ArgE; ++ArgI) {
9327     const Value *V = Call->getOperand(ArgI);
9328 
9329     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9330 
9331     TargetLowering::ArgListEntry Entry;
9332     Entry.Node = getValue(V);
9333     Entry.Ty = V->getType();
9334     Entry.setAttributes(Call, ArgI);
9335     Args.push_back(Entry);
9336   }
9337 
9338   CLI.setDebugLoc(getCurSDLoc())
9339       .setChain(getRoot())
9340       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9341       .setDiscardResult(Call->use_empty())
9342       .setIsPatchPoint(IsPatchPoint)
9343       .setIsPreallocated(
9344           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9345 }
9346 
9347 /// Add a stack map intrinsic call's live variable operands to a stackmap
9348 /// or patchpoint target node's operand list.
9349 ///
9350 /// Constants are converted to TargetConstants purely as an optimization to
9351 /// avoid constant materialization and register allocation.
9352 ///
9353 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9354 /// generate addess computation nodes, and so FinalizeISel can convert the
9355 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9356 /// address materialization and register allocation, but may also be required
9357 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9358 /// alloca in the entry block, then the runtime may assume that the alloca's
9359 /// StackMap location can be read immediately after compilation and that the
9360 /// location is valid at any point during execution (this is similar to the
9361 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9362 /// only available in a register, then the runtime would need to trap when
9363 /// execution reaches the StackMap in order to read the alloca's location.
9364 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9365                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9366                                 SelectionDAGBuilder &Builder) {
9367   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9368     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9369     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9370       Ops.push_back(
9371         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9372       Ops.push_back(
9373         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9374     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9375       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9376       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9377           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9378     } else
9379       Ops.push_back(OpVal);
9380   }
9381 }
9382 
9383 /// Lower llvm.experimental.stackmap directly to its target opcode.
9384 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9385   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9386   //                                  [live variables...])
9387 
9388   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9389 
9390   SDValue Chain, InFlag, Callee, NullPtr;
9391   SmallVector<SDValue, 32> Ops;
9392 
9393   SDLoc DL = getCurSDLoc();
9394   Callee = getValue(CI.getCalledOperand());
9395   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9396 
9397   // The stackmap intrinsic only records the live variables (the arguments
9398   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9399   // intrinsic, this won't be lowered to a function call. This means we don't
9400   // have to worry about calling conventions and target specific lowering code.
9401   // Instead we perform the call lowering right here.
9402   //
9403   // chain, flag = CALLSEQ_START(chain, 0, 0)
9404   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9405   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9406   //
9407   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9408   InFlag = Chain.getValue(1);
9409 
9410   // Add the <id> and <numBytes> constants.
9411   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9412   Ops.push_back(DAG.getTargetConstant(
9413                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9414   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9415   Ops.push_back(DAG.getTargetConstant(
9416                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9417                   MVT::i32));
9418 
9419   // Push live variables for the stack map.
9420   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9421 
9422   // We are not pushing any register mask info here on the operands list,
9423   // because the stackmap doesn't clobber anything.
9424 
9425   // Push the chain and the glue flag.
9426   Ops.push_back(Chain);
9427   Ops.push_back(InFlag);
9428 
9429   // Create the STACKMAP node.
9430   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9431   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9432   Chain = SDValue(SM, 0);
9433   InFlag = Chain.getValue(1);
9434 
9435   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9436 
9437   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9438 
9439   // Set the root to the target-lowered call chain.
9440   DAG.setRoot(Chain);
9441 
9442   // Inform the Frame Information that we have a stackmap in this function.
9443   FuncInfo.MF->getFrameInfo().setHasStackMap();
9444 }
9445 
9446 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9447 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9448                                           const BasicBlock *EHPadBB) {
9449   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9450   //                                                 i32 <numBytes>,
9451   //                                                 i8* <target>,
9452   //                                                 i32 <numArgs>,
9453   //                                                 [Args...],
9454   //                                                 [live variables...])
9455 
9456   CallingConv::ID CC = CB.getCallingConv();
9457   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9458   bool HasDef = !CB.getType()->isVoidTy();
9459   SDLoc dl = getCurSDLoc();
9460   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9461 
9462   // Handle immediate and symbolic callees.
9463   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9464     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9465                                    /*isTarget=*/true);
9466   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9467     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9468                                          SDLoc(SymbolicCallee),
9469                                          SymbolicCallee->getValueType(0));
9470 
9471   // Get the real number of arguments participating in the call <numArgs>
9472   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9473   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9474 
9475   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9476   // Intrinsics include all meta-operands up to but not including CC.
9477   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9478   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9479          "Not enough arguments provided to the patchpoint intrinsic");
9480 
9481   // For AnyRegCC the arguments are lowered later on manually.
9482   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9483   Type *ReturnTy =
9484       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9485 
9486   TargetLowering::CallLoweringInfo CLI(DAG);
9487   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9488                            ReturnTy, true);
9489   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9490 
9491   SDNode *CallEnd = Result.second.getNode();
9492   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9493     CallEnd = CallEnd->getOperand(0).getNode();
9494 
9495   /// Get a call instruction from the call sequence chain.
9496   /// Tail calls are not allowed.
9497   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9498          "Expected a callseq node.");
9499   SDNode *Call = CallEnd->getOperand(0).getNode();
9500   bool HasGlue = Call->getGluedNode();
9501 
9502   // Replace the target specific call node with the patchable intrinsic.
9503   SmallVector<SDValue, 8> Ops;
9504 
9505   // Add the <id> and <numBytes> constants.
9506   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9507   Ops.push_back(DAG.getTargetConstant(
9508                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9509   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9510   Ops.push_back(DAG.getTargetConstant(
9511                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9512                   MVT::i32));
9513 
9514   // Add the callee.
9515   Ops.push_back(Callee);
9516 
9517   // Adjust <numArgs> to account for any arguments that have been passed on the
9518   // stack instead.
9519   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9520   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9521   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9522   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9523 
9524   // Add the calling convention
9525   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9526 
9527   // Add the arguments we omitted previously. The register allocator should
9528   // place these in any free register.
9529   if (IsAnyRegCC)
9530     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9531       Ops.push_back(getValue(CB.getArgOperand(i)));
9532 
9533   // Push the arguments from the call instruction up to the register mask.
9534   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9535   Ops.append(Call->op_begin() + 2, e);
9536 
9537   // Push live variables for the stack map.
9538   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9539 
9540   // Push the register mask info.
9541   if (HasGlue)
9542     Ops.push_back(*(Call->op_end()-2));
9543   else
9544     Ops.push_back(*(Call->op_end()-1));
9545 
9546   // Push the chain (this is originally the first operand of the call, but
9547   // becomes now the last or second to last operand).
9548   Ops.push_back(*(Call->op_begin()));
9549 
9550   // Push the glue flag (last operand).
9551   if (HasGlue)
9552     Ops.push_back(*(Call->op_end()-1));
9553 
9554   SDVTList NodeTys;
9555   if (IsAnyRegCC && HasDef) {
9556     // Create the return types based on the intrinsic definition
9557     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9558     SmallVector<EVT, 3> ValueVTs;
9559     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9560     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9561 
9562     // There is always a chain and a glue type at the end
9563     ValueVTs.push_back(MVT::Other);
9564     ValueVTs.push_back(MVT::Glue);
9565     NodeTys = DAG.getVTList(ValueVTs);
9566   } else
9567     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9568 
9569   // Replace the target specific call node with a PATCHPOINT node.
9570   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9571                                          dl, NodeTys, Ops);
9572 
9573   // Update the NodeMap.
9574   if (HasDef) {
9575     if (IsAnyRegCC)
9576       setValue(&CB, SDValue(MN, 0));
9577     else
9578       setValue(&CB, Result.first);
9579   }
9580 
9581   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9582   // call sequence. Furthermore the location of the chain and glue can change
9583   // when the AnyReg calling convention is used and the intrinsic returns a
9584   // value.
9585   if (IsAnyRegCC && HasDef) {
9586     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9587     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9588     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9589   } else
9590     DAG.ReplaceAllUsesWith(Call, MN);
9591   DAG.DeleteNode(Call);
9592 
9593   // Inform the Frame Information that we have a patchpoint in this function.
9594   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9595 }
9596 
9597 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9598                                             unsigned Intrinsic) {
9599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9600   SDValue Op1 = getValue(I.getArgOperand(0));
9601   SDValue Op2;
9602   if (I.arg_size() > 1)
9603     Op2 = getValue(I.getArgOperand(1));
9604   SDLoc dl = getCurSDLoc();
9605   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9606   SDValue Res;
9607   SDNodeFlags SDFlags;
9608   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9609     SDFlags.copyFMF(*FPMO);
9610 
9611   switch (Intrinsic) {
9612   case Intrinsic::vector_reduce_fadd:
9613     if (SDFlags.hasAllowReassociation())
9614       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9615                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9616                         SDFlags);
9617     else
9618       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9619     break;
9620   case Intrinsic::vector_reduce_fmul:
9621     if (SDFlags.hasAllowReassociation())
9622       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9623                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9624                         SDFlags);
9625     else
9626       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9627     break;
9628   case Intrinsic::vector_reduce_add:
9629     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9630     break;
9631   case Intrinsic::vector_reduce_mul:
9632     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9633     break;
9634   case Intrinsic::vector_reduce_and:
9635     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9636     break;
9637   case Intrinsic::vector_reduce_or:
9638     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9639     break;
9640   case Intrinsic::vector_reduce_xor:
9641     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9642     break;
9643   case Intrinsic::vector_reduce_smax:
9644     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9645     break;
9646   case Intrinsic::vector_reduce_smin:
9647     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9648     break;
9649   case Intrinsic::vector_reduce_umax:
9650     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9651     break;
9652   case Intrinsic::vector_reduce_umin:
9653     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9654     break;
9655   case Intrinsic::vector_reduce_fmax:
9656     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9657     break;
9658   case Intrinsic::vector_reduce_fmin:
9659     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9660     break;
9661   default:
9662     llvm_unreachable("Unhandled vector reduce intrinsic");
9663   }
9664   setValue(&I, Res);
9665 }
9666 
9667 /// Returns an AttributeList representing the attributes applied to the return
9668 /// value of the given call.
9669 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9670   SmallVector<Attribute::AttrKind, 2> Attrs;
9671   if (CLI.RetSExt)
9672     Attrs.push_back(Attribute::SExt);
9673   if (CLI.RetZExt)
9674     Attrs.push_back(Attribute::ZExt);
9675   if (CLI.IsInReg)
9676     Attrs.push_back(Attribute::InReg);
9677 
9678   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9679                             Attrs);
9680 }
9681 
9682 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9683 /// implementation, which just calls LowerCall.
9684 /// FIXME: When all targets are
9685 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9686 std::pair<SDValue, SDValue>
9687 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9688   // Handle the incoming return values from the call.
9689   CLI.Ins.clear();
9690   Type *OrigRetTy = CLI.RetTy;
9691   SmallVector<EVT, 4> RetTys;
9692   SmallVector<uint64_t, 4> Offsets;
9693   auto &DL = CLI.DAG.getDataLayout();
9694   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9695 
9696   if (CLI.IsPostTypeLegalization) {
9697     // If we are lowering a libcall after legalization, split the return type.
9698     SmallVector<EVT, 4> OldRetTys;
9699     SmallVector<uint64_t, 4> OldOffsets;
9700     RetTys.swap(OldRetTys);
9701     Offsets.swap(OldOffsets);
9702 
9703     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9704       EVT RetVT = OldRetTys[i];
9705       uint64_t Offset = OldOffsets[i];
9706       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9707       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9708       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9709       RetTys.append(NumRegs, RegisterVT);
9710       for (unsigned j = 0; j != NumRegs; ++j)
9711         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9712     }
9713   }
9714 
9715   SmallVector<ISD::OutputArg, 4> Outs;
9716   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9717 
9718   bool CanLowerReturn =
9719       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9720                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9721 
9722   SDValue DemoteStackSlot;
9723   int DemoteStackIdx = -100;
9724   if (!CanLowerReturn) {
9725     // FIXME: equivalent assert?
9726     // assert(!CS.hasInAllocaArgument() &&
9727     //        "sret demotion is incompatible with inalloca");
9728     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9729     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9730     MachineFunction &MF = CLI.DAG.getMachineFunction();
9731     DemoteStackIdx =
9732         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9733     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9734                                               DL.getAllocaAddrSpace());
9735 
9736     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9737     ArgListEntry Entry;
9738     Entry.Node = DemoteStackSlot;
9739     Entry.Ty = StackSlotPtrType;
9740     Entry.IsSExt = false;
9741     Entry.IsZExt = false;
9742     Entry.IsInReg = false;
9743     Entry.IsSRet = true;
9744     Entry.IsNest = false;
9745     Entry.IsByVal = false;
9746     Entry.IsByRef = false;
9747     Entry.IsReturned = false;
9748     Entry.IsSwiftSelf = false;
9749     Entry.IsSwiftAsync = false;
9750     Entry.IsSwiftError = false;
9751     Entry.IsCFGuardTarget = false;
9752     Entry.Alignment = Alignment;
9753     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9754     CLI.NumFixedArgs += 1;
9755     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9756 
9757     // sret demotion isn't compatible with tail-calls, since the sret argument
9758     // points into the callers stack frame.
9759     CLI.IsTailCall = false;
9760   } else {
9761     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9762         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9763     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9764       ISD::ArgFlagsTy Flags;
9765       if (NeedsRegBlock) {
9766         Flags.setInConsecutiveRegs();
9767         if (I == RetTys.size() - 1)
9768           Flags.setInConsecutiveRegsLast();
9769       }
9770       EVT VT = RetTys[I];
9771       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9772                                                      CLI.CallConv, VT);
9773       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9774                                                        CLI.CallConv, VT);
9775       for (unsigned i = 0; i != NumRegs; ++i) {
9776         ISD::InputArg MyFlags;
9777         MyFlags.Flags = Flags;
9778         MyFlags.VT = RegisterVT;
9779         MyFlags.ArgVT = VT;
9780         MyFlags.Used = CLI.IsReturnValueUsed;
9781         if (CLI.RetTy->isPointerTy()) {
9782           MyFlags.Flags.setPointer();
9783           MyFlags.Flags.setPointerAddrSpace(
9784               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9785         }
9786         if (CLI.RetSExt)
9787           MyFlags.Flags.setSExt();
9788         if (CLI.RetZExt)
9789           MyFlags.Flags.setZExt();
9790         if (CLI.IsInReg)
9791           MyFlags.Flags.setInReg();
9792         CLI.Ins.push_back(MyFlags);
9793       }
9794     }
9795   }
9796 
9797   // We push in swifterror return as the last element of CLI.Ins.
9798   ArgListTy &Args = CLI.getArgs();
9799   if (supportSwiftError()) {
9800     for (const ArgListEntry &Arg : Args) {
9801       if (Arg.IsSwiftError) {
9802         ISD::InputArg MyFlags;
9803         MyFlags.VT = getPointerTy(DL);
9804         MyFlags.ArgVT = EVT(getPointerTy(DL));
9805         MyFlags.Flags.setSwiftError();
9806         CLI.Ins.push_back(MyFlags);
9807       }
9808     }
9809   }
9810 
9811   // Handle all of the outgoing arguments.
9812   CLI.Outs.clear();
9813   CLI.OutVals.clear();
9814   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9815     SmallVector<EVT, 4> ValueVTs;
9816     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9817     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9818     Type *FinalType = Args[i].Ty;
9819     if (Args[i].IsByVal)
9820       FinalType = Args[i].IndirectType;
9821     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9822         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9823     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9824          ++Value) {
9825       EVT VT = ValueVTs[Value];
9826       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9827       SDValue Op = SDValue(Args[i].Node.getNode(),
9828                            Args[i].Node.getResNo() + Value);
9829       ISD::ArgFlagsTy Flags;
9830 
9831       // Certain targets (such as MIPS), may have a different ABI alignment
9832       // for a type depending on the context. Give the target a chance to
9833       // specify the alignment it wants.
9834       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9835       Flags.setOrigAlign(OriginalAlignment);
9836 
9837       if (Args[i].Ty->isPointerTy()) {
9838         Flags.setPointer();
9839         Flags.setPointerAddrSpace(
9840             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9841       }
9842       if (Args[i].IsZExt)
9843         Flags.setZExt();
9844       if (Args[i].IsSExt)
9845         Flags.setSExt();
9846       if (Args[i].IsInReg) {
9847         // If we are using vectorcall calling convention, a structure that is
9848         // passed InReg - is surely an HVA
9849         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9850             isa<StructType>(FinalType)) {
9851           // The first value of a structure is marked
9852           if (0 == Value)
9853             Flags.setHvaStart();
9854           Flags.setHva();
9855         }
9856         // Set InReg Flag
9857         Flags.setInReg();
9858       }
9859       if (Args[i].IsSRet)
9860         Flags.setSRet();
9861       if (Args[i].IsSwiftSelf)
9862         Flags.setSwiftSelf();
9863       if (Args[i].IsSwiftAsync)
9864         Flags.setSwiftAsync();
9865       if (Args[i].IsSwiftError)
9866         Flags.setSwiftError();
9867       if (Args[i].IsCFGuardTarget)
9868         Flags.setCFGuardTarget();
9869       if (Args[i].IsByVal)
9870         Flags.setByVal();
9871       if (Args[i].IsByRef)
9872         Flags.setByRef();
9873       if (Args[i].IsPreallocated) {
9874         Flags.setPreallocated();
9875         // Set the byval flag for CCAssignFn callbacks that don't know about
9876         // preallocated.  This way we can know how many bytes we should've
9877         // allocated and how many bytes a callee cleanup function will pop.  If
9878         // we port preallocated to more targets, we'll have to add custom
9879         // preallocated handling in the various CC lowering callbacks.
9880         Flags.setByVal();
9881       }
9882       if (Args[i].IsInAlloca) {
9883         Flags.setInAlloca();
9884         // Set the byval flag for CCAssignFn callbacks that don't know about
9885         // inalloca.  This way we can know how many bytes we should've allocated
9886         // and how many bytes a callee cleanup function will pop.  If we port
9887         // inalloca to more targets, we'll have to add custom inalloca handling
9888         // in the various CC lowering callbacks.
9889         Flags.setByVal();
9890       }
9891       Align MemAlign;
9892       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9893         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9894         Flags.setByValSize(FrameSize);
9895 
9896         // info is not there but there are cases it cannot get right.
9897         if (auto MA = Args[i].Alignment)
9898           MemAlign = *MA;
9899         else
9900           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9901       } else if (auto MA = Args[i].Alignment) {
9902         MemAlign = *MA;
9903       } else {
9904         MemAlign = OriginalAlignment;
9905       }
9906       Flags.setMemAlign(MemAlign);
9907       if (Args[i].IsNest)
9908         Flags.setNest();
9909       if (NeedsRegBlock)
9910         Flags.setInConsecutiveRegs();
9911 
9912       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9913                                                  CLI.CallConv, VT);
9914       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9915                                                         CLI.CallConv, VT);
9916       SmallVector<SDValue, 4> Parts(NumParts);
9917       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9918 
9919       if (Args[i].IsSExt)
9920         ExtendKind = ISD::SIGN_EXTEND;
9921       else if (Args[i].IsZExt)
9922         ExtendKind = ISD::ZERO_EXTEND;
9923 
9924       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9925       // for now.
9926       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9927           CanLowerReturn) {
9928         assert((CLI.RetTy == Args[i].Ty ||
9929                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9930                  CLI.RetTy->getPointerAddressSpace() ==
9931                      Args[i].Ty->getPointerAddressSpace())) &&
9932                RetTys.size() == NumValues && "unexpected use of 'returned'");
9933         // Before passing 'returned' to the target lowering code, ensure that
9934         // either the register MVT and the actual EVT are the same size or that
9935         // the return value and argument are extended in the same way; in these
9936         // cases it's safe to pass the argument register value unchanged as the
9937         // return register value (although it's at the target's option whether
9938         // to do so)
9939         // TODO: allow code generation to take advantage of partially preserved
9940         // registers rather than clobbering the entire register when the
9941         // parameter extension method is not compatible with the return
9942         // extension method
9943         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9944             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9945              CLI.RetZExt == Args[i].IsZExt))
9946           Flags.setReturned();
9947       }
9948 
9949       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9950                      CLI.CallConv, ExtendKind);
9951 
9952       for (unsigned j = 0; j != NumParts; ++j) {
9953         // if it isn't first piece, alignment must be 1
9954         // For scalable vectors the scalable part is currently handled
9955         // by individual targets, so we just use the known minimum size here.
9956         ISD::OutputArg MyFlags(
9957             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9958             i < CLI.NumFixedArgs, i,
9959             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9960         if (NumParts > 1 && j == 0)
9961           MyFlags.Flags.setSplit();
9962         else if (j != 0) {
9963           MyFlags.Flags.setOrigAlign(Align(1));
9964           if (j == NumParts - 1)
9965             MyFlags.Flags.setSplitEnd();
9966         }
9967 
9968         CLI.Outs.push_back(MyFlags);
9969         CLI.OutVals.push_back(Parts[j]);
9970       }
9971 
9972       if (NeedsRegBlock && Value == NumValues - 1)
9973         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9974     }
9975   }
9976 
9977   SmallVector<SDValue, 4> InVals;
9978   CLI.Chain = LowerCall(CLI, InVals);
9979 
9980   // Update CLI.InVals to use outside of this function.
9981   CLI.InVals = InVals;
9982 
9983   // Verify that the target's LowerCall behaved as expected.
9984   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9985          "LowerCall didn't return a valid chain!");
9986   assert((!CLI.IsTailCall || InVals.empty()) &&
9987          "LowerCall emitted a return value for a tail call!");
9988   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9989          "LowerCall didn't emit the correct number of values!");
9990 
9991   // For a tail call, the return value is merely live-out and there aren't
9992   // any nodes in the DAG representing it. Return a special value to
9993   // indicate that a tail call has been emitted and no more Instructions
9994   // should be processed in the current block.
9995   if (CLI.IsTailCall) {
9996     CLI.DAG.setRoot(CLI.Chain);
9997     return std::make_pair(SDValue(), SDValue());
9998   }
9999 
10000 #ifndef NDEBUG
10001   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10002     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10003     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10004            "LowerCall emitted a value with the wrong type!");
10005   }
10006 #endif
10007 
10008   SmallVector<SDValue, 4> ReturnValues;
10009   if (!CanLowerReturn) {
10010     // The instruction result is the result of loading from the
10011     // hidden sret parameter.
10012     SmallVector<EVT, 1> PVTs;
10013     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10014 
10015     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10016     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10017     EVT PtrVT = PVTs[0];
10018 
10019     unsigned NumValues = RetTys.size();
10020     ReturnValues.resize(NumValues);
10021     SmallVector<SDValue, 4> Chains(NumValues);
10022 
10023     // An aggregate return value cannot wrap around the address space, so
10024     // offsets to its parts don't wrap either.
10025     SDNodeFlags Flags;
10026     Flags.setNoUnsignedWrap(true);
10027 
10028     MachineFunction &MF = CLI.DAG.getMachineFunction();
10029     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10030     for (unsigned i = 0; i < NumValues; ++i) {
10031       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10032                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10033                                                         PtrVT), Flags);
10034       SDValue L = CLI.DAG.getLoad(
10035           RetTys[i], CLI.DL, CLI.Chain, Add,
10036           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10037                                             DemoteStackIdx, Offsets[i]),
10038           HiddenSRetAlign);
10039       ReturnValues[i] = L;
10040       Chains[i] = L.getValue(1);
10041     }
10042 
10043     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10044   } else {
10045     // Collect the legal value parts into potentially illegal values
10046     // that correspond to the original function's return values.
10047     Optional<ISD::NodeType> AssertOp;
10048     if (CLI.RetSExt)
10049       AssertOp = ISD::AssertSext;
10050     else if (CLI.RetZExt)
10051       AssertOp = ISD::AssertZext;
10052     unsigned CurReg = 0;
10053     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10054       EVT VT = RetTys[I];
10055       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10056                                                      CLI.CallConv, VT);
10057       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10058                                                        CLI.CallConv, VT);
10059 
10060       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10061                                               NumRegs, RegisterVT, VT, nullptr,
10062                                               CLI.CallConv, AssertOp));
10063       CurReg += NumRegs;
10064     }
10065 
10066     // For a function returning void, there is no return value. We can't create
10067     // such a node, so we just return a null return value in that case. In
10068     // that case, nothing will actually look at the value.
10069     if (ReturnValues.empty())
10070       return std::make_pair(SDValue(), CLI.Chain);
10071   }
10072 
10073   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10074                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10075   return std::make_pair(Res, CLI.Chain);
10076 }
10077 
10078 /// Places new result values for the node in Results (their number
10079 /// and types must exactly match those of the original return values of
10080 /// the node), or leaves Results empty, which indicates that the node is not
10081 /// to be custom lowered after all.
10082 void TargetLowering::LowerOperationWrapper(SDNode *N,
10083                                            SmallVectorImpl<SDValue> &Results,
10084                                            SelectionDAG &DAG) const {
10085   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10086 
10087   if (!Res.getNode())
10088     return;
10089 
10090   // If the original node has one result, take the return value from
10091   // LowerOperation as is. It might not be result number 0.
10092   if (N->getNumValues() == 1) {
10093     Results.push_back(Res);
10094     return;
10095   }
10096 
10097   // If the original node has multiple results, then the return node should
10098   // have the same number of results.
10099   assert((N->getNumValues() == Res->getNumValues()) &&
10100       "Lowering returned the wrong number of results!");
10101 
10102   // Places new result values base on N result number.
10103   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10104     Results.push_back(Res.getValue(I));
10105 }
10106 
10107 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10108   llvm_unreachable("LowerOperation not implemented for this target!");
10109 }
10110 
10111 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10112                                                      unsigned Reg,
10113                                                      ISD::NodeType ExtendType) {
10114   SDValue Op = getNonRegisterValue(V);
10115   assert((Op.getOpcode() != ISD::CopyFromReg ||
10116           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10117          "Copy from a reg to the same reg!");
10118   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10119 
10120   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10121   // If this is an InlineAsm we have to match the registers required, not the
10122   // notional registers required by the type.
10123 
10124   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10125                    None); // This is not an ABI copy.
10126   SDValue Chain = DAG.getEntryNode();
10127 
10128   if (ExtendType == ISD::ANY_EXTEND) {
10129     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10130     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10131       ExtendType = PreferredExtendIt->second;
10132   }
10133   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10134   PendingExports.push_back(Chain);
10135 }
10136 
10137 #include "llvm/CodeGen/SelectionDAGISel.h"
10138 
10139 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10140 /// entry block, return true.  This includes arguments used by switches, since
10141 /// the switch may expand into multiple basic blocks.
10142 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10143   // With FastISel active, we may be splitting blocks, so force creation
10144   // of virtual registers for all non-dead arguments.
10145   if (FastISel)
10146     return A->use_empty();
10147 
10148   const BasicBlock &Entry = A->getParent()->front();
10149   for (const User *U : A->users())
10150     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10151       return false;  // Use not in entry block.
10152 
10153   return true;
10154 }
10155 
10156 using ArgCopyElisionMapTy =
10157     DenseMap<const Argument *,
10158              std::pair<const AllocaInst *, const StoreInst *>>;
10159 
10160 /// Scan the entry block of the function in FuncInfo for arguments that look
10161 /// like copies into a local alloca. Record any copied arguments in
10162 /// ArgCopyElisionCandidates.
10163 static void
10164 findArgumentCopyElisionCandidates(const DataLayout &DL,
10165                                   FunctionLoweringInfo *FuncInfo,
10166                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10167   // Record the state of every static alloca used in the entry block. Argument
10168   // allocas are all used in the entry block, so we need approximately as many
10169   // entries as we have arguments.
10170   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10171   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10172   unsigned NumArgs = FuncInfo->Fn->arg_size();
10173   StaticAllocas.reserve(NumArgs * 2);
10174 
10175   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10176     if (!V)
10177       return nullptr;
10178     V = V->stripPointerCasts();
10179     const auto *AI = dyn_cast<AllocaInst>(V);
10180     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10181       return nullptr;
10182     auto Iter = StaticAllocas.insert({AI, Unknown});
10183     return &Iter.first->second;
10184   };
10185 
10186   // Look for stores of arguments to static allocas. Look through bitcasts and
10187   // GEPs to handle type coercions, as long as the alloca is fully initialized
10188   // by the store. Any non-store use of an alloca escapes it and any subsequent
10189   // unanalyzed store might write it.
10190   // FIXME: Handle structs initialized with multiple stores.
10191   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10192     // Look for stores, and handle non-store uses conservatively.
10193     const auto *SI = dyn_cast<StoreInst>(&I);
10194     if (!SI) {
10195       // We will look through cast uses, so ignore them completely.
10196       if (I.isCast())
10197         continue;
10198       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10199       // to allocas.
10200       if (I.isDebugOrPseudoInst())
10201         continue;
10202       // This is an unknown instruction. Assume it escapes or writes to all
10203       // static alloca operands.
10204       for (const Use &U : I.operands()) {
10205         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10206           *Info = StaticAllocaInfo::Clobbered;
10207       }
10208       continue;
10209     }
10210 
10211     // If the stored value is a static alloca, mark it as escaped.
10212     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10213       *Info = StaticAllocaInfo::Clobbered;
10214 
10215     // Check if the destination is a static alloca.
10216     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10217     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10218     if (!Info)
10219       continue;
10220     const AllocaInst *AI = cast<AllocaInst>(Dst);
10221 
10222     // Skip allocas that have been initialized or clobbered.
10223     if (*Info != StaticAllocaInfo::Unknown)
10224       continue;
10225 
10226     // Check if the stored value is an argument, and that this store fully
10227     // initializes the alloca.
10228     // If the argument type has padding bits we can't directly forward a pointer
10229     // as the upper bits may contain garbage.
10230     // Don't elide copies from the same argument twice.
10231     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10232     const auto *Arg = dyn_cast<Argument>(Val);
10233     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10234         Arg->getType()->isEmptyTy() ||
10235         DL.getTypeStoreSize(Arg->getType()) !=
10236             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10237         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10238         ArgCopyElisionCandidates.count(Arg)) {
10239       *Info = StaticAllocaInfo::Clobbered;
10240       continue;
10241     }
10242 
10243     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10244                       << '\n');
10245 
10246     // Mark this alloca and store for argument copy elision.
10247     *Info = StaticAllocaInfo::Elidable;
10248     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10249 
10250     // Stop scanning if we've seen all arguments. This will happen early in -O0
10251     // builds, which is useful, because -O0 builds have large entry blocks and
10252     // many allocas.
10253     if (ArgCopyElisionCandidates.size() == NumArgs)
10254       break;
10255   }
10256 }
10257 
10258 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10259 /// ArgVal is a load from a suitable fixed stack object.
10260 static void tryToElideArgumentCopy(
10261     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10262     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10263     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10264     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10265     SDValue ArgVal, bool &ArgHasUses) {
10266   // Check if this is a load from a fixed stack object.
10267   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10268   if (!LNode)
10269     return;
10270   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10271   if (!FINode)
10272     return;
10273 
10274   // Check that the fixed stack object is the right size and alignment.
10275   // Look at the alignment that the user wrote on the alloca instead of looking
10276   // at the stack object.
10277   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10278   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10279   const AllocaInst *AI = ArgCopyIter->second.first;
10280   int FixedIndex = FINode->getIndex();
10281   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10282   int OldIndex = AllocaIndex;
10283   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10284   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10285     LLVM_DEBUG(
10286         dbgs() << "  argument copy elision failed due to bad fixed stack "
10287                   "object size\n");
10288     return;
10289   }
10290   Align RequiredAlignment = AI->getAlign();
10291   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10292     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10293                          "greater than stack argument alignment ("
10294                       << DebugStr(RequiredAlignment) << " vs "
10295                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10296     return;
10297   }
10298 
10299   // Perform the elision. Delete the old stack object and replace its only use
10300   // in the variable info map. Mark the stack object as mutable.
10301   LLVM_DEBUG({
10302     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10303            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10304            << '\n';
10305   });
10306   MFI.RemoveStackObject(OldIndex);
10307   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10308   AllocaIndex = FixedIndex;
10309   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10310   Chains.push_back(ArgVal.getValue(1));
10311 
10312   // Avoid emitting code for the store implementing the copy.
10313   const StoreInst *SI = ArgCopyIter->second.second;
10314   ElidedArgCopyInstrs.insert(SI);
10315 
10316   // Check for uses of the argument again so that we can avoid exporting ArgVal
10317   // if it is't used by anything other than the store.
10318   for (const Value *U : Arg.users()) {
10319     if (U != SI) {
10320       ArgHasUses = true;
10321       break;
10322     }
10323   }
10324 }
10325 
10326 void SelectionDAGISel::LowerArguments(const Function &F) {
10327   SelectionDAG &DAG = SDB->DAG;
10328   SDLoc dl = SDB->getCurSDLoc();
10329   const DataLayout &DL = DAG.getDataLayout();
10330   SmallVector<ISD::InputArg, 16> Ins;
10331 
10332   // In Naked functions we aren't going to save any registers.
10333   if (F.hasFnAttribute(Attribute::Naked))
10334     return;
10335 
10336   if (!FuncInfo->CanLowerReturn) {
10337     // Put in an sret pointer parameter before all the other parameters.
10338     SmallVector<EVT, 1> ValueVTs;
10339     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10340                     F.getReturnType()->getPointerTo(
10341                         DAG.getDataLayout().getAllocaAddrSpace()),
10342                     ValueVTs);
10343 
10344     // NOTE: Assuming that a pointer will never break down to more than one VT
10345     // or one register.
10346     ISD::ArgFlagsTy Flags;
10347     Flags.setSRet();
10348     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10349     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10350                          ISD::InputArg::NoArgIndex, 0);
10351     Ins.push_back(RetArg);
10352   }
10353 
10354   // Look for stores of arguments to static allocas. Mark such arguments with a
10355   // flag to ask the target to give us the memory location of that argument if
10356   // available.
10357   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10358   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10359                                     ArgCopyElisionCandidates);
10360 
10361   // Set up the incoming argument description vector.
10362   for (const Argument &Arg : F.args()) {
10363     unsigned ArgNo = Arg.getArgNo();
10364     SmallVector<EVT, 4> ValueVTs;
10365     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10366     bool isArgValueUsed = !Arg.use_empty();
10367     unsigned PartBase = 0;
10368     Type *FinalType = Arg.getType();
10369     if (Arg.hasAttribute(Attribute::ByVal))
10370       FinalType = Arg.getParamByValType();
10371     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10372         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10373     for (unsigned Value = 0, NumValues = ValueVTs.size();
10374          Value != NumValues; ++Value) {
10375       EVT VT = ValueVTs[Value];
10376       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10377       ISD::ArgFlagsTy Flags;
10378 
10379 
10380       if (Arg.getType()->isPointerTy()) {
10381         Flags.setPointer();
10382         Flags.setPointerAddrSpace(
10383             cast<PointerType>(Arg.getType())->getAddressSpace());
10384       }
10385       if (Arg.hasAttribute(Attribute::ZExt))
10386         Flags.setZExt();
10387       if (Arg.hasAttribute(Attribute::SExt))
10388         Flags.setSExt();
10389       if (Arg.hasAttribute(Attribute::InReg)) {
10390         // If we are using vectorcall calling convention, a structure that is
10391         // passed InReg - is surely an HVA
10392         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10393             isa<StructType>(Arg.getType())) {
10394           // The first value of a structure is marked
10395           if (0 == Value)
10396             Flags.setHvaStart();
10397           Flags.setHva();
10398         }
10399         // Set InReg Flag
10400         Flags.setInReg();
10401       }
10402       if (Arg.hasAttribute(Attribute::StructRet))
10403         Flags.setSRet();
10404       if (Arg.hasAttribute(Attribute::SwiftSelf))
10405         Flags.setSwiftSelf();
10406       if (Arg.hasAttribute(Attribute::SwiftAsync))
10407         Flags.setSwiftAsync();
10408       if (Arg.hasAttribute(Attribute::SwiftError))
10409         Flags.setSwiftError();
10410       if (Arg.hasAttribute(Attribute::ByVal))
10411         Flags.setByVal();
10412       if (Arg.hasAttribute(Attribute::ByRef))
10413         Flags.setByRef();
10414       if (Arg.hasAttribute(Attribute::InAlloca)) {
10415         Flags.setInAlloca();
10416         // Set the byval flag for CCAssignFn callbacks that don't know about
10417         // inalloca.  This way we can know how many bytes we should've allocated
10418         // and how many bytes a callee cleanup function will pop.  If we port
10419         // inalloca to more targets, we'll have to add custom inalloca handling
10420         // in the various CC lowering callbacks.
10421         Flags.setByVal();
10422       }
10423       if (Arg.hasAttribute(Attribute::Preallocated)) {
10424         Flags.setPreallocated();
10425         // Set the byval flag for CCAssignFn callbacks that don't know about
10426         // preallocated.  This way we can know how many bytes we should've
10427         // allocated and how many bytes a callee cleanup function will pop.  If
10428         // we port preallocated to more targets, we'll have to add custom
10429         // preallocated handling in the various CC lowering callbacks.
10430         Flags.setByVal();
10431       }
10432 
10433       // Certain targets (such as MIPS), may have a different ABI alignment
10434       // for a type depending on the context. Give the target a chance to
10435       // specify the alignment it wants.
10436       const Align OriginalAlignment(
10437           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10438       Flags.setOrigAlign(OriginalAlignment);
10439 
10440       Align MemAlign;
10441       Type *ArgMemTy = nullptr;
10442       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10443           Flags.isByRef()) {
10444         if (!ArgMemTy)
10445           ArgMemTy = Arg.getPointeeInMemoryValueType();
10446 
10447         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10448 
10449         // For in-memory arguments, size and alignment should be passed from FE.
10450         // BE will guess if this info is not there but there are cases it cannot
10451         // get right.
10452         if (auto ParamAlign = Arg.getParamStackAlign())
10453           MemAlign = *ParamAlign;
10454         else if ((ParamAlign = Arg.getParamAlign()))
10455           MemAlign = *ParamAlign;
10456         else
10457           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10458         if (Flags.isByRef())
10459           Flags.setByRefSize(MemSize);
10460         else
10461           Flags.setByValSize(MemSize);
10462       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10463         MemAlign = *ParamAlign;
10464       } else {
10465         MemAlign = OriginalAlignment;
10466       }
10467       Flags.setMemAlign(MemAlign);
10468 
10469       if (Arg.hasAttribute(Attribute::Nest))
10470         Flags.setNest();
10471       if (NeedsRegBlock)
10472         Flags.setInConsecutiveRegs();
10473       if (ArgCopyElisionCandidates.count(&Arg))
10474         Flags.setCopyElisionCandidate();
10475       if (Arg.hasAttribute(Attribute::Returned))
10476         Flags.setReturned();
10477 
10478       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10479           *CurDAG->getContext(), F.getCallingConv(), VT);
10480       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10481           *CurDAG->getContext(), F.getCallingConv(), VT);
10482       for (unsigned i = 0; i != NumRegs; ++i) {
10483         // For scalable vectors, use the minimum size; individual targets
10484         // are responsible for handling scalable vector arguments and
10485         // return values.
10486         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10487                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10488         if (NumRegs > 1 && i == 0)
10489           MyFlags.Flags.setSplit();
10490         // if it isn't first piece, alignment must be 1
10491         else if (i > 0) {
10492           MyFlags.Flags.setOrigAlign(Align(1));
10493           if (i == NumRegs - 1)
10494             MyFlags.Flags.setSplitEnd();
10495         }
10496         Ins.push_back(MyFlags);
10497       }
10498       if (NeedsRegBlock && Value == NumValues - 1)
10499         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10500       PartBase += VT.getStoreSize().getKnownMinSize();
10501     }
10502   }
10503 
10504   // Call the target to set up the argument values.
10505   SmallVector<SDValue, 8> InVals;
10506   SDValue NewRoot = TLI->LowerFormalArguments(
10507       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10508 
10509   // Verify that the target's LowerFormalArguments behaved as expected.
10510   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10511          "LowerFormalArguments didn't return a valid chain!");
10512   assert(InVals.size() == Ins.size() &&
10513          "LowerFormalArguments didn't emit the correct number of values!");
10514   LLVM_DEBUG({
10515     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10516       assert(InVals[i].getNode() &&
10517              "LowerFormalArguments emitted a null value!");
10518       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10519              "LowerFormalArguments emitted a value with the wrong type!");
10520     }
10521   });
10522 
10523   // Update the DAG with the new chain value resulting from argument lowering.
10524   DAG.setRoot(NewRoot);
10525 
10526   // Set up the argument values.
10527   unsigned i = 0;
10528   if (!FuncInfo->CanLowerReturn) {
10529     // Create a virtual register for the sret pointer, and put in a copy
10530     // from the sret argument into it.
10531     SmallVector<EVT, 1> ValueVTs;
10532     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10533                     F.getReturnType()->getPointerTo(
10534                         DAG.getDataLayout().getAllocaAddrSpace()),
10535                     ValueVTs);
10536     MVT VT = ValueVTs[0].getSimpleVT();
10537     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10538     Optional<ISD::NodeType> AssertOp = None;
10539     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10540                                         nullptr, F.getCallingConv(), AssertOp);
10541 
10542     MachineFunction& MF = SDB->DAG.getMachineFunction();
10543     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10544     Register SRetReg =
10545         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10546     FuncInfo->DemoteRegister = SRetReg;
10547     NewRoot =
10548         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10549     DAG.setRoot(NewRoot);
10550 
10551     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10552     ++i;
10553   }
10554 
10555   SmallVector<SDValue, 4> Chains;
10556   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10557   for (const Argument &Arg : F.args()) {
10558     SmallVector<SDValue, 4> ArgValues;
10559     SmallVector<EVT, 4> ValueVTs;
10560     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10561     unsigned NumValues = ValueVTs.size();
10562     if (NumValues == 0)
10563       continue;
10564 
10565     bool ArgHasUses = !Arg.use_empty();
10566 
10567     // Elide the copying store if the target loaded this argument from a
10568     // suitable fixed stack object.
10569     if (Ins[i].Flags.isCopyElisionCandidate()) {
10570       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10571                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10572                              InVals[i], ArgHasUses);
10573     }
10574 
10575     // If this argument is unused then remember its value. It is used to generate
10576     // debugging information.
10577     bool isSwiftErrorArg =
10578         TLI->supportSwiftError() &&
10579         Arg.hasAttribute(Attribute::SwiftError);
10580     if (!ArgHasUses && !isSwiftErrorArg) {
10581       SDB->setUnusedArgValue(&Arg, InVals[i]);
10582 
10583       // Also remember any frame index for use in FastISel.
10584       if (FrameIndexSDNode *FI =
10585           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10586         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10587     }
10588 
10589     for (unsigned Val = 0; Val != NumValues; ++Val) {
10590       EVT VT = ValueVTs[Val];
10591       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10592                                                       F.getCallingConv(), VT);
10593       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10594           *CurDAG->getContext(), F.getCallingConv(), VT);
10595 
10596       // Even an apparent 'unused' swifterror argument needs to be returned. So
10597       // we do generate a copy for it that can be used on return from the
10598       // function.
10599       if (ArgHasUses || isSwiftErrorArg) {
10600         Optional<ISD::NodeType> AssertOp;
10601         if (Arg.hasAttribute(Attribute::SExt))
10602           AssertOp = ISD::AssertSext;
10603         else if (Arg.hasAttribute(Attribute::ZExt))
10604           AssertOp = ISD::AssertZext;
10605 
10606         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10607                                              PartVT, VT, nullptr,
10608                                              F.getCallingConv(), AssertOp));
10609       }
10610 
10611       i += NumParts;
10612     }
10613 
10614     // We don't need to do anything else for unused arguments.
10615     if (ArgValues.empty())
10616       continue;
10617 
10618     // Note down frame index.
10619     if (FrameIndexSDNode *FI =
10620         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10621       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10622 
10623     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10624                                      SDB->getCurSDLoc());
10625 
10626     SDB->setValue(&Arg, Res);
10627     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10628       // We want to associate the argument with the frame index, among
10629       // involved operands, that correspond to the lowest address. The
10630       // getCopyFromParts function, called earlier, is swapping the order of
10631       // the operands to BUILD_PAIR depending on endianness. The result of
10632       // that swapping is that the least significant bits of the argument will
10633       // be in the first operand of the BUILD_PAIR node, and the most
10634       // significant bits will be in the second operand.
10635       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10636       if (LoadSDNode *LNode =
10637           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10638         if (FrameIndexSDNode *FI =
10639             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10640           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10641     }
10642 
10643     // Analyses past this point are naive and don't expect an assertion.
10644     if (Res.getOpcode() == ISD::AssertZext)
10645       Res = Res.getOperand(0);
10646 
10647     // Update the SwiftErrorVRegDefMap.
10648     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10649       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10650       if (Register::isVirtualRegister(Reg))
10651         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10652                                    Reg);
10653     }
10654 
10655     // If this argument is live outside of the entry block, insert a copy from
10656     // wherever we got it to the vreg that other BB's will reference it as.
10657     if (Res.getOpcode() == ISD::CopyFromReg) {
10658       // If we can, though, try to skip creating an unnecessary vreg.
10659       // FIXME: This isn't very clean... it would be nice to make this more
10660       // general.
10661       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10662       if (Register::isVirtualRegister(Reg)) {
10663         FuncInfo->ValueMap[&Arg] = Reg;
10664         continue;
10665       }
10666     }
10667     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10668       FuncInfo->InitializeRegForValue(&Arg);
10669       SDB->CopyToExportRegsIfNeeded(&Arg);
10670     }
10671   }
10672 
10673   if (!Chains.empty()) {
10674     Chains.push_back(NewRoot);
10675     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10676   }
10677 
10678   DAG.setRoot(NewRoot);
10679 
10680   assert(i == InVals.size() && "Argument register count mismatch!");
10681 
10682   // If any argument copy elisions occurred and we have debug info, update the
10683   // stale frame indices used in the dbg.declare variable info table.
10684   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10685   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10686     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10687       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10688       if (I != ArgCopyElisionFrameIndexMap.end())
10689         VI.Slot = I->second;
10690     }
10691   }
10692 
10693   // Finally, if the target has anything special to do, allow it to do so.
10694   emitFunctionEntryCode();
10695 }
10696 
10697 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10698 /// ensure constants are generated when needed.  Remember the virtual registers
10699 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10700 /// directly add them, because expansion might result in multiple MBB's for one
10701 /// BB.  As such, the start of the BB might correspond to a different MBB than
10702 /// the end.
10703 void
10704 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10706   const Instruction *TI = LLVMBB->getTerminator();
10707 
10708   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10709 
10710   // Check PHI nodes in successors that expect a value to be available from this
10711   // block.
10712   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10713     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10714     if (!isa<PHINode>(SuccBB->begin())) continue;
10715     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10716 
10717     // If this terminator has multiple identical successors (common for
10718     // switches), only handle each succ once.
10719     if (!SuccsHandled.insert(SuccMBB).second)
10720       continue;
10721 
10722     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10723 
10724     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10725     // nodes and Machine PHI nodes, but the incoming operands have not been
10726     // emitted yet.
10727     for (const PHINode &PN : SuccBB->phis()) {
10728       // Ignore dead phi's.
10729       if (PN.use_empty())
10730         continue;
10731 
10732       // Skip empty types
10733       if (PN.getType()->isEmptyTy())
10734         continue;
10735 
10736       unsigned Reg;
10737       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10738 
10739       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10740         unsigned &RegOut = ConstantsOut[C];
10741         if (RegOut == 0) {
10742           RegOut = FuncInfo.CreateRegs(C);
10743           // We need to zero/sign extend ConstantInt phi operands to match
10744           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10745           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10746           if (auto *CI = dyn_cast<ConstantInt>(C))
10747             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10748                                                     : ISD::ZERO_EXTEND;
10749           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10750         }
10751         Reg = RegOut;
10752       } else {
10753         DenseMap<const Value *, Register>::iterator I =
10754           FuncInfo.ValueMap.find(PHIOp);
10755         if (I != FuncInfo.ValueMap.end())
10756           Reg = I->second;
10757         else {
10758           assert(isa<AllocaInst>(PHIOp) &&
10759                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10760                  "Didn't codegen value into a register!??");
10761           Reg = FuncInfo.CreateRegs(PHIOp);
10762           CopyValueToVirtualRegister(PHIOp, Reg);
10763         }
10764       }
10765 
10766       // Remember that this register needs to added to the machine PHI node as
10767       // the input for this MBB.
10768       SmallVector<EVT, 4> ValueVTs;
10769       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10770       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10771         EVT VT = ValueVTs[vti];
10772         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10773         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10774           FuncInfo.PHINodesToUpdate.push_back(
10775               std::make_pair(&*MBBI++, Reg + i));
10776         Reg += NumRegisters;
10777       }
10778     }
10779   }
10780 
10781   ConstantsOut.clear();
10782 }
10783 
10784 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10785   MachineFunction::iterator I(MBB);
10786   if (++I == FuncInfo.MF->end())
10787     return nullptr;
10788   return &*I;
10789 }
10790 
10791 /// During lowering new call nodes can be created (such as memset, etc.).
10792 /// Those will become new roots of the current DAG, but complications arise
10793 /// when they are tail calls. In such cases, the call lowering will update
10794 /// the root, but the builder still needs to know that a tail call has been
10795 /// lowered in order to avoid generating an additional return.
10796 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10797   // If the node is null, we do have a tail call.
10798   if (MaybeTC.getNode() != nullptr)
10799     DAG.setRoot(MaybeTC);
10800   else
10801     HasTailCall = true;
10802 }
10803 
10804 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10805                                         MachineBasicBlock *SwitchMBB,
10806                                         MachineBasicBlock *DefaultMBB) {
10807   MachineFunction *CurMF = FuncInfo.MF;
10808   MachineBasicBlock *NextMBB = nullptr;
10809   MachineFunction::iterator BBI(W.MBB);
10810   if (++BBI != FuncInfo.MF->end())
10811     NextMBB = &*BBI;
10812 
10813   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10814 
10815   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10816 
10817   if (Size == 2 && W.MBB == SwitchMBB) {
10818     // If any two of the cases has the same destination, and if one value
10819     // is the same as the other, but has one bit unset that the other has set,
10820     // use bit manipulation to do two compares at once.  For example:
10821     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10822     // TODO: This could be extended to merge any 2 cases in switches with 3
10823     // cases.
10824     // TODO: Handle cases where W.CaseBB != SwitchBB.
10825     CaseCluster &Small = *W.FirstCluster;
10826     CaseCluster &Big = *W.LastCluster;
10827 
10828     if (Small.Low == Small.High && Big.Low == Big.High &&
10829         Small.MBB == Big.MBB) {
10830       const APInt &SmallValue = Small.Low->getValue();
10831       const APInt &BigValue = Big.Low->getValue();
10832 
10833       // Check that there is only one bit different.
10834       APInt CommonBit = BigValue ^ SmallValue;
10835       if (CommonBit.isPowerOf2()) {
10836         SDValue CondLHS = getValue(Cond);
10837         EVT VT = CondLHS.getValueType();
10838         SDLoc DL = getCurSDLoc();
10839 
10840         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10841                                  DAG.getConstant(CommonBit, DL, VT));
10842         SDValue Cond = DAG.getSetCC(
10843             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10844             ISD::SETEQ);
10845 
10846         // Update successor info.
10847         // Both Small and Big will jump to Small.BB, so we sum up the
10848         // probabilities.
10849         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10850         if (BPI)
10851           addSuccessorWithProb(
10852               SwitchMBB, DefaultMBB,
10853               // The default destination is the first successor in IR.
10854               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10855         else
10856           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10857 
10858         // Insert the true branch.
10859         SDValue BrCond =
10860             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10861                         DAG.getBasicBlock(Small.MBB));
10862         // Insert the false branch.
10863         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10864                              DAG.getBasicBlock(DefaultMBB));
10865 
10866         DAG.setRoot(BrCond);
10867         return;
10868       }
10869     }
10870   }
10871 
10872   if (TM.getOptLevel() != CodeGenOpt::None) {
10873     // Here, we order cases by probability so the most likely case will be
10874     // checked first. However, two clusters can have the same probability in
10875     // which case their relative ordering is non-deterministic. So we use Low
10876     // as a tie-breaker as clusters are guaranteed to never overlap.
10877     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10878                [](const CaseCluster &a, const CaseCluster &b) {
10879       return a.Prob != b.Prob ?
10880              a.Prob > b.Prob :
10881              a.Low->getValue().slt(b.Low->getValue());
10882     });
10883 
10884     // Rearrange the case blocks so that the last one falls through if possible
10885     // without changing the order of probabilities.
10886     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10887       --I;
10888       if (I->Prob > W.LastCluster->Prob)
10889         break;
10890       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10891         std::swap(*I, *W.LastCluster);
10892         break;
10893       }
10894     }
10895   }
10896 
10897   // Compute total probability.
10898   BranchProbability DefaultProb = W.DefaultProb;
10899   BranchProbability UnhandledProbs = DefaultProb;
10900   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10901     UnhandledProbs += I->Prob;
10902 
10903   MachineBasicBlock *CurMBB = W.MBB;
10904   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10905     bool FallthroughUnreachable = false;
10906     MachineBasicBlock *Fallthrough;
10907     if (I == W.LastCluster) {
10908       // For the last cluster, fall through to the default destination.
10909       Fallthrough = DefaultMBB;
10910       FallthroughUnreachable = isa<UnreachableInst>(
10911           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10912     } else {
10913       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10914       CurMF->insert(BBI, Fallthrough);
10915       // Put Cond in a virtual register to make it available from the new blocks.
10916       ExportFromCurrentBlock(Cond);
10917     }
10918     UnhandledProbs -= I->Prob;
10919 
10920     switch (I->Kind) {
10921       case CC_JumpTable: {
10922         // FIXME: Optimize away range check based on pivot comparisons.
10923         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10924         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10925 
10926         // The jump block hasn't been inserted yet; insert it here.
10927         MachineBasicBlock *JumpMBB = JT->MBB;
10928         CurMF->insert(BBI, JumpMBB);
10929 
10930         auto JumpProb = I->Prob;
10931         auto FallthroughProb = UnhandledProbs;
10932 
10933         // If the default statement is a target of the jump table, we evenly
10934         // distribute the default probability to successors of CurMBB. Also
10935         // update the probability on the edge from JumpMBB to Fallthrough.
10936         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10937                                               SE = JumpMBB->succ_end();
10938              SI != SE; ++SI) {
10939           if (*SI == DefaultMBB) {
10940             JumpProb += DefaultProb / 2;
10941             FallthroughProb -= DefaultProb / 2;
10942             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10943             JumpMBB->normalizeSuccProbs();
10944             break;
10945           }
10946         }
10947 
10948         if (FallthroughUnreachable)
10949           JTH->FallthroughUnreachable = true;
10950 
10951         if (!JTH->FallthroughUnreachable)
10952           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10953         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10954         CurMBB->normalizeSuccProbs();
10955 
10956         // The jump table header will be inserted in our current block, do the
10957         // range check, and fall through to our fallthrough block.
10958         JTH->HeaderBB = CurMBB;
10959         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10960 
10961         // If we're in the right place, emit the jump table header right now.
10962         if (CurMBB == SwitchMBB) {
10963           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10964           JTH->Emitted = true;
10965         }
10966         break;
10967       }
10968       case CC_BitTests: {
10969         // FIXME: Optimize away range check based on pivot comparisons.
10970         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10971 
10972         // The bit test blocks haven't been inserted yet; insert them here.
10973         for (BitTestCase &BTC : BTB->Cases)
10974           CurMF->insert(BBI, BTC.ThisBB);
10975 
10976         // Fill in fields of the BitTestBlock.
10977         BTB->Parent = CurMBB;
10978         BTB->Default = Fallthrough;
10979 
10980         BTB->DefaultProb = UnhandledProbs;
10981         // If the cases in bit test don't form a contiguous range, we evenly
10982         // distribute the probability on the edge to Fallthrough to two
10983         // successors of CurMBB.
10984         if (!BTB->ContiguousRange) {
10985           BTB->Prob += DefaultProb / 2;
10986           BTB->DefaultProb -= DefaultProb / 2;
10987         }
10988 
10989         if (FallthroughUnreachable)
10990           BTB->FallthroughUnreachable = true;
10991 
10992         // If we're in the right place, emit the bit test header right now.
10993         if (CurMBB == SwitchMBB) {
10994           visitBitTestHeader(*BTB, SwitchMBB);
10995           BTB->Emitted = true;
10996         }
10997         break;
10998       }
10999       case CC_Range: {
11000         const Value *RHS, *LHS, *MHS;
11001         ISD::CondCode CC;
11002         if (I->Low == I->High) {
11003           // Check Cond == I->Low.
11004           CC = ISD::SETEQ;
11005           LHS = Cond;
11006           RHS=I->Low;
11007           MHS = nullptr;
11008         } else {
11009           // Check I->Low <= Cond <= I->High.
11010           CC = ISD::SETLE;
11011           LHS = I->Low;
11012           MHS = Cond;
11013           RHS = I->High;
11014         }
11015 
11016         // If Fallthrough is unreachable, fold away the comparison.
11017         if (FallthroughUnreachable)
11018           CC = ISD::SETTRUE;
11019 
11020         // The false probability is the sum of all unhandled cases.
11021         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11022                      getCurSDLoc(), I->Prob, UnhandledProbs);
11023 
11024         if (CurMBB == SwitchMBB)
11025           visitSwitchCase(CB, SwitchMBB);
11026         else
11027           SL->SwitchCases.push_back(CB);
11028 
11029         break;
11030       }
11031     }
11032     CurMBB = Fallthrough;
11033   }
11034 }
11035 
11036 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11037                                               CaseClusterIt First,
11038                                               CaseClusterIt Last) {
11039   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11040     if (X.Prob != CC.Prob)
11041       return X.Prob > CC.Prob;
11042 
11043     // Ties are broken by comparing the case value.
11044     return X.Low->getValue().slt(CC.Low->getValue());
11045   });
11046 }
11047 
11048 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11049                                         const SwitchWorkListItem &W,
11050                                         Value *Cond,
11051                                         MachineBasicBlock *SwitchMBB) {
11052   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11053          "Clusters not sorted?");
11054 
11055   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11056 
11057   // Balance the tree based on branch probabilities to create a near-optimal (in
11058   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11059   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11060   CaseClusterIt LastLeft = W.FirstCluster;
11061   CaseClusterIt FirstRight = W.LastCluster;
11062   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11063   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11064 
11065   // Move LastLeft and FirstRight towards each other from opposite directions to
11066   // find a partitioning of the clusters which balances the probability on both
11067   // sides. If LeftProb and RightProb are equal, alternate which side is
11068   // taken to ensure 0-probability nodes are distributed evenly.
11069   unsigned I = 0;
11070   while (LastLeft + 1 < FirstRight) {
11071     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11072       LeftProb += (++LastLeft)->Prob;
11073     else
11074       RightProb += (--FirstRight)->Prob;
11075     I++;
11076   }
11077 
11078   while (true) {
11079     // Our binary search tree differs from a typical BST in that ours can have up
11080     // to three values in each leaf. The pivot selection above doesn't take that
11081     // into account, which means the tree might require more nodes and be less
11082     // efficient. We compensate for this here.
11083 
11084     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11085     unsigned NumRight = W.LastCluster - FirstRight + 1;
11086 
11087     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11088       // If one side has less than 3 clusters, and the other has more than 3,
11089       // consider taking a cluster from the other side.
11090 
11091       if (NumLeft < NumRight) {
11092         // Consider moving the first cluster on the right to the left side.
11093         CaseCluster &CC = *FirstRight;
11094         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11095         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11096         if (LeftSideRank <= RightSideRank) {
11097           // Moving the cluster to the left does not demote it.
11098           ++LastLeft;
11099           ++FirstRight;
11100           continue;
11101         }
11102       } else {
11103         assert(NumRight < NumLeft);
11104         // Consider moving the last element on the left to the right side.
11105         CaseCluster &CC = *LastLeft;
11106         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11107         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11108         if (RightSideRank <= LeftSideRank) {
11109           // Moving the cluster to the right does not demot it.
11110           --LastLeft;
11111           --FirstRight;
11112           continue;
11113         }
11114       }
11115     }
11116     break;
11117   }
11118 
11119   assert(LastLeft + 1 == FirstRight);
11120   assert(LastLeft >= W.FirstCluster);
11121   assert(FirstRight <= W.LastCluster);
11122 
11123   // Use the first element on the right as pivot since we will make less-than
11124   // comparisons against it.
11125   CaseClusterIt PivotCluster = FirstRight;
11126   assert(PivotCluster > W.FirstCluster);
11127   assert(PivotCluster <= W.LastCluster);
11128 
11129   CaseClusterIt FirstLeft = W.FirstCluster;
11130   CaseClusterIt LastRight = W.LastCluster;
11131 
11132   const ConstantInt *Pivot = PivotCluster->Low;
11133 
11134   // New blocks will be inserted immediately after the current one.
11135   MachineFunction::iterator BBI(W.MBB);
11136   ++BBI;
11137 
11138   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11139   // we can branch to its destination directly if it's squeezed exactly in
11140   // between the known lower bound and Pivot - 1.
11141   MachineBasicBlock *LeftMBB;
11142   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11143       FirstLeft->Low == W.GE &&
11144       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11145     LeftMBB = FirstLeft->MBB;
11146   } else {
11147     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11148     FuncInfo.MF->insert(BBI, LeftMBB);
11149     WorkList.push_back(
11150         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11151     // Put Cond in a virtual register to make it available from the new blocks.
11152     ExportFromCurrentBlock(Cond);
11153   }
11154 
11155   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11156   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11157   // directly if RHS.High equals the current upper bound.
11158   MachineBasicBlock *RightMBB;
11159   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11160       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11161     RightMBB = FirstRight->MBB;
11162   } else {
11163     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11164     FuncInfo.MF->insert(BBI, RightMBB);
11165     WorkList.push_back(
11166         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11167     // Put Cond in a virtual register to make it available from the new blocks.
11168     ExportFromCurrentBlock(Cond);
11169   }
11170 
11171   // Create the CaseBlock record that will be used to lower the branch.
11172   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11173                getCurSDLoc(), LeftProb, RightProb);
11174 
11175   if (W.MBB == SwitchMBB)
11176     visitSwitchCase(CB, SwitchMBB);
11177   else
11178     SL->SwitchCases.push_back(CB);
11179 }
11180 
11181 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11182 // from the swith statement.
11183 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11184                                             BranchProbability PeeledCaseProb) {
11185   if (PeeledCaseProb == BranchProbability::getOne())
11186     return BranchProbability::getZero();
11187   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11188 
11189   uint32_t Numerator = CaseProb.getNumerator();
11190   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11191   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11192 }
11193 
11194 // Try to peel the top probability case if it exceeds the threshold.
11195 // Return current MachineBasicBlock for the switch statement if the peeling
11196 // does not occur.
11197 // If the peeling is performed, return the newly created MachineBasicBlock
11198 // for the peeled switch statement. Also update Clusters to remove the peeled
11199 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11200 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11201     const SwitchInst &SI, CaseClusterVector &Clusters,
11202     BranchProbability &PeeledCaseProb) {
11203   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11204   // Don't perform if there is only one cluster or optimizing for size.
11205   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11206       TM.getOptLevel() == CodeGenOpt::None ||
11207       SwitchMBB->getParent()->getFunction().hasMinSize())
11208     return SwitchMBB;
11209 
11210   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11211   unsigned PeeledCaseIndex = 0;
11212   bool SwitchPeeled = false;
11213   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11214     CaseCluster &CC = Clusters[Index];
11215     if (CC.Prob < TopCaseProb)
11216       continue;
11217     TopCaseProb = CC.Prob;
11218     PeeledCaseIndex = Index;
11219     SwitchPeeled = true;
11220   }
11221   if (!SwitchPeeled)
11222     return SwitchMBB;
11223 
11224   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11225                     << TopCaseProb << "\n");
11226 
11227   // Record the MBB for the peeled switch statement.
11228   MachineFunction::iterator BBI(SwitchMBB);
11229   ++BBI;
11230   MachineBasicBlock *PeeledSwitchMBB =
11231       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11232   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11233 
11234   ExportFromCurrentBlock(SI.getCondition());
11235   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11236   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11237                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11238   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11239 
11240   Clusters.erase(PeeledCaseIt);
11241   for (CaseCluster &CC : Clusters) {
11242     LLVM_DEBUG(
11243         dbgs() << "Scale the probablity for one cluster, before scaling: "
11244                << CC.Prob << "\n");
11245     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11246     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11247   }
11248   PeeledCaseProb = TopCaseProb;
11249   return PeeledSwitchMBB;
11250 }
11251 
11252 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11253   // Extract cases from the switch.
11254   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11255   CaseClusterVector Clusters;
11256   Clusters.reserve(SI.getNumCases());
11257   for (auto I : SI.cases()) {
11258     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11259     const ConstantInt *CaseVal = I.getCaseValue();
11260     BranchProbability Prob =
11261         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11262             : BranchProbability(1, SI.getNumCases() + 1);
11263     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11264   }
11265 
11266   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11267 
11268   // Cluster adjacent cases with the same destination. We do this at all
11269   // optimization levels because it's cheap to do and will make codegen faster
11270   // if there are many clusters.
11271   sortAndRangeify(Clusters);
11272 
11273   // The branch probablity of the peeled case.
11274   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11275   MachineBasicBlock *PeeledSwitchMBB =
11276       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11277 
11278   // If there is only the default destination, jump there directly.
11279   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11280   if (Clusters.empty()) {
11281     assert(PeeledSwitchMBB == SwitchMBB);
11282     SwitchMBB->addSuccessor(DefaultMBB);
11283     if (DefaultMBB != NextBlock(SwitchMBB)) {
11284       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11285                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11286     }
11287     return;
11288   }
11289 
11290   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11291   SL->findBitTestClusters(Clusters, &SI);
11292 
11293   LLVM_DEBUG({
11294     dbgs() << "Case clusters: ";
11295     for (const CaseCluster &C : Clusters) {
11296       if (C.Kind == CC_JumpTable)
11297         dbgs() << "JT:";
11298       if (C.Kind == CC_BitTests)
11299         dbgs() << "BT:";
11300 
11301       C.Low->getValue().print(dbgs(), true);
11302       if (C.Low != C.High) {
11303         dbgs() << '-';
11304         C.High->getValue().print(dbgs(), true);
11305       }
11306       dbgs() << ' ';
11307     }
11308     dbgs() << '\n';
11309   });
11310 
11311   assert(!Clusters.empty());
11312   SwitchWorkList WorkList;
11313   CaseClusterIt First = Clusters.begin();
11314   CaseClusterIt Last = Clusters.end() - 1;
11315   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11316   // Scale the branchprobability for DefaultMBB if the peel occurs and
11317   // DefaultMBB is not replaced.
11318   if (PeeledCaseProb != BranchProbability::getZero() &&
11319       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11320     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11321   WorkList.push_back(
11322       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11323 
11324   while (!WorkList.empty()) {
11325     SwitchWorkListItem W = WorkList.pop_back_val();
11326     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11327 
11328     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11329         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11330       // For optimized builds, lower large range as a balanced binary tree.
11331       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11332       continue;
11333     }
11334 
11335     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11336   }
11337 }
11338 
11339 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11341   auto DL = getCurSDLoc();
11342   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11343   setValue(&I, DAG.getStepVector(DL, ResultVT));
11344 }
11345 
11346 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11348   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11349 
11350   SDLoc DL = getCurSDLoc();
11351   SDValue V = getValue(I.getOperand(0));
11352   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11353 
11354   if (VT.isScalableVector()) {
11355     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11356     return;
11357   }
11358 
11359   // Use VECTOR_SHUFFLE for the fixed-length vector
11360   // to maintain existing behavior.
11361   SmallVector<int, 8> Mask;
11362   unsigned NumElts = VT.getVectorMinNumElements();
11363   for (unsigned i = 0; i != NumElts; ++i)
11364     Mask.push_back(NumElts - 1 - i);
11365 
11366   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11367 }
11368 
11369 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11370   SmallVector<EVT, 4> ValueVTs;
11371   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11372                   ValueVTs);
11373   unsigned NumValues = ValueVTs.size();
11374   if (NumValues == 0) return;
11375 
11376   SmallVector<SDValue, 4> Values(NumValues);
11377   SDValue Op = getValue(I.getOperand(0));
11378 
11379   for (unsigned i = 0; i != NumValues; ++i)
11380     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11381                             SDValue(Op.getNode(), Op.getResNo() + i));
11382 
11383   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11384                            DAG.getVTList(ValueVTs), Values));
11385 }
11386 
11387 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11388   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11389   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11390 
11391   SDLoc DL = getCurSDLoc();
11392   SDValue V1 = getValue(I.getOperand(0));
11393   SDValue V2 = getValue(I.getOperand(1));
11394   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11395 
11396   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11397   if (VT.isScalableVector()) {
11398     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11399     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11400                              DAG.getConstant(Imm, DL, IdxVT)));
11401     return;
11402   }
11403 
11404   unsigned NumElts = VT.getVectorNumElements();
11405 
11406   uint64_t Idx = (NumElts + Imm) % NumElts;
11407 
11408   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11409   SmallVector<int, 8> Mask;
11410   for (unsigned i = 0; i < NumElts; ++i)
11411     Mask.push_back(Idx + i);
11412   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11413 }
11414